KR20110044170A - 진공 펌프 - Google Patents

진공 펌프 Download PDF

Info

Publication number
KR20110044170A
KR20110044170A KR1020107026873A KR20107026873A KR20110044170A KR 20110044170 A KR20110044170 A KR 20110044170A KR 1020107026873 A KR1020107026873 A KR 1020107026873A KR 20107026873 A KR20107026873 A KR 20107026873A KR 20110044170 A KR20110044170 A KR 20110044170A
Authority
KR
South Korea
Prior art keywords
temperature
rotor
temperature sensor
sensor
stator
Prior art date
Application number
KR1020107026873A
Other languages
English (en)
Inventor
마나부 노나카
요시유키 사카구치
Original Assignee
에드워즈 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에드워즈 가부시키가이샤 filed Critical 에드워즈 가부시키가이샤
Publication of KR20110044170A publication Critical patent/KR20110044170A/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0292Stop safety or alarm devices, e.g. stop-and-go control; Disposition of check-valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/04Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies
    • G01K13/08Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies in rotary movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

진공 펌프에 있어서, 로터의 온도를 보다 간편한 방법으로 보다 정확하게 검출하는 것을 목적으로 하는 것으로서, 서미스터(51)를, 폴리이미드의 필름 등의 박막에 의해 프레임(53)에 고정한 센서 유닛을, 온도 검출의 대상인 로터부에 대향한 상태에서 스테이터에 배치한다. 또한, 측정상 무시할 수 없는 제1 온도 센서로부터 프레임이나 스테이터 등으로의 열의 유출의 존재를 전제로 하여, 그 영향을 다른 온도 센서로 검출함으로서, 제1 온도 센서의 온도 저하나 온도 상승을 보상하고, 보다 정확한 로터 온도를 추정한다. 즉, 제1 온도 센서에 대해, 제2 온도 센서 또는 제2, 제3 온도 센서를 배치함으로써, 제1 온도 센서에 의한 제1 검출치와, 제2 온도 센서(및 제3 온도 센서)에 의한 제2 검출치(및 제3 검출치)로부터, 로터부의 온도를 추정한다.

