KR20110098405A - Y형 프로브 및 이것의 변형형, 및 이를 이용한 dna 마이크로어레이, 키트 및 유전자 분석방법 - Google Patents

Y형 프로브 및 이것의 변형형, 및 이를 이용한 dna 마이크로어레이, 키트 및 유전자 분석방법 Download PDF

Info

Publication number
KR20110098405A
KR20110098405A KR1020100018008A KR20100018008A KR20110098405A KR 20110098405 A KR20110098405 A KR 20110098405A KR 1020100018008 A KR1020100018008 A KR 1020100018008A KR 20100018008 A KR20100018008 A KR 20100018008A KR 20110098405 A KR20110098405 A KR 20110098405A
Authority
KR
South Korea
Prior art keywords
probe
dna
gene
artificial sequence
region
Prior art date
Application number
KR1020100018008A
Other languages
English (en)
Other versions
KR101177320B1 (ko
Inventor
문우철
오명열
Original Assignee
굿젠 주식회사
문우철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 굿젠 주식회사, 문우철 filed Critical 굿젠 주식회사
Priority to KR1020100018008A priority Critical patent/KR101177320B1/ko
Priority to PCT/KR2010/001878 priority patent/WO2011105654A1/ko
Priority to CN201080066318.XA priority patent/CN103097533B/zh
Priority to US13/581,371 priority patent/US20130237427A1/en
Priority to JP2012554886A priority patent/JP2013520195A/ja
Publication of KR20110098405A publication Critical patent/KR20110098405A/ko
Application granted granted Critical
Publication of KR101177320B1 publication Critical patent/KR101177320B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • C12Q1/708Specific hybridization probes for papilloma
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2525/00Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
    • C12Q2525/10Modifications characterised by
    • C12Q2525/107Modifications characterised by incorporating a peptide nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Virology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명은, 유전자형 검사 및 분석시, 민감도, 특이도 및 정확도를 개선하여 진단에 널리 사용될 수 있는, 하나의 몸체내에 2개의 프로브 부위를 가지는 Y형 뉴클레오티드 프로브(probe), 및 이를 이용한 DNA 마이크로어레이, 키트 및 유전자 분석방법에 관한 것이다. 본 Y형 프로브의 구조는 좌측 프로브 부분, 좌측 줄기 부분, 링커(linker), 우측 줄기 부분, 우측 프로브 부분의 5가지 부위로 이루어 진다. 본 발명의 DNA 마이크로어레이는 동일 유전자를 동시에 중복 검색하거나 서로 다른 2개의 표적 유전자를 동시 검색함으로써 검사의 정확도를 높일 수 있다. 특히, 표적 유전자와 대조 유전자를 하나의 스팟(spot)에서 동시에 검색함으로써 분석 시 오류를 줄일 수 있고 정량적 분석이 가능하며, 표준화가 용이하다. 본 발명의 Y형 프로브는 유전자형 분석과 유전자 발현 분석, 돌연변이나 SNP 분석에 모두 이용 가능하고, 질병 진단과 예측, 치료 방침 결정 등 유전자 진단에 널리 사용될 수 있다.

