CN102334194A - 在冶金级Si衬底上基于外延晶体硅薄膜的太阳能异质结电池设计 - Google Patents

在冶金级Si衬底上基于外延晶体硅薄膜的太阳能异质结电池设计 Download PDF

Info

Publication number
CN102334194A
CN102334194A CN2010800094418A CN201080009441A CN102334194A CN 102334194 A CN102334194 A CN 102334194A CN 2010800094418 A CN2010800094418 A CN 2010800094418A CN 201080009441 A CN201080009441 A CN 201080009441A CN 102334194 A CN102334194 A CN 102334194A
Authority
CN
China
Prior art keywords
silicon layer
layer
heavily doped
crystal silicon
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800094418A
Other languages
English (en)
Inventor
游晨涛
J·B·亨
徐征
傅建明
梁建军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Sai'ang Electric Power Co Ltd
Silevo LLC
Original Assignee
Hangzhou Sai'ang Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Sai'ang Electric Power Co Ltd filed Critical Hangzhou Sai'ang Electric Power Co Ltd
Publication of CN102334194A publication Critical patent/CN102334194A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明的一种实施方式提供一种异质结太阳能电池。所述太阳能电池包括:冶金级硅(MG-Si)衬底;位于冶金级硅(MG-Si)衬底之上的重掺杂晶体硅层;位于重掺杂晶体硅层之上的轻掺杂晶体硅层;位于MG-Si衬底背侧上的背侧欧姆接触层;位于重掺杂晶体硅层之上的钝化层;位于钝化层之上的重掺杂非晶硅(a-Si)层;位于重掺杂a-Si层之上的透明导电氧化物(TCO)层;以及位于TCO层之上的前欧姆接触电极。