Description

진공 펌프{VACUUM PUMP}
본 발명은, 예를 들면, 터보 분자 펌프 등의 진공 용기의 배기 처리를 행하는 진공 펌프에 관한 것이다.
터보 분자 펌프 등의 진공 펌프에서는, 고속으로 회전하는 회전날개 등의 회전부(로터부)가, 프로세스 가스의 배기에 의해, 100도를 넘어서 150도 정도의 고온으로 되는 경우가 있다.
로터부가 고온으로 된 상태에서 고속 회전을 계속시키면 크리프 현상에 의한 로터의 내구성이 문제가 된다.
이 때문에, 로터부의 온도를 측정하는 것이 반드시 필요하다. 그리고, 로터는 고속 회전하고 있으므로, 온도의 측정은 접촉식의 센서가 아니라, 비접촉식의 온도 센서를 사용하여 측정할 필요가 있다.
비접촉으로 로터의 온도를 측정하는 방법으로는, 서모파일, 집전 센서 등의 적외선 온도 센서를 이용하여 측정하는 방법이나, 하기의 특허문헌 1에 제안되어 있는 방법 등이 있다.
특허문헌 1에 기재된 방법에서는, 로터에 복사열 발생면을 설치하고, 그 대향면에 복사열 흡수면을 설치하고, 그 온도를 측정함으로써 회전날개의 온도를 추정한다.
특허문헌 1 : 일본국 특개평 11-37087호 공보
그러나, 적외선 온도 센서를 이용하는 방법의 경우, 센서를 회전날개 근방에 설치하면, 센서 자체의 온도 변화에 의해 센서의 온도 특성이 변화하고, 출력값도 변동하기 때문에, 정확한 측정이 어렵다고 하는 문제가 있다.
적외선 온도 센서를 측정 대상으로부터 이간시켜 설치함으로써 온도에 의한 영향을 적게 하는 것은 가능하지만, 측정 대상물(로터) 이외로부터의 적외선 입사를 방지하기 위한 광학계나, 적외선을 센서까지 도광하는 광 파이버가 필요하게 되어, 비용이 높아진다는 과제가 있다.
한편, 특허문헌 1에 기재된 복사열 발생면을 설치하는 경우, 복사열 흡수면과 이를 고정하는 지지체와의 열전도때문에, 복사열 흡수면의 온도가 회전날개 온도보다도 저하하여, 측정 정밀도가 저하한다고 하는 과제가 있다.
여기에서 본 발명은, 진공 펌프에 있어서, 회전부의 온도를 보다 간편한 방법으로 보다 정확하게 검출하는 것을 목적으로 한다.
(1) 상기 목적을 달성하기 위해서, 청구항 1에 기재된 발명에서는, 흡기구와 배기구를 구비한 외장체와, 상기 외장체 내에 설치된 고정부와, 상기 외장체 내에 회전가능하게 지지된 샤프트와, 상기 샤프트에 배치되고, 상기 흡기구로부터 상기 배기구로 기체를 이송하는 기체 이송 기구가 설치된 로터를 구비하고, 상기 고정부와의 사이에 소정의 공극을 개재하여 배치된 회전부와, 상기 샤프트를 회전시키는 모터와, 1개가 상기 로터에 대향 배치된, 적어도 2개의 비접촉식의 온도 센서를 가지는 온도 검출 수단과, 상기 온도 검출 수단에 의한 각 온도 센서의 출력치로부터 상기 로터의 온도를 추정하는 온도 추정 수단을 구비하는 것을 특징으로 하는 진공 펌프를 제공한다.
(2) 청구항 2에 기재된 발명에서는, 상기 온도 검출 수단은, 프레임체와, 상기 프레임체의 한쪽의 면에 배치된 고정 부재와, 상기 고정 부재에 고정된 온도 센서를 구비하는, 제1 센서 유닛과 제2 센서 유닛으로 구성되고, 상기 고정 부재와 프레임체의 적어도 한쪽의 열전도량이, 제1 센서 유닛과 제2 센서 유닛에서 상이한 것을 특징으로 하는 청구항 1에 기재된 진공 펌프를 제공한다.
(3) 청구항 3에 기재된 발명에서는, 상기 온도 검출 수단은, 프레임체와, 상기 프레임체의 한쪽의 면에 배치된 고정 부재와, 상기 고정 부재에 고정된 제1 온도 센서와, 상기 프레임체에 고정된 제2 온도 센서 및 상기 고정부에 고정된 제3 온도 센서의 적어도 한쪽의 온도 센서를 구비하는 센서 유닛으로 구성되어 있는 것을 특징으로 하는 청구항 1에 기재된 진공 펌프를 제공한다.
(4) 청구항 4에 기재된 발명에서는, 상기 온도 검출 수단은, 상기 배기구 근방의 상기 로터에 대향한 고정부에 배치되는 것을 특징으로 하는 청구항 1 내지 청구항 3중 어느 한 항에 기재된 진공 펌프를 제공한다.
(5) 청구항 5에 기재된 발명에서는, 상기 온도 검출 수단은, 상기 로터 내부의 공간을 유로로 하고, 상기 배기구로부터 유출하는 퍼지 가스의 유로 상에서, 상기 로터에 대향한 고정부에 배치되는 것을 특징으로 하는 청구항 1내지 청구항 3중 어느 한 항에 기재된 진공 펌프를 제공한다.
(6) 청구항 6에 기재된 발명에서는, 상기 온도 검출 수단은, 열 저항을 가지는 지지부를 가지고, 상기 적어도 2개의 비접촉식의 온도 센서가, 상기 지지부로 지지되어, 상기 로터에 대향한 상기 고정부에 배치되는 것을 특징으로 하는 청구항 1에 기재된 진공 펌프를 제공한다.
(7) 청구항 7에 기재된 발명에서는, 상기 온도 검출 수단은, 열 저항을 가지는 지지부를 가지고, 상기 적어도 2개의 비접촉식의 온도 센서 중 상기 로터에 대향 배치된 1개의 온도 센서가, 상기 지지부로 지지되어, 상기 로터에 대향한 상기 고정부에 배치되는 것을 특징으로 하는 청구항 1에 기재된 진공 펌프를 제공한다.
본 발명에 의하면, 1개가 로터에 대향 배치된, 적어도 2개의 비접촉식의 온도 센서를 가지는 온도 검출 수단에 의한 각 온도 센서의 출력치로부터 로터의 온도를 추정하므로, 로터의 온도를 보다 간편한 방법으로 보다 정확하게 검출할 수 있다.
도 1은 본 발명의 제1 실시 형태에 있어서의 센서 유닛의 구성도이다.
도 2는 제1 센서 유닛과 제2 센서 유닛에 의한 검출 온도로부터, 로터의 온도를 추정하는 방법에 대한 설명도이다.
도 3은 제2 실시 형태에 있어서의 센서 유닛의 구성도이다.
도 4는 제3 실시 형태에 있어서의 센서 유닛의 구성도이다.
도 5는 제4 실시 형태에 있어서의 센서 유닛의 구성도이다.
도 6은 본 실시 형태에 관련된 터보 분자 펌프의 개략 구성을 나타낸 도면이다.
도 7은 본 실시 형태에 있어서의 센서 유닛의 설치 장소를 나타낸 도면이다.
이하, 본 발명의 적합한 실시의 형태에 대해서 설명한다. 본 실시 형태에서는, 로터부의 온도를 검출하는 진공 펌프의 일예로서, 터보 분자 펌프를 이용하여 설명한다.
(1) 실시 형태의 개요
본 실시 형태의 터보 분자 펌프에서는, 저렴하고, 또한, 적외선 복사나 진공 중의 미소한 가스에 의한 열전도와 같은 미약한 열량 변화에도 정밀도좋게 열량의 감지가 가능한 제1 온도 센서로서 서미스터(thermistor)를 사용한다.
그러나, 제1 온도 센서의 온도는, 로터의 온도로 된 가스와 접촉해도, 센서 유닛이나 센서 유닛을 고정하는 스테이터의 온도에 따라 올라갔다 내려가므로, 측정 정밀도가 저하하게 된다. 구체적으로는, 회전날개 근방에 설치되는 제1 온도 센서의 출력치는, 로터로부터 받은 열량이 제1 온도 센서를 지지 부재를 통하여 설치부(스테이터)로 달아나므로, 로터 온도보다도 낮은 값이 되거나, 그 반대로 스테이터로부터의 흡열로 높은 값이 되기도 한다.
그리고, 이 이동하는 열량은 온도 센서와 스테이터의 온도차에 따라 변화한다.
분자 펌프의 스테이터는, 스테이터에 내장되어 있는 모터의 발열이나, 생성 반응물이 펌프 내에 부착되는 것을 방지하기 위해서 가온(加溫)하므로 온도가 크게 변화한다.
이 때문에, 스테이터의 온도 변화에 따라 온도 보상을 할 필요가 있다.
여기서, 온도 변화를 최대한 방지하기 위해서, 서미스터(제1 온도 센서)를, 수지의 필름 등의 박막(고정 부재)이나, 와이어에 의해 사각형의 프레임체(센서 프레임)에 고정한 센서 유닛(온도 검출 수단)을, 온도 검출의 대상인 로터부에 대향한 상태에서 스테이터에 배치한다.
또한, 측정상 무시할 수 없는 제1온도 센서에 대한 프레임이나 스테이터 등에 의한 열의 영향(프레임으로의/으로부터의 열의 흐름)의 존재를 전제로 하여, 그 영향을 다른 센서로 검출함으로써, 제1 온도 센서의 온도 저하나 온도 상승을 보상하여, 보다 정확한 로터 온도를 추정한다.
즉, 제1 온도 센서에 대하여, 제2 온도 센서,또는 제2, 제3 온도 센서를 배치함으로써, 제1 온도 센서에 의한 제1 검출치와, 제2 온도 센서(및 제3 온도 센서)에 의한 제2 검출치(및 제3 검출치)로부터, 로터부의 온도를 추정하는 것이다.
제1 실시 형태에서는, 방열, 흡열의 경로인 박막의 열전도(량)을 바꿈으로써, 양 온도 센서 자체의 출력 온도를 고의로 바꾸고, 그 차이로부터 추정하는 것이다.
즉, 제1 온도 센서와 동일 특성의 제2 온도 센서를 사용하고, 제1 온도 센서를 배치한 제1센서 유닛과 동일한 구성이지만, 제2 온도 센서로부터의(또는 제2 온도 센서로의) 열전도량이 다르게 설계된 제2 센서 유닛을 사용한다. 그리고, 제2 온도 센서도 로터에 대향 배치하도록 제2 센서 유닛을 스테이터에 설치한다. 제2 센서 유닛은 제1 센서 유닛에 근접 배치한다.
그리고, 제1 온도 센서와 제2 온도 센서의 검출치로부터 제1 온도 센서와 로터(온도 검출 대상물)의 사이의 차이를 추정함으로써, 로터의 온도를 검출한다.
제2 실시 형태에서는, 방열, 흡열의 경로 상에 다른 온도 센서를 설치하고, 그 검출 온도차를 이용하여 추정하는 것이다.
즉, 1개의 센서 유닛(제1 센서 유닛)을 사용하여, 이 센서 유닛의 프레임의 온도, 또는/및, 프레임의 부착부(스테이터)의 온도를 측정한다. 그리고, 제1 온도 센서와, 다른 센서의 검출 온도로부터, 제1 온도 센서의 측정치와 로터의 사이의 온도차를 추정함으로써, 로터의 온도를 검출한다.
(2) 실시 형태의 상세
도 1은, 본 실시 형태에 의한 센서 유닛(50)의 구성을 나타낸 도면이다.
이 도 1에 도시되는 바와같이, 센서 유닛(50)은, 제1 온도 센서(51)와, 제1 온도 센서(51)를 지지하는 박막(52)과, 이 박막을 지지하는 프레임(53)을 구비하고 있다.
본 실시 형태에 있어서 제1 온도 센서(51)는 서미스터를 사용하는데, 그 외 백금 저항체나 열전대를 사용해도 된다. 제1 온도 센서(51)에는, 2개의 리드선(54)이 접속되어 있다. 리드선(54)은, 후술하는 제어 장치(48)의 신호 처리 회로(도시하지 않는다)에 접속되어 있다.
제1 온도 센서(51)는, 박막(52)에 설치되고, 이 박막(52)을 통하여 피측정물인 로터(24)에 대향 배치되도록 되어 있다.
박막(52)은, 제1 온도 센서를 프레임(53)에 고정하기 위한 것으로, 수지 필름이 사용된다. 박막의 두께는 강도 유지할 수 있는 범위이면 열전도량을 적게 하기 위해서 얇은수록 바람직하고, 예를 들면, 두께 20∼30㎛정도의 수지 필름이 사용된다.
또한, 제1 온도 센서(51)를 프레임에 고정하기 위해서, 박막(52)을 대신해서 절연성의 와이어 2개(또는, 3개, 4개 등이어도 된다)를 사용함으로써, 열의 이동을 더욱 줄이도록 해도 된다. 또한, 강도를 보증할 수 있으면, 2개의 리드선(54)을 사용하여 프레임(53)에 고정하도록 해도 된다.
