CN110137298B - GaAs基多结太阳电池的Ge/Si异质结底电池制备方法 - Google Patents

GaAs基多结太阳电池的Ge/Si异质结底电池制备方法 Download PDF

Info

Publication number
CN110137298B
CN110137298B CN201910526744.XA CN201910526744A CN110137298B CN 110137298 B CN110137298 B CN 110137298B CN 201910526744 A CN201910526744 A CN 201910526744A CN 110137298 B CN110137298 B CN 110137298B
Authority
CN
China
Prior art keywords
growing
gaas
cell
adopting
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910526744.XA
Other languages
English (en)
Other versions
CN110137298A (zh
Inventor
陈诺夫
陈梦
陶泉丽
常甄文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201910526744.XA priority Critical patent/CN110137298B/zh
Publication of CN110137298A publication Critical patent/CN110137298A/zh
Application granted granted Critical
Publication of CN110137298B publication Critical patent/CN110137298B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了GaAs基多结太阳电池的Ge/Si异质结底电池制备方法,其包括以下步骤:1)选取p型单晶硅衬底;2)在p‑Si上生长掺杂磷元素的n型Ge薄膜,形成Ge/Si异质结底电池;3)在n‑Ge薄膜上,采用MOCVD技术生长GaAs缓冲层;4)在所得GaAs缓冲层上采用MOCVD技术生长第一个隧道结;5)在所得第一个隧道结上采用MOCVD技术生长GaAs中间电池;6)在所得GaAs中间电池上采用MOCVD技术生长第二个隧道结;7)在所得第二个隧道结上采用MOCVD技术生长InGaP顶电池;8)在所得InGaP顶电池上生长窗口层;9)在所得窗口层上生长GaAs欧姆接触层;10)在所得接触层上选区刻蚀后生长减反射膜;11)制备上下表面金属电极,并完成多结太阳电池的制备。