Description

在冶金级Si衬底上基于外延晶体硅薄膜的太阳能异质结电池设计
技术领域
本发明涉及太阳能电池。更具体而言,本发明涉及在冶金级硅(MG-Si)衬底上使用外延沉积晶体硅薄膜制造的异质结太阳能电池。
背景技术
由使用矿物燃料导致的负面环境影响和其上升的成本已导致对更为洁净、廉价替代能源的急切需求。在不同形式的替代能源中,太阳能因其洁净和广泛可用性而受到欣赏。
太阳能电池利用光电效应将光转换成电。有一些基本的太阳能电池结构,包括单p-n结、p-i-n/n-i-p以及多结。典型的单p-n结结构包括p型掺杂层和n型掺杂层。单p-n结太阳能电池有同质结和异质结两种结构。如果p型掺杂层和n型掺杂层都由相似材料(材料的带隙相等)构成,则该太阳能电池称为同质结太阳能电池。相反,异质结太阳能电池包括具有不同带隙的至少两层材料。p-i-n/n-i-p结构包括p型掺杂层、n型掺杂层和夹于p层和n层之间的本征(未掺杂)半导体层(i层)。多结结构包括具有不同带隙的堆叠于彼此顶上的多个单结结构。
在太阳能电池中,光在p-n结附近被吸收产生载流子。载流子扩散进入所述p-n结并被内建电场分开,从而生成穿过所述器件和外部电路系统的电流。确定太阳能电池质量的一个重要标准是其能量转换效率,能量转换效率定义为当太阳能电池连接至电路时在转换的功率(从吸收的光转换成电能)和收集的功率之间的比率。
对于同质结太阳能电池,由于存在悬挂键,少数载流子在电池表面复合,会显著降低太阳能电池的效率,因此,需要好的表面钝化工艺。除此之外,由杂质扩散形成的重掺发射极层,厚度相对较厚,会显著减少对短波长的光的吸收。相比之下,异质结太阳能电池,比如Si异质结(SHJ)太阳能电池具有优势。图1示出了示例性的SHJ太阳能电池(现有技术)。SHJ太阳能电池100包括前电极102、n+非晶硅(n+a-Si)发射极层104、本征a-Si层106、p型掺杂晶体Si衬底108和Al背侧电极110。图1中的箭头表示入射太阳光。由于a-Si层106和晶体Si层108之间固有的带隙差异,a-Si层106通过对少数载流子产生势垒来降低表面复合速率。a-Si层106通过修复既存的Si悬挂键来钝化晶体Si层108表面。除此之外,与同质结太阳能电池相比,n+a-Si发射极层104的厚度可以非常薄。因此,SHJ太阳能电池可以具有更高的开路电压(Voc)和更大的短路电流(Jsc),从而提供更高的效率。
Fuhs等在1974年首次报道了产生光电流的基于a-Si和晶体Si的异质结构(参见W.Fuhs等,Heterojunctions of amorphous silicon&silicon single crystal″,Int.Conf.,Tetrahedrally Bonded AmorphousSemiconductors,Yorktown Hts.,NY,(1974),pp.345-350)。美国专利第4,496,788号描述了一种基于堆叠a-Si和晶体Si晶圆的异质型太阳能电池。美国专利第5,213,628号公开了一种所谓的HIT(本征薄层异质结)太阳能电池,包括了一个介于a-Si层和晶体Si层之间的本征a-Si层。但是,所有这些SHJ太阳能电池都基于200~300微米厚的晶体Si衬底。由于高涨的硅材料价格,如此厚的晶体Si衬底的存在显著增加了现有SHJ太阳能电池的生产成本。为解决晶体Si晶圆带来的高成本问题,本公开提供一种基于长在低成本的MG-Si晶圆上的外延单晶Si薄膜的方案。
发明内容
本发明的一种实施方式提供了一种异质结太阳能电池。这种太阳能电池包含冶金级硅(MG-Si)衬底,位于MG-Si衬底之上的重掺杂晶体Si层,位于重掺杂晶体Si层之上的轻掺杂晶体Si层以及位于MG-Si衬底背侧上的背侧欧姆接触层,位于重掺杂晶体Si层之上的钝化层,位于钝化层之上的重掺杂非晶硅(a-Si)层,位于重掺杂a-Si层之上的透明导电氧化物(TCO)层,和位于TCO层之上的前欧姆接触电极。