본 실시 형태의 프레임(53)은, 사각형이지만 다른 형, 예를 들면, 원형, 타원형 등이어도 된다. 또한, 본 실시 형태의 프레임(53)은, 수지로 형성되어 있다.
프레임(53)은, 그 두께 방향의 한쪽의 면에 박막(52)이 고정되고, 다른쪽의 면측이 고정부인 스테이터(70)에 고정되게 되어 있다.
제1 실시 형태에서는, 이와같이 구성된 제1 센서 유닛(50a)과 제2의 센서 유닛(50b)을 사용한다.
양 센서 유닛(50a, 50b)은, 동일한 특성의 온도 센서(51)가 사용되는데, 박막(52)의 열전도량이 양 센서 유닛에서 바뀌도록 설계되어 있다.
즉, 박막(52)의 열전도량을 바꾸는 방법으로서, 동일 프레임(53)을 사용하여 막 두께를 바꾸는 방법이나 막의 재질을 바꾸는 방법이 있다. 또한 프레임(53)의 사이즈를 바꿈으로써, 온도 센서(51)로부터 프레임(53)까지의 거리를 바꾸는 방법이어도 된다. 또한, 온도 센서(51)와 프레임(53)의 사이에 열절연체를 끼우도록 해도 된다.
다음에, 이와 같이 구성된 제1 센서 유닛(50a)과 제2 센서 유닛(50b)에 의한 검출 온도로부터, 로터(24)의 온도를 추정하는 방법에 대해서 도 2에 의해 설명한다.
또한, 제1 센서 유닛(50a)과 제2 센서 유닛(50b)은, 서로 근접하여 배치된다.
제1 온도 센서(51a)의 검출 온도를 T1, 제1 센서 유닛(50a)의 박막(52a)에 전해지는 열전도량(방열, 흡열량)을 Q1으로 하고, 제2 온도 센서(5lb)의 검출 온도를 T2, 제2 센서 유닛(50b)의 박막(52b)에 전해지는 열전도량(방열, 흡열량)을 Q2로 하면, 도 2에 도시되는 것과 같은, 온도―열전도량 특성이 얻어진다. 또한, 도 2는, 방열의 경우를 나타내고 있다.
또한, 구하고 싶은 온도(이상적으로 열절연된 온도 센서의 온도이며 스테이터의 온도)를 T0로 한 경우, T0-T1의 값을, T2-T1의 값으로부터 추정함으로써, T0을 구한다.
즉, 다음의 수식(1)으로부터 구하고 싶은 온도, 즉, 스테이터의 온도(T0)를 신호 처리 회로에서 산출한다.
또한, 수식 1에 있어서의 ξ은, 양 박막(52a, 52b)의 열전도량(Q1, Q2)으로부터 실험적으로 구해지는 정수이다.
T0=T1+ξ(T2-T1) … (1)
다음에, 제2 실시 형태에 의한, 센서 유닛(50)에 대해서 도 3을 참조하여 설명한다.
이 제2 실시 형태에서는, 제1 온도 센서(51a)에 추가하여 다른 온도 센서(제2 온도 센서(5lb) 또는/및, 제3 온도 센서(51c))를 1개의 센서 유닛(50)에 설치한 것이다.
도 3에 도시되는 바와같이, 센서 유닛(50)은, 제1 실시 형태와 마찬가지로, 박막(52)의 중앙부에 제1 온도 센서(51a)가 고정되어 있고, 박막(52)은 프레임(53)의 한쪽의 면에 고정되어 있다.
그리고, 제1 실시 형태와 달리, 제2 실시 형태에서는, 프레임(53)의 측면에 프레임(53)의 온도를 측정하는 제2 온도 센서(5lb)가 설치된다.
또한, 센서 유닛(50)이 설치되는 스테이터(70)에, 스테이터(70)의 온도를 측정하는 제3 온도 센서(51c)가 설치된다.
또한, 도 3에서 설명한 센서 유닛(50)에서는, 3개의 온도 센서(51)가 모두 동일한 특성의 서미스터가 사용되는데, 서로 다른 온도 센서를 사용하도록 해도 된다.
또한, 3개의 온도 센서(51)는, 박막(52), 프레임(53), 스테이터(70)로 둘러싸여진 내부에 배치하는 구성으로 되어 있다. 이에 따라, 제2 온도 센서(5lb), 제3 온도 센서(51c)는, 펌프 내를 흐르는 기체 분자에 의한 열의 영향을 받기 어려워져, 프레임 및 스테이터 자체의 온도를 측정할 수 있다.
단, 센서 유닛(50)은, 분자 펌프 로터(24)와 스테이터(70)간의 좁은 간극에 배치하므로, 가능한한 얇게 형성하는 것이 요망되고, 이를 위해 프레임의 두께도 얇게 할 필요가 있다.
여기에서, 제2 온도 센서(51b)를, 프레임(53)의 외주면에 배치하도록 해도 된다.
제3 온도 센서(51c)에 대해서는, 제1 온도 센서(51a)와 대향하지 않는(겹치지 않는) 프레임(53) 내의 영역에 배치하는데, 프레임(53)의 외측의 스테이터에 배치하도록 해도 된다. 이 경우, 프레임(53)에는 접촉시키지 않고, 가능한한 프레임(53)에 접근하여 배치한다.
도 3에서 설명한 센서 유닛(50)에서는, 제1 온도 센서(51a)에 추가하여 제2 온도 센서(5lb)와 제3 온도 센서(51c)를 배치한 구성에 대해서 설명했는데, 제2 온도 센서(51b), 제3 온도 센서(51c)의 어느 하나를 배치한 구성으로 해도 된다.
이하, 제1 온도 센서(51a)에 추가하여, 제3 온도 센서(51c)를 배치한 제1예, 제2 온도 센서(51b)를 배치한 제2예 및 제2 온도 센서(51b)와 제3 온도 센서(51c)를 배치한 제3예의 각 예에 대해서, 제1 온도 센서(51a)의 검출 온도를 다른 온도 센서의 검출 온도로 보상하는 온도 보상에 대해서 설명한다.
(A) 제2 실시 형태의 제1예(제2 온도 센서(51b)를 이용하지 않는 경우)
이 제1예에서, 가장 간단한 방법으로는, 스테이터(70)의 온도와 제1 온도 센서(51a)의 온도의 차이를 가지고 보상하는 것이다.
다음의 수식(2)에 의해, 로터의 온도(Te1)(제1 온도 센서(51a)에 의한 검출 온도의 보상치)를 산출한다.
수식 (2)에 있어서, 제1 온도 센서(51a)의 검출 온도가 T1, 제3 온도 센서(51c)의 검출 온도가 T3이다.
또한, η, ξ은, 로터(회전날개)(24)로부터 센서의 사이에 존재하는 가스의 열저항과, 제1 온도 센서(51a)로부터 스테이터(70)의 사이에 존재하는 가스 및 지지부(박막(52)과 프레임(53))의 열저항의 비율로 결정되는 계수이다.
Te1=η1×(T1+ξ1(T1-T3))-η2 … (2)
(B) 제2 실시 형태의 제2예, 제3예(제2 온도 센서(51b)를 이용하는 경우)
가스의 열전도율은, 온도 센서를 지지하는 고체 부품의 열전도율보다도 작기 때문에, 지지 부재를 경유한 열의 달아남(유출)이 지배적으로 된다. 이 온도 센서의 지지부는, 박과 프레임으로 나뉘어진다.
지지부를 통한 열의 달아남(Q)은, 진공 중이므로 지지부로부터 가스로의 방열이 무시할 수 있을 만큼 작다고 가정하면,
제1 온도 센서(51a)와 제3 온도 센서(51c)간의 지지부를 통한 열의 달아남 Q[A1-A3]은, 제1 온도 센서(51a)와 제2 온도 센서(51b)간의 열저항(박막(52)의 열 저항) R[A1-A2]과, 제2 온도 센서(51b)와 제3 온도 센서(51c)간의 열저항(프레임(53)의 열 저항) R[A2-A3]에 의해, 다음 수식 (3)∼(5)로 표시된다.
Q [A1-A3]=R [A1-A2]×(T1-T2) … (3)
=R [A2-A3]×(T2-T3) … (4)
=R [A1-A3]×(T1-T3) … (5)
이 식으로부터, 열의 달아남량(Q)은, 각 온도 센서로 검출하는 온도차와, 검색한 온도 센서간의 열 저항(R)에 비례하는 것을 알 수 있다.
여기에서, 이 방열량(Q)에 의한 온도 보상을 하는 식이 다음 수식(6), (7)이다. 수식(6)은 수식(3)에 대응하고, 제1 온도 센서(51a)와 제2 온도 센서(51b)간의 온도차를 이용하여 보상한 식이다. 수식(7)은 수식(4)에 대응하고, 제2 온도 센서(51b)와 제3 온도 센서(51c)간의 온도차를 이용하여 보상한 식이다. 수식(5)에 대응하는 수식으로는, 제2 온도 센서(51b)를 이용하지 않는, 상기 수식(2)가 대응한다.
또한, 열 저항이 크게 바뀌는 요소를 사이에 둔 추정은 정밀도가 저하하기 때문에, 프레임(53)과 박막(52)의 경계 부근에 제2 온도 센서(51b)를 설치하고, 그 측정치(T2)를 이용하고, 수식(7)을 이용하여 보상하면 정밀도가 높은 보상이 가능해진다.
Te1’=η1’×(T1+ξ1’(T1-T2))-η2’ … (6)
Te1”=η1’×(T1+ξ1”(T2-T3))-η2” … (7)
η1’, η2’, η2”, ξ1’, ξ1”는, 회전날개로부터 센서의 사이에 존재하는 가스의 열 저항과, 지지부의 온도 측정 위치간의 열 저항의 비율로 결정되는 계수이다.
수식(6)과 수식(7)은 구성에 따라 적절히 나누어 사용한다.
예를 들면, 박막(52)의 두께가 얇은 경우에는, 두께의 편차를 관리하는 것이 어렵기 때문에 열 저항 R[A1-A2]의 센서 개체차가 커지고, 보상 제도가 저하하게 되므로, 수식(7)을 이용한다.
한편, 프레임(53)의 열전도율이 높고, T2과 T3의 온도차가 작기 때문에 그 온도차의 측정 정밀도를 확보할 수 없는 경우에는, 수식(6)을 사용하는 것이 타당하다.
또한, 제2 온도 센서(51b)의 배치 위치는 박막(52)과 프레임(53)의 경계로 엄밀하게 제한되는 것은 아니다. 제2 온도 센서(51b)는, 열 저항 요소(R)가 있고, 그 사이의 온도차를 측정할 수 있으면, 제1 온도 센서(51a)로부터 스테이터(70)에 배치한 제3 온도 센서(51c)간의 임의의 위치에 설치할 수 있다.
또한, 이 경로에 프레임(53)과 박막(52) 이외의 구조재를 사이에 두고, 그 사이의 온도차와 열 저항을 가지고 보상하도록 구성해도 된다.
또한, 제3 온도 센서(51c)는, 스테이터(70)에 배치하는 구성으로 해도 된다.
여기에서, 제3 온도 센서(51c)에는, 스테이터 내의 모터나 전장 부품의 온도를 측정하는 센서를 사용할 수도 있다. 본 발명에 관련된 제2 실시 형태에서는, 비접촉식의 온도 센서로서, 상기 온도 센서도 포함된다.
다음에, 제3 실시 형태에 의한, 센서 유닛(500)에 대해서 도 4를 참조하여 설명한다.
도 4(a)는, 제3 실시 형태에 의한 센서 유닛(500)의 외관을 나타내고, 또한, 도 4(b)는, 도 4(a)에 도시하는 A―A에 있어서의 단면도를 도시하고 있다.
이 도 4(b)에 도시되는 바와같이, 센서 유닛(500)은, 제1 온도 센서(51a)와, 제2 온도 센서(51b)와, 제1 온도 센서(51a) 및 제2 온도 센서(51b)를 내봉(內封)하여 일체 성형으로, 또한, 그 두께 방향의 한쪽의 면이 피측정물인 로터(24)와 비접촉으로 대향하고, 또한, 다른쪽의 면측이 고정부인 스테이터(70)에 일부 내봉되어 고정되고, 그 제1 온도 센서(51a) 및 제2 온도 센서(51b)를 지지하는 센서 지지부(520)를 구비하고 있다.