Description

GaAs基多结太阳电池的Ge/Si异质结底电池制备方法
技术领域
本发明属于太阳能光伏发电技术领域,涉及一种利用Ge/Si异质结底电池对InGaP/GaAs/Ge三结太阳电池的结构优化,主要是利用Ge/Si异质结底电池代替Ge底电池,制备InGaP/GaAs/n-Ge/p-Si多结太阳电池的方法。
背景技术
在太阳能电池发展过程中,由于单结太阳电池仅表现为具有固定禁带宽度的单一半导体材料,对太阳光谱的吸收范围固定,因此研究叠层太阳电池来增大对太阳光谱的吸收范围,有效提高了太阳电池的转换效率。叠层太阳电池中的主流研究方向为InGaP/GaAs/Ge三结太阳电池,其中Ge材料的禁带宽度为0.67eV,GaAs的禁带宽度为1.42eV,InGaP的禁带宽度为1.82eV,Ge与GaAs之间禁带宽度不匹配,会造成串联过程中短路电流的不匹配,从而降低三结太阳电池的光电转换效率。随后提出采用禁带宽度为1.12eV的Si来代替Ge作为底电池,但是Si与GaAs之间的晶格失配以及热膨胀系数失配均较大,Si衬底上的GaAs层在外延生长过程中会产生较多的位错。
在后期发展中,研究了在单晶硅上生长Ge薄膜作为InGaP/GaAs/Ge三结电池的底电池,在太阳光的吸收过程中,Ge底电池仅需约10μm的厚度即可将太阳光完全吸收。在以Ge单晶晶片为衬底的三结太阳电池中,所使用的Ge晶片厚度约为170μm左右,InGaP/GaAs/Ge三结太阳电池中稀散金属Ge的使用量较大。在单晶硅衬底上生长Ge薄膜作为InGaP/GaAs/Ge三结太阳电池的底电池,可节约Ge材料,而在单晶硅衬底生长较厚Ge层作为三结太阳电池的底电池,仍存在1.82eV/1.42eV/0.67eV的禁带宽度失配问题以及Ge元素用量较多等问题。
发明内容
本发明的目的主要在于采用Ge/Si异质结底电池代替InGaP/GaAs/Ge三结太阳电池中的Ge底电池,本发明区别于在单晶硅衬底上生长较厚的Ge底电池代替InGaP/GaAs/Ge的Ge体单晶底电池的特点是,Ge/Si异质结底电池中的p-Si单晶硅不仅作为Ge薄膜生长的衬底,还作为Ge/Si异质结结构中的p型基区吸收利用太阳光,最终得到InGaP/GaAs/n-Ge/p-Si多结太阳电池。
采用厚度为80~300μm,具有(001)偏(111)0~10°和偏
Figure BDA0002098481400000021
方向0~10°切偏角的p型单晶硅生长厚度约为1~50nm掺杂磷元素的n型Ge薄膜,其中n-Ge薄膜与p-Si形成p-n结,产生内建电场并在太阳光的辐照下产生光生电子空穴对,形成Ge/Si异质结底电池。Ge/Si异质结底电池中,合适大小的切偏角可以有效降低Ge薄膜生长过程中与Si材料由于晶格常数与热膨胀系数失配导致的缺陷态密度,得到晶体结构较好的Ge薄膜,有利于具有平整表面的Ge薄膜制备。
在单晶硅衬底上进行Ge薄膜的制备通常采用磁控溅射沉积、或化学气相沉积、或分子束外延生长、或金属有机化学气相沉积技术,随后生长GaAs缓冲层、第一个隧道结、GaAs中间电池、第二个隧道结、InGaP顶电池、窗口层、减反射层以及上下表面金属电极,制备得到的InGaP/GaAs/n-Ge/p-Si多结太阳电池不仅可以有效吸收太阳光,而且实现了稀散金属Ge的节约使用,避免了直接在单晶硅上生长GaAs层时较大失配现象的产生。在禁带宽度分布为1.82eV/1.42eV/0.67eV的InGaP/GaAs/Ge三结太阳电池中,采用Ge/Si异质结底电池可以改善多结电池的禁带宽度不匹配,由于n-Ge薄膜厚度仅为1~50nm,对于载流子的输运影响较小,从而使得多结太阳电池的禁带宽度匹配情况改善,得到了禁带宽度分布为1.82eV/1.42eV/0.67eV/1.12eV的InGaP/GaAs/Ge/Si多结太阳电池。
一种GaAs基多结太阳电池的Ge/Si异质结底电池制备方法,包括以下步骤:
1)选取p型单晶硅衬底;
2)在p-Si上生长掺杂磷元素的n型Ge薄膜,,形成Ge/Si异质结底电池;锗薄膜可以采用磁控溅射、或化学气相沉积、或分子束外延、或金属有机化学气相沉积(MOCVD)技术生长;
3)在步骤2)所得n-Ge薄膜上,采用MOCVD技术生长GaAs缓冲层;
4)在GaAs缓冲层上采用MOCVD技术生长第一个隧道结;
5)在第一个隧道结上采用MOCVD技术生长GaAs中间电池;
6)在GaAs中间电池上采用MOCVD技术生长第二个隧道结;
7)在第二个隧道结上采用MOCVD技术生长InGaP顶电池;
8)在InGaP顶电池上生长窗口层;
9)在窗口层上生长GaAs欧姆接触层;
10)选区刻蚀后生长减反射膜;
11)制备上下表面金属电极,并完成GaInP/GaAs/n-Ge/p-Si多结太阳电池的制备。