在本实施方式的一种变体中,MG-Si衬底的纯度至少在99.9%,并且MG-Si衬底的掺杂类型与重掺杂晶体Si层的掺杂类型相同。
在另一变体中,MG-Si衬底表面会进一步在高温下在H2和HCl气氛中纯化。
在本实施方式的一种变体中,重掺杂晶体Si层作为背面电场(BSF)层。重掺杂晶体Si层使用化学气相沉积(CVD)技术沉积。重掺杂晶体Si层的厚度在1微米到10微米之间,重掺杂晶体Si层的掺杂浓度在1×1017原子/cm3和1×1020原子/cm3之间。
在本实施方式的一种变体中,轻掺杂晶体Si层使用CVD技术沉积。轻掺杂晶体Si层的厚度介于5微米到100微米之间,并且其中轻掺杂晶体Si层的掺杂浓度在1×1016原子/cm3和1×1017原子/cm3之间。
在本实施方式的一种变体中,钝化层的厚度在5纳米到15纳米之间,而且钝化层至少包括未掺杂a-Si和氧化硅的一种。
在本实施方式的一种变体中,重掺杂a-Si层使用CVD技术沉积。重掺杂a-Si层的厚度在介于10纳米到50纳米之间。重掺杂a-Si层掺杂浓度在1×1017原子/cm3和1×1020原子/cm3之间。
在本实施方式的一种变体中,重掺杂晶体Si层和轻掺杂晶体Si层是p型掺杂的,重掺杂a-Si层是n型掺杂的。
在本实施方式的一种变体中,轻掺杂晶体硅层和重掺杂晶体Si层是n型掺杂的,而重掺杂a-Si层是p型掺杂的。
附图说明
图1呈现了图示出了示例性的SHJ太阳能电池(现有技术)的图。
图2呈现了图示出了依据本发明一种实施方式制备异质结太阳能电池的工艺的图。
在附图中,相似的参考标号指代相同的附图元素。
具体实施例
呈现下面的描述以使得本领域任何技术人员能够实现并使用本实施方式,并且在具体应用和其要求的情况下提供下面的描述。在不偏离本公开的精神和范围的前提下,对公开的实施方式的各种修改是本领域技术人员容易明白的,并且本文中限定的一般原则可应用至其他实施方式和应用。因此,本发明不限于示出的实施方式,而是与这里公开的原理和特征的最宽泛的范围相一致。
概览
本发明的实施方式提供一种在MG-Si衬底上外延沉积晶体Si薄膜的SHJ来制造的太阳能电池。一层薄的重掺杂晶体Si沉积在MG-Si衬底表面形成背面电场(BSF)层,并且一层薄的轻掺杂晶体Si沉积在重掺杂晶体硅层顶上以形成基本层。一层薄的本征a-Si沉积在基本层上作为钝化层。发射极层通过沉积重掺杂a-Si层形成。在形成前金属电极以前,沉积透明导电氧化物(TCO)以形成前电极层和抗反射层。
制造工艺
图2呈现图示出了依据本发明一种实施方式制备异质结太阳能电池的工艺的图。
在操作2A中,准备了一个MG-Si衬底200。因为MG-Si的价格远比太阳能级硅或半导体级晶体Si的价格低廉,基于MG-Si衬底的太阳能电池有显著低的生产成本。MG-Si的纯度一般介于98%和99.99%之间。为了保证随后制造的太阳能电池高的效率,起始MG-Si衬底的理想的纯度在99.9%或以上。另外,MG-Si衬底的表面需要进一步被纯化。在一个实施方式中,为了去除衬底上的自然氧化硅,MG-Si衬底200在充满氢气(H2)的化学气相沉积(CVD)室烘焙,烘焙温度在1100℃和1250℃之间。在此之后,在近似相同的温度下,将氯化氢(HCl)气体引入CVD室内部以从MG-Si衬底200中沥出任何残余金属杂质,从而进一步阻止杂质扩散进入后续生长的多道晶体Si薄膜中。由于诸如铁之类的金属杂质在这个温度下具有高扩散系数的事实,金属杂质倾向于迁移至衬底200的表面,并且与HCl气体反应形成易挥发的氯化物。使用涤除气体,例如H2,室中的易挥发的氯化物可被有效地涤除。注意,金属杂质沥滤工艺既可在随后用于生长晶体Si薄膜的CVD室中执行,此反应室随后被用于多道晶体Si薄膜的生长,或者可在另一独立的炉内执行。所述金属杂质沥滤工艺可耗用1分钟至120分钟。MG-Si衬底可以是p型掺杂的也可以是n型掺杂的。在一种实施方式中,MG-Si衬底是p型掺杂的。