본 제3 실시 형태에 있어서, 제1 온도 센서(51a) 및 제2 온도 센서(51b)는 서미스터를 사용하는데, 그 외 백금 저항체나 열전대를 사용하도록 해도 된다. 제1 온도 센서(51a) 및 제2 온도 센서(51b)에는, 2개의 리드선(54)이 각각 접속되어 있다. 리드선(54)은, 후술하는 제어장치(48)의 신호 처리 회로(도시하지 않는다)에 접속되어 있다.
제1 온도 센서(51a)는, 센서 지지부(520)에 내봉되고, 이 센서 지지부(520)를 통하여 피측정물인 로터(24)에 제2 온도 센서(51b)보다도 가까운 위치에 대향 배치되도록 되어 있다.
제2 온도 센서(5lb)는, 센서 지지부(520)에 내봉되고, 또한, 센서 지지부(520)를 통하여 피측정물인 스테이터(70)에 내봉되도록 배치되어 있다.
센서 지지부(520)는, 제1 온도 센서(51a) 및 제2 온도 센서(51b)를 스테이터(70)에 고정하기 위한 것으로, 그 두께 방향의 한쪽의 면이 피측정물인 로터(24)와 비접촉으로 대향하고, 또한, 다른쪽의 면측이 고정부인 스테이터(70)에 일부 내봉되는 형으로, 스테이터(70)에 고정되도록 되어 있고, 열전도율이 낮은 재질(예를 들면, 수지)이 사용된다.
또한, 제1 온도 센서(51a) 및 제2 온도 센서(51b)를 스테이터(70)에 고정하기 위해서, 센서 지지부(520)를 대신하여 절연성의 와이어 2개(또는, 3개, 4개 등이어도 된다)를 사용함으로써, 열의 이동을 더욱 줄이도록 해도 된다. 또한, 강도를 보증할 수 있으면, 4개의 리드선(54)을 사용하여 제1 온도 센서(51a) 및 제2 온도 센서(51b)를 스테이터(70)에 고정하도록 해도 된다.
본 제3 실시 형태의 센서 지지부(520)는 사각형이지만, 상술한 구성을 이루는 것이면, 다른 형, 예를 들면, 원형, 타원형 등이어도 된다.
또한, 도 4(c)에 도시하는 바와같이, 센서 지지 부재(520)를, 그 센서 지지 부재(520)에 제1 온도 센서(51a) 및 제2 온도 센서(51b)를 삽입한 후에, 충전재(밀봉재)(600)(예를 들면, 수지)로 밀봉하는 구성으로 할 수도 있다.
또한, 충전재(600)로 제1 온도 센서(51a) 및 제2 온도 센서(51b)의 주변을 단단히 하고, 그 센서 지지 부재(520)에 삽입해도 된다.
여기에서, 제2 온도 센서(51b)는, 반드시 센서 지지부(520)에 설치할 필요는 없고, 스테이터(70)에 설치하는 구성으로 해도 된다. 또한, 제2 온도 센서(51b)에는, 스테이터 내의 모터나 전장 부품의 온도를 측정하는 센서를 사용할 수도 있다. 본 발명에 관련된 제3 실시 형태에서는, 비접촉식의 온도 센서로서, 상기 온도 센서도 포함된다.
다음에, 이와같이 구성된 센서 유닛(500)에 있어서, 제1 온도 센서(51a)의 검출 온도를 제2 온도 센서(50b)에 의한 검출 온도로 보상하는 온도 보상에 대해서 설명한다.
본 제3 실시 형태에서는, 가장 간단한 방법으로는, 제1 온도 센서(51a)의 온도(즉, 로터(24)의 온도)와 제2 온도 센서(51b)의 온도(즉, 스테이터(70)의 온도)의 차를 가지고 보상하는 것이다.
다음의 수식(2)에 의해, 로터의 온도(Te1)(제1 온도 센서(51a)에 의한 검출 온도의 보상치)를 산출한다.
수식 (2)에 있어서, 제1 온도 센서(51a)의 검출 온도가 T1, 제2 온도 센서(51b)의 검출 온도가 T2이다.
또한, η, ξ은, 로터(회전날개)(24)로부터 센서 유닛(500)의 사이에 존재하는 가스의 열저항과, 센서 지지부(520)의 열저항의 비율로 결정되는 계수이다.
Te1=η1×(T1+ξ1(T1-T2))-η2 … (2)
다음에, 제4 실시 형태에 의한, 센서 유닛(500)에 대해서 도 5를 참조하여 설명한다.
도 5(a)는, 제4 실시 형태에 의한 센서 유닛(500)의 외관을 도시한 도면이다. 이 도 5(a)에 도시되는 바와같이, 센서 유닛(500)은, 부착 나사(700)에 의해 스테이터(70)에 고정되어 있다. 또한, 도 5(b)에서는, 도 5(a)를 90° 회전시킨 방향으로부터 본 그 센서 유닛(500)이 나타나 있다. 또한, 도 5(c)에서는, 도 5(a)에 표시하는 A―A에 있어서의 단면도가 나타나 있다.
이 도 5(c)에 도시되는 바와같이, 센서 유닛(500)은, 제1 온도 센서(51a)와, 제2 온도 센서(51b)와, 제1 온도 센서(51a)의 리드선(54)의 일부 및 제2 온도 센서(51b)의 전체를 내봉하고, 또한, 그 두께 방향의 한쪽의 면이 피측정물인 로터(24)와 비접촉으로 대향하고, 또한, 다른쪽의 면측이 고정부인 스테이터(70)에 일부가 내봉되어 고정되고, 그 제1 온도 센서(51a) 및 제2 온도 센서(51b)를 고정하는 고정 블록(800)과, 제1 온도 센서(51a)를 내봉하고(즉, 제1 온도 센서(51a)와 일체 성형하고), 또한, 그 얇은 방향의 한쪽의 면이 피측정물인 로터(24)와 비접촉으로 대향하고, 또한, 다른쪽의 면측이 고정부인 스테이터(70)와 비접촉으로 대향하고, 또한, 그 두께 방향의 한쪽의 면의 일부가 내봉되어서 고정 블록(800)에 고정되어 제1 온도 센서(51a)를 지지하는 센서 지지부(520)를 구비하고 있다.
본 제4 실시 형태에 있어서 제1 온도 센서(51a) 및 제2 온도 센서(51b)는 서미스터를 사용하는데, 그 외 백금 저항체나 열전대를 사용하도록 해도 된다. 제1 온도 센서(51a) 및 제2 온도 센서(51b)에는, 2개의 리드선(54)이 각각 접속되어 있다. 리드선(54)은, 후술하는 제어장치(48)의 신호 처리 회로(도시하지 않음)에 접속되어 있다.
제1 온도 센서(51a)는, 제1 센서(51a)의, 보다 온도 검지부측이 센서 지지부(520)에 내봉되고, 이 센서 지지부(520)를 통하여 피측정물인 로터(24)에 대향 배치되도록 되어 있다.
제2 온도 센서(51b)는, 고정 블록(800)에 내봉되고, 이 고정 블록(800)을 통하여 피측정물인 스테이터(70)에 대향 배치되도록 되어 있다.
센서 지지부(520)는, 제1 온도 센서(51a)를 고정 블록(800)에 고정하기 위한 것으로, 그 얇은 방향의 한쪽의 면이 피측정물인 로터(24)와 비접촉으로 대향하고, 또한, 다른쪽의 면측이 고정부인 스테이터(70)에 대향하여, 고정 블록(800)에 고정되도록 되어 있고, 열전도율이 낮은 재질(예를 들면, 수지)이 사용된다.
고정 블록(800)은, 제1 온도 센서(51a) 및 제2 온도 센서(51b)를 스테이터(70)에 고정하기 위한 것으로, 그 두께 방향의 한쪽의 면이 피측정물인 로터(24)와 비접촉으로 대향하고, 또한, 다른쪽의 면측이 고정부인 스테이터(70)에 일부가 내봉되어 고정되도록 되어 있고, 열전도율이 낮은 재질(예를 들면, 수지)이 사용된다.
또한, 제1 온도 센서(51a) 및 제2 온도 센서(51b)를 스테이터(70)에 고정하기 위해서, 센서 지지부(520) 및 고정 블록(800)을 대신하여 절연성의 와이어 2개(또는, 3개, 4개 등이어도 된다)를 사용함으로써, 열의 이동을 더욱 줄이도록 해도 된다. 또한, 강도를 보증할 수 있으면, 4개의 리드선(54)을 사용하여 제1 온도 센서(51a) 및 제2 온도 센서(51b)를 스테이터(70)에 고정하도록 해도 된다.
본 제4 실시 형태의 센서 지지부(520), 고정 블록(800)은 사각형인데, 상술한 구성을 이루는 것이면, 다른 형, 예를 들면, 원형, 타원형 등이어도 된다.
또한, 도 5(d)에 도시하는 바와같이, 센서 지지 부재(520)를, 그 센서 지지 부재(520)에 제1온도 센서(51a)를 삽입한 후에, 충전재(600)(예를 들면, 수지)로 밀봉하는 구성으로 할 수도 있다.
또한, 충전재(600)로 제1 온도 센서(51a) 주변을 단단히 한 다음에, 그 센서 지지 부재(520)에 삽입해도 된다.
여기에서, 제2 온도 센서(51b)는, 반드시 고정 블록(800) 내에 설치할 필요는 없고, 스테이터(70)에 설치하는 구성으로 해도 된다. 또한, 제2 온도 센서(51b)에는, 스테이터 내의 모터나 전장 부품의 온도를 측정하는 센서를 사용할 수도 있다. 본 발명에 관련된 제4 실시 형태에서는, 비접촉식의 온도 센서로서, 상기 온도 센서도 포함된다.
다음에, 이와같이 구성된 센서 유닛(500)에 있어서, 제1 온도 센서(51a)의 검출 온도를 제2 온도 센서(50b)에 의한 검출 온도로 보상하는 온도 보상에 대해서 설명한다.
본 제4 실시 형태에서, 가장 간단한 방법으로는, 제1 온도 센서(51a)의 온도(즉, 로터(24)의 온도)와 제2 온도 센서(51b)의 온도 (즉, 스테이터(70)의 온도)의 차이를 가지고 보상하는 것이다.
다음의 수식(2)에 의해, 로터의 온도(Te1)(제1 온도 센서(51a)에 의한 검출 온도의 보상치)를 산출한다.
수식 (2)에 있어서, 제1 온도 센서(51a)의 검출 온도가 T1, 제2 온도 센서(51b)의 검출 온도가 T2이다.
또한, η, ξ은, 로터(회전날개)(24)로부터 센서 유닛(500)의 사이에 존재하는 가스의 열저항과, 센서 지지부(520) 및 고정 블록(800)의 열저항의 비율로 결정되는 계수이다.
Te1=η1×(T1+ξ1(T1-T2))-η2 … (2)
이상 설명한 바와같이, 제1 실시 형태, 제2 실시 형태, 제3 실시 형태 및 제4 실시 형태에 의한 센서 유닛에 의하면, 제1 온도 센서로부터의 열전도에 의한 영향을, 다른 온도 센서의 측정치에 의한 온도차를 이용하여 온도 보상함으로써, 보다 정확한 로터 온도를 측정할 수 있다.
또한, 적외선 온도 센서에는 보상용 온도 센서가 설치되어 있는데, 이는 센서 자신의 온도가 바뀜으로써 수광 적외선 수광량 차분(피측정체로부터의 방사-센서로부터의 방사)이 바뀌는 것을 보정하는 것이며, 본건과는 원리가 다른 것이다.
다음에, 이상과 같이 구성된 센서 유닛을 설치하는 분자 펌프로서 터보 분자 펌프의 구성,및 센서 유닛의 배치 부분에 대해서 설명한다.
도 6은, 본 실시 형태에 관련된 터보 분자 펌프(1)의 개략 구성을 나타낸 도면이다. 또한, 도 6은, 터보 분자 펌프(1)의 축선 방향의 단면도를 나타내고 있다.
본 실시 형태에서는, 터보 분자 펌프의 일예로서 터보 분자 펌프부(T)와 나사홈식 펌프부(S)를 구비한, 소위 복합 날개 타입의 분자 펌프를 예로 들어 설명한다. 또한, 본 실시의 형태는, 터보 분자 펌프부(T)만을 가지는 펌프나 나사홈을 회전체측에 설치된 펌프에 적용해도 된다.
터보 분자 펌프(1)의 외장체를 형성하는 케이싱(2)은, 원통형상의 형상을 하고 있고, 케이싱(2)의 저부에 설치된 베이스(3)와 함께 터보 분자 펌프(1)의 외장체를 구성하고 있다. 그리고, 터보 분자 펌프(1)의 외장체의 내부에는, 터보 분자 펌프(1)에 배기 기능을 발휘시키는 구조물 즉 기체 이송 기구가 수납되어 있다.