进一步,步骤1)选取的p-Si单晶硅,具有(001)偏(111)方向0~10°和偏
Figure BDA0002098481400000031
方向0~10°范围内的切偏角,合适的切偏角度对n-Ge薄膜在p-Si单晶硅衬底上的生长较为有利,可以得到晶体结构较好的Ge薄膜。
进一步,步骤1)所述p-Si单晶硅的厚度约为80~300μm,作为Ge/Si异质结底电池的p型区和衬底,可以吸收透过InGaP顶电池以及GaAs中间电池的太阳光,并起到机械支撑的作用。
进一步,步骤2)所述锗薄膜采用磁控溅射、或化学气相沉积、或分子束外延、或金属有机化学气相沉积技术生长。
进一步,步骤2)所述n-Ge薄膜,厚度约为1~50nm,合适厚度的Ge薄膜可以避免透过InGaP顶电池以及GaAs中间电池的太阳光被禁带宽度小的Ge层完全吸收,使得禁带宽度较大的p-Si区域可以吸收利用透过的太阳光。
进一步,步骤10)所述减反射膜的制备可采用等离子体化学气相沉积(PECVD)、或磁控溅射技术。
对Ge/Si异质结底电池的说明,该底电池结构为:在具有一定偏角的p型单晶硅衬底上生长掺杂磷元素的n型Ge薄膜,得到n-Ge/p-Si异质结底电池;所述n-Ge/p-Si异质结底电池,主要用于代替InGaP/GaAs/Ge三结太阳电池中的Ge底电池,对三结电池的结构进行优化设计,得到InGaP/GaAs/n-Ge/p-Si多结太阳电池。
本发明的有益效果为,采用Ge/Si异质结底电池作为三结太阳电池的底电池,可以减少Ge元素的使用量,在Si上生长较薄的n型Ge层可以改善直接利用Si来代替InGaP/GaAs/Ge三结电池中Ge底电池而造成衬底与外延层之间的晶格失配与热膨胀失配问题。
采用Ge/Si异质结底电池的新结构多结太阳电池可以有效拓宽太阳电池对太阳光谱的吸收范围,并且能够改善InGaP/GaAs/Ge三结太阳电池中禁带宽度匹配较差的问题。InGaP/GaAs/Ge/Si多结太阳电池中1.82eV/1.42eV/0.67eV/1.12eV的禁带宽度组合中,由于Ge薄膜的厚度仅为1~50nm,对太阳光的吸收较少,因此主要表现为1.82eV/1.42eV/1.12eV的禁带宽度较为匹配的多结太阳电池对太阳光进行吸收,相互串联的不同层电池之间实现短路电流匹配,经过不同层之间的厚度优化可以得到光电转换效率更高的多结太阳电池。
采用具有(001)偏(111)0~10°和偏
Figure BDA0002098481400000041
方向0~10°的单晶硅衬底生长Ge薄膜,合适的切偏角能够明显改善Ge薄膜的平整度,并提高Ge薄膜中单一晶向的择优取向性,得到晶体结构较好的Ge薄膜。具有较完整晶格结构的Ge薄膜在制备多结太阳电池时,能够降低材料中的缺陷态密度,降低载流子的复合概率,提高电池的短路电流和填充因子,提高多结太阳电池的光电转换效率。
附图说明
图1是本发明InGaP/GaAs/n-Ge/p-Si多结太阳电池的制备流程示意图;
图2是本发明nGaP/GaAs/n-Ge/p-Si多结太阳电池的结构示意图。
具体实施方式
下面结合附图对本发明进一步详细说明。
本发明在InGaP/GaAs/Ge三结太阳电池中的结构优化设计步骤为:
1)实验采用具有(001)偏(111)0~10°和偏
Figure BDA0002098481400000042
方向0~10°的p型单晶硅作为n型Ge薄膜生长的衬底,单晶硅厚度约为80~300μm;
2)在p-Si衬底上生长掺杂磷元素的n-Ge薄膜,形成Ge/Si异质结底电池;Ge薄膜厚度约为1~50nm,Ge薄膜的制备可采用磁控溅射、或化学气相沉积(CVD)、或分子束外延(MBE)、或金属有机化学气相沉积(MOCVD)技术;
3)在步骤2)所得n-Ge薄膜上,采用MOCVD技术生长GaAs缓冲层;
4)在GaAs缓冲层上采用MOCVD技术制备第一个隧道结,实现底电池与GaAs中间电池之间载流子的隧穿;
5)在第一个隧道结上采用MOCVD技术制备GaAs中间电池;
6)在GaAs中间电池上采用MOCVD技术生长第二个隧道结,实现GaAs中间电池与InGaP顶电池之间载流子的隧穿;
7)在第二个隧道结上采用MOCVD技术制备InGaP顶电池;
8)在InGaP顶电池上生长窗口层;
9)在窗口层上生长GaAs欧姆接触层;
10)选区刻蚀后生长减反射膜,一般采用MgF2、或ZnS、或Si3N4
11)制备上下表面金属电极,并完成GaInP/GaAs/n-Ge/p-Si多结太阳电池的制备。
上述实施例对本发明的技术方案进行了详细说明。显然,本发明并不局限于所描述的实施例。基于本发明中的实施例,熟悉本技术领域的人员还可据此做出多种变化,但任何与本发明等同或相类似的变化都属于本发明保护的范围。