在操作2B中,一层薄的重掺杂(掺杂浓度大于1×1017原子/cm3)晶体Si薄膜202外延生长在MG-Si衬底200表面上。多种不同的方法可被用于在MG-Si衬底200上外延生长晶体Si薄膜202。在一种实施方式中,使用热CVD工艺生长晶体Si薄膜202。各种类型的Si化合物,例如SiH4、SiH2Cl2和SiHCl3可在CVD工艺中用作前驱物以形成晶体Si薄膜202。在一种实施方式中,因为SiHCl3(TCS)的丰度和低成本而使用SiHCl3。晶体Si薄膜202可以是p型掺杂的也可以是n型掺杂的。在一种实施方式中,硼被加入使薄膜202被p型掺杂。薄膜202掺杂浓度在1×1017原子/cm3和1×1020原子/cm3之间,薄膜202的厚度在1微米到10微米之间。掺杂水平不应高于此限制,否则会在薄膜中引起错配位错。晶体Si薄膜202是重掺杂的,用作背面电场(BSF)以及障碍以减少在后续生长的基本膜表面的电子和空穴的复合。
在操作2C中,一层轻掺杂(掺杂浓度小于1×1017原子/cm3)晶体Si基本膜204外延生长在薄膜202顶上。基本膜204的生长工艺可以与用于薄膜202的相同。类似地,基本膜204可以是p型掺杂的或者是n型掺杂的。在一种实施方式中,基本膜204是轻掺杂的,掺入p型杂质,例如硼。基本膜204掺杂浓度在1×1016原子/cm3和1×1017原子/cm3之间,基本膜204的厚度在5微米到100微米之间。注意,与使用晶体Si晶圆作为基本层的传统SHJ太阳能电池相比,本发明的实施方式使用外延沉积的晶体Si膜作为基本层,所述晶体Si膜可以比晶体Si晶圆薄很多。作为结果,SHJ太阳能电池的生产成本可显著降低。在沉积后,基本膜204表面可以进一步植绒以最大化光在太阳能电池内部的光吸收,从而进一步提高效率。表面植绒可以通过使用多种蚀刻技术实施,包括等离子干法蚀刻和湿法蚀刻。用于等离子干法蚀刻的蚀刻剂包括但不限于:SF6、F2和NF3。湿法蚀刻剂可以是碱性溶剂。表面植绒形状呈棱锥型或倒棱锥型,规则或任意分布在基本膜204表面上。
在操作2D中,一个背侧电极206形成在MG-Si衬底200的背侧。在一种实施方式中,电极206是这样形成的:首先在MG-Si衬底200背侧上涂覆一层铝浆,然后在500度以上烧结以在在电极206和衬底200之间形成欧姆接触。
在操作2E中,钝化层208沉积在基本膜204顶上。钝化层208可以显著减少表面载流子复合密度,因此增加了太阳能电池的效率。钝化层208可以由不同材料形成,例如本征a-Si或氧化硅(SiOx)。用于形成钝化层208的工艺可以包括但不局限于:PECVD,溅射和电子束(e-beam)蒸镀。钝化层208的厚度在5纳米到15纳米之间。
在操作2F中,重掺杂a-Si层沉积在钝化层208上以形成发射极层210。根据基本膜204的掺杂类型,发射极层的可以是p型掺杂的也可以是n型掺杂的。在一种实施方式中,发射极层210是n型杂质重掺杂的。发射极层210的掺杂浓度可以在1×1017原子/cm3和1×1020原子/cm3之间。发射极层210的厚度可以在10纳米到50纳米之间。用于沉积发射极层210的技术包括PECVD。因为与同质结太阳能电池的发射极层相比,发射极层210的厚度可以很薄,所以大幅减少了对短波长光的吸收,因此导致了更高的太阳能电池的效率。
在操作2G中,一层透明导电氧化物(TCO)沉积在发射极层210顶上以形成抗反射层212。TCO的示例包括但不限于:铟锡氧化物(ITO)、铝掺杂氧化锌(ZnO:Al)或镓掺杂氧化锌(ZnO:Ga)。用于形成抗反射层212的技术包括但不限于:PECVD,溅射和电子束(e-beam)蒸镀。
在操作2H中,金属前电极214形成在抗反射层212顶上。金属前电极214可以用各种金属沉积技术在400度以下的低温形成。在一种实施方式中,前电极214使用丝网印刷Ag浆形成。在金属前电极214形成以后,各种不同的技术例如激光划片被用于隔离电池使太阳能电池的串行互连成为可能。
提供各种实施方式的之前内容的描述仅用于说明和描述。它们无意于穷尽或将本发明限制为所公开的形式。因此,对于本领域技术人员而言,许多修改和变化是显然的。因此,上面的公开无意于限制本发明。