터보 분자 펌프(1)에 있어서의 기체 이송 기구는, 흡기구(6)측의 터보 분자 펌프부(T)와, 배기구(19)측의 나사홈식 펌프부(S)로 구성되어 있다.
이들 배기 기능을 발휘하는 구조물은, 크게 나누어서 회전가능하게 축 지지된 회전부와 케이싱(2)에 대하여 고정된 고정부로 구성되어 있다.
또한, 터보 분자 펌프(1)의 외장체의 외부에는, 터보 분자 펌프(1)의 동작을 제어하는 제어장치(48)가 전용선을 통해서 접속되어 있다.
제어 장치(48)는, 도시하지 않은 신호 처리 회로를 구비하고 있고, 이 신호 처리 회로에 각 온도 센서(51)의 리드선이 접속되어 있다. 제어 장치(48)의 신호 처리 회로에 의해, 상술한 수식(1), (2), (6),또는 (7)에 의한 연산이 행해져, 로터(24)의 온도가 검출된다.
회전부는, 후술하는 모터부(10)에 의해 회전되는 로터 샤프트(11)와 로터(24)에 의해 구성되어 있다.
로터 샤프트(11)는, 원주부재의 회전축(로터축)이다. 로터 샤프트(11)의 상단에는 로터(24)가 복수의 볼트(25)에 의해 부착되어 있다.
로터(24)는, 로터 샤프트(11)에 설치된 회전 부재이다. 로터(24)는, 흡기구(6)측(터보 분자 펌프부(T))에 설치된 로터 날개(21)와, 배기구(19)측(나사홈식 펌프부(S))에 설치된 원통부재(29) 등으로 구성되어 있다.
로터 날개(21)는, 로터 샤프트(11)의 축선에 수직인 평면으로부터 소정의 각도만큼 경사져 로터(24)로부터 방사상으로 신장한 복수의 블레이드로 구성되어 있다. 터보 분자 펌프(1)에는, 로터 날개(21)가 축선 방향으로 복수단 설치되어 있다.
또한, 로터(24)는, 스테인리스나 알루미늄 합금 등의 금속에 의해 구성되어 있다.
원통 부재(29)는, 외주면이 원통 형상을 한 부재로 구성되어 있다.
로터 샤프트(11)의 축선 방향 중간에는, 로터 샤프트(11)를 회전시키는 모터부(10)가 설치되어 있다.
본 실시의 형태에서는, 일예로서 모터부(10)는, DC 브러시리스 모터에 의해 구성되어 있는 것으로 한다.
로터 샤프트(11)에 있어서의 모터부(10)를 구성하는 부위에는, 영구 자석(10a)이 고정되어 있다. 이 영구 자석(10a)은, 예를 들면, 로터 샤프트(11)의 둘레에 N극과 S극이 180°마다 배치되도록 고정되어 있다.
그리고 영구자석(10a)의 주위에는, 로터 샤프트(11)로부터 소정의 갭(공극)을 거쳐, 예를 들면 6개의 전자석(10b)이 60°마다 로터 샤프트(11)의 축선에 대하여 대칭적으로 또한 대향하도록 배치되어 있다.
또한, 영구자석(10a)은, 모터부(10)의 로터부(회전부)로서 기능하고, 전자석(10b)은, 모터부의 스테이터부(고정부)로서 기능한다.
터보 분자 펌프(1)는, 로터 샤프트(11)의 회전수와 회전 각도(위상)를 검출하는 센서를 구비하고 있고, 이 센서에 의해 제어장치(48)는, 로터 샤프트(11)에 고착된 영구자석(10a)의 자극의 위치를 검출할 수 있게 되어 있다.
제어장치(48)는, 검출한 자극의 위치에 따라서, 모터부(10)의 전자석(10b)의 전류를 차례차례 전환하고, 로터 샤프트(11)의 영구자석(10a)의 주위에 회전 자계를 생성한다.
로터 샤프트(11)에 고정한 영구자석(10a)은 이 회전 자계에 추종하고, 이에 따라 로터 샤프트(11)는 회전하도록 구성되어 있다.
또한, 모터부(10)의 흡기구(6)측 및 배기구(19)측에는, 로터 샤프트(11)를 래디얼(radial) 방향으로 축 지지하는, 즉 회전부의 하중을 래디얼 방향으로 지지하는 래디얼 자기 베어링부(8) 및 래디얼 자기 베어링부(12)가 설치되어 있다.
또한, 로터 샤프트(11)의 하단에는, 로터 샤프트(11)를 축선 방향(스러스트 방향)으로 축 지지하는, 즉 회전부의 하중을 스러스트 방향으로 지지하는 스러스트 자기 베어링부(20)가 설치되어 있다.
로터 샤프트(11)(회전부)는, 래디얼 자기 베어링부(8, 12)에 의해 래디얼 방향(로터 샤프트(11)의 직경 방향)으로 비접촉으로 지지되고, 스러스트 자기 베어링부(20)에 의해 스러스트 방향(로터 샤프트(11)의 축방향)으로 비접촉으로 지지되어 있다. 이들 자기 베어링은, 소위 5축 제어형의 자기 베어링을 구성하고 있고, 로터 샤프트(11)는 축선 둘레의 회전의 자유도만을 가지고 있다.
래디얼 자기 베어링부(8)에는, 예를 들면 4개의 전자석(8b)이 로터 샤프트(11)의 주위에 90°마다 대향하도록 배치되어 있다. 이들의 전자석(8b)은, 로터 샤프트(11)와의 사이에 갭(공극)을 통해서 배치되어 있다. 또한, 이 갭의 값은, 로터 샤프트(11)의 정상 시에 있어서의 진동량(흔들림량), 로터(24)와 스테이터부(고정부)의 공간 거리, 래디얼 자기 베어링부(8)의 성능 등을 고려한 값으로 되어 있다.
그리고, 전자석(8b)에 대향하는 로터 샤프트(11)에는, 타겟(8a)이 형성되어 있다. 래디얼 자기 베어링부(8)의 전자석(8b)의 자력으로 이 타겟(8a)이 흡인됨으로써, 로터 샤프트(11)가 래디얼 방향으로 비접촉으로 지지되도록 되어 있다.
또한, 타겟(8a)은, 래디얼 자기 베어링부(8)의 로터부로서 기능하고, 전자석(8b)은, 래디얼 자기 베어링부(8)의 스테이터부로서 기능한다.
래디얼 자기 베어링부(12)에 대해서도, 래디얼 자기 베어링부(8)와 동일한 구성을 취하고, 상세하게는, 래디얼 자기 베어링부(12)의 전자석(12b)의 자력으로 타겟(12a)이 흡인됨으로써, 로터 샤프트(11)가 래디얼 방향으로 비접촉으로 지지되도록 되어 있다.
스러스트 자기 베어링부(20)는, 로터 샤프트(11)에 대하여 수직으로 설치된 원판형상의 금속제의 아마추어 디스크(30)를 통하여 로터 샤프트(11)를 축방향으로 부상시키고 있다.
스러스트 자기 베어링부(20)에는, 예를 들면 2개의 전자석(20a, 20b)이 아마추어 디스크(30)를 통하여 대향하도록 배치되어 있다. 이들의 전자석(20a, 20b)은, 아마추어 디스크(30)와의 사이에 갭을 통하여 배치되어 있다. 또한, 이 갭의 값은, 로터 샤프트(11)의 정상 시에 있어서의 진동량, 로터(24)와 스테이터부의 공간 거리, 스러스트 자기 베어링부(20)의 성능 등을 고려한 값으로 되어 있다.
그리고, 스러스트 자기 베어링부(20)의 전자석의 자력으로 아마추어 디스크(30)가 흡인됨으로써, 로터 샤프트(11)가 스러스트 방향(축선 방향)으로 비접촉으로 지지되도록 되어 있다.
또한, 래디얼 자기 베어링부(8, 12)의 근방에는, 각각 변위 센서(9, 13)가 형성되어 있고, 로터 샤프트(11)의 래디얼 방향의 변위를 검출할 수 있도록 되어 있다. 또한, 로터 샤프트(11)의 하단에는 변위 센서(17)가 형성되어 있고, 로터 샤프트(11)의 축선 방향의 변위를 검출할 수 있도록 되어 있다.
변위 센서(9, 13)는, 로터 샤프트(11)의 래디얼 방향의 변위를 검출하는 소자로서, 본 실시 형태에서는, 코일(9b, 13b)을 구비한 와전류 센서 등의 인덕턴스형 센서에 의해 구성되어 있다.
변위 센서(9, 13)에 있어서의 코일(9b, 13b)은 터보 분자 펌프(1)의 외부에 설치된 제어장치(48)에 형성된 발진 회로의 일부로 되어 있다. 변위 센서(9)는 발진 회로의 발진에 따라 고주파 전류가 흐르고, 로터 샤프트(11) 상에 고주파 자계를 발생하도록 되어 있다.
그리고, 변위 센서(9, 13)와 타겟(9a, 13a)의 거리가 변화되면 발진기의 발진 진폭이 변화되고, 이에 따라 로터 샤프트(11)의 변위를 검출할 수 있도록 되어 있다.
또한, 로터 샤프트(11)의 변위를 검출하는 센서는, 이에 한정되는 것은 아니고, 예를 들면, 정전 용량식인 것이나 광학식인 것 등을 이용하도록 해도 된다.
제어장치(48)는, 변위 센서(9, 13)로부터의 신호에 따라 로터 샤프트(11)의 래디얼 방향의 변위를 검출하면, 래디얼 자기 베어링부(8, 12)의 각 전자석(8b, 12b)의 자력을 조절하여 로터 샤프트(11)를 소정의 위치로 되돌리도록 동작한다.
이와같이, 제어장치(48)는 변위 센서(9, 13)의 신호에 의해 래디얼 자기 베어링부(8, 12)를 피드백 제어한다. 이에 따라 로터 샤프트(11)는 래디얼 자기 베어링부(8, 12)에 있어서 전자석(8b, 12b)으로부터 소정의 공극(갭)을 두고 래디얼 방향으로 자기 부상하고, 공간 중에 비접촉으로 유지된다.
변위 센서(17)도 변위 센서(9, 13)와 마찬가지로, 코일(17b)을 구비한 구성으로 되어 있다. 그리고, 코일(17b)과 대향하는 로터 샤프트(11)측에 설치된 타겟(17a)과의 거리를 검출함으로써, 스러스트 방향의 변위를 검출하고 있다.
제어장치(48)는, 변위 센서(17)로부터의 신호에 의해 로터 샤프트(11)의 스러스트 방향의 변위를 검출하면, 스러스트 자기 베어링부(20)의 각 전자석(20a, 20b)의 자력을 조절하여 로터 샤프트(11)를 소정의 위치로 되돌리도록 동작한다.
이와 같이, 제어장치(48)는 변위 센서(17)의 신호에 의해 스러스트 자기 베어링부(20)를 피드백 제어한다. 이에 따라 로터 샤프트(11)는 스러스트 자기 베어링부(20)에 있어서 전자석으로부터 소정의 공극을 두고 스러스트 방향으로 자기 부상하여, 공간 중에 비접촉으로 유지된다.
이와 같이 하여, 로터 샤프트(11)는, 래디얼 자기 베어링부(8, 12)에 의해 래디얼 방향으로 유지되고, 스러스트 자기 베어링부(20)에 의해 스러스트 방향으로 유지되기 때문에, 축선 둘레에 회전하도록 되어 있다.
케이싱(2) 및 베이스(3)의 내부에는, 기체 이송 기구, 즉 배기 기능을 발휘하는 구조물에 있어서의 스테이터부(고정부)가 형성되어 있다. 이 스테이터부는, 흡기구(6)측(터보 분자 펌프부(T))에 설치된 스테이터 날개(22)와, 배기구(19)측(나사홈식 펌프부(S))에 설치된 나사홈 스페이서(5), 스테이터 칼럼(18) 등으로 구성되어 있다.
스테이터 날개(22)는, 로터 샤프트(11)의 축선에 수직인 평면으로부터 소정의 각도만큼 경사져 케이싱(2)의 내주면으로부터 로터 샤프트(11)를 향해서 신장된 블레이드로 구성되어 있다. 터보 분자 펌프부(T)에서는, 이들 스테이터 날개(22)가 축선 방향으로, 로터 날개(21)와 번갈아서 복수단 형성되어 있다. 각 단의 스테이터 날개(22)는, 원통형상을 한 스페이서(23)에 의해 서로 떨어져 있다.
나사홈 스페이서(5)는, 내주면에 나선홈(7)이 형성된, 배기구(19)측(베이스(3) 근방)의 두께가 얇게 형성된 원통형의 부재이다.
나사홈 스페이서(5)의 내주면은, 소정의 간극을 두고 원통부재(29)의 외주면에 대면하도록 되어 있다.