Claims (5)

1.一种GaAs基多结太阳电池的Ge/Si异质结底电池制备方法,其特征在于,包括以下步骤:
1)选取p型单晶硅衬底;
2)在p-Si上生长掺杂磷元素的n型Ge薄膜,形成Ge/Si异质结底电池;
3)在步骤2)所得n-Ge薄膜上,采用MOCVD技术生长GaAs缓冲层;
4)在步骤3)所得GaAs缓冲层上采用MOCVD技术生长第一个隧道结;
5)在步骤4)所得第一个隧道结上采用MOCVD技术生长GaAs中间电池;
6)在步骤5)所得GaAs中间电池上采用MOCVD技术生长第二个隧道结;
7)在步骤6)所得第二个隧道结上采用MOCVD技术生长InGaP顶电池;
8)在步骤7)所得InGaP顶电池上生长窗口层;
9)在步骤8)所得窗口层上生长GaAs欧姆接触层;
10)在步骤9)所得接触层上选区刻蚀后生长减反射膜;所述减反射膜的制备采用等离子体化学气相沉积或磁控溅射技术;
11)制备上下表面金属电极,并完成GaInP/GaAs/n-Ge/p-Si多结太阳电池的制备。
2.根据权利要求1所述的方法,其特征在于,步骤1)选取的p-Si单晶硅,具有(001)偏(111)方向0~10°和偏
Figure FDA0002612218240000011
方向0~10°范围内的切偏角。
3.根据权利要求1所述的方法,其特征在于,步骤1)所述p-Si单晶硅的厚度为80~300μm。
4.根据权利要求1所述的方法,其特征在于,步骤2)所述锗薄膜采用磁控溅射、或化学气相沉积、或分子束外延技术生长。
5.根据权利要求1所述的方法,其特征在于,步骤2)所述n-Ge薄膜,厚度为1~50nm。
CN201910526744.XA 2019-06-18 2019-06-18 GaAs基多结太阳电池的Ge/Si异质结底电池制备方法 Expired - Fee Related CN110137298B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910526744.XA CN110137298B (zh) 2019-06-18 2019-06-18 GaAs基多结太阳电池的Ge/Si异质结底电池制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910526744.XA CN110137298B (zh) 2019-06-18 2019-06-18 GaAs基多结太阳电池的Ge/Si异质结底电池制备方法

Publications (2)

Publication Number Publication Date
CN110137298A CN110137298A (zh) 2019-08-16
CN110137298B true CN110137298B (zh) 2020-12-29

Family

ID=67577742

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910526744.XA Expired - Fee Related CN110137298B (zh) 2019-06-18 2019-06-18 GaAs基多结太阳电池的Ge/Si异质结底电池制备方法

Country Status (1)

Country Link
CN (1) CN110137298B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102567A (ja) * 1985-10-29 1987-05-13 Sharp Corp タンデム型太陽電池
US7812249B2 (en) * 2003-04-14 2010-10-12 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate
CN101859814B (zh) * 2010-06-02 2012-07-04 华中科技大学 在硅衬底上生长InGaP/GaAs/Ge三结太阳能电池的方法
KR101193810B1 (ko) * 2011-09-26 2012-10-23 (재)한국나노기술원 다중접합 태양전지 및 그 제조방법
CN103077892B (zh) * 2013-01-22 2015-08-19 中国科学院半导体研究所 在硅上集成hemt器件的方法
TWI550112B (zh) * 2015-04-10 2016-09-21 欣欣天然氣股份有限公司 光電轉換元件的基板的製造方法

Also Published As

Publication number Publication date
CN110137298A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
US10050166B2 (en) Silicon heterojunction photovoltaic device with wide band gap emitter
JP3657143B2 (ja) 太陽電池及びその製造方法
US6300557B1 (en) Low-bandgap double-heterostructure InAsP/GaInAs photovoltaic converters
Bett et al. III-V compounds for solar cell applications
US7122733B2 (en) Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
US6340788B1 (en) Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
US20100132774A1 (en) Thin Film Silicon Solar Cell Device With Amorphous Window Layer
EP1923918A2 (en) Graded hybrid amorphous silicon nanowire solar cells
US20090188554A1 (en) III-V Compound Semiconductor Solar Cell for Terrestrial Solar Array
CN102334194A (zh) 在冶金级Si衬底上基于外延晶体硅薄膜的太阳能异质结电池设计
CN103515462B (zh) 一种含复合DBR的Ge基GaAs薄膜单结太阳能电池及其制备方法
CN105355680B (zh) 一种晶格匹配的六结太阳能电池
CN101483202A (zh) 单晶硅衬底多结太阳电池
CN102412337A (zh) 一种高效四结太阳能电池及其制作方法
CN210535681U (zh) 一种晶格失配的五结太阳能电池
CN105355668A (zh) 一种具有非晶态缓冲层结构的In0.3Ga0.7As电池及制备方法
CN110931593A (zh) 一种晶格匹配的硅基无砷化合物四结太阳电池
CN105810760A (zh) 一种晶格匹配的五结太阳能电池及其制作方法
CN102790119A (zh) GaInP/GaAs/Ge/Ge四结太阳能电池及其制备方法
CN110137298B (zh) GaAs基多结太阳电池的Ge/Si异质结底电池制备方法
CN114171615B (zh) 一种硅基多结太阳电池及其渐变缓冲层
CN104241416A (zh) 一种含量子阱结构的三结太阳能电池
CN111430493B (zh) 一种多结太阳能电池及供电设备
CN103489952B (zh) 一种SiC衬底单节太阳能电池外延结构及其制备方法
CN212257428U (zh) 一种异质pn结空间电池外延片

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201229

Termination date: 20210618

CF01 Termination of patent right due to non-payment of annual fee