Description

Y형 프로브 및 이것의 변형형, 및 이를 이용한 DNA 마이크로어레이, 키트 및 유전자 분석방법{Y Shaped Probe, Variant thereof and DNA Microarray, Kit and Genetic Analysis Method Using The Same}
본 발명은, 유전자형 검사 및 분석시, 민감도, 특이도 및 정확도를 개선하여 진단에 널리 사용될 수 있는, 하나의 몸체내에 2개의 프로브 부위를 가지는 Y형 뉴클레오티드 프로브(probe) 및 이의 변형형(d형 또는 b형 프로브), 및 이를 이용한 DNA 마이크로어레이, 키트 및 유전자 분석방법에 관한 것이다.
DNA 마이크로어레이 또는 DNA 칩은, 유리슬라이드와 같은 고형 지지체(solid support) 위에 수십개 내지 수십억개의 유전자 프로브를 스팟(spot)으로 집적해 놓은 것이다. DNA 마이크로어레이 위에, 조직이나 세포, 체액 등의 검체에서 추출한 후 형광물질(fluorescent dye) 등으로 표지시킨 DNA, RNA, cDNA, cRNA, 마이크로 RNA, 폴리머라제 연쇄 반응(polymerase chain reaction ;PCR) 산물 등의 핵산을 올려 놓고, 하이브리디제이션 반응이나 혹은 시퀀싱(sequencing) 반응을 수행하고, 그 반응에서 나타나는 표지물질의 시그널을 형광스캐너 등의 장비로 분석할 수 있다. 이에 의하면, 한 차례의 실험으로 대단위 유전자의 발현 변화나 유전자형(genotype)을 조사할 수 있다. DNA 마이크로어레이는 오늘날 유전자 관련 연구나 임상 진료에 없어서는 안 될 필수불가결한 도구로서, 유전자의 기능과 유전체 연구 등 기초과학 연구뿐 아니라, 유전자 질환의 기전을 파악하고 진단 지침을 세우며, 특정 약물의 작용기전과 부작용을 규명하고, 질환의 치료방침을 정하는 등 임상 진료에도 다방면으로 이용된다(Petrik J. Diagnostic applications of microarrays. Transfusion Medicine. 2006; 16: 233-247; Wheelan SJ, Murillo FM and Boeke JD. The incredible shrinking world of DNA microarrays. Mol Biosyst. 2008; 4(7):726-732; Li X, Quigg RJ, Zhou J, Gu W, Nagesh Rao P, Reed EF. Clinical utility of microarrays: current status, existing challenges and future outlook. Current Genomics. 2008 ; 9(7):466-74).
DNA 마이크로어레이는 그 위에 올려 놓거나 집적(spotting)되는 프로브의 종류에 따라, 올리고뉴클레오티드 마이크로어레이와, cDNA나 PCR산물을 올려 놓는 기타 마이크로어레이의 2가지 종류가 있다. 오늘날 상업화된 마이크로어레이는 거의 대부분이 올리고뉴클레오티드 마이크로어레이가 주로 사용된다. 이 올리고뉴클레오티드 마이크로어레이에는 그 제작방법에 따라 크게 2가지로 나눌 수 있다. 하나는 고형 지지체위에서 직접 올리고뉴클레오티드를 합성해 가는 것으로, 포토리소그라피(photolithograpy)방식의 아피메트릭스(Affymetrix)사의 칩, 잉크제트방식의 아질런트(Agilent)사의 칩, 전자합성방식의 콤비매트릭스(Combimatrix)사의 칩, 광화학합성 방식의 님블레젠(Nimblegen)사의 칩 등이 있다. 다른 하나는 따로 미리 제작한 올리고뉴클레오티드 프로브를 고형지지체 위에 집적 내지 스파팅(spotting) 혹은 찍는 방법이다. 후자가 더 널리 사용되는 추세이며, 대표적인 예로는 어플라이드 바이오시스템(Applied Biosystem Inc, ABI)사의 제품, 코델잉크(Codel ink)사의 제품, 일루미나(Illumina)사의 제품 등이 있다. 이들 마이크로어레이 제품에는 길이가 18개 내지 75개 염기(bp)의 단일 나선의 직선형(liner, single strand) 올리고뉴클레오티드 프로브가 집적되며, 스팟의 숫자는 적게는 12,000개에서 많게는 10억 7200만개로 다양하다(Wheelan SJ, Murillo FM and Boeke JD. The incredible shrinking world of DNA microarrays. Mol Biosyst. 2008; 4(7):726-732).
DNA 마이크로어레이는 과거에 통상의 유전자 검사가 해왔던 3가지 작업을 수행하며, 다만 한꺼번에 다수의 유전자를 소위 하이-스루풋(high-throughput) 내지 대단위로 검사할 수 있다는 것, 이를 통해 시간과 비용을 크게 절감하고, 임상 진단에 적용 가능하게 한다는 것이 종래의 유전자 검사법과 다른 점이다.
DNA 마이크로어레이를 이용하는 첫번째 검사법은, 특정 염기서열의 유전자가 검체 내에 존재하는 지를 찾는 정성적 검사(qualitative analysis)이다. 예컨대 질병의 원인이 되는 세균의 고유 유전자의 염기서열을 프로브로 하여 마이크로어레이를 제작하고 그 위에 검체의 핵산을 올려 놓고 하이브리디제이션 반응을 수행함으로써, 짚단에서 바늘 찾듯 표적 유전자를 찾아서 원인 세균을 진단하는 방법이다. 이러한 소위 유전자형 진단(genotyping)을 이용하여 자궁경부암의 원인인 인유두종바이러스(human papilloma virus; HPV)나 독감 원인균인 인플루엔자 바이러스(influenza virus), 성감염 원인균을 그 종뿐 아니라 균주 내지 아종(strain)까지 정확하게 파악할 수 있다. 아울러 각각의 암에 고유한 유전자의 존재 여부를 파악함으로써 특정 암의 진단도 가능하다. 검사하는 세균이나 암의 악성도나 예후, 약물 반응 및 부작용 여부도 예측 가능하다. 이는 저밀도(low density) 마이크로어레이로도 가능하며, 제작이 용이하고 비용이 저렴하며, 임상 진료에 유용하다는 장점이 있으며, 상업화에 가장 용이한 형태의 DNA 칩이다(Yoo SM, Choi JH, Lee SY, Yoo NC. Applications of DNA microarray in disease diagnostics. J Microbiol Biotechnol. 2009; 19(7):635-46).
DNA 마이크로어레이를 이용하는 두번째 검사법은, 특정 염기서열의 유전자가 검체 내에 얼마만큼 존재하는 지를 확인하는 정량적 검사(quantitative analysis)이다. 이는 최초에 등장했던 cDNA 마이크로어레이가 보여준 검사법이기도 하다(Shena M, Shalon D, Davis RW, Broiwn PO. Quantitative monitoring of gene expression pattern with a amplementary DNA microarray. Science. 1995; 270:467-470). 마이크로어레이 내에 다수의 조사하고자 하는 유전자의 프로브를 집적해 놓고, 표적 물질 내지 표적 질환과 대조 물질 내지 대조군의 RNA나 cDNA, cRNA를 각각 서로 다른 형광 다이(fluorescent dye)로 표지한 후 마이크로어레이위에 올려 놓고 하이브리디제이션 반응을 수행하여, 양군 사이에 유전자발현에 있어 어떤 차이가 있는 지를 파악하는 방법이다.
DNA 마이크로어레이를 이용하는 세번째 검사법은, 유전자의 염기서열의 변화를 확인하는 것으로, 구체적으로는 단일염기다형성(single nucleotide polymorphism; SNP), 점 돌연변이(point mutation) 또는 결실(deletion)을 검사하는 것이며, 나아가 특정 유전자의 수(copy number)를 확인하는 것도 가능하다. 통상 분석하고자 하는 염기에 대해 각각 단일 염기를 달리하는 올리고뉴클레오티드 프로브를 야생형(wild type)과 변이형(mutant or variant type)의 2개로 달리하거나, 혹은 A, C, G, T의 4개의 종류로 달리하여 마이크로어레이 위에 집적하여 DNA 칩을 제작한다. 이후 그 위에 검체 DNA나 cDNA, 혹은 PCR 산물을 올려 놓고 하이브리디제이션 반응을 매우 엄격한 조건(highly stringent condition)에서 수행하여 완벽하게 일치하는 프로브를 찾는 방법이 이용된다. 즉, 대립유전자 특이 올리고뉴클레오티드 하이브리디제이션(allele specific oligonucleotide hybridization; ASH) 내지 시퀀싱 바이 하이브리디제이션(sequencing by hybridization; SBH) 방법을 마이크로어레이 위에서 사용하는 것이다. 상당 수의 기업들이 인간의 전체 내지 중요 SNP를 대립유전자 특이 올리고뉴클레오티드 하이브리디제이션 방식으로 검사하는 마이크로어레이를 판매하고 있다. 예컨대, 아피메트릭스(Affymetrix)사의 SNP칩의 경우 하나의 SNP에 대해 20개 내지 28개의 다양한 완전일치형(perfect match type) 및 불일치형(mismatch type)의 올리고뉴클레오티드 프로브를 마이크로어레이에 이용하고 있다(Rabbee N and Speed TP. A genotype calling algorithm for Affymetrix SNP arrays. Bioinformatics 2006; 22: 7-12; Liu WM, X. Yang XDG, Matsuzaki H, Huang J, Mei R, Ryder TB, Webster TA, Dong S, Liu G, K.W. Jones KW, G.C. Kennedy GC and Kulp D. Algorithms for large-scale genotyping microarrays, Bioinformatics. 2003; 19: 2397-2403).
그러나, 다수의 표적에 대해 그 단일 염기의 차이를 DNA 마이크로어레이로 정확하게 판별하기에는 실제 어려움이 많다. 이에 최근에는 DNA 마이크로어레이에 대해 막강한 경쟁 제품도 나오고 있다. 예컨대 기가베이스(giga base)의 염기를 한꺼번에 읽는 소위 하이-스루풋(high-throughput) 염기서열분석장비인 Illumania사의 Solexa와 Helicos, Roche사의 454장비, Applied Biosystems사의 SOLiD가 그 예이다. 실제 이들은 염기서열분석의 양에 있어서 DNA 마이크로어레이의 그것을 능가하며, 인간 유전체 전체 염기서열을 수일 내에 판독할 수 있다(Wheelan SJ, Murillo FM and Boeke JD. The incredible shrinking world of DNA microarrays. Mol Biosyst. 2008; 4(7):726-732).
마이크로어레이는 1995년 Shenna의 최초 발표 이후 그 역사가 오래 되었음에도 불구하고 실제 임상에 사용되는 제품은 소수에 불과하다. 미국의 경우 약물유전체(pharmacogenetics) 검사 제품인 AmpliChip CYP450과 유방암 진단칩인 MammaPrint, p53 돌연변이를 검사하는 AmpliChip p53 검사, 암의 근원을 조사하는 Pathwork Tissue of Origin 검사, 염색체이상을 조사하는 BAC array 검사법이 미국 FDA의 승인을 받고 사용되고 있다(Li X, Quigg RJ, Zhou J, Gu W, Nagesh Rao P, Reed EF. Clinical utility of microarrays: current status, existing challenges and future outlook. Curr Genomics. 2008 ; 9(7):466-74; Heller T, Kirchheiner J, Armstrong VW, Luthe H, Tzvetkov M, Brockmoller J, Oellerich M. AmpliChip CYP450 GeneChip: a new gene chip that allows rapid and accurate CYP2D6 genotyping. Ther. Drug Monit. 2006; 28:673-677; Mook S, Van't Veer LJ, Rutgers EJ, Piccart-Gebhart MJ, Cardoso F. Individualization of therapy using Mammaprint: from development to the MINDACT Trial. Cancer Genomics Proteomics. 2007;4:147-155; Lawrence HJ, Truong S, Patten N, Nakao A, Wu L. detection of p53 mutations in cancer by the amplichip p53 test). 또한 한국과 유럽 등에서는 인유두종바이러스(HPV)의 유전자형을 진단하는 칩이 식약청의 승인을 받고 판매되고 있다.
DNA 마이크로어레이가 임상 진단에 널리 사용되기 위해서는 해결해야 할 과제가 적지 않다. 어떤 형태의 DNA 마이크로어레이라도 모두 공통적으로 시그널의 분석시 나타나는 비특이적 신호, 소위 백그라운드 노이즈(background noise)가 문제된다. 이는 분석이나 제품의 표준화에 어려움을 가져 온다. 이 때문에 DNA 마이크로어레이의 정확도나 가치에 대해 실제 심각한 논란이 제기되고 있다(Allison DB, Cui XQ, Page GP and Sabripou M. Microarray data analysis: From disarray to consolidation and consensus, Genetics. 2006; 7: 55-65; Draghici SP, Eklund SPK and Eklund and Szallasi Z. Reliability and reproducibility issues in DNA microarray measurements. Trends in Genetics. 2006; 22: pp. 101-109; Kothapalli R, Yoder SJ, Mane S and Loughran TP, Microarray results: How accurate are they?. BMC Bioinformatics. 2002; 3: 22)
DNA 마이크로어레이는 수많은 스팟에서 한꺼번에 많은 검사를 하고, 그 자료를 처리해야 하나, 실제 정확한 자료분석과 통계 처리가 용이치 않다는 문제점을 갖고 있다. 통상 검사결과의 통계분석시, p value를 0.05로 잡고, 그 미만, 5% 미만의 오류는 받아들이는 방법을 취하고 있다. 그러나 만약 마이크로어레이 위에서 수천만에서 10억 여개의 스팟을 분석하여 그 중 약 5%인 수백 내지 수천만의 스팟의 자료가 가양성이거나 가음성이라면 이는 심각한 대규모의 오류가 될 것이다. 이를 피하기 위해 여러 개의 마이크로어레이를 분석하는 방법이 시도되나, 개별 마이크로어레이의 가격이 고가라는 점을 감안할 때 비용 측면에서 어려움이 많다. 실제 마이크로어레이를 이용하는 실험시, 실험할 때마다 결과가 달라지며, 개개 마이크로어레이 마다 결과에 차이가 큰 경우가 적지 않으며, 심지어 동일한 하나의 마이크로어레이 내에서도 스팟 별로 차이를 보인다. 이러한 문제점의 가장 큰 요인 중 하나는 실험의 대조군(control)이 확실하게 정립되어 있지 않다는 것이다. 달리 표현하면 DNA 마이크로어레이 위의 하이브리디제이션 실험시 스팟 별로 내부 참조물질(internal reference)이 명확하게 설정되어 있지 않다는 것이다.
DNA 마이크로어레이 실험시 나타날 수 있는 오류는 각 실험의 검체나 목적에 따르는 특유의 오류와 마이크로어레이 자체 내지 검사 과정에 의한 오류의 2가지가 있다. 전자로는 검체의 불균일성(heterogeneity)과 다양성, 생리적 상태에 따른 변화, 유전자와 환경의 상호작용 등이 관여한다. 후자는 DNA 마이크로어레이 자체에서 나오는 오류(slide effect)로, 예컨대 DNA 마이크로어레이의 제작시 고형 지지체, 즉 유리슬라이드의 종류와 표면 화학, 프로브를 집적하는 데 사용하는 핀, 각 스팟마다 집적되는 프로브의 양, 프로브와 유리슬라이드의 상호작용, 프로브가 얼마나 잘 유리슬라이드에 고정되는지 여부 등이 있다. 아울러 하이브리디제이션 반응이 얼마나 잘 일어나는지도 중요하며, 여기에는 온도, 시간, 그리고 완충액의 조건에 좌우된다. 검체 핵산에 표지물질이 얼마나 잘 표지(labeling)되어 있는 지도 중요하다(Bakay M, Chen YW, Borup R, Zhao P, Nagaraju K and E.P. Hoffman EP. Sources of variability and effect of experimental approach on expression profiling data interpretation. BMC Bioinformatics. 2002; 3: 4; Han ES, Wu Y, McCarter R, Nelson JF, Richardson A and Hilsenbeck SS. Reproducibility, sources of variability, pooling, and sample size: Important considerations for the design of high-density oligonucleotide array experiments. Journal of Gastroenterology. 2004; 59: 306-315; Huber W, Heydebreck A, Sultmann H, Poustka A and Vingron M, Variance stabilization applied to microarray data calibration and to the quantification of differential expression, Bioinformatics. 2002; 18: 96-104; Molloy MP, Brzezinski EE, Hang JQ, McDowell MT and VanBogelen RA. Overcoming technical variation and biological variation in quantitative proteomics. Proteomics. 2003; 3: 1912-1919; Oleksiak MF, G.A. Churchill GA and D.L. Crawford, Variation in gene expression within and among natural populations, Nature Genetivs. 2002; 32: 261-266; Spruill SE, Hardy JLS and Weir B. Assessing sources of variability in microarray gene expression data. BioTechniques. 2002: 916-923; Whitney AR, Diehn M, Popper SJ, Alizadeh AA, J.C. Boldrick JC, Relman DA and Brown PO. Individuality and variation in gene expression patterns in human blood, Proc. Natl. Acad. Sci. USA. 2003; 100: 1896-1901; Zakharkin SO, Kim K, Mehta T, Chen L, Barnes S, Scheirer KE, Parrish RS, Allison DB and Page GP. Sources of variation in Affymetrix microarray experiments. BMC Bioinformatics. 2005; 6: 214).
DNA 마이크로어레이 실험시 나타날 수 있는 또 하나의 문제는 프로브와 관련된다. 앞에서 기술한 바와 같이 오늘날 DNA 마이크로어레이는 대다수가 직선형의 단일나선 올리고뉴클레오티드 프로브를 사용한다. 그러나 이들 프로브는 고형지지체 위에서의 하이브리디제이션 반응시 액상 상태에서의 하이브리디제이션과 달리 적정 조건을 맞추기에 어려움이 많다. 적정 올리고뉴클레오티드 프로브를 디자인하고 제작하는 것이 올리고뉴클레오티드 마이크로어레이의 “아킬레스건”이자 성공의 요건이다.
따라서, 기존의 직선형 올리고뉴클레오티드 프로브의 문제점을 개선하려는 목적에서 다양한 변형 프로브의 디자인 방법이 시도되고 있다. 예컨대 천연의 핵산을 그 염기나 당고리(sugar ring) 혹은 포스포디에스테르 백본(phosphodiester backbone)에서 구조를 바꾼 소위 핵산 유도체(nucleic acid analog)나 유사체(mimic)가 시도된다. 대표적인 예가 펩티드핵산(peptide nucleic acid;PNA)과 잠금핵산(locked nucleic acid;LNA), 몰포리노(morpholino) 등이 있다. PNA나 LNA는 그 용융온도(Tm)가 통상의 올리고뉴클레오티드와 현격한 차이가 있어서 특히 단일 염기의 SNP나 돌연변이를 분석하는 데 우수하다는 장점이 있다(Karkare S, Bhatnagar D. Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino. Appl Microbiol Biotechnol. 2006; 71(5):575-86; Tolstrup N, Nielsen PS, Kolberg JG, Frankel AM, Vissing H, Kauppinen S. OligoDesign: Optimal design of LNA(locked nucleic acid) oligonucleotide capture probes for gene expression profiling. Nucleic Acids Res. 2003; 31(13):3758-62; Nhakeel S, Karim S and Ali A. Peptide nucleic acid(PNA)-a review. Journal of Chemical Technology and biotechnology. 2006; 81:892-899). 그러나 다수 유전자의 발현을 분석하는 데에는 널리 사용되지 않으며, 본 발명의 Y형 프로브와 같이 내부에 추가의 대조 표준물질 유전자의 프로브를 함께 결합한 형태로는 개발이 되어 있지 않다.
다양한 변형 프로브의 다른 예로서 OLIGOSPAWN이 있다. 이는 발현서열태그(Expressed sequence tag; EST)의 대규모 유니진(unigene) 데이타베이스로부터 오버랩 올리고뉴클레오티드 프로브(Overgo probe)를 디자인하는 방법이다(Zheng J, Svensson JT, Madishetty K, Close TJ, Jiang T, Lonardi S. OligoSpawn: a software tool for the design of overgo probes from large unigene datasets. BMC Bioinformatics. 2006 Jan 9;7:7). 이는 신속하게 올리고뉴클레오티드 프로브를 디자인하는 데 유용하나, 본 발명의 Y형 프로브와 같이 내부에 추가의 대조 표준물질 유전자의 프로브를 함께 결합한 형태로는 개발이 되어 있지 않다.
다양한 변형 프로브의 또 다른 예로서 게놈 DNA 타일링 어레이(Genomic DNA tiling array)도 활발하게 시도되고 있다(Bertone P, Trifonov V, Rozowsky JS, Schubert F, Emanuelsson O, Karro J, Kao MY, Snyder M, Gerstein M. Design optimization methods for genomic DNA tiling arrays. Genome Res. 2006; 16(2):271-81; Wheelan SJ, Murillo FM and Boeke JD. The incredible shrinking world of DNA microarrays. Mol Biosyst. 2008; 4(7):726-732). 이것은 하나의 프로브에 여러 개의 서브프로브를 넣고, 이에 따라 마이크로어레이의 하나의 스팟 내에 다수의 프로브를 심어서 한꺼번에 다수의 유전자 검사를 하게 하는 파일링 방식의 올리고뉴클레오티드 마이크로어레이(multi-tiling oligonucleotide microarray) 이다. 이는 하나의 프로브 내에 비슷한 위치에 있는 다수의 올리고뉴클레오티드를 한꺼번에 연결하여 쌓는 형태의 프로브로 거대 유전체 전체의 유전자 발현을 확인하는데 유용하다. 그러나, 이는 단순히 여러개의 올리고뉴클레오티드를 긴 직선으로 연결한 것에 지나지 않고, 하나의 타일링(tiling) 프로브안에 들어가는 개개의 올리고뉴클레오티드와 서브프로브를 따로 식별하는 것은 불가능하다. 이는 검사 유전자의 수를 늘리는 데는 효율적이나, 본 발명의 Y형 프로브 처럼 내부 대조 참조물질이 포함되는 것은 아니어서 획기적으로 검사의 민감도나 특이도, 재현성이 증가된다고 보기는 힘들다.
이상에서 기술한 바와 같이, DNA 마이크로어레이가 임상 진단에 널리 사용되기 위해서는 여기에 사용되는 올리고뉴클레오티드 프로브가 더 개선되어야 하며, 검사법과 결과 판독이 모두 표준화될 수 있도록 하는 것이 관건이다. 무엇보다 표준화를 위해 각 스팟 별로 내부 참고 내지 대조물질(internal reference or control)의 프로브가 추가되도록 할 필요가 있다. 이는 각각의 스팟과 마이크로어레이, 유리슬라이드, 하이브리디제이션 반응 별 차이와 오류를 해결하기 위해 필수적이다.
본 발명의 목적은, 각 스팟에 검사하고자 하는 표적 유전자뿐 아니라 대조 표준물질의 유전자를 함께 프로브로 만들어 넣은 신규한 Y형 프로브 및 이의 변형형을 제공함으로써, 종래 올리고뉴클레오티드 프로브를 개선, 기존의 올리고뉴클레오티드 마이크로어레이의 문제점을 해결하고, 임상진단에 실제 적용하는 데 있다.
본 발명자들은 앞에 기술한 기존의 올리고뉴클레오티드 마이크로어레이의 문제점들을 해결하기 위해, 하나의 프로브, 하나의 스팟 내에 검사하고자 하는 표적 유전자뿐 아니라 대조 유전자를 함께 프로브로 만들어 넣는 방법을 강구하게 되었다.
만약, 표적 유전자의 프로브와 대조 유전자의 프로브를 함께 결합시켜 하나의 프로브로 만들고, 이를 마이크로어레이에 통계적으로 충분한 숫자(예컨대 20개 이상)로 집적한 후 그 위에 검체 핵산, 즉 DNA나 RNA, cDNA, cRNA, micro RNA 등을 올려 놓고 하이브리디제이션 반응을 할 때, 표적 유전자와 대조 유전자의 표지를 각각 Cy-3 및 Cy-5로 달리 한다면, 각 스팟에서 백그라운드 시그널을 제외한 후의 시그널에서 대조유전자에 대한 표적유전자의 시그널의 비(Cy3/Cy5)가 측정이 되며, 이를 여러 스팟에서 검색하여 그 평균 및 표준편차를 계산하면 더 정확한 통계분석이 가능해 질 것이다. 이는 곧 각 스팟마다 대조군을 넣어서 실험하는 셈이며, 이로서 가양성과 가음성을 최소화하고, 스팟 간의 차이에 따르는 오류를 피하여 원활한 노멀화(normalization)가 가능할 것이다. 이로써, 전술한 슬라이드 효과, 즉 DNA 마이크로어레이로 인한 오류를 최소화하며, 소수의 마이크로어레이의 실험만으로 통계적으로 유의한 자료를 얻을 수 있으므로, 각 실험에 필요한 비용과 시간도 획기적으로 줄일 수 있다.
이에 본 발명자들은 하나의 몸체내에 두 개의 올리고뉴클레오티드 프로브 부위를 Y자 형태로 올려놓는 본 발명의 Y형 프로브와, 이를 고형지지체 위에 집적하는 방법을 발명하게 되었다. 아울러 Y형 프로브 중 한쪽을 비대칭적으로 짧게 하는 변형, 즉 d자 형이나 b자 형의 프로브도 고안하게 되었다.
본 발명의 프로브는 한꺼번에 두 개의 올리고뉴클레오티드 프로브 혹은 펩티드핵산(PNA) 프로브가 포함되어 Y자 형태로 이루어지기 때문에, 포함된 각 프로브가 각각의 상보성 염기서열의 핵산과 반응하여 동시에 2개의 하이브리디제이션 반응이 일어나게 되고, 이 반응시 서로 다른 두개의 검색용 다이(dye)를 넣어서 그 반응을 분석할 수 있다. 본 발명자들은 이와 같은 Y자형 이중 올리고뉴클레오티드 프로브(Y-shaped duplex oligonucleotide probe, 이하 'Y자형 프로브' 또는 'Y형 프로브' 또는 'Y자 프로브'라 함)을 개발 및 제작하였으며, 이를 이용하여 유전자를 검사하며, 이를 임상 진단에 응용하는 방법도 개발하였다.
본 발명의 프로브는 좌측 프로브 부분(left side probe), 좌측 줄기 부분(left side stem), 우측 줄기 부분, 우측 프로브 부분, 링커(linker)(또는 스페이서(spacer)) 부분의 5가지 부위로 이루어진다. 본 프로브의 좌측 및 우측 프로브 부분은 최대 150개까지의 올리고뉴클레오티드나 혹은 PNA로 이루어지며, 목적에 따라 다양한 염기서열이 적용 가능하다. 다만, 양측의 올리고뉴클레오티드 프로브는 그 염기서열이 한쪽은 순방향(5'->3')이고, 다른 한 쪽은 역방향(3'->5')으로 방향을 달리한다. 줄기부분은 최대 40개까지의 상보성 올리고뉴클레오티드로 이루어지며, 위쪽으로 연결되는 양측 프로브를 지지하는 역할을 한다. 줄기부분의 염기서열은 모든 것이 가능하며, 텔로미어 염기순서를 사용하면 편리하다. 링커는 양측의 프로브와 줄기를 유리슬라이드와 같은 고형 지지대 위에 고정시켜 주는 역할을 한다. DNA 마이크로어레이의 지지대로는 알데히드로 처리된 유리슬라이드가 널리 사용되며, 이 경우 링커로는 내부 아미노기가 변형된 다수의 탄소기 그룹(internal Amino Modifier Cn dT; iAmMCnT )이 적합하다. 이 외에도 말단에 비오틴(biotin)이 붙어있는 다수의 탄소기 그룹을 링커로 사용하고, 이를 이용하여 스트렙토아비딘(streptoavidin)으로 코팅된 지지대에 고정시킬 수도 있다.
본 발명의 Y자형 프로브를 어레이어(arrayer)를 이용하여 유리슬라이드 등의 지지대에 집적하면 DNA 마이크로어레이가 완성된다. 여기에 검사하고자 하는 표적 핵산, 즉 DNA나 RNA, cDNA, cRNA, 마이크로 RNA 등을 형광 다이(fluorescent dye) 등으로 표지 한 후 올려 놓고 하이브리디제이션 반응을 수행한 후 나타나는 형광시그널을 형광스캐너로 분석할 수 있다. 이 때의 스캐너는 검사 목적과 방법에 따라 단색, 2색, 또는 4색의 스캐너가 선택될 수 있다.
본 발명의 Y자형 올리고뉴클레오티드 프로브는 단일 직선형 프로브에 비해 우수한 장점이 많다. 첫째, 하나의 전체 프로브 내에 두개의 프로브 부위가 포함되어 있으므로, 이중으로 검색하여 더 정확하게 분석할 수 있다. 둘째, 대조 표준물질 내지 내부 참고물질을 함께 검색함으로써 가음성 결과(false negative result)와 가양성 결과(false positive result)를 최소화하고 따라서 검사의 민감도와 특이도를 개선할 수 있다. 셋째, 스팟 간 오류를 피함으로써 더 정확한 통계 분석이 가능하다. 넷째, 대조 물질 대 표적 물질의 상대적 양적 계측이 가능하다. 다섯째, 줄기 부위의 존재 때문에 용융온도(Tm)나 어닐링 온도에 있어서 열역학적으로 더 차별화시킬 수 있고, 이는 단일 염기의 변이를 대립유전자 특이 하이브리디제이션 방식으로 분석할 때 더 뚜렷하게 변화를 파악할 것으로 기대된다. 여섯째, 줄기 부위가 그 위의 프로브 부위와 링커 및 유리슬라이드 지지체 사이에 위치하면서 공간적 방해나 전기자장적 방해를 줄여주고, 하이브리디제이션 반응이 더 잘 일어나게 한다.
본 발명에 의하면, 첫째, 진단하고자 하는 질환 및 각 유전자의 DNA 또는 RNA의 특정 시퀀스의 유무를 분석할 수 있는 Y형 프로브 및 이의 디자인과 제작 방법을 제공하고, 둘째, Y형 프로브를 집적한 바이오 칩 및 이의 제작방법을 제공하며, 셋째, 상기 바이오 칩에 효과적으로 반응시킬 수 있도록 하는 PCR 방법과 형광 표지 방법을 제공하고, 넷째, 상기 바이오 칩을 이용하여 표적 유전자를 탐지하고 유전자형과 유전자 발현 정도, 유전자 염기서열의 변이의 분석 방법을 제공하며, 다섯째, 이를 임상에 사용할 수 있는 방법을 제공할 수 있다.
발명의 요지
본 발명은, 하나의 몸체에 2개의 프로브 부위를 가지는 Y자형의 뉴클레오티드 프로브를 제공한다.
본 발명의 상기 프로브는, 5'->3'의 방향으로 그리고 좌측 상방에서 우측 상방의 방향으로 차례로, (1)좌측 프로브 부위, (2)좌측 줄기 부위, (3)링커 부위, (4)우측 줄기 부위 및 (5)우측 프로브 부위로 이루어지는 것이 바람직하다.
본 발명은, 상기 Y자형 프로브의 (1)좌측 프로브 부위는 제거되고, (2)좌측 줄기 부위, (3)링커 부위, (4)우측 줄기 부위 및 (5)우측 프로브 부위로 이루어지는 d자형의 뉴클레오티드 프로브를 제공한다.
본 발명은, 상기 Y자형 프로브의 (5)우측 프로브 부위는 제거되고, (1)좌측 프로브 부위, (2)좌측 줄기 부위, (3)링커 부위 및 (4)우측 줄기 부위로 이루어지는 b자형의 뉴클레오티드 프로브를 제공한다.
본 발명의 상기 Y자형, d자형, b자형의 프로브는, 상기 좌측 줄기 부위와 우측 줄기 부위는 서로 상보적인 염기서열을 가지는 올리고뉴클레오티드로 결합한 구조이며, 상기 좌측 줄기 부위 또는 우측 줄기 부위는 각각에 대한 전체의 염기서열중 G 염기가 절반 이상 포함되는 것이 바람직하다.
본 발명의 상기 좌측 줄기 부위와 우측 줄기 부위는, 서로 상보적인 염기서열을 가지는 올리고뉴클레오티드로 결합한 구조이며, 줄기 부위의 염기서열이 텔로미어의 염기서열을 포함하는 것이 바람직하다.
본 발명의 상기 좌측 줄기 부위 또는 우측 줄기 부위는, 하기의 염기단위체로 이루어지는 군으로부터 선택되는 염기 단위체가 1회 이상 반복되어 이루어지는 것이 바람직하다.
TTGGG,
TAGGG,
TTGGGG,
TTTGGG,
TTAGGG,
TTTGGGG,
TTTAGGG,
TTTTGGGG,
TTTAGGGG.
본 발명의 상기 좌측 프로브 부위 또는 우측 프로브 부위는, 표적 유전자에 상보적인 염기서열을 가지는 올리고뉴클레오티드인 것이 바람직하다.
본 발명의 상기 좌측 프로브 부위 또는 우측 프로브 부위는, 15개 내지 150개의 염기서열을 가지는 올리고뉴클레오티드인 것이 바람직하다.
본 발명의 상기 좌측 프로브 부위는, 상방에서 하방의 염기서열이 5'->3'의 순서로 배열되고, 상기 우측 프로브 부위는 하방에서 상방의 염기서열이 5'->3'의 순서로 배열되는 것이 바람직하다.
본 발명의 상기 링커 부위는, 알데히드 코딩된 고체 지지체에 결합하기 위하여, 아미노 변형 디데옥시티미딘으로서 C6dT, C3dT, C12dT 또는 C18dT로 구성되는 것이 바람직하다.
본 발명의 상기 프로브는, 펩티드핵산(PNA)으로 이루어지는 것이 바람직하다.
본 발명의 상기 프로브는 1)디트리틸레이션 단계(detritylation), 2)커플링 단계(coupling), 3)캐핑 단계(capping) 및 4)산화 단계(oxidation)를 포함하는 합성방법에 의해 제조되는 것이 바람직하다.
본 발명의 상기 좌측 프로브 부위와 우측 프로브 부위는, 하나의 표적 유전자내의 2개의 서로 다른 부위에 대해 각각 상보적인 염기서열을 가지는 올리고뉴클레오티드로 각각 이루어지는 것이 바람직하다.
본 발명의 상기 좌측 프로브 부위와 우측 프로브 부위는, 하나의 표적 유전자내의 동일한 부위에 대해 상보적인 염기서열을 가지는 올리고뉴클레오티드로 각각 이루어지는 것이 바람직하다.
본 발명의 상기 좌측 프로브 부위와 우측 프로브 부위는, 서로 다른 표적 유전자에 대해 각각 상보적인 염기서열을 가지는 올리고뉴클레오티드로 각각 이루어지는 것이 바람직하다.
본 발명의 상기 좌측 프로브 부위와 우측 프로브 부위 중의 한쪽 프로브 부위는 표적 유전자에 대해 상보적인 염기서열을 가지는 올리고뉴클레오티드로, 나머지 한쪽 프로브 부위는 대조 유전자에 대해 상보적인 염기서열을 가지는 올리고뉴클레오티드로 이루어지는 것이 바람직하다.
본 발명의 상기 대조 유전자는 표적 유전자와 상보성이 없고, 검체에서 존재 또는 발현되지 않는 것이 바람직하다.
본 발명의 상기 대조 유전자는 대장균의 motD 유전자인 것이 바람직하다.
본 발명의 상기 프로브는 서열번호 5 내지 50 중 하나 이상의 염기서열을 갖는 올리고뉴클레오티드인 것이 바람직하다.
본 발명은, 상기 프로브가 고형 지지체에 집적 (spotting)되어 이루어지는 DNA 마이크로어레이를 제공한다.
본 발명의 상기 고형 지지체는, 유리슬라이드, 비드, 마이크로플레이트 웰, 실리콘 웨이퍼 및 나일론 멤브레인으로 이루어지는 군으로부터 선택되는 것이 바람직하다.
본 발명의 상기 DNA 마이크로어레이는 인간 베타글로빈 유전자가 더 집적되어 있는 것이 바람직하다.
본 발명의 상기 프로브의 집적부위로서 웰(well)이 8개로 구획되어 있는 것이 바람직하다.
본 발명의 상기 프로브는 서열번호 5 내지 50 중 하나 이상의 염기서열을 갖는 올리고뉴클레오티드로 이루어지고, HPV의 탐지 및 유전자형 분석용인 것이 바람직하다.
본 발명의 상기 프로브는, 5' 말단이 Cy5로 표지된 서열번호 4의 염기서열을 갖는 올리고뉴클레오티드 프라이머와, 5' 말단이 Cy3로 표지된 서열번호 1의 염기서열을 갖는 올리고뉴클레오티드 프라이머와 상보적으로 결합하는 것이 바람직하다.
본 발명의 상기 프로브는 서열번호 51 내지 55 중 하나 이상의 염기서열을 갖는 올리고뉴클레오티드로 이루어지고, 성감염 질환(STD)의 원인균으로서 각각 임균(NG), 클라미디아 트라코마티스(CT), 헤르페스 심플렉스 바이러스(HSV), 트레포네마 팔리둠(TP) 및 헤모필러스 듀클레이(HD) 균의 탐지 및 유전자형 분석용인 것이 바람직하다.
본 발명의 상기 프로브는 서열번호 56 내지 199 중 하나 이상의 염기서열을 갖는 올리고뉴클레오티드로 이루어지고, 인플루엔자 바이러스의 탐지 및 유전자형 분석용인 것이 바람직하다.
본 발명의 상기 프로브는 서열번호 212 내지 213의 염기서열을 갖는 올리고뉴클레오티드로 이루어지고, 상피세포 성장인자 수용체(EGFR)와 β-액틴 유전자의 발현 분석용인 것이 바람직하다.
본 발명의 상기 프로브는 좌측 프로브 부위와 우측 프로브 부위 중 어느 한쪽이 표적 핵산의 센스 가닥의 단일 뉴클레오티드 다형성(SNP) 부위에 대해 상보적인 올리고뉴클레오티드로 이루어지고, 나머지 한쪽이 표적 핵산의 안티센스 가닥의 SNP 부위가 없는 부위에 대해 상보적인 올리고뉴클레오티드로 이루어지고, SNP 분석용인 것이 바람직하다.
본 발명의 상기 프로브는 서열번호 220 내지 239 중 하나 이상의 염기서열을 갖는 올리고뉴클레오티드로 이루어지고, ACE, ADRB2, Apo E, CETP, CFH, ESR1, IL1A, MTHFR 또는 NOS3 유전자의 SNP 분석용인 것이 바람직하다.
본 발명의 상기 프로브는 서열번호 258 내지 272 중 하나 이상의 염기서열을 갖는 올리고뉴클레오티드로 이루어지고, K-ras 유전자의 돌연변이 분석용인 것이 바람직하다.
본 발명의 상기 d자형 프로브는 우측 프로브 부위가 A, C, G 또는 T의 점돌연변이에 상보적인 염기서열을 갖는 올리고뉴클레오티드로 이루어지고, 이때 점돌연변이에 상보적인 염기를 우측 프로브 부위의 중심부위에 위치시키고, 우측 프로브 부위의 길이는 15 내지 30bp이며, 점돌연변이 분석용인 것이 바람직하다.
본 발명은, 상기 DNA 마이크로어레이, 검체의 표적 유전자에 대한 PCR 반응용 프라이머 세트와 버퍼, 및 하이브리디제이션 반응용 버퍼를 포함하는 검체의 유전자 분석용 키트를 제공한다.
본 발명의 상기 PCR 반응용 프라이머 세트는 인플루엔자 바이러스 A형의 유전자 증폭용으로서, 서열번호 208 내지 211 중에서 선택되는 염기서열을 갖는 올리고뉴클레오티드인 것이 바람직하다.
본 발명의 상기 PCR 반응용 프라이머 세트는 β-액틴과 EGFR 유전자의 정량형 실시간 PCR용으로서, 서열번호 214 내지 219의 염기서열을 갖는 올리고뉴클레오티드인 것이 바람직하다.
본 발명의 상기 PCR 반응용 프라이머 세트는 SNP 검출용으로서, 서열번호 240 내지 257 중에서 2개 이상 선택되는 염기서열을 갖는 올리고뉴클레오티드인 것이 바람직하다.
본 발명의 상기 키트는 질병의 진단, 예방, 예측 또는 맞춤치료용인 것이 바람직하다.
본 발명은, 상기 DNA 마이크로어레이 위에, 표지물질로 표지된 검체의 표적 핵산을 올려놓고, 상기 프로브와 표적 핵산을 하이브리디제이션시키는 단계를 포함하는 유전자 분석방법을 제공한다.
본 발명의 상기 표지물질은 Cy3, Cy5, Cy5.5, Bodipy, Alexa 488, Alexa 532, Alexa 546, Alexa 568, Alexa 594, Alexa 660, 로다민(Rhodamine), TAMRA, FAM, FITC, Fluor X, ROX, Texas Red, Orange green 488X, Orange green 514X, HEX, TET, JOE, Oyster 556, Oyster 645, Bodipy 630/650, Bodipy 650/665, Calfluor Orange 546, Calfluor red 610, Quasar 670 및 비오틴으로 이루어지는 군으로부터 하나 이상 선택되는 것이 바람직하다.
본 발명의 상기 표적 핵산은 PCR, RT-PCR 또는 시험관내 전사(in vitro transcription) 방법을 이용하여 표지물질로 표지되는 것이 바람직하다.
본 발명의 상기 하이브리디제이션 반응 후에 형광스캐너를 이용하여 표지물질의 시그널을 분석하여, 표적 핵산의 발현정도를 조사하는 단계를 더 포함하는 것이 바람직하다.
본 발명의 상기 시그널 분석은 정상화 과정(normalization)을 거쳐 분석하는 것이 바람직하다.
본 발명의 상기 정상화 과정은, 각 스팟에서 백그라운드의 노이즈 시그널을 제외하여 Cy5와 Cy3의 시그널을 조사하고, 다시 하우스키핑 유전자로서 β-액틴 유전자의 Cy3 시그널과 비교하는 3중의 정상화 과정인 것이 바람직하다.
본 발명의 상기 표적 핵산은 DNA, RNA, cDNA 및 cRNA로 이루어지는 군으로부터 선택되는 것이 바람직하다.
본 발명의 상기 cDNA는 RT-PCT을 통해 Cy3로 표지시키고, 상기 cRNA는 시험관내 전사를 통해 Cy3로 표지시키는 것이 바람직하다.
본 발명의 상기 Cy3로 표지된 cDNA 또는 cRNA에, 외부 대조물질(external control)로서 대장균의 motD 유전자를 Cy5로 표지시킨 것을 혼합하여 얻은 혼합물을 하이브리디제이션시키는 것이 바람직하다.
또한, 본 발명은, 다음의 단계를 포함하여 이루어지는, Y형 프로브를 이용한 임상진단방법에 관한 것이다.
제 1 단계: Y형 프로브를 디자인하는 단계.
제 2 단계: Y형 프로브를 합성하는 단계.
제 3 단계: Y형 프로브를 이용하여 DNA 마이크로어레이를 제작하는 단계.
제 4 단계: 마이크로어레이 위에 올려 놓을 핵산 검체를 준비하고, 이것에 PCR이나 in vitro 전사 등의 방법으로 표지 물질(labeling dye)을 붙이는 단계.
제 5 단계: DNA 마이크로어레이에 검체를 올려 놓고 하이브리디제이션 반응을 하는 단계.
제 6 단계: DNA 마이크로어레이 위에서 하이브리디제이션 반응 후 그 시그널을 판독 및 분석하는 단계.
제 7 단계: Y형 프로브를 이용하여 표적 유전자 및 대조 유전자의 존재 유무와 그 양을 파악하는 단계.
제 8 단계: Y형 프로브를 이용하여 다양한 유전자형 분석을 하고, 임상 진료에 적용하는 단계로서, 구체적으로는 HPV나 인플루엔자, 성감염의 원인균을 진단하고 그 유형을 밝힘으로써 질병 진단과 치료 방침을 결정하는 단계.
제 9 단계: Y형 프로브를 이용하여 다수의 유전자의 발현 정도를 분석하는 단계.
제 10 단계: Y형 프로브를 이용하여 특정 염기서열의 변이, 즉 SNP나 점돌연변이 등을 분석하는 단계.
제 11 단계: Y형 프로브를 이용하여 임상 진단에 적용하는 단계로서, 구체적으로는 SNP 분석을 통해 질병 발병의 위험을 예측하여 미리 예방하거나, SNP 분석을 통해 약물 효과 및 부작용을 예측하여 맞춤식으로 약물을 선택하거나, 돌연변이 분석 및 유전자발현 분석을 통해 질병을 선별(screening) 내지 진단하거나, 또는 약물효과를 예측하고 맞춤식으로 약물을 선택하는 단계.
본 발명의 Y형 프로브 및 이의 변형형을 이용한 유전자 분석용 DNA 마이크로어레이(칩) 및 키트에 의하면, 특정 유전자의 존재와 그 형, 그리고 발현 정도와 염기서열의 변화를 모두 정확하게 분석할 수 있고, 나아가 감염과 암 등 각종 질환을 신속하고 정확하게 진단할 수 있을뿐 아니라, 병을 분류하고 심각도와 예후를 예측하며, 치료방침을 결정하며, 맞춤식으로 약물을 결정하는 등, 임상진료에 매우 유용하다.
도 1은 본 발명의 Y형 프로브의 일례를 나타내는 모식도이다.
도 2는 본 발명의 Y형 프로브를 칩 표면에 결합시키기 위한 반응 물질인 iAmMC6T(internal Amino Modifier C6 dT)의 화학구조이다.
도 3은 자궁경부암 유발원인 바이러스(HPV)와 인간 베타 글로빈(human beta globin; HBB) 유전자를 PCR 증폭하여 전기영동한 사진이다(실시예 5). HPV-16 L1 유전자를 Cy5로 표지하고, HBB 유전자는 Cy3로 표지하여 Caski 세포주(HPV-16형 표준물질)에서 공지의 방법으로 DNA를 추출하여 표 1의 L1 유전자와 HBB 유전자 각각의 프라이머로 PCR을 수행하여 0.8% 아가로즈 겔에서 전기영동을 수행한 결과이다. Lane M: 100bp 사이즈 마커, Lane 1: 음성대조군, Lane 2: HPV-16 L1 유전자의 PCR 산물(185bp), Lane 3: HBB 유전자의 PCR 산물(102bp).
도 4는 자궁경부암 유발원인 바이러스(HPV)를 진단할 수 있는 DNA 바이오 칩의 각 웰(well) 안에 나타난 그리드(grid)이다(실시예 4). 빨간색 부분은 HPV 가운데 고위험군 타입을 스파팅한 것이며, 녹색 부분은 HPV 가운데 저위험군 타입을 스파팅한 것이며, 노란색 부분은 HBB 유전자를 스파팅한 것이며, 하늘색 부분은 본 발명의 Y형 프로브 가운데 하나인 YP16S와 YP16AS를 스파팅한 것이다.
도 5는 도 4의 그리드를 이용하여 제작한 22종의 HPV 칩 위에 본 발명의 Y형 프로브를 동시에 스파팅하고, HPV-16(Cy5 표지)과 HBB(Cy3 표지)를 이용하여 하이브리디제이션 한 후의 스캐닝 사진이다(실시예 5). Well 1 & 2: HPV 16-Cy5 & HBB-Cy5 표지된 검체, Well 3 & 4: HBB-Cy5 표지한 검체, Well 5 & 6: HPV 16-Cy5 & HBB의 순방향 프라이머에 Cy3 표지된 검체, Well 7 & 8: HPV 16-Cy5 & HBB의 역방향 프라이머에 Cy3 표지된 검체.
도 6은 HBB 순방향-Cy3 PCR 산물을 이용하여 하이브리디제이션한 칩에서 하나의 웰만을 532nm에서 스캐닝한 이미지이다(실시예 6).
도 7은 STD 칩용 표준물질을 이용하여 PCR을 수행한 산물을 3% 아가로즈 겔에서 전기영동한 사진이다. M: 100bp DNA 사이즈 마커, Lane 1 내지 6은 단일 PCR을 한 것으로 각각 헤모필러스 듀크레이의 PCR 산물(440bp), 헤르페스바이러스 1형의 PCR 산물(384bp), 헤르페스바이러스 2형의 PCR 산물(400bp), 클라마이디아 트라코마티스의 PCR 산물(321bp), 임균의 PCR 산물(284bp), 그리고 매독의 PCR 산물(260bp)로 나타났으며, Lane 7은 상기 5개의 표준물질을 사용하여 실시예 9의 방법으로 멀티플렉스 PCR을 수행한 산물로 5개의 유전자 모두가 PCR 됨을 확인할 수 있었다.
도 8은 Y형 프로브를 이용한 STD 칩 상에서 임균을 양성물질로 하이브리디제이션한 결과를 스캐닝한 이미지이다(실시예 9).
도 9은 Y형 프로브를 이용한 STD 칩 상에서 클라마이디아 트라코마티스를 양성물질로 하이브리디제이션한 결과를 스캐닝한 이미지이다(실시예 9).
도 10는 Y형 프로브를 이용한 STD 칩 상에서 트레포네마 팔리둠을 양성물질로 하이브리디제이션한 결과를 스캐닝한 이미지이다(실시예 9).
도 11은 Y형 프로브를 이용한 STD 칩 상에서 헤모필러스 듀클레이를 양성물질로 하이브리디제이션한 결과를 스캐닝한 이미지이다(실시예 9).
도 12은 Y형 프로브를 이용한 STD 칩 상에서 헤르페스 심플렉스바이러스를 양성물질로 하이브리디제이션한 결과를 스캐닝한 이미지이다(실시예 9).
도 13는 Y형 프로브를 이용한 인플루엔자 바이러스 A 칩의 그리드를 나타낸 것이다(실시예 10).
도 14은 인플루엔자 바이러스 A 칩에 표준물질을 이용하여 하이브리디제이션한 결과를 스캐닝한 이미지이다(실시예 10). H 유전자는 Cy5로 표지하고, N 유전자는 Cy3로 표지하였으며, RPP, SWH1, SW infA 및 infA 모두 Cy5로 표지하였다. 첫번째 사진은 본 발명의 Y형 프로브를 이용하여 532nm와 635nm 모두를 이용하여 스캐닝한 이미지로서, swine 인플루엔자(H1N1)의 바이러스는 본 발명의 칩의 H1N1, H10N1, infA, RPP, swH1, swinfA의 스팟에서만 시그널을 보였으며, 두번째 635nm 파장에서는 N1 유전자에서만 시그널을 보였으며, 세번째 532nm 파장에서는 H1N1, infA, RPP, swH1, swinfA의 스팟에서만 시그널을 보였다. 따라서, 본 발명의 칩에서 사용한 Y형 프로브가 swine 인플루엔자 바이러스 유전자에 각각 하이브리디제이션을 하는 것을 입증하였다.
도 15a는 TaqMan 프로브를 이용하여 각각의 RNaseP, SWH1, SW infA, infA 유전자를 모두 One step Real time RT-PCR한 후 rotorgene 6.0 소프트웨어를 사용하여 분석한 결과이다. nc(negative control), pc(positive control; 신종인플루엔자 양성 viral RNA) 및 환자의 검체에서 추출한 RNA를 사용하여 리얼타임 RT-PCR을 수행한 것으로, 3개의 환자 검체는 RNaseP에서만 검출되어 음성으로 판독이 되었으며, pc는 SWH1, SW infA, infA 와 RNaseP 유전자 모두에서 증폭됨을 확인하였다.
도 15b는 TaqMan 프로브를 이용하여 각각의 RNaseP와 SWH1 유전자만을 7개의 임상검체를 사용하여 분석한 결과이다. 7개의 검체 가운데 2개의 검체만이 SWH1과 RNaseP에서만 검출되어 양성으로 판독이 되었으며, 나머지 4개의 검체는 RNaseP 유전자만 모두에서 증폭이 되었으므로 음성이며, 하나의 검체는 RNaseP 유전자도 증폭이 안되어 재검을 진행하였다.
도 16은 Real time RT-PCR을 수행하여 얻은 결과물 중 RNase P 유전자와 SWH1 유전자의 PCR 산물을 2% 아가로즈 겔에서 전기영동한 사진이다. 본 사진에서 확인되듯이, 실제 검체들의 경우 PCR산물의 크기만을 가지고 전기영동 상에서 양성과 음성을 구분하기가 힘들기 때문에, H1N1의 경우에는 본 발명의 DNA 칩이나 혹은 Realtime RT-PCR 방법들을 사용하여 확인하는 검사를 수행하여야 한다. M: 100bp DNA 사이즈 마커, N: Negative control, Lane 1 내지 6: 환자의 검체를 이용하여 얻은 PCR 산물, cDNA: 신종 인플루엔자 양성물질의 cDNA.
도 17은 본 발명의 유전자 발현 검사용 Y형 프로브의 기본 구조와, 이를 집적한 마이크로어레이 위에서 검체와 대조물질의 cRNA를 하이브리디제이션하는 모식도이다.
도 18은 Y형 프로브를 이용한 유전자 발현 분석시 외부 대조물질을 나타낸 모식도이다. 구체적으로, 실시예 11에 사용된 T7 프로모터와 poly A tail, E. coli motD 유전자를 포함하는 합성 올리고뉴클레오티드(A)와 플라즈미드(B) 시퀀스를 나타낸 것이다. 이것을 주형(template)으로 사용하여 Cy-5를 넣고 in vitro 전사하여 형광으로 표지된 타겟을 만든 후 검체에서 얻은 cRNA와 혼합하여 DNA 마이크로어레이 위에서 하이브리디제이션 반응을 하는데 사용한다.
도 19는 정상인과 환자의 검체에서 RNA를 추출한 후 cDNA를 합성하여 EGFR 유전자와 β-actin 유전자의 발현을 Y형 프로브 마이크로어레이로 분석한 사진이다(실시예 11).
도 20은 정상인과 환자의 검체에서 RNA를 추출한 후 cDNA를 합성하여 EGFR 유전자와 β-actin 유전자의 발현을 qRT-PCR로 분석한 결과이다(실시예 11). β-actin 유전자의 Ct 값은 두 검체간에 차이가 거의 없으나, EGFR 유전자는 환자에서는 발현되나 정상인에서는 발현되지 않음을 알 수 있다.
도 21은 Y형 프로브를 포함한 SNP 지노타이핑 칩을 이용하여 유전자 검사한결과로서, 2색(dual color) 형광 스캐너를 이용한 이미지이다. 각 스팟에서 백그라운드 시그널을 제거한 후 Cy-5 대비 Cy-3의, 정상화 처리한 시그널(normalized signal)을 조사하고, 이에 의거하여 완전하게 일치되는 스팟의 프로브를 찾았으며, 그 결과 CFH, CETP, MTHFR 유전자에 대해 불리한(unfavorable, high risk) SNP를 보였다. 즉, 각 유전자의 Cy3로 표지된 PCR 반응물질과 교잡되어 나타나는 리포터 유전자는 SNP가 있는 경우에는 스캐닝시 녹색으로 나타나고, Cy5로 표지된 PCR 반응물질과 교잡되어 나타나는 레퍼런스 유전자는 SNP가 없는 부분이기에 스캐닝시 항상 빨간색으로 나타나게 된다. 따라서, 하나의 유전자에서 Y형 프로브는, 각 유전자에 SNP부분이 없는 경우에는 모두 Cy5로 나타나고, SNP 부분이 있으면 보색으로 나타나게 된다. 따라서, 본 검체에서는 Complement factor H(CFH) 유전자의 402번째 코돈에 SNP(Y402H, rs1061170)가 나타났으며, Cholesterol ester transporter protein(CETP) 유전자의 1553번째 염기에 SNP(G1533A)가 나타났다. 또한 Methylene tetrahydrofolate reductase(MTHFR)의 677번째 염기에 SNP(C677T, Ala222Val)를 각각 나타내었다.
도 22는 K-ras 유전자의 코돈 12번의 GTT(Gly)와 AGT(Ser)에 대한 d형 프로브의 구조를 나타낸 모식도이다.
도 23은 K-ras DNA 마이크로어레이의 스캐닝 이미지이다. 폐암 환자의 혈액 검체를 분석한 결과, K-ras 유전자의 코돈 12번이 GTT에서 AGT(Gly12Ser)으로 돌연변이 되었음을 알 수 있다.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 하기 실시예는 본 발명의 구성 및 효과를 입증하기 위한 일례일 뿐, 본 발명이 하기 실시예에 한정된 것은 아니다.
실시예 1: Y형 프로브의 디자인
DNA 칩 개발에 가장 근간이 되는 과정으로서, 본 발명의 Y자 형태의 듀플렉스 올리고뉴클레오티드 프로브의 구조를 고안하는 과정이다. 여기에는 이 프로브를 지지대(solid support, features)에 올리기 위한 링커를 붙이는 공정과, 스페이서(spacer)를 붙이고 시그널을 보기 위해 표지 물질(labeling dye)을 붙이는 공정도 포함된다.
본 발명의 Y형 프로브는 연속된 하나의 올리고뉴클레어타이드로 되어 있으며, 2개의 서로 다른 올리고뉴클레오티드 프로브를 Y자형 가지 형태로 줄기 위에 올려 놓은 나무 같은 구조로 되어 있다. 이 나무를 땅, 즉 유리슬라이드와 같은 고정 지지대 위에 심는 뿌리가 있으며, 이를 링커, 혹은 스페이서라고 한다. 이 나무 위에 검체가 마치 눈처럼 내려 지고 그 검체 중에서 나무의 2개 가지의 프로브와 상보성인 서열을 가진 DNA나 RNA가 선택적으로 결합하면, 하이브리디제이션 반응이 일어나고, 나머지 눈은 씻겨 나간다. 이 하이브리디제이션 반응에 표지물질(labeling dye)을 붙여 그 시그널을 판독하게 된다.
본 발명의 Y형 프로브는 문헌에 나와 있는 소위 분자 비콘(molecular beacon)이나 헤어핀 프로브(hairpin probe)와는 달리, 구조 상 소위 루프(loop) 부분이 없으며, 켄처 프로브(quencher probe)를 사용하지도 않는다(Wang K, Tang Z, Yang CJ, Kim Y, Fang X, Li W, Wu Y, Medley CD, Cao Z and Li J. Molecular engineering of DNA: Molecular beacon. Angew Chem Int Ed Engl. 2009; 48(45): 856-870; Li Y , Zhou X and Ye D. Molecular beacons: an optimal multifunctional biological role. Biochemical and Biophysical Research Communincation. 2008; 373: 457-461; Yao GY and Tan W. Molecular-beacon-based array for sensitive DNA analysis. Anakytical Biichemistry. 2004; 331:216-223; Broude NE. Stem-loop oligonucleotides: a robust tool for molecular biology and biotechnology. Trends in Biotechnology. 2002; 20(6): 249-256). 따라서 비콘과는 전혀 다른 프로브이다. 아울러 여타의 문헌에 나오는 비콘 변형의 프로브와도 전혀 구조나 작용 방법이 다르다(Tsourkas A, Behlke MA and Bao G. Structure-function relationship of shared stem and conventional molecular beacons. Nucleic Acids Research. 2002; 30(19): 4208-4215; Misra A, Kumar P and Gupta KC. Design and Synthesis of hairpin probe for specific mis-match discrimination. Nucleic Acids Symposium Series. 2007; 51: 311-312; Riccelli RV, Merante F, Leung KT, Bortolin S, Zastawny RL, Janeczko R and Benight AS. Nucleic Acid Research. 2001; 29(4): 996-1004).
도 1에서 알 수 있듯이, 본 발명의 Y형 프로브는 5'-->3' 방향으로 볼 때, 그리고 좌측 상방에서 시작하여 우측 상방으로 볼 때, (1) 좌측 프로브 부위(left side probe, A 부위), (2) 좌측 줄기 부위(left side stem, B 부위), (3) 링커 내지 스페이서 부위(C 부위), (4) 우측 줄기 부위(right side stem, D 부위), 그리고 (5) 우측 프로브 부위(right side probe, E 부위)로 이루어 진다.
이하 각 부위의 구조를 더 상세히 설명하면 다음과 같다.
(1) 줄기 부위(stem part)
본 발명의 Y형 프로브가 적절하게 자리잡기 위해서는 이를 뒷받침하는 줄기부분이 우선 적절하게 만들어져야 한다. 줄기는 서로 상보성의 서열을 가지는 올리고뉴클레오타이가 결합한 구조로 되어 있으며, 단단하게 결합하기 위해서는 C-G 염기가 절반이상을 차지해야 하며, 그 사이 사이에 T 또는 A 염기가 끼어 들어 있는 것이 좋다. 예컨대, GnTGmTGo의 형태이다. 다양한 염기서열의 구조가 가능하나 가급적 생체 내에 자연으로 존재하는 것을 이용하는 것이 좋다. 유핵생물의 염색체 끝에는 반복된 염기서열로 이루어진 텔로미어(telomere)가 존재하며, 그 서열은 인간 등 포유류의 경우 TTAGGG나 TTTAGGG, 혹은 T1-3(T/A)G3-가 반복되어 있으며, 기타 생물의 경우 TTGGGG나 TTTTGGGG가 반복되는 구조를 보인다. 면역글로부린의 스위치 부위(switch portion)에도 유사한 구조가 나타난다(Balagurumoothy P, Brahmachari SK, Mohnaty D, Bansal M and Sasisekharan V. Hairpin and parallel quartet structures for telomeric sequences. Nucleic Acids Research. 1992; 20(15): 4061-4067; Balagurumoothy P and Brahmachari SK. Structure and stability of human telomeric sequence. Journal of Biochemistry. 1994; 269(34): 21858-21869).
발명의 줄기부위는 다음과 같이 그 한쪽의 나선에 다음에 기재된 염기가 한번 또는 두번 이상 반복되는 구조로 만드는 것이 바람직하다.
예)
1. TTGGG
2. TAGGG
3. TTGGGG
4. TTTGGG
5. TTAGGG
6. TTTGGGG
7. TTTAGGG
8. TTTTGGGG
9. TTTAGGGG
즉, 짧게는 5개 내지 9개의 올리고뉴클레오티드가 상보적으로 결합한 것이 되며, 이를 늘려 나갈 수 있다. 경제적 비용과 효율을 따져 볼 때, TTAGGG-AATCCC의 염기서열로 이루어진 인체의 텔로미어의 최소단위를 이용하면 간편하다. 그러나 그 길이는 얼마든지 변형이 가능하다. 통상적으로는 C6, C12 또는 C18 정도면 무방하다.
(2) 좌측 및 우측 프로브 부분
여기에서의 올리고뉴클레오티드 프로브는 검사하고자 하는 표적 유전자에 상보성이 되게 디자인하며, 어떤 염기 서열도 가능하다. 단 좌측 및 우측 프로브의 올리고뉴클레오티드의 염기서열과 길이를 적절하게 디자인하는 것이 필수적이다. 프로브 선택의 우선적인 기본 원칙은 좌측과 우측의 올리고뉴클레오티드가 서로 상보성을 갖고 결합하지 않도록, 그리고 각자 이차 구조를 만들지 않도록 주의해야 한다.
Y형 프로브의 디자인에서 또 하나 중요한 것은 방향이다. 좌측 프로브(A 부위)는 역방향의 3'-->5' 순의 시퀀스를 포함하며, 우측 프로브(E부위)는 순방향의 5'-->3' 순의 시퀀스를 구성해야 한다.
좌우측 각 프로브 부위의 길이는 통상 15 내지 75bp 정도가 바람직하나, 용도에 따라 150bp 내외까지 길어지거나 혹은 역으로 15bp 미만으로 짧아질 수도 있다. 각 프로브의 정확한 길이는 실험 목적과, 표적 유전자의 구조 및 염기서열상의 특징, 검사의 민감도와 특이도, 재현성, 노이즈, 바이어스(bias)를 어떻게 결정할 것이냐에 따라 달라진다. 특이도를 높이고자 할 때는, 짧게 통상 15 내지 25bp의 것을 사용한다. 민감도에 초점을 둘 때는, 길게 통상 40 내지 70bp의 것을 사용한다. SNP나 돌연변이를 조사하기 위해 대립유전자 특이 하이브리디제이션 분석을 하고자 할 때는 프로브 길이를 15개 내지 22개 정도로 하고, 그 중심부의 1개 염기 혹은 두세개 염기의 차이를 식별할 수 있을 정도로 고안하여야 한다. 검체가 특정 유전자에 대한 PCR 산물이고, 그 산물에서 특정 염기서열의 존재를 찾아서 유전자형을 분석코자 할 때는, 예컨대 바이러스나 세균 감염의 정확한 종과 아종의 유전자형을 분석하고자 할 때는 프로브 길이를 20개 내외로 하며, 최소 3염기 이상이 특히 중심부에 차이가 있게 선택한다. 서열에 따라서는 사용할 수 없는 것이 있다.
좌측과 우측의 프로브의 길이가 대칭적이 될 필요는 없으며, 목적과 용도에 따라 좌측의 프로브의 길이가 극단적으로 짧아져서 도 22의 것처럼 d자형처럼 될 수도 있다. 아울러 우측의 프로브가 극단적으로 짧아져서 b자형처럼 될 수도 있다.
올리고뉴클레오티드 프로브의 염기서열 및 길이 결정은 공지의 방법을 참조하면 된다. 즉 검사하고자 하는 표적 유전자의 부위 중에서 비표적(non-targeting) 유전자와 상보성이 가장 적은 특이 부위를 선택해야 한다. 다음, 하이브리디제이션 온도에 맞추어서 프로브들의 융해온도(Tm)의 범위가 적정 범위 내에 놓이도록 디자인해야 한다. 이 때 물론 C+G의 백분율과 프로브 길이를 넣어서 계산해야 한다. 2차 구조를 만들지 않도록 해야 하며, 자기 폴딩 에너지(self folding energy)를 분석하는 것이 좋다. 후보 프로브 집합을 슬라이딩 윈도우(sliding window) 방식으로 추출한 후, 이 후보군을 바탕으로 하여 목표 유전자와의 상보결합 외에 여러 조건 등을 고려하여 하이브리디제이션이 가장 잘 일어날 가능성이 높은 프로브를 최종적으로 선택하는 방법이 흔히 시도된다. 버츄얼 하이브리디제이션 모듈(virtual hybridization module)을 통해 최적의 프로브를 선정할 수도 있다. 프로브 집합 설계는 하이브리디제이션이 일어날 가능성이 높은 서열을 찾는 최적화 문제로 볼 수 있으며, 이러한 관점에서 진화 연산 기법을 사용하기도 한다. 또한, 인공신경망 등의 학습기법을 이용하기도 한다(David P. Kreil, Roslin R. Russell and Steven Russell. Microarray Oligonucleotide Probes. Methods in Enzymology 2006; 410:73-98; Lemoline S, Combes F and Le Crom S. An evaluation of custom microarray application: the oligonucleotide design challenge. Nucleic Acids Research. 2009; 37(6):1726-1739).