나사홈 스페이서(5)에 형성된 나선홈(7)의 방향은, 나선홈(7) 내를 로터(24)의 회전 방향으로 가스가 수송된 경우, 배기구(19)를 향하는 방향이다. 나선홈(7)의 깊이는 배기구(19)에 근접함에 따라 얕아지도록 되어 있다. 그리고, 나선홈(7)이 수송되는 가스는 배기구(19)에 근접함에 따라서 압축되도록 되어 있다.
베이스(3)는, 케이싱(2)과 함께 터보 분자 펌프(1)의 외장체를 구성하고 있다. 베이스(3)의 래디얼 방향 중앙에는, 회전부의 회전 축선과 동심에 원통형상을 가지는 스테이터 칼럼(18)이, 흡기구(6) 방향으로 부착되어 있다.
이 스테이터 칼럼(18)의 내부에, 모터부(10) 및 래디얼 자기 베어링부(8, 12)가 설치되어 있다.
터보 분자 펌프(1)에는, 변위 센서(9)의 흡기구(6)측에 보호용 베어링(40), 변위 센서(13)의 배기구(19)측에 보호용 베어링(49)이 설치되어 있다.
보호용 베어링(40, 49)은, 터보 분자 펌프(1)의 기동시, 정지시 나, 정전 등에 의해 래디얼 자기 베어링부(8, 12)나 스러스트 자기 베어링부(20)가 정상적으로 동작하지 않는 비상시(터치다운 시)에 로터 샤프트(11)를 지지하기 위한 베어링이다.
또한, 베이스(3)의 외주면에 퍼지 포트(60)가 설치되어 있다. 퍼지 포트(60)는, 퍼지 가스 유로를 통하여 베이스(3)의 내부 영역, 즉, 전기부재 수납부와 연통하고 있다.
퍼지 가스 유로는, 베이스(3)의 외주 벽면으로부터 내주 벽면까지 직경 방향에 따라 관통하여 형성된 관통 가로공이며, 퍼지 포트(60)로부터 공급(도입)되는 퍼지 가스를, 전기 부품 수납부로 보내는 퍼지 가스의 공급로로서 기능한다.
또한, 도시하지 않지만, 퍼지 포트(60)의 타단은, 퍼지 가스를 퍼지 포트(60)에 공급하는 가스 공급 장치에 접속되어 있다.
여기서, 퍼지 포트(60)로부터 도입되는 퍼지 가스의 기능에 대해서 설명한다.
터보 분자 펌프(1)를 이용하여, 반도체 제조 장치가 설치된 진공 용기, 예를 들면 에칭 장치나 화학 기상 성장 장치(CVD)에 있어서의 진공 용기의 배기를 행할 때에, 진공 용기로부터 배기하는 기체에 프로세스 가스로서 이용된 부식성 가스가 포함되는 경우가 있다.
이러한 부식성 가스가 흡기구(6)로부터 터보 분자 펌프(1)의 내부에 도입되면, 그 가스에 의해, 터보 분자 펌프(1)의 내부에 있어서의, 내식 처리가 실시되지 않은 전기 부품(전장품), 보호 베어링, 로터 샤프트(11) 등이 부식될 우려가 있다.
여기에서, 퍼지 포트(60)로부터 퍼지 가스, 예를 들면 질소 가스나 아르곤 가스 등의 불활성 가스를 전기부품 수납부에 공급함으로써, 전기부품을 부식성 가스로부터 보호하도록 구성되어 있다.
퍼지 포트(60)로부터 도입된 퍼지 가스는, 도 6에 있어서, 화살표 P로 표시되는 바와같이, 베이스(3) 및 스테이터 칼럼(18)의 내부에 도입되고, 모터부(10)나 자기 베어링(8, 12)의 로터와 스테이터간을 통하여 로터 샤프트(11)의 상부측으로 이동하고, 또한, 스테이터 칼럼(18)과 로터(24) 내주면간을 통하여 배기구(19)까지 보내지고, 흡기구(6)로부터 도입된 기체와 함께 터보 분자 펌프(1)로부터 배출된다.
또한, 도 6에 도시되는 바와같이, 흡기구(6)로부터 도입된 기체 분자의 흐름은, 화살표 G로 표시하는 바와같다.
이러한 구성을 가지는 터보 분자 펌프(1)는, 진공 용기, 예를 들면, 반도체 제조 장치에 설치된 내부가 고진공 상태로 유지된 프로세스 챔버 등의 배기 처리를 행할 때의 진공 펌프로서 이용되고 있다.
다음에, 이상과 같이 구성된 터보 분자 펌프(1)에, 상술한 센서 유닛(50) 또는 센서 유닛(500)의 배치 부분에 대해서 설명한다.
센서 유닛(50) 또는 센서 유닛(500)은, 제1 온도 센서(51)를 로터(24)에 대향시키고, 스테이터(70)에 고정하면, 어떠한 장소여도 되지만, 도 6에 도시하는 a∼d의 4군데 중 어느 하나에 배치하는 것이 보다 바람직하다.
(a) 제1 설치 장소(a)
이 제1 설치 장소(a)에서는, 스테이터 칼럼(18)의 외경부·배기구 근방에 센서를 설치하고, 로터(24)(로터 날개(21)) 내경부의 온도를 계측한다.
화살표 G로 표시하는 배기 유로 내에서는, 배기 요소(터보 분자 펌프부(T)와 나사홈식 펌프부(S))에 의한 압축 작용에 의해, 가스의 온도나 압력은 크게 변동한다.
로터(24)가 열전도율이 높은 경합금 재료로 일체 성형되어 있는 경우, 배기 가스보다도 로터(24)의 비열쪽이 크기 때문에, 가스의 온도가 국소적으로 상승했다고 해도, 그에 접하는 로터(24)에서는 구조 내부에 열이 없어지므로, 로터 날개 구조 내의 분포는, 가스의 국소적인 온도 분포보다도 작아지는 경향이 있다.
본 실시 형태의 제1 온도 센서(51)는 가스의 온도를 측정하고 있으므로, 가스의 국소적인 온도 분포도 파악되는 결과, 과잉의 출력을 발생할 가능성이 있다.
따라서, 센서는 배기 유로(G)가 아닌 장소에 설치하는 것이 바람직하므로, 제1 설치 장소(a)에 센서 유닛을 배치한다.
또한, 본 실시 형태의 제1 온도 센서(51)에 의한 온도의 측정은, 스테이터(24)와 접촉함으로써 로터(24)와 동일한 온도로 된 가스가 제1 온도 센서(51)와 접촉함으로써, 간접적으로 비접촉으로 로터(24)의 온도를 측정하는 것이다. 이 때문에, 진공 펌프 내부에 있어서, 압력이 높은 부분(기체 분자가 많이 존재하는 부분)에 배치한 쪽이 동작이 안정된다.
여기에서, 하류의 배기구(19) 부근이 펌프 내부에 있어서 압력이 높은 부분이므로, 로터(24) 안쪽의 하류부를 제1 설치 장소(a)로 하고, 여기에 센서 유닛(50) 또는 센서 유닛(500)을 설치하는 것이 동작의 안정성을 확보하는 것에서도 바람직하다.
(b) 제2 설치 장소(b, b′)
또한, 가스의 배기 유량이 매우 적기 때문에, 펌프 내부의 압력이 낮고, 가스의 압력·온도 분포가 현저하게 발생하지 않는 조건에 있어서는, 센서 측정 분위기의 압력을 확보하기 위해서 가스 유로 내에 센서를 설치하는 것이 바람직하다.
또한, 도 7에 관계 부분을 발췌하여 도시한 것처럼, 가스 유로 내에 있어서의 가스 출구부에 센서를 설치하는 구성으로 해도 된다 (b′).
여기에서, 이러한 조건 하에서는, 제2 설치 장소(b)로서, 로터(24)의 배기구 근방의 외경부와 제1 온도 센서(51)가 대향하도록, 센서 유닛(50) 또는 센서 유닛(500)을 나사홈 스페이서(5)의 내경면에 설치한다.
(c) 제3 설치 장소(c)
이 제3 설치 장소(c)에서는, 스테이터 칼럼(18) 외경부·로터 샤프트(11)와의 체결부에 가까운 부분에 센서를 설치하고, 로터(24) 내경부의 온도를 계측한다.
상술한 바와같이, 배기하는 가스에는 부식성이 강한 가스가 포함되는 경우가 있다. 이 때문에, 자기 베어링 전장품, 보호용 베어링, 로터 샤프트(11)가 내장되어 있는 스테이터 내부로의 부식성 가스의 진입을 막기 위해서, 스테이터 내부에 퍼지 가스(P)를 흐르게 한다.
로터(24)의 표면에 있어서, 로터(24)의 안쪽·로터 샤프트(11)와의 체결부 근방은, 퍼지 가스에 의한 부식성 가스의 진입 방지 효과가 가장 높은 부분이다.
한편, 전술한 것처럼, 로터(24)는 알루미늄 합금재에 의해 일체 성형되어 있으므로, 부품 내에서의 온도 분포는 충분히 작다.
여기에서, 측정 정밀도를 유지하면서, 센서 부품이 부식되는 리스크를 줄이기 위한 최적의 설치 부분으로서, 제3 설치 장소에 센서 유닛(50) 또는 센서 유닛(500)을 설치한다.
(d) 제4 설치 장소(d)
제3 설치 장소(c)와 동일한 이유에 의해, 로터 샤프트(11)에 대향하는 스테이터 칼럼(18) 안쪽을 제4 설치 장소(d)로 하고, 여기에 센서 유닛(50) 또는 센서 유닛(500)을 설치하고, 로터 샤프트(11)의 온도를 계측한다. 제4 설치 장소(d)는, 로터 샤프트(11)의 로터(24)에 가까운 부분이다.
퍼지 가스(P)에 의한 부식성 가스의 진입 방지 효과가 높고, 센서 유닛(50) 또는 센서 유닛(500)의 구조 보호에는 최적이다.
로터(24)와의 체결면에 가까운 부분이면, 로터(24)와의 온도차는 작으므로, 로터 샤프트(11)의 온도를 측정함으로써 다른 구성보다는 정밀도가 저하하지만, 로터(24)의 온도를 추정할 수 있다.
또한, 센서 유닛(50) 또는 센서 유닛(500)의 신호선(리드선(54))을 펌프 외부의 제어장치(48)로 이끌기 위해서는, 진공 커넥터를 통하여 외부로 신호선을 빼낼 필요가 있다. 다른 방법은, 베이스(3) 혹은 스테이터 칼럼(18)을 관통하여 신호선을 통할 필요가 있고, 이 관통부를 통하여 부식 가스가 베이스나 스테이터 내부에 침입하여 내부의 부품을 부식하지 않도록, 관통부와 신호 리드선의 사이의 밀봉이 필요해져, 구조가 복잡해지므로, 비용 증대나 신뢰성이 저하한다.
제4 설치 장소(d)에서는, 스테이터 칼럼(18) 안쪽에 센서를 설치하면, 스테이터 칼럼 내부의 전장품과 함께 신호 리드선을 설치하여 몰드 밀봉할 수 있으므로, 상기 관통부는 필요없고, 비용이 낮고, 신뢰성도 높다.
이상 설명한 바와같이, 각 본 실시 형태에 의한 센서 유닛을, 제1∼제4의 각 설치 장소(a∼d)의 어느 하나의 장소에 설치함으로써, 다음 효과를 얻을 수 있다.
(1) 저렴한 센서(서미스터나 열전대)라도, 진공 중에서의 정확한 온도 측정이 가능하다.
(2) 정밀도가 높기 때문에, 희박 압력 환경 하에 있어서도 가스를 통한 열전도에 의해 회전체의 측정이 가능하다. 따라서, 분자 펌프 내에서도 압력이 비교적 높은 부분에 이 유닛을 설치하면, 로터(24)에 적외선 복사면을 설치하지 않아도 로터(24)의 온도 모니터가 가능하다. 복사면을 설치하는 비용을 생략하는 것이 가능하다.
1 : 터보 분자 펌프 2 : 케이싱
3 : 베이스 5 : 나사홈 스페이서
6 : 흡기구 7 : 나선홈
8 : 래디얼 자기 베어링부 9 : 변위 센서
10 : 모터부 11 : 로터 샤프트
12 : 래디얼 자기 베어링부 13 : 변위 센서
17 : 변위 센서 18 : 스테이터 칼럼
19 : 배기구 20 : 스러스트 자기 베어링부
21 : 로터 날개 22 : 스테이터 날개
23 : 스페이서 24 : 로터
25 : 볼트 29 : 원통부재
30 : 아마추어 디스크 40 : 보호용 베어링
48 : 제어 장치 49 : 보호용 베어링
50 : 센서 유닛 51 : 온도 센서
52 : 박막 53 : 프레임
54 : 리드선 60 : 퍼지 포트
70 : 스테이터 500 : 센서 유닛
520 : 센서 지지부 600 : 충전재(밀봉재)
700 : 부착 비스 800 : 고정 블록
P : 퍼지 가스 G : 배기 가스