Claims (18)

1.一种制造异质结太阳能电池的方法,包括:
在冶金级硅(MG-Si)衬底的表面上沉积重掺杂晶体硅层;
沉积轻掺杂晶体硅层;
形成背侧欧姆接触层;
沉积钝化层;
沉积重掺杂非晶硅(a-Si)层;
沉积透明导电氧化物(TCO)层;以及
形成前欧姆接触电极。
2.根据权利要求1的方法,其中所述MG-Si衬底的纯度至少为99.9%,并且其中所述MG-Si衬底的掺杂类型与重掺杂晶体硅层的掺杂类型相同。
3.根据权利要求2的方法,其中所述MG-Si衬底的表面进一步在高温下在H2和HCl气氛中纯化。
4.根据权利要求1的方法,其中所述重掺杂的晶体硅层用作背面电场(BSF)层,其中所述重掺杂的晶体硅层用化学气相沉积(CVD)工艺沉积,其中所述重掺杂的晶体硅层的厚度介于1微米到10微米之间,并且其中所述重掺杂的晶体硅层的掺杂浓度在1×1017原子/cm3和1×1020原子/cm3之间。
5.根据权利要求1的方法,其中所述轻掺杂晶体硅层用CVD工艺沉积,其中所述轻掺杂晶体硅层的厚度介于5微米到100微米之间,并且其中所述轻掺杂晶体硅层的掺杂浓度在1×1016原子/cm3和1×1017原子/cm3之间。
6.根据权利要求1的方法,其中所述钝化层的厚度介于5纳米到15纳米之间,并且其中所述钝化层至少包含:未掺杂非晶硅和氧化硅中的至少一种。
7.根据权利要求1的方法,其中所述重掺杂的非晶硅层用CVD工艺沉积,其中所述重掺杂的非晶硅层的厚度介于10纳米到50纳米之间,并且其中所述重掺杂的非晶硅层的掺杂浓度在1×1017原子/cm3和1×1020原子/cm3之间。
8.根据权利要求1的方法,其中所述重掺杂的晶体硅层和所述轻掺杂的晶体硅层是p型掺杂的,并且其中所述重掺杂的非晶硅层是n型掺杂的。
9.根据权利要求1的方法,其中所述重掺杂的晶体硅层和所述轻掺杂的晶体硅层是n型掺杂的,并且其中所述重掺杂的非晶硅层是p型掺杂的。
10.一种异质结太阳能电池,包含:
冶金级硅(MG-Si)衬底;
位于所述冶金级硅(MG-Si)衬底之上的重掺杂晶体硅层;
位于所述重掺杂晶体硅层之上的轻掺杂晶体硅层;
位于所述冶金级硅(MG-Si)衬底的背侧上的背侧欧姆接触层;
位于所述重掺杂晶体硅层之上的钝化层;
位于所述钝化层之上的重掺杂非晶硅(a-Si)层;
位于所述重掺杂非晶硅层之上的透明导电氧化物(TCO)层;以及
位于所述TCO层之上的前欧姆接触电极。
11.权利要求10的方法中的异质结太阳能电池,其中所述MG-Si衬底的纯度至少为99.9%,并且其中所述MG-Si衬底的掺杂类型与所述重掺杂晶体硅层的掺杂类型相同。
12.权利要求11的方法中的异质结太阳能电池,其中所述MG-Si衬底的表面进一步在高温下在H2和HCl气氛中纯化。
13.权利要求10的方法中的异质结太阳能电池,其中所述重掺杂的晶体硅层用作背面电场(BSF)层,其中所述重掺杂的晶体硅层用化学气相沉积(CVD)工艺沉积,其中所述重掺杂的晶体硅层的厚度介于1微米到10微米之间,并且其中所述重掺杂的晶体硅层的掺杂浓度在1×1017原子/cm3和1×1020原子/cm3之间。
14.权利要求10的方法中的异质结太阳能电池,其中所述轻掺杂晶体硅层用CVD工艺沉积,其中所述轻掺杂晶体硅层的厚度介于5微米到100微米之间,并且其中所述轻掺杂晶体硅层的掺杂浓度在1×1016原子/cm3和1×1017原子/cm3之间。
15.权利要求10的方法中的异质结太阳能电池,其中所述钝化层的厚度介于5纳米到15纳米之间,并且其中所述钝化层至少包含:未掺杂非晶硅和氧化硅中的至少一种。
16.权利要求10的方法中的异质结太阳能电池,其中所述重掺杂的非晶硅层用CVD工艺沉积,其中所述重掺杂的非晶硅层的厚度介于10纳米到50纳米之间,并且其中所述重掺杂的非晶硅层的掺杂浓度在1×1017原子/cm3和1×1020原子/cm3之间。
17.权利要求10的方法中的异质结太阳能电池,其中所述重掺杂的晶体硅层和所述轻掺杂的晶体硅层是p型掺杂的,并且其中所述重掺杂的非晶硅层是n型掺杂的。
18.权利要求10的方法中的异质结太阳能电池,其中所述重掺杂的晶体硅层和所述轻掺杂的晶体硅层是n型掺杂的,并且其中所述重掺杂的非晶硅层是p型掺杂的。
CN2010800094418A 2009-03-10 2010-03-04 在冶金级Si衬底上基于外延晶体硅薄膜的太阳能异质结电池设计 Pending CN102334194A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/401,314 2009-03-10
US12/401,314 US8283557B2 (en) 2009-03-10 2009-03-10 Heterojunction solar cell based on epitaxial crystalline-silicon thin film on metallurgical silicon substrate design
PCT/US2010/026149 WO2010104726A2 (en) 2009-03-10 2010-03-04 Heterojunction solar cell based on epitaxial crystalline-silicon thin film on metallurgical silicon substrate design

Publications (1)

Publication Number Publication Date
CN102334194A true CN102334194A (zh) 2012-01-25

Family

ID=42729021

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800094418A Pending CN102334194A (zh) 2009-03-10 2010-03-04 在冶金级Si衬底上基于外延晶体硅薄膜的太阳能异质结电池设计

Country Status (3)

Country Link
US (3) US8283557B2 (zh)
CN (1) CN102334194A (zh)
WO (1) WO2010104726A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928294A (zh) * 2013-01-15 2014-07-16 中芯国际集成电路制造(上海)有限公司 选择性外延生长锗硅的晶片预处理方法
CN104465346A (zh) * 2013-09-17 2015-03-25 中芯国际集成电路制造(上海)有限公司 形成栅极的方法
CN104465518A (zh) * 2013-09-24 2015-03-25 中芯国际集成电路制造(上海)有限公司 栅极制作方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012766B2 (en) 2009-11-12 2015-04-21 Silevo, Inc. Aluminum grid as backside conductor on epitaxial silicon thin film solar cells
NL2004065C2 (en) * 2010-01-06 2011-07-07 Stichting Energie Solar panel module and method for manufacturing such a solar panel module.
US9214576B2 (en) 2010-06-09 2015-12-15 Solarcity Corporation Transparent conducting oxide for photovoltaic devices
US9773928B2 (en) 2010-09-10 2017-09-26 Tesla, Inc. Solar cell with electroplated metal grid
US9800053B2 (en) 2010-10-08 2017-10-24 Tesla, Inc. Solar panels with integrated cell-level MPPT devices
TWI463682B (zh) * 2011-03-02 2014-12-01 Nat Univ Tsing Hua 異質接面太陽能電池
US20120247543A1 (en) * 2011-03-31 2012-10-04 Integrated Photovoltaic, Inc. Photovoltaic Structure
US9054256B2 (en) * 2011-06-02 2015-06-09 Solarcity Corporation Tunneling-junction solar cell with copper grid for concentrated photovoltaic application
CN103022166A (zh) * 2011-09-28 2013-04-03 杭州赛昂电力有限公司 以覆铜铝线为背极的太阳能电池及其生产工艺
US20130104964A1 (en) * 2011-10-26 2013-05-02 Jyi-Tsong LIN Solar cell and solar cell module and methods for manufacturing the sames
US8628999B2 (en) * 2012-02-28 2014-01-14 International Business Machines Corporation Solar cell made in a single processing chamber
EP2904643B1 (en) 2012-10-04 2018-12-05 SolarCity Corporation Solar cell with electroplated metal grid
US9865754B2 (en) 2012-10-10 2018-01-09 Tesla, Inc. Hole collectors for silicon photovoltaic cells
US9281436B2 (en) 2012-12-28 2016-03-08 Solarcity Corporation Radio-frequency sputtering system with rotary target for fabricating solar cells
US10074755B2 (en) 2013-01-11 2018-09-11 Tesla, Inc. High efficiency solar panel
US9412884B2 (en) 2013-01-11 2016-08-09 Solarcity Corporation Module fabrication of solar cells with low resistivity electrodes
WO2014110520A1 (en) 2013-01-11 2014-07-17 Silevo, Inc. Module fabrication of solar cells with low resistivity electrodes
KR101975580B1 (ko) * 2013-03-19 2019-05-07 엘지전자 주식회사 태양전지
US9624595B2 (en) 2013-05-24 2017-04-18 Solarcity Corporation Electroplating apparatus with improved throughput
ES2894747T3 (es) * 2013-09-03 2022-02-15 Segton Adt Sas Unidad de plataforma de conversión multiplicadora de todo el espectro solar para una conversión óptima de luz en electricidad
US9783901B2 (en) 2014-03-11 2017-10-10 Macdermid Acumen, Inc. Electroplating of metals on conductive oxide substrates
US10309012B2 (en) 2014-07-03 2019-06-04 Tesla, Inc. Wafer carrier for reducing contamination from carbon particles and outgassing
US9947822B2 (en) 2015-02-02 2018-04-17 Tesla, Inc. Bifacial photovoltaic module using heterojunction solar cells
US20170088698A1 (en) * 2015-09-28 2017-03-30 Eastman Chemical Company Cellulose ester materials with tunable degradation characteristics
US9761744B2 (en) 2015-10-22 2017-09-12 Tesla, Inc. System and method for manufacturing photovoltaic structures with a metal seed layer
US9842956B2 (en) 2015-12-21 2017-12-12 Tesla, Inc. System and method for mass-production of high-efficiency photovoltaic structures
US9496429B1 (en) 2015-12-30 2016-11-15 Solarcity Corporation System and method for tin plating metal electrodes
US10115838B2 (en) 2016-04-19 2018-10-30 Tesla, Inc. Photovoltaic structures with interlocking busbars
CN105932075B (zh) * 2016-05-12 2017-07-11 南昌大学 一种背结晶硅异质结太阳电池及其制备方法
US10396219B2 (en) * 2016-06-16 2019-08-27 Arizona Board Of Regents On Behalf Of Arizona State University Transparent conductive oxide in silicon heterojunction solar cells
TWI610455B (zh) * 2016-12-30 2018-01-01 異質接面薄本質層太陽能電池的製造方法
US10672919B2 (en) 2017-09-19 2020-06-02 Tesla, Inc. Moisture-resistant solar cells for solar roof tiles
US11190128B2 (en) 2018-02-27 2021-11-30 Tesla, Inc. Parallel-connected solar roof tile modules
WO2020059053A1 (ja) * 2018-09-19 2020-03-26 株式会社 東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
CN114242805A (zh) * 2021-11-29 2022-03-25 国家电投集团科学技术研究院有限公司 一种叠层tco薄膜、硅异质结电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030183270A1 (en) * 2000-08-31 2003-10-02 Fritz Falk Multicrystalline laser-crystallized silicon thin layer solar cell deposited on a glass substrate
CN1734793A (zh) * 2005-09-02 2006-02-15 中国科学院研究生院 纳米晶硅/单晶硅异质结太阳能电池及其制备方法
CN101142689A (zh) * 2005-03-14 2008-03-12 Q-电池股份公司 太阳能电池
WO2009010585A2 (en) * 2007-07-18 2009-01-22 Interuniversitair Microelektronica Centrum Vzw Method for producing an emitter structure and emitter structures resulting therefrom

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969163A (en) * 1974-09-19 1976-07-13 Texas Instruments Incorporated Vapor deposition method of forming low cost semiconductor solar cells including reconstitution of the reacted gases
US4124410A (en) * 1977-11-21 1978-11-07 Union Carbide Corporation Silicon solar cells with low-cost substrates
US4571448A (en) * 1981-11-16 1986-02-18 University Of Delaware Thin film photovoltaic solar cell and method of making the same
US4431858A (en) * 1982-05-12 1984-02-14 University Of Florida Method of making quasi-grain boundary-free polycrystalline solar cell structure and solar cell structure obtained thereby
JPH04245683A (ja) * 1991-01-31 1992-09-02 Tonen Corp 太陽電池の製造方法
JPH07249788A (ja) * 1994-03-11 1995-09-26 Tonen Corp 太陽電池
EP1398837A1 (en) * 2002-09-09 2004-03-17 Interuniversitair Microelektronica Centrum ( Imec) Photovoltaic device
JP2005159312A (ja) * 2003-11-05 2005-06-16 Canon Inc 太陽電池用多結晶シリコン基板の母材および太陽電池用多結晶シリコン基板
KR101492946B1 (ko) * 2007-07-26 2015-02-13 주성엔지니어링(주) 결정질 실리콘 태양전지와 그 제조방법 및 제조시스템
US20090255574A1 (en) * 2008-04-14 2009-10-15 Sierra Solar Power, Inc. Solar cell fabricated by silicon liquid-phase deposition
TWI513014B (zh) * 2008-05-19 2015-12-11 Tatung Co 高性能光電元件
US20100300507A1 (en) * 2009-06-02 2010-12-02 Sierra Solar Power, Inc. High efficiency low cost crystalline-si thin film solar module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030183270A1 (en) * 2000-08-31 2003-10-02 Fritz Falk Multicrystalline laser-crystallized silicon thin layer solar cell deposited on a glass substrate
CN101142689A (zh) * 2005-03-14 2008-03-12 Q-电池股份公司 太阳能电池
CN1734793A (zh) * 2005-09-02 2006-02-15 中国科学院研究生院 纳米晶硅/单晶硅异质结太阳能电池及其制备方法
WO2009010585A2 (en) * 2007-07-18 2009-01-22 Interuniversitair Microelektronica Centrum Vzw Method for producing an emitter structure and emitter structures resulting therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孟凡英等: "基于冶金级硅片的太阳电池光致衰减特性研究", 《晶体硅太阳电池及材料》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928294A (zh) * 2013-01-15 2014-07-16 中芯国际集成电路制造(上海)有限公司 选择性外延生长锗硅的晶片预处理方法
CN104465346A (zh) * 2013-09-17 2015-03-25 中芯国际集成电路制造(上海)有限公司 形成栅极的方法
CN104465346B (zh) * 2013-09-17 2017-12-01 中芯国际集成电路制造(上海)有限公司 形成栅极的方法
CN104465518A (zh) * 2013-09-24 2015-03-25 中芯国际集成电路制造(上海)有限公司 栅极制作方法
CN104465518B (zh) * 2013-09-24 2017-09-22 中芯国际集成电路制造(上海)有限公司 栅极制作方法

Also Published As

Publication number Publication date
US20100229927A1 (en) 2010-09-16
WO2010104726A3 (en) 2011-01-06
US8283557B2 (en) 2012-10-09
WO2010104726A2 (en) 2010-09-16
US20150040975A1 (en) 2015-02-12
US20130112265A1 (en) 2013-05-09
US8872020B2 (en) 2014-10-28

Similar Documents

Publication Publication Date Title
CN102334194A (zh) 在冶金级Si衬底上基于外延晶体硅薄膜的太阳能异质结电池设计
US10050166B2 (en) Silicon heterojunction photovoltaic device with wide band gap emitter
AU2007254673B2 (en) Nanowall solar cells and optoelectronic devices
US7977568B2 (en) Multilayered film-nanowire composite, bifacial, and tandem solar cells
US8912424B2 (en) Multi-junction photovoltaic device and fabrication method
KR101000064B1 (ko) 이종접합 태양전지 및 그 제조방법
EP1923918A2 (en) Graded hybrid amorphous silicon nanowire solar cells
EP1892769A2 (en) Single conformal junction nanowire photovoltaic devices
AU2007234548A1 (en) Amorphous-crystalline tandem nanostructured solar cells
US20130157404A1 (en) Double-sided heterojunction solar cell based on thin epitaxial silicon
CN102790120B (zh) GaInP/GaAs/Ge三结级联太阳能电池及其制备方法
US20140196773A1 (en) Multi-junction iii-v solar cell
Wanlass et al. High-performance, 0.6-eV, Ga 0.32 In 0.68 As/InAs 0.32 P 0.68 thermophotovoltaic converters and monolithically interconnected modules
US20150122329A1 (en) Silicon heterojunction photovoltaic device with non-crystalline wide band gap emitter
JP2002016271A (ja) 薄膜光電変換素子
CN209981236U (zh) 一种硅基氮化铟太阳能电池
JPH07249787A (ja) 太陽電池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120125