간편한 방법은 상업화되어 시판되는 올리고뉴클레오티드 프로브 디자인 프로그램을 사용하는 것이다. 예컨대, ArrayOligoSelector, CommOligo, HPD, Mprime, OliD, OligoArray, OLigodb, OLigoFaktory, OLigoPicker, POligoWiz, Oliz, Ospery, PICKY, PROBEmer, Probesel, ProbeSelect, ROSO, SEPON, YODA 등이 있다. 이들은 크로스 하이브리디제이션(cross hybridization) 분석, 적정 프로브의 수 분석, 소위 low complexity zone 피하기, 방향 설정 등 필요한 기본 정보를 대부분 제공한다.(Bozdech Z, Zhu J, Joachimiak MP, Cohen FE, Pulliam B, DeRisi JL. Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray. Genome Biol. 2003;4:R9; Li X, He Z, Zhou J. Selection of optimal oligonucleotide probes for microarrays using multiple criteria, global alignment and parameter estimation. Nucleic Acids Res. 2005;33:6114-6123; Rimour S, Hill D, Militon C, Peyret P. GoArrays: highly dynamic and efficient microarray probe design. Bioinformatics. 2005;21:1094-1103; Chung WH, Rhee SK, Wan XF, Bae JW, Quan ZX, Park YH. Design of long oligonucleotide probes for functional gene detection in a microbial community. Bioinformatics. 2005;21:4092-4100; Rouchka EC, Khalyfa A, Cooper NG. MPrime: efficient large scale multiple primer and oligonucleotide design for customized gene microarrays. BMC Bioinformatics. 2005;6:175; Talla E, Tekaia F, Brino L, Dujon B. A novel design of whole-genome microarray probes for Saccharomyces cerevisiae which minimizes cross-hybridization. BMC Genomics. 2003;4:38; Rouillard JM, Zuker M, Gulari E. OligoArray 2.0: design of oligonucleotide probes for DNA microarrays using a thermodynamic approach. Nucleic Acids Res. 2003;31:3057-3062; Mrowka R, Schuchhardt J, Gille C. Oligodb-interactive design of oligo DNA for transcription profiling of human genes. Bioinformatics. 2002;18:1686-1687; Schretter C, Milinkovitch MC. OligoFaktory: a visual tool for interactive oligonucleotide design. Bioinformatics. 2006;22:115-116; Wang X, Seed B. Selection of oligonucleotide probes for protein coding sequences. Bioinformatics. 2003;19:796-802; Wernersson R, Nielsen HB. OligoWiz 2.0-integrating sequence feature annotation into the design of microarray probes. Nucleic Acids Res. 2005;33:W611-W61;Chen H, Sharp BM. Oliz, a suite of Perl scripts that assist in the design of microarrays using 50mer oligonucleotides from the 3′ untranslated region. BMC Bioinformatics. 2002;3:27;Gordon PM, Sensen CW. Osprey: a comprehensive tool employing novel methods for the design of oligonucleotides for DNA sequencing and microarrays. Nucleic Acids Res. 2004;32:e133; Chou HH, Hsia AP, Mooney DL, Schnable PS. Picky: oligo microarray design for large genomes. Bioinformatics. 2004;20:2893-2902; Emrich SJ, Lowe M, Delcher AL. PROBEmer: a web-based software tool for selecting optimal DNA oligos. Nucleic Acids Res. 2003;31:3746-3750; Kaderali L, Schliep A. Selecting signature oligonucleotides to identify organisms using DNA arrays. Bioinformatics. 2002;18:1340-1349; Li F, Stormo GD. Selection of optimal DNA oligos for gene expression arrays. Bioinformatics. 2001;17:1067-1076; Reymond N, Charles H, Duret L, Calevro F, Beslon G, Fayard JM. ROSO: optimizing oligonucleotide probes for microarrays. Bioinformatics. 2004;20:271-273; Hornshoj H, Stengaard H, Panitz F, Bendixen C. SEPON, a Selection and Evaluation Pipeline for OligoNucleotides based on ESTs with a non-target Tm algorithm for reducing cross-hybridization in microarray gene expression experiments. Bioinformatics. 2004;20:428-429; Nordberg EK. YODA: selecting signature oligonucleotides. Bioinformatics. 2005;21:1365-1370).
본 발명의 Y형 프로브와 이것의 변형체인 d형 프로브에서, 좌측과 우측 프로브의 조합은 검사 목적에 따라 매우 다양하게 고안할 수 있다. 대표적인 조합으로는 다음의 것들을 생각할 수 있다.
1) 본 발명의 Y형 프로브에 있어서, 표적물질에서 표적 유전자를 1차 선택한 후 하나의 유전자 내에 서로 다른 부위를 2개 선택하여 각각에 대해 프로브를 디자인할 수 있다. 이로서 하나의 유전자에 대해 이중 검색하므로써 하나의 프로브로 한번만 검사하는 기존의 프로브보다 민감도를 더 높일 수 있다. 예컨대 실시예 9에 개시한 바와 같이 성감염의 원인균을 이러한 특수 Y형 프로브를 이용하여 더 정확하게 검사할 수 있다.
2) 본 발명의 Y형 프로브에 있어서, 표적물질에서 2개의 표적 유전자를 선택하여 각각에 대해 프로브를 디자인할 수 있다. 이로서 한 질환에 대해 2개의 유전자를 이중 검색하므로써 하나의 프로브로 한 유전자만 검사하는 기존의 프로브보다 정확도를 더 높힐 수 있고, 이는 검사를 간편하게 하며, 비용도 줄일 수 있다. 예컨대 인플루엔자의 정확한 유전자형 진단을 위해서는 헤마글루티닌(hemagglutinin)유전자와 뉴라미니다제(Neuraminidase) 유전자의 양자를 함께 검사해야 하는 바, 실시예 10에 개시한 바와 같이 이 양자의 유전자를 Y형 프로브를 이용하여 동시에 파악함으로써 진단이 더 용이하고 간편해질 수 있다.
3) 본 발명의 Y형 프로브에 있어서, 한쪽(예, 좌측)은 조사하고자 하는 표적유전자에 대해 프로브를 조성하고 다른쪽(예, 우측)은 대조 표준물질의 유전자 내의 프로브를 선택하여 각각에 대해 프로브를 디자인할 수 있다. 예컨대, 실시예 3 내지 8에 개시한 바와 같이, HPV의 유전자 형을 분석하고자 할 때 Y형 프로브의 한쪽은 L1 유전자 내에서 HPV의 유형별로 특이한 프로브(HPV subtype specific probe)를 넣고, 다른 한쪽은 모든 인체 검체에 존재하는 표준물질 유전자(internal control or reference gene)에 특이한 프로브를 넣으면, 가양성이나 가음성을 피하면서 HPV의 존재 유무 및 그 유전자형을 정확하게 파악할 수 있다. 또는, Y형 프로브의 한쪽은 L1 유전자 내에서 HPV의 유형별로 특이한 프로브를 넣고, 다른 한쪽은 L2 유전자 내에서 모든 형의 HPV에 공통된 프로브로 넣어서 검사할 수 있다. 또는, Y형 프로브의 한쪽은 L1 유전자 내에서 HPV의 유형별로 특이한 프로브를 넣고, 다른 한쪽은 E6/E7이나 L2 유전자에서 HPV의 유형별로 특이한 프로브를 넣어서 검사할 수도 있다. 이러한 새로운 개념의 HPV 마이크로어레이는 HPV 감염 진단과 자궁경부암, 홍문암, 두경부암 등의 조기 진단에 큰 도움이 될 수 있다.
4) 본 발명의 Y형 프로브에 있어서, 한쪽은 조사하고자 하는 표적유전자에 대해 프로브를 조성하고, 다른 쪽은 하우스키핑 유전자(housekeeping gene)의 프로브를 조성하여, Y형 프로브와 마이크로어레이를 제작하고 검체 내의 표적 및 대조 하우스키핑 유전자 각각에 대해 형광표지를 각각 Cy-3 및 Cy-5로 달리하여, 역전사 증폭(reverse transcription polymerase chain reaction, RT-PCR)을 한 후 마이크로어레이 위에 올려 놓고 하이브리디제이션을 한다. 이후 각 스팟에서 백그라운드의 노이즈 시그널을 제외하여 Cy-3 및 Cy-5의 시그널을 조사하고 이를 정상화 과정(normalization)을 거쳐 분석한 후, 각 스팟 내에서 표적유전자의 하우스키핑 유전자 대비 시그널(Cy3/Cy5)을 측정하고, 이를 여러 스팟에서 검색하여 그 평균 및 표준편차를 구하여 표적유전자의 상대적 발현도를 통계분석할 수도 있다.
5) 본 발명의 Y형 프로브를 한꺼번에 다수 유전자의 발현을 분석하는 데 이용할 수도 있다. 예컨대 실시예 11에서와 같이 Y형 프로브에서 한 쪽은 조사하고자 하는 다수의 표적유전자에 대해 각각 프로브를 조성하고 다른 쪽은 내부 대조유전자를 선택하여 프로브를 조성하여 이들을 집적하여 마이크로어레이를 제작한다. 이후 검체를 2가지로 준비한다. 하나는 진짜 검사하고자 하는 검체에서 cRNA를 준비하며, 이 때 시험관내 전사(in vitro transcription) 과정에서 형광 다이(예컨대 Cy-3)를 넣어서 표지시킨다. 이와 별개로 내부 대조 유전자에 대해 형광 다이(Cy5)를 표지하면서 시험관내 전사를 수행하여 대조 검체의 cRNA를 준비한다. 이 양자, 즉 검사하고자 하는 검체의 cRNA, 그리고 대조유전자의 cRNA를 혼합한 후 마이크로어레이 위에 올려 놓고 하이브리디제이션을 한다. 이후 각 스팟에서 백그라운드의 노이즈 시그널을 제외하여 Cy-3 및 Cy-5의 시그널을 조사하고 이를 정상화 과정을 거쳐 분석한 후 각 스팟 내에서 대조유전자 대비 표적 유전자의 시그널 비(Cy-3/Cy-5)를 측정하고, 이를 통해 검체에서 다수 표적유전자의 상대적 발현도를 통계 분석할 수도 있다. 이로써, 이론적으로 모든 알려진 인체 유전자에 대해 대단위(high-throughput) 유전자발현 분석이 가능하다. 실시예 11에 개시한 바와 같이 이 방법을 이용하여 암환자에서 EGFR(epidermal growth factor receptor)의 발현을 조사하면 EGF 수용체(receptor) 차단 약제나 항체 약제를 투여하는 적응기준이 되어, 효과적인 경과를 기대할 수도 있다(Ellis LM and Hicklin DJ. Resistance to targeted therapies: refining anticancer therapy in the era of molecular oncology. Clinical Cancer Research. 2009; 15(24): 7471-7478).
6) 본 발명의 Y형 프로브에 있어서, 좌측은 조사하고자 하는 표적유전자의 센스 가닥(sense strand)의 SNP부위에 대해 프로브를 조성하고 우측은 표적유전자의 안티센스 가닥(antisense strand)의 SNP가 없는 부위에서 대조 프로브를 넣어서 Y형 프로브를 준비하고, 이를 가지고 마이크로어레이를 제작할 수 있다. 이 때 좌측 프로브에는 야생 내지 정상형, 그리고 변이형에 각각 특이한 프로브를 준비하며, 양자의 차이가 나는 염기는 프로브의 중심부위에 두고, 프로브의 길이는 15-30bp 정도로 한다. 이후 표적유전자의 센스 가닥은 Cy-3로 표지하고, 안티센스 가닥은 Cy-5로 표지하여 PCR을 수행하고, 그 산물을 상기한 마이크로어레이 위에 올려 놓고 하이브리디제이션을 한다. 이후 각 스팟에서 백그라운드 시그널을 제거한 후 Cy5 대비 Cy3의, 정상화 처리한 시그널(normalized signal)을 조사하고, 이에 의거하여 완전하게 일치되는 스팟의 프로브를 찾는다. 이로써, 야생형인지 변이형인지 확인할 수 있으며, 혼합형(heterozygosity)도 파악이 가능하다. 본 발명의 실시예 12에 개시한 바와 같이, 만약 SNP 검색에서 complement factor-H 유전자의 변이형(Y402H)이 확인되면, 노화관련 황반변성(aging related macular degeneration, ARMD)의 위험이 높음을 예측할 수 있고, 그 예방을 위해 항산화기능이 높은 야채를 많이 먹고, 반드시 금연해야 하며, 태양광이 뜨거울 때는 선글래스를 착용하도록 지시할 수 있다. 즉 본 발명의 DNA 마이크로어레이를 이용한 SNP검사로 질병 예측 및 예방에 도움이 된다.
7) 본 발명의 Y형 프로브에 있어서, 변형형의 Y형 프로브를 돌연변이 검색에 이용할 수도 있다. Y형 프로브의 우측은 조사하고자 하는 표적유전자의 돌연변이부위에 대해 프로브를 조성하고, 좌측은 거의 없애 버린 d자 형의 프로브를 준비하고, 이를 이용하여 마이크로어레이를 제작한다. 이 때, 돌연변이 여부를 검사하고자 하는 염기 별로 A, C, G, T의 각각의 염기를 분석할 수 있는 특이 프로브를 만들고, 변이 부위의 염기를 프로브의 중심부위에 두고, 프로브의 길이는 15-25bp 정도로 한다. 표적유전자에 대해 표지를 Cy-3이든 Cy-5이든 동일하게 하여 하이브리디제이션을 하여 완전하게 일치(perfect match)되는 스팟의 프로브를 찾는다. 이로써, 변이를 보고자 하는 염기 서열이 A인지, C인지, G인지, T인지 확인할 수 있다. 실시예 13에 개시한 바와 같이, 이 방법을 이용하여 K-RAS 유전자의 돌연변이 여부를 파악할 수 있으며, 이로서 폐암 진단에 도움이 되며, 이 경우의 폐암환자에서 예후가 불량할 것임을 예측할 수 있고, 나아가 EGFR 차단 약제나 항체 약제는 내성이 높기때문에 이러한 약제를 피하도록 지시할 수 있다(Ellis LM and Hicklin DJ. Resistance to targeted therapies: refining anticancer therapy in the era of molecular oncology. Clinical Cancer Research. 2009; 15(24): 7471-7478). 즉 본 발명의 DNA 마이크로어레이를 이용한 돌연변이 검사로, 질병 진단과 예후 평가, 치료방침 결정에 도움이 될 수 있다.
이상에서 상술한 바와 같이, 본 발명의 Y형 프로브는 다양하게 변형이 가능하며, 거의 모든 유전자 검사에 이용할 수 있다.
(3) 링커 (스페이서) 부위
본 발명의 Y형 프로브는 다양한 지지대(solid support)위에 집적(spotting)하게 되며, 지지대로는 유리 슬라이드를 포함하여, 비드(X-MAP microsphere), 마이크로플레이트 웰(microplate well), 실리콘(silicon wafer), 막 등 모두 사용이 가능하다. 경제성과 용이성, 다양한 시도와 경험 때문에 표면을 특수 처리하여 활성화시킨 유리 슬라이드 위에 집적하는 방법이 우선 고려된다. 이때, Y형 프로브에 다수의 탄소기를 가진 전하가 없는 양친매성의(terminal uncharged amphiphilc) 링커 또는 스페이서를 연결하여, 이것을 슬라이드에 부착한다. 프로브를 링커(스페이서) 없이 그냥 지지대에 붙이면 지지체의 공간적 방해나 정전기적 영향 때문에 하이브리디제이션이 잘 일어나지 못하는 바, 링커는 이를 해결하는 데 필수적이다(Keril DP, Russell RR and Russell S. Microarray oligonucleotide probes. Methods in Enzymology. 2006; 410: 73-98).
본 발명에서는 그 수(n)가 최소 3개에서 60개까지인 아미노 변형 디데옥시티미딘(dideoxythymidine)(internal amino modifier CndT; iAmMCnT)을 넣게 된다. 경제적 효율에 따라 탄소수가 6개로 짧은 iAmMC6T를 사용해도 무방하다. 이때 iAmMC6dT의 5' 말단에는 좌측 줄기(left stem)의 변형시킨 C6 아민 링커가 글라스 슬라이드 표면에 코팅된 알데하이드기와 3' 말단의 A 염기와 우측 줄기(right stem)의 5' 말단의 T 염기와 결합을 하며, iAmMC6dT의 리보스에 결합하여 칩 위에 Y형 프로브를 고정시킬 수 있다. 대표적인 예로, iAmMC6T의 화학구조를 도 2에 나타내었다. 그밖에 C3, C12, C18, C24 등도 모두 사용 가능하다.
(4) 표지물질
프로브의 표지물질로는 공지된 여러 가지 물질을 모두 사용할 수 있다. 예를 들면, Cy5, Bodipy와 Cy3, Alexa 532, Alexa 546, Rodamin, TAMRA 뿐 아니라 FAM, FITC, FluorX, Alexa 488과 Alexa 568, ROX, Teaxas Red, Alexa 594를 모두 사용할 수 있다. 또한, 비오틴(biotin)과 아비딘(streptavidine)의 결합을 사용하여 표지하는 것도 가능하다. 예를 들어, PCR 산물을 증폭할 때 사용한 프라이머 말단에 비오틴 표지를 하거나 또는 비오틴이 표지된 dNTPs를 사용하여 PCR 증폭된 타겟에 상기에서 언급된 형광표지된 아비딘(스트렙트아비딘)을 사용하여 검출하는 방법 또한 가능하다. 이외에도 AuNP 또는 은 등과 같은 나노입자로 표지하는 방법 또한 가능하다.
본 발명에서는, Y형 프로브에는 표지물질을 붙이지 않고, 대신 검체 핵산에 표지물질을 붙여서 DNA 마이크로어레이 위에 올려 놓고, Y형 프로브와 하이브리디제이션 반응이 일어나게 한다. 그러나 용도와 목적에 따라 Y형 프로브에 직접 표지물질을 붙여서 검체 핵산과 반응하게 할 수도 있다. 이 경우 표지물질은 보통 우측 프로브 부위의 3' 말단에 붙이지만 좌측 프로브 부위의 5' 말단에 붙일 수 있고, 우측 프로브 부위의 3' 말단과 좌측 프로브 부위의 5' 말단 양쪽에 붙일 수도 있다. 또한 양측 프로브의 말단이 아닌 그 내부에도 붙일 수 있다. 여기에서 프로브의 표지물질로는 공지된 여러 가지 표지물질을 모두 사용할 수 있다. 예를 들면, Cy5, Bodipsy와 Cy3, Alexa 532, Alexa 546, Rodamin, TAMRA 뿐 아니라 FAM, FITC, FluorX, Alexa 488과 Alexa 568, ROX, Teaxas Red, Alexa 594를 모두 사용할 수 있다.
실시예 2: Y형 프로브의 합성
실시예 1과 같이 디자인된 Y형 프로브는 다음의 과정을 통하여 합성이 가능하다. Y형 올리고뉴클레오티드 프로브의 합성 과정은 1) 디트리틸레이션(detritylation, DMT 제거), 2) 커플링, 3) 캐핑(capping), 4) 산화(oxidation)로 나뉘며, 한 주기 동안 1개의 뉴클레오티드가 결합한다. 그러므로 합성하고자 하는 염기서열 순서대로 dA, dG, dT, dC를 순서에 맞게 각 반응에 참여시켜 올리고머를 합성할 수 있다. 합성이 완료되면 암모늄히드록시드(ammonium hydroxide)를 넣어 지지체로부터 올리고머를 분리한다(deprotection). 올리고뉴클레오티드는 3' 말단의 뉴클레오티드를 움직이지 못하도록 고형 지지체에 결합한 후 컬럼에서 반응시켜 합성이 이루어진다. 따라서, 합성은 3'에서 5'쪽으로 실시된다. 지지체는 CPG(controlled pore glass)나 폴리스티렌을 사용하는데, 폴리스티렌은 소수성이 강한 지지체로 CPG 보다 더 좋은 합성효율을 갖는다. stationary 뉴클레오시드는 디메톡시트리틸기(DMT)에 의해 보호되는 자유 5' 말단을 가지는데, DMT가 제거되고, 용액을 통해 주입되는 다른 뉴클레오티드의 활성화된 3' 쪽 인산기와 결합하여 뉴클레오티드 링크를 형성한다. 각각의 뉴클레오시드는 용액으로 컬럼에 주입되므로 컬럼으로 모노머 뉴클레오시드(phosphoramidite) 결합이 일어나는 5' 말단을 보호하기 위하여 DMT가 결합되어 있다. 그러므로 올리고사슬은 DMT를 제거한 후, 다른 단량체 뉴클레오시드를 3'에서 5'쪽으로 이어가면서 진행한다.
1) 디트리틸레이션(DMT 제거): 트리클로로아세트산(TCA)을 주입하여 5'의 DMT를 양이온으로 만들어 분리시키고, 드레인(drain)을 통해 제거한다. 이때 무수 조건에 의해 가역반응이 진행된다.
2) 커플링: 포스포아미다이트(phosphoramidite)는 화학적으로 변형된 뉴클레오시드로, 하기 4가지 화합물의 산화환원 반응에 의하여 커플링이 일어난다. 테트라졸(TET)과 포스포아미다이트는 테트라졸릴 포스포아미다이트라는 활성화된 중간물질을 통해 지지체의 5' 히드록시기와 반응하여 인터뉴클레오티드 포스파이트(internucleotide phosphite)를 형성한다.
① 디이소프로필아미노-포스포아미다이트
② 3'-B-시아노에틸 보호기
③ 5'-히드록시기에 있는 디메톡시트리틸 보호기
④ A와 C의 엑소시클릭 아민의 벤조일 보호기, G의 엑소시클릭 아민에 있는 이소부티릴 보호기, T는 엑소시클릭기가 없다.
3) 캡핑: 5'-히드록시기의 2% 정도는 커플링하지 못하므로, 다음 반응에서 염기가 결합하지 못하도록 해야하는 데, 이러한 과정을 캡핑이라 하고, 아세틸화에 의해 완결된다.
4) 산화: 새롭게 형성된 뉴클레오티드 연결기는 3가 포스파이트 트리에스테르 결합으로 불안정하므로 안정한 5가 포스페이트 트리에스테르로 산화된다.
5) 탈보호(deprotection): 합성이 종료되면 DMT를 아세토니트릴로 세척하여 제거하고, 지지체를 컬럼으로부터 분리한다. CPG에 결합되어 있는 합성된 DNA를 분리하기 위하여 암모늄히드록시드로 55℃에서 8∼15시간 탈보호한다.
6) 정제: 합성된 올리고머는 정상적인 서열을 가진 것과 dNTP와 커플링을 이루지 못해 capping된 올리고머가 혼합되어 있다. 그러므로 원하는 올리고머만을 추출하기 위하여 정제를 해야 한다. 정제는 prep.에 사용하는, 수지(resin)에 따라 겔 칼럼 정제법과, 정제 방법에 따라 PAGE, HPLC 등이 있다.
상기의 과정을 좀 더 상세히 서술하면 다음과 같다.
DNA의 화학적 합성은 DNA 중합효소에 의한 생체 또는 시험관에서 일어나는 효소적 합성과는 달리 화학적인 일련의 반응이며 3′→ 5′방향으로 진행된다. 이 화학적 DNA 합성에서 고려할 점은 4종의 염기, 인산기, 5'수산기 등 많은 작용기가 있다는 것이다. 따라서 각 단계에서 원하는 화학반응만이 일어나도록 다른 작용기들을 보호기로 막아 두어야 한다.
1) 작용기의 보호
① 염기의 아미노기
DNA 염기에 존재하는 아미노기는 모두 보호해 주어야 한다. 그렇지 않으면 합성과정에서 아세틸화, 인산화 반응 등이 아미노기에도 일어나게 된다. 일반적으로 산에 안정하고 알칼리에서 제거하기 용이한 보호기가 사용된다. 티민(T)을 제외한 아데닌(A)과 시토신(C)의 아미노기는 벤조일기로, 구이닌(G)의 아미노기는 이소부틸로 각각 보호한다.
② 5' 수산기의 보호
5'-OH는 축합반응, 캡핑 반응, 산화반응 중에는 보호되어야 하며 다음 뉴클레오티드가 커플링되기 바로 직전에는 약산(TCA)에 의해 제거되어야 한다. 이러한 목적에 적합한 보호기로 디메틸트리틸(dimethyltrityl, DMT)이 사용되고 있다.
② 인산기의 보호
인산기는 CH3기로 보호되어 티오페놀로 실온에서 제거시켰으나, 최근에는 농암모니아수로 손쉽게 제거할 수 있는 β-시아노에틸 보호기를 사용하고 있다.
2) DNA의 합성주기
DNA 합성은 3'→ 5' 방향으로 진행되는데 첫 뉴클레오티드의 3' 수산기를 수지에 붙여 놓고, 한 염기가 첨가되는 동안 크게 4 단계의 화학반응, 즉 5'-말단의 디트리틸레이션(DMT 제거), 새로운 염기의 부가반응(coupling), 부가반응이 일어나지 않은 DNA 사슬의 캡핑 반응, 인산기의 산화반응을 반복한다. 반응이 종결되면 보호기를 제거하고, 합성된 올리고뉴클레오티드를 수지에서 떼어낸다.
이처럼 수지에 붙여 놓은 채 합성을 하면, 여러 단계의 반응을 용이하게 진행시킬 수 있다. 이렇게 하지 않으면, 각 반응이 끝날 때마다 원하는 물질을 정제해야 하며, 이 과정에서 손실도 매우 커지게 된다.
① 디트리틸레이션(DMT 제거)
DNA 합성의 첫 단계에서는 지지체에 부착된 뉴클레오시드 유도체의 5'-OH를 보호하고 있는 DMT기를 TCA를 처리하여 제거한다. 그 결과 다음 커플링 단계에서 포스포로아미다이트와 반응할 수 있는 유리 5'-OH를 얻을 수 있는데, 이 과정을 디트리틸레이션이라 한다. 이때 DMT기는 부산물로 생성되며 커플링 효율 등 단계별로 합성효율을 측정하는데 이용된다.
② 커플링
포스포로아미다이트는 뉴클레오시드의 유도체이며, 3'-P 위치에 있는 디이소프로릴아민기는 3'-P의 안정화에 관여하며 테트라졸과 반응하기 쉬운 화합물이다. 3'-P는 β-시아노에틸기로 보호되어 있어 부반응(side reaction)을 막고, 합성후 농암모니아 처리로 용이하게 보호기를 제거할 수 있다. 5'-OH에 결합된 DMT기는 5'-OH기를 보호한다. 포스포로아미다이트 T를 제외하고 포스포로아미다이트 C, A, 또는 G의 아미노기는 벤조일기 또는 이소부틸기가 각각 결합되어 있다.
커플링에 관여하는 반응물은 5'-OH기와 양적으로 빨리 반응이 이루어져야 하며 합성이 용이하고 정제과정이 간편해야 할 뿐만 아니라 H2O와 O2와 반응하지 않는 안정한 화합물이어야 한다. 따라서 커플링 전에 지지체는 아세토니트릴로 철저히 세척하여 뉴클레오시드와 친화성이 있는 물질을 제거해야 한다. 잔여 아세토니트릴은 아르곤 가스를 역류하여 건조제거한다. 커플링 반응은 포스포로아미다이트 1번, 2번, 3번, 4번, 5번 시약조와 테트라졸이 전달관을 통해서 컬럼에 도착하자마자 혼합체가 되어 약산성(pKa=4.8)을 띄며, 테트라졸은 3'-P에 위치한 디이소부틸기의 질소 분자에 H+을 전이한다. H+을 받은 아민은 5'-OH에 뉴클레오시드가 되기 쉬운 친화성 물질이 된다. 이런 결과로 중간 뉴클레오티드 연결기는 3가의 인산이 형성되고 부가반응이 일어난다.
③ 캡핑(Capping)
커플링은 항상 정량적이지 않기 때문에 지지체에 부착된 소량(보통 0-2%)의 뉴클레오티드는 부가반응에 관여하지 않을 수도 있다. 이렇게 반응되지 않은 DNA 사슬이 다음 부가반응에서 신장되지 못하도록 잔존 유리 5'-OH기를 아세틸화시켜 캡핑해야 한다. 아세트 무수물과 N-메틸이미디졸(NMI)이 동량, 동일 몰농도로 동시에 컬럼으로 전달되면 강력한 아세틸화 시약과 5'-OH기가 반응하여 불활성화 되어 캡핑된다.
④ 산화반응(oxidation)
새로 만들어진 뉴클레오티드 결합은 3가인 포스파이트의 트리에스테르이다. 포스파이트 결합은 불안정하여 산과 반응하면 절단되기 쉽다. 따라서 캡핑 후에 3가 포스파이트 트리에스테르를 안정한 5가 포스파이트 트리에스테르로 산화시켜야 한다. iodine은 산소의 공여체인 물과 테트라히드로푸란(THF) 용액에서 약산화제로 작용한다. Iodine-water-lutidine-THF가 컬럼에 도달하면 3가의 인산을 30초 이내에 5가로 산화시키며 이 과정을 산화반응이라 한다. Iodine 용액은 다음 화학반응에서 유해하므로 아세토니트릴로 제거한다. 산화반응 후 1개의 뉴클레오티드 첨가가 1회 합성 주기이다.
합성하려는 올리고뉴클레오티드의 염기서열에 따라 상기 4 단계별 반응을 반복하여 합성이 완결되면 5'-말단에는 여전히 DMT기가 남아 있는 상태가 되는데 합성 DNA의 정제방법에 따라 트리틸기가 부착된 상태 또는 제거된 상태로 합성을 종결한다. 즉, 합성되는 Y형 프로브의 순서는 시퀀스에 따라 3'-E(우측 프로브) ->D(우측 줄기) -> C(링커) -> B(좌측 줄기) -> A(좌측 프로브)-5' 순으로 합성이 된다.
⑤ 합성 후 처리과정
합성 후의 정제 과정은 용도에 따라 다르다. 정제 후 건조시키고 작은 용기에 보관한다. 합성한 올리고뉴클레오티드는 사용전에 양을 측정하여야 한다. 그리고 실제 사용에 적합하도록 적절한 농도로 DNase가 없는 멸균수(pH 7)나 Tris-EDTA(TE, pH 7) 완충용액에 녹여야 한다. 일반적으로 1mg/ml의 농도가 적당하며 더 낮은 농도에서는 올리고뉴클레오티드가 쉽게 파괴된다. 올리고뉴클레오티드의 양은 spectrophotometer에서 UV 흡광도를 측정함으로써 가장 정확하고 쉽게 알아낼 수 있다.
1 OD unit = 33 ug/ml의 단일가닥 올리고데옥시뉴클레오티드(DNA)
1mg DNA 올리고뉴클레오티드 = 30 (OD)
1umol DNA 올리고뉴클레오티드 = 10 (OD)
예를 들어, 합성한 올리고뉴클레오티드의 흡광도가 OD260=3.3인 경우는 0.11mg의 프로브가 합성됨을 알 수 있다.
상기의 과정은 DNA synthesizer라는 기기를 사용하여 자동적으로 수행할 수도 있는데, 통상적으로 사용되는 장비로는 ABI의 Applied Biosystems DNA synthesizer, BioLytic의 Dr.Oligo 192 High Throughput Oligo Synthesizer나 Beckman의 BeckMan Oligo 1000M 장비 등을 사용하며, 합성 단가를 낮추기 위하여 주로 병렬 어레이 합성(parallel array synthesis) 기술을 사용하면, 기기 한 대에서 96 웰 플레이트(well plate)를 사용하여 한번에 192개의 올리고뉴클레오티드를 동시에 합성할 수 있다.
실시예 1에서 디자인된 Y형 프로브는 PNA 합성 과정을 통해서도 합성이 가능하다. 이렇게 만들어진 Y형 프로브는 PNA가 가지는 장점, 즉 PNA/DNA 이중체가 DNA/DNA 이중체보다 강하게 결합하는데 이는 PNA의 전기적 중성인 특성으로 타겟 DNA와의 반발력이 낮아지기 때문으로, 이러한 강한 결합력은 PNA/DNA 이중체의 열 안정성을 높여 Tm 값이 높아지는 효과를 제공한다. PNA/DNA 이중체의 Tm 값은 염기쌍당 약 1℃씩 높아진다. 따라서, 일반적으로 칩에 적용되는 15개의 PNA 프로브의 경우 약 15℃ 높은 Tm 값을 갖게 된다. 또한 단일 염기가 일치하지 않을 경우 Tm 값이 크게 떨어져, 염기서열 변이의 검색 능력도 더 커진다. PNA는 핵산분해효소나 단백질 분해효소에 대해 안정하다. 그 이유는, 생물학적 효소는 PNA의 독특한 아마이드 골격을 인식하지 못하기 때문이다. 따라서 이러한 생물학적 안정성은 DNA 또는 RNA 샘플의 준비과정 및 장기저장 중에 발생하는 문제점을 예방할 수 있다. 또한 PNA는 전기적으로 중성이고 강한 공유결합으로 이루어져 있기 때문에, 다양한 pH 범위 및 온도 조건에서도 안정하다. 이는 DNA가 산성조건(pH 4.5∼6.5)에서 디푸린화(Depurination)되는 불안정성과는 달리, PNA는 산성 및 알칼리 조건에서 화학적으로 안정하다는 장점을 가지고 있기 때문에 다양한 목적으로도 사용이 가능하다.
실시예 3-8 : HPV 진단용 DNA 마이크로어레이의 개발
본 발명은 Y형 프로브를 집적한 DNA 마이크로어레이를 이용하여 인유두종바이러스(human papillomavirus, HPV) 감염을 진단하는 새로운 방법에 대한 것이다. 본 실시예 3 내지 8은, HPV 진단을 예로 하여 Y형 프로브를 준비하는 단계(실시예 3), 이를 스파팅(spotting) 혹은 집적하여 DNA 마이크로어레이를 제작하는 단계(실시예 4), 검체 DNA를 분리한 후 표지하여 준비하는 단계(실시예 5), 하이브리디제이션 반응 단계(실시예 6), 반응 후 그 시그널을 분석하는 단계(실시예 7), 본 발명의 DNA 마이크로어레이를 임상 진단에 이용하는 단계(실시예 8)로 이루어진다. 본 실시예 3 내지 8은, Y형 프로브의 이용방법에 관한 일례를 보여 주며, Y형 프로브를 이용한 DNA 마이크로어레이가 중요 질환의 진단에 유용함을 보여준다.
HPV는 2중 나선 DNA로 유전체가 이루어져 있으며, 그 안에는 E1에서 E7까지의 초기(early) 단백질 유전자와 L1 및 L2의 후기(late) 단백질 유전자가 존재한다. L1과 L2는 유전체를 싸서 보호하는 캡시드 단백질(capsid protein)을 암호화한다. L1 중에 약 10% 혹은 그 이상의 염기서열은 HPV의 각 타입별로 차이가 있으며, 이를 판독하면 HPV의 유전자형을 알 수 있다. HPV는 인체의 피부 및 점막의 상피를 침범하여 염증 및 과증식을 유발하며, 심지어는 암을 유발하는 특징을 갖고 있다(National Network of STD/HIV Prevention Training Center. Genital human papillomavirus infection. Feb 2008).
HPV에는 그 유전자형에 따라 약 120여 개의 형이 있으며, 약 40여 종이 홍문과 음부, 즉 질과 자궁경부, 요도, 음경의 피부 및 점막을 침범하는 소위 홍문음부형(anogenital type HPV)이다. HPV 감염의 대부분은 증상 없이 잠복되어 있으나, 일부는 사마귀(wart)를 유발한다. 또 다른 일부는 고등급 편평상피내 병터(high grade squamous intraepithelial lesion;SIL)나 상피내 종양(cervical intraepithelial neoplasm)과 같은 전암병변을 유발하며, 이 중 일부는 다시 암으로 진행한다. 전암병변과 암을 유발하는 HPV형을 고위험형(high risk type) HPV라고 하며, 그렇지 않은 HPV형을 저위험형(low risk type) HPV라고 한다. 고위험형 HPV로는 HPV 타입 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 82가 있다. 이에 대해 저위험형 HPV로는 HPV 타입 6, 11, 34, 40, 42, 43, 44, 54, 55, 61, 62, 72, 81이 포함된다. 고위험으로 의심되나 아직 확립되지 않은 형(probable high risk type)으로 HPV 타입 26, 53, 66, 67, 69, 70,73가 있다. 그 외에 정확하게 분류되지 않은 기타 형으로 HPV 타입 7, 10, 27, 30, 32, 57, 83, 84, 91이 있다. 고위험형 HPV의 경우 그 유전체 중 E6/E7 유전자가 소위 발암유전자로 작용하며, 이들은 인체의 가장 중요한 종양억제유전자인 p53 및 망막아세포종(retinoblastoma, Rb) 유전자와 결합하여 비활성화시킴으로써 암화(carcinogenesis)를 촉발한다. 자궁경부암의 경우 99% 이상이 고위험형 HPV에 의해 발병하며, 거의 항상 암세포의 유전체 내에서 E6/E7 등 HPV의 유전자 조각이 발견된다(Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV, Snijders PJ, Meijer CJ and International Agency for Research on Cancer Multicenter Cervical Cancer Study Group. Epidemiologic classification of human papillomavirus types associated with cervical cancer. New England Journal of Medicine. 2003; 348: 518-527).
HPV 감염은 배양이나 염색, 조직검사, 면역학적 검사로는 진단이 어렵고, 오로지 유전자검사로만 정확한 진단이 가능하다. HPV의 유전자검사에는 3가지 종류가 있다. 첫째는 단순히 HPV의 존재 유무를 확인하는 검사이다. 대표적인 예로 HPV의 유전자의 콘센선스 시퀀스(consensus sequence), 즉 변함없는 부위 염기서열을 PCR로 증폭한 뒤 전기영동 등으로 확인하는 방법이 있다. 둘째는 HPV의 존재 유무뿐 아니라 그 타입을 함께 확인하는 소위 유전자형 분석 검사(genotyping analysis)이다. 이의 소위 황금표준율적 검사(golden standard test)는 PCR 후 그 산물을 자동염기서열분석 혹은 시퀀싱으로 유전자형을 분석하는 방법이다. 그러나 이는 비용과 시간, 인력이 너무 많이 소요됨에 따라 최근에 와서 HPV DNA 마이크로어레이로 대치되는 경향이다. 이는 다수의 HPV 형에 특이한 프로브를 집적한 고형지지체 위에 검체 DNA의 PCR산물을 올려 놓고 하이브리디제이션 반응을 수행하여 스캐너로 분석하는 방법이다. 셋째는 양자의 중간쯤 되는 검사로, Hybrid Capture Assay(Digene Corporation, Gaithersburg, MD, USA)가 이에 해당하며, HPV의 존재유무를 파악하며, 나아가 존재하는 HPV가 고위험군인지 저위험군인지를 판독할 수 있으나, 정확한 유전자형은 판독불가하다는 단점이 있다. 아울러 13개의 고위험형 HPV와 7개의 저위험형 HPV만 분석하므로, 이에 포함되지 않는 20여개 형의 HPV는 파악할 수 없다는 문제가 있다(Kim KH, Yoon MS, Na YJ, Park CS, Oh MR, Moon WC. Development and evaluation of a highly sensitive human papillomavirus genotyping DNA chip. Gynecol Oncol. 2006; 100(1):38-43; Selva L, Gonzalez-Bosquet E, Rodriguez-Plataa MT, Esteva C, Sunol M and Munoz-Almagro C. Detection of human papillomavirus infection in women attending a colposcopy clinic. Diagnostic Microbiology and Infectious Disease. 2009; 64: 416-421).
HPV 유전자 검사는 의학분야뿐 아니라 사회 경제적으로도 매우 중요한 의미를 지닌다. 이에는 다음과 같은 이유들이 있다.
첫째, HPV감염은 인간에서 가장 흔한 성전파성 감염(Sexually transmitted infection)이다. 인유두종바이러스 감염은 단일 요인으로 볼 때 가장 유병율(prevalence rate)이 높은 성감염으로, 미국의 14에서 59세 사이 여성의 26.8%에서 HPV감염이 발견되며, 전체 여성 중 80%가 일생에 한번 이상 감염되는 것으로 생각되고 있다. 특히 성적 활동기, 가임기의 여성에서 호발하며, 발병율이 증가하는 것으로 추측되고 있다. 즉 HPV의 시장은 매우 크며, HPV검사의 경제적 가치도 매우 크다(U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES, Centers for Disease Control and Prevention National Center for HIV/AIDS, Viral Hepatitis, STD, and TB. Prevention Division of STD Prevention. Sexually Transmitted Disease Surveillance 2008. Division of STD Prevention. 2009: November; Tchernev G. Sexually transmitted papillomavirus infections: epidemiology pathogenesis, clinic, morphology, important differential diagnostic aspects, current diagnostic and treatment options. An Bras Dermatol. 2009; 84(4): 377-89).
둘째, HPV는 인간에서 암을 유발함이 명백하게 입증된 바이러스이다. 거의 모든 자궁경부암은 HPV, 특히 고위험형의 HPV에 의해 시작되는 것으로 확인되고 있다. 전세계적으로 매년 약 50만명의 여성이 자궁경부암에 이환되고, 27만명 이상이 이로 인해 사망한다. 나아가 홍문암의 대부분, 그리고 구강암이나 인두암, 후두암의 상당 수가 HPV에 의해 직간접적으로 유발됨이 최근 확실시 되고 있다. HPV는 암을 유발하여 생명을 앗아갈 수 있다는 점에서 그 중요성이 더할 나위 없이 크며, 한편으로는 HPV를 검사하면 자궁경부 및 홍문 등의 암과 전암병변을 조기 진단할 수 있다. 실제 HPV검사는 자궁경부암 조기검진의 표준검사인 파파니콜라우(Papanicolaou) 세포검사(Pap smear) 보다 자궁경부암의 예측 민감도가 더 우수함이 밝혀지고 있고, 이에 따라 미국 FDA 등 여러 국가에서 자궁경부암 선별검사로 인정되고 있다(Parkin M, F. Bray F, J. Ferlay J and P. Pisani P. Global cancer statistics, 2002. C.A. Cancer J. Clin. 2005; National Network of STD/HIV Prevention Training Center. Genital human papillomavirus infection. Feb 2008).
셋째, HPV감염으로 인한 자궁경부암은 최근 백신이 개발됨에 따라 바이러스의 예방과 함께 나아가, 바이러스로 인한 암의 예방이 가능해진 최초의 예가 되고 있다. 현재 시판되는 HPV 예방 백신에는 2종류가 있다. 하나는 Gardasil®(Merck & Co. Inc., Whitehouse Station, NJ, USA)으로서, 이는 타입 16과 18, 6, 11의 4종의 HPV를 예방하기 위해 만들어 진 4가 백신이다. 또 다른 하나는 Cervarix®(GlaxoSmithKline Biologicals, Rixensart, Belgium)로 타입 16과 18의 2종의 HPV를 예방하기 위해 만들어진 2가 백신이다. 이들 백신은 성관계를 갖기 전의, 청소년 여성에 가장 효과적이며, 이전에 HPV16이나 HPV18에 감염된 적이 있는 여성의 경우 효과가 떨어진다. 이 때문에 성인 여성에 대한 적응 여부에 논란이 있으나, HPV에 감염이 된 적이 있더라도 그 형이 타입 16이나 18이 아닌 경우 HPV백신이 적응 가능할 수도 있다. 따라서 HPV의 감염 유무 뿐 아니라 그 형(type)도 정확히 아는 것이 더욱 더 중요해지고 있다(Selva L, Gonzalez-Bosquet E, Rodriguez-Plataa MT, Esteva C, Sunol M and Munoz-Almagro C. Detection of human papillomavirus infection in women attending a colposcopy clinic. Diagnostic Microbiology and Infectious Disease. 2009; 64: 416-421; Reynales-Shigematsu LM, Rodrigues ER, Lazcano-Ponce E. Cost-effectiveness analysis of a quadrivalent human papilloma virus vaccine in Mexico. Arch Med Res. 2009 Aug;40(6):503-13).
상기한 문헌 분석에 따라, HPV의 존재 여부와 나아가 그 유전자형을 정확하고 신속하며, 최소비용으로, 그리고 대단위로 검색이 가능한 검사가 절실함을 알 수 있고, 이를 위해 가장 유망한 검사는 DNA 마이크로어레이이다.
시중에는 HPV DNA 마이크로어레이 제품들이 몇가지 시판되고 있다. 대표적인 제품은 HPV DNA 칩 테스트(MyGene Co. and Biomedlab Co., Seoul, Korea)와 GG HPV DNA 칩(Goodgene Inc., Seoul, Korea), Clinical Arrays Papillomavirus Humano 칩(CAPH 칩, Genomica S.A.U., Madrid, Spain) 등이다. 이들 제품은 모두 HPV의 L1 내지 E6/E7 유전자의 콘센서스 시퀀스를 표적으로 하여 22내지 44종의 홍문음부형 HPV에 특이한 HPV의 올리고뉴클레오티드 프로브를 유리슬라이드에 집적했다는 점에서 유사하다. 그 중 GG HPV 칩과 CAPH 칩은 내부 참고유전자로 휴먼베타글로빈의 유전자의 프로브를 함께 집적한다는 점에서 장점이 있다. 그러나 기존의 마이크로어레이는 모두 앞에 기술한 기존의 올리고뉴클레오티드의 한계, 즉 노이즈의 처리와 정상화 과정, 시그널의 분석과 통계 분석, 품질관리 등이 완벽하다고 보기 어렵다. 예컨대 특정 형의 HPV의 스팟에 시그널이 양성으로 나타나기는 하나 그 시그널이 약할 때, 혹은 시그널이 강하더라도 백그라운드 시그널 또한 강하게 나타나면 이것이 진성 양성(true positive) 인지 혹은 가양성인지 알기 힘들다. 또한 가음성 여부도 정확하게 파악하는 것도 용이하지 않으며, 재현성, 품질관리 등 해결되지 않은 문제가 적지 않다.
본 발명의 HPV DNA 마이크로어레이는 기존의 HPV DNA 칩의 상기한 문제점을 해결하기 위해 Y형 프로브를 사용하였다. Y형 프로브의 한쪽에는 L1 유전자 내에서 HPV의 유형별로 특이한 프로브(HPV subtype specific probe)를 넣고, 다른 한쪽에는 내부 참고(internal reference or control) 유전자인 인간 베타글로빈에 대한 프로브를 넣어 마이크로어레이를 제작하였다. 이후 HPV L1과 인간베타 글로빈에 대해 각각 Cy-5와 Cy-3등으로 서로 달리 형광 표지하여 PCR 증폭한 후 그 산물을 마이크로어레이 위에 올려 놓고 하이브리디제이션반응을 수행하고, 그 결과를 형광스캐너로 분석한다. 이 때 백그라운드 노이즈를 제거한 후 각각의 스팟에서 정상화(normalization) 처리한 Cy-5 대비 Cy-3 시그널의 값을 분석함으로써 이것이 진성 양성 인지 확인한다. 이로서 가양성과 가음성을 극소화 할 수 있으며, 스팟 간 오류, 판독 및 통계 분석, 품질관리가 더 적절하게 이루어 질 수 있다. 본 발명의 제품과 동일한 방식의 HPV DNA 마이크로어레이 제품에 대해서는 보고 된 바 없다
본 발명의 HPV DNA 마이크로어레이는 HPV자체의 진단에서 나아가 HPV로 인해 발병하는 자궁경부암 등 각종 암의 선별(screening) 내지 조기검진, 예방, 치료에 까지 크게 도움이 될 수 있을 것으로 있어서 기대된다. 구체적으로는 자궁경부암 내지 홍문암, 구강암 등 HPV에 의해 속발되는 암의 조기 검진에 최적의 검사가 될 수 있으며, HPV의 예방 백신의 적응 여부를 파악하는 데에도 도움이 될 것이다. 아울러 암환자에서 발견되는 특정 유전자형의 HPV에 맞춤식으로 그에 특유한 DNA 백신이나 수지상세포(demdritic cell) 백신을 디자인하는 데에도 도움이 될 수 있을 것이다. 이들 백신은 예방 목적의 백신과 달리 HPV에 대한 세포매개성 면역(cell mediated immunity)을 발동시켜 T세포로 하여금 HPV 뿐 아니라 HPV에 감염된 비정상적 세포를 사멸시켜 항암 치료효과를 나타낼 수도 있다(Monie A, Tsen SW, Hung CF, Wu TC. Therapeutic HPV DNA vaccines. Expert Rev Vaccines. 2009 ;8(9): 1221-35).
본 발명의 HPV DNA 마이크로어레이 제품에는, 마이크로어레이 뿐 아니라, PCR 시약, 하이브리다아제이션 반응 시약, 제품 채취 키트, 스캐너에서의 판독에 필요한 지침서까지 모두 포함된다.
[실시예 3] HPV에 대한 Y형 프로브의 준비
이는 HPV 유전자형 분석(genotyping)을 위한 Y형 프로브와 PCR 프라이머를 디자인하는 단계이다.
먼저 HPV의 유전체 중에서 컨센서스 시퀀스이면서, 한편으로는 다양한 HPV의 형에 따라 최소 3개 이상의 염기서열이 차이가 나서 판별이 가능한 부분을 선택하였다. 이는 HPV L1 유전자의 표준 염기서열 중 1024번째에서 1205번째까지의 시퀀스이다. 이를 PCR로 증폭할 수 있도록 프라이머를 디자인하였고, 다시 PCR산물 내에서 각각의 HPV형에 가장 걸맞는 부위를 선택하여, 이에 상보성 염기서열로 Y자형 프로브의 우측 부위 프로브를 설계하였다. 마찬가지 방법으로 내부 참고유전자인 인간 베타글로빈(HBB) 유전자의 PCR에 필요한 프라이머를 디자인하였고, 다시 PCR 산물 내에서 가장 적합한 부위를 선택하여, 이에 상보성 염기서열로 Y형 프로브의 좌측 부위 프로브를 설계하였다.
3.1. HPV에 대한 PCR 프라이머의 디자인
본 발명의 DNA 칩 키트에는 서열번호 1 내지 서열번호 4의 염기서열로 이루어진 군으로부터 선택된 HPV 타입 별 증폭용 프라이머와 인간 베타글로빈 프라이머가 포함된다. 검사하려는 HPV 바이러스의 L1 유전자 및 인간 베타글로빈 유전자의 PCR 증폭에 필요한 올리고뉴클레오티드 프라이머의 조합을 하기 표 1에 정리하였다.
Figure pat00001
상기 프라이머는 다양한 표지물질로 표지된다. 그 표지수단은 공지된 여러가지 표지물을 사용할 수 있다. 예를 들면, Cy-5, Bodipsy와 Cy-3, Alexa 532, Alexa 546, Rodamin, TAMRA 뿐아니라, FAM, FITC, FluorX, Alexa 488과 Alexa 568, ROX, Teaxas Red, Alexa 594를 사용할 수 있다.
3.2. HPV에 대한 Y형 프로브의 디자인
앞의 실시예 1에서 기술한 Y형 프로브 디자인 규칙에 따라 HPV의 유전자형을 검사하기 위해 다음과 같이 Y형 프로브를 디자인하였다.
3.2.1. 좌측 및 우측 프로브 부위(도 1의 A 및 E 부위)
Y형 프로브의 좌측 프로브 부위(도 1의 A부위)에는 인간 베타글로빈 유전자의 시퀀스(CGG CAG ACT TCT CCT C )를 프로브로 하여 역방향으로 배열하였다. 우측 프로브 부위(도 1의 E 부위)에는 HPV L1 유전자의 시퀀스를 순방향으로 배열하였으며, 단 이를 각 HPV 타입별로 달리 하여 디자인하였다.
3.2.2. 줄기 부위(도 1의 B 부위)
좌측 줄기 부위(도 1의 B 부위)에는 인체 텔로미어 시퀀스의 역방향인 CCCTAA를 넣고, 이와 상보적으로 결합하는 시퀀스인 인체 텔로미어 시퀀스의 순방향인 TTAGGG를 우측 줄기 부위(도 1의 D 부위)로 하여 디자인 하였다.
3.2.3. 링커 부위(도 1의 C 부위)
Internal Amino Modifier C6 dT(iAmMC6T )를 이용하여 링커를 디자인하였다. 자궁경부를 침범하는 것으로 알려진 44개 형의 HPV에 대해 모두 Y형 프로브를 설계하였으며, 이후 실시예 2의 방법에 따라 이를 제작하여 준비하였다. HPV용 Y형 프로브의 명칭과 서열번호 및 유전자형은 하기 표 2에 정리하였다.
그러나, 상기한 Y형 프로브는 하나의 예일 뿐 목적과 용도에 따라 얼마든지 변형이 가능하다. 우측 프로브는 HPV의 각 타입별로 특유한 L1 유전자의 시퀀스를 넣고, 좌측은 바꿀 수 있다. 예컨대 좌측의 프로브에 모든 형의 HPV에 공통된 시퀀스(universal sequence)를 L1이나 L2 등에서 선택하여 배열할 수 있다.
좌측의 프로브에 HPV L2 유전자의 각각의 HPV 타입에 특유한 시퀀스를 넣어서 2중으로 검색할 수 있다. 단, 이 경우 우측의 프로브 부분과 동일한 HPV 타입의 시퀀스이어야 한다. 좌측의 프로브에 HPV E6/E7 유전자의 각각의 HPV 타입에 특유한 시퀀스를 넣어서 2중으로 검색할 수 있다. 단, 이 경우 우측의 프로브 부분과 동일한 HPV 타입의 시퀀스이어야 한다.
Figure pat00002
Figure pat00003
Figure pat00004
Figure pat00005
(본 명세서에 첨부된 서열목록상의 n은 iAmMC6를 의미한다. 이하 같다)
[실시예 4] Y형 HPV 프로브를 이용한 DNA 마이크로어레이(칩)의 제작
상기 표 2의 염기서열대로, 그리고 실시예 2의 방법에 따라 제작된 Y형 프로브를 적정 시약과 혼합한 후 어레이어(arrayer)를 이용하여 현미경용 유리슬라이드 위에 집적(spotting)하여 HPV의 유전자형을 진단하는 DNA 마이크로어레이 또는 DNA 칩을, 하기 순서 및 방법으로 제작하였다.
4.1. HPV의 L1 유전자와 인간 베타글로빈 유전자에 대한 DNA 칩 상의 프로브 집적
본 발명에서는 칩 위에서 하이브리디제이션 반응 후 HPV의 유전자형에 따라 나타나는 형광신호를 보고 해당 바이러스 타입을 쉽게 파악할 수 있도록 그룹화하여 그리드(grid)를 제작하였다.
프로브의 순서 및 그리드의 배열 모식도를 도 4에 나타내었다. 또한, 도 4는 표 2의 Y형 프로브 중에 HPV의 각종 타입 중 가장 중요한 22종의 L1 유전자의 유전자형만을 검색할 수 있는 DNA 프로브의 집적 순서 및 위치를 나타낸다. 도 5는 본 발명의 제품화된 HPV DNA 칩으로서, 1개의 슬라이드 위에 8개의 웰(well)이 존재하여 각각의 웰에 하나의 도 4의 그리드의 프로브가 집적되어 있으며, 여기에 각각 서로 다른 검체를 올려놓고 8개 검체를 동시에 검사할 수 있도록 하였다.
각각의 Y형 프로브는 어레이어를 이용하여 스파팅(집적)하였다. 이 때 동일한 프로브를 이중(duplicate)으로 집적하여 각각의 균주의 유전자형이 최소 2번, 최대 4번씩 나오도록 고안하였다.
4.2. 올리고뉴클레오티드 프로브를 칩위에 스파팅할 용액의 제조와 마스터 플레이트(master plate)로의 분주
실시예 3에 따라 내부 C6dT 부위에 아민을 붙여 합성한 Y형 프로브를 고성능 액체 크로마토그래피(HPLC)를 이용하여 정제한 후, 멸균된 3차 증류수에 최종 농도가 200pM이 되도록 녹였다. 이렇게 준비된 프로브들을 스파팅 용액인 마이크로 스팟팅 용액과 4.3배 비율로 섞어 최종 농도가 38pM이 되게 하였다. 이렇게 준비된 혼합물은 각각 순서대로 384웰 마스터 플레이트에 분주하였다.
4.3. 프로브의 집적 및 고정화
Q 어레이어2(Genetixs, UK)나 이에 준하는 어레이어 장비를 이용하여 상기 마스터 플레이트로부터 프로브 함유 스파팅 용액을 옮겨서 알데하이드기로 코팅된 유리슬라이드 위에 하나의 프로브 당 이중(duplicate, double hit)으로 집적하였다. 이 때의 유리슬라이드로는 Luminano aldehyde LSAL-A 또는 실리콘 wafer 제품이나 혹은 이에 상응하는 제품이면 충분하다. 하나의 스팟의 크기는 10μm 내지 200μm 정도로 집적이 가능하다. 상기한 대로 유리슬라이드에 프로브를 집적하여 제작한 DNA 칩을 습도 80%로 유지되는 유리단지(glass jar) 내에 넣고 15분간 실온에서 반응시킨 후 공지의 방법을 사용하여 후처리를 하였다(Zammatteo, N., L. Jeanmart, S. Hamels, S. Courtois, P. Louette, L. Hevesi, and J. Remacle. 2000. Comparison between different strategies of covalent attachment of DNA to glass surfaces to build DNA microarrays. Anal. Biochem. 280:143-150.)
4.4. 마이크로어레이의 세척 및 보관
후처리과정 반응이 끝난 후 고정화된 슬라이드를 건조기(dry oven)에 넣고 120℃에서 1시간 30분 동안 구운(baking) 후 슬라이드를 0.2% 소디움 도데실설페이트(sodium dodecyl sulfate, SDS) 용액에서 2분간 2회 세척한 후 3차 증류수로 옮겨 2분간 2회 세척하였다. 이후 95℃로 가열한 3차 증류수에 3분간 담가 슬라이드에 붙어 있는 올리고뉴클레오티드 프로브를 변성(denaturation)시키고 다시 3차 증류수로 옮겨 1분간 세척하였다. 세척을 마친 슬라이드는 환원용액(blocking solution, 1g NaBH4, 300ml PBS, 100ml 에탄올)에서 15분간 환원시키고, 0.2% SDS용액에서 2분간 2회 세척한 후 3차 증류수로 옮겨 2분간 2회 세척하고, 800rpm에서 1분 30초 동안 원심분리기를 이용하여 슬라이드의 물기를 제거한 후, 슬라이드 상자에 담아 데시케이터에 넣어 실온에서 보관하였다.
이상의 과정을 거쳐서 제작된 본 발명의 칩은 다음의 실시예 5에 기술된 것과 같은 방법을 이용하여 반응을 수행하였다.
[실시예 5] 검체의 준비
다음과 같이, 각 검체외 양성 표준 물질에서 DNA를 분리하여 검사하려는 HPV 바이러스의 L1 유전자와 대조 유전자인 인간 베타글로빈 유전자에 대해 PCR을 수행하면서 형광다이(fluorescent dye)를 표지하였다.
5.1. 검체에서 DNA 분리
대조물질과 임상 검체에서 DNA를 분리하였다. 양성 대조물질(positive control)로서 HPV 16의 cDNA를 함유하는 자궁경부암 세포주인 Caski를 American Type Culture Collection(ATCC)로부터 구입하였다. 인체의 자궁경부 조직, 자궁경부의 면봉 도말 검체(cervical swab), 자궁경부 및 질의 세척액 등을 얻었고, 각각에서 QiaAmp DNA Mini kit(Qiagene) 방법으로 전체 DNA를 분리하였다.
5.2. PCR
HPV의 PCR 증폭용 프라이머에는 서열번호 1 내지 서열번호 4의 염기서열로 이루어진 군으로부터 선택된 HPV 타입 증폭용 프라이머와 인간 베타글로빈 프라이머가 포함된다. PCR증폭 반응은 다음과 같이 하였다.
HPV 감염 여부 검출을 위한 PCR 반응조성은 슈퍼바이오사(Super Bio, 서울, 대한민국)로부터 구입한 SuperTaq plus pre-mix(10×buffer 2.5㎕, 10 mM MgCl2 3.75㎕, 10 mM dNTP 0.5㎕, Taq 중합효소 0.5㎕) 15㎕을 기초로 하고, 여기에 표 1에 기재된 대로 L1F와 L1R 및 H1과 H2 프라이머를 각각 1㎕(10pmoles/㎕)씩 넣었으며, 여기에 검체의 주형 DNA 4.0㎕(150ng/㎕)을 추가하고 증류수로 전체 반응액을 총 30㎕로 조정하였다. 
인간 베타글로빈 유전자의 PCR을 위해 그 프라이머가 들어간 반응액을 95℃에서 5분간 예비 변성(predenaturation)을 한 후, 95℃ 30초, 50℃ 30초, 72℃ 30초로 40 주기(cycles) 동안 반복하고, 72℃에서 5분간 연장(extension)하여 수행하였다. HPV의 H1과 H2 프라이머가 들어간 반응액은 95℃에서 5분간 예비변성 한 후, 95℃ 30초, 50℃ 30초, 72℃ 30초로 40주기 동안 반복하고, 72℃에서 5분간 연장하여 수행하였다.
5.3. PCR 결과의 확인
HPV의 L1 유전자는 Cy-5로 표지하고, HBB 유전자는 Cy-3로 표지하여 각각 PCR을 수행하여 그 산물을 0.8% 아가로즈 겔에서 전기영동을 수행하여 확인하였다. 도 3은 HPV L1 유전자와 인간 베타글로빈 유전자를 PCR 증폭하여 전기영동을 한 사진이다.
[실시예 6] 하이브리디제이션 반응
다음과 같이 마이크로어레이에서 하이브리디제이션을 수행하였다.
6.1. 하이브리디제이션 반응
Y형 프로브를 집적시킨 슬라이드 칩위에 검체 DNA의 PCR 증폭 산물을 각각 10μl씩 혼합하여 최종 용적 50μl이 되게 하고, 이를 95℃에서 5분간 변성시킨 후 즉시 얼음에 3분간 방치하였다. 이후, 하이브리디제이션 반응 용액 50μl를 첨가하여 최종 부피를 100μl로 조정한 후 45℃에서 슬라이드에 고정된 프로브와 30분간 반응시켰다. 이 때 하이브리디제이션 반응용액은 20X SSC 2ml, 90% 글리세롤 1.7ml, 50mM 인산완충용액 6.3ml을 혼합하여 최종 10ml로 조성하였다.
6.2. 세척(washing)
하이브리디제이션 반응 종료 후 DNA 칩에서 구획 커버(well cover)를 제거하고, 칩을 3X SSPE 용액(NaCl(26.295g), NaH2PO4-1H2O(4.14g), Na2EDTA(1.11g)를 증류수 1리터에 녹여서 10N NaOH로 pH 7.4로 맞춤)에 담근 후 실온에서 2분간 세척하고, 다시 1X SSPE(NaCl(8.765g), NaH2PO4-1H2O(1.38g), Na2EDTA(0.37g)을 증류수 1 리터에 녹여서 10N NaOH로 pH 7.4로 맞춤) 용액으로 상온에서 2분간 세척한 다음 상온에서 800rpm 으로 1분 30초 동안 원심분리하여 건조시켰다.
[실시예 7] 하이브리디제이션 반응후의 결과 확인
하이브리디제이션 반응후 세척을 통해 비특이적인 신호는 최대한 제거한 후 건조된 슬라이드는 형광스캐너를 이용하여 그 형광신호와 이미지를 분석하였다. 이때의 스캐너로는 이중색(dual color) 스캐너가 필요하며, GenePix 4000B Scanner(Axon, USA)나 ScanArray Lite(Packard Bioscience, USA), 또는 이에 준하는 장비이면 충분하다.
GenePix Pro 6.0 프로그램을 이용하는 경우, 스캐닝 후 결과를 다음과 같이 판독한다. 635nm와 532nm로 각각 스캔된 이미지상에서 HPV 칩 그리드를 고정시키고 "Align features in All Blocks"을 실행하여, "Analyze"를 실행한 후에 "Results"를 grs 파일 형태로 저장 아이콘을 실행시켜 저장한다. 저장된 grs 파일 결과를 엑셀 프로그램에서 불러와, SBR(각 스팟 영상의 화소와 화소를 둘러싼 배경 영상의 화소값 비, Signal-to-Background Gray level Ratio)값을 다음의 수식(HPV 타입 SBR = F532 Median÷B532 Median)/(HBB SBR = F635 Median÷B635 Median)으로 계산하여 구한다. 이 때, 반드시 HPV 유전형마다 2개 이상의 스팟에 대한 SBR 값을 구한다. 스팟에서 대조유전자인 HBB의 SBR값이 2.5 이상이면서, HPVL1의 스팟의 SBR을 HBB의 SBR로 나눈 값이 1 이상일 경우에 한하여 진성 양성(true positive)로 인정하여 판독한다. 단, 이와 같은 컷오프 레벨(cut off level)과 판독기준은 마이크로어레이 종류별로 달라질 수 있으며, 이 기준이 모든 마이크로어레이에 그대로 적용되는 것은 아니다.
도 5에 실시례 중 하나로, HPV 타입 16에 감염된 자궁경부 검체에서 얻은 스캔 이미지를 나타내었다. 도 5는 도 4의 그리드를 이용하여 제작한 22종의 HPV에 대해 본 발명의 Y형 프로브를 스파팅하여 제작한 칩위에 HPV 16의 L1유전자를 Cy-5로 표지하고, 인간 베타글로빈(HBB) 유전자를 Cy-3로 표지하면서 PCR하여 얻은 산물을 올려 놓고 히브리다이제이션 과정을 거쳐 얻어진 시그널을 형광스캐너로 검색하려 얻은 이미지이다. 즉 동일한 칩을 스캐닝한 그림으로 좌측은 Cy-5를 검출할 수 있는 635nm 파장으로 스캐닝한 것이고, 우측은 Cy-3를 검출할 수 있는 532nm로 스캐닝한 결과이다. 도 5에서 가장 상부 웰의 좌측을 1번으로 하고 그 우측에 있는 웰을 2번으로 하여 번호를 설정하였다. 웰 1과 2는 HPV 16 L1-Cy-5와 HBB-Cy-5가 표지된 검체이며, 웰 3과 4는 HBB-Cy-5가 표지된 검체, 웰 5와 6은 HPV 16 L1-Cy-5 와 HBB의 순방향 프라이머에 Cy-3가 표지된 검체이고, 웰 7과 8은 HPV 16-Cy-5와 HBB의 역방향 프라이머에 Cy-3가 표지된 검체이다.
도 5에서 보듯이, Y형 프로브의 부위 A에 포함된 HBB 유전자가 안티센스(antisense)로 들어가 있기에 그와 결합하는 프라이머는 정방향 프라이머에 Cy-3가 들어간 PCR 산물이 결합하며, 부위 E에 해당하는 HPV L1 유전자는 센스(sense) 방향으로 시퀀스가 들어가 있기에 그와 결합하는 프라이머는 역방향 프라이머에 Cy-5가 표지된 PCR 산물이 결합할 수 있음이 증명되었다.
즉, 웰 1과 2에서는, HPV 16과 HBB가 모두 Cy-5로 표지된 PCR 산물은, Cy-5만을 검출할 수 있는 635nm 파장에서 스캐닝한 경우에만 각 그리드 위치에 해당되는 스팟에서 검출이 되고, Cy-3만을 검출할 수 있는 532nm에서는 검출이 되지 않음을 확인하였다.
웰 3과 4에서는, 오직 HBB만 Cy-5로 표지된 PCR 산물은 Cy-5만을 검출할 수 있는 635nm 파장에서 스캐닝한 경우에만 각 그리드 위치에 해당되는 스팟에서 검출이 되고, Cy-3만을 검출할 수 있는 532nm에서는 검출이 되지 않음을 확인하였다.
웰 5와 6에서는, HPV 16는 Cy-5로 표지되고 HBB의 순방향 프라이머에 Cy-3로 표지된 PCR 산물은 Cy-5만을 검출할 수 있는 635nm 파장에서 스캐닝한 경우에는 HPV 16과 YP16AS 스팟에서만 검출이 되고, Cy-3만을 검출할 수 있는 532nm에서는 YP16AS 스팟에서만 검출이 됨을 확인하였다.
웰 7과 8에서는, HPV 16는 Cy-5로 표지되고 HBB의 역방향 프라이머에 Cy-3로 표지된 PCR 산물은 Cy-5만을 검출할 수 있는 635nm 파장에서 스캐닝 한 경우에는 HPV 16, YP16S와 YP16AS 스팟 모두에서 검출이 되었으나 Cy-3만을 검출할 수 있는 532nm에서는 HBB 스팟에서만 검출이 됨을 확인하였다.
각 웰 가운데 HPV 16는 Cy-5로 표지되고 HBB의 순방향 프라이머에 Cy-3로 표지된 PCR 산물은 Cy-5만을 검출할 수 있는 635nm 파장에서 스캐닝 한 경우에는 HPV 16과 YP16AS 스팟에서만 검출이 되고, Cy-3만을 검출할 수 있는 532nm에서는 YP16AS 스팟에서만 검출됨을 확인하였다.
도 6은 532nm로 스캐닝한 이미지로 HBB 순방향-Cy-3PCR 산물을 이용하여 하이브리디제이션한 칩에서 하나의 웰을 스캐닝한 이미지이다.
[실시예 8] HPV에 대한 DNA 마이크로어레이의 임상진단에의 적용
본 실시예는 본 발명의 Y형 프로브를 이용한 HPV DNA 마이크로어레이를 자궁경부 검체의 진단에 적용한 실례이다. 이의 목적은 첫째, 본 HPV DNA칩이 HPV 감염의 유무 진단과 유전자형 파악에 얼마나 정확한 지를 파악하고, 둘째, 암과 전암병변 등의 중한 자궁경부 병변을 예측하는데 얼마나 도움이 되는 지를 파악하는 데 있다. 이를 위해 자궁경부의 HPV감염 및 병변이 의심되어 세포병리학적 진단이 내려진 한국여성의 자궁경부 스왑(cervical swab) 검체를 대상으로 하여 검체에서 DNA를 분리하고, (1) 본 발명의 HPV DNA 마이크로어레이 검사와 (2) HPV의 L1 유전자의 PCR 후 그 산물의 염기서열분석(automated sequencing analysis), 및 (3) 미국 FDA 공인 HPV DNA 검사인 Hybrid Capture Assay-II(HCA-II, Digene Corporation)의 3가지 검사로 비교 분석하였다.
본 발명의 HPV에 대한 DNA 칩은 인체의 자궁경부나 홍문, 구강 등을 침범하는 43개 종류의 HPV를 모두 발견해 내는 검사로서, HCA-II는 12가지의 고위험형 HPV를 파악하는 검사이다. 비교분석은 (1) HPV감염의 유무의 진단 민감도와 특이도, (2) HPV 유전자형의 진단 정확도, 그리고 (3) 자궁경부의 암과 전암 병병 등 중증 병변의 예측 정확도의 3가지 측면에 촛점을 맞추어서 하였다. HPV DNA 마이크로어레이 분석의 방법은 앞의 실시예 5에서 7까지의 방법을 사용하였고, PCR 및 염기서열분석은 공지의 방법을 사용하였다(Kim KH, Yoon MS, Na YJ, Park CS, Oh MR, Moon WC. Development and evaluation of a highly sensitive human papillomavirus genotyping DNA chip. Gynecol Oncol. 2006; 100(1):38-43). HCA-II 검사는 시판사의 매뉴얼에 따라 시행하였다.
본 비교연구의 대상 201명의 연령은 18세에서 81세, 평균 연령 52.4세이었다. 표준 검사인 HPV L1유전자의 PCR 후 염기서열분석 결과를 표 3에 정리하였다. 201례 중 191례에서 HPV 감염이 확인되었으며, 그 중 149례는 고위험군의 HPV를 보였고, 72례는 한 종류 이상의 HPV에 의한 혼합 감염을 나타내었다
본 발명의 HPV DNA 마이크로어레이의 분석 결과를 HCA-II 분석 결과와 비교하였다(표 4와 5). 본 발명의HPV DNA 마이크로어레이 분석에서 HPV감염 양성례 191례는 모두(100%) 정확하게 진단되었다. 그 중 174 례(91.1%)에서는 HPV의 유전자형 분석(genotyping)이 정확하게 이루어 졌다. 고위험군 149례는 모두 정확하게 파악하였으나, 본 발명의 칩에 포함되지 않은 드문 형의 HPV는 파악하지 못했다. 이에 대해 HCA-II는 191례의 HPV 양성 검체 중 40례에서 HPV를 발견하지 못했으며, 149개의 고위험 HPV감염 검체 중에 12례(8.1%)를 놓치고 검출하지 못하였다. 본 발명의 HPV DNA 칩은 암과 전암 병변인 고도의 상피내 종양(cervical intraepithelial neoplasm, CIN) 및 고등급편평상피내병터(HSIL)을 포함하여 고위험형 자궁경부 병변 모두를 정확하게 예측할 수 있었다. 이에 대해 HCA-II검사는 자궁경부암 8례 중 1례를 놓치고, HSIL 12례 중 1례를 검출하지 못하였다. 아울러 본 발명의 HPV 칩이 HCA-II보다 저등급 SIL 검출에도 더 우수함을 알 수 있었다(92.2% : 56.9%, p<0.05, 표 6).
이상의 결과는 본 발명의 HPV DNA칩이 HPV감염의 유무 진단과 유전자형 파악, 특히 고위험군 HPV 파악에 있어 100%에 가까운 민감도를 가지는 검사이자, 자궁경부의 암과 전암병변을 예측하는 데에도 탁월한 검사임을 입증하는 것이다. 아울러 기존의 HCA-II 검사보다 더 우수함을 알 수 있다.
Figure pat00006
Figure pat00007

Figure pat00008

Figure pat00009

Figure pat00010
Figure pat00011

실시예 9 : 성감염 진단 DNA 마이크로어레이의 개발
본 발명은 Y형 프로브를 집적한 DNA 마이크로어레이를 이용하여 성전파질환(sexually transmitted diseases, STD) 내지 성전파감염(sexually transmitted infection, STI)의 유전자형을 파악하여 진단하는 새로운 방법에 대한 것이다. 본 실시예는 Y형 프로브의 또 다른 이용방법을 보여 주며, Y형 프로브를 이용한 DNA 마이크로어레이가 중요 질환의 진단에 유용함을 보여주는 또 하나의 실례이다.
인류에 있어서 가장 중요한 질환 중 하나가 성전파감염이다. 우선 발병율이 높고 인류의 삶의 질과 시회경제에 끼치는 영향이 매우 크다. 인체에서 발병율이 가장 높은 10대 감염 중 5개가 성감염으로 나타난다. 세계적으로 그 유병율이 증가하는 추세이며, 이로 인한 사회경제적 손실이 크다. 대표적인 성감염질환으로는 클라마이디아 트라코마티스 감염(Chlamydia Trachomatis, CT)과 임균(Neisseria Gonorrhea, NG)에 의한 감염, 즉 임질, 헤르페스심플렉스바이러스(herpes Simplex Virus, HSV), 특히 HSV type 2(HSV-2)에 의한 음부 내지 외성기헤르페스(genital herpes), 인유두종바이러스(HPV) 감염, 트레포네마 팔리둠(Treponema Pallidum, TP)에 의한 매독, 헤모필루스 듀크레이(Hemophilus Ducreyi)에 의한 연성하감(chnacroid), 트리코모나스(Trichomonas) 감염, 인간면역결핍 바이러스(HIV)에 의한 후천성면역결핍증(AIDS) 등이 있다. 이 중 클라마이디아 감염과 임균감염은 남녀 모두 요도염, 남성의 경우 부고환염 및 불임, 여성의 경우 자궁경부염, 골반강염증(pelvic inflammatory disease) 및 불임으로 온다. 이에 대해 매독과 연성 하감, 음부헤르페스의 경우 음부 및 외성기에 궤양(genital ulcer)으로 나타난다(Centers for Disease Control and Prevention, USA. Sexually Transmitted Diseases. Treatment Guidelines, 2006. Morbidity and Mortality Weekly Report. August 4, 2006 / Vol. 55 / No. RR-11).
미 질병관리본부의 2009년 보고에 의하면 가장 유병율이 높은 것은 클라마이디아 감염으로 미국민 10만명 당 360명이 이에 감염되어 있고, 과거 20년 사이에 3배 이상으로 급증한 것으로 나와 있다. 임질은 10만명 당 150명이 감염된 것으로 보고되고 있다. CT 감염과 임균감염은 2008년에만 해도 약 150만명의 신규 환자가 보고되었다. 특히 15세에서 24세 사이의 청소년 내지 젊은 여성층에서 가장 발병율이 높고, 급속하게 확산되는 추세이어서 사회 문제화되고 있다. 매독은 발병율이 격감했다가 최근 다시 증가되는 추세이며, 2008년에만 13,500명의 환자가 새로이 보고된 바 있다. 음부헤르페스는 보고례가 1968년의 년 2만 례에서 2008년에는 40만 례로 급증하는 추세를 보이고 있다. 인유두종바이러스 감염은 단일 요인으로 볼 때 가장 유병율이 높은 성감염으로, 미국의 14에서 59세 사이 여성의 26.8%에서 HPV감염이 발견된다(U.S. Department of Health and Human Services. Centers for Disease Control and Prevention National Center for HIV/AIDS, Viral Hepatitis, STD, and TB. PreventionDivision of STD Prevention. Sexually Transmitted Disease Surveillance 2008. Division of STD Prevention November 2009; Centers for Disease Control and Prevention, USA. Sexually Transmitted Diseases. Treatment Guidelines, 2006. Morbidity and Mortality Weekly Report. August 4, 2006 / Vol. 55 / No. RR-11).
이들 성감염의 진료에 있어서 특기할 점은 첫째, 대부분의 원인 균주들이 기존의 염색이나 배양, 면역학적 검사로는 진단이 어렵고 시간과 비용이 많이 소요된다는 점이다. 둘째, 흔히 성감염이 복합감염으로 오는 바 이를 동시에 검사하고 치료하는 것이 필수적이나, 현재 이런 검사가 존재하지 않는다. 최근에는 유전자 검사가 성감염 진단의 새로운 표준적 검사로 대두되고 있다. 예컨대 클라마이디아 감염과 임균감염을 진단하기 위해 PCR 방식의 COBAS Amplicor test(Roche Diagnostic System)와 GenProbe APTIMA assay(Gen-Probe), real time PCR assay(Abbott Laboratories), hybrid capture assay(Digene), 그리고 strand displacement amplification 방식의 Becton Dickinson BD ProbeTec(Becton Dickinson) 등이 상업화되어 사용되고 있다. 또한 각 실험실 별로 자가(in house) 제조의 형태로 다양한 PCR 검사법이나 PCR 후 마이크로플레이트에서 하이브리디제이션으로 파악하는 방법 등이 사용되고 있다. 그러나 중요 성감염 원인균을 모두 동시에 정확하고 신속하며, 경제적으로 파악할 수 있는 유전자검사법, 특히 DNA 마이크로어레이 제품은 아직 상용화 되어 있지 않다. DNA 마이크로어레이는 세균의 유전자변이로 인한 약제내성을 파악하는 데에 이용할 수도 있다. 약물내성은 성감염의 치료 시 심각한 문제가 되고 있어서 약물 선택 전에 가급적 약물내성을 아는 것이 중요하다(Cook RL, Hutchison SL, Østergaard L, Braithwaite RS, Ness RB. Systematic review: noninvasive testing for Chlamydia trachomatis and Neisseria gonorrhoeae. Annals of Internal Medicine. 2005; 142(11):914-25; Masek BJ, Arora N, Quinn N, Aumakhan B, Holden J, Hardick A, Agreda P, Barnes M, Gaydos CA. Performance of three nucleic acid amplification tests for detection of Chlamydia trachomatis and Neisseria gonorrhoeae by use of self-collected vaginal swabs obtained via an Internet-based screening program. Journal of Clinical Microbiology. 2009; 47(6):1663-7; Gdoura R, Kchaou W, Ammar-Keskes L, Chakroun N, Sellemi A, Znazen A, Rebai T, Hammami A. Assessment of Chlamydia trachomatis, Ureaplasma urealyticum, Ureaplasma parvum, Mycoplasma hominis, and Mycoplasma genitalium in semen and first void urine specimens of asymptomatic male partners of infertile couples. Journal of Andrology. 2008; 29(2):198-206; McKechnie ML, Hillman R, Couldwell D, Kong F, Freedman E, Wang H, Gilbert GL. Simultaneous identification of 14 genital microorganisms in urine by use of a multiplex PCR-based reverse line blot assay. J Clin Microbiol. 2009; 47(6):1871-7; Michelle A. The laboratory diagnosis of Haemophilus ducreyi. Can J Infect Dis Med Microbiol. 200; 16(1): 31-34).
본 발명은 중요 성감염 원인균을 모두 동시에 정확하고 신속하며, 최소비용으로 검사할 수 있는 DNA 마이크로어레이를 개발하려는 데 그 목적이 있다.
본 발명의 DNA 마이크로어레이는, 각 표적 세균 별로 검색에 가장 적합한 표적 유전자를 선택한 후, 각 유전자에 대해 각각 서로 다른 2개 부위에서 올리고뉴클레오티드 프로브를 준비, 이 양자가 한꺼번에 이용되는 전혀 새로운 형태의 Y형 프로브를 집적한 제품이다. 이는 하나의 유전자에 대해 2개의 프로브를 가지고 2중 검색함으로써 진단 민감도를 극대화하려는 목적 하에 고안되었다. 기존에 성감염 진단 DNA 칩들이 소수 보고 된 바 있으나, 이와 같은 방식의 DNA 마이크로어레이 제품에 대해서는 보고 된 바 없다(Shi G, Wen SY, Chen SH, Wang SQ. Fabrication and optimization of the multiplex PCR-based oligonucleotide microarray for detection of Neisseria gonorrhoeae, Chlamydia trachomatis and Ureaplasma urealyticum. J Microbiol Methods. 2005; 62(2):245-56).
본 발명의 성감염 DNA 마이크로어레이는 대표적인 성감염질환인 클라마이디아 트라코마티스 감염과 임균 감염, 헤르페스심플렉스바이러스 타입 2(HSV-2) 감염, 트레포네마 팔리둠에 의한 매독 감염, 헤모필루스 듀크레이에 의한 연성하감을 모두 진단할 수 있다. 본 발명에는 STD 검사용 Y형 프로브 및 대조 표준물질 유전자의 프로브가 집적된 마이크로어레이 뿐 아니라, PCR 시약, 하이브리다아제이션 반응 시약, 제품 채취 키트, 스캐너에서의 판독에 필요한 지침까지 모두 포함된다. 본 발명의 상세 내용은 다음과 같다.
9.1. STD의 유전자형 분석(genotyping)을 위한 Y형 프로브의 디자인
본 발명의 DNA 마이크로어레이는 성전파성 질환 유발 원인 균주 중 가장 중요한 5대 원인균인 임균, 클라마이디아 트라코마티스, 트레포네마 팔리둠, 헤모필러스 듀클레이, 헤르페스심플렉스 바이러스의 유전자형을 검사하여 진단하려는 목적하게 제작되었으며, 이를 위해 특수한 Y형 프로브를 다음과 같이 디자인하였다.
1) 좌측 프로브(도 1의 A 부위)와 우측 프로브(도 1의 E 부위)
각 원인균 별로 진단에 가장 도움이 되는 특정의 표적유전자를 선택하여 이를 PCR로 증폭하고, 그 PCR 산물 내에서 서로 다른 2개의 부위에서 올리고뉴클레오티드 프로브를 선택하여 좌측 및 우측 프로브에 들어가도록 고안하였다. 여기에서 좌측 및 우측 프로브는 원하는 바에 따라 바뀔 수 있으며, 예를 들면,
임균의 경우, 우측 프로브의 염기서열은 GAT ATT TTT CCG TAA CGT CTC TAA GTC T 이고, 좌측 프로브의 염기서열은 CAA CAA ACG AAA GCA GAC TTA GAG ACC 이고,
클라마이디아 트라코마티스의 경우, 우측 프로브의 염기서열은 TTT TCT TCG TCA GTT AAA CCT TCC C 이고, 좌측 프로브의 염기서열은 GTT CGT TGT AGA GCC ATG TCC TAT CC 이고,
헤르페스심플렉스바이러스 2형의 경우, 우측 프로브의 염기서열은 ACC CCA CCA GCC CGG AC 이고, 좌측 프로브의 염기서열은 GCC CCC GGG GTC GGA AGC 이고,
트레포네마 팔리둠의 경우, 우측 프로브의 염기서열은 ACG TGC AGA AAA ACT ATC CTC AGT G 이고, 좌측 프로브의 염기서열은 ACG TAA GGT AAG CAG CAT GGA GAC 이고,
헤모필러스 듀클레이의 경우, 우측 프로브의 염기서열은 GTG AGT AAT GCT TGG GAA TCT GGC TT 이고, 좌측 프로브의 염기서열은 GAA GAT ATT ACG CGG TAT TAG CTA CAC 이다.
2) 줄기 부위(도 1의 부위 B와 D)
좌측 줄기 부위(도 1의 B 부위)에는 인체 텔로미어 시퀀스의 역방향인 CCCTAA를 넣고, 이와 상보적으로 결합하는 시퀀스인 인체 텔로미어 시퀀스의 순방향인 TTAGGG를 우측 줄기 부위(도 1의 D 부위)에 넣어 디자인하였다.
3) 링커 부위(도 1의 C 부위)
Internal Amino Modifier C6 dT(iAmMC6T )를 넣어 링커를 디자인하였다. 이에 따라 총 5가지 형의 성감염 균의 유전자형의 Y형 프로브를 설계하였으며. 이의 프로브를 앞의 실시예에 기술한 방법대로 유리슬라이드에 집적하여 STD 지노타이핑 DNA 칩을 제작하였다. 하나의 칩에서 8개까지의 검체를 분석할 수 있도록 제작하였다. 이들 프로브의 명칭과 서열번호 및 유전자형을 하기 표 7에 정리하였다.
각 균주 별로 표준물질을 American Type Culture Collection(ATCC) 사로부터 균주 내지 플라스미드 클론을 구입한 후 표적 유전자를 공지의 방법대로 클로닝하여 준비하였다(표 8). 이렇게 준비된 검사표적 유전자의 플라스미드 클론을 다양한 수의 카피(copy)로 혼합하여 본 발명의 DNA 마이크로어레이 위에 올려 놓고 하이브리디제이션 반응을 하여 Y형 프로브의 적정 여부를 확인하였다.
Figure pat00012

Figure pat00013

9.2. 검체준비와 PCR
공지의 방법에 따라 남녀의 소변을 얻고, 이와 함께 여성의 경우 자궁경부 및 질로부터 면봉도말(swab)으로 검체를 얻었으며, 이와 함께 외성기 피부, 특히 궤양 부위로부터 검체를 얻어서 total DNA를 분리하였다(Masek BJ, Arora N, Quinn N, Aumakhan B, Holden J, Hardick A, Agreda P, Barnes M, Gaydos CA. Performance of three nucleic acid amplification tests for detection of Chlamydia trachomatis and Neisseria gonorrhoeae by use of self-collected vaginal swabs obtained via an Internet-based screening program. Journal of Clinical Microbiology. 2009; 47(6):1663-7; Gdoura R, Kchaou W, Ammar-Keskes L, Chakroun N, Sellemi A, Znazen A, Rebai T, Hammami A. Assessment of Chlamydia trachomatis, Ureaplasma urealyticum, Ureaplasma parvum, Mycoplasma hominis, and Mycoplasma genitalium in semen and first void urine specimens of asymptomatic male partners of infertile couples. Journal of Andrology. 2008; 29(2):198-206; McKechnie ML, Hillman R, Couldwell D, Kong F, Freedman E, Wang H, Gilbert GL. Simultaneous identification of 14 genital microorganisms in urine by use of a multiplex PCR-based reverse line blot assay. J Clin Microbiol. 2009; 47(6):1871-7).
이후 공지의 방법에 따라 다음과 같이 PCR을 수행하였고, 이 때 PCR산물은 Cy5 또는 Cy3로 표지하였다. PCR은 개별로도 하고, 동시에 멀티플렉스(multiplex)로도 수행하였으며, 그 조건은 다음과 같다.
멀티플렉스 PCR에서 반응액의 조성과 반응조건은 표 9에 정리하였다. 본 멀티플렉스 PCR 후 그 산물은 1.5 - 2.0% 아가로스 겔에서 전기 영동하여 확인한다. 도 7에서 PCR산물의 전기영동 이미지를 보면, 먼저 위에서부터 헤모필러스 듀크레이(HD)의 PCR 산물이 440bp, 헤르페스심플렉스 바이러스(HSV) 1형의 PCR 산물이 384bp, 헤르페스심플렉스 바이러스(HSV) 2형의 PCR 산물이 400bp, 클라마이디아 트라코마티스(CT)의 PCR 산물이 321bp, 임균(NG)의 PCR 산물이 284bp, 매독(TP)의 PCR 산물이 260bp로 각각 나타난다. 따라서, 본 방법에 의하면, 5개 원인균 유전자의 DNA가 다양하게 혼합된 모든 경우에 한번의 멀티플렉스 PCR로 검색이 가능함을 알 수 있다.
Figure pat00014

9.3. 하이브리디제이션 반응 및 분석 방법
올리고뉴클레오티드 프로브를 스파팅시킨 슬라이드 칩위에 검체의 DNA를 주형으로 하여 임균과 클라마이디아 트라코마티스의 크립틱 플라스미드(cryptic plasmid)와 헤모필러스 듀크레이, 헤르페스 바이러스, 클라마이디아 트라코마티스, 매독의 유전자의 PCR 증폭 산물을 각각 10 μl씩 혼합하여 최종 용적 50 μl이 되게 하고, 이를 95℃에서 5분간 변성시킨 후 즉시 얼음에 3분간 방치하였다. 이후 하이브리디제이션 반응 용액 50 μl를 첨가하여 최종 부피를 100 μl로 조정한 후 45℃에서 슬라이드에 고정된 프로브와 30분간 반응시킨다. 이 때 하이브리디제이션 반응용액은 20X SSC 2ml와 90% 글리세롤 1.7ml, 50mM 인산완충용액 6.3 ml을 혼합하여 최종 10 ml로 만들어서 조성하였다.
하이브리디제이션 반응 종료 후 DNA 칩에서 구획 커버(well cover)를 제거하고, 칩을 3X SSPE 용액(NaCl(26.295g), NaH2PO4-1H2O(4.14g), Na2EDTA(1.11g)를 증류수 1리터에 녹여서 10N NaOH로 pH 7.4로 맞춤)에 담근 후 실온에서 2분간 세척하고 다시 1X SSPE(NaCl(8.765g), NaH2PO4-1H2O(1.38g), Na2EDTA(0.37g)을 증류수 1리터에 녹여서 10N NaOH로 pH 7.4로 맞춤) 용액으로 상온에서 2분간 세척한 다음, 상온에서 800 rpm 으로 1분 30초 동안 원심분리하여 건조시켰다.
9.4. 스캐닝 분석(scanning analysis)
하이브리디제이션 반응후 세척을 통해 비특이적인 신호(nonspecific signal)는 제거한 후 건조된 슬라이드는 형광스캐너(fluorescence scanner)를 이용하여 그 형광신호와 이미지를 분석한다. 이때의 스캐너로는 GenePix 4000B Scanner(Axon, USA)나 ScanArray Lite(Packard Bioscience, USA), 또는 이에 준하는 장비이면 충분하다.
앞에서 준비된 검사표적 유전자의 플라스미드 클론을 다양한 수의 카피(copy)로 혼합하여 PCR을 한 후 DNA 마이크로어레이 위에 올려 놓고 하이브리디제이션 반응을 하여 본 DNA 마이크로어레이의 민감도를 확인하였다. 본 스파이크 실험 결과 검체 1 ml당 10개 내지 100개 이상의 카피의 서로 다른 세균 유전자의 플라스미드 클론이 포함되어 있으면 항상 식별이 가능함을 확인하였다.
2008년 1월부터 2009년 10월 사이에 성감염이 의심되어 의뢰된 대한민국 성인 남성 1252명과 여성 680명에서 각각 본 발명의 DNA 마이크로어레이를 가지고 분석하였다. 그 중 1084례에서는 PCR 후 시퀀싱 방법과 비교가 가능하였던 바, 그 중 1075례(99%)에서 양자의 결과는 일치하여, 본 STD DNA 마이크로어레이의 우수성을 확인할 수 있었다. 도 8에서 12까지 본 발명의 STD 칩을 하이브리디제이션 후 스캐너로 분석한 결과의 이미지를 예로서 제시하였다.
도 8은 Y형 프로브를 이용한 STD 칩 상에서 임균을 양성물질로 하이브리디제이션한 후 스캐닝한 결과이다. 도 9는 Y형 프로브를 이용한 STD 칩 상에서 클라마이디아 트라코마티스를 양성물질로 하이브리디제이션한 후 스캐닝한 결과이다. 도10은 Y형 프로브를 이용한 STD 칩 상에서 트레포네마 팔리둠을 양성물질로 하이브리디제이션한 후 스캐닝한 결과이다. 도 11은 Y형 프로브를 이용한 STD 칩 상에서 헤모필러스 듀클레이를 양성물질로 하이브리디제이션한 후 스캐닝한 결과이다. 도 12은 Y형 프로브를 이용한 STD 칩 상에서 헤르페스심플렉스 바이러스를 양성물질로 하이브리디제이션한 후 스캐닝한 결과이다.
검체를 받아서 본 발명의 상기 방법을 이용한 결과까지는 약 3-4시간이 소요되었으며, 2-3인의 연구자가 약 120개의 칩으로 하루에 약 1000개의 검체를 검사할 수 있었다.
실시예 10 : 인플루엔자 바이러스의 유전자 진단
본 발명은 Y자형 프로브를 집적한 DNA 마이크로어레이를 이용하여 인플루엔자 감염을 진단하며, 그 원인이 되는 인플루엔자 바이러스의 형(type)과 아형(subtype) 내지 스트레인(strain)을 정확하게 유전자 진단(genotyping)하는 새로운 방법에 대한 것이다. 본 실시예는 본 발명의 Y자형 프로브가 중요 질환의 진단에 유용함을 보여주는 또 하나의 실례이다.
인류에 있어서 가장 역사가 오래되며 발병율이 높으며, 치사율 또한 위중한 질환이 인플루엔자(influenza) 혹은 독감(flu)이다. 인플루엔자 바이러스는 다양한 숙주를 침범하며, 게놈이 RNA로 되어 있어서 계속해서 변이(antigenic shift)를 일으키고, 여러 종의 바이러스의 유전자가 재구분(re-assortment)되어 새로운 변종이 반복해서 나타나는 현상을 보인다. 이 때문에 치료와 백신 개발에 어려움이 많다(Ravi V. Emergence of novel influenza A H1N1 as a pandemic agent. Indian Journal of Medical Microbiology. 2009; 27(3): 179-181). 인플루엔자는 단순 감기와는 그 원인균이 틀리며, 호흡기 심부를 더 깊게 침범하여 증상이 더 심하고 폐렴으로 발전할 수 있으며, 그 합병증으로 사망에 이르게 할 수도 있다. 집단감염(epidemic)으로 매년 가을에서 겨울 사이에 집중 발병한다.(Beers MH, Fletcher AJ, Jones TV, Porter R. The Merck Manual of Medical Information. Second edition. Merck Research Laboratories. 2003: 1159-1160). 미국 질병관리본부(CDC)의 통계에 따르면 매년 20만명 이상이 인플루엔자에 감염되며, 그 중 36,000명이 이로 인해 사망한다(http://www.cdcc.gov/flu/abput/disease.htm).
인플루엔자 바이러스는 A, B, C의 3가지 형이 있으며, 그 중 A와 B가 독감을 일으키고, 특히 A형이 인체에서 독감의 주요 원인 균이다. 인플루엔자 바이러스는 헤마글루티닌(hemagglutinin, HA, H)과 뉴라미니다제(neuraminidase, NA, N)의 2가지 바이러스 단백질 및 유전자의 유형에 따라 재분류된다. 헤마글루티닌에는 헤마글루티닌 1형(H1)에서 헤마글루티닌 16형(H16)까지의 16가지 유형이 있으며, 뉴라미니다제는 뉴라미니다제 1형(N1)에서 뉴라미니다제 9형(N9)까지 9가지 유형이 있다. 이에 따라 인플루엔자 바이러스는 H1-16N1-9로 그 아형이 표기된다. A형 인플루엔자 바이러스에서는 H1, H2, H3와 N1, N2가 주로 발견된다. 즉 인플루엔자 바이러스 A형에는 H1-3N1-2의 6가지 주 아형이 있으며, 여기에 집단발병 장소에 따라 스페인독감, 홍콩독감 등의 이름을 덧붙이거나 발병 숙주에 따라 조류독감 등의 명칭을 덧붙인다. 지금까지 3가지 아형, 즉 H1N1, H2N2, H3N2가 인류에 중한 집단감염을 일으킨 바 있다. H1N1은 스페인독감이란 이름으로 1918년경 창궐하여 전 세계에서 2000 내지 5000만명을 사망에 이르게 했고, 이후 1957년에는 H2N2형이, 그리고 그 이후로는 주로 H3N2가 문제를 일으켰다. 1998년에는 소위 조류독감인 변형의 H3N2감염이 창궐한 바 있다. 최근에는 H1N1이 문제시되고 있다. 특히 인체 형과 조류 형, 돼지 형이 혼합되어 변형으로 나타나며, 돼지에서 발병하여 인체로 확산되는 변종 내지 신종의 플루 H1N1(swine flu A/H1N1)이 나타나서 전세계적으로 심각한 문제를 일으키고 있다(Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, Sessions WM, Xu X, Skepner E, Deyde V, Okomo-Adhiambo M, Gubareva L, Barnes J, Smith CB, Emery SL, Hillman MJ, Rivailler P, Smagala J, de Graaf M, Burke DF, Fouchier RA, Pappas C, Alpuche-Aranda CM, Lopez-Gatell H, Olivera H, Lopez I, Myers CA, Faix D, Blair PJ, Yu C, Keene KM, Dotson PD Jr, Boxrud D, Sambol AR, Abid SH, St George K, Bannerman T, Moore AL, Stringer DJ, Blevins P, Demmler-Harrison GJ, Ginsberg M, Kriner P, Waterman S, Smole S, Guevara HF, Belongia EA, Clark PA, Beatrice ST, Donis R, Katz J, Finelli L, Bridges CB, Shaw M, Jernigan DB, Uyeki TM, Smith DJ, Klimov AI, Cox NJ. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science. 2009; 10;325(5937):197-201; Nelson MI, Viboud C, Simonsen L, Bennett RT, Griesemer SB, St George K, Taylor J, Spiro DJ, Sengamalay NA, Ghedin E, Taubenberger JK, Holmes EC. Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918. PLoS Pathogens. 2008; 29;4(2):e1000012; Vinknor M, Stevens J, Nawrucki J, Singh K. Influenza A virus subtyping: paradigm shift in influenza diagnosis. Journal of Clinical Microbiology. 2009; 47(9):3055-3056; Ravi V. Emergence of novel influenza A H1N1 as a pandemic agent. Indian Journal of Medical Microbiology. 2009; 27(3): 179-181).
인플루엔자 바이러스의 상세 아형을 정확히 아는 것은 그 감염의 정확한 진단 뿐 아니라 예방과 치료, 그리고 역학조사를 위해 필수적이다. 특히 임상 진료에서는 신속하고 정확한 진단이 중요하다. 인플루엔자 바이러스의 진단 방법으로는 바이러스 배양 후 HA 단백질을 검사하는 방법이 종래에 사용된 바 있으나, 이는 시간과 비용이 많이 든다는 문제가 있었고, 최근에는 유전자 검사로 대치되는 추세이다. 예컨대 역전사 PCR(RT-PCR)과 리얼타임 PCR, PCR 후 효소결합면역분석(enzyme linked immunosorgbent assay, ELISA)하는 방법 등이 시도되고 있으며, 특히 국제보건기구(WHO)에 의해 리얼타임 PCR이 신종 플루의 표준 검사방법으로 추천되고 있다. 그러나 이들 방법은 A형 인플루엔자 바이러스의 신속한 진단에는 유용하나, 그것이 정확하게 어떤 아형인지는 감별하지 못하는 단점이 있다(Schweiger B, Zadow I, Heckler R, Timm H, Pauli G. Application of a fluorogenic PCR assay for typing and subtyping of influenza viruses in respiratory samples. J Clin Microbiol. 2000 ; 38(4): 1552-8; Vinknor M, Stevens J, Nawrucki J, Singh K. Influenza A virus subtyping: paradigm shift in influenza diagnosis. Journal of Clinical Microbiology. 2009; 47(9):3055-3056; Huang Y, Tang H, Duffy S, Hong Y, Norman S, Ghosh M, He J, Bose M, Henrickson KJ, Fan J, Kraft AJ, Weisburg WG, Mather EL. Multiplex assay for simultaneously typing and subtyping influenza viruses by use of an electronic microarray. J Clin Microbiol. 2009; 47(2):390-6).
이에 대해 인플루엔자 바이러스의 진단 뿐 아니라 그 아형도 모두 정확하게 파악 가능한 것이 DNA 마이크로어레이이다. 여기에서 나아가 DNA 마이크로어레이는 M2 단백질의 S31N 돌연변이 등, 인플루엔자 바이러스의 유전자변이로 인한 약제내성을 파악하는 데에 이용할 수도 있다. 약물내성은 인플루엔자의 치료시 심각한 문제가 되고 있어서 약물 선택 전에 가급적 약물내성을 확인하는 것이 중요하다(Han X, Lin X, Liu B, Hou Y, Huang J, Wu S, Liu J, Mei L, Jia G, Zhu Q. Simultaneously subtyping of all influenza A viruses using DNA microarrays. J Virol Methods. 2008; 152(1-2):117-21; Huang Y, Tang H, Duffy S, Hong Y, Norman S, Ghosh M, He J, Bose M, Henrickson KJ, Fan J, Kraft AJ, Weisburg WG, Mather EL. Multiplex assay for simultaneously typing and subtyping influenza viruses by use of an electronic microarray. J Clin Microbiol. 2009; 47(2):390-6; Nelson MI, Simonsen L, Viboud C, Miller MA, Holmes EC. The origin and global emergence of adamantane resistant A/H3N2 influenza viruses. Virology. 2009; 388(2):270-8).
본 발명의 Y형 프로브를 이용한 DNA 마이크로어레이는, 하나의 스팟 내에 헤마글루티닌 유전자와 뉴라미니다제 유전자의 프로브가 한꺼번에 포함되어 있는 새로운 형태이다. 종래에 인플루엔자 바이러스 진단 DNA칩 들이 보고되어 있으나, 본원발명과 같은 방식의 DNA 마이크로어레이나 제품에 대해서는 보고된 바 없다(Huang Y, Tang H, Duffy S, Hong Y, Norman S, Ghosh M, He J, Bose M, Henrickson KJ, Fan J, Kraft AJ, Weisburg WG, Mather EL. Multiplex assay for simultaneously typing and subtyping influenza viruses by use of an electronic microarray. J Clin Microbiol. 2009; 47(2):390-6; Lin B, Malanoski AP, Wang Z, Blaney KM, Long NC, Meador CE, Metzgar D, Myers CA, Yingst SL, Monteville MR, Saad MD, Schnur JM, Tibbetts C, Stenger DA. Universal detection and identification of avian influenza virus by use of resequencing microarrays. J Clin Microbiol. 2009; 47(4):988-93; Han X, Lin X, Liu B, Hou Y, Huang J, Wu S, Liu J, Mei L, Jia G, Zhu Q. Simultaneously subtyping of all influenza A viruses using DNA microarrays. J Virol Methods. 2008; 152(1-2):117-21).
본 발명의 인플루엔자 DNA 마이크로어레이는 H1-16N1-9의, 전체 144개 유형의, 존재 가능한 모든 인플루엔자 바이러스의 유형을 모두 진단할 수 있다. 본 발명에는 이들 144개 프로브 및 대조 표준물질 유전자의 프로브가 집적된 마이크로어레이 뿐 아니라, RT-PCR 시약, 하이브리다아제이션 반응 시약, 제품 채취 키트, 스캐너에서의 판독에 필요한 지침까지 모두 포함된다.
10.1. 인플루엔자 바이러스 지노타이핑을 위한 Y형 프로브의 디자인
본 발명의 Y형 프로브 디자인 방법에 따라, 독감 원인 바이러스인 인플루엔자 A 바이러스를 지노타이핑하기 위하여 사용 가능한 Y형 프로브는 다음과 같이 디자인하였으며, 이는 공지의 인플루엔자 바이러스의 헤마글루티닌 및 뉴라미니다제 유전자의 염기서열에 기초한 것이다(Han X, Lin X, Liu B, Hou Y, Huang J, Wu S, Liu J, Mei L, Jia G, Zhu Q. Simultaneously subtyping of all influenza A viruses using DNA microarrays. J Virol Methods. 2008; 152(1-2):117-21; Huang Y, Tang H, Duffy S, Hong Y, Norman S, Ghosh M, He J, Bose M, Henrickson KJ, Fan J, Kraft AJ, Weisburg WG, Mather EL. Multiplex assay for simultaneously typing and subtyping influenza viruses by use of an electronic microarray. J Clin Microbiol. 2009; 47(2):390-6).
1) 좌측 및 우측 프로브 부위(도 1의 A 및 E 부위)
Y형 프로브의 좌측 프로브 부위(도 1의 A부위)에는 뉴라미니다제 유전자의 프로브를, 그리고 우측 프로브 부위(도 1의 E 부위)에는 헤마글루티닌 유전자의 프로브를 넣었으며, 이를 각 아형 별로 달리 하였다. 각각의 프로브는 모두 144개가 디자인되었다(표 10)
2) 줄기 부위(도 1의 B 및 D 부위)
좌측 줄기 부위(도 1의 B 부위)에는 인체 텔로미어 시퀀스의 역방향인 CCCTAA를 넣고, 이와 상보적으로 결합하는 시퀀스인 인체 텔로미어 시퀀스의 순방향인 TTAGGG를 우측 줄기 부위(도 1의 D 부위)에 넣어 디자인하였다.
3) 링커 부위(도 1의 C 부위)
Internal Amino Modifier C6 dT(iAmMC6T )를 넣어 링커를 디자인하였다. 이에 따라 총 144가지 유형의 인플루엔자 바이러스 유전자형의 Y형 프로브를 설계하였으며, 이들 중 인플루엔자 바이러스 A형의 진단에 필요한 프로브를 중심으로 하여, 앞의 실시예에 기술한 방법대로 유리슬라이드에 집적하여 인플루엔자 바이러스 제노타이핑 DNA 칩을 제작하였다. 하나의 칩에서 8개까지의 검체를 분석할 수 있도록 하여 제작하였다. 상기한 프로브의 명칭과 서열번호 및 유전자형은 하기 표 10에 정리하였다.
Figure pat00015
Figure pat00016
Figure pat00017
Figure pat00018
Figure pat00019
Figure pat00020
Figure pat00021
Figure pat00022

상기의 표 10의 Y형 프로브들 가운데 서열번호 56(H1N1), 57(H1N2), 65(H2N1), 66(H2N2), 74(H3N1), 75(H3N2), 76(H3N3), 86(H4N4), 96(H5N5), 106(H6N6), 116(H7N7), 126(H8N8), 136(H9N9), 137(H10N1), 147(H11N2)의 15개 프로브를 제작하였다. 아울러 대조 유전자 프로브로서, Y형 프로브가 아닌 직선형의 단일 프로브 4개도 제작하였다. 이에는 인체 인플루엔자 프로브(inf A)로 5'-C6Amine linker-TGC AGT CCT CGC TCA CTG GGC ACG-3', 돼지 인플루엔자 프로브(SW inf A)로 5'-C6Amine linker-CYA CTG CAA GCC CAT ACA CAC AAG CAG GCA-3', 돼지 인플루엔자 H1 유전자의 프로브(SW H1)로 5'-C6Amine linker-CA GAA TAT ACA TCC RGT CAC AAT TGG ARA A-3', RNase P 유전자 프로브로 5'-C6 Amine linker-TTC TGA CCT GAA GGC TCT GCG CG-3'가 포함된다. 이들 프로브를 실시예 4의 방법에 따라 알데하이드 코팅된 유리슬라이드에 집적하여 인플렌자 A형 바이러스 진단 칩을 제작하였다. 본 발명의 칩의 그리드를 도 13에 나타내었다.
10.2. 검체 수집과 처리 및 RT-PCR 방법
공지의 방법으로 인플루엔자 감염, 특히 swine flu A H1/N1의 감염이 의심되는 환자로부터 상기도에서 검체를 얻어서 RNA를 분리하였고, 이를 가지고 세계 보건기구(WHO)에서 2009년 4월 30일에 제시한 "CDC protocol of real time RT-PCR for swine influenza virus A(H1N1)"에서 공지된 방법과 프라이머 시퀀스를 이용하여 역전사 PCR과 리얼타임 PCR을 수행하였다(Schweiger B, Zadow I, Heckler R, Timm H, Pauli G. Application of a fluorogenic PCR assay for typing and subtyping of influenza viruses in respiratory samples. J Clin Microbiol. 2000; 38(4): 1552-8; USA Center for Disease Control and Prevention. CDC swine influenza real-time RT-PCR detection panel with the Roche LightCycler 2.0 real time PCR system. Instruction for Use. 2009).
비인후흡인물(nasopharyngeal aspirate)과 비인후 면봉도말물(nasopharyngeal swab), 인후면봉도말물(throat swab) 등의 검체를 RNA 분해효소의 길항제(RNase inhibitor)인 DEPC로 사전 처리한 검체 수거 튜브에 받았고, 여기에서 QiaAmp 바이러스 RNA 미니키트(Quiagen Inc, USA.)를 이용하여 RNA를 정제 분리하였다. 이후 이 RNA를 가지고 SuperScript III Platinum One-step Quantitative Kit(Invitrogen Inc., USA)와 HA 및 NA 유전자의 PCR 프라이머를 이용하여 역전사 PCR 반응을 수행하였다. 이 때 본 발명의 Y형 프로브 분석에 맞추어서 HA유전자의 PCR 프라이머는 Cy5로 표지하고, NA 유전자의 PCR 프라이머는 Cy3로 표지를 하였다. 또한 RPP, SWH1, SW infA, infA 모두 Cy5로 표지한 프라이머를 사용하였다. HA와 NA 유전자의 PCR은 동시에 듀플렉스(duplex)로 수행하였으며, 그 조건은 다음과 같다. 이하, 각 과정에 대해 좀 더 상세하게 기술한다.
10.2.1. 바이러스 RNA 추출
공지의 방법대로 다음과 같이 수행하였다.
1) 버퍼(buffer) 준비
① AVL 버퍼 1 ml을 취한 후, 동결 건조된 캐리어 RNA를 튜브에 넣어 녹이고 다시 AVL 버퍼를 첨가한다. 캐리어 RNA를 넣은 후부터는 4℃에 보관한다.
② AW1와 AW2 버퍼 용기에 100% 에탄올을 첨가한다.
2) 모든 버퍼와 샘플(VTM)이 준비되면 AVL 버퍼 560 ㎕를 1.5 ml 튜브에 넣는다.
3) 샘플 140 ㎕를 넣어 준 후 약 10초간 vortexer를 이용하여 섞어준 후 스핀다운(spin-down)하여 튜브 뚜껑이나 벽에 묻어있는 샘플을 모은다.
4) 실온(약 24℃)에서 10분간 정치시킨다.
5) 96-100% 에탄올 560 ㎕를 넣어 준 후 약 10초간 vortexer를 이용하여 섞어준 후 스핀다운하여 튜브 뚜껑이나 벽에 묻어있는 샘플을 모은다.
6) 스핀 칼럼에 위의 샘플 630 ㎕를 넣은 후 8,000 rpm에서 1분간 원심분리를 한다. 콜렉션 튜브를 버리고 새 콜렉션 튜브를 장착한다.
7) 6)과정을 한번 더 실시한다
8) AW1 버퍼 500 ㎕ 넣은 후 8,000 rpm에서 1분간 원심분리를 한다.
9) AW2 버퍼 500 ㎕ 넣은 후 14,000 rpm에서 3분간 원심분리를 한다.
10) 스핀 칼럼을 새 1.5 ml 튜브에 올린 후 AVE 버퍼 60 ㎕를 조심스럽게 칼럼내 맴브레인 위에 넣는다. 1분간 정치 후 8,000 rpm으로 1분간 원심분리를 한다.
10.2.2. 리얼타임 원스텝 RT-PCR 반응
SuperScript III Platinum One-step Quantitative Kit(InVitrogen, Cat. no 11745)를 사용하여, 함께 제공된 매뉴얼에 따라 다음과 같이 리얼타임 RT-PCR을 수행하였다. 본 리얼타임 RT-PCR에서 사용한 PCR 프라이머는 WHO에서 공지한 다음의 표 11과 같은 염기서열의 올리고뉴클레오티드를 사용하였다.
Figure pat00023
(상기 염기서열중 R은 G 또는 A; K는 G 또는 T를 의미한다)
1) 표 11의 서열을 갖는 각 올리고뉴클레오티드 별로 아래의 표와 같이 Master mixture를 제조하여 피펫으로 잘 섞어 준 후 스핀다운한다.
Figure pat00024
2) 20 ㎕씩 각 튜브에 분주한 후 음성, 샘플 바이러스-RNA, 양성 순으로 5 ㎕씩 각 튜브에 넣는다.
3) 준비된 튜브는 아래 표의 조건으로 맞추어 놓은 리얼타임 PCR 장비의 Rotor에 순서대로 꽂고 시작한다.
Figure pat00025

4) PCR이 끝나면 분석창을 열어 각 유전자 별로 분석을 수행하고, 각 샘플 별 결과치를 결과기록지에 입력한다. 도 15는 리얼타임 RT-PCR을 수행하여 얻은 결과이다.
도 16은 리얼타임 RT-PCR을 수행하여 얻은 결과물 중의 일부 검체의 PCR 산물을 전기영동한 것으로서, 실제 검체들의 경우 PCR산물의 크기만을 가지고 전기영동 상에서 양성과 음성을 구분하기가 힘들다. 따라서, H1N1의 경우에는 본 발명의 DNA 칩이나 혹은 리얼타임 RT-PCR 방법들을 사용하여 확인하는 검사를 수행하여야 한다.
본 발명에서 제작된 칩에 사용하기 위한 RT-PCR 프라이머는 다음의 표 12와 같이 조성하였으며, RT-PCR 방법은 Taq & RT mixture 0.5㎕, 2x PCR mixture 12.5㎕, 10pmole F & R프라이머 각각 1㎕씩, RNase free water 5㎕와 바이러스 RNA 5㎕를 넣어 상기한 리얼타임 RT-PCR 방법과 동일한 조건으로 원스텝 RT-PCR을 수행하였다.
Figure pat00026
(상기 염기서열중 D는 G, A 또는 T; H는 A, C 또는 T를 의미한다)
10.3. 하이브리디제이션 반응 및 분석 방법
올리고뉴클레오티드 프로브를 스파팅시킨 슬라이드 칩위에 검체의 RNA를 주형으로 하여 H와 N 유전자의 역전사 PCR 증폭 산물을 각각 10 μl씩 혼합하여 최종 용적 50 μl이 되게 하고, 이를 95℃에서 5분간 변성시킨 후 즉시 얼음에 3분간 방치하였다. 이후 하이브리디제이션 반응 용액 50 μl를 첨가하여 최종 부피를 100 μl로 조정한 후 45℃에서 슬라이드에 고정된 프로브와 30분간 반응시켰다. 이 때 하이브리디제이션 반응용액은 20X SSC 2ml와 90% 글리세롤 1.7ml, 50mM 인산완충용액 6.3 ml을 혼합하여 최종 10 ml로 만들어서 조성하였다. 하이브리디제이션 반응 종료 후 DNA 칩에서 구획 커버(well cover)를 제거하고, 칩을 3X SSPE 용액(NaCl(26.295g), NaH2PO4-1H2O(4.14g), Na2EDTA(1.11g)를 증류수 1리터에 녹여서 10N NaOH로 pH 7.4로 맞춤)에 담근 후 실온에서 2분간 세척하고 다시 1X SSPE(NaCl(8.765g), NaH2PO4-1H2O(1.38g), Na2EDTA(0.37g)을 증류수 1리터에 녹여서 10N NaOH로 pH 7.4로 맞춤) 용액으로 상온에서 2분간 세척한 다음 상온에서 800 rpm 으로 1분 30초 동안 원심분리하여 건조시켰다. 하이브리디제이션 반응 후 세척을 통해 비특이적인 신호는 제거한 후 건조된 슬라이드는 형광스캐너를 이용하여 그 형광신호와 이미지를 분석한다. 이때의 스캐너로는 GenePix 4000B Scanner(Axon, USA)나 ScanArray Lite(Packard Bioscience, USA), 또는 이에 준하는 장비이면 충분하다.
도 13은 상기 표 10의 Y형 프로브를 이용한 인플루엔자 A 바이러스 DNA 칩의 그리드를 나타낸 것이고, 도 14는 표준물질과 인체 상기도 분비물 검체에서 각각 RT-PCR을 수행 한 후 얻은 산물을 본 발명의 인플루엔자 A 바이러스의 DNA 칩에 올려 놓고 하이브리디제이션 반응을 한 후 스캐너로 분석하여 얻은 이미지의 실례를 보여준다. 여기에서 swine 인플루엔자 바이러스 A(H1N1)의 양성 검체가 명확하게 확인된다. 검체를 받아서 본 발명의 결과까지는 약 3-4시간이 소요되었으며, 2인의 연구자가 100여 개의 칩을 가지고 하루에 약 800개까지의 검체를 검사할 수 있다.
2009년 11월부터 12월까지 swine 인플루엔자 바이러스 A(H1N1)가 의심되어 의뢰된 한국인 환자 783명의 상기도 분비물 검체를 본 발명의 인플루엔자 바이러스 유전자형 검사 DNA 마이크로어레이와 세계보건기구 권장 리얼타임 PCR 방법으로 중복 검사를 시행하였다. 그 결과 309례(39.5%)에서 H1N1 인플루엔자 바이러스 A/H1N1으로 확인되었으며, 이들 모두에서 공히 DNA 마이크로어레이와 리얼타임 PCR이 함께 양성으로 나타나 100%의 일치율을 보였다.
실시예 11 : Y형 프로브가 집적된 DNA 마이크로어레이를 이용한 유전자 발현 분석
유전자 검사의 핵심 중 하나는 트랜스크립토믹스(transriptomics), 즉 유전자발현을 분석하는 것이다. 특히 어떤 한 생물체 내지 세포에서 발현되는 모든 유전자에 대해 그 발현 양상과 양을 대단위(high-throughput)로 분석하는 것, 나아가 그 세포의 유전자발현이 세포가 처한 환경이나 외부 자극, 호르몬 내지 약물, 자극, 노화, 질병 여부 등에 따라 어떻게 변하는 것인지를 조사하는 것이야 말로 분자생물학 연구의 꽃이라 할 수 있다. 이를 위해 가장 유력한 도구가 곧 DNA 마이크로어레이이다.
유전자발현 연구를 위해 초기의 DNA 마이크로어레이는 프로브로 complementary DNA(cDNA)나 PCR 산물을 사용하였으나, 근자에는 목적에 따라 변형이 가능한 올리고뉴클레오티드를 사용하는 추세이다. 다수의 회사가 알려진 모든 인체 유전자의 발현을 조사할 수 있는 올리고뉴클레오티드 마이크로어레이 들을 생산판매하고 있다. 대표적인 제품에는 Affymetrix GeneChip arrays(http://www.affymetrix.com)와 Multipack gene expression microarrays(Agilent Technology), CodelLink Bioarrays(GE Health care/ Amersham Bioscience) 등이 있다. 이들 제품은 모두 마이크로어레이 자체나 하이브리디제이션 반응, 검체 등에서 오는 오류나 변수를 피하고, 유전자발현의 상대적 차이 내지 절대량 분석을 위해 대조군 및 대조실험을 추가하고 있다. 널리 이용되는 방법은 첫째, 마이크로어레이의 코너에 소위 하우스키핑(housekeeping) 유전자의 프로브를 내부 대조물질(internal control or reference)로 집적하는 것이며, 둘째는 소위 spike-in RNA 혹은 외부 대조물질(external control) RNA를 넣어서 표적물질 RNA와 함께 마이크로어레이 위에서 하이브리디제이션하는 것이다. 이로서 상대적 유전자 발현의 변화를 더 정확하고 민감하게 조사하며, 마이크로어레이 간 차이를 분석하는데 더 유리하며, 심지어는 유전자발현의 절대량을 파악하는 것도 가능하다고 생각되고 있다. 그러나 이로써도 각 스팟 간의 차이의 변수와 노이즈의 변수 등을 정확하게 분석하기 힘들다. 실제 각 스팟의 시그널의 강도가 결코 유전자발현의 정도와 정비례하는 것이 아님이 밝혀져 있다(Yang IV. Use of external controls in microarray experiments. Methods in Exzymology. 2006; 411:50-63; Salt M. Standards in gene expression experiments. Methods in Exzymology. 2006; 411:64-80; Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003 Feb 15;31(4):e15).
이들 올리고뉴클레오티드 마이크로어레이는 모두 각 스팟에 내부 대조 프로브가 들어 있지 않다는 공통점이 있다. 이에 본 발명은 DNA 마이크로어레이에 내부 대조물질과 외부 대조물질을 모두 제공함으로써 유전자발현 분석이 더 정확하게 이루어지며, 표준화될 수 있도록 하려는 데 목적이 있다.
본 실시예에서는 Y형 프로브의 원리를 이용하여 유전자발현을 분석하는 새로운 DNA 마이크로어레이를 보여준다. 기본 개념을 요약하면, 이는 표적유전자를 검사하는 프로브와 내부 참조물질(internal reference)의 프로브를 함께 넣어서 Y형 프로브를 만들고 이를 집적하여 마이크로어레이를 준비하며, 한편으로는 검체에서 형광표지를 하면서 cRNA를 준비하고, 참조물질의 cRNA에 또 다른 표지를 하여 준비한 후 이들을 혼합하여 DNA 마이크로어레이 위에 올려놓고 하이브리디제이션 반응을 한다. 이후 분석을 할 때 각각의 스팟에서 참조물질의 형광시그널 대비 검체 유전자의 시그널의 차이를 고려, 정상화하여 분석하게 된다. 본 발명의 특징은 여타 마이크로어레이와 달리 한 스팟 내에서 검사할 유전자와 내부 참조물질의 유전자의 시그널을 함께 분석한다는 것이다. 즉 개개 스팟마다 대조 실험을 일일이 다 하는 셈이다. 이는 DNA 마이크로어레이에서 유전자발현 분석 시 오류를 극소화하고, 더 정확하게 통계 분석이 가능하게 해 주며, 품질 관리 개선, 시간과 경비 절감 등 많은 장점이 예상된다. 본 발명은 대단위 트란스크립토믹스 연구에 진전을 가져다 줄 수 있을 것으로 기대된다.
이하, 본 실시예를 상술한다.
본 발명의 Y형 프로브에 있어서, 한 쪽 프로브 부분은 유전자발현을 분석하고자 하는 다수의 표적유전자에 대해 각각 올리고뉴클레오티드 프로브를 조성하고, 다른 쪽 프로브 부분은 내부 참조물질의 유전자를 선택하여 올리고뉴클레오티드 프로브를 조성한 후, 이들 다수의 Y형 프로브를 유리슬라이드에 집적하여 마이크로어레이를 제작한다. 이 때 참조 유전자의 프로브는 표적유전자의 프로브 부위와 상보성이 없도록 하고, 검사하고자 하는 개체, 예컨대 인체에는 존재 내지 발현되지 않는 유전자를 선택한다. 본 실시예에서는 대장균의 motD 유전자에 대한 프로브를 내부 대조유전자로 하여 Y형 프로브의 한쪽에 넣었다.
이후 DNA 마이크로어레이에 올려 놓을 물질을 2가지로 준비한다. 하나는 검사하고자 하는 검체에서 전체 RNA를 분리한 후 in vitro 전사(IVT) 및 역전사를 거쳐 cRNA를 준비하며, 이 때 그 과정에서 형광 다이(예컨대 Cy-3)를 넣어서 표지시킨다. 이와 별개로 외부 대조물질을 준비한다. 이를 위해 RNA 폴리머라제의 프로모터(T7, T3, SP6)와 폴리 A 테일을 가진 플라스미드 벡터에 대조 유전자, 즉 대장균의 motD 유전자를 삽입하여 만든 벡터를 주형으로 하여 IVT(시험관내 전사)를 수행함으로써 cRNA를 얻는다. 혹은 이를 올리고뉴클레오티드 형태로 합성해서 사용해도 무방하다. 이 때 IVT과정에서 다른 형광 다이(예컨대 Cy-5)를 넣어서 표지시킨다. 각각의 cRNA의 양과 질을 확인한 후, 검사하고자 하는 검체와 대조물질의 cRNA를 혼합하여 마이크로어레이 위에 올려 놓고 하이브리디제이션 반응을 한다. 이후 형광스캐너에서 분석하는데, 이 때 각 스팟에서 백그라운드의 노이즈 시그널을 제외하여 Cy-5와 Cy-3의 시그널을 조사하고, 다시 하우스키핑 유전자의 Cy-3 시그널과 비교하여 3중의 정상화 과정을 거쳐 분석하면, 각 스팟 내에서 하우스키핑 유전자 대비 표적 유전자의 발현 비를 파악할 수 있다. 이를 모두 합하면 검체에서 다수의 즉 수만개 이상의 유전자의 상대적 발현도를 통계 분석할 수도 있다. 이로써 알려진 모든 인체 유전자에 대해 대단위 유전자발현 분석이 가능하다(도 17).
본 발명에서는 Y형 프로브를 이용하여 세포증식에 관련하는 각종 유전자 들의 발현을 분석하는 마이크로어레이를 제작하였다. 이에 인체의 비소세포성 암(non small cell carcinoma) 조직과 정상인의 폐 조직 및 말초정맥혈 백혈구에서 각각 RNA를 분리하여 본 발명의 마이크로어레이로 신호전달물질 유전자들의 발현을 분석하였으며, 이와 함께 정량형 리얼타임 PCR 방법으로도 비교 분석하여, 본 발명의 DNA 칩의 정확도를 평가하였다.
하기에서는 일례로써 상피세포 성장인자 수용체(epidermal growth factor receptor, EGF receptor, EGFR)의 유전자발현 분석에 대해 상술한다.
11.1. Y형 프로브와 DNA 마이크로어레이의 준비
1) 좌측 및 우측 프로브 부위(도 1의 A 및 E 부위)
Y형 프로브의 우측 프로브(도 1의 E 부위)에는 각 표적 유전자의 센스스트랜드에 대해 프로브를 조성하였다. 좌측은 대장균의 motD 유전자에 대한 프로브를 대조 프로브를 만들어서 넣었다. 각각의 프로브의 길이는 70 bp정도로 하였다. 프로브의 길이는 더 짧게 해도 무방하나, 민감도를 우선적으로 고려하여 조성하였다.
2) 줄기 부위(도 1의 B 및 D 부위)
좌측 줄기 부위(도 1의 B 부위)에는 인체 텔로미어 시퀀스의 역방향인 CCCTAA를 2번 넣고, 이와 상보적으로 결합하는 시퀀스인 인체 텔로미어 시퀀스의 순방향인 TTAGGG를 우측 줄기 부위(도 1의 D 부위)에 2번 넣어 디자인하였다.
3) 링커 부위(도 1의 C 부위)
Internal Amino Modifier C6 dT(iAmMC6T )를 넣어 링커로 디자인하였다.
앞의 실시예에서 기술한 방법대로 본 발명의 Y형 프로브를 유리슬라이드에 집적하여 DNA 칩을 제작하였다. 하기 표 13에 EGFR 유전자와 하우스키핑 유전자인 베타액틴(β-actin) 유전자에 대해 각각 Y형 프로브의 서열을 나타내었다.
Figure pat00027

11.2. 검체의 준비와 표지
공지의 방법으로 검체로부터 RNA를 분리 정제하고, 이를 역전사와 in vitro 전사를 통해 Cy-3로 표지하였다(Yu J, Othman MI, Farjo R, Zareparsi S, MacNee SP, Yoshida S, Swaroop A. Evaluation and optimization of procedures for target labeling and hybridization of cDNA microarrays. Mol Vis. 2002 Apr 26;8:130-7; Lonergan W, Whistler T, Vernon SD. Comparison of target labeling methods for use with Affymetrix GeneChips. BMC Biotechnol. 2007 May 18;7:24).
검체로부터 Trizol 시약(Invitrogen)과 RNeasy 키트(Qiagen, Vaklencia, CA, USA)를 이용하여 전체 RNA를 분리하여 그 양과 질을 조사하여 A260/A280의 비가 1.9 이상이며 리보좀 28S 및 18S RNA 밴드가 전기영동에서 명확하게 확인될 때까지 진행하였다. 250ng의 전체 RNA를 T7 프로모터 프라이머(Agilent Technologies)와 5.8 μL의 부피로 섞어준 후 65℃에서 10분간 가온한 다음 얼음 위에 넣는다. 여기에 4.4 μL의 cDNA master mix(2μL 5× first strand buffer, 1 μL 0.1M DTT, 0.5μL 10 mM dNTP mix, 0.6μL Moloney murine leukemia 바이러스 역전사효소(MMLV RT) 및 0.3μL RNaseOUT™(Agilent Technologies)를 첨가하고 섞은 후 40℃에서 2시간 반응한다. 다음 65℃에서 15분간 가온하여 반응을 멈추고 냉각한 다음, 0.5μL의 10mM Cy™3-CTP와 14.5μL 전사 마스터믹스(3.83μL nuclease-free water, 5μL 4× 전사 버퍼, 2μL NTP mix, 1.6μL 50% polyethylene glycol(PEG), 0.12μL RNaseOUT, 0.15 μL 무기 파이로포스파타제 및 0.3 μL T7 RNA 폴리머라제)를 넣고 섞은 후 40℃에서 2시간 동안 반응시킨다. 이렇게 생성된 표적유전자의 cRNA는 RNeasy® kit(Qiagen, Valencia, CA, USA)로 정제한 후 마이크로어레이와 하이브리디제이션 반응시켰다.
11.3. 외부 대조물질의 준비와 표지
대조 유전자의 경우에는 역전사는 하지 않고 in vitro 전사만으로 표지를 한다. 대조물질로는 cDNA 대신 도 18A에 나타난 바와 같은 T7 프로모터와 poly A tail이 붙어있는 E. coli motD 유전자를 올리고뉴클레오티드로 합성하여 직접 사용하거나, 도 18B와 같은 T7 프로모터와 poly A tail을 갖춘 플라스미드 벡터에 E. coli motD 유전자를 클로닝하여 조성한 후, 이를 주형으로 사용하여 앞에서와 같이 in vitro 전사를 수행하면서 표지한다. 이 때 Cy-3 대신 Cy-5를 첨가하여 표지한다.
11.4. 하이브리디제이션과 결과 분석
이렇게 각각 Cy-3와 Cy-5로 표지된 표적유전자와 대조 유전자를 섞은 다음 마이크로어레이에 하이브리디제이션시키면, 도 19와 같이 각 스팟에서 Cy-3와 Cy-5 시그널이 동시에 나온다. 이론상으로는 모든 스팟에서 나오는 대조 유전자의 Cy-5 시그널은 모두 같아야 한다. 하지만 스팟들의 모양과 크기가 다르고 그 안에 있는 프로브 양도 차이가 나므로 대조 유전자의 Cy-5 시그널이 스팟마다 다를 수 있다. 따라서 이렇게 스팟마다 각기 다른 시그널들을 정상화처리하여야만 스팟 간의 차이에서 오는 유전자 발현 정도에서의 오류를 보정할 수 있다. 정상화(normalization)는 우선 각 스팟에서 나오는 대조 유전자의 형광세기 Ri를 마이크로어레이 전체 스팟들의 대조 유전자 형광세기의 평균값 Rm(=(ΣRi)/n)으로 나눈 θi(=Ri/Rm) 값을 구하고 각 스팟내 표적유전자의 형광세기값 Si'을 θi로 나누어 얻어진 값 Si'(Sii)을 사용하여 이루어진다. 이렇게 하면 스팟간의 차이에서 오는 에러를 제거할 수 있다. 따라서 표적유전자의 Si' 값과 하우스키핑 유전자의 Shk' 값을 비교하여 표적유전자의 상대적인 발현 정도(Si'/Shk')를 알아낼 수 있다.
11.5. 리얼타임(Real time) PCR에 의한 비교 분석
정량형 리얼타임 PCR 방법으로 각 검체에서 베타액틴(β-actin) 유전자 대비 EGFR 유전자의 상대 발현을 조사하였다. 각각의 검체에서 RNA를 추출한 다음 역전사반응을 하여 cDNA를 만든 후에 100ng을 PCR 튜브에 넣고, 하기 표 14의 EGFR 또는 β-actin 유전자 증폭용 역방향 프라이머 EGFRR 또는 ACTINR 10pmol, EGFR 또는 β-actin 유전자 증폭용 순방향 프라이머 EGFRF 또는 ACTIN F 10pmol, 형광물질인 Cy-3 또는 Cy-5가 각각 부착된 EGFR 또는 β-actin 유전자에 특이한 프로브 EGFRP 또는 ACTINP 12pmol, PCR 버퍼(50 mM Tris-HCl pH8.3, 250 mM KCl, 7.5 mM MgCl2), 0.2 I.U.의 Taq 폴리머라제, 및 dNTPs을 포함하고 있는 2X 프리믹스(pre mix) 25 ㎕를 첨가한 후 증류수로 총 부피가 50㎕가 되게 하였다. 혼합과 원심분리과정을 거친 후 실시간 유전자 증폭 장치(Rotor-gene 600)를 이용하여 50℃에서 2분, 95℃에서 10분 동안 가온한 다음 95℃에서 15초, 55℃에서 20초, 72℃에서 25초의 반복되는 과정을 40회 실시하였으며, 반응 종료 후 증폭곡선(amplification curve)을 분석하여 각각의 Ct값을 획득하였다. 획득한 Ct값을 이용하여 EGFR 유전자의 하우스키핑 유전자에 대한 상대 발현 정도의 정확도를 분석하였으며, 본 발명의 Y형 프로브의 최적조건을 다시 점검하였다.
Figure pat00028
(상기 표에서 BHQ 및 MGB는 형광표지 물질이다)
11.6. DNA 마크로어레이와 real time PCR의 분석결과
본 실시예의 실험 결과를 도 19와 20에 나타내었다. 도 19는 베타액틴 유전자와 EGF 수용체(EGFR) 유전자의 발현을 Y형 프로브를 사용하여 분석한 이미지의 사진이다. 표적유전자를 하우스키핑 유전자인 베타액틴으로 하고, 대조유전자를 E. coli motD 유전자로 조성한 Y형 프로브의 스팟에서 나오는 대조 유전자의 Cy-5 형광세기(RACTIN)를 마이크로어레이 전체 스팟의 Cy-5 형광세기의 평균값(Rm)으로 나누어 얻어진 값인 ACTIN(=RACTIN/Rm)를 구하고 베타액틴의 Cy-3 형광세기값 SACTIN을 구하여 ACTIN로 나누면 SACTIN'(=SACTIN/ACTIN)이 얻어지며, 이것이 베타액틴 유전자를 정상화한 발현 값이다. 같은 방법으로 표적유전자를 EGFR로 하고, 대조유전자를 E. coli motD 유전자로 조성한 Y형 프로브의 스팟의 시그널에서 EGFR 유전자의 정상화한 발현 값 SEGFR'(=SEGFR/EGFR)을 구한다. 이후 베타액틴 유전자의 정상화한 발현 정도 값(SACTIN')으로 본 검체에서 EGFR 유전자의 하우스키핑 유전자에 대한 상대 발현 정도 값(=SEGFR'/SACTIN')을 측정할 수 있다. 본 실시예에서 Y형 프로브를 사용하여 측정한 상대 발현 정도 값이, 도 20에서의 정량 리얼타임 PCR로 측정한 것과 일치함을 확인할 수 있었다(R = 0.9).
이상의 결과로 보아 본 발명에서 제작한 Y형 프로브는 특정 유전자의 발현 정도를 정확하게 판별함을 알 수 있다. 각 유전자별 프로브들은 임상 검체에서 각각 특정 유전자의 RNA에 대해 특이적으로 결합하며 프로브들간에 교차 히브리디제이션 반응을 나타내지 않았다. 아울러 시간 간격을 두고 서로 다른 검사자가 3차례 이상 반복 검사하였을 때 모두 동일한 결과를 보여 100%의 재현성을 보였다.
본 실시예에서는 인체 폐암조직의 경우 정상 폐조직이나 정상인의 백혈구에 비해 EGFR 유전자의 발현 값이 유의하게 더 높게 나타났다. 이는 이들 폐암이 EGFR 차단약제인 gefitinib나 erlotinib, lapitinib, cetixiamb, panitumab 등에 잘 반응할 것임을 시사한다.
실시예 11에서 사용된 T7 프로모터와 poly A tail, E. coli motD 유전자를 포함하는 합성 올리고뉴클레오티드(도 18A)와 플라즈미드(도 18B)를 도 18에 나타내었다. 이것을 주형으로 사용하여 Cy-5를 넣고 in vitro 전사하여 형광으로 표지된 타겟을 만든 후, 검체에서 얻은 cRNA와 혼합하여 DNA 마이크로어레이 위에 올려 놓고 하이브리디제이션 반응을 하였다. 도 19는 정상인과 환자의 임상 검체에서 RNA를 추출한 후 cDNA를 합성하여 EGFR 유전자와 베타액틴 유전자의 발현을 Y형 프로브 마이크로어레이로 분석한 결과이다.
실시예 12 : Y형 프로브가 집적된 DNA 마이크로어레이를 이용한 SNP 분석
유전자형 검사중에 가장 기술적으로 어려운 것은 단일 염기 수준에서 유전자 변이(genetic variation)를 분석하는 것이며, 특히 정확하고 신속하게, 그리고 최소 비용으로 다수의 유전자를 대단위(high-throughput)로 분석하는 방법을 개발하는 것이 가장 중요한 과제가 되고 있다.
유전자의 단일 염기 서열의 변이를 대단위로 분석할 수 있는 기법에는 (1) 대조유전자 특이 하이브리디제이션법(allele specific hybridixzation, ASH), (2) 플랩 제한효소 판별법(flap endonuclease discrimination), (3) 프라이머 익스텐션법(primer extension), (4) 대조유전자 특이 분해법(allele specific digestion), (5) 올리고뉴클레오티드 라이게이션법(oligonecleotide ligation, OLA) 등이 있다. 이들 반응 산물을 형광이나 비오틴으로 표지하여 판독함으로써 염기서열을 분석하는데, 이때 판독 도구로는 Appliedc Biosystem사의 마이크로플레이트 리더(microplate reader)와 캐필러리 전기영동기(capillary electrophoresis), Sequenom 사의 질량분광분석기(mass spectrometry), Pyrosequencing AB 사의 CCD 카메라, Luminex사의 마이크로비드(microbead), 그리고 DNA 마이크로어레이가 있다. 최근에는 DNA 마이크로어레이가 가장 널리 사용되는 추세이며, 인체 유전체 전체의 단일 뉴클레오티드 다형성(single nucleotide polymorphism, SNP)을 분석하는 DNA 마이크로어레이도 시도되고 있다(Tsuchihashi Z and Dracopoli NC. Progress in high throughput SNP genotyping methods. The Pharamacogenomics Journal. 2002; 2: 103-110; Jenkins S and Gibson N. High-throughput SNP genotyping. Comparative and Functional Genomics. 2002; 3: 57-66).
본 실시예 12에서는, Y형 프로브를 집적한 DNA 마이크로어레이에서 대조유전자 특이 하이브리디제이션 반응을 통해 SNP를 분석하여 이를 임상 진료에 응용하는 방법을 개시한다.
같은 유전자 염기서열의 변이이긴 하지만, SNP와 돌연변이는 서로 뚜렷한 차이가 있다. SNP는 인류에서 나타나는 빈도가 1% 이상으로 흔하게 나타나는 변이를 가리키며, 우리 인류가 각자 서로 체격이나 용모, 성격, 질병 발병 위험, 약물에 대한 반응이 모두 다르게 하는 요인이다. SNP는 그 자체가 직접 질병을 유발하기 보다는 여타 유전자와의 상호작용이나 식사, 생활습관, 환경적 요인과의 상호작용을 통해 특정 질병의 위험을 높이거나 낮추는 양상을 보인다. 이에 대해 돌연변이는 인류에서 나타나는 빈도가 1% 미만으로 드물며, 단백질을 변성시키면서 그 자체만으로 질병을 야기할 수 있다. 돌연변이는 병적인 변이로 작용하는 경우가 흔하며, 이는 선천성으로 소위 유전병을 일으키거나, 후천성 질병을 유발하기도 하며, 이의 대표적인 질환이 암이다. 암은 다수의 암유전자나 종양억제유전자의 돌연변이가 축척되어 발생한다. 이에 따라 SNP 분석은 질병 예측에, 그리고 돌연변이 분석은 질병 진단에 도움이 되는 경우가 많다.
본 발명의 Y형 프로브나 그 변형 프로브를 이용하여 DNA 마이크로어레이 위에서 대조유전자 특이 하이브리디제이션 기법으로 SNP를 검사할 수 있는 방법은 크게 다음의 2가지가 있다.
첫째는 Y형 프로브의 변형형인 d자형의 프로브을 이용할 수 있다. 예컨대 Y형 프로브의 우측은 조사하고자 하는 표적유전자의 SNP부위에 대한 프로브를 조성하고 좌측은 없애 버린 d자형의 프로브를 이용하여 마이크로어레이를 제작한다. 이 때, 야생형 내지 정상형(wild type)과 변이형(mutant type)을 달리하여 각각에 특이한 프로브(allele specific probe)를 만들며, 양자의 차이가 나는 염기는 프로브의 중심부위에 두고, 프로브의 길이는 15 내지 30 bp정도로 한다. 표적유전자에 대해 표지를 Cy-3 또는 Cy-5이든 동일하게 하여 하이브리디제이션하여 완전하게 일치(perfect match)되는 스팟의 프로브를 찾는다. 이로써, 야생형인지 변이형인지 확인할 수 있다. 이 경우 단색(single color) 형광스캐너로 분석이 가능하다.
둘째는 Y형 프로브의 우측에는 조사하고자 하는 표적유전자의 센스 가닥의 SNP부위에 대한 프로브를 조성하고 좌측은 표적유전자의 안티센스 가닥의 SNP가 없는 부위에서 내부 참조용으로 대조 프로브를 만들어 넣어 Y형 프로브를 준비하고, 이를 이용하여 마이크로어레이를 제작한다. 이후 SNP 분석용의 센스 가닥과 대조 유전자용의 안티센스 가닥를 서로 다른 형광, 예컨대 Cy-3와 Cy-5로 표지하여 하나의 PCR을 수행하면, 표적 유전자에서 SNP를 보고자 하는 부위는 Cy-3가 붙어서 증폭이 되며, 안티센스 가닥의 대조 부위 유전자는 Cy-5가 붙어서 증폭이 된다. 이 산물을 단일 가닥으로 만들어서 상기한 마이크로어레이 위에 올려 놓고 하이브리디제이션을 하면, SNP를 보려는 센스 가닥의 유전자 증폭물은 Y형 프로브의 우측 프로브에 붙어서 Cy-3 시그널을 나타내고, 안티센스 가닥의 유전자 증폭물은 Y형 프로브의 좌측 프로브에 붙어서 Cy-5 시그널을 나타낸다. 즉 Cy-5시그널이 내부 참조 시그널이며, Cy-3 시그널이 SNP 검사 시그널이 된다. 각 스팟에서 백그라운드 시그널을 제거한 후 실시예 11에서 기술한 것처럼 Cy-5 대비 Cy-3의, 정상화 처리한 시그널을 조사하고, 이에 의거하여 완전하게 일치되는 스팟의 프로브를 찾는다. 이 경우 2색(dual color) 형광스캐너가 기본적으로 필요하다.
본 실시예에서는 상기 2가지 중 후자, 즉 Y형 프로브 이용 방법의 실례를 보여 나타내며, 이를 위해 각종 노령화 관련 질환, 특히 심장질환과 치매, 노화관련황반변성(aging related macular degeneration, ARMD) 등에 관련된 유전자들의 SNP를 분석하는 DNA 마이크로어레이를 준비하였다. 한편, 상기한 2가지 방법 중 d자형 프로브를 사용하는 방법에 대해서는 실시예 13에서 후술한다.
본 발명의 SNP 검색용 DNA 마이크로어레이는 중요 성인병의 발병 위험을 예측하고, 위험이 클 경우 이를 예방하는 데 필요한 지침을 제시할 수 있다.
12.1. Y형 프로브의 제작
본 발명의 Y형 프로브 디자인 규칙에 따라, 표적 유전자인 알츠하이머성 치매관련 유전자(apolipoprotein E, Apo E), 인터루킨 1A(interleukin 1A, IL1A), 안지오텐신 전환효소(angiotensin converting enzyme, ACE), 산화질소 합성효소 3(nitric oxide synthase-3, NOS3), 에스트로겐 리셉터 알파(estrogen receptor alpha, ESR1), 메틸렌 테트라하이드로폴레이트 환원효소(methylene tetrahydrofolate reductase, MTHFR), β-2 아드레날린성 수용체(β-2 adrenergic receptor, ADRB2), 콜레스테롤 에스테르 전달 단백질(cholesterol ester transfer protein, CETP), 보체인자 H(complement factor H, CFH) 등 다수 유전자에 대해 Y형 프로브를 다음과 디자인하였다. 이는 공지의 염기서열(NCBI dbGAP SNP)에 기초한 것이다.
1) 좌측 및 우측 프로브 부위(도 1의 A 및 E 부위)
Y형 프로브의 우측 프로브(도 1의 E 부위)에는 각 표적 유전자의 센스 가닥의 SNP부위에 대한 프로브를 조성하였다. 이때, 야생형 내지 정상형의 각각에 특이한 프로브를 준비하며, 양자의 차이가 나는 염기는 프로브의 중심부위에 두고, 프로브의 길이는 15 내지 28 bp로 하였다. 좌측은 표적유전자의 안티센스 가닥의 SNP가 없는 부위에서 내부 참조용으로 대조 프로브를 만들어 넣어 Y형 프로브를 준비하였다.
2) 줄기 부위(도 1의 B 및 D 부위)
좌측 줄기 부위(도 1의 B 부위)에는 인체 텔로미어 서열의 역방향인 CCCTAA를 2번 넣고, 이와 상보적으로 결합하는 서열인 인체 텔로미어 서열의 순방향인 TTAGGG를 우측 줄기 부위(도 1의 D 부위)에 2번 넣어 디자인하였다.
3) 링커 부위(도 1의 C 부위)
Internal Amino Modifier C6 dT(iAmMC6T )를 넣어 링커를 디자인하였다. 이에 따라 총 96개의 노화질환 SNP의 Y형 프로브를 설계하였으며, 이를 앞의 실시예에 기술한 방법대로 유리슬라이드에 집적하여 DNA 칩을 제작하였다. 대표적인 프로브의 명칭과 서열번호 및 유전자형은 하기 표 15에 정리하였다.
Figure pat00029

12.2. PCR
각 검체에서 DNA를 분리 정제한 후 형광다이를 첨가하면서 PCR을 수행하였다. SNP 분석용의 센스 가닥은 Cy-3로 표지하고, 대조 유전자용의 안티센스 가닥은 Cy-5로 표지하여, 하나의 PCR을 수행하면 표적 유전자에서 SNP를 보고자 하는 부위는 Cy-3가 붙어서 증폭이 되며, 안티센스 가닥의 대조 유전자는 Cy-5가 붙어서 증폭된다. PCR의 프라이머의 서열은 다음의 표 16에 정리하였다. PCR은 초기 변성(initial denaturation) 을 96℃에서 3분한 후 35cycle만큼 증폭하였으며, 각 반응은 94℃에서 30초, 58℃에서 30초, 72℃에서 30초씩으로 하였고, 최후의 연장(extension)은 72℃에서 5분간 수행하였다.
Figure pat00030

12.3. 하이브리디제이션 반응 및 분석
Cy-3 및 Cy-5로 표지된 PCR 산물을 하이브리디제이션 버퍼와 혼합하여, 앞에서 제작된 마이크로어레이 위에 올려 놓고 42℃에서 1시간동안 하이브리디제이션 반응을 한 후, 세척하고 말려서 2색 형광스캐너를 이용하여 분석하였다. Cy-3는 550nm에서 자극, 570nm에서 시그널을 보이며, Cy-5는 649nm에서 자극, 670nm에서 시그널을 보인다. 이와 함께 PCR 산물을 공지의 방법으로 염기서열 분석하여 비교 분석하였다. 분석은 앞의 실시예에서 기술한 방법을 적용하였으며, 각 스팟에서 백그라운드 시그널을 제거한 후 Cy-5 대비 Cy-3의, 정상화 처리한 시그널의 Cy-5 대비 Cy-3의 시그널을 조사하고, 이에 의거하여 완전하게 일치되는 스팟의 프로브를 찾는다. 이로서 야생형인지 변이형인지 확인할 수 있으며, 혼합형(heterozygosity)도 파악이 가능하다.
DNA 마이크로어레이 분석과 함께 PCR 산물을 공지의 방법으로 염기서열을 분석하여 비교 분석하였다. DNA 마이크로어레이 결과는 본 실시예의 96례 모두에서 서열 분석의 것과 일치하였다.
도 21의 DNA 마이크로어레이에서, 본 검체의 대상자는 25년간 흡연을 해오고 비만한 중년 남성으로서, CFH, CETP, MTHFR 유전자에 대해 불리한(unfavorable, high risk) SNP를 보였다. 이에 대해 다음과 같은 해석과 지침을 제시할 수 있다.
즉, CFH 유전자의 402번째 코돈에 SNP(Y402H, rs1061170)를 보였다. CFH는 면역 및 염증반응에 핵심적 역할을 하는 물질로, CFH에 SNP가 있는 경우 노화관련 황반변성(aging related macular degeneration, ARMD)의 위험이 2.4배 내지 6.3배 더 높아진다. 노화관련 황반 변성은 노인성 시각소실의 주원인 중 하나로, 세계적으로 천만명이 넘는 환자가 있다. 특히 본 예에서처럼 흡연자인 경우에는 그 발병 위험이 약 20배로 더 커진다. 따라서 그 예방이 필요한 바, 이를 위해서는 반드시 금연을 해야 하며, 대낮에 바깥에 나갈 때는 선글래스를 끼는 것이 좋으며, 항산화 기능이 강한 채소를 많이 먹고, lutein, zeaxanthine, asaxanthane 같은 영양제를 복용하는 것이 권장된다(Schnoll HPN, Fleckenstein M, Issa PC, Keilhauer C, Holtz FG, Weber BHF. An update on the genetics of aging-related macular degeneration. Molecular Vision. 2007; 13:196-205).
또한, CETP 유전자의 1553번째 염기에 SNP(G1533A)를 보였다. CETP는 고밀도 지질단백질 콜레스테롤(high density lipoprotein(HDL) cholesterol)에서 트리글리세라이드와 고밀도 지질단백질(LDL)로 콜레스테롤에스테르를 운반하는 효소이다. CETP에 불리한 SNP가 있을 경우 그 활성이 높아지면서 혈청 LDL이 높아지고, HDL은 떨어지며, 그 결과 고지혈증과 나아가 심혈관 질환의 위험이 커진다. 따라서 이런 경우 그 예방을 위해 트란스 지방(trans-fat)과 패스트푸드의 섭취를 줄이고 Omega-3와 Omega-6를 균형있게 섭취해야 하며, LDL 혈중치를 주기적으로 검사하여, 이것이 높을 때는 CETP를 낮추는 약제를 복용하는 것이 권장된다(Vincent S, Planells R, Defoort C, Bernard MC, Gerber M, Prudhomme J, Vague P, Lairon D. Genetic polymorphisms and lipoprotein responses to diets. Proc Nutr Soc. 2002; 61(4):427-34).
또한, MTHFR 유전자의 677번째 염기에 SNP(C677T, Ala222Val)를 보였다. MTHFR은 호모시스테인(homocysteine)과 엽산(folic acid)의 대사에 핵심적인 역할을 하는 효소로, MTHFR에 불리한 SNP가 있을 경우 MTHFR의 기능이 떨어지면서 체내 호모시스테인이 축적되며, 이는 혈관을 굳게 하여 동맥경화를 일으키며, 나아가 심근경색이나 치매 등의 위험이 커진다. 특히 본 예와 같이 흡연시 그리고 CETP의 SNP도 불리할 경우 그 위험은 더욱 가중된다. 이런 경우 4가지의 B형 비타민, 즉 Vit B12, Vit B6, 라이보플라빈, 엽산을 충분량으로 항상 섭취하는 것이 권장되며, 철저한 금연이 필수적이다(Trabetti E. Homocysteine, MTHFR gene polymorphisms, and cardio-cerebrovascular risk. J Appl Genet. 2008;49(3):267-82).
실시예 13 : DNA 마이크로어레이를 이용한 암유전자의 돌연변이 검색
본 발명의 실시예 13에서는 Y형 프로브의 변형형을 집적한 DNA 마이크로어레이에서 대조유전자 특이 하이브리디제이션(ASH) 반응을 통해 돌연변이를 분석하여 이를 임상 진료에 응용하는 방법을 나타낸다.
유전자의 돌연변이는 단백질의 변화를 유발함으로써 질병을 야기할 수 있다. 인체 질병의 약 절반은 직간접적으로 유전자 돌연변이에 의해 유발된다. 아울러 유전자 돌연변이의 양상에 따라 질병의 성격이 달라지고 치료에 대한 반응도 달라질 수 있다. 특히 암의 경우 더욱 그러하며, 암유전자나 종양억제유전자의 돌연변이를 검색하는 것은 암의 진단과 조기 발견, 예후 평가, 치료방침 결정 및 치료약제 선정을 위해 크나큰 도움이 된다. 대표적인 예로 K-RAS를 들 수 있다.
K-RAS는 인체에서 가장 대표적인 암유전자이다. K-RAS는 그 하위 물질인 BRAF, 그리고 상기의 EGFR나 그 아형인 HER-2/erbB2, HER-3, HER-4와 함께 세포 증식의 신호전달에 핵심적인 역할을 한다. 실제 전체 인체 암의 절반 이상, 특히 선암(adenocarcinoma)은 이들의 이상과 연관되어 발생한다. K-RAS의 이상은 주로 점돌연변이(point mutation)에 의하는데, 이는 K-RAS를 항상 활성화시키고(turn on), 그 결과 증식의 신호가 계속 무절제하게 전달되면서 그 세포는 과잉증식하고 암세포로 진행하게 된다. K-RAS의 점돌연변이는 코돈 12와 13에서 집중 발생하며, 특히 코돈 12의 돌연변이가 90%를 차지한다. 드물게는 코돈 59와 61에서도 돌연변이가 나타난다(Stahel RA. Adenocarcinoma, a molecular perspective. Annals of Oncology. 2007; 18(supplement 9): 147-149).
전체 인체암의 약 20%에서 K-RAS의 돌연변이가 발견된다. 특히 췌장암에서 가장 호발하며(90%), 다음으로 대장암(50%)과 폐암, 특히 선암(adenocacinoma, 50%)에서 높은 빈도로 나타난다. 이에 따라 췌장 주스(pancreatic juice)나 대변, 혈액, 객담 등에서 K-RAS의 돌연변이를 조사하여 췌장암과 대장직장암, 폐암 등을 진단하려는 시도가 이루어지고 있다. 이로서 방사선검사에서 식별되지 않는 조기 암도 발견가능하며, 암의 치유율을 크게 개선시켜 줄 것으로 기대되고 있다(Kondo H, Sugano K, Fukayama N, Kyogoku A, Nose H, Shimada K. Detection of point mutations in the K-ras oncogene at codon 12 in pure pancreatic juice for diagnosis of pancreatic carcinoma. Cancer 1994; 73:1589-1594; Prix L, Uciechowski P, Bockmann B, Giesing M and Schuetz AJ. Diagnostic biochip array for fast and sensitive detection of K-ras mutations in stool. Clinical Chemistry. 2002; 48(3): 428-435; Hibi K, Robinson CR, Booker S, Wu L, Hamilton SR, Sidransky D, Jen J. Molecular detection of genetic alterations in the serum of colorectal cancer patients. Cancer Research. 1998; 58:1405-1407).
K-RAS 돌연변이가 있는 암은 돌연변이가 없는 암과 비교하여 그 경과나 예후에 차이가 있다. K-RAS 돌연변이가 있는 경우 예후가 더 불량하며, 수술 후 재발율도 상대적으로 더 높으며, 생존기간도 더 짧은 경향을 보인다(Cerottini JP, Caplin S, Saraga E, Givel JC, Benhattar J. The type of K-ras mutation determines prognosis in colorectal cancer. American Journal of Surgery. 1998; 175:198-202). 이 때문에 수술 후에도 더 주의를 요하며, 재발시 효과적인 항암제가 필요하다. 그러나 문제는 K-RAS 돌연변이 암의 경우 흔히 항암제에 저항을 보인다는 것이다.
오늘날 항암제에는 크게 3가지 종류가 있다. 첫째는 전통적인 의미에서의 항암제로, 정확하게 말해서 세포독성 항암화학제(cytotoxic chemotherapy)로, 이들은 암세포뿐 아니라 정상 세포도 살생하며, 이 때문에 흔히 부작용이 문제시 된다. 최근에는 암세포의 특정 표적만 공격하여 파괴하는 표적약물로 여기에는 항체, 특히 단일클론 항체약제와 합성약물의 2가지 종류가 있다. 나머지 하나는 암이 아니라 암의 혈관이나 암을 보조하는 조직을 공격하여 암을 치료하는 약물들이다. 최근에는 표적약물을 더 적극적으로 시도하려는 경향이 있으며, 상기한 2가지 종류의 약제들을 병용 투여하여 치료하는 방법이 널리 시도되고 있다. 특히 선암의 경우 EGFR 내지 HER-2를 공격하는 항체약제(Cetuximab, Panitimab)나 합성약물(Erlotinib, Gefitinib, Lapitinib)이 새로운 표준 치료제로 기대되고 있다. K-RAS 돌연변이형의 폐암이나 대장암의 경우 세포독성 항암화학제에 대부분 저항한다. 불행한 사실은 이들 K-RAS 돌연변이 암이 상기한 표적 약물에 대해서도 저항한다는 것이다. 이 때문에 K-RAS 돌연변이 암의 경우 통상의 항암제가 아닌, 돌연변이 K-RAS를 표적으로 하는 새로운 약물, 특히 유전자치료제의 개발이 시급한 상황이다(Linardou H, Dahabreh IJ, Kanaloupiti D, Siannis F, Bafaloukos D, Kosmidis P, Papadimitriou CA, Murray S. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncology. 2008; 9(10):962-72; Bepler G, Begum M, Simon GR. Cancer Control. Molecular analysis-based treatment strategies for non-small cell lung cancer. 2008 Apr;15(2):130-9).
상기한 문헌고찰에 따라, K-RAS의 돌연변이를 정확하고 신속하며 저렴한 비용으로, 그리고 대단위 검색할 수 있는 DNA 마이크로어레이의 개발이 중요함을 알 수 있다. 본 실시예에서는 K-RAS 유전자를 모델로 하여 본 발명의 Y형 프로브의 변형 형을 집적한 DNA 마이크로어레이를 이용하여 돌연변이를 분석하였다.
본 실시예에서는 Y형 프로브의 좌측은 없애버리고 우측은 조사하고자 하는 표적유전자의 돌연변이 부위 검색용 프로브를 조성한 d자형의 프로브를 사용하였다(도 22). 이 때, 우측에 돌연변이 여부를 검사하고자 하는 염기 별로 A, C, G, T의 각각의 염기를 분석할 수 있는 특이한 프로브(each base specific probe)를 만들며, 이 때 변이 부위의 염기를 프로브의 중심부위에 두고, 프로브의 길이는 15 내지 30 bp로 하여 제작하고, 이를 집적하여 마아크로어에이를 만든다. 검체에서 DNA를 분리, 표적유전자인 K-RAS에 대해 Cy-3 또는 Cy-5이든 형광표지하면서 PCR을 한 후 마이크로어레이 위에 올려 놓고 하이브리디제이션을 한 후 스캐너로 형광 시그널을 분석하여 완전하게 일치되는 스팟의 프로브를 찾는다. 이로서 변이를 보고자 하는 염기 서열이 A인지, C인지, G인지, T인지, 즉 정상형(wild type)인지 변이형(mutant type) 인지 확인할 수 있다.
본 발명의 DNA 마이크로어레이로 K-RAS 유전자의 돌연변이 여부를 정확하게 파악할 수 있으며, 이로서 폐암이나 췌장암, 대장암 진단에 도움이 되며, 이 경우의 암환자에서 예후가 불량할 것임을 예측할 수 있고, 나아가 EGFR 차단 약제나 항체 약제는 내성이 높으므로 피하도록 지시할 수 있다. 이는 본 발명의 DNA 마이크로어레이가 암의 진단과 예후 평가. 치료방법 결정에 도움이 됨을 입증한다.
13.1. 프로브의 준비와 DNA 마이크로어레이의 제작
상기한 바에 따라, 본 발명의 d자형 프로브를 하기 표 17과 같이 제작하였다. 코돈 12에 대해 정상형 1개와 변이형 6개의 프로브를 조성하였으며, 별개로 양성 대조 프로브도 1개 추가로 조성하였다.
Figure pat00031

K-RAS DNA 마이크로어레의 그리드 배열은 도 23과 같이 하였다. 표 17에서 확인할 수 있듯이, 양성 대조군(positive control, P/C)은 K-RAS의 cDNA 중 돌연변이가 나타나는 코돈 12와 13, 59, 61을 피하여 코돈 18에서 23까지를 프로브로 디자인 하였기에, 돌연변이 여부에 무관하게 K-RAS가 PCR이 제대로 되면 반드시 나타나야 한다. 즉 이는 양성대조 프로브이며, 일종의 코너 마커(corner marker) 역할도 한다.
13.2. 검체준비 및 DNA 분리
먼저 K-RAS 돌연변이 여부와 양상이 밝혀진 바 있는 인체 암세포주를 American Type Culture Collectuon(ATCC)사로부터 구입하여 표준 검체로 사용하였으며, 그 내역은 상기 표 17과 같다. 아울러 폐암 환자 10례, 대장암 환자 10례, 췌장암 환자 3례에서 각각 파라핀 포매조직과 말초정맥혈 20ml을 얻어서, 전자에서는 미세박리(microdissection)로 암세포부분을 분리하고 후자에서는 혈장을 분리하였다. 각 검체에서 공지의 방법으로 DNA를 분리 정제하였다(Gilje B, Heikkila R, Oltedal S, Tjensvoll K, Nordgard O. High-fidelity DNA polymerase enhances the sensitivity of a peptide nucleic acid clamp PCR assay for K-ras mutations. Journal of Molecular Diagnosis. 2008l 10(4):325-31).
13.3. PCR
멸균된 3차 증류수, 검체 DNA, 그리고 K-RAS의 프라이머(정방향 프라이머: 5'-GACTGAATATAAACTTGTGG-3', 역방향 프라이머: 5'-Cy-5-CTATTGTTGGATCATATTCG-3')를 함께 하나의 튜브에 넣고 PCR을 수행하였다. 하기 표 18의 조성 및 조건에 따라, 0.2ml PCR 튜브에 PCR mixture를 가하여 PCR 반응을 수행하였다.
Figure pat00032

13.4. 하이브리디제이션 반응과 분석
상기에서 얻어진 PCR 산물을 마이크로어레이 위에 올려 놓고 앞의 실시예에서와 동일한 방법으로 하이브리디제이션 반응을 한 뒤 스캐너를 이용하여 분석하였다. 이와 함께 PCR 산물을 공지의 방법으로 염기서열을 분석하여 비교 분석하였다.
분석결과 표준물질들에서 본 발명의 DNA 마이크로어레이는 모두 정확하게 K-RAS의 코돈 12의 유전자형을 파악하였다. 파라핀 포매 암조직의 검사에서 23례 중 11례에서 K-RAS의 돌연변이가 발견되었으며, 마이크로어레이와 서열분석 모두 일치한 결과를 보였다. 혈액 검체의 검사에서, 앞의 암조직 양성례 11례 중 10례는 DNA 마이크로어레이에서, 그리고 8례는 시퀀싱분석에서도 K-RAS 돌연변이가 확인되었다. 도 23에 K-RAS DNA 마이크로어레이의 분석례의 이미지를 나타내었다. 페암 환자의 혈액 검체의 결과로, K-RAS 코돈 12가 GTT 에서 AGT(Gly 12 Ser)으로 돌연변이되었음을 알 수 있고, 이는 서열 분석으로도 확인되었다.
실시예 14 : DNA 마이크로어레이를 이용한 암유전자의 돌연변이 검색
본 발명의 실시예 14에서는 역시 DNA 마이크로어레이에서 ASH 반응을 통해 K-RAS의 돌연변이를 분석하는 방법을 보여주며, 다만 프로브의 구조와 분석방법을 달리 하였다.
본 실시예에서는 Y형 프로브의 우측은 조사하고자 하는 표적유전자의 순방향에서 돌연변이 부위 검색용 프로브를 조성하고, 좌측에는 표적유전자의 반대측 나선(antisense-strand)에서 돌연변이가 없는 부분을 선택하여 내부 대조 프로브(internal control probe)를 조성한다. 이 때 우측에 돌연변이 여부를 검사하고자 하는 염기 별로 A, C, G, T의 각각의 염기를 분석할 수 있는 특이한 프로브를 만들며, 이 때 변이 부위의 염기를 프로브의 중심부위에 두고, 프로브의 길이는 짧게 15 내지 25b로 하여 제작하고, 이를 집적하여 마아크로어레이를 만든다. 검체에서 DNA를 분리, 표적유전자인 K-RAS의 변이를 조사하는 순방향에 대해서는 Cy-3를 표지하고, 반대측 나선의 대조 유전자 서열에 대해서는 Cy-5 등 다른 형광을 표지하면서 PCR을 수행한다. 이후 마이크로어레이 위에 올려 놓고 하이브리디제이션을 한 후 스캐너로 형광 시그널을 분석한다. 이 때 앞의 실시예에서와 같이 백그라운드 노이즈 대비 대조 프로브의 시그널을 정상화 처리하고, 마찬가지로 검사용 프로브의 시그널도 정상 처리하여 분석한다.
14.1. 프로브의 준비와 DNA 마이크로어레이의 제작
상기한 바에 따라 본 발명의 Y자형 프로브를 하기 표 19와 같이 제작하였다. 코돈 12에 대해 정상형 1개, 변이형 6개에 대해 프로브를 조성하였으며, 별개로 양성 대조 프로브도 1개 추가로 조성하였다.
Figure pat00033

14.2. 검체준비와 DNA 분리 및 PCR
각 검체에서 DNA를 분리 정제한 후 형광다이를 넣으면서 PCR을 수행하였다. 돌연변이 분석용의 센스 가닥은 Cy-3로 표지하고, 대조 유전자용의 안티센스 가닥은 Cy-5로 표지하여 하나의 PCR을 수행하면, 표적 유전자에서 변이를 보고자 하는 부위는 Cy-3가 붙어서 증폭이 되며, 안티센스 가닥의 대조 부위 유전자는 Cy-5가 붙어서 증폭된다. PCR의 프라이머의 서열은 정방향 프라이머는 5'-Cy-5-GACTGAATATAAACTTGTGG-3' 역방향 프라이머는 5'-Cy-3-CTATTGTTGGATCATATTCG-3'로 하였고, 하나의 튜브에 넣고 PCR을 수행하였다. PCR은 초기 변성(initial denaturation) 을 96℃에서 3분한 후 35cycle만큼 증폭하였으며, 각 반응은 94℃에서 30초, 58℃에서 30초, 72℃에서 30초씩으로 하였고, 최후의 연장(extension)은 72℃에서 5분간 하였다.
14.3. 하이브리디제이션 반응 및 분석
상기에서 얻어진 PCR 산물을 실시예 13에서와 같은 방법으로 하이브리디제이션 반응을 한 뒤 스캐너를 이용하여 분석하였다.
분석은 앞의 실시예에서 기술한 방법을 적용하였으며, 각 스팟에서 백그라운드 시그널을 제거한 후 Cy-5 대비 Cy-3의, 정상화 처리한 시그널의 Cy-5 대비 Cy 3의 시그널을 조사하고, 이에 의거하여 적정 한계치(cut off level)를 넘는 시그널을 보이는 스팟을 찾았다. 이것이 완전 일치 대조유전자(perfect match allele)가 된다. 이로써, 야생형인지 변이형인지 확인하고 정확한 염기를 파악할 수 할 수 있으며, 혼합형도 파악이 가능하다.
본 발명의 K-RAS 마이크로어레이는 스파이크 실험(spike experiment)에서 볼 때 검체 내에 정상형 유전자 대비 변이 유전자가 1%만 포함되어 있어도 확인이 가능하다.
이상에서 본 발명의 실시예를 통해 기술하였으나, 이는 어디까지나 예시일 뿐, 본 발명의 기술사상을 훼손하지 않는 범위에서 다양한 변형과 변경이 가능하다는 사실은 당업자에게는 자명할 것이다. 또한 그와 같은 변형과 변경은 모두 본 발명의 권리범위에 속한다는 점은 첨부된 청구의 범위를 통하여 보다 명백해질 것이다.
<110> GOODGENE INC. MOON, Woo Chul <120> Y Shaped Probe, Variant thereof and DNA Microarray, Kit and Genetic Analysis Method Using The Same <130> KR10P0152 <160> 272 <170> KopatentIn 1.71 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer HBB H1 <400> 1 acacaactgt gttcactagc 20 <210> 2 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer for HBB H2 <400> 2 caaacttcat ccacgttcac c 21 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for HPV L1 <400> 3 gcmcagggwc ataayaatgg 20 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for HPV L1 <400> 4 aataaactgt aaatcatatt cctc 24 <210> 5 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV6 <400> 5 cggcagactt ctcctcccct aanttagggg catccgtaac tacatcttcc a 51 <210> 6 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV7 <400> 6 cggcagactt ctcctcccct aanttaggga caccaacacc atatgacaat a 51 <210> 7 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV10 <400> 7 cggcagactt ctcctcccct aanttagggg cctcccctgc cactacg 47 <210> 8 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV11 <400> 8 cggcagactt ctcctcccct aanttaggga tttgctgggg aaaccac 47 <210> 9 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV16 <400> 9 cggcagactt ctcctcccct aanttagggt gccatatcta cttcagaaac t 51 <210> 10 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV18 <400> 10 cggcagactt ctcctcccct aanttagggt ctacacagtc tccgtacctg 50 <210> 11 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV26 <400> 11 cggcagactt ctcctcccct aanttaggga ttatctgcag catctgcatc c 51 <210> 12 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV27 <400> 12 cggcagactt ctcctcccct aanttagggc agctgaggtg tctgataata ctaat 55 <210> 13 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV30 <400> 13 cggcagactt ctcctcccct aanttaggga accacacaaa cgttatcca 49 <210> 14 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV31 <400> 14 cggcagactt ctcctcccct aanttagggc tgcaattgca aacagtgata c 51 <210> 15 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV32 <400> 15 cggcagactt ctcctcccct aanttagggg acacatacaa gtctactaac ttta 54 <210> 16 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV33 <400> 16 cggcagactt ctcctcccct aanttagggg cacacaagta actagtgaca gtac 54 <210> 17 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV34 <400> 17 cggcagactt ctcctcccct aanttagggc cacaagtaca actgcacc 48 <210> 18 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV35 <400> 18 cggcagactt ctcctcccct aanttagggt ctgctgtgtc ttctagtgac agta 54 <210> 19 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV39 <400> 19 cggcagactt ctcctcccct aanttaggga cctctataga gtcttccata ccttctac 58 <210> 20 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV40 <400> 20 cggcagactt ctcctcccct aanttaggga gtcccccaca ccaac 45 <210> 21 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV42 <400> 21 cggcagactt ctcctcccct aanttagggc actgcaacat ctggtga 47 <210> 22 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV43 <400> 22 cggcagactt ctcctcccct aanttagggg cccagtacat atgacaatgc a 51 <210> 23 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV44 <400> 23 cggcagactt ctcctcccct aanttagggt acacagtccc ctccgtc 47 <210> 24 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV45 <400> 24 cggcagactt ctcctcccct aanttagggc acaaaatcct gtgccaag 48 <210> 25 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV51 <400> 25 cggcagactt ctcctcccct aanttagggg gtttccccaa catttactc 49 <210> 26 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV52 <400> 26 cggcagactt ctcctcccct aanttagggg ctgaggttaa aaaggaaagc a 51 <210> 27 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV53 <400> 27 cggcagactt ctcctcccct aanttagggc gcaaccacac agtctatgtc ta 52 <210> 28 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV54 <400> 28 cggcagactt ctcctcccct aanttagggt acagcatcca cgcagg 46 <210> 29 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV55 <400> 29 cggcagactt ctcctcccct aanttagggc tacaactcag tctccatcta caa 53 <210> 30 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV56 <400> 30 cggcagactt ctcctcccct aanttagggg actattagta ctgctacaga acagttaagt 60 aaa 63 <210> 31 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV57 <400> 31 cggcagactt ctcctcccct aanttagggc cactgtaacc acagaaacta att 53 <210> 32 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV58 <400> 32 cggcagactt ctcctcccct aanttagggt gcactgaagt aactaaggaa gg 52 <210> 33 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV59 <400> 33 cggcagactt ctcctcccct aanttagggt ctattcctaa tgtatacaca cctaccag 58 <210> 34 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV61 <400> 34 cggcagactt ctcctcccct aanttagggt gctacatccc cccctgtat 49 <210> 35 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV62 <400> 35 cggcagactt ctcctcccct aanttaggga ctatttgtac cgcctccac 49 <210> 36 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV66 <400> 36 cggcagactt ctcctcccct aanttaggga atgcagctaa aagcacatta actaa 55 <210> 37 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV67 <400> 37 cggcagactt ctcctcccct aanttaggga aaatcagagg ctacatacaa aa 52 <210> 38 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV68b <400> 38 cggcagactt ctcctcccct aanttagggc tactactact gaatcagctg taccaaatat 60 60 <210> 39 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV68a <400> 39 cggcagactt ctcctcccct aanttagggc agactctact gtaccagctg tg 52 <210> 40 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV69 <400> 40 cggcagactt ctcctcccct aanttagggc acaatctgca tctgccactt ttaa 54 <210> 41 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV70 <400> 41 cggcagactt ctcctcccct aanttagggc cgaaacggcc atacct 46 <210> 42 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV72 <400> 42 cggcagactt ctcctcccct aanttagggc acagcgtcct ctgtatcaga 50 <210> 43 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV73 <400> 43 cggcagactt ctcctcccct aanttaggga ggtacacagg ctagtagctc tactac 56 <210> 44 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV81 <400> 44 cggcagactt ctcctcccct aanttagggg ctacatctgc tgctgcaga 49 <210> 45 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV82 <400> 45 cggcagactt ctcctcccct aanttagggc tccagcaaac tttaagca 48 <210> 46 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV83 <400> 46 cggcagactt ctcctcccct aanttagggt gctgctacac aggctaatga 50 <210> 47 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV84 <400> 47 cggcagactt ctcctcccct aanttaggga ccgaatcaga atataaacct accaat 56 <210> 48 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV90 <400> 48 cggcagactt ctcctcccct aanttaggga caaacaccct ctgacacata ca 52 <210> 49 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPV91 <400> 49 cggcagactt ctcctcccct aanttagggt ctgtgctacc tactacatat gacaaca 57 <210> 50 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for HPVU <400> 50 cggcagactt ctcctcccct aanttagggt tgttgggdta atcagttgtt tgttactgt 59 <210> 51 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> Probe for Neisseria Gonorrhea <400> 51 caacaaacga aagcagactt agagaccccc taanttaggg gatatttttc cgtaacgtct 60 ctaagtct 68 <210> 52 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> Probe for Chlamydia Trachomatis <400> 52 gttcgttgta gagccatgtc ctatccccct aanttagggt tttcttcgtc agttaaacct 60 tccc 64 <210> 53 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Probe for Herpes Simplex Virus <400> 53 gcccccgggg tcggaagccc ctaanttagg gaccccacca gcccggac 48 <210> 54 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for Treponema Pallidum <400> 54 acgtaaggta agcagcatgg agacccctaa nttagggacg tgcagaaaaa ctatcctcag 60 tg 62 <210> 55 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> Probe for Hemophilus Ducreyi <400> 55 gaagatatta cgcggtatta gctacacccc taanttaggg gtgagtaatg cttgggaatc 60 tggctt 66 <210> 56 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H1N1 <400> 56 cagaaattcc aattgtcaac caactcccta anttagggtg cttatgtctc tgtagtgtct 60 tc 62 <210> 57 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H1N2 <400> 57 tacaagttcc attgatacaa acgcccctaa nttagggtgc ttatgtctct gtagtgtctt 60 c 61 <210> 58 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H1N3 <400> 58 cccttccaat tgtccctaca taccctaant tagggtgctt atgtctctgt agtgtcttc 59 <210> 59 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H1N4 <400> 59 caaatatccc actacataca tatcccccta anttagggtg cttatgtctc tgtagtgtct 60 tc 62 <210> 60 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H1N5 <400> 60 ccattccaat tatctcggca aaccccctaa nttagggtgc ttatgtctct gtagtgtctt 60 c 61 <210> 61 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H1N6 <400> 61 tgagtcctta atatatttcc tgccccctaa nttagggtgc ttatgtctct gtagtgtctt 60 c 61 <210> 62 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H1N7 <400> 62 cctgcattag gtattttcaa catccctaan ttagggtgct tatgtctctg tagtgtcttc 60 60 <210> 63 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H1N8 <400> 63 ccacacatca caatggagct ccctaantta gggtgcttat gtctctgtag tgtcttc 57 <210> 64 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H1N9 <400> 64 ttgtatagtg tgggtggtga tgaccctaan ttagggtgct tatgtctctg tagtgtcttc 60 60 <210> 65 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H2N1 <400> 65 cagaaattcc aattgtcaac caactcccta anttagggac atcaacactg aataagaggt 60 c 61 <210> 66 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H2N2 <400> 66 tacaagttcc attgatacaa acgcccctaa nttagggaca tcaacactga ataagaggtc 60 60 <210> 67 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H2N3 <400> 67 cccttccaat tgtccctaca taccctaant tagggacatc aacactgaat aagaggtc 58 <210> 68 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H2N4 <400> 68 caaatatccc actacataca tatcccccta anttagggac atcaacactg aataagaggt 60 c 61 <210> 69 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H2N5 <400> 69 ccattccaat tatctcggca aaccccctaa nttagggaca tcaacactga ataagaggtc 60 60 <210> 70 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H2N6 <400> 70 tgagtcctta atatatttcc tgccccctaa nttagggaca tcaacactga ataagaggtc 60 60 <210> 71 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H2N7 <400> 71 cctgcattag gtattttcaa catccctaan ttagggacat caacactgaa taagaggtc 59 <210> 72 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H2N8 <400> 72 ccacacatca caatggagct ccctaantta gggacatcaa cactgaataa gaggtc 56 <210> 73 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H2N9 <400> 73 ttgtatagtg tgggtggtga tgaccctaan ttagggacat caacactgaa taagaggtc 59 <210> 74 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H3N1 <400> 74 cagaaattcc aattgtcaac caactcccta anttagggcc tcggggttac ttcaaaatac 60 g 61 <210> 75 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H3N2 <400> 75 tacaagttcc attgatacaa acgcccctaa nttagggcct cggggttact tcaaaatacg 60 60 <210> 76 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H3N3 <400> 76 cccttccaat tgtccctaca taccctaant tagggcctcg gggttacttc aaaatacg 58 <210> 77 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H3N4 <400> 77 caaatatccc actacataca tatcccccta anttagggcc tcggggttac ttcaaaatac 60 g 61 <210> 78 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H3N5 <400> 78 ccattccaat tatctcggca aaccccctaa nttagggcct cggggttact tcaaaatacg 60 60 <210> 79 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H3N6 <400> 79 tgagtcctta atatatttcc tgccccctaa nttagggcct cggggttact tcaaaatacg 60 60 <210> 80 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H3N7 <400> 80 cctgcattag gtattttcaa catccctaan ttagggcctc ggggttactt caaaatacg 59 <210> 81 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H3N8 <400> 81 ccacacatca caatggagct ccctaantta gggcctcggg gttacttcaa aatacg 56 <210> 82 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H3N9 <400> 82 ttgtatagtg tgggtggtga tgaccctaan ttagggcctc ggggttactt caaaatacg 59 <210> 83 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H4N1 <400> 83 cagaaattcc aattgtcaac caactcccta anttagggga caaaggtcaa caatgggga 59 <210> 84 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H4N2 <400> 84 tacaagttcc attgatacaa acgcccctaa nttaggggac aaaggtcaac aatgggga 58 <210> 85 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H4N3 <400> 85 cccttccaat tgtccctaca taccctaant taggggacaa aggtcaacaa tgggga 56 <210> 86 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H4N4 <400> 86 caaatatccc actacataca tatcccccta anttagggga caaaggtcaa caatgggga 59 <210> 87 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H4N5 <400> 87 ccattccaat tatctcggca aaccccctaa nttaggggac aaaggtcaac aatgggga 58 <210> 88 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H4N6 <400> 88 tgagtcctta atatatttcc tgccccctaa nttaggggac aaaggtcaac aatgggga 58 <210> 89 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H4N7 <400> 89 cctgcattag gtattttcaa catccctaan ttaggggaca aaggtcaaca atgggga 57 <210> 90 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H4N8 <400> 90 ccacacatca caatggagct ccctaantta ggggacaaag gtcaacaatg ggga 54 <210> 91 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H4N9 <400> 91 ttgtatagtg tgggtggtga tgaccctaan ttaggggaca aaggtcaaca atgggga 57 <210> 92 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H5N1 <400> 92 cagaaattcc aattgtcaac caactcccta anttaggggt caccaataag gtcaactcga 60 tc 62 <210> 93 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H5N2 <400> 93 tacaagttcc attgatacaa acgcccctaa nttaggggtc accaataagg tcaactcgat 60 c 61 <210> 94 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H5N3 <400> 94 cccttccaat tgtccctaca taccctaant taggggtcac caataaggtc aactcgatc 59 <210> 95 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H5N4 <400> 95 caaatatccc actacataca tatcccccta anttaggggt caccaataag gtcaactcga 60 tc 62 <210> 96 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H5N5 <400> 96 ccattccaat tatctcggca aaccccctaa nttaggggtc accaataagg tcaactcgat 60 c 61 <210> 97 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H5N6 <400> 97 tgagtcctta atatatttcc tgccccctaa nttaggggtc accaataagg tcaactcgat 60 c 61 <210> 98 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H5N7 <400> 98 cctgcattag gtattttcaa catccctaan ttaggggtca ccaataaggt caactcgatc 60 60 <210> 99 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H5N8 <400> 99 ccacacatca caatggagct ccctaantta ggggtcacca ataaggtcaa ctcgatc 57 <210> 100 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H5N9 <400> 100 ttgtatagtg tgggtggtga tgaccctaan ttaggggtca ccaataaggt caactcgatc 60 60 <210> 101 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H6N1 <400> 101 cagaaattcc aattgtcaac caactcccta anttagggtg agatgtttcc caaaagtaca 60 tgg 63 <210> 102 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H6N2 <400> 102 tacaagttcc attgatacaa acgcccctaa nttagggtga gatgtttccc aaaagtacat 60 gg 62 <210> 103 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H6N3 <400> 103 cccttccaat tgtccctaca taccctaant tagggtgaga tgtttcccaa aagtacatgg 60 60 <210> 104 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H6N4 <400> 104 caaatatccc actacataca tatcccccta anttagggtg agatgtttcc caaaagtaca 60 tgg 63 <210> 105 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H6N5 <400> 105 ccattccaat tatctcggca aaccccctaa nttagggtga gatgtttccc aaaagtacat 60 gg 62 <210> 106 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H6N6 <400> 106 tgagtcctta atatatttcc tgccccctaa nttagggtga gatgtttccc aaaagtacat 60 gg 62 <210> 107 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H6N7 <400> 107 cctgcattag gtattttcaa catccctaan ttagggtgag atgtttccca aaagtacatg 60 g 61 <210> 108 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H6N8 <400> 108 ccacacatca caatggagct ccctaantta gggtgagatg tttcccaaaa gtacatgg 58 <210> 109 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H6N9 <400> 109 ttgtatagtg tgggtggtga tgaccctaan ttagggtgag atgtttccca aaagtacatg 60 g 61 <210> 110 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H7N1 <400> 110 cagaaattcc aattgtcaac caactcccta anttagggca gaccaaactc tatggaagtg 60 ga 62 <210> 111 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H7N2 <400> 111 tacaagttcc attgatacaa acgcccctaa nttagggcag accaaactct atggaagtgg 60 a 61 <210> 112 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H7N3 <400> 112 cccttccaat tgtccctaca taccctaant tagggcagac caaactctat ggaagtgga 59 <210> 113 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H7N4 <400> 113 caaatatccc actacataca tatcccccta anttagggca gaccaaactc tatggaagtg 60 ga 62 <210> 114 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H7N5 <400> 114 ccattccaat tatctcggca aaccccctaa nttagggcag accaaactct atggaagtgg 60 a 61 <210> 115 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H7N6 <400> 115 tgagtcctta atatatttcc tgccccctaa nttagggcag accaaactct atggaagtgg 60 a 61 <210> 116 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H7N7 <400> 116 cctgcattag gtattttcaa catccctaan ttagggcaga ccaaactcta tggaagtgga 60 60 <210> 117 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H7N8 <400> 117 ccacacatca caatggagct ccctaantta gggcagacca aactctatgg aagtgga 57 <210> 118 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H7N9 <400> 118 ttgtatagtg tgggtggtga tgaccctaan ttagggcaga ccaaactcta tggaagtgga 60 60 <210> 119 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H8N1 <400> 119 cagaaattcc aattgtcaac caactcccta anttagggtg gagacatcat tttcttatgg 60 g 61 <210> 120 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H8N2 <400> 120 tacaagttcc attgatacaa acgcccctaa nttagggtgg agacatcatt ttcttatggg 60 60 <210> 121 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H8N3 <400> 121 cccttccaat tgtccctaca taccctaant tagggtggag acatcatttt cttatggg 58 <210> 122 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H8N4 <400> 122 caaatatccc actacataca tatcccccta anttagggtg gagacatcat tttcttatgg 60 g 61 <210> 123 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H8N5 <400> 123 ccattccaat tatctcggca aaccccctaa nttagggtgg agacatcatt ttcttatggg 60 60 <210> 124 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H8N6 <400> 124 tgagtcctta atatatttcc tgccccctaa nttagggtgg agacatcatt ttcttatggg 60 60 <210> 125 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H8N7 <400> 125 cctgcattag gtattttcaa catccctaan ttagggtgga gacatcattt tcttatggg 59 <210> 126 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H8N8 <400> 126 ccacacatca caatggagct ccctaantta gggtggagac atcattttct tatggg 56 <210> 127 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H8N9 <400> 127 ttgtatagtg tgggtggtga tgaccctaan ttagggtgga gacatcattt tcttatggg 59 <210> 128 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H9N1 <400> 128 cagaaattcc aattgtcaac caactcccta anttagggca agacgcccaa tacacaaata 60 at 62 <210> 129 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H9N2 <400> 129 tacaagttcc attgatacaa acgcccctaa nttagggcaa gacgcccaat acacaaataa 60 t 61 <210> 130 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H9N3 <400> 130 cccttccaat tgtccctaca taccctaant tagggcaaga cgcccaatac acaaataat 59 <210> 131 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H9N4 <400> 131 caaatatccc actacataca tatcccccta anttagggca agacgcccaa tacacaaata 60 at 62 <210> 132 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H9N5 <400> 132 ccattccaat tatctcggca aaccccctaa nttagggcaa gacgcccaat acacaaataa 60 t 61 <210> 133 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H9N6 <400> 133 tgagtcctta atatatttcc tgccccctaa nttagggcaa gacgcccaat acacaaataa 60 t 61 <210> 134 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H9N7 <400> 134 cctgcattag gtattttcaa catccctaan ttagggcaag acgcccaata cacaaataat 60 60 <210> 135 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H9N8 <400> 135 ccacacatca caatggagct ccctaantta gggcaagacg cccaatacac aaataat 57 <210> 136 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H9N9 <400> 136 ttgtatagtg tgggtggtga tgaccctaan ttagggcaag acgcccaata cacaaataat 60 60 <210> 137 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H10N1 <400> 137 cagaaattcc aattgtcaac caactcccta anttagggaa aacaactttg tgcctgtggt 60 60 <210> 138 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H10N2 <400> 138 tacaagttcc attgatacaa acgcccctaa nttagggaaa acaactttgt gcctgtggt 59 <210> 139 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H10N3 <400> 139 cccttccaat tgtccctaca taccctaant tagggaaaac aactttgtgc ctgtggt 57 <210> 140 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H10N4 <400> 140 caaatatccc actacataca tatcccccta anttagggaa aacaactttg tgcctgtggt 60 60 <210> 141 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H10N5 <400> 141 ccattccaat tatctcggca aaccccctaa nttagggaaa acaactttgt gcctgtggt 59 <210> 142 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H10N6 <400> 142 tgagtcctta atatatttcc tgccccctaa nttagggaaa acaactttgt gcctgtggt 59 <210> 143 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H10N7 <400> 143 cctgcattag gtattttcaa catccctaan ttagggaaaa caactttgtg cctgtggt 58 <210> 144 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H10N8 <400> 144 ccacacatca caatggagct ccctaantta gggaaaacaa ctttgtgcct gtggt 55 <210> 145 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H10N9 <400> 145 ttgtatagtg tgggtggtga tgaccctaan ttagggaaaa caactttgtg cctgtggt 58 <210> 146 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H11N1 <400> 146 cagaaattcc aattgtcaac caactcccta anttagggca gtgaaataga ggagaggata 60 aacc 64 <210> 147 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H11N2 <400> 147 tacaagttcc attgatacaa acgcccctaa nttagggcag tgaaatagag gagaggataa 60 acc 63 <210> 148 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H11N3 <400> 148 cccttccaat tgtccctaca taccctaant tagggcagtg aaatagagga gaggataaac 60 c 61 <210> 149 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H11N4 <400> 149 caaatatccc actacataca tatcccccta anttagggca gtgaaataga ggagaggata 60 aacc 64 <210> 150 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H11N5 <400> 150 ccattccaat tatctcggca aaccccctaa nttagggcag tgaaatagag gagaggataa 60 acc 63 <210> 151 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H11N6 <400> 151 tgagtcctta atatatttcc tgccccctaa nttagggcag tgaaatagag gagaggataa 60 acc 63 <210> 152 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H11N7 <400> 152 cctgcattag gtattttcaa catccctaan ttagggcagt gaaatagagg agaggataaa 60 cc 62 <210> 153 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H11N8 <400> 153 ccacacatca caatggagct ccctaantta gggcagtgaa atagaggaga ggataaacc 59 <210> 154 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H11N9 <400> 154 ttgtatagtg tgggtggtga tgaccctaan ttagggcagt gaaatagagg agaggataaa 60 cc 62 <210> 155 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H12N1 <400> 155 cagaaattcc aattgtcaac caactcccta anttagggta atcacaggga aatcacatgg 60 c 61 <210> 156 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H12N2 <400> 156 tacaagttcc attgatacaa acgcccctaa nttagggtaa tcacagggaa atcacatggc 60 60 <210> 157 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H12N3 <400> 157 cccttccaat tgtccctaca taccctaant tagggtaatc acagggaaat cacatggc 58 <210> 158 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H12N4 <400> 158 caaatatccc actacataca tatcccccta anttagggta atcacaggga aatcacatgg 60 c 61 <210> 159 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H12N5 <400> 159 ccattccaat tatctcggca aaccccctaa nttagggtaa tcacagggaa atcacatggc 60 60 <210> 160 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H12N6 <400> 160 tgagtcctta atatatttcc tgccccctaa nttagggtaa tcacagggaa atcacatggc 60 60 <210> 161 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H12N7 <400> 161 cctgcattag gtattttcaa catccctaan ttagggtaat cacagggaaa tcacatggc 59 <210> 162 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H12N8 <400> 162 ccacacatca caatggagct ccctaantta gggtaatcac agggaaatca catggc 56 <210> 163 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H12N9 <400> 163 ttgtatagtg tgggtggtga tgaccctaan ttagggtaat cacagggaaa tcacatggc 59 <210> 164 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H13N1 <400> 164 cagaaattcc aattgtcaac caactcccta anttaggggg atgaagattt actggtattt 60 gatg 64 <210> 165 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H13N2 <400> 165 tacaagttcc attgatacaa acgcccctaa nttaggggga tgaagattta ctggtatttg 60 atg 63 <210> 166 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H13N3 <400> 166 cccttccaat tgtccctaca taccctaant tagggggatg aagatttact ggtatttgat 60 g 61 <210> 167 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H13N4 <400> 167 caaatatccc actacataca tatcccccta anttaggggg atgaagattt actggtattt 60 gatg 64 <210> 168 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H13N5 <400> 168 ccattccaat tatctcggca aaccccctaa nttaggggga tgaagattta ctggtatttg 60 atg 63 <210> 169 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H13N6 <400> 169 tgagtcctta atatatttcc tgccccctaa nttaggggga tgaagattta ctggtatttg 60 atg 63 <210> 170 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H13N7 <400> 170 cctgcattag gtattttcaa catccctaan ttagggggat gaagatttac tggtatttga 60 tg 62 <210> 171 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H13N8 <400> 171 ccacacatca caatggagct ccctaantta gggggatgaa gatttactgg tatttgatg 59 <210> 172 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H13N9 <400> 172 ttgtatagtg tgggtggtga tgaccctaan ttagggggat gaagatttac tggtatttga 60 tg 62 <210> 173 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H14N1 <400> 173 cagaaattcc aattgtcaac caactcccta anttagggcc atcaagcgat aatgagcaaa 60 c 61 <210> 174 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H14N2 <400> 174 tacaagttcc attgatacaa acgcccctaa nttagggcca tcaagcgata atgagcaaac 60 60 <210> 175 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H14N3 <400> 175 cccttccaat tgtccctaca taccctaant tagggccatc aagcgataat gagcaaac 58 <210> 176 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H14N4 <400> 176 caaatatccc actacataca tatcccccta anttagggcc atcaagcgat aatgagcaaa 60 c 61 <210> 177 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H14N5 <400> 177 ccattccaat tatctcggca aaccccctaa nttagggcca tcaagcgata atgagcaaac 60 60 <210> 178 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H14N6 <400> 178 tgagtcctta atatatttcc tgccccctaa nttagggcca tcaagcgata atgagcaaac 60 60 <210> 179 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H14N7 <400> 179 cctgcattag gtattttcaa catccctaan ttagggccat caagcgataa tgagcaaac 59 <210> 180 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H14N8 <400> 180 ccacacatca caatggagct ccctaantta gggccatcaa gcgataatga gcaaac 56 <210> 181 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H14N9 <400> 181 ttgtatagtg tgggtggtga tgaccctaan ttagggccat caagcgataa tgagcaaac 59 <210> 182 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H15N1 <400> 182 cagaaattcc aattgtcaac caactcccta anttaggggc atacaattga ccttgcagat 60 tc 62 <210> 183 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H15N2 <400> 183 tacaagttcc attgatacaa acgcccctaa nttaggggca tacaattgac cttgcagatt 60 c 61 <210> 184 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H15N3 <400> 184 cccttccaat tgtccctaca taccctaant taggggcata caattgacct tgcagattc 59 <210> 185 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H15N4 <400> 185 caaatatccc actacataca tatcccccta anttaggggc atacaattga ccttgcagat 60 tc 62 <210> 186 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H15N5 <400> 186 ccattccaat tatctcggca aaccccctaa nttaggggca tacaattgac cttgcagatt 60 c 61 <210> 187 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H15N6 <400> 187 tgagtcctta atatatttcc tgccccctaa nttaggggca tacaattgac cttgcagatt 60 c 61 <210> 188 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H15N7 <400> 188 cctgcattag gtattttcaa catccctaan ttaggggcat acaattgacc ttgcagattc 60 60 <210> 189 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H15N8 <400> 189 ccacacatca caatggagct ccctaantta ggggcataca attgaccttg cagattc 57 <210> 190 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H15N9 <400> 190 ttgtatagtg tgggtggtga tgaccctaan ttaggggcat acaattgacc ttgcagattc 60 60 <210> 191 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H16N1 <400> 191 cagaaattcc aattgtcaac caactcccta anttagggga cagaacatta gacctgcatg 60 at 62 <210> 192 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H16N2 <400> 192 tacaagttcc attgatacaa acgcccctaa nttaggggac agaacattag acctgcatga 60 t 61 <210> 193 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H16N3 <400> 193 cccttccaat tgtccctaca taccctaant taggggacag aacattagac ctgcatgat 59 <210> 194 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H16N4 <400> 194 caaatatccc actacataca tatcccccta anttagggga cagaacatta gacctgcatg 60 at 62 <210> 195 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H16N5 <400> 195 ccattccaat tatctcggca aaccccctaa nttaggggac agaacattag acctgcatga 60 t 61 <210> 196 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H16N6 <400> 196 tgagtcctta atatatttcc tgccccctaa nttaggggac agaacattag acctgcatga 60 t 61 <210> 197 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H16N7 <400> 197 cctgcattag gtattttcaa catccctaan ttaggggaca gaacattaga cctgcatgat 60 60 <210> 198 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H16N8 <400> 198 ccacacatca caatggagct ccctaantta ggggacagaa cattagacct gcatgat 57 <210> 199 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for Influenza A Virus H16N9 <400> 199 ttgtatagtg tgggtggtga tgaccctaan ttaggggaca gaacattaga cctgcatgat 60 60 <210> 200 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for Influenza A <400> 200 gaccratcct gtcacctctg ac 22 <210> 201 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for Influenza A <400> 201 agggcattyt ggacaaakcg tcta 24 <210> 202 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for Swine Influenza A <400> 202 gcacggtcag cacttatyct rag 23 <210> 203 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for Swine Influenza A <400> 203 gtgrgctggg ttttcatttg gtc 23 <210> 204 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for Swine H1 <400> 204 gtgctataaa caccagccty cca 23 <210> 205 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for Swine H1 <400> 205 cgggatattc cttaatcctg trgc 24 <210> 206 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for RNase P <400> 206 agatttggac ctgcgagcg 19 <210> 207 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for RNase P <400> 207 gagcggctgt ctccacaagt 20 <210> 208 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for Influenza A H1H3 <400> 208 ggdaatytaa twgcdcc 17 <210> 209 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for Influenza A H1H3 <400> 209 ggkayrtttc tyagdcctgt 20 <210> 210 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for Influenza A N1N2 <400> 210 achcargagt cdgaatg 17 <210> 211 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for Influenza A N1N2 <400> 211 gagccwtkcc arttrtcyct gca 23 <210> 212 <211> 165 <212> DNA <213> Artificial Sequence <220> <223> Probe for beta-actin <400> 212 gtcgatatcc tgcaacgttc cgctgacatc accaccgcca aattgctcca acaccgtctc 60 ggcagcgctc cctaacccta anttagggtt agggcctggc acccagcaca atgaagatca 120 agatcattgc tcctcctgag cgcaagtact ccgtgtggat cggcg 165 <210> 213 <211> 165 <212> DNA <213> Artificial Sequence <220> <223> Probe for EGFR <400> 213 ggtcgatatc ctgcaacgtt ccgctgacat caccaccgcc aaattgctcc aacaccgtct 60 cggcagcgct ccctaaccct aanttagggt tagggagcca ggaacgtact ggtgaaaaca 120 ccgcagcatg tcaagatcac agattttggg ctggccaaac tgctg 165 <210> 214 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for beta-actin <400> 214 agcctcgcct ttgccga 17 <210> 215 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for beta-actin <400> 215 ctggtgcctg gggcg 15 <210> 216 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe for beta-actin <400> 216 ccgccgcccg tccacacccg cc 22 <210> 217 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for EGFR <400> 217 cgcagatagt cgcccaaagt t 21 <210> 218 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for EGFR <400> 218 gcattctttc atccccctga a 21 <210> 219 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe for EGFR <400> 219 cccgagaccc ccagcgctac c 21 <210> 220 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> Probe for wild ACE <400> 220 gccttgagct ccagccctta gcccctaacc ctaanttagg gttagggcca aagtgctggg 60 attacaggcg tgata 75 <210> 221 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> Probe for ACE snp <400> 221 gccttgagct ccagccctta gcccctaacc ctaanttagg gttaggggac ctgctgccta 60 tacagtcact ttt 73 <210> 222 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> Probe for wild ADRB2 <400> 222 ggacgatgag agacatgacg accctaaccc taanttaggg ttagggtcac gcagcaaagg 60 gac 63 <210> 223 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> Probe for ADRB2 snp <400> 223 ggacgatgag agacatgacg accctaaccc taanttaggg ttagggtcac gcaggaaagg 60 gac 63 <210> 224 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Probe for wild Apo E <400> 224 aggtgggagg cgaggcccta accctaantt agggttaggg aggacgtgtg cggccgc 57 <210> 225 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Probe for Apo E snp <400> 225 aggtgggagg cgaggcccta accctaantt agggttaggg gaggacgtgc gcggccg 57 <210> 226 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Probe for wild Apo E <400> 226 aggtgggagg cgaggcccta accctaantt agggttaggg tgcagaagcg cctggca 57 <210> 227 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> Probe for Apo E snp <400> 227 aggtgggagg cgaggcccta accctaantt agggttaggg tgcagaagtg cctggca 57 <210> 228 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for wild CETP <400> 228 ctatacctgg ctgtttgccc ctaaccctaa nttagggtta gggtggggtt cgagttaggg 60 60 <210> 229 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for CETP snp <400> 229 ctatacctgg ctgtttgccc ctaaccctaa nttagggtta gggtggggtt caagttaggg 60 60 <210> 230 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for wild CFH <400> 230 acgtctatag atttaccccc ctaaccctaa nttagggtta gggcaaaatc atggaagaaa 60 60 <210> 231 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for CFH snp <400> 231 acgtctatag atttaccccc ctaaccctaa nttagggtta gggcaaaatc acggaagaaa 60 60 <210> 232 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for wild ESR1 <400> 232 acatactacc tgcaccagaa ccctaaccct aanttagggt taggggtccc agctgtttta 60 tg 62 <210> 233 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for ESR1 snp <400> 233 acatactacc tgcaccagaa ccctaaccct aanttagggt taggggtccc agccgtttta 60 tg 62 <210> 234 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for wild IL1A <400> 234 ccctcaatca aagtataacc ctaaccctaa nttagggtta gggaaaaggt gctgacctag 60 60 <210> 235 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for IL1A snp <400> 235 ccctcaatca aagtataacc ctaaccctaa nttagggtta gggaaaaggt gatgacctag 60 60 <210> 236 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for wild MTHFR <400> 236 tcacctggat gggaaagacc ctaaccctaa nttagggtta gggtgcggga gccgatttca 60 60 <210> 237 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Probe for MTHFR snp <400> 237 tcacctggat gggaaagacc ctaaccctaa nttagggtta gggtgcggga gtcgatttca 60 60 <210> 238 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for wild NOS3 <400> 238 tttcctgccc tctctttcct ccctaaccct aanttagggt tagggtgagg ctggtgacta 60 aa 62 <210> 239 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> Probe for NOS3 snp <400> 239 tttcctgccc tctctttcct ccctaaccct aanttagggt tagggtgagg ctgttgacta 60 aa 62 <210> 240 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for ACE <400> 240 ctggagagcc actcccatcc tttct 25 <210> 241 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for ACE <400> 241 gacgtggcca tcacattcgt cagat 25 <210> 242 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for ADRB2 <400> 242 cttcttgctg gcacccaat 19 <210> 243 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for ADRB2 <400> 243 caggccagtg aagtgatgaa 20 <210> 244 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for Apo E <400> 244 aatcggaact ggaggaacaa c 21 <210> 245 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for Apo E <400> 245 ggcctggtac actgcca 17 <210> 246 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for CETP <400> 246 ctcgccttca aggtcaagt 19 <210> 247 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for CETP <400> 247 tggctcagat ctgaacccta 20 <210> 248 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for CFH <400> 248 tcattgttat ggtccttagg aaa 23 <210> 249 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for CFH <400> 249 actgtggtct gcgcttttg 19 <210> 250 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for ESR1 <400> 250 atccagggtt atgtggcaat 20 <210> 251 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for ESR1 <400> 251 tccttggcag attccatagc 20 <210> 252 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for IL1A <400> 252 aatgaaagga ggggaggatg acagaaatgt 30 <210> 253 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for IL1A <400> 253 atggttttag aaatcatcaa gcctaggtca 30 <210> 254 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for MTHFR <400> 254 aggactctct ctgcccagtc 20 <210> 255 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for MTHFR <400> 255 ggaagaactc agcgaactca 20 <210> 256 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for NOS3 <400> 256 cccctgagtc atctaagtat tc 22 <210> 257 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for NOS3 <400> 257 agctctggca cagtcaag 18 <210> 258 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Probe for wild K-ras <400> 258 ccctaaccct aanttagggt tagggggagc tggtggcgta 40 <210> 259 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Probe for mutant K-ras <400> 259 ccctaaccct aanttagggt tagggggagc tagtggcgta 40 <210> 260 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Probe for mutant K-ras <400> 260 ccctaaccct aanttagggt tagggggagc tcgtggcgta 40 <210> 261 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Probe for mutant K-ras <400> 261 ccctaaccct aanttagggt tagggggagc ttgtggcgta 40 <210> 262 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Probe for mutant K-ras <400> 262 ccctaaccct aanttagggt tagggggagc tgatggcgta 40 <210> 263 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> Probe for mutant K-ras <400> 263 ccctaaccct aanttagggt tagggtggag ctgctggcgt a 41 <210> 264 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Probe for mutant K-ras <400> 264 ccctaaccct aanttagggt tagggggagc tgttggcgta 40 <210> 265 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> Probe for Positive Control <400> 265 ccctaaccct aanttagggt taggggcctt gacgatacag cta 43 <210> 266 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Probe for wild K-ras <400> 266 tagctgtatc gtcaaggccc ctaaccctaa nttagggtta gggggagctg gtggcgta 58 <210> 267 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Probe for mutant K-ras <400> 267 tagctgtatc gtcaaggccc ctaaccctaa nttagggtta gggggagcta gtggcgta 58 <210> 268 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Probe for mutant K-ras <400> 268 tagctgtatc gtcaaggccc ctaaccctaa nttagggtta gggggagctc gtggcgta 58 <210> 269 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Probe for mutant K-ras <400> 269 tagctgtatc gtcaaggccc ctaaccctaa nttagggtta gggggagctt gtggcgta 58 <210> 270 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Probe for mutant K-ras <400> 270 tagctgtatc gtcaaggccc ctaaccctaa nttagggtta gggggagctg atggcgta 58 <210> 271 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Probe for mutant K-ras <400> 271 tagctgtatc gtcaaggccc ctaaccctaa nttagggtta gggtggagct gctggcgta 59 <210> 272 <211> 58 <212> DNA <213> Artificial Sequence <220> <223> Probe for mutant K-ras <400> 272 tagctgtatc gtcaaggccc ctaaccctaa nttagggtta gggggagctg ttggcgta 58

Claims (47)

  1. 하나의 몸체에 2개의 프로브 부위를 가지는 Y자형의 뉴클레오티드 프로브.
  2. 제 1 항에 있어서, 상기 프로브는 5'->3'의 방향으로 그리고 좌측 상방에서 우측 상방의 방향으로 차례로, (1)좌측 프로브 부위, (2)좌측 줄기 부위, (3)링커 부위, (4)우측 줄기 부위 및 (5)우측 프로브 부위로 이루어지는 것을 특징으로 하는 프로브.
  3. 제 2 항에 따른 프로브의 (1)좌측 프로브 부위는 제거되고, (2)좌측 줄기 부위, (3)링커 부위, (4)우측 줄기 부위 및 (5)우측 프로브 부위로 이루어지는 d자형의 뉴클레오티드 프로브.
  4. 제 2 항에 따른 프로브의 (5)우측 프로브 부위는 제거되고, (1)좌측 프로브 부위, (2)좌측 줄기 부위, (3)링커 부위 및 (4)우측 줄기 부위로 이루어지는 b자형의 뉴클레오티드 프로브.
  5. 제 2 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 좌측 줄기 부위와 우측 줄기 부위는 서로 상보적인 염기서열을 가지는 올리고뉴클레오티드로 결합한 구조이며, 상기 좌측 줄기 부위 또는 우측 줄기 부위는 각각에 대한 전체의 염기서열중 G 염기가 절반 이상 포함되는 것을 특징으로 하는 프로브.
  6. 제 2 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 좌측 줄기 부위와 우측 줄기 부위는 서로 상보적인 염기서열을 가지는 올리고뉴클레오티드로 결합한 구조이며, 줄기 부위의 염기서열이 텔로미어의 염기서열을 포함하는 것을 특징으로 하는 프로브.
  7. 제 5 항에 있어서, 상기 좌측 줄기 부위 또는 우측 줄기 부위는 하기의 염기단위체로 이루어지는 군으로부터 선택되는 염기 단위체가 1회 이상 반복되어 이루어지는 것을 특징으로 하는 프로브:
    TTGGG,
    TAGGG,
    TTGGGG,
    TTTGGG,
    TTAGGG,
    TTTGGGG,
    TTTAGGG,
    TTTTGGGG,
    TTTAGGGG.
  8. 제 2 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 좌측 프로브 부위 또는 우측 프로브 부위는 표적 유전자에 상보적인 염기서열을 가지는 올리고뉴클레오티드인 것을 특징으로 하는 프로브.
  9. 제 2 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 좌측 프로브 부위 또는 우측 프로브 부위는 15개 내지 150개의 염기서열을 가지는 올리고뉴클레오티드인 것을 특징으로 하는 프로브.
  10. 제 2 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 좌측 프로브 부위는 상방에서 하방의 염기서열이 5'->3'의 순서로 배열되고, 상기 우측 프로브 부위는 하방에서 상방의 염기서열이 5'->3'의 순서로 배열되는 것을 특징으로 하는 프로브.
  11. 제 2 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 링커 부위는 알데히드 코딩된 고체 지지체에 결합하기 위하여, 아미노 변형 디데옥시티미딘으로서 C6dT, C3dT, C12dT 또는 C18dT로 구성되는 것을 특징으로 하는 프로브.
  12. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 프로브는 펩티드핵산(PNA)으로 이루어지는 것을 특징으로 하는 프로브.
  13. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 프로브는 1)디트리틸레이션 단계(detritylation), 2)커플링 단계(coupling), 3)캐핑 단계(capping) 및 4)산화 단계(oxidation)를 포함하는 합성방법에 의해 제조되는 것을 특징으로 하는 프로브.
  14. 제 1 항 또는 제 2 항에 있어서, 상기 좌측 프로브 부위와 우측 프로브 부위는, 하나의 표적 유전자내의 2개의 서로 다른 부위에 대해 각각 상보적인 염기서열을 가지는 올리고뉴클레오티드로 각각 이루어지는 것을 특징으로 하는 프로브.
  15. 제 1 항 또는 제 2 항에 있어서, 상기 좌측 프로브 부위와 우측 프로브 부위는, 하나의 표적 유전자내의 동일한 부위에 대해 상보적인 염기서열을 가지는 올리고뉴클레오티드로 각각 이루어지는 것을 특징으로 하는 프로브.
  16. 제 1 항 또는 제 2 항에 있어서, 상기 좌측 프로브 부위와 우측 프로브 부위는, 서로 다른 표적 유전자에 대해 각각 상보적인 염기서열을 가지는 올리고뉴클레오티드로 각각 이루어지는 것을 특징으로 하는 프로브.
  17. 제 1 항 또는 제 2 항에 있어서, 상기 좌측 프로브 부위와 우측 프로브 부위 중의 한쪽 프로브 부위는 표적 유전자에 대해 상보적인 염기서열을 가지는 올리고뉴클레오티드로, 나머지 한쪽 프로브 부위는 대조 유전자에 대해 상보적인 염기서열을 가지는 올리고뉴클레오티드로 이루어지는 것을 특징으로 하는 프로브.
  18. 제 17 항에 있어서, 상기 대조 유전자는 표적 유전자와 상보성이 없고, 검체에서 존재 또는 발현되지 않는 것을 특징으로 하는 프로브.
  19. 제 17 항에 있어서, 상기 대조 유전자는 대장균의 motD 유전자인 것을 특징으로 하는 프로브.
  20. 제 1 항 또는 제 2 항에 있어서, 상기 프로브는 서열번호 5 내지 50 중 하나 이상의 염기서열을 갖는 올리고뉴클레오티드인 것을 특징으로 하는 프로브.
  21. 제 1 항 내지 제 4 항 중 어느 한 항의 프로브가 고형 지지체에 집적 (spotting)되어 이루어지는 DNA 마이크로어레이.
  22. 제 21 항에 있어서, 상기 고형 지지체는 유리슬라이드, 비드, 마이크로플레이트 웰, 실리콘 웨이퍼 및 나일론 멤브레인으로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 DNA 마이크로어레이.
  23. 제 21 항에 있어서, 상기 DNA 마이크로어레이는 인간 베타글로빈 유전자가 더 집적되어 있는 것을 특징으로 하는 DNA 마이크로어레이.
  24. 제 21 항에 있어서, 상기 프로브의 집적부위로서의 웰(well)이 8개로 구획되어 있는 것을 특징으로 하는 DNA 마이크로어레이.
  25. 제 21 항에 있어서, 상기 프로브는 서열번호 5 내지 50 중 하나 이상의 염기서열을 갖는 올리고뉴클레오티드로 이루어지고, HPV의 탐지 및 유전자형 분석용인 것을 특징으로 하는 DNA 마이크로어레이.
  26. 제 25 항에 있어서, 상기 프로브는, 5' 말단이 Cy5로 표지된 서열번호 4의 염기서열을 갖는 올리고뉴클레오티드 프라이머와, 5' 말단이 Cy3로 표지된 서열번호 1의 염기서열을 갖는 올리고뉴클레오티드 프라이머와 상보적으로 결합하는 것을 특징으로 하는 DNA 마이크로어레이.
  27. 제 21 항에 있어서, 상기 프로브는 서열번호 51 내지 55 중 하나 이상의 염기서열을 갖는 올리고뉴클레오티드로 이루어지고, 성감염 질환(STD)의 원인균으로서 각각 임균(NG), 클라미디아 트라코마티스(CT), 헤르페스 심플렉스 바이러스(HSV), 트레포네마 팔리둠(TP) 및 헤모필러스 듀클레이(HD) 균의 탐지 및 유전자형 분석용인 것을 특징으로 하는 DNA 마이크로어레이.
  28. 제 21 항에 있어서, 상기 프로브는 서열번호 56 내지 199 중 하나 이상의 염기서열을 갖는 올리고뉴클레오티드로 이루어지고, 인플루엔자 A형 바이러스의 탐지 및 유전자형 분석용인 것을 특징으로 하는 DNA 마이크로어레이.
  29. 제 21 항에 있어서, 상기 프로브는 서열번호 212 내지 213의 염기서열을 갖는 올리고뉴클레오티드로 이루어지고, β-액틴과 상피세포 성장인자 수용체(EGFR)유전자의 발현 분석용인 것을 특징으로 하는 DNA 마이크로어레이.
  30. 제 21 항에 있어서, 상기 프로브는 좌측 프로브 부위와 우측 프로브 부위 중 어느 한쪽이 표적 핵산의 센스 가닥의 단일 뉴클레오티드 다형성(SNP) 부위에 대해 상보적인 올리고뉴클레오티드로 이루어지고, 나머지 한쪽이 표적 핵산의 안티센스 가닥의 SNP 부위가 없는 부위에 대해 상보적인 올리고뉴클레오티드로 이루어지고, SNP 분석용인 것을 특징으로 하는 DNA 마이크로어레이.
  31. 제 30 항에 있어서, 상기 프로브는 서열번호 220 내지 239 중 하나 이상의 염기서열을 갖는 올리고뉴클레오티드로 이루어지고, ACE, ADRB2, Apo E, CETP, CFH, ESR1, IL1A, MTHFR 또는 NOS3 유전자의 SNP 분석용인 것을 특징으로 하는 DNA 마이크로어레이.
  32. 제 21 항에 있어서, 상기 프로브는 서열번호 258 내지 272 중 하나 이상의 염기서열을 갖는 올리고뉴클레오티드로 이루어지고, K-ras 유전자의 돌연변이 분석용인 것을 특징으로 하는 DNA 마이크로어레이.
  33. 제 21 항에 있어서, 상기 d자형 프로브는 우측 프로브 부위가 A, C, G 또는 T의 점돌연변이에 상보적인 염기서열을 갖는 올리고뉴클레오티드로 이루어지고, 이때 점돌연변이에 상보적인 염기를 우측 프로브 부위의 중심부위에 위치시키고, 우측 프로브 부위의 길이는 15 내지 30bp이며, 점돌연변이 분석용인 것을 특징으로 하는 DNA 마이크로어레이.
  34. 제 21 항의 DNA 마이크로어레이, 검체의 표적 유전자에 대한 PCR 반응용 프라이머 세트와 버퍼, 및 하이브리디제이션 반응용 버퍼를 포함하는 검체의 유전자 분석용 키트.
  35. 제 34 항에 있어서, 상기 PCR 반응용 프라이머 세트는 인플루엔자 A형 바이러스의 유전자 증폭용으로서, 서열번호 208 내지 211 중에서 선택되는 염기서열을 갖는 올리고뉴클레오티드인 것을 특징으로 하는 키트.
  36. 제 34 항에 있어서, 상기 PCR 반응용 프라이머 세트는 β-액틴과 EGFR 유전자의 정량형 실시간 PCR용으로서, 각가 서열번호 214 및 215, 서열번호 217 및 218의 염기서열을 갖는 올리고뉴클레오티드인 것을 특징으로 하는 키트.
  37. 제 34 항에 있어서, 상기 PCR 반응용 프라이머 세트는 SNP 검출용으로서, 서열번호 240 내지 257 중에서 2개 이상 선택되는 염기서열을 갖는 올리고뉴클레오티드인 것을 특징으로 하는 키트.
  38. 제 34 항에 있어서, 상기 키트는 질병의 진단, 예방, 예측 또는 맞춤치료용인 것을 특징으로 하는 키트.
  39. 제 21 항의 DNA 마이크로어레이 위에, 표지물질로 표지된 검체의 표적 핵산을 올려놓고, 상기 프로브와 표적 핵산을 하이브리디제이션시키는 단계를 포함하는 유전자 분석방법.
  40. 제 39 항에 있어서, 상기 표지물질은 Cy3, Cy5, Cy5.5, Bodipy, Alexa 488, Alexa 532, Alexa 546, Alexa 568, Alexa 594, Alexa 660, 로다민(Rhodamine), TAMRA, FAM, FITC, Fluor X, ROX, Texas Red, Orange green 488X, Orange green 514X, HEX, TET, JOE, Oyster 556, Oyster 645, Bodipy 630/650, Bodipy 650/665, Calfluor Orange 546, Calfluor red 610, Quasar 670 및 비오틴으로 이루어지는 군으로부터 하나 이상 선택되는 것을 특징으로 하는 유전자 분석방법.
  41. 제 39 항에 있어서, 상기 표적 핵산은 PCR, RT-PCR 또는 시험관내 전사(in vitro transcription) 방법을 이용하여 표지물질로 표지되는 것을 특징으로 하는 유전자 분석방법.
  42. 제 39 항에 있어서, 상기 하이브리디제이션 반응 후에 형광스캐너를 이용하여 표지물질의 시그널을 분석하여, 표적 핵산의 발현정도를 조사하는 단계를 더 포함하는 것을 특징으로 하는 유전자 분석방법.
  43. 제 42 항에 있어서, 상기 시그널 분석은 정상화 과정(normalization)을 거쳐 분석하는 것을 특징으로 하는 유전자 분석방법.
  44. 제 43 항에 있어서, 상기 정상화 과정은, 각 스팟에서 백그라운드의 노이즈 시그널을 제외하여 Cy5와 Cy3의 시그널을 조사하고, 다시 하우스키핑 유전자로서 β-액틴 유전자의 Cy3 시그널과 비교하는 3중의 정상화 과정인 것을 특징으로 하는 유전자 분석방법.
  45. 제 39 항에 있어서, 상기 표적 핵산은 DNA, RNA, cDNA 및 cRNA로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 유전자 분석방법.
  46. 제 45 항에 있어서, 상기 cDNA는 RT-PCT을 통해 Cy3로 표지시키고, 상기 cRNA는 시험관내 전사를 통해 Cy3로 표지시키는 것을 특징으로 하는 유전자 분석방법.
  47. 제 46 항에 있어서, 상기 Cy3로 표지된 cDNA 또는 cRNA에, 외부 대조물질(external control)로서 대장균의 motD 유전자를 Cy5로 표지시킨 것을 혼합하여 얻은 혼합물을 하이브리디제이션시키는 것을 특징으로 하는 유전자 분석방법.
KR1020100018008A 2010-02-26 2010-02-26 Y형 프로브 및 이것의 변형형, 및 이를 이용한 dna 마이크로어레이, 키트 및 유전자 분석방법 KR101177320B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020100018008A KR101177320B1 (ko) 2010-02-26 2010-02-26 Y형 프로브 및 이것의 변형형, 및 이를 이용한 dna 마이크로어레이, 키트 및 유전자 분석방법
PCT/KR2010/001878 WO2011105654A1 (ko) 2010-02-26 2010-03-26 Y형 프로브 및 이것의 변형형, 및 이를 이용한 dna 마이크로어레이, 키트 및 유전자 분석방법
CN201080066318.XA CN103097533B (zh) 2010-02-26 2010-03-26 Y型探针及其变形型及利用该y型探针的dna微陈列、试剂盒以及基因分析方法
US13/581,371 US20130237427A1 (en) 2010-02-26 2010-03-26 Y-shaped probe and variant thereof, and dna microarray, kit and genetic analysis method using the same
JP2012554886A JP2013520195A (ja) 2010-02-26 2010-03-26 Y字型プローブ及びその変形型、並びこれを利用したdnaマイクロアレイ、キット及び遺伝子分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100018008A KR101177320B1 (ko) 2010-02-26 2010-02-26 Y형 프로브 및 이것의 변형형, 및 이를 이용한 dna 마이크로어레이, 키트 및 유전자 분석방법

Publications (2)

Publication Number Publication Date
KR20110098405A true KR20110098405A (ko) 2011-09-01
KR101177320B1 KR101177320B1 (ko) 2012-09-10

Family

ID=44507041

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100018008A KR101177320B1 (ko) 2010-02-26 2010-02-26 Y형 프로브 및 이것의 변형형, 및 이를 이용한 dna 마이크로어레이, 키트 및 유전자 분석방법

Country Status (5)

Country Link
US (1) US20130237427A1 (ko)
JP (1) JP2013520195A (ko)
KR (1) KR101177320B1 (ko)
CN (1) CN103097533B (ko)
WO (1) WO2011105654A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013074601A1 (en) * 2011-11-14 2013-05-23 Carnegie Mellon University Center For Technology Transfer & Enterprise Gamma-pna miniprobes for fluorescent labeling
KR20180057608A (ko) * 2015-07-29 2018-05-30 아이폼 - 폰다지오네 이스티튜토 에프아이알씨 디 온콜로지아 몰레콜레르 치료용 올리고뉴클레오타이드
KR20190016609A (ko) * 2011-12-22 2019-02-18 에프. 호프만-라 로슈 아게 분석물질 농도의 결정 방법
KR20190046881A (ko) * 2016-09-15 2019-05-07 에프. 호프만-라 로슈 아게 멀티플렉스 pcr 수행 방법

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940815A (zh) * 2014-05-05 2014-07-23 福州大学 一种y型结构核酸比色传感器及其应用
KR101689390B1 (ko) * 2014-06-03 2016-12-23 주식회사 피피디 Hpv, 클라미디아 트라코마티스 및 임질균 동시 분자진단키트
CN105349703A (zh) * 2015-12-09 2016-02-24 菲鹏生物股份有限公司 甲型h1n1流感病毒核酸的定性检测试剂盒
KR101936934B1 (ko) * 2016-11-29 2019-01-09 연세대학교 산학협력단 염기서열의 변이 검출방법 및 이를 이용한 염기서열의 변이 검출 디바이스
ES2946791T3 (es) * 2017-03-03 2023-07-26 Univ La Frontera Kit de detección de enfermedades de transmisión sexual silentes (etss) en muestra de orina
CN108004299B (zh) * 2017-10-23 2021-07-06 济南海湾生物工程有限公司 一种使用基因组dna测定端粒长度的荧光定量原位杂交(q-fish)方法
CN110157774B (zh) * 2019-05-23 2023-04-11 山东师范大学 一种dna功能化纳米金探针及其检测端粒酶的应用
CN111978342B (zh) * 2020-09-10 2021-04-13 四川大学华西医院 一种靶向egfr的荧光淬灭探针及其制备方法与应用
CN113774055B (zh) * 2021-09-16 2024-05-10 湖南大学 核酸纳米凝胶及其制备方法和应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639603A (en) * 1991-09-18 1997-06-17 Affymax Technologies N.V. Synthesizing and screening molecular diversity
US6399304B1 (en) * 1996-12-20 2002-06-04 Roche Diagnostics Gmbh Sequential activation of one or more enzymatic activities within a thermocycling reaction for synthesizing DNA molecules
EP1299557B1 (en) * 2000-06-30 2007-10-03 Qiagen GmbH Signal amplification with lollipop probes
WO2002034949A2 (en) 2000-10-27 2002-05-02 Molecular Staging Inc. Methods for identifying genes associated with diseases or specific phenotypes
WO2002061133A2 (en) * 2000-11-09 2002-08-08 Yale University Nucleic acid detection using structured probes
JP2004187606A (ja) 2002-12-12 2004-07-08 Institute Of Physical & Chemical Research 核酸アイソフォームの同定、分析および/またはクローニング方法
KR100650162B1 (ko) * 2003-08-05 2006-11-27 주식회사 진인 품질 관리 프로브 및 음성 조절 프로브를 함유하는 약제내성 b형 간염 바이러스 검출용 마이크로어레이 및 이를이용한 약제 내성 b형 간염 바이러스의 검출 방법
JP2006029954A (ja) * 2004-07-15 2006-02-02 Olympus Corp 生体関連物質検出用プローブ及び生体関連物質検出用固相化担体、並びに生体関連物質検出方法
CN101225432A (zh) * 2007-01-17 2008-07-23 富阳市金信投资有限公司 核酸三联探针和核酸四联探针
CN101016570B (zh) * 2007-02-13 2011-08-31 厦门大学 H5亚型禽流感病毒核酸检测方法及其试剂盒

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013074601A1 (en) * 2011-11-14 2013-05-23 Carnegie Mellon University Center For Technology Transfer & Enterprise Gamma-pna miniprobes for fluorescent labeling
US9926592B2 (en) 2011-11-14 2018-03-27 Carnegie Mellon University Gamma-PNA miniprobes for fluorescent labeling
KR20190016609A (ko) * 2011-12-22 2019-02-18 에프. 호프만-라 로슈 아게 분석물질 농도의 결정 방법
KR20180057608A (ko) * 2015-07-29 2018-05-30 아이폼 - 폰다지오네 이스티튜토 에프아이알씨 디 온콜로지아 몰레콜레르 치료용 올리고뉴클레오타이드
KR20190046881A (ko) * 2016-09-15 2019-05-07 에프. 호프만-라 로슈 아게 멀티플렉스 pcr 수행 방법
KR20190046880A (ko) * 2016-09-15 2019-05-07 에프. 호프만-라 로슈 아게 멀티플렉스 실시간 pcr 수행 방법

Also Published As

Publication number Publication date
WO2011105654A1 (ko) 2011-09-01
US20130237427A1 (en) 2013-09-12
JP2013520195A (ja) 2013-06-06
KR101177320B1 (ko) 2012-09-10
CN103097533A (zh) 2013-05-08
CN103097533B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
KR101177320B1 (ko) Y형 프로브 및 이것의 변형형, 및 이를 이용한 dna 마이크로어레이, 키트 및 유전자 분석방법
US11326204B2 (en) Assays for single molecule detection and use thereof
CA2542787C (en) Method and kit for primer based multiplex amplification of nucleic acids
US20080003565A1 (en) Viral nucleic acid microarray and method of use
US20090226888A1 (en) Diagnostic Primers And Method For Detecting Avian Influenza Virus Subtype H5 And H5N1
CA2823627C (en) Materials and methods for genotyping and quantifying a high-risk human papillomavirus
JP2009502190A (ja) 臨床試料中のヒトパピローマウイルスの同定用のinvitro診断キット
Oh et al. Polymerase chain reaction‐based fluorescent Luminex assay to detect the presence of human papillomavirus types
US8841069B2 (en) Dendron-mediated DNA virus detection
US20180023138A1 (en) Assays for Single Molecule Detection and Use Thereof
KR101018407B1 (ko) 인유두종 바이러스 진단용 프로브 및 그 유전자형 확인방법
KR101623489B1 (ko) 성인성 질환의 원인균 탐지용 고감도 프로브 및 이를 포함하는 키트
WO2006132601A1 (en) Diagnostic primers and method for detecting avian influenza virus subtype h5 and h5n1
WO2012175013A1 (zh) 用于确定人体具有异常状态的系统和方法
JP2013529898A (ja) 標的遺伝子の多様な変異が存在する遺伝子領域を増幅するためのプライマー組成物
EP2453022A1 (en) Method for detection or analysis of target sequence in genomic dna
JP5898831B2 (ja) ヒトパピローマウイルスの検出
WO2021027706A1 (zh) 捕获核酸分子的方法、核酸文库的制备方法及测序方法
JP2023534457A (ja) マクロライド耐性Mycoplasma genitaliumの検出
Kamau-Gatogo Development of RNA microchip for pathogen and cancer direct detection

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150819

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160801

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170807

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180808

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190807

Year of fee payment: 8