Claims (7)

  1. 흡기구와 배기구를 구비한 외장체와,
    상기 외장체 내에 설치된 고정부와,
    상기 외장체 내에 회전가능하게 지지된 샤프트와,
    상기 샤프트에 배치되고, 상기 흡기구로부터 상기 배기구로 기체를 이송하는 기체 이송 기구가 설치된 로터를 구비하고,
    상기 고정부와의 사이에 소정의 공극을 개재하여 배치된 회전부와,
    상기 샤프트를 회전시키는 모터와,
    1개가 상기 로터에 대향 배치된, 적어도 2개의 비접촉식의 온도 센서를 가지는 온도 검출 수단과,
    상기 온도 검출 수단에 의한 각 온도 센서의 출력치로부터 상기 로터의 온도를 추정하는 온도 추정 수단을 구비하는 것을 특징으로 하는 진공 펌프.
  2. 청구항 1에 있어서,
    상기 온도 검출 수단은, 프레임체와, 상기 프레임체의 한쪽의 면에 배치된 고정 부재와, 상기 고정 부재에 고정된 온도 센서를 구비하는, 제1 센서 유닛과 제2 센서 유닛으로 구성되고,
    상기 고정 부재와 프레임체의 적어도 한쪽의 열전도량이, 제1 센서 유닛과 제2 센서 유닛에서 상이한 것을 특징으로 하는 진공 펌프.
  3. 청구항 1에 있어서,
    상기 온도 검출 수단은, 프레임체와, 상기 프레임체의 한쪽의 면에 배치된 고정 부재와, 상기 고정 부재에 고정된 제1 온도 센서와, 상기 프레임체에 고정된 제2 온도 센서 및 상기 고정부에 고정된 제3 온도 센서의 적어도 한쪽의 온도 센서를 구비하는 센서 유닛으로 구성되어 있는 것을 특징으로 하는 진공 펌프.
  4. 청구항 1 내지 3 중 어느 한 항에 있어서,
    상기 온도 검출 수단은, 상기 배기구 근방의 상기 로터에 대향한 고정부에 배치되는 것을 특징으로 하는 진공 펌프.
  5. 청구항 1 내지 3 중 어느 한 항에 있어서,
    상기 온도 검출 수단은, 상기 로터 내부의 공간을 유로로 하고, 상기 배기구로부터 유출되는 퍼지 가스의 유로 상에서, 상기 로터에 대향한 고정부에 배치되는 것을 특징으로 하는 진공 펌프.
  6. 청구항 1에 있어서,
    상기 온도 검출 수단은,
    열저항을 가지는 지지부를 가지고,
    상기 적어도 2개의 비접촉식의 온도 센서가, 상기 지지부로 지지되어, 상기 로터에 대향한 상기 고정부에 배치되는 것을 특징으로 하는 진공 펌프.
  7. 청구항 1에 있어서,
    상기 온도 검출 수단은,
    열저항을 가지는 지지부를 가지고,
    상기 적어도 2개의 비접촉식의 온도 센서 중 상기 로터에 대향 배치된 1개의 온도 센서가, 상기 지지부로 지지되어, 상기 로터에 대향한 상기 고정부에 배치되는 것을 특징으로 하는 진공 펌프.
KR1020107026873A 2008-08-19 2009-08-17 진공 펌프 KR20110044170A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008211017 2008-08-19
JPJP-P-2008-211017 2008-08-19

Publications (1)

Publication Number Publication Date
KR20110044170A true KR20110044170A (ko) 2011-04-28

Family

ID=41707185

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107026873A KR20110044170A (ko) 2008-08-19 2009-08-17 진공 펌프

Country Status (5)

Country Link
US (1) US20110200460A1 (ko)
EP (1) EP2317148A4 (ko)
JP (1) JPWO2010021307A1 (ko)
KR (1) KR20110044170A (ko)
WO (1) WO2010021307A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108087A1 (ja) * 2011-02-10 2012-08-16 エドワーズ株式会社 真空ポンプ
EP3184048B1 (en) 2012-08-03 2021-06-16 Philips Image Guided Therapy Corporation Systems for assessing a vessel
EP2846043B1 (de) * 2013-09-09 2020-01-22 Leybold GmbH Berechnung der rotortemperatur einer vakuumpumpe mit hilfe des motorstroms oder der motorleistung
US9878299B2 (en) 2014-11-24 2018-01-30 The Procter & Gamble Company Methods for encapsulation of actives within droplets and other compartments
US10224787B2 (en) * 2015-01-21 2019-03-05 Siemens Energy, Inc. Electric generator with variable maximum efficiency
JP6583122B2 (ja) * 2016-04-22 2019-10-02 株式会社島津製作所 監視装置および真空ポンプ
GB2553374B (en) 2016-09-06 2021-05-12 Edwards Ltd Temperature sensor for a high speed rotating machine
US10660997B2 (en) * 2016-09-23 2020-05-26 Heartware, Inc. Blood pump with sensors on housing surface
JP7025844B2 (ja) * 2017-03-10 2022-02-25 エドワーズ株式会社 真空ポンプの排気システム、真空ポンプの排気システムに備わる真空ポンプ、パージガス供給装置、温度センサユニット、および真空ポンプの排気方法
JP6967954B2 (ja) * 2017-12-05 2021-11-17 東京エレクトロン株式会社 排気装置、処理装置及び排気方法
JP7187186B2 (ja) * 2018-06-27 2022-12-12 エドワーズ株式会社 真空ポンプ、ステータコラム、ベースおよび真空ポンプの排気システム
JP7242321B2 (ja) 2019-02-01 2023-03-20 エドワーズ株式会社 真空ポンプ及び真空ポンプの制御装置
JP7463150B2 (ja) * 2020-03-19 2024-04-08 エドワーズ株式会社 真空ポンプ及び真空ポンプ用部品
CN117345631B (zh) * 2023-08-24 2024-05-31 东莞市大成智能装备有限公司 真空泵转子运动间隙的监测方法、控制方法及真空泵

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419198A (en) * 1987-07-15 1989-01-23 Hitachi Ltd Vacuum pump
JPS6419198U (ko) * 1987-07-24 1989-01-31
US5216625A (en) * 1989-11-01 1993-06-01 Luxtron Corporation Autocalibrating dual sensor non-contact temperature measuring device
DE4421065A1 (de) * 1994-06-16 1995-12-21 Raytek Sensorik Gmbh Vorrichtung zur Temperaturmessung
US5618167A (en) * 1994-07-28 1997-04-08 Ebara Corporation Vacuum pump apparatus having peltier elements for cooling the motor & bearing housing and heating the outer housing
JP3125207B2 (ja) * 1995-07-07 2001-01-15 東京エレクトロン株式会社 真空処理装置
JP3767052B2 (ja) * 1996-11-30 2006-04-19 アイシン精機株式会社 多段式真空ポンプ
JP3057486B2 (ja) * 1997-01-22 2000-06-26 セイコー精機株式会社 ターボ分子ポンプ
US6123522A (en) * 1997-07-22 2000-09-26 Koyo Seiko Co., Ltd. Turbo molecular pump
JPH1137087A (ja) 1997-07-24 1999-02-09 Osaka Shinku Kiki Seisakusho:Kk 分子ポンプ
JPH11132186A (ja) * 1997-10-29 1999-05-18 Shimadzu Corp ターボ分子ポンプ
DE19857453B4 (de) * 1998-12-12 2008-03-20 Pfeiffer Vacuum Gmbh Temperaturüberwachung an Rotoren von Vakuumpumpen
US6257001B1 (en) * 1999-08-24 2001-07-10 Lucent Technologies, Inc. Cryogenic vacuum pump temperature sensor
JP2002048088A (ja) * 2000-07-31 2002-02-15 Seiko Instruments Inc 真空ポンプ
DE10151682A1 (de) * 2001-10-19 2003-04-30 Leybold Vakuum Gmbh Verfahren zur Bestimmung eines Wartungsintervalls einer Turbo-Vakuumpumpe
JP4156830B2 (ja) * 2001-12-13 2008-09-24 エドワーズ株式会社 真空ポンプ
JP2003287463A (ja) * 2002-03-28 2003-10-10 Boc Edwards Technologies Ltd 放射温度測定装置及び該放射温度測定装置を搭載したターボ分子ポンプ
US6739840B2 (en) * 2002-05-22 2004-05-25 Applied Materials Inc Speed control of variable speed pump
JP2004116319A (ja) * 2002-09-24 2004-04-15 Boc Edwards Technologies Ltd 真空ポンプ
JP2005320905A (ja) * 2004-05-10 2005-11-17 Boc Edwards Kk 真空ポンプ
JP5045894B2 (ja) * 2006-05-09 2012-10-10 株式会社島津製作所 磁気軸受装置

Also Published As

Publication number Publication date
US20110200460A1 (en) 2011-08-18
JPWO2010021307A1 (ja) 2012-01-26
WO2010021307A1 (ja) 2010-02-25
EP2317148A1 (en) 2011-05-04
EP2317148A4 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
KR20110044170A (ko) 진공 펌프
JP7273712B2 (ja) 高速回転機用赤外線温度センサ
EP0967394A1 (en) Turbo molecular pump
US6851848B2 (en) Turbo-molecular pump having radiation temperature apparatus
WO2021090738A1 (ja) 真空ポンプ
KR20190120236A (ko) 진공 펌프의 배기 시스템, 진공 펌프의 배기 시스템에 구비되는 진공 펌프, 퍼지 가스 공급 장치, 온도 센서 유닛, 및 진공 펌프의 배기 방법
WO2012108087A1 (ja) 真空ポンプ
CN114320989B (zh) 一种分子泵测温装置、测温方法及运转部件的测温装置
US20030175131A1 (en) Vacuum pump
EP3816453B1 (en) Vacuum pump and vacuum pump exhaust system
JP2004116319A (ja) 真空ポンプ
JP7208948B2 (ja) 温度を算出するための方法
KR20230116781A (ko) 진공 펌프
JP2023079565A (ja) 真空ポンプ、スペーサ部品、及びボルトの締結方法
JP7552497B2 (ja) ターボ分子ポンプ
WO2024117080A1 (ja) 真空ポンプ、及び異物センサ
US20240254994A1 (en) Vacuum pump
US20240117816A1 (en) Vacuum pump
CN114427539B (zh) 涡轮分子泵
JP2015059465A (ja) 真空ポンプ
US20240011496A1 (en) Vacuum pump
WO2024135679A1 (ja) 真空ポンプ
JP2004116328A (ja) 真空ポンプ
US20240337266A1 (en) Vacuum pump and insulation member for use in vacuum pump
US20230383757A1 (en) Vacuum pump and vacuum exhaust system using the vacuum pump

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid