KR20100136410A - 지시체 검출 장치 및 지시체 검출 방법 - Google Patents

지시체 검출 장치 및 지시체 검출 방법 Download PDF

Info

Publication number
KR20100136410A
KR20100136410A KR1020100050105A KR20100050105A KR20100136410A KR 20100136410 A KR20100136410 A KR 20100136410A KR 1020100050105 A KR1020100050105 A KR 1020100050105A KR 20100050105 A KR20100050105 A KR 20100050105A KR 20100136410 A KR20100136410 A KR 20100136410A
Authority
KR
South Korea
Prior art keywords
conductor
signal
conductors
circuit
frequency
Prior art date
Application number
KR1020100050105A
Other languages
English (en)
Other versions
KR101446371B1 (ko
Inventor
야스오 오다
요시히사 스기야마
Original Assignee
가부시키가이샤 와코무
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 와코무 filed Critical 가부시키가이샤 와코무
Publication of KR20100136410A publication Critical patent/KR20100136410A/ko
Application granted granted Critical
Publication of KR101446371B1 publication Critical patent/KR101446371B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Abstract

정전 결합 방식에 의해 지시체의 위치를 검출할 때에 보다 고속으로 위치 검출할 수 있도록 하는 것을 과제로 한다.
해결 수단으로서, 복수의 신호 송신용의 도체와 복수의 신호 수신용의 도체가 교차한 도체 패턴에 대해, 송신측의 복수 도체에 서로 주파수가 다른 신호를 동시에 공급하고, 수신측에서 당해 복수의 주파수가 다른 신호에 대응한 주파수마다의 신호를 검출하여, 도체 패턴 상의 지시체 위치를 검출한다. 즉, 송신측 및 수신측에 있어서 각각 복수의 도체 사이에서 병렬로 신호 처리를 실행한다.

Description

지시체 검출 장치 및 지시체 검출 방법{POINTER DETECTION APPARATUS AND POINTER DETECTION METHOD}
본 발명은 지시체 검출 장치 및 지시체 검출 방법에 관한 것으로, 보다 상세하게는 정전 결합 방식에 의해 지시체의 위치를 검출하는 지시체 검출 장치 및 지시체 검출 방법에 관한 것이다.
종래, 터치 패널 등에 사용되는 손가락이나 전용 펜 등의 지시체의 위치 검출의 방식에는 예를 들어 저항막 방식, 정전 결합 방식(정전 용량 방식) 등의 각종 방식이 제안되고 있다. 그 중에서 최근 정전 결합 방식의 지시체 검출 장치의 개발이 활발히 행해지고 있다.
정전 결합 방식에는 크게 나누어 표면형(Surface Capacitive Type)과 투영형(Projected Capacitive Type)의 2 종류 방식이 있다. 표면형은 예를 들어 ATM(Automated Teller Machine:현금 자동 예입 지불기) 등에 적용되고 있고, 투영형은 예를 들어 휴대 전화기 등에 적용되고 있다. 또한, 양 방식 모두 도전막과 지시체(예를 들어 손가락, 정전(靜電) 펜 등) 사이의 정전 결합 상태의 변화를 검출하여 지시체의 위치를 검출한다.
투영형 정전 결합 방식의 지시체 검출 장치는 예를 들어 투명 기판이나 투명 필름 상에 전극을 소정의 패턴으로 형성하여 구성되어, 지시체가 접근했을 때의 지시체와 전극의 정전 결합 상태의 변화를 검출한다. 종래 이와 같은 방식의 지시체 검출 장치에 관해서는 그 구성을 최적화하기 위한 여러 가지 기술이 제안되고 있다(예를 들어 특허 문헌 1 ~ 11 참조).
여기서, 투영형 정전 결합 방식으로부터 발전한 크로스포인트(cross point)형 정전 결합 방식의 지시체 검출 장치의 동작을, 도면을 참조하면서 간단히 설명한다. 도 62A 및 B에, 크로스포인트형 정전 결합 방식의 지시체 검출 장치의 센서부의 개략 구성 및 위치 검출 원리를 나타낸다.
일반적으로, 센서부(300)는 복수의 송신 도체(304)로 이루어지는 송신 도체군(303)과, 복수의 수신 도체(302)로 이루어지는 수신 도체군(301)을 구비한다. 또한, 송신 도체군(303)과 수신 도체군(301) 사이에는 절연층이 형성된다. 송신 도체(304)는 소정 방향(도 62A 중의 X 방향)에 연재(延在)한 도체이고, 복수의 송신 도체(304)는 서로 소정 간격 거리를 두고 병렬 배치된다. 또, 수신 도체(302)는 송신 도체(304)의 연재 방향에 교차하는 방향(도 62A 중의 Y 방향)에 연재한 선 형상의 도체이고, 복수의 수신 도체(302)는 서로 소정 간격 거리를 두고 병렬 배치된다.
이와 같은 구성의 센서부(300)에서는 소정의 송신 도체(304)에 소정의 신호를 공급하고, 그 소정의 송신 도체(304)와 수신 도체(302)의 교차점(이하, 「크로스포인트」라 함)에 흐르는 전류의 변화를 각 크로스포인트에서 검출한다. 일반적으로 이와 같은 검출의 방식을 크로스포인트형 정전 결합 방식이라 부르고 있다. 지시체(310; 손가락 등)가 놓여져 있는 위치에서는 전류가 지시체(310)를 통해 분류(分流)되어 전류가 변화한다. 그 때문에, 전류가 변화하는 크로스포인트를 검출함으로써 지시체(310)의 위치를 검출할 수 있다. 또, 크로스포인트형 정전 결합 방식의 지시체 검출 장치에서는 도 62A 및 B에 나타낸 바와 같이, 센서부(300) 상에 복수의 크로스포인트가 마련되므로 다점(多点) 검출이 가능하게 된다.
보다 구체적으로, 크로스포인트형 정전 결합 방식의 위치 검출의 원리를 설명한다. 예를 들어 지금 도 62A에 나타낸 바와 같이, 송신 도체(Y6)에 소정의 신호를 공급하고, 송신 도체(Y6) 상에서의 지시체(310)의 지시 위치를 검출하는 예를 고려한다. 송신 도체(Y6)에 신호를 공급한 상태에서, 우선 수신 도체(X0 및 X1)에 흐르는 전류의 차를 차동 증폭기(305)를 통해 검출한다. 이어서, 소정 시간 후, 수신 도체를 X1 및 X2로 전환하여 양 수신 도체간의 전류차를 검출한다. 이 동작을 수신 도체(XM)까지 반복한다.
이 때, 송신 도체(Y6) 상의 각 크로스포인트의 위치에 있어서 차동 증폭기(305)의 출력 신호의 레벨 변화를 구한다. 그 특성을 나타낸 것이 도 62B이다. 도 62B의 특성의 횡축은 수신 도체(X0)로부터 각 수신 도체까지의 거리, 즉 수신 도체의 위치를 나타내며, 종축은 차동 증폭기(305)의 출력 신호의 레벨(출력값)을 나타내고 있다. 또한, 도 62B 중의 파선으로 나타내는 특성이 실제로 차동 증폭기(305)의 출력 신호의 레벨 변화이고, 실선의 특성은 차동 증폭기(305)의 출력 신호의 적분값이다.
도 62A 및 B에 나타낸 예에 있어서, 송신 도체(Y6) 상에서는 수신 도체(X4 및 XM-5)와의 크로스포인트 부근에 지시체(310)가 놓여 있으므로, 이 크로스포인트 부근에 흐르는 전류가 변화한다. 그 때문에, 도 62B에 나타낸 예에서는 송신 도체(Y6) 상의 수신 도체(X4 및 XM -5)의 크로스포인트 부근에 대응하는 위치에서 차동 증폭기(305)의 출력 신호가 변화하여 그 적분값이 낮아진다(부(負)의 값으로 된다). 이 적분값의 변화에 기초하여 지시체(310)의 위치를 검출할 수 있다. 종래의 지시체 검출 장치에서는 상술한 바와 같은 검출을 송신 도체 1개마다 전환하면서 행한다.
선행기술문헌
특허 문헌
특허 문헌 1: 일본 특개평 5-224818호 공보
특허 문헌 2: 일본 특개평 6-4213호 공보
특허 문헌 3: 일본 특개평 7-141088호 공보
특허 문헌 4: 일본 특개평 8-87369호 공보
특허 문헌 5: 일본 특개평 8-179871호 공보
특허 문헌 6: 일본 특개평 8-190453호 공보
특허 문헌 7: 일본 특개평 8-241161호 공보
특허 문헌 8: 일본 특개평 9-45184호 공보
특허 문헌 9: 일본 특개 2000-76014호 공보
특허 문헌 10: 일본 특개 2000-105645호 공보
특허 문헌 11: 일본 특개 2000-112642호 공보
특허 문헌 12: 일본 특개평 10-161795호 공보
상술한 바와 같은 종래의 크로스포인트형 정전 결합 방식의 지시체 검출 장치에서는 크로스포인트를 소정 시간마다 1개씩 위치 검출 처리를 행하므로, 전체 크로스포인트의 검출 시간이 길어진다고 하는 문제가 있다. 예를 들어 64개의 송신 도체 및 128개의 수신 도체를 구비하는 센서부에 있어서, 각 크로스포인트에서의 검출 처리 시간을 예를 들어 256㎲ec로 하면, 전체 크로스포인트(8192개)에서 약 2sec의 검출 시간이 걸려 실용적이지 않다.
상기 문제에 감안하여, 본 발명은 정전 결합 방식에 의해 지시체의 위치를 검출할 때에, 보다 고속으로 위치 검출할 수 있도록 하는 것을 목적으로 한다.
상기 문제를 해결하기 위해 본 발명의 지시체 검출 장치는, 제1 방향에 배치된 복수의 도체와, 상기 제1 방향에 대해 교차하는 방향으로 배치된 복수의 도체로 이루어지는 도체 패턴과; 복수 주파수의 신호를 생성시키기 위한 다주파 신호 생성 회로와; 상기 제1 방향에 배치된 복수의 도체에 대해, 서로의 사이에 소정 수의 도체 N(N
Figure pat00001
0의 정수)이 개재 배치된 각각의 도체에 상기 다주파 신호 생성 회로에서 생성된 소정 주파수의 신호를 선택적으로 공급하기 위한 제1 도체 선택 회로와; 상기 제1 방향에 대해 교차하는 방향으로 배치된 복수의 도체를 선택적으로 전환하기 위한 제2 도체 선택 회로와; 상기 제2 도체 선택 회로로부터 공급된 상기 도체 패턴에 있어서 상기 제1 방향의 도체와 상기 제2 방향의 도체의 교차점에 있어서 결합 상태를 나타내는 신호에 대해, 상기 다주파 신호 생성 회로에서 생성된 주파수의 신호에 대응한 주파수마다의 신호를 얻기 위한 신호 검출 회로를 구비한 구성으로 한다.
또 본 발명의 지시체 검출 방법은 다음과 같은 순서로 행한다.
우선 복수 주파수의 신호를 생성하는 제1 단계를 실행한다.
다음으로, 제1 방향에 배치된 복수의 도체와, 상기 제1 방향에 대해 교차하는 방향으로 배치된 복수의 도체로 이루어지는 도체 패턴의, 상기 제1 방향에 배치된 복수의 도체에 대해, 서로의 사이에 소정 수의 도체 N(N
Figure pat00002
0의 정수)이 개재 배치된 각각의 도체에, 상기 제1 단계에서 생성된 복수의 주파수로부터 소정 주파수의 신호를 선택적으로 공급하는 제2 단계를 실행한다.
이어서, 상기 제1 방향에 대해 교차하는 방향으로 배치된 복수의 도체를 선택적으로 전환하는 제3 단계를 실행한다.
그리고 상기 제3 단계에 의해 선택된 도체로부터 공급되는 상기 도체 패턴에 있어서 상기 제1 방향의 도체와 상기 제2 방향의 도체의 교차점에 있어서 결합 상태를 나타내는 신호에 대해, 상기 제1 단계에서 생성된 주파수의 신호에 대응한 주파수마다의 신호를 얻는 제4 단계를 실행한다.
상기와 같이 구성된 본 발명에 의하면, 송신측의 복수 도체에 서로 주파수가 다른 신호를 동시에 공급하고, 수신측에서 당해 복수의 주파수가 다른 신호에 대응한 주파수마다의 신호를 검출하고, 도체 패턴 상의 지시체 위치를 검출한다. 즉, 송신측 및 수신측에 있어서 각각 복수의 도체 사이에서 병렬로 신호 처리를 실행한다.
본 발명에서는 송신측의 복수 도체에 서로 주파수가 다른 신호를 동시에 공급하여 도체 패턴 상의 지시체 위치를 검출한다. 즉, 복수의 크로스포인트에 대해 동시에 위치 검출 처리를 행할 수 있다. 그 때문에, 본 발명에 의하면, 정전 결합 방식의 지시체 검출 장치에 있어서 보다 고속으로 위치 검출이 가능하게 된다.
도 1은 제1 실시 형태에 관한 지시체 검출 장치의 개략 블록 구성도이다.
도 2는 제1 실시 형태에 관한 지시체 검출 장치의 센서부의 개략 단면도이다.
도 3은 제1 실시 형태에 관한 지시체 검출 장치의 다주파 신호 공급 회로의 블록 구성도이다.
도 4는 제1 실시 형태에 관한 지시체 검출 장치의 주기 신호 생성부의 블록 구성도이다.
도 5는 제1 실시 형태에 관한 지시체 검출 장치의 송신 도체 선택 회로의 개략 구성도이다.
도 6은 제1 실시 형태에 관한 지시체 검출 장치에 있어서 송신 도체의 전환 동작을 설명하기 위한 도면이다.
도 7은 제1 실시 형태에 관한 지시체 검출 장치의 수신 도체 선택 회로 및 증폭 회로의 개략 구성도이다.
도 8은 제1 실시 형태에 관한 지시체 검출 장치에 있어서 수신 도체의 전환 동작을 설명하기 위한 도면이다.
도 9는 제1 실시 형태에 관한 지시체 검출 장치의 수신부의 블록 구성도이다.
도 10은 제1 실시 형태에 관한 지시체 검출 장치의 동기 검파 회로부의 블록 구성도이다.
도 11에서, 도 11A는 센서부 상에 지시체가 존재하지 않는 경우 송신 도체 및 수신 도체 사이의 정전 결합 상태를 나타내는 도면이고, 도 11B는 센서부 상에 지시체가 존재하는 경우 송신 도체 및 수신 도체 사이의 정전 결합 상태를 나타내는 도면이다.
도 12에서, 도 12A는 제1 실시 형태에 관한 지시체 검출 장치에 대한 멀티 터치를 나타내는 도면이고, 도 12B는 송신 도체(Y6)에 대한 수신 도체의 출력 신호의 파형을 나타내는 도면이다. 도 12C는 송신 도체(Y58)에 대한 수신 도체의 출력 신호의 검파 파형을 나타내는 도면이다. 도 12D는 송신 도체(Y2)에 대한 수신 도체로부터의 출력 신호의 검파 파형을 나타내는 도면이다.
도 13은 제1 실시 형태에 관한 지시체 검출 장치에 있어서 위치 검출의 순서를 나타내는 플로차트이다.
도 14는 제1 실시 형태의 변형예 1에 관한 센서부의 개략 단면도이다.
도 15에서, 도 15A는 제1 실시 형태의 변형예 2에 관한 센서부의 개략 단면도이고, 도 15B는 변형예 2에 관한 센서부의 사시도이다.
도 16에서, 도 16A는 제1 실시 형태의 변형예 3에 관한 센서부(제1 예)의 크로스포인트의 개략 확대도이고, 도 16B는 변형예 3에 관한 센서부의 랜드 도체부의 개략 확대도이다.
도 17은 변형예 3에 관한 센서부(제2 예)의 개략 확대도이다.
도 18은 제1 실시 형태의 변형예 4에 관한 센서부의 개략 구성도이다.
도 19에서, 도 19A는 변형예 4의 센서부의 상부 도체 패턴을 나타내는 도면이고, 도 19B는 변형예 4의 센서부의 하부 도체 패턴을 나타내는 도면이다.
도 20은 제1 실시 형태의 변형예 5에 관한 센서부의 개략 구성도이다.
도 21에서, 도 21A는 제1 실시 형태의 변형예 6에 관한 증폭기의 개략 구성도이고, 도 21B는 증폭 회로에 차동 증폭기를 사용하는 경우 증폭 회로 및 그 주변의 개략 구성도이다.
도 22는 제1 실시 형태의 변형예 7에 관한 증폭기의 개략 구성도이다.
도 23은 제1 실시 형태의 변형예 8에 관한 주기 신호의 공급 형태를 나타내는 도면이다.
도 24는 제1 실시 형태의 변형예 9에 관한 주기 신호의 공급 형태 및 출력 신호의 검출 형태를 나타내는 도면이다.
도 25에서, 도 25A 및 B는 변형예 9에 있어서 주기 신호의 주파수의 로테이션의 예를 나타내는 도면이다.
도 26에서, 도 26A ~ C는 변형예 9에 있어서 주기 신호의 주파수의 로테이션의 다른 예를 나타내는 도면이다.
도 27은 제1 실시 형태의 변형예 10의 설명에 제공하는 도면이다.
도 28은 변형예 10에 관한 주기 신호의 공급 형태 및 출력 신호의 검출 형태를 나타내는 도면이다.
도 29는 변형예 10에 관한 주기 신호의 공급 형태 및 출력 신호의 검출 형태의 다른 예를 나타내는 도면이다.
도 30은 제1 실시 형태의 변형예 11의 설명에 제공하는 도면이다.
도 31은 변형예 11에 관한 주기 신호의 공급 형태 및 출력 신호의 검출 형태를 나타내는 도면이다.
도 32는 변형예 11에 관한 주기 신호의 공급 형태 및 출력 신호의 검출 형태의 다른 예를 나타내는 도면이다.
도 33에서, 도 33A 및 B는 제1 실시 형태의 변형예 12에 관한 주기 신호의 공급 형태 및 출력 신호의 검출 형태를 나타내는 도면이다.
도 34는 통상의 손가락 검출시 신호 레벨을 나타내는 도면이다.
도 35는 제1 실시 형태의 변형예 13, 14의 설명에 제공하는 도면이다.
도 36은 제1 실시 형태의 변형예 14의 설명에 제공하는 도면이다.
도 37은 제1 실시 형태의 변형예 15에 관한 주기 신호의 공급 형태 및 출력 신호의 검출 형태를 나타내는 도(1)이다. 설명에 제공하는 도면이다.
도 38은 변형예 15에 관한 주기 신호의 공급 형태 및 출력 신호의 검출 형태를 나타내는 도(2)이다.
도 39는 제1 실시 형태의 변형예 17의 설명에 제공하는 도면이다.
도 40은 변형예 17에 관한 주기 신호의 공급 형태 및 출력 신호의 검출 형태를 나타내는 도면이다.
도 41은 제1 실시 형태의 변형예 18에 관한 지시체 검출 장치의 수신부의 블록 구성도이다.
도 42는 변형예 18에 관한 지시체 검출 장치의 절대값 검파 회로의 블록 구성도이다.
도 43에서, 도 43A는 한쪽측 송신시 주기 신호의 공급 형태를 나타내는 도면이고, 도 43B는 출력 신호의 레벨을 나타내는 도면이다.
도 44에서, 도 44A는 변형예 19에 관한 양측 송신시 주기 신호의 공급 형태를 나타내는 도면이고, 도 44B는 출력 신호의 레벨을 나타내는 도면이다.
도 45에서, 도 45A는 출력 신호의 공간 분포(레벨 곡면)예를 나타내는 모식도이고, 도 45B는 제1 실시 형태의 변형예 19에 관한 레벨 곡면을 복수의 평면으로 분할한 도면이다.
도 46은 변형예 20에 있어서 레벨 곡면의 체적을 계산하는 방법의 일례를 설명하기 위한 그래프이다.
도 47은 제2 실시 형태에 관한 지시체 검출 장치의 개략 블록 구성도이다.
도 48은 제2 실시 형태에 관한 송신 도체 선택 회로 및 송신 도체 접속 패턴 전환 회로의 개략 구성도이다.
도 49에서, 도 49A 및 B는 제2 실시 형태에 관한 송신 도체의 전환 동작을 설명하기 위한 도면이다.
도 50은 제2 실시 형태에 관한 수신 도체 선택 회로 및 수신 도체 접속 패턴 전환 회로의 개략 구성도이다.
도 51은 제2 실시 형태에 관한 수신 도체의 전환 동작을 설명하기 위한 도면이다.
도 52에서, 도 52A 및 B는 제3 실시 형태에 관한 송신 도체의 전환 동작의 예를 설명하기 위한 도면이다.
도 53에서, 도 53A 및 B는 제3 실시 형태에 관한 송신 도체의 전환 동작의 다른 예를 설명하기 위한 도면이다.
도 54는 제4 실시 형태에 관한 지시체 검출 장치의 개략 블록 구성도이다.
도 55는 주기 신호의 초기 위상의 분산예를 나타내는 도면이다.
도 56은 제4 실시 형태에 관한 송신 신호의 합성 파형(위상 분산 없음)을 나타내는 그래프이다.
도 57은 제4 실시 형태에 관한 송신 신호의 합성 파형(위상 분산:패턴 0)을 나타내는 그래프이다.
도 58은 제4 실시 형태에 관한 송신 신호의 합성 파형(위상 분산:패턴 1)을 나타내는 그래프이다.
도 59는 제4 실시 형태에 관한 송신 신호의 합성 파형(위상 분산:패턴 2-1)을 나타내는 그래프이다.
도 60은 제4 실시 형태에 관한 송신 신호의 합성 파형(위상 분산:패턴 2-2)을 나타내는 그래프이다.
도 61은 제4 실시 형태에 관한 송신 신호의 합성 파형(위상 분산:패턴 3)을 나타내는 그래프이다.
도 62에서, 도 62A는 종래의 크로스포인트형 정전 결합 방식의 지시체 검출 장치의 센서부의 개략 구성도이고, 도 62B는 종래의 크로스포인트형 지시체 검출 장치에 있어서 위치 검출의 원리를 설명하기 위한 도면이다.
이하, 본 발명을 실시하기 위한 형태에 대해 첨부 도면을 참조하면서 설명한다. 설명은 하기 항목의 순으로 행한다.
1. 제1 실시 형태(주파수 다중에 있어서 그룹 내 스캔의 예)
2. 제2 실시 형태(주파수 다중에 있어서 블록 단위 전환 스캔의 예)
3. 제3 실시 형태(주파수 다중에 있어서 전체 도체 대상 스캔의 예)
4. 제4 실시 형태(주파수 다중에 있어서 다주파 신호의 초기 위상을 분산하는 예)
<1. 제1 실시 형태>
제1 실시 형태에서는 본 발명의 지시체 검출 장치 및 지시체 검출 방법의 기본 구성예를 설명한다.
본 실시 형태에서는 센서부의 송신 도체군 및 수신 도체군을 각각 복수의 그룹으로 분할하고, 그룹마다 다른 주파수의 신호(주기 신호)를 동시 공급(다중 송신)한다. 이후에 있어서, 본 실시 형태의 신호의 공급 형태를 「주파수 다중 방식」, 공급되는 복수의 주기 신호를 총칭하여 「다주파 신호」라 한다. 또한, 본 발명의 위치 검출 방식은 센서부의 송신 도체 및 수신 도체 사이의 정전 결합 상태의 변화에 기초하여 지시체의 위치를 검출하는 정전 결합 방식이다.
[지시체 검출 장치의 구성]
도 1에, 제1 실시 형태에 관한 지시체 검출 장치의 개략 구성도를 나타낸다.
지시체 검출 장치(100)는 주로 센서부(10)와 송신부(20)와 수신부(30)와 송신부(20) 및 수신부(30)의 동작을 제어하는 제어 회로(40)로 구성된다. 이하, 각 부의 구성에 대해 설명한다.
우선 센서부(10)의 구성을 도 1 및 도 2를 참조하면서 설명한다. 또한, 도 2는 센서부(10)의 개략 단면도이고, 도 1 중의 X 방향으로부터 본 단면도이다. 이 도 2에 나타낸 바와 같이, 센서부(10)는 제1 글래스 기판(15)과, 복수의 수신 도체(12)로 이루어지는 수신 도체군(11)과, 스페이서(16)와, 복수의 송신 도체(14)로 이루어지는 송신 도체군(13)과, 제2 글래스 기판(17)을 구비한다. 그리고 송신 도체군(13), 스페이서(16), 수신 도체군(11) 및 제2 글래스 기판(17)이, 이 순서로 제1 글래스 기판(15) 상에 형성된다.
그리고 이 제1 실시 형태에서, 손가락이나 정전 펜 등의 지시체는 제2 글래스 기판(17)측(당해 제2 글래스 기판(17)이 제1 글래스 기판(15)과 대향하는 면과 반대측)에서 사용된다. 또, 이 제1 실시 형태에서는 제1 글래스 기판(15) 및 제2 글래스 기판(17) 대신에, 합성 수지 등으로 이루어진 시트 형상(필름 형상) 기재를 사용해도 된다.
송신 도체(14) 및 수신 도체(12)는 예를 들어 ITO(Indium Tin Oxide)막으로 이루어지는 투명 전극막이나 구리박 등으로 형성된다. 송신 도체(14)의 전극 패턴은 예를 들어 다음과 같이 형성할 수 있다. 우선 상술한 재료 등으로 형성된 전극막을, 예를 들어 스퍼터법, 증착법, 도포법 등에 의해 제1 글래스 기판(15) 상에 형성한다. 이어서, 형성한 전극막을 에칭하여 소정의 전극 패턴을 형성한다. 수신 도체(12)의 전극 패턴도 동일하게 하여 제2 글래스 기판(17) 상에 형성할 수 있다. 또한, 송신 도체(14) 및 수신 도체(12)를 구리박으로 형성하는 경우에는, 잉크젯 프린터를 사용하여 구리 입자를 함유하는 잉크를 소정의 전극 패턴으로 글래스판 등 위에 분사하여 제작할 수도 있다.
스페이서(16)는 예를 들어 PVB(PolyVinyl Butyral), EVA(Ethylene Vinyl Acetate), 아크릴계 수지 등의 합성 수지로 형성할 수 있다. 또, 스페이서(16)는 고굴절률(고유전체)의 실리콘 러버로 구성할 수도 있다.
스페이서(16)를 합성 수지로 형성하는 경우, 예를 들어 다음과 같이 하여 형성할 수 있다. 우선 합성 수지 시트를 송신 도체(14) 및 수신 도체(12) 사이에 끼워 넣는다. 이어서, 도체 사이를 진공으로 만들면서 가압 및 가열하여 스페이서(16)를 형성한다. 또, 예를 들어 액체 형상의 합성 수지를 송신 도체(14) 및 수신 도체(12) 사이에 흘려넣고, 그 후 합성 수지를 고체화함으로써 스페이서(16)를 형성해도 된다.
도 1에 나타낸 바와 같이, 송신 도체군(13)은 소정 방향(도 1 중의 X 방향)에 연재한 복수의 송신 도체(14)로 구성되고, 복수의 송신 도체(14)는 서로 소정 간격 거리를 두고 병렬 배치된다. 또, 수신 도체군(11)은 송신 도체(14)의 연재 방향에 교차하는 방향(도 1 중의 Y 방향)에 연재한 복수의 수신 도체(12)로 구성되고, 복수의 수신 도체(12)는 서로 소정 간격 거리를 두고 병렬 배치된다. 송신 도체(14) 및 수신 도체(12)는 모두 직선 형상(판 형상) 또는 소정 형상의 도체로 형성할 수 있다. 이 제1 실시 형태에 있어서는 직선 형상으로 형성한 예를 나타내고 있다. 또한, 이 도 1에 있어서, 송신 도체(14)와 수신 도체(12)는 직교하도록 기재하고 있으나, 직교 이외의 각도, 예를 들어 송신 도체(14)와 수신 도체(12)를 비스듬하게 교차하는 구성으로 해도 된다. 또 전기 특성상, 수신 도체의 폭을 송신 도체의 폭보다 가늘게 하면 된다. 부유(浮遊) 용량이 감소됨으로써 수신 도체에 혼입하는 노이즈를 저감할 수 있기 때문이다.
또한, 이 제1 실시 형태에서는 송신 도체(14)의 개수를 64개로 하고, 수신 도체(12)의 개수를 128개로 한다. 또, 이 제1 실시 형태에서, 송신 도체(14) 및 수신 도체(12)의 배치 간격(피치)은 모두 3.2mm로 한다. 단, 본 발명은 이로 한정되지 않으며, 송신 도체(14) 및 수신 도체(12)의 개수 및 피치는 센서부(10)의 사이즈나 필요로 하는 검출 정밀도 등에 따라 적절히 설정된다.
또, 이 제1 실시 형태에서는 송신 도체군(13)에 있어서 수신부(30)에 가까운 측의 송신 도체(14)로부터 그 인덱스 n을 「0」 ~ 「63」으로 하고, 이하에서는 적절히 각 인덱스 n에 대응하는 송신 도체(14)를 송신 도체(Yn)로도 적는다. 또, 본 실시 형태에서는 수신 도체군(11)에 있어서, 송신부(20)에 먼 측의 수신 도체(12)로부터 그 인덱스 m을 「0」 ~ 「127」로 하고, 이하에서는 적절히 각 인덱스 m에 대응하는 수신 도체(12)를 수신 도체(Xm)로도 적는다.
또, 이 제1 실시 형태에서는 송신 도체군(13) 및 수신 도체군(11)을 각각 16개의 그룹(블록)으로 분할한다. 또한, 이하의 설명에 있어서는 송신 도체군(13)의 그룹을 송신 블록, 수신 도체군(11)의 그룹을 검출 블록으로 각각 적는다.
이 송신 블록은 4개의 송신 도체(14)로 구성된다. 각 송신 블록은 서로 이웃한(인덱스 n이 연속하는) 4개의 송신 도체(14)로 구성된다. 보다 구체적으로, 본 실시 형태에서는 송신 도체군(13)을 검출 블록{Y0 ~ Y3},{Y4 ~ Y7}, ㆍㆍㆍ, {Y56 ~ Y59} 및 {Y60 ~ Y63}으로 분할한다.
동일하게, 검출 블록은 8개의 수신 도체(12)로 구성된다. 그리고 각 검출 블록은 서로 이웃한(인덱스 m이 연속하는) 8개의 수신 도체(12)로 구성된다. 보다 구체적으로, 본 실시 형태에서는 수신 도체군(11)을 검출 블록{X0 ~ X7}, {X8 ~ X15}, ㆍㆍㆍ, {X112 ~ X119} 및 {X120 ~ X127}로 분할한다.
단, 본 발명은 이것으로 한정되지 않으며, 하나의 그룹 내 도체의 개수나 그룹 수, 그룹의 형태(동일 그룹에 속하는 도체의 위치 관계 등)는 센서부(10)의 사이즈나 필요로 하는 검출 속도 등에 따라 적절히 설정되는 것이고, 자세한 것은 후술한다.
송신부(20)는 도 1에 나타낸 바와 같이, 송신 도체 선택 회로(22)와 다주파 신호 공급 회로(21)와 클록 발생 회로(23)를 구비한다. 송신 도체 선택 회로(22), 다주파 신호 공급 회로(21) 및 클록 발생 회로(23)는 이 순서로 센서부(10)측으로부터 배치된다. 다주파 신호 공급 회로(21)는 클록 발생 회로(23)에 접속되어 있고, 클록 발생 회로(23)로부터 출력되는 클록 신호에 의해 제어된다.
도 3에, 다주파 신호 공급 회로(21)의 개략 구성의 일례를 나타낸다.
이 제1 실시 형태에 있어서 다주파 신호 공급 회로(21)는 송신 도체군(11)의 송신 블록의 수와 동수(16개)의 주기 신호 생성부(24)로 구성된다. 복수의 주기 신호 생성부(24)는 제어 회로(40)의 제어에 기초하여 각각이 일정 주기의 주기 신호를 생성한다. 또한, 이 제1 실시 형태에서는 복수의 주기 신호 생성부(24)가 생성하는 주기 신호에 대해, 수신부(30)에 가까운 측의 주기 신호 생성부(24)가 생성하는 주기 신호로부터 순서대로 그 인덱스 i를 「0」 ~ 「15」로 한다. 이 16개의 주기 신호는 예를 들어 100kHz ~ 250kHz까지 10kHz 시각의 16 주파수의 신호이다.
도 4에, 주기 신호 생성부(24)의 개략 구성을 나타낸다.
주기 신호 생성부(24)는 주로 가산기(241)와 선택기(242)와 D형 플립 플롭(이하,「D-FF」라 함; 243)과 구형파(矩形波) ROM(244)과 D-FF(245)로 구성된다. 이하, 각부의 구성에 대해 설명한다.
가산기(241)는 입력 단자를 2개 구비하고, 연산 결과를 출력하는 출력 단자를 하나 구비한다. 가산기(241)의 일방의 입력 단자에는 레지스터(도시하지 않음)로부터 주파수 데이터(건너뛰어 읽기 수 지정 신호)가 입력된다. 이 주파수 데이터는 예를 들어 100kHz ~ 250kHz 사이에서 하나의 주파수를 나타내는 디지털 신호이고, 제어 회로(40)에 의해 주기 신호 생성부(24)마다 설정된다. 이 가산기(241)의 출력 단자로부터 출력된 연산 결과는 선택기(242)를 통해 D-FF(243)에 입력되고, D-FF(243)의 출력은 가산기(241)의 타방의 입력 단자에 입력된다.
선택기(242)는 입력 단자를 2개 구비하고 연산 결과를 출력하는 출력 단자를 하나 구비하는 셀렉터이다. 이 선택기(242)의 일방의 입력 단자에는 상기 가산기(241)로부터의 연산 결과가 입력되고, 타방의 입력 단자에는 레지스터(도시 생략)로부터 초기 위상 데이터가 입력된다. 그리고 이 선택기(242)는 입력된 연산 결과 또는 초기 위상 데이터 중 어느 쪽을 선택하여 출력한다. 이 초기 위상 데이터는 예를 들어 22.5°, 45°, 90° 등을 나타내는 디지털 신호이고, 제어 회로(40)에 의해 주기 신호 생성부(24)마다 설정된다. 또한, 본 실시 형태에서는 초기 위상은 0°이다.
D-FF(243)는 선택기(242)로부터 입력되는 데이터를 일시 유지하는 것이다. 또, 이 D-FF(243)에는 클록 발생 회로(23)가 발생하는 클록이 입력되도록 되어 있다. 그리고 D-FF(243)는 클록 발생 회로(23)로부터 입력된 클록의 엣지 타이밍에 선택기(242)로부터 입력된 데이터를 기억한다. D-FF(243)의 출력은 구형파 ROM(244)에 입력됨과 아울러 가산기(241)에도 입력된다.
구형파 ROM(244)는 예를 들어 8 비트×256 샘플의 의사(疑似) 구형파의 데이터가 기억되어 있는 ROM(Read Only Memory)이다. 주기 신호 생성부(24)는 클록 발생 회로(23)로부터 공급되는 클록에 기초하여, 제어 회로(40) 또는 전용의 독출부가 D-FF(243)로부터 입력되는 신호에 대응하여, 이 구형파 ROM(244)의 어드레스를 지정하고, 데이터를 독출한다. 레지스터로부터의 주파수 데이터 및 초기 위상 데이터를 바꾸면 독출되는 어드레스가 변경되어, 구형파 ROM(244)으로부터 독출되는 구형파 데이터의 주파수, 초기 위상의 데이터가 변화한다.
그런데 이 주기 신호 생성부(24)는 복수의 주파수를 작성 가능하게 하기 위해, 구형파 ROM(244)으로부터 어드레스를 지정하여 데이터를 독출할 때에, 어드레스를 건너뛰어 읽는 수를 지정하도록 되어 있다. 어드레스의 건너뛰어 읽기를 전혀 행하지 않고, 예를 들어 2.56MHz 클록에 의해 구형파 ROM(244)의 데이터를 독출하는 경우에, 독출된 구형파의 주파수는 2.56MHz÷256=10kHz 로 된다. 한편, 어드레스의 건너뛰어 읽기를 하나만 행하여 2.56MHz 클록에 의해 구형파 ROM(244)의 데이터를 독출하는 경우에, 독출된 구형파의 주파수는 2.56MHz÷(256÷2)=20kHz 로 된다. 즉, 건너뛰어 읽는 어드레스의 수가 증가하면, 주파수가 상승한다. 또한, 이 수치 예는 설명을 위한 일례이고, 이로 한정되지 않는다.
D-FF(245)는 구형파 ROM(244)으로부터 입력되는 구형파 데이터를 일시 유지하는 것이다. 이 D-FF(245)는 클록 발생 회로(23)로부터 공급되는 클록에 기초하여 일시 유지한 구형파 데이터를 송신 도체 선택 회로(22)에 출력한다.
이하, 주기 신호 생성부(24)의 동작을 설명한다. 상기와 같이 구성된 주기 신호 생성부(24)는 우선 선택기(242)에 제어 회로(40)로부터 출력된 리셋 신호가 입력되면, 선택기(242)에서 초기 위상이 선택된다. 계속해서, 선택기(242)에서 선택된 초기 위상을 나타내는 신호가 D-FF(243)로 입력되어 초기 위상이 설정된다. 전자의 처리는 클록의 상승까지 행해지며, 후자의 처리는 클록의 상승 후에 행해진다.
다음으로, D-FF(243)는 클록 발생 회로(23)가 발생하는 클록에 기초하여, 가산기(241)에 초기 위상을 나타내는 신호를 입력한다. 가산기(241)는 D-FF(243)로부터 입력된 초기 위상을 나타낸 신호에 주파수 데이터(건너뛰어 읽기 수 지정 신호)를 가산하는 처리를 행한다. 계속하여, 이 가산기(241)는 그 연산 결과를 선택기(242)를 통해 D-FF(243)에 출력한다. D-FF(243)에는 이 연산 결과, 즉 초기 위상의 신호와 주파수 데이터를 가산한 값(가산값)이 설정된다. 이 가산값은 D-FF(243)로부터 구형파 ROM(244)으로 공급된다. 그리고 클록 발생 회로(23)가 발생하는 클록에 기초하여 가산값에 대응하는 당해 어드레스가 지정된다. 이 지정된 어드레스에 따라 구형파 ROM(244)으로부터 데이터가 독출된다. 이 독출된 데이터는 D-FF(245)를 통해 송신 도체 선택 회로(22)에 출력된다. 그 후, 주파수 데이터의 수만큼 D-FF(243)로부터 가산기(241)로의 루프 처리가 반복되어 가산 처리가 행해진다. 이와 같은 일련의 동작을 반복함으로써 목적의 주파수, 초기 위상의 구형파 데이터가 얻어진다.
또한, 이 제1 실시 형태에 있어서는 송신 도체에 공급하는 주기 신호의 파형이 구형파(0 볼트 전위 기준의 상하 방향으로 진동하는 펄스)의 경우를 예시하였으나, 일정한 주기를 갖는 주기 신호이면 이 예로 한정되지 않는다. 예를 들어 구형파 ROM(244)을, 정현파 ROM 또는 펄스파 ROM으로 치환하고, 정현파나 펄스파(0-Vcc 사이에서 진동하는 구형파, 극성을 반전한 부 신호라도 가능)를 생성하는 구성으로 해도 된다. 상술한 구형파는 펄스파의 전위 Vcc의 절반의 전위를 기준으로 하여 상하로 진동하는 구형파로 간주할 수도 있다. 또한, 주기 신호 생성부(24)는 상기의 각종 ROM을 사용하지 않는 구성으로 실현해도 되는 것을 물론이다.
또, 이 제1 실시 형태에 있어서는 주기 신호의 초기 위상을 0°로 하고, 초기 위상도 주파수도 한 번 설정하면 변경하지 않으나, 주기 신호 생성부(24)가 생성하는 주기 신호의 주파수 및 초기 위상은 이 예로 한정되는 것은 아니다. 또한, 주기 신호 생성부(24)는 어떤 타이밍에 주기 신호를 출력하지만, 주기 신호를 출력하는 주기 신호 생성부(24)는 이 예로 한정되지 않는다. 다른 예에 대해서는 다음에 상세히 설명한다.
주기 신호가 공급되는 송신 도체(14)는 제어 회로(40)의 제어에 기초하여 송신 도체 선택 회로(22)에 의해 전환된다. 이 제1 실시 형태에 있어서 송신 도체 선택 회로(22)는 송신 도체군(13)의 분할 그룹 수(16개)와 동수의 스위치로 구성된다.
도 5에, 송신 도체 선택 회로(22)의 내부 구성을 나타낸다.
송신 도체 선택 회로(22)는 다주파 신호 공급 회로(21)로부터 공급된 주기 신호를 선택적으로 공급하기 위한 복수의 스위치(22a)로 이루어진다. 이 스위치(22a)는 각 송신 블록(25)에 각각 1개씩 마련된다. 각 스위치(22a)의 출력측의 4개 단자(22b)는 각각 대응하는 송신 도체(14)에 접속된다. 또, 각 스위치(22a)의 입력측의 하나의 단자(22c)는 각각이 도 3에 나타낸 다주파 신호 공급 회로(21)의 대응하는 주기 신호 생성부(24)의 출력 단자에 접속된다. 이 스위치(22a)는 소정 시간 간격으로, 선택된 송신 도체(14)와, 대응하는 소정의 주파수 fk(k=0 ~ 15)의 주기 신호를 출력하는 주기 신호 생성부(24)의 단자를 접속하는 구조로 되어 있다. 또, 이 스위치(22a)의 전환 동작은 제어 회로(40)에 의해 제어된다.
도 6에, 제1 실시 형태에 있어서 송신 도체(14)의 전환 동작의 일례를 나타낸다.
이 예에서, 우선 각 송신 블록(25)은 최대 인덱스의 송신 도체(14), 즉 송신 도체(Y3, Y7,ㆍㆍㆍ, Y59 및 Y63)가 스위치(22a)를 통해 각각 대응하는 주기 신호 생성부(24)의 출력 단자에 접속되어 있는 것으로 한다(도 5의 상태).
이어서, 다주파 신호 공급 회로(21)의 각 주기 신호 생성부(24)로부터 출력된 서로 주파수가 다른 주기 신호는 각 송신 블록(25)의 스위치(22a)에 의해 선택된 16개의 송신 도체(14)에 동시에 공급된다. 이 상태에서, 소정 시간의 동안 지시체의 위치 검출을 행한다. 이어서, 소정 시간이 경과하면, 스위치(22a)는 송신 도체(14)를 인덱스 n이 감소하는 방향에 위치하는 인접한 송신 도체(14), 즉 송신 도체(Y2, Y6,ㆍㆍㆍ, Y58 및 Y62)로 전환한다. 그리고 전환 후, 그 16개의 송신 도체(14)에 다주파 신호 공급 회로(21)의 각 주기 신호 생성부(24)로부터 출력된, 서로 주파수가 다른 주기 신호를 동시에 공급하여 위치 검출을 행한다. 이와 같은 동작을 반복하면서 지시체의 위치 검출을 행한다.
그리고 각 송신 블록(25) 내 최소 인덱스의 송신 도체(14), 즉 송신 도체(Y0, Y4, ㆍㆍㆍ, Y56 및 Y60)이 스위치(22a)에 의해 선택되고, 지시체의 위치 검출을 행한 후는 재차 각 송신 블록(25) 내 최대 인덱스의 송신 도체(14)가 스위치(22a)에 의해 선택되고, 상기 동작이 각 그룹 내에서 반복된다. 이 때, 스위치(22a)에 의해 선택되지 않은 송신 도체(14)는 임의의 기준 전위 또는 그라운드에 접속하는 것이 바람직하다. 이와 같이, 스위치(22a)에 의해 선택되지 않은 송신 도체를 임의의 기준 전위 또는 그라운드에 접속함으로써, 선택되지 않은 송신 도체에 중첩하는 노이즈를 퇴피시킬 수 있으므로 노이즈 내성을 향상시킬 수 있다. 또한, 송신 도체(14)의 전환 동작의 수순은 도 6의 예로 한정되지 않는다. 그 변형예에 대해서는 다음에 상세히 기술한다.
상술한 바와 같이 송신부(20)에서, 복수의 송신 도체(14)는 각 그룹이 소정 수 M(M
Figure pat00003
2의 정수;도 5의 예에서는 M=4)의 도체로 이루어지는 복수의 그룹으로 구분된다. 그리고 다주파 신호 공급 회로(21)에 의해 생성된 각 주파수의 신호(주기 신호)를, 각 그룹을 구성하는 소정의 송신 도체(14)에 공급함과 아울러, 각 그룹 내에서 당해 주기 신호를 공급하는 도체를 순차 전환하도록 하고 있다. 이와 같이 구성함으로써, 위치 검출을 위한 주기 신호를 복수의 송신 도체(14)에 동시에 공급할 수 있다. 이 예에서는 16의 주파수를 동시에 사용하고 있으므로, 위치 검출을 위한 신호의 송신에 걸리는 시간을 종래의 1/16로 단축할 수 있다.
또한, 상기 실시 형태에 있어서, 예를 들어 주파수가 f0으로부터 f15에 걸쳐서 큰 경우, 수신부(30)와의 거리가 먼 쪽의 송신 도체에 대해 낮은 주파수(예를 들어 f0)를 공급하고, 수신부(30)와의 거리가 가까운 쪽의 송신 도체에 대해 높은 주파수(예를 들어 f15)를 공급하면 수신 감도가 양호하게 된다.
한편, 수신부(30)는 도 1에 나타낸 바와 같이, 수신 도체 선택 회로(31)와 증폭 회로(32)와 A/D(Analog to Digital) 변환 회로부(33)와 신호 검출 회로(34)와 위치 산출 회로(35)로 구성되어 있다. 수신 도체 선택 회로(31), 증폭 회로(32), A/D 변환 회로(33), 신호 검출 회로(34) 및 위치 산출 회로(35)는 이 순서로 센서부(10)측으로부터 배치된다.
이 제1 실시 형태에 있어서 수신 도체 선택 회로(31)는 수신 도체군(11)의 검출 블록(16개)과 동수의 스위치로 구성된다.
도 7에, 수신 도체 선택 회로(31) 주변의 개략 구성을 나타낸다.
수신 도체 선택 회로(31)는 복수의 스위치(31a)로 이루어진다. 이 스위치(31a)는 각 검출 블록(36)에 각각 1개씩 마련된다. 각 스위치(31a)의 입력측의 8개 단자(31b)는 각각 대응하는 수신 도체(12)에 접속되어 있다. 또, 각 스위치(31a)의 출력측의 단자(31c)는 대응하는 하나의 후술하는 I/V 변환 회로(32a)의 입력 단자에 접속된다. 또한, 각 스위치(31a)는 소정 시간 간격으로 I/V 변환 회로(32a)와 접속하는 수신 도체(12)를 전환하는 구조로 되어 있다. 그리고 I/V 변환 회로(32a)의 출력은 전환 스위치(32d)에 출력된다.
전환 스위치(32d)는 소정 시간마다, A/D 변환 회로(33)와 접속되는 I/V변환 회로(32a)를 순차 변환하여 전압 신호를 A/D 변환 회로(33)에 시분할로 출력하는 회로이다. 이와 같은 구성으로 한 경우, 수신부(30) 내에는 A/D 변환 회로(33) 및 그것으로부터 후단에 배치되는 후술하는 회로군(동기 검파 회로(37) 등)을 1 계통만 마련하면 되고, 수신부(30)의 회로 구성이 간편하다. 또한, 이 전환 스위치(32d)는 증폭 회로(32) 내 또는 A/D 변환 회로(33) 내 중 어느 쪽에 마련해도 된다.
도 8에, 스위치(31a)에 의한 수신 도체(12)의 전환 동작을 나타낸다.
각 스위치(31a)의 전환 동작은 제어 회로(40)에 의해 제어된다. 도 8의 예에서, 우선 각 검출 블록(36)은 최소 인덱스의 수신 도체(12), 즉 수신 도체(X0, X8, ㆍㆍㆍ, X112 및 X120)에 스위치(31a)가 접속되어 있는 것으로 한다(도 7의 상태). 이 상태에서 소정 시간의 동안, 지시체의 위치 검출이 선택되어 있는 복수의 수신 도체(12)에서 동시에 행하여, 각 그룹의 출력 신호(S0, S1,···, S15)를 얻는다.
이어서, 소정 시간이 경과하면, 스위치(31a)는 수신 도체(12)를 인덱스 m이 증가하는 방향에 위치하는 인접한 수신 도체(12), 즉 수신 도체(X1, X9, ㆍㆍㆍ, X113 및 X121)에 접속을 전환한다. 그리고 그 전환 후, 스위치(31a)에 접속된 수신 도체(X1, X9, ㆍㆍㆍ, X113 및 X121)로부터 출력된 출력 신호, 즉 각 그룹의 출력 신호(S0, S1, ㆍㆍㆍ, S15)를 얻는다. 이후, 스위치(31a)는 이와 같은 동작을 반복하면서 지시체의 위치 검출을 행한다.
그리고 각 검출 블록(36) 내 최대 인덱스의 수신 도체(12), 즉 수신 도체(X7, X15, ㆍㆍㆍ, X119 및 X127)에 스위치(31a)가 접속되고, 그 복수의 수신 도체(12)에서 지시체의 위치 검출을 동시에 행한다. 그 후는 재차 스위치(31a)는 각 검출 블록(36) 내 최소 인덱스의 수신 도체(12)에 접속되어, 상기 동작이 각 블록 내에서 반복된다. 이 때, 스위치(31a)에 선택되지 않은 수신 도체(12)는 임의의 기준 전위 또는 그라운드에 접속하는 것이 바람직하다. 이와 같이, 스위치(31a)에 의해 선택되지 않는 수신 도체를 임의의 기준 전위 또는 그라운드에 접속함으로써, 선택되지 않는 수신 도체에 노이즈를 퇴피시킬 수 있으므로 노이즈 내성을 향상시킬 수 있다. 또한, 수신 도체(12)의 전환 동작의 순서는 도 8의 예로 한정되지 않는다. 그 변형예에 대해서는 다음에 상세히 기술한다.
상술한 바와 같이 수신부(30)에서는 복수의 수신 도체(14)를 각 그룹이 소정 수의 도체로 이루어지는 복수의 그룹으로 구분하고, 각 그룹을 구성하는 적어도 1개의 도체를 각각 선택함과 아울러, 각 그룹을 구성하는 각 도체를 순차 전환하도록 하고 있다. 이와 같이 구성함으로써, 위치 검출을 위한 출력 신호를 수신 도체군(11)으로부터 동시에 검출할 수 있다. 이 제1 실시 형태에 있어서는 수신 도체군(11)을 16 그룹으로 분할하고 있으므로, 위치 검출을 위한 신호의 수신에 소요되는 시간을 종래의 1/16로 단축할 수 있다.
증폭 회로(32)는 수신 도체(12)로부터 출력되는 전류 신호를 취득하고, 그 전류 신호를 전압 신호로 변화시킴과 아울러 증폭한다. 이 증폭 회로(32)는 도 7에 나타낸 바와 같이, 수신 도체군(11)의 검출 그룹 수(16개)와 동수의 I/V 변환 회로(32a)와, 전환 스위치(32d)로 구성되어, 하나의 검출 블록(36)에 대해 하나의 I/V 변환 회로(32a)가 접속된다. 본 실시 형태에서는 I/V 변환 회로(32a)를 1 입력 1 출력의 증폭기(32b; 연산 증폭기:Operational Amplifier)와 그에 접속된 캐패시터(32c)로 구성한다. 또한, 실제로는 직류 바이어스 조정용으로 캐패시터(32c)와 병렬로 저항 소자나 트랜지스터 등을 마련하지만, 여기서는 기재를 생략하고 있다.
A/D 변환 회로(33)는 증폭 회로(32)에 접속되어, 증폭 회로(32)로부터 출력되는 아날로그 신호를 디지털 신호로 변환한다. 이 A/D 변환 회로(33)는 증폭 회로(32)에 접속된다. 또한, A/D 변환 회로(33)에는 공지된 A/D 변환기를 사용할 수 있다.
신호 검출 회로(34)는 도 1에 나타낸 바와 같이 A/D 변환 회로(33)에 접속되어, A/D 변환 회로(33)로부터의 출력 신호로부터 다주파 신호 공급 회로(21)에서 생성된 복수 주파수의 신호부터 목적의 주파수의 신호를 검출한다. 보다 구체적으로, 이 신호 검출 회로(34)는 A/D 변환 회로(33)로부터의 크로스포인트와, 이 크로스포인트에 있어서 검출 신호의 레벨을 구한다. 그리고 신호 검출 회로(34)는 이 검출 신호의 레벨을 인접하는 크로스포인트끼리 연결하고, 지시체가 터치한 크로스포인트[Xm , Yn]상에서 정점(또는 정상)이 되는 산 형상의 레벨 곡면을 산출하여, 비트맵 데이터로서 위치 산출 회로(35)에 출력한다.
이 신호 검출 회로(34)는 도 9에 나타낸 바와 같이, 주기 신호 생성부(24)에 대응하여 주기 신호의 수(16개)와 동수의 동기 검파 회로(37)를 갖는 신호 검출부(34a)로 구성된다. 신호 검출부(34a)의 입력 단자는 A/D 변환 회로(33)의 출력 단자에 접속된다. 또한, 도 7에는 시분할 선택의 회로로서 기능하는 전환 스위치(32d)를 I/V 변환 회로(32a)의 출력측에 마련하는 예를 설명하였으나, 이 전환 스위치(32d)의 대신에 검출 블록(36)과 동수의 A/D 변환 회로를 마련하도록 해도 된다.
도 9에, 증폭 회로(32)를 구성하는 I/V 변환 회로(32a), A/D 변환 회로(33) 및 신호 검출 회로(34)를 구성하는 신호 검출부(34a)의 접속 관계, 및 신호 검출부(34a)의 내부 구성을 나타낸다. I/V 변환 회로(32a), A/D 변환 회로(33) 및 신호 검출부(34a)는 이 순서로 수신 도체(12)측으로부터 직렬로 접속된다.
수신 도체(12)로부터 출력된 전류 신호는 I/V 변환 회로(32a)에서 전압 신호로 변환됨과 아울러 증폭된다. 이어서, 그 증폭 신호는 A/D 변환 회로(33)에 입력되고, 이 A/D 변환 회로(33)에서 디지털 신호로 변환된다. 이어서, 그 변환된 디지털 신호는 신호 검출부(34a)에 입력된다. 그리고 이 디지털 신호는 신호 검출부(34a)에 있어서 다주파 신호 공급 회로(21) 내의 대응하는 주기 신호 생성부(24)로부터 출력되는 주기 신호와 동일 주파수의 신호를 검출하여 출력한다.
신호 검출부(34a)는 주로 복수의 동기 검파 회로(37)와, 이 동기 검파 회로(37)에 접속된 복수의 레지스터(38)로 구성된다. 레지스터(38)는 4개의 영역(38a ~ 38d)으로 구분되어 있다. 레지스터(38)는 송신 도체 선택 회로(22)의 송신 블록(25)과 대응하고, 또 레지스터(38) 내의 영역(38a ~ 38d)의 각각은 송신 블록(25) 내의 송신 도체와 대응하고 있다. 예를 들어 송신 도체(Y63 ~ Y60)에 공급된 주기 신호에 대한 수신 도체(12)로부터의 출력 신호를 DFT(15)에서 검파한 데이터는 당해 DFT15와 접속하는 레지스터(38)의 영역(38a ~ 38d)에 각각 격납된다. 또한, 상술한 예와 같이, 레지스터(38)를 4개의 영역(38a ~ 38d)으로 분할하는 것이 아니라, 1개의 DFT에 대해 4개의 독립된 레지스터를 마련하도록 해도 된다.
동기 검파 회로(37)는 입력된 신호로부터 목적의 주파수의 신호를 검출한다. 이 동기 검파 회로(37)는 주기 신호와 같은 수(16개)만큼 마련되고, 이러한 복수의 동기 검파 회로(37)는 병렬 접속된다. 복수의 동기 검파 회로(37) 중의 어느 동기 검파 회로(37)가 어느 주파수의 신호를 검출하는지는 제어 회로(40)로부터 입력되는 타이밍 신호에 의해, 다주파 신호 공급 회로(21)의 주기 신호의 생성 및 송신 도체 선택 회로(22)의 송신 도체(14)의 전환과 연동하여 제어된다. 또한, 도 9의 예에서는 복수의 동기 검파 회로(37)에 있어서, A/D 변환 회로(33a)와 먼 측의 동기 검파 회로(37)로부터 그 인덱스 j를 「0」~ 「15」로 하고, 이하에서는 적절히 각 인덱스 j에 대응하는 동기 검파 회로(37)를 DCTj로도 적는다. 그리고 1단째 ~ 15단째의 동기 검파 회로(37; DCT0~DCT15)의 입력 단자는 A/D 변환 회로(33a)의 출력 단자에 접속된다. 또한, DCT(Discrete Cosine Transform)는 이산 코사인 변환을 의미한다.
도 10에, 동기 검파 회로(37)의 개략 구성을 나타낸다.
동기 검파 회로(37)는 주로 입력 단자(370)와, 검출 대상의 주파수 fk의 주기 신호를 발생하는 신호원(371)과 승적기(乘積器; 373)와 적분기(374)로 구성된다. 수신 도체(12)로부터 A/D 변환 회로(33)를 통해 동기 검파 회로(37)에 검출 신호(출력 신호)가 입력되면, 이 검출 신호는 입력 단자(370)를 통해 동기 검파 회로(37)의 승적기(373)에 공급된다. 여기서, 승적기(373)에 신호원(371)으로부터 주파수 fk의 주기 신호가 입력되고, 검출 신호와 주파수 fk의 주기 신호가 승적되어서 목적의 신호가 검파된다. 그리고 검파 신호는 적분기(374)에 입력되어, 시간적으로 적분되어서 출력된다.
이와 같이, 신호원(371)에서 발생하는 주기 신호의 주파수 fk를 적절히 설정함으로써, 목적의 주파수의 신호(신호 성분)를 검파할 수 있다. 노이즈 신호는 일정 시간의 출력을 적분하면 주파수 fk와 다른 성분은 현저히 억제된다고 하는 특성이 있다. 그래서 적분기(374)를 사용하여 출력 신호에 포함되는 신호 성분과 노이즈 성분을 일정한 시간 적분함으로써, 신호 성분은 증폭되고 노이즈 성분은 서로 상쇄되어서 압축된다.
또한, π/2 이상기(移相器)를 사용하여, 검출 신호로부터 위상을 π/2 이동하여 검파를 행함으로써, 검출 신호에 포함되는 신호 성분과 위상이 π/2만큼 벗어난 주파수 fk의 주기 신호를 검파할 수도 있다. 즉, DFT(Discrete Fourier Transform)의 구성으로 되나, 이는 검출 가능한 위상 범위가 넓어진다고 하는 점에서 정전 펜을 사용한 지시체 검출 장치에 매우 적합하다.
도 9의 설명으로 돌아온다. 레지스터(38)는 동기 검파 회로(37)와 동일하게 송신 도체(14; Y0 ~ Y63)와 같은 수만큼 마련되고, 각각 각 동기 검파 회로(37; DCT0 ~ DCT15)에 접속되어 있다. 각 레지스터(38; 레지스터(38a ~ 38d))는 대응하는 동기 검파 회로(37)에서 검출된 신호를 유지하고, 제어 회로(40)로부터의 타이밍 신호에 기초하여 이 레지스터(38)에 유지된 신호를 위치 산출 회로(35)에 독출한다.
위치 산출 회로(35)는 동기 검파 회로(37)의 각 레지스터(38; 레지스터(38a ~ 38d))로부터 보내져오는 신호로부터, 신호 레벨이 감소하고 있는 신호를 출력한 수신 도체(12)와 그 주파수를 검출한다. 그리고 레지스터(38)로부터 독출된 신호로부터 특정된 수신 도체(12)의 인덱스 m(0 ~ 127)과, 해당하는 주기 신호를 공급한 송신 도체(14)의 인덱스 n(0 ~ 63)에 기초하여 지시체의 위치를 산출한다. 상술한 동기 검파 회로(37)에 의한 일련의 동작을, 다주파 신호 공급 회로(21)에서 주기 신호를 생성함과 아울러 송신 도체 선택 회로(22)에서 송신 도체(14)의 전환이 행해지는 것과 연동하여 수신 도체군(11) 전체에 대해 행한다. 또한, 위치 산출 회로(35)는 지시체가 놓여진 크로스포인트의 위치(좌표)뿐만 아니라, 지시체가 놓여진 센서부(10) 표면의 면적, 지시체로부터 받는 압력 등의 정보를 출력한다.
[위치 검출의 원리]
다음으로, 본 실시 형태의 지시체 검출 장치에 있어서 지시체의 위치 검출의 원리를 도면을 참조하면서 설명한다. 상술한 바와 같이, 본 실시 형태의 검출 방식은 크로스포인트형의 정전 결합 방식이고, 센서부의 송신 도체 및 수신 도체 사이의 정전 결합 상태의 변화에 기초하여 지시체의 위치를 검출한다.
우선 센서부(10) 상에 지시체가 존재하는 경우와 존재하지 않는 경우에서 송신 도체(14) 및 수신 도체(12) 사이의 정전 결합 상태가 변화하는 것을, 도 11A 및 B를 참조하면서 설명한다. 또한, 도 11A는 센서부(10) 상에 지시체가 존재하지 않는 경우 송신 도체(14) 및 수신 도체(12) 사이의 정전 결합 상태를 나타내는 도면이고, 도 11B는 센서부(10) 상에 지시체가 존재하는 경우 송신 도체(14) 및 수신 도체(12) 사이의 정전 결합 상태를 나타내는 도면이다.
센서부(10) 상에 지시체가 존재하지 않는 경우(도 11A의 경우)에, 송신 도체(14) 및 수신 도체(12) 사이는 스페이서(16)를 개재시켜 용량 결합하고 있고, 송신 도체(14)로부터 나온 전계는 수신 도체(12)에 수속(收束)한다. 그 결과, 송신 도체(14) 및 수신 도체(12) 사이에는 소정 값의 전류가 흐른다.
그렇지만 센서부(10) 상에 지시체로서 예를 들어 손가락(19)이 존재하는 경우(도 11B의 경우), 수신 도체(12)는 송신 도체(14)뿐만 아니라, 손가락(19)을 통해 어스와 용량 결합한 상태로 된다. 이와 같은 상태에서, 송신 도체(14)로부터 나온 전계의 일부는 손가락(19)에 수속하고, 송신 도체(14) 및 수신 도체(12) 사이에 흐르는 전류의 일부가 손가락(19)을 통해 어스에 분류한다. 그 결과, 수신 도체(12)에 유입하는 전류값이 작아진다. 정전 결합 방식에서는 이 수신 도체(12)로부터 출력되는 전류값의 변화를 수신부(30)에서 검출하여 지시체의 위치를 검출한다.
다음으로, 손가락(19)이 동시에 센서부(10)의 복수 크로스포인트 상에 놓여져 있는 경우 위치 검출을, 도 12A ~ D를 참조하면서 설명한다.
도 12A는 손가락(19)이 센서부(10) 상의 어느 송신 도체 및 수신 도체의 크로스포인트(그리드) 상에 놓여져 있는 경우 지시체 검출 장치(100)를 나타내고 있다. 여기서는 일례로서 송신 도체(Y6)와 수신 도체(X4), 및 송신 도체(Y6)와 수신 도체(X122)의 크로스포인트에 주목한다. 도 12B에, 송신 도체(Y6)에 대한 수신 도체(X4) 및 수신 도체(X122)의 출력 신호를 나타낸다. 도 12C에, 송신 도체(Y58)에 대한 수신 도체(X7)의 출력 신호의 검파 파형을 나타내는 도면이다. 도 12D는 송신 도체(Y2)에 대한 수신 도체(X7)로부터의 출력 신호의 검파 파형을 나타내는 도면이다.
상술한 바와 같이, 손가락(19)이 센서부(10) 상에 존재하지 않는 경우에, 수신 도체(12)로부터의 출력 전류는 소정의 값이다. 그렇지만 송신 도체(Y6)와 수신 도체(X4), 및 송신 도체(Y6)와 수신 도체(X122)의 크로스포인트 부근에 손가락(19)이 놓여져 있는 경우에는, 도 11A 및 B를 참조하여 설명한 바와 같이, 송신 도체(Y6)와 수신 도체(X4), 및 송신 도체(Y6)와 수신 도체(X122) 사이의 정전 결합 상태가 변화하고, 이 크로스포인트에 있어서 수신 도체(X4 및 X122)에 흘러드는 전류가 변화한다. 이 때, 수신 도체(X4) 및 수신 도체(X122)로부터 출력되는 전류의 주파수 f1은 송신 도체(Y6)에 공급되는 주기 신호의 주파수 f1에 대응하고 있다.
수신 도체(X4)는 검출 블록(36; 도 7 참조) 내에서 검출 차례가 5번째이고, 수신 도체(X122)는 검출 블록(36) 내에서 검출 차례가 3번째이다. 때문에, 동기 검파 회로(37)에 있어서, 어느 클록에서 수신 도체(X122)의 출력 신호를 송신 도체(14)에 공급된 주기 신호와 동일 주파수로 검파하고, 2 클록 후에 수신 도체(X4)의 출력 신호를 당해 주파수로 검파한다. 이와 같이 하여, 도 12B에 나타낸 바와 같이, 수신 도체(X4) 및 수신 도체(X122)의 출력 신호가 감소하고 있는 것이 검출되어, 손가락의 위치를 특정할 수 있다.
또한, 손가락(19)이 센서부(10)의 임의의 하나의 수신 도체(12)를 따라 복수의 크로스포인트 상에 놓여져 있는 경우도 동일하게 검출할 수 있다. 이하, 손가락이 동일한 수신 도체(12)를 따라 복수의 크로스포인트 상에 놓여져 있는 경우 검출 동작에 대해 설명한다.
본 예에서는 센서부(10)의 수신 도체(X7)를 따라 송신 도체(Y58, Y2)에 손가락(19)이 놓여져서(도 12A 참조), 송신 도체(Y58)에는 주파수 f14의 주기 신호가 공급되고, 송신 도체(Y2)에는 주기 신호 f0의 주기 신호가 공급되는 경우를 상정한다. 여기서, 송신 도체(X58)는 송신 블록(25; 도 5 참조) 내에서 공급 차례가 3번째이고, 동일하게 송신 도체(X2)도 송신 블록(25) 내에서 공급 차례가 3번째이다. 때문에, 동기 검파 회로(37)의 DCT14 및 DCT0에 있어서, 수신 도체(X7)의 출력 신호가 송신 도체(14)에 공급된 주기 신호의 주파수 f14, f0에서 동시에 검파된다. 이와 같이 하여, 도 12C, D에 나타낸 바와 같이, 송신 도체(Y58)에 대한 수신 도체(X7) 및 송신 도체(Y2)에 대한 수신 도체(X7)의 출력 신호의 레벨이 감소하고 있는 것이 각각 검출되어, 손가락의 위치를 특정할 수 있다.
상기와 같이 구성된 크로스포인트형 정전 결합 방식에서는 주기 신호를 공급한 송신 도체(14)의 인덱스 n(0 ~ 63)과 출력 신호의 감소가 검출된 수신 도체(12)의 인덱스 m(0 ~ 127)을 검출함으로써 손가락(19)의 위치를 특정할 수 있다. 이에 대해, 투영형 정전 결합 방식에서는 손가락의 겹침이 있는 경우, 손가락 위치의 특정이 불가능하다.
또한, 크로스포인트(송신 도체)의 장소에 따라 송신 도체(14)로의 주기 신호의 공급 차례가 다른 경우가 있으나, 그 경우는 각 크로스포인트에 흐르는 전류의 변화를 동일한 수신 도체(12)에서 검출할 수 있는 차례가 다르다. 즉, 수신 도체(X7)를 따라 송신 도체(Y58, Y2)에 손가락(19)이 놓여져 있는 경우와 같이 동시로는 한정되지 않는다.
또, 손가락(19)이 센서부(10)가 연속하는 복수의 크로스포인트 상에 놓여져 있는 경우도 상술한 바와 같은 원리로 검출할 수 있다. 이 경우, 검출되는 크로스포인트의 위치도 연속적으로 되어 손가락(19)이 놓여져 있는 영역을 검출할 수 있다. 즉, 센서부(10) 상에 놓여져 있는 손가락(19)의 형상을 추정하는 것이 가능하게 된다. 그러므로, 본 실시 형태에서는 센서부(10) 상에 배치된 지시체의 위치뿐만 아니라, 지시체의 센서부(10)와 대향하고 있는 면의 형상을 추정할 수 있다. 예를 들어 센서부(10) 상에 손바닥을 얹은 경우에는, 그 손의 위치뿐만이 아니라, 손바닥의 형상도 추정하는 것이 가능하게 된다.
[지시체 검출 장치의 동작]
다음으로, 본 실시 형태의 지시체 검출 장치(100)의 동작을 도면을 참조하면서 설명한다. 도 13에, 본 실시 형태의 지시체 검출 장치(100)에 있어서 지시체의 검출 수순을 설명하기 위한 플로차트를 나타낸다.
우선 다주파 신호 공급 회로(21) 내의 각 주기 신호 생성부(24)는 제어 회로(40)에 의해 할당된 주파수의 주기 신호를 설정한다(단계 S1).
다음에, 수신부(30)의 수신 도체 선택 회로(31)는 스위치(31a)에 의해 각 검출 블록(36) 내에서 소정의 수신 도체(12)를 선택하고, 그 선택한 수신 도체(12)와 대응하는 I/V 변환 회로(32a)를 접속한다(단계 S2).
이어서, 송신 도체 선택 회로(22)는 각 송신 블록(25) 내에서 주기 신호를 공급하는 소정의 송신 도체(14)를 선택한다(단계 S3). 이어서, 다주파 신호 공급 회로(21)는 각 송신 블록(25)에서 선택된 소정의 송신 도체(14)에 각각 대응하는 주기 신호를 동시에 공급한다(단계 S4). 또한, 위치 검출 처리의 개시시에 선택되는 각 검출 블록(36) 내의 소정의 수신 도체(12)는 송신 도체군(13)에 주기 신호가 공급되기 전에 미리 선택되는 것이 바람직하다.
그 다음에, 수신부(30)는 단계 S2에서 선택된 각 검출 블록(36)의 소정의 수신 도체(12)로부터의 출력 전류를 동시에 검출한다(단계 S5). 구체적으로, 우선 증폭 회로(32)는 선택된 소정의 수신 도체(12; 합계 16개의 수신 도체(12))로부터의 출력 전류를 전압으로 변화하여 증폭하고, 그 증폭 신호를 A/D 변환 회로(33)에 출력한다. 이 때, 수신 도체(12)에 접속된 I/V 변환 회로(32a)에서 출력 전류를 전압으로 변화하여 증폭한다. 이어서, A/D 변환 회로(33)는 입력된 전압 신호를 A/D 변환하고, 변환된 디지털 신호를 신호 검출 회로(34)에 출력한다.
이어서, 신호 검출 회로(34)는 입력된 디지털 신호로부터 각 주파수 성분을 동기 검파한다(단계 S6). 구체적으로, A/D 변환 회로(33)에 접속된 각 신호 검출부(34a)에서, 대응하는 수신 도체(12)에서 검출한 신호에 대해 송신 도체(14)에 공급된 주파수와 동일 주파수의 신호를 검파한다. 그리고 신호 검출 회로(34)는 소정의 수신 도체(12)에 대해 산출한 신호를 각 레지스터(38; 영역(38a ~ 38d))에 격납한다(단계 S7).
이어서, 제어 회로(40)는 단계 S2에서 선택된 수신 도체(12)에 있어서, 전체 송신 도체(14)에 대해 위치 검출이 종료됐는지의 여부를 판정한다(단계 S8). 선택된 수신 도체(12)에 대해 전체 송신 도체(14)에서의 위치 검출이 종료되지 않은 경우, 즉 단계 S8의 판정 결과가 아니오인 경우에는 단계 S3으로 돌아와서, 송신 도체 선택 회로(22) 내 각 송신 블록(25)의 스위치(22a)를 전환하여, 전회(前回)와는 다른 송신 도체(14)를 선택한다. 그리고 선택된 복수의 송신 도체(14)에 대해 다주파 신호 공급 회로(21)로부터 다주파 신호를 동시에 공급한다. 그 후는 선택된 수신 도체(12)에 대해 전체 송신 도체(14)에서의 위치 검출이 종료될 때까지, 단계 S3 ~ S7을 반복한다. 그리고 선택된 수신 도체(12)에 대해, 전체 송신 도체(14)에서의 위치 검출이 종료되면, 레지스터(38)에 격납된 당해 수신 도체(12) 상의 전체 크로스포인트에서의 신호를 위치 산출 회로(35)에 독출한다.
즉, 도 1, 도 5 및 도 7을 참조하여 설명하면, 예를 들어 수신 도체(X0, X8, ㆍㆍㆍX120)가 선택되어 있을 때, 송신 도체(Y3, Y7, ㆍㆍㆍ, Y63)에 주기 신호를 공급하여 위치 검출을 행한다. 다음의 클록에서 수신 도체는 그대로 송신 도체(Y2, Y6, ㆍㆍㆍ, Y62)에 주기 신호를 공급하여 위치 검출을 행한다. 이 처리를 반복하여 송신 도체(Y0, Y4, ㆍㆍㆍ, Y60)에 주기 신호를 공급하고 위치 검출을 행하면, 각 그룹 내의 송신 도체의 전환이 일순(一巡)하여, 수신 도체(X0, X8, ㆍㆍㆍX120)에 대해 전체 송신 도체(14)의 위치 검출이 종료된다(단계 S8의 예인 상태). 이와 같이 선택한 수신 도체에 있어서 전체 송신 도체의 검출이 종료되면, 단계 S9에 이행한다.
한편, 단계 S4에서 선택된 수신 도체(12)에 대해, 전체 송신 도체(14)에서의 위치 검출이 종료된 경우, 즉 단계 S8의 판정 결과가 예인 경우에, 제어 회로(40)는 전체 수신 도체(12)에서의 위치 검출이 종료됐는지의 여부를 판정한다(단계 S9). 전체 수신 도체(12)에서의 위치 검출이 종료되지 않은 경우, 즉 단계 S9의 판정 결과가 아니오인 경우에는 단계 S2로 돌아와서, 수신 도체 선택 회로(31) 내 각 검출 블록(36)의 스위치(31a)를 전환하여, 전회와는 다른 복수의 수신 도체(12)를 선택한다(단계 S2의 처리에 상당). 또 수신측의 전환과 병행하여 송신 도체 선택 회로(22) 내 각 송신 블록(25)의 스위치(22a)를 전환하고, 전회와는 다른(단계 S3에서 최초로 선택한 것과 동일한) 송신 도체(14)를 선택한다. 그리고 선택된 복수의 송신 도체(14)에 대해 다주파 신호 공급 회로(21)로부터 다주파 신호를 동시에 공급한다. 이와 같이 하여, 수신 도체(12) 및 송신 도체(14)를 전환하여 위치 검출을 계속한다. 그 후는 전체 수신 도체(12)에 대해 전체 송신 도체(14)에서의 위치 검출이 종료될 때까지, 단계 S2 ~ S8을 반복한다.
즉, 도 1, 도 5 및 도 7을 참조하여 설명하면, 예를 들어 수신 도체(X0, X8, ㆍㆍㆍX120)가 선택되어 있는 상태에서, 각 그룹 내의 송신 도체(14)를 로테이션시키고, 수신 도체(X0, X8, ㆍㆍㆍX120)에 대해, 전체 송신 도체에서의 위치 검출을 행한다. 다음으로, 수신 도체(X1, X9, ㆍㆍㆍX121)에서 전환하고, 각 그룹 내의 송신 도체(14)를 로테이션시킨다. 이 처리를 반복하여, 수신 도체(12)를 순차 전환해간다. 그리고 로테이션의 마지막에 수신 도체(X7, X15, ㆍㆍㆍX127)에 대해, 전체 송신 도체에서의 위치 검출이 종료되면, 단계 S10으로 이행하고, 종료되고 있지 않으면 단계 S2로 돌아온다.
위치 산출 회로(35)는 동기 검파 회로(37)로부터 입력되는 수신 도체(12)의 크로스포인트에서의 신호로부터, 신호 레벨이 감소해 있는 신호를 출력한 수신 도체(12)와 그 주파수를 검출한다. 그리고 신호 레벨로부터 특정한 수신 도체(12)의 인덱스 m(0 ~ 127)과, 해당하는 주기 신호를 공급한 송신 도체(14)의 인덱스 n(0 ~ 63)에 기초하여 지시체의 위치를 산출한다(단계 S10). 본 실시 형태에서는 이와 같이 하여 센서부(10) 상에 배치된 지시체의 위치 검출을 행한다.
상술한 바와 같이, 이 제1 실시 형태에 있어서는 각 그룹의 소정의 송신 도체(14)에 서로 주파수가 다른 신호를 동시 공급(다중 송신)하고, 소정의 복수 수신 도체(12)에서 지시체의 위치를 동시 검출한다. 즉, 송신 도체(14) 및 수신 도체(12) 사이의 복수 크로스포인트에 대해 동시에 위치 검출 처리를 행한다. 그 때문에, 본 실시 형태에 의하면, 복수의 크로스포인트에 대한 위치 검출에 소요되는 시간을 단축할 수 있고, 보다 고속으로 위치 검출이 가능하게 된다.
보다 구체적으로 설명하면, 제1 실시 형태에서는 송신 도체군(13) 및 수신 도체군(11)을 각각 16개의 그룹으로 분할하고, 각 그룹을 병렬 처리한다. 그 때문에, 본 실시 형태에서는 예를 들어 종래와 같이 전체 크로스포인트를 순차 검출 처리를 행하는 경우 검출 시간에 비해, 그 검출 시간은 1/(16×16)로 단축할 수 있다. 또한, 그룹 수는 이 예로 한정되지 않으며, 또 송신 도체군(13) 또는 수신 도체군(11) 중 어느 하나만을 그룹화해도 검출 시간 단축의 효과가 얻어지는 것은 물론이다.
또, 이 제1 실시 형태에 있어서는 하나의 수신 도체에 대해 전체 송신 도체에서의 검출이 종료되면 다음의 수신 도체로 전환하여 위치 검출을 계속하도록 설명하였으나, 이 예로 한정되지 않는다. 하나의 수신 도체에 대해 전체 송신 도체에서의 검출이 종료된기 전에, 다른 수신 도체로 전환하여 위치 검출을 계속해도 되고, 최종적으로 센서부(10)의 전체 크로스포인트에서의 위치 검출이 행해지면 된다.
[변형예 1]
상기 제1 실시 형태에서는 도 2에 나타낸 바와 같이 제1 글래스 기판(15)의 일방의 표면 상에, 수신 도체(12)와 송신 도체(14)가 스페이서(16)를 개재시켜 형성되는 구성의 센서부(10)에 대해 설명하였으나, 본 발명은 이것으로 한정되지 않는다. 예를 들어 수신 도체와 송신 도체를 한 장의 글래스 기판의 양면에 각각 형성해도 된다. 그 일례를 나타낸다.
도 14는 변형예 1의 센서부의 개략 단면도이다.
이 예의 센서부(50)는 글래스 기판(51)과, 글래스 기판(51)의 일방의 표면(도 14 중에서는 하면) 상에 형성된 복수의 송신 도체(52)와, 송신 도체(52) 상에 형성된 제1 보호층(53)을 구비한다. 또한, 센서부(50)는 글래스 기판(51)의 타방의 표면(도 14 중에서는 상면) 상에 형성된 복수의 수신 도체(54)와, 수신 도체(54) 상에 형성된 제2 보호층(55)과, 제2 보호층(55) 상에 형성된 보호 시트(56)를 구비한다. 또한, 이 예에 있어서 지시체의 검출면은 보호 시트(56)측의 면이다.
이 변형예 1은 글래스 기판(51), 송신 도체(52) 및 수신 도체(54)는 상기 제1 실시 형태와 동일한 형성 재료로 형성할 수 있다. 또, 이 변형예 1에 있어서는 제1 실시 형태와 동일하게 글래스 기판(51) 대신에 합성 수지로 형성된 시트 형상(필름 형상) 기재를 사용해도 된다. 또한, 제1 보호층(53) 및 제2 보호층(55)은 예를 들어 SiO2막이나 합성 수지막으로 형성할 수 있고, 보호 시트(56)로는 예를 들어 합성 수지 등으로 이루어지는 시트 부재를 사용할 수 있다.
이 변형예 1의 센서부(50)는 상기 제1 실시 형태(도 2)의 센서부(10)에 비해, 글래스 기판의 매수를 줄일 수 있으므로 센서부(50)의 두께를 보다 얇게 할 수 있다. 또, 이 예의 센서부(50)에서는 글래스 기판의 매수를 줄일 수 있으므로 보다 염가의 센서부를 제공할 수 있다.
[변형예 2]
변형예 2에서는 글래스 기판의 한쪽측의 표면 상에 송신 도체 및 수신 도체를 형성한 경우 센서부의 구성예를 도 15A 및 B에 따라 설명한다. 도 15A에는 변형예 2의 센서부의 크로스포인트에 있어서 단면도를, 도 15B에는 변형예 2의 센서부의 사시도를 각각 나타낸다.
이 예의 센서부(60)는 글래스 기판(61)과, 이 글래스 기판(61)의 한쪽측의 표면 상에 소정 패턴으로 형성되어, 도전성을 갖는 금속부(62)와, 금속부(62) 상에 형성되는 절연부(63)와, 복수의 송신 도체(64) 및 복수의 수신 도체(65)를 구비한다. 또한, 보호층 및 보호 시트의 기재는 생략하고 있다.
금속부(62)는 예를 들어 수신 도체(65)가 연신(延伸)되는 방향과 교차하는 방향으로 연신하여 형성된 거의 선 형상의 금속이다. 절연부(63)는 이 금속부(62)의 일부를 덮도록 형성되어 있다. 그리고 금속부(62)의 연신 방향의 양단에 송신 도체(64)가 마련되고, 이 금속부(62)의 연신 방향의 양단에 마련된 각 송신 도체(64)끼리가 이 금속부(62)에 의해 전기적으로 접속된다. 그리고 수신 도체(65)는 절연부(63) 상을 넘도록 형성되고, 이 수신 도체(65)와 금속부(62) 및 송신 도체(64)가 전기적으로 절연되도록 형성되어 있다.
또한, 이 도 15A, B에 있어서는 송신 도체(64)가 금속부(62) 및 절연부(63)의 상면(도면의 윗쪽)의 일부를 덮도록 형성한 경우를 나타내고 있으나, 본 발명의 실시에 있어서는 이러한 형태로 한정되지 않는다. 금속부(62)의 연신 방향의 양단에 마련된 각 송신 도체(64)끼리가 이 금속부(62)에 의해 전기적으로 접속되면 당해 금속부(62)를 마련한 취지는 달성되므로, 예를 들어 금속부(62)의 상면을 송신 도체(64)가 덮을 필요는 없다. 또, 동일하게 동 도면에서는 송신 도체(64)가 절연부(63)의 상면의 일부를 덮도록 기재하고 있으나, 이 예로 한정되지 않는다. 수신 도체(65)와 송신 도체(64) 및 금속부(62)가 전기적으로 절연되어 있으면 되고, 본 발명은 이 형태로 한정되지 않는다.
또한, 이 예에서는 지시체의 검출면으로서, 글래스 기판(61)의 도체가 형성되어 있는 측의 면 및 도체 형성면과는 반대측의 면 모두 사용할 수 있다.
이 변형예 2에 있어서, 수신 도체(65)는 상기 제1 실시 형태와 동일하게 직선 형상 도체로 형성한다. 한편, 송신 도체(64)는 절연층(63)의 개구부를 통해 금속부(62)와 접속되도록 형성된다. 즉, 주기 신호가 공급되는 송신 도체(64)가, 절연부(63)를 사이에 두고 수신 도체(65)의 아래를 통과하도록 입체적으로 배선된다.
또, 이 변형예 2에 있어서, 글래스 기판(61), 송신 도체(64) 및 수신 도체(65)는 상기 제1 실시 형태와 동일한 형성 재료로 형성할 수 있다. 또한, 이 예에 있어서도, 제1 실시 형태와 동일하게 글래스 기판(61) 대신에 합성 수지로 형성된 시트 형상(필름 형상) 기재를 사용해도 된다.
금속부(62)는 고도전율을 갖는 금속 재료, 예를 들어 Mo(몰리브덴)나 Al(알루미늄) 등으로 형성할 수 있다. 금속부(62)와 송신 도체(64)의 접속 부분의 치수는 미소하므로, 이 접속 부분에서의 저항을 작게 하기 위해 금속부(62)에는 고도전율을 갖는 금속 재료를 사용하는 것이 바람직하다. 또, 절연부(62)는 예를 들어 레지스터 등으로 형성할 수 있다.
이 변형예 2의 센서부(60)는 상기 제1 실시 형태(도 2)의 센서부(10)에 비해 글래스 기판의 매수를 줄일 수 있으므로, 센서부(60)의 두께를 보다 얇게 할 수 있다. 또, 이 예의 센서부(60)에서는 글래스 기판의 매수를 줄일 수 있으므로 보다 염가의 센서부를 제공할 수 있다. 또 송신 도체와 수신 도체의 배선을 동일층에 형성함으로써 비용 삭감의 효과도 있다.
또한, 이 변형예 2의 센서부(60)는 변형예 1의 센서부(50)와 비교하여, 다음과 같은 이점이 얻어진다. 이 변형예 2의 센서부(60)에 있어서, 지시체의 검출면으로서 도체 형성면과는 반대측의 면을 사용한 경우에는, 지시체와 도체 사이에 글래스 기판(61)이 개재하게 된다. 이 경우, 변형예 1의 센서부(50)의 경우에 비해 지시체 및 도체 사이의 거리가 넓어져서 지시체로부터의 노이즈의 영향이 작아진다.
[변형예 3]
상기 제1 실시 형태 및 변형예 1 및 2에서는 송신 도체 및 수신 도체가 소정 방향에 연재한 직선 형상의 일정 폭의 도체로 형성할 수 있는 것을 설명하였으나, 본 발명은 이 송신 도체 및 수신 도체의 형상은 소정 방향에 연재한 일정 폭의 도체에 한정되지 않는다. 여기서는 변형예 3으로서 송신 도체의 다른 구성예를 설명한다.
도 16A에, 변형예 3의 센서부에 있어서 송신 도체 및 수신 도체 사이의 크로스포인트의 확대도를, 도 16B에 랜드 도체부(73A)의 확대도를 각각 나타낸다.
이 변형예 3의 센서부(70A)에 있어서, 도 16A에 나타낸 바와 같이, 수신 도체(74)는 직선 형상의 일정 폭의 도체로 형성되어 있으나, 송신 도체(71A)는 선 형상 도체부(72)와, 이 선 형상 도체부(72)의 폭보다도 폭이 넓은 ITO 등으로 이루어지는 랜드 도체부(73A)로 구성된다.
도 16B에 나타낸 바와 같이, 도체 랜드부(73A)는 거의 동일 형상으로 형성된 제1 및 제2 랜드부(73b, 73c)와, 이 제1 및 제2 랜드부(73b, 73c)끼리를 전기적으로 접속하는 거의 직선 형상의 접속부(73d)로 구성된다. 제1 및 제2 랜드부(73b, 73c)는 꼭대기부(73a)를 갖는 거의 삼각 형상으로 형성되어 있고, 그 꼭대기부(73a)에 있어서 선 형상 도체부(72)와 전기적으로 접속된다. 그리고 제1 랜드부(73b)와 제2 랜드부(73c)는 꼭대기부(73a)와 대향하는 저부(底部; 73e)에 있어서 접속부(73d)에 의해 전기적으로 접속된다.
송신 도체(71A)의 형상을 상술한 바와 같은 형상으로 함으로써, 크로스포인트 근방의 송신 도체의 면적을 크게 할 수 있다. 그 결과, 센서부에 지시체가 근접했을 때에, 송신 도체로부터 나온 전계가 보다 많은 지시체에 수속하므로 검출 감도가 향상한다. 또, 도체 랜드부(73A)는 제1 랜드부 (73b)와 제2 랜드부(73c)를 접속부(73d)에 의해 접속함으로써 형성되는 오목부(凹部; 73f)를 마련한 형상(거의 H자 형상)으로 한 것에 의해, 본 발명이 적용된 지시체 검출 장치와 전자 유도 방식(EMR:Electro Magnetic Resonance)을 채용하는 지시체 검출 장치를 겹쳐서 마련함으로써, 지시체를 검출하는 영역이 공통화된 입력 장치를 구성하는 경우에, 전자 유도 방식의 위치 검출 장치로부터 발해진 전계에 의한 송신 도체 상의 와전류(渦電流)의 발생이 억제된다. 그 결과, 전자 유도 방식의 지시체 검출 장치가 상기 와전류에 의해 생기는 손실(와전류 손실)에 의해 검출 감도가 저하하는 것을 방지할 수 있다.
또한, 도 17에 변형예 3의 다른 예의 센서부에 있어서 송신 도체 및 수신 도체 사이의 크로스포인트의 확대도를 나타낸다.
본 예의 센서부(70B)는 송신 도체(71B)는 선 형상 도체부(72)와, 변형예 3의 것으로부터 개선된 랜드 도체부(73B)로 구성된다. 변형예 3과의 차이점은 변형예 3에 나타낸 랜드 도체부(73A)는 제1 및 제2 랜드부(73b, 73c)를 거의 삼각 형상으로 형성한 것에 비해, 이 변형예는 제1 및 제2 랜드부(73g, 73h)는 거의 사다리꼴 형상으로 형성한 점이다. 그리고 본 변형예에 있어서는 변형예 3의 제1 및 제2 랜드부(73b, 73c)의 꼭대기부(73a)에 상당하는 부분인 상저부(上底部; 73i)에 있어서 선 형상 도체부(72)와 전기적으로 접속된다. 다른 부분에 대해서는 도 16에 나타낸 변형예 3과 공통이므로, 도 17에 있어서, 그 공통 부분에는 도 16과 동일한 번호를 부여하고, 설명은 생략한다.
이 랜드 도체부(73B)와 변형예 3에서 설명한 도체 랜드부(73A)와 비교하면, 이 랜드 도체부(73B)는 꼭대기부(73a)가 없는(예각 부분이 없는) 형상이므로, 랜드 도체부(77A)와 비교하여 전류의 유로가 넓어진다. 그 결과, 랜드 도체부(73B)와 선 형상 도체부(72)의 접속 부분에 전류의 집중이 발생하지 않아 전류가 확산한다. 즉, 랜드 도체부(73B)의 양단이 되는 상저부(73i-73i) 사이를 전류가 퍼져서 흐르므로, 이 상저부(73i-73i) 사이의 저항값이 오르지 않는다. 그 결과, 변형예 3(도 16)에 나타낸 송신 도체의 예와 비교하여, 더욱 전기 전도 특성이 향상한다. 이와 같이, 센서부의 크로스포인트 주변의 송신 도체의 형상을 본 변형예와 같이 구성함으로써, 전기 전도 특성을 더욱 향상시킬 수 있다. 또한, 이 상저부(73i)의 형상은 예각인 부분이 존재하지 않는 것이 바람직하고, 상기의 형상 외에, 예를 들어 곡면 형상으로 형성해도 된다. 또, 본 변형예의 센서부(70B)에는 랜드 도체부(73A, 73B)에 2개의 오목부(73f)가 형성된 경우를 예시하여 설명하였으나, 이 이목부는 2개 형성함으로써 한정되지 않으며, 예를 들어 4개 이상 형성해도 된다.
또한, 변형예 3의 2개의 예(도 16, 17)는 크로스포인트형 정전 결합 방식의 지시체 검출 장치의 센서부에 한정되는 것은 아니며, 투영형 정전 결합 방식의 지시체 검출 장치의 센서부 등에도 적용할 수 있다. 또, 이 변형예 3에서는 송신 도체의 랜드 도체부의 형상을 연구한 예를 설명하였으나, 크로스포인트 주변의 수신 도체에 랜드 도체부를 마련하여 동일한 형상으로 해도 된다.
또, 랜드 도체부는 변형예 1(도 14)의 2층으로 이루어지는 센서부(50) 및 변형예 2(도 15)의 1층으로 이루어지는 센서부(60) 중 어느 것에 대해서도 적용할 수 있다. 또한, 지시체 검출 장치가 액정 패널 등의 표시 장치와 일체 구성인 경우는 액정 패널로부터의 정전 노이즈의 영향을 억제하기 위해, 수신 도체는 액정 패널의 주사 방향과 교차하는 방향에 배치되는 것이 바람직하다.
〔변형예 4]
크로스포인트 정전 결합 방식을 채용한 지시체 검출 장치에서는 지시체를 조작하는 면측, 즉 윗쪽으로부터 센서부를 본 경우, 복수의 수신 도체와 송신 도체가 교차하여 도체 패턴이 존재하는 영역과 존재하지 않는 영역이 있다. 각 도체는 ITO막 등의 투명 전극막으로 형성되나, 도체 패턴이 존재하는 영역의 투과율은 도체 패턴이 존재하지 않는 영역의 그것에 비교하여 저하한다. 그 결과, 센서부 상에서는 투과율의 편차가 발생한다. 사용자에 따라는 이 투과율의 편차가 신경이 쓰이는 경우가 있다. 그래서 변형예 4에서는 이와 같은 센서부 상에서 투과율의 편차를 해소하는 구성을 설명한다.
도 18에, 이 예의 센서부의 개략 구성을 나타낸다. 또한, 여기서는 변형예 1(도 14)의 센서부(50)에, 이 예의 구성을 적용한 예를 설명한다. 이 예의 센서부(70C)에서는 송신 도체(52) 및 수신 도체(54)가 존재하지 않는 영역에, 예를 들어 도체와 같은 재료로 이루어지는 제1 투명 전극막(333) 및 제2 투명 전극막(334)을 마련한다. 그 이외의 구성은 변형예 1(도 14)의 센서부(50)와 동일한 구성이다.
도 19A에, 센서부(70C)의 글래스 기판의 일면(하면)에 형성되는 송신 도체(52) 및 제1 투명 전극막(333)의 구성을 나타낸다. 이 예에서는 송신 도체(52)와 같은 면으로서, 서로가 근방에 배치된 2개의 송신 도체(52)의 사이에 직사각 형상의 제1 투명 전극막(333)을 배치한다. 제1 투명 전극막(333)은 송신 도체(52)와 접촉하지 않도록 송신 도체 사이의 치수보다 다소 작은 치수를 갖고 있고, 송신 도체(52)와는 다소의 공극을 개재시켜 이간되어 있다. 한편, 제1 투명 전극막(333)의 송신 도체(52)의 길이 방향의 치수에 관해서는 서로가 근방에 배치된 수신 도체(54) 사이의 치수에 1개의 수신 도체(54)의 도체 폭을 가산한 치수보다도 다소 작게 설정되고, 서로가 근방에 위치하는 2개의 수신 도체(54)의 사이에, 각각의 수신 도체(54)의 도체 폭의 거의 1/2의 위치까지 연신된 위치 관계를 갖고 배치된다.
또, 도 19B에, 센서부(70C)의 글래스 기판의 다른 면(상면)에 형성되는 수신 도체(54) 및 제2 투명 전극막(334)의 구성을 나타낸다. 이 예에서, 제2 투명 전극막(334)은 수신 도체(54)가 배치되는 같은 면에 배치되고, 그 치수에 관해서는 제1 투명 전극막(333)의 치수를 규정하는 경우와 동일한 접근 방식을 적용할 수 있다. 즉, 제2 투명 전극막(334)은 수신 도체(54)와 접촉하지 않도록 수신 도체 사이의 치수보다도 다소 작은 치수를 갖고 있고, 수신 도체(54)와는 다소의 공극을 개재시켜 이간되어 있다. 한편, 제2 투명 전극막(334)의 수신 도체(54)의 길이 방향의 치수에 관해서는 서로가 근방에 배치된 송신 도체(52)를 부분적으로 덮도록 설정된다. 제1 투명 전극막(333) 및 제2 투명 전극막(334)의 치수 및 배치에 관해서는 요컨대 예를 들어 지시체를 조작하는 면측(윗쪽측)으로부터 센서부(70C)를 보았을 때에, 송신 도체(52), 수신 도체(54), 제1 투명 전극막(333), 제2 투명 전극막(334)의 중첩 관계가, 전기적 절연을 유지하면서, 가능한 균질하게 되는 구성으로 함으로써, 센서부(70C) 전체에 대해 투과율의 편차가 억제된, 균질한 광학 특성을 유지할 수 있도록 배치되면 된다.
센서부(70C)의 글래스 기판의 각 면에 형성하는 도체 및 투명 전극막을 각각 도 19A, B와 같이 배치하면, 센서부(70C)를 윗쪽으로부터 보았을 때, 도 18에 나타낸 바와 같이, 도체 패턴이 존재하지 않는 영역에도, 도체와 같은 재료로 이루어지는 제1 투명 전극막(333) 및 제2 투명 전극막(334)이 형성된다. 그 결과, 센서부(70C) 상에 있어서 투과율의 편차가 억제된다.
또한, 투과율 편차를 억제하기 위한 제1 투명 전극막(333) 및 제2 투명 전극막(334)의 형상은 직사각 형상으로 한정되지 않는다. 센서부(70C)를 윗쪽으로부터 보았을 때에, 각 투명 전극막으로 이루어지는 도체 패턴과, 제1 투명 전극막(333) 및 제2 투명 전극막(334)의 중첩 관계가 광학적으로 균질하면 되고, 제1 투명 전극막(333) 및 제2 투명 전극막(334)의 형상은 각 투명 전극막으로 이루어지는 도체 패턴의 형상에 관련하여 적절히 결정된다. 예를 들어 이 예에서는 직사각 형상의 복수 투명 전극막을 송신 도체 또는 수신 도체가 연재되는 방향을 따라 소정 간격으로 배치하는 예를 들었으나, 그 복수의 투명 전극막을 1장의 전극막으로 형성해도 된다.
〔변형예 5]
상기 제1 실시 형태에서는 송신 도체 및 수신 도체가 모두 직선 형상의 도체이고, 양자가 직교하고 있는 예를 설명하였으나, 본 발명은 이로 한정되지 않는다. 예를 들어 송신 도체 및 수신 도체 중 적어도 한쪽이 곡선 형상의 도체로 구성되어 있어도 된다. 도 20에, 그 일례를 나타낸다.
도 20은 변형예 5에 있어서 센서부(80)의 송신 도체군(82)과 수신 도체군(81)의 배치 패턴을 나타내는 도면이다. 이 변형예 5에 있어서, 송신 도체군(82)은 직경이 다른 링 형상으로 형성된 복수의 송신 도체(82a)로 구성되고, 각 링 형상의 송신 도체(82a)는 동심원 형상으로 배치되고, 반경 방향에 서로 이웃하는 송신 도체(82a) 사이의 간격은 등간격이 되도록 구성된다.
한편, 수신 도체군(81)은 송신 도체군(82)의 중심으로부터 방사 형상으로 연재하여 형성된 복수의 직선 형상의 수신 도체(81a)로 구성된다. 그리고 복수의 수신 도체(81a)는 송신 도체군(82)에 의해 형성되는 동심원의 둘레 방향에 등간격으로 배치된다. 또한, 이 도 20에 나타낸 변형예 5에 있어서, 송신 도체(82a)는 등간격으로 배치되어 있는 경우를 예시하고 있으나, 이 송신 도체(82a) 사이의 간격은 반드시 등간격이 아니어도 되고, 실시 형태에 따라 임의의 간격으로 설정해도 된다.
이 예의 센서부(80)는 예를 들어 회전 조작을 검출하는 경우에 바람직하다.
[변형예 6]
상기 제1 실시 형태에 있어서는 도 7에 나타낸 바와 같이, 증폭 회로(32) 내의 증폭기(32b)에 1 입력 1 출력의 증폭기를 사용하는 예를 설명하였으나, 본 발명은 이로 한정되지 않는다. 예를 들어 증폭기로서 차동 증폭기를 사용해도 된다. 도 21에, 그 일례를 나타낸다. 또한, 이하의 설명에 있어서는 도 7에 나타낸 제1 실시 형태와 공통의 구성에 대해서는 도 7과 동일한 번호를 부여하여 설명을 생략한다.
도 21A는 변형예 6의 증폭기의 개략 구성, 도 21B는 증폭 회로에 차동 증폭기를 사용하는 경우 증폭 회로 및 그 주변의 개략 구성을 각각 나타낸다.
도 21A에 나타낸 바와 같이, 이 변형예 6의 차동 증폭기(85)는 2 입력 1 출력의 차동 증폭기이다. 이 변형예 6에 있어서, 차동 증폭기(85)의 각 입력 단자에는 서로 이웃하는 수신 도체(12)가 1개씩 접속된다. 또, 이 변형예 6에 있어서, 수신 도체군(11)은 129개의 수신 도체(12)로 구성된다. 수신 도체군(11)은 16개의 수신 도체(12)로 이루어지는 검출 블록(36)으로 분할된다. 이 검출 블록(36)은 서로 이웃하는(인덱스 m이 연속하는) 9개의 수신 도체(12)로 구성된다. 그리고 이 각 검출 블록(36)을 구성하는 수신 도체(12) 중 9개째의 수신 도체(인덱스 m이 가장 큼)는 인접하는 다른 검출 블록(36)과 공용된다. 구체적으로, 이 변형예 6에 있어서, 수신 도체군(11)은 검출 블록{X0 ~ X8}, {X8 ~ X15}, ㆍㆍㆍ, {X114 ~ X121} 및 {X121 ~ X128}로 분할된다.
그리고 이 도 21B에 나타낸 바와 같이, 수신 도체 선택 회로(88)는 한 쌍의 스위치(88a, 88b)를 복수 마련하여 구성된다. 이 한 쌍의 스위치(88a, 88b)는 각 검출 블록(36)에 각각 마련된다. 이 한 쌍의 스위치(88a, 88b)는 9개의 공통의 입력 단자(31b)를 구비한다. 이 공통의 입력 단자(31b)는 각각 대응하는 수신 도체(12)에 접속된다. 한 쌍의 스위치(88a, 88b)의 각 출력측의 단자(88c, 88d)는 각각이 I/V 변환 회로(32a)의 입력 단자에 접속된다. 그리고 스위치(88a)의 출력 단자에 접속된 I/V 변환 회로(32a)는 차동 증폭기(85)의 극성이 「-」인 입력 단자에, 스위치(88b)의 출력 단자에 접속된 I/V 변환 회로(32a)는 차동 증폭기(85)의 극성이 「+」인 입력 단자에 접속된다. 그리고 한 쌍의 스위치(88a, 88b)는 소정 시간 간격으로, I/V 변환 회로(32a)와 접속하는 수신 도체(12)를 순차 전환하는 구조로 되어 있다. 구체적으로, 최초로 스위치(88a)가 수신 도체(X0)에, 스위치(88b)가 수신 도체(X1)에 각각 접속되어 있다고 하면, 다음의 소정 시간 간격으로 스위치(88a)가 수신 도체(X1)에, 스위치(88b)가 수신 도체(X2)에 각각 전환 접속된다. 이후, 소정 시간 간격으로 순차 접속되는 도체를 전환하고, 스위치(88a)가 수신 도체(X7)에, 스위치(88b)가 수신 도체(X9)에 접속된 후는 재차 스위치(88a)가 수신 도체(X0)에, 스위치(88b)가 수신 도체(X1)에 전환 접속된다.
이와 같이 수신부에 차동 증폭기(85)를 사용한 경우에는, 수신 도체(12)로부터의 출력에 포함되는 노이즈가 차동 증폭기(85)에서 상쇄되어 캔슬되므로, 노이즈 내성을 향상시킬 수 있다.
[변형예 7]
상기 변형예 6에서는 차동 증폭기에 접속되는 수신 도체의 개수가 2개인 경우를 설명하였으나, 차동 증폭기에 접속하는 수신 도체의 개수를 추가로 증가해도 된다. 도 22에 그 일례를 나타낸다.
도 22는 변형예 7의 차동 증폭기의 개략 구성도이다.
이 예의 차동 증폭기(86)에서는 차동 증폭기(86)에 동시에 접속되는 수신 도체(12)를 5개로 한다. 또한, 그들의 수신 도체(12)에는 서로 이웃하는 5개의 수신 도체(12)를 사용한다. 도 22의 예에서는 차동 증폭기(86)에 접속하는 5개의 수신 도체(12)를 각각 수신 도체(Xm -2 ~ Xm +2)로 하고, 수신 도체(Xm -2 및 Xm -1)는 차동 증폭기(86)의 극성이 「-」인 입력 단자에 접속되고, 수신 도체(Xm +2 및 Xm +1)은 차동 증폭기(86)의 극성이 「+」인 입력 단자에 접속된다. 그리고 중앙의 수신 도체(Xm)는 소정의 참조 전압 레벨의 단자에 접속된다. 또한, 차동 증폭기(86)가 단전원(單電源)인 경우에, 수신 도체(Xm)의 전압 레벨은 소정의 참조 전압 레벨에 설정되고, 차동 증폭기(86)가 양전원(兩電源)인 경우에, 수신 도체(Xm)의 전압 레벨은 0이 된다.
이와 같은 구성으로 하면, 차동 증폭기(86)에 복수의 수신 도체(12)로부터의 출력이 동시에 입력된다. 그 결과, 차분 신호의 레벨이 증대하므로 적분 신호도 증대해 검출 감도를 향상시킬 수 있다. 또, 동시에 차동 증폭기(86)에 출력 신호를 입력하는 수신 도체의 개수가 증가하므로, 검출 가능한 범위가 넓어진다고 하는 이점도 있다. 또, 이 변형예 7에서는 차동 증폭기(86)를 사용하므로, 변형예 6과 동일하게, 노이즈 내성을 향상시킬 수 있다.
또한, 도 22의 예에서는 수신 도체 선택 회로(31)의 도시를 생략하였으나, 이후의 도면에 있어서도 본 발명의 설명에 있어서 특히 필요한 경우만 기재한다. 송신 도체 선택 회로(22)의 스위치(22a)의 기재에 대해서도 동일하게 한다.
여기서, 이 변형예 7에 있어서, 차동 증폭기(86)에 접속하는 중앙의 수신 도체(Xm)를 소정의 참조 전압 레벨로 설정하는 이유는 다음과 같다. 상기 제1 실시 형태에서 설명한 바와 같이, 정전 결합 방식에서 지시체가 근접해 있는 크로스포인트에서는 지시체를 통해 어스에 전류가 분류되고, 이 분류에 의한 크로스포인트에서의 전류 변화를 검출한다. 그렇지만 지시체가 충분히 어스되어 있지 않으면 크로스포인트에서의 전류 분류가 불충분하게 된다. 이 경우, 크로스포인트에서의 전류 변화가 작아져서 위치 검출의 감도가 저하된다.
그렇지만 이 변형예 7과 같이, 차동 증폭기(86)에 접속하는 복수의 수신 도체 중, 중앙에 위치하는 수신 도체(Xm)가 참조 전압 레벨 또는 0 전압이 되도록 구성하면, 지시체가 충분히 어스되어 있지 않은 경우에도, 지시체가 수신 도체(Xm)에 근접한 경우에는, 전류의 일부를 지시체 및 수신 도체(Xm)를 통해 분류시킬 수 있다. 그 결과, 상술한 감도의 저하를 억제할 수 있다.
[변형예 8]
변형예 6 및 변형예 7에 있어서는 차동 증폭기를 사용하여 검출 감도를 향상시키는 예를 나타내었으나, 송신 도체에 공급하는 주기 신호를 위상 반전시킴으로써 검출 감도를 향상시킬 수도 있다.
도 23은 변형예 8에 있어서 주기 신호의 공급 형태를 나타내는 도면이다.
이 변형예 8은 도 1에 나타낸 송신부(20)의 다주파 신호 공급 회로(21)와 송신 도체 선택 회로(22) 사이에, 주기 신호 생성부(24)에서 생성된 주기 신호의 위상을 반전하는 위상 반전 회로(87)를 마련하고 있다. 그리고 이 위상 반전 회로(87)는 소정의 주파수 fk의 주기 신호를 송신 도체(Yn+1)에, 위상 반전 회로(87)에서 위상 반전한 주파수 fk의 주기 신호를 송신 도체(Yn)에 공급한다. 그리고 수신부(30; 도 1 참조)에 있어서, 인접하는 2개의 수신 도체(Xn +1, Xn)로부터의 출력된 전류는 2개의 입력 단자가 모두「+」 단자인 2 입력 1 출력의 증폭기(90)에 입력된다.
이와 같이, 송신부(20)에 위상 반전 회로(87)를 사용한 경우, 지시체가 근접해 있지 않을 때에는 동시에 검출하는 2개의 수신 도체(Xn +1, Xn)로부터의 출력에 포함되는 신호가 상쇄되므로, 검출 감도를 향상시킬 수 있다.
[변형예 9]
상기 변형예 8에서는 검출 감도를 향상시키기 위해 송신부에서 생성한 주파 신호와, 이 주파 신호를 위상 반전한 위상 반전 신호를 사용하여 수신부에 2 입력 1 출력의 증폭기를 사용하는 예를 나타내었으나, 위상 반전 신호를 사용하지 않고 검출 감도의 향상 및 동시에 검출하는 범위를 넓히기 위해서는 동일 주파수의 주기 신호를 복수의 송신 도체에 공급하고, 수신부에 복수 입력 1 출력의 증폭기를 사용해도 된다. 도 24에, 그 일례를 나타낸다.
도 24는 변형예 9에 있어서 주기 신호의 공급 형태 및 출력 신호의 검출 형태를 나타내고 있다.
이 변형예 9와 같이, 수신부(30)에 2개의 입력 단자가 모두 「+」 단자인 2 입력 1 출력의 증폭기(90)를 사용한 경우에는, 동일 주파수의 주기 신호를 2개의 송신 도체(14)에 공급한다.
이와 같이 복수개의 송신 도체(14)에 동일 주파수의 주기 신호를 공급하고, 복수개의 수신 도체(12)로부터의 출력 신호를 가산한 경우에는, 검출되는 출력 신호의 레벨을 증대시킬 수 있을 뿐만 아니라, 검출 범위를 넓힐 수 있다. 복수개의 수신 도체로부터의 출력 신호를 가산하는 경우, 검출 범위를 넓힐 수 있으므로, 센서부(10)의 위치 검출 영역이 큰 경우에 특히 바람직하다.
또한, 이 변형예 9에서는 동일 주파수의 주기 신호를 공급하는 송신 도체(14)를 2개 단위로 하고, 수신부는 2개의 수신 도체(12)의 출력 신호를 가산하는 예를 설명하였으나, 본 발명은 이로 한정되지 않는다. 동일 주파수의 주기 신호를 공급하는 송신 도체(14)의 단위를 3개 이상으로 하고, 그에 맞추어서 수신부의 증폭기로 가산하는 수신 도체(12)의 개수도 3개 이상으로 해도 된다.
또한, 이 변형예 9에 있어서는 증폭기로 가산하는 수신 도체(12)의 개수가, 동일 주파수의 주기 신호를 공급하는 송신 도체(14)의 개수와 동일한 경우를 설명하였으나, 본 발명은 이로 한정되지 않는다. 동일 주파수의 주기 신호를 공급하는 송신 도체(14)의 개수와, 증폭기로 가산하는 수신 도체(12)의 개수가 달라도 된다. 또한, 동일 주파수의 주기 신호를 공급하는 송신 도체(14)의 개수와 증폭기로 가산하는 수신 도체(12)의 개수를 동일하게 한 경우, 다음과 같은 이점이 얻어진다.
동일 주파수의 주기 신호를 송신하는 송신 도체의 개수가, 증폭기로 가산하는 수신 도체(12)의 개수와 다른 경우, 센서부(10) 상에 있어서 최소의 검출 에어리어는 직사각 형상으로 되어, 감도 분포에 이방성(異方性)이 발생한다. 이 경우, 예를 들어 센서부(10)와 대향하는 면(이하, 간단히 「대향면」이라 함)이 원 형상의 지시체를 검출하면, 그 지시체의 대향면이 원 형상이 아닌 타원 형상 등으로 일그러져서 검출된다. 이에 대해, 변형예 9와 같이, 동일 주파수의 주기 신호를 송신하는 송신 도체의 개수가, 증폭기로 가산하는 수신 도체(12)의 개수와 동일한 경우, 센서부(10) 상에 있어서 최소의 검출 에어리어 Smin이 정사각 형상으로 되어 등방적(等方的)인 감도 분포가 얻어진다. 이 경우, 대향면이 원 형상의 지시체가 센서부(10) 상에 배치되어도, 그 지시체의 대향면을 원 형상으로 검출할 수 있다.
그런데 제1 실시 형태(도 5)에 있어서는 송신 블록(25) 내의 송신 도체(14)에 공급되는 주기 신호의 주파수가 1개마다 다른 예에 있어서 주파수의 로테이션에 대해 설명하였으나, 본 발명은 이로 한정되지 않는다. 예를 들어 변형예 9에 나타낸 바와 같이, 서로 이웃하는 2개의 송신 도체(14)마다 동일 주파수의 주기 신호를 공급하는 경우에 있어서도, 상술한 바와 같이, 주파수를 소정 시간마다 로테이션시켜도 된다. 그 예를, 도 25 및 도 26에 나타낸다.
도 25A 및 B에 나타낸 로테이션 예에서는 우선 어떤 시각에 주파수 f0(동 위상)의 주기 신호를 송신 도체(Y2 및 Y3)에 공급한다(도 25A의 상태). 이어서, 소정 시간 후, 주파수 f0(동위상)의 주기 신호를 Y0 및 Y1에 공급한다(도 25B의 상태). 즉, 도 25A 및 B의 예는 소정 시간마다, 동일 주파수의 주기 신호를 공급하는 송신 도체(14)를 2개 단위로 늦추는 로테이션 예이다.
이와 같이, 소정 시간마다, 같은 주파수의 주기 신호를 공급하는 송신 도체(14)를 2개 단위로 늦추는 로테이션을 행하면, 보다 고속으로 지시체의 검출을 행할 수 있다.
또, 도 26A ~ C에 나타낸 로테이션예에서는 우선 어떤 시각에 주파수 f0(동위상)의 주기 신호를 송신 도체(Y2 및 Y3)에 공급한다(도 26A의 상태). 그 다음에, 소정 시간 후, 주파수 f0(동위상)의 주기 신호를 Y1 및 Y2에 공급한다(도 26B의 상태). 그 다음에, 더욱 소정 시간이 지난 후, 주파수 f0(동위상)의 주기 신호를 Y0 및 Y1에 공급한다(도 26C의 상태). 즉, 도 26A ~ C의 예는 소정 시간마다, 같은 주파수의 주기 신호를 공급하는 송신 도체(14)를 1개 단위로 늦추는 로테이션예이다.
이와 같이, 소정 시간마다, 같은 주파수의 주기 신호를 공급하는 송신 도체(14)를 1개 단위로 늦추는 로테이션을 행하면, 복수개의 송신 도체(14)에 같은 주파수의 주기 신호가 공급되므로, 상기 제1 실시 형태에 나타낸 예(도 5 참조)와 비교하여 보다 검출 정밀도를 향상시킬 수 있다.
[변형예 10]
상기 변형예 9에서는 수신측의 증폭기로 가산하는 수신 도체(12)의 개수를 2개, 3개로 늘림으로써, 출력 신호의 레벨 곡선은 브로드(넓은 폭)가 되어 검출 범위가 넓어지는 것을 설명하였다. 그러나 주파수 다중 방식(특히, 차동 증폭기를 사용하지 않는 경우)에 있어서 수신 도체의 개수를 늘려가면, 주기 신호의 합성에 의해 수신 도체에 흘러드는 전류가 검출하고 싶은 레벨보다 크게 되어, 수신부(30)의 증폭기 등의 다이나믹 레인지를 넘어 포화할 우려가 있다. 도 27에, 변형예 9(도 24)에서 검출되는 레벨 곡선의 예를 나타낸다. 도 27에 나타낸 바와 같이, 레벨 곡선 90X의 상승·하강이 날카롭고, 레벨이 크다. 수신 도체(12)의 개수가 3개, 4개로 증가하면, 더욱 수신 레벨이 올라, 주기 신호의 합성에 의해 수신 도체에 흘러드는 전류가 커진다. 따라, 변형예 10에서는 주기 신호의 합성에 의해 수신 도체에 흘러드는 전류를 억제하면서, 출력 신호의 레벨 곡선을 브로드로 하기 때문에, 수신 도체 사이에 그라운드에 접속한 수신 도체를 갖는 구성으로 한다. 도 28에, 그 일례를 나타낸다.
도 28은 변형예 10에 있어서 주기 신호의 공급 형태 및 출력 신호의 검출 형태를 나타내고 있다. 이 변형예 10에 있어서는 3개의 입력 단자를 갖는 3 입력 1 출력의 증폭기(91)를 사용한다. 이 3개의 입력 단자는 양측의 입력 단자가 「+」 단자에, 중앙의 입력 단자가 그라운드에 접속(이하, 「0」 단자라고 함)된다. 그리고 수신 도체 선택 회로(31; 도 1 참조)는 인접하는 임의의 3개 수신 도체(Xm ~ Xm +2) 중, 양측에 위치하는 수신 도체(Xm 및 Xm +2)가 각각 증폭기(91)의 양측의 「+」 단자에 접속되어, 중앙에 위치하는 수신 도체(Xm +1)를 「0」 단자에 접속된다. 즉, 이 중앙의 수신 도체(Xm +1)로부터의 출력 신호의 레벨을 0(제로)으로 하고 있다.
이와 같이 구성하면, 이 변형예 10에 나타낸 증폭기(91)로부터 출력되는 출력 신호는 도 28에 나타낸 바와 같이 그 출력 신호의 레벨을 나타내는 레벨 곡선 91X는 2개의 수신 도체에 의한 “++” 수신의 경우와 동등 이하의 크기로, 또한 3개의 수신 도체에 의한 “+++” 수신과 동등한 브로드인 곡선 형상이 된다. 즉 이 변형예 10에 있어서는 레벨 곡선 91X의 곡선 형상이 브로드가 되는 만큼, 그 최대값은 수신 도체가 3개의 경우는 물론, 2개인 경우보다 작게 억제되고, 또한 수신 도체가 3개의 경우와 검출 범위는 같게 할 수 있다. 또, 수신 도체의 하나를 그라운드에 접속함으로써, 지시체를 그라운드에 접속한 경우와 같은 역할도 하고 있다.
또한, 그라운드에 접속된 수신 도체(Xm +1)로부터의 출력 신호는 0이기 때문에, 도 28에 나타낸 바와 같이 수신 도체의 접속 형태에 대응시켜서, 3개의 송신 도체 중 중앙의 송신 도체를 그라운드에 접속해도 된다. 이와 같이 한 경우, 검출되는 출력 신호의 레벨 곡선의 개선뿐만 아니라, 소비 전력의 억제에도 기여한다. 또, 차동 증폭기라도 주기 신호의 다중에 따른 기복이 발생하므로, 수신측의 접속 형태에 대응하여 송신측에 있어서 동일한 신호 레벨이 되는 접속 형태로 해도 된다.
상술한 바와 같이, 수신 도체 사이에 그라운드에 접속하는 수신 도체를 마련함으로써, 레벨 곡선의 기복을 억제한 채로 레벨 곡선의 형상을 브로드로 할 수 있다. 그러므로, 레벨 곡선의 레벨을 억제하면서, 복수의 수신 도체로 동시에 출력 신호를 검출할 수 있고, 좌표 인식 특성이 향상한다. 또, 레벨 곡선의 레벨을 억제하면서 검출 범위를 복수개의 수신 도체로 넓힐 수 있다.
도 29는 변형예 10에 있어서 주기 신호의 공급 형태 및 출력 신호의 검출 형태의 다른 예를 나타내고 있다. 이 예에서는 4개의 입력 단자를 갖는 4 입력 1 출력의 증폭기(92)를 사용한다. 이 증폭기(92)의 4개 입력 단자는 「+」 단자와, 그라운드에 접속되는 단자(이하, 「0」 단자라 함)가 번갈아 배치되어서 구성된다. 그리고 수신 도체 선택 회로(31; 도 1 참조)는 인접하는 임의의 4개 수신 도체(Xm ~ Xm +3)를 번갈아 이 증폭기(92)의 「+」 단자 또는 「0」 단자에 접속한다. 즉, 인접하는 4개의 수신 도체(Xm ~ Xm +3) 중 수신 도체(Xm +1, Xm +3)를 그라운드에 접속하고, 수신 도체(Xm +1, Xm +3)로부터의 출력 신호의 레벨을 0(제로)으로 하고 있다. 또한, 도 29에 나타낸 바와 같이, 수신 도체의 접속 형태에 대응시켜서, 4개의 송신 도체 중 하나 건너의 송신 도체(Yn, Yn +2)를 그라운드에 접속해도 된다. 또, 본 발명은 이에 한정되지 않으며, 수신 도체(Xm -1 및 Xm +1)가 「0」 단자에 접속되고, 수신 도체(Xm 및 Xm +2)가 「+」 단자에 접속되는 구성으로 해도 된다.
여기서, 예를 들어 4 입력 1 출력의 증폭기를 사용하여 그 모든 단자를 「+」 단자로 한 경우, 즉 수신 도체 선택 회로(31)에 의해 선택된 임의의 4개 수신 도체를 사용하여 “++++” 수신을 한 경우, 주기 신호의 합성에 의한 기복 등의 영향에 의해 출력 신호의 레벨 곡선이 증폭기(92)의 다이내믹 레인지를 넘어서 포화한다. 그러나 도 29의 예의 같이, 수신 도체를 1개 걸러 그라운드에 접속한 “+0+0” 또는 “0+0+” 수신한 경우에는, 같은 개수분의 수신 도체를 망라하면서도, 출력 신호의 레벨 곡선은 포화되지 않는다.
이 도 29에 나타낸 변형예 10의 다른 예에 의하면, 도 28의 예와 동일하게, 복수개의 송신 도체(14)에 동일 주파수의 주기 신호를 공급하고, 1개 이간한 복수개의 수신 도체(12)로부터의 출력 신호를 가산한다. 이와 같이 함으로써, 수신 도체에 흘러드는 전류를 적절히 억제하면서 검출 범위를 넓힐 수 있고, 또한 검출되는 출력 신호의 레벨을 증대시킬 수 있으므로, 검출 감도를 향상시킬 수 있다. 또, 도 29에 나타낸 변형예의 다른 예는 도 28의 예와 동일하게, 검출 범위를 넓힐 수 있고 또한 검출되는 출력 신호의 레벨을 증대시킬 수 있으므로, 센서부(10) 상의 위치 검출 영역이 큰 경우에 특히 바람직하다.
또, 도 28 및 도 29에 나타낸 변형예 10에 있어서는 동일 주파수의 주기 신호를 송신 도체(14)에 공급할 때의 송신 도체(14)의 공급 패턴과, 증폭기로 가산하는 수신 도체(12)의 접속 패턴이 동일하게 되도록 구성하고 있다. 이 경우, 센서부(10) 상에 있어서 최소의 검출 에어리어가 정사각 형상으로 되어 등방적인 감도 분포가 얻어진다.
[변형예 11]
수신부(30)에서 검출하는 출력 신호의 노이즈 내성을 향상하기 위한 일례로서, 차동 증폭기를 사용하여 차동 구동시키는 구성이 있다. 도 30에, 그 일례로서 4개의 수신 도체를 검출 범위로 하는 경우에 있어서 주기 신호의 공급 형태 및 출력 신호의 검출 형태의 예를 나타낸다.
도 30에 나타낸 변형예 11에 있어서는 4 입력 1 출력의 차동 증폭기(93)를 사용한다. 이 차동 증폭기(93)의 4개 입력 단자는 「+」 단자와 「-」 단자가 동극성으로 서로 이웃하여 배치되어서 구성된다. 그리고 수신 도체 선택 회로(31; 도 1 참조)는 인접하는 임의의 4개 수신 도체(Xm ~ Xm +3) 중 수신 도체(Xm, Xm +1)를 이 차동 증폭기(93)의 「+」 단자에, 수신 도체(Xm +2, Xm +3)를 차동 증폭기(93)의 「-」 단자에 각각 접속한다.
또한, 이 변형예 11과 같이, 수신부의 신호 검출 형태를 「++--」로 하는 경우에는, 송신부의 신호 공급 형태도 수신부의 신호 검출 형태에 맞추는 것이 바람직하다. 구체적으로, 예를 들어 4개가 서로 이웃하는 송신 도체(Yn ~ Yn+3)에 대해, 송신 도체(12)의 인덱스의 작은 쪽으로부터 주기 신호의 위상을 「역상, 역상, 동상, 동상」으로 하여 공급한다. 그것을 실현하기 위해서는 도 30에 나타낸 바와 같이, 송신 도체(Yn +2 및 Yn +3)에 주파수 fk의 주기 신호의 위상을 바꾸지 않고 공급한다. 한편, 송신 도체(Yn 및 Yn +1)에는 위상 반전기(87)를 통해 주파수 fk의 주기 신호를 공급한다.
여기서, 도 30에 나타낸 레벨 곡선 93X는 4개의 수신 도체(12)에 의한 출력 신호의 레벨(출력값)을 나타내고 있다. 수신부에 이와 같은 차동 증폭기(93)를 사용한 경우에는, 수신 도체(Xm, Xm +1)의 합성 신호와 수신 도체(Xm +2, Xm +3)의 합성 신호에 포함되는 노이즈가 차동 증폭기(93)에 있어서 상쇄되므로, 노이즈 내성을 향상시킬 수 있다.
그런데 차동 증폭기를 사용한 경우, 실제로 지시체가 센서부에 터치(접촉)하여 얻어진 출력 신호의 레벨 변화는 도 30의 파선으로 나타내는 S자와 같은 특성으로 된다. 지시체의 위치를 산출하려면, 레벨 곡선 93X와 같은 하나의 피크값을 갖는 출력 신호가 아니면 안 된다. 이 피크값을 나타내는 수신 도체가 실제로 지시체가 터치한 위치로 되기 때문이다. 이 하나의 피크값을 갖는 출력 신호는 파선으로 나타내는 S자 형상의 특성을 갖는 출력 신호를 적분 처리함으로써 얻을 수 있다. 그렇지만 적분 처리는 노이즈의 축적으로 연결되고, 그 결과 위치 검출 정밀도가 낮아진다고 하는 문제가 발생한다.
따라, 변형예 11에서는 수신부(30)의 차동 증폭기가 다른 극성의 입력 단자수를 좌우 동수로 하여, 지시체의 검출 대기시에 검출되는 좌우의 출력 신호의 밸런스를 취하는 구성으로 한다. 도 31에, 그 일례를 나타낸다.
도 31은 4개의 수신 도체를 검출 범위로 하는 경우에 있어서 주기 신호의 공급 형태 및 출력 신호의 검출 형태의 예를 나타내고 있다.
도 31의 예에서는 4 입력 1 출력의 차동 증폭기(94)를 사용한다. 이 차동 증폭기(94)의 4개 입력 단자는 「+」 단자와 「-」 단자가 좌우 대칭이 되도록 배치되어서 구성된다. 그리고 수신 도체 선택 회로(31; 도 1 참조)는 인접하는 임의의 4개 수신 도체(Xm ~ Xm +3)를 이 차동 증폭기(94)의 4개 입력 단자에 접속한다. 즉, 인접하는 4개의 수신 도체(Xm ~ Xm +3) 중 수신 도체(Xm +1, Xm +2)는 「+」 단자에, 수신 도체(Xm, Xm +3)는 「-」 단자에 각각 접속된다. 한편, 수신 도체(12)가 접속되는 차동 증폭기(94)의 입력 단자의 극성에 대응시키도록, 송신부(20)는 송신 도체 선택 회로(22)를 통해, 이 송신 도체 선택 회로(22)에 의해 선택된 서로 이웃하는 임의의 4개 송신 도체(Yn ~ Yn +4) 중, 송신 도체(Yn +2 및 Yn +3)에 대해서는 주파수 fk의 주기 신호에 공급하고, 송신 도체(Yn, Yn +3)에 대해서는 위상 반전 회로(87)를 통해 주파수 fk의 주기 신호의 위상을 반전한 주기 신호를 공급한다.
변형예 11의 차동 증폭기(94)로부터 얻어지는 출력 신호는 도 31에 나타낸 레벨 곡선 94X와 같이, 하나의 피크값을 갖는 출력 신호로 된다. 그 결과, 차동 증폭기의 출력 신호를 적분 처리할 필요는 없어지므로, 노이즈 내성을 향상시킬 수 있다. 그러므로, 지시체를 센서부에 포인팅했을 때의 신호를 확실히 검출할 수 있다.
또한, 상기 변형예 11에 있어서는 차동 증폭기에 접속되는 수신 도체의 수를 4개로 한 경우를 예시하여 설명하였으나, 이 수신 도체의 수는 4개(짝수)로 한정되지 않으며, 3개나 5개(홀수)를 단위로 해도 된다. 또, 위상 반전을 행하는 것은 수신 도체측뿐만 아니라, 송신 도체측, 또는 수신 도체측 및 송신 도체측이어도 된다. 또, 도 28의 예의 같이, 중앙의 수신 도체를 그라운드 또는 임의의 기준 전위에 접속해도 된다.
또한, 상기 변형예 11에 있어서 차동 증폭기의 입력 단자의 배치가 “-++-”로 한 경우를 예시하여 설명하였으나, 입력 단자의 배치는 이 예로 한정되지 않으며, 좌우 대칭이면 된다. 따라, 도 32에 4개의 수신 도체를 검출 범위로 하는 경우에 있어서 주기 신호의 공급 형태 및 출력 신호의 검출 형태의 다른 예를 나타낸다.
도 32의 예에서는 4 입력 1 출력의 차동 증폭기(95)를 사용하여 「+」 단자와 「-」 단자를 도 31에 나타낸 변형예 11의 경우와 바꿔 넣은 배치로 구성하고 있다. 그리고 수신 도체 선택 회로(31; 도 1 참조)는 인접하는 임의의 4개 수신 도체(Xm ~ Xm +3)를 이 차동 증폭기(95)의 4개 입력 단자에 접속한다. 즉, 인접하는 4개의 수신 도체(Xm ~ Xm +3) 중 수신 도체(Xm, Xm +3)는 차동 증폭기(95)의 「+」 단자에, 수신 도체(Xm +1, Xm +2)는 차동 증폭기(95)의 「-」 단자에 각각 접속된다. 한편, 수신 도체(12)가 접속되는 차동 증폭기(95)의 입력 단자의 극성에 대응시키도록, 송신부(20)는 송신 도체 선택 회로(22)를 통해 이 송신 도체 선택 회로(22)에 의해 선택된 서로 이웃하는 임의의 4개 송신 도체(Yn ~ Yn +4) 중 송신 도체(Yn 및 Yn +3)에에 대해서는 주파수 fk의 주기 신호를 공급하고, 송신 도체(Yn +1, Yn +2)에 대해서는 주기 신호 fk의 주기 신호의 위상 반전 회로(87)를 통해 위상 반전한 주기 신호를 공급한다. 즉, 도 32의 예는 차동 증폭기(95)의 입력 단자의 배치를 “+--+”로 한 예이다. 이와 같이, 차동 증폭기(95)의 입력 단자의 배치를 “+--+”로 해도, 도 31에 나타낸 예와 동일하게, 차동 증폭기의 출력 신호를 적분 처리할 필요는 없어지므로 노이즈 내성을 향상시킬 수 있다.
[변형예 12]
상기 변형예 11에서는 4개의 수신 도체를 검출 범위로 하는 예를 설명하였으나, 변형예 12에서는 3개의 수신 도체를 검출 범위로 하는 예를 설명한다.
도 33A에, 변형예 12로서, 3개의 수신 도체를 검출 범위로 하는 경우에 있어서 주기 신호의 공급 형태 및 출력 신호의 검출 형태의 예를 나타내고, 도 33B에, 도 33A의 변형예 12와는 다른 예를 나타낸다.
도 33A의 예에서는 3 입력 1 출력의 차동 증폭기(96)를 사용한다. 이 차동 증폭기(96)의 3개 입력 단자는 「+」 단자와 「-」 단자가 좌우 대칭이 되도록 배치되어 구성된다. 그리고 수신 도체 선택 회로(31; 도 1 참조)는 인접하는 임의의 3개 수신 도체(Xm ~ Xm +2)를 이 차동 증폭기(95)의 3개 입력 단자에 접속한다. 즉, 인접하는 3개의 수신 도체(Xm ~ Xm +2) 중 수신 도체(Xm +1)는 「+」 단자에, 수신 도체(Xm, Xm +2)는 「-」 단자에 접속된다. 한편, 수신 도체(12)가 접속되는 차동 증폭기(96)의 입력 단자의 극성에 대응시키도록, 송신부(20)는 송신 도체 선택 회로(22)를 통해, 이 송신 도체 선택 회로(22)에 의해 선택된 서로 이웃하는 임의의 3개 송신 도체(Yn ~ Yn +2) 중 송신 도체(Yn +1)에 대해서는 주파수 fk의 주기 신호를 공급하고, 송신 도체(Yn, Yn +2)에 대해서는 주파수 fk의 주기 신호를 위상 반전 회로(87)를 통해 위상 반전한 주기 신호를 공급한다.
또, 도 33B의 예는 도 33A의 차동 증폭기의 입력 단자의 극성을 반전한 예이다. 즉, 도 33B의 예에서는 3 입력 1 출력의 차동 증폭기(97)를 사용하고, 3개의 입력 단자는 「+」 단자와 「-」 단자가 좌우 대칭이 되도록 배치되어 구성된다. 그리고 수신 도체 선택 회로(31; 도 1 참조)는 인접하는 임의의 3개 수신 도체(Xm ~ Xm+2)를 이 차동 증폭기(95)의 3개 입력 단자에 접속한다. 즉, 인접하는 3개의 수신 도체(Xm ~ Xm +2) 중 수신 도체(Xm, Xm +2)는 차동 증폭기(97)의 「+」 단자에, 수신 도체(Xm +1)는 차동 증폭기(97)의 「-」 단자에 각각 접속된다. 한편, 수신 도체(12)가 접속되는 차동 증폭기(97)의 입력 단자의 극성에 대응시키도록, 송신부(20)는 송신 도체 선택 회로(22)를 통해, 이 송신 도체 선택 회로(22)에 의해 선택된 서로 이웃하는 3개의 송신 도체(14) 중 송신 도체(Yn 및 Yn+2)에 주파수 fk의 주기 신호를 공급하고, 송신 도체(Yn+1)에 대해서는 주파수 fk의 주기 신호를 위상 반전 회로(87)를 통해 위상 반전한 주파수 fk의 주기 신호를 공급한다.
이 도 33A 및 B에 나타낸 예에서는 다른 극성의 입력 단자에 얻어진 출력 신호 사이의 밸런스를 취하기 위해, 접속되는 수신 도체의 수가 적은 극성의 단자로 얻어진 출력 신호와 접속되는 수신 도체의 수가 많은 극성의 단자로 얻어진 출력 신호를 밸런스시킨다. 즉, 차동 증폭기(96(97))의 「+(-)」 단자에 얻어지는 출력 신호의 레벨을 2배하고, 이 2배한 레벨의 출력 신호와 2개의 「-(+)」 단자로 얻어진 출력 신호를 사용한다. 여기서, 마련된 수가 적은 극성의 입력 단자로 얻어진 출력 신호의 레벨을 몇 배로 할지는 접속되는 수신 도체의 수가 적은 쪽의 극성의 입력 단자수와 접속되는 수신 도체의 수가 많은 쪽의 극성의 입력 단자 수에 따라 적절히 결정된다.
변형예 12에 의하면, 검출 대상의 도체의 개수가 홀수 개를 단위로 해도 변형예 11(도 31 및 도 32)의 예와 동일하게 검출 대기시에 검출되는 좌우의 출력 신호의 밸런스를 취할 수 있다. 또한, 변형예 12에 의하면, 변형예 11과 동일하게 노이즈 내성을 향상시키는 효과에 더하여, 변형예 11과 비교하여 최소 검출 에어리어 Smin을 작게 할 수도 있다.
[변형예 13]
변형예 13은 제1 실시 형태에 있어서, 실제로 지시체가 센서부에 터치했을 때에 얻어진 출력 신호의 레벨 곡선(레벨 특성)에 대해 비선형 처리를 행하도록 구성한 예이다. 도 34 및 도 35를 참조하여 변형예 13에 대해 설명한다.
도 34는 통상의 손가락 검출시 신호 레벨을 나타내는 도면이다. 통상, 손가락(19) 등의 지시체가 센서부(10)의 검출면에 터치했을 때에 수신부(30)에서 얻어진 출력 신호의 레벨 곡선(101)은 도 34에 나타낸 특성으로 된다. 지시체의 터치에 의해 얻어진 출력 신호의 레벨은 지시체와 센서부(10)의 접촉 부분에서는 극단적으로 크고, 지시체가 센서부(10)로부터 떠 있는 부분(비접촉 부분)에서는 극단적으로 작아진다. 지시체가 근소하게 센서부(10)로부터 떠 있는 곳을 포함하여 인식 처리하고 싶어도, 출력 신호의 레벨이 상기 두 경우에서 극단적으로 다르므로 정확한 인식 처리가 곤란하다.
그래서 변형예 13에서는 지시체의 접촉에 의해 얻어진 출력 신호를 신호 검출 회로(34)에서 검파 처리한 후, 대수 변환을 행한다. 이와 같은 비선형 변환(대수 변환)을 행함으로써, 출력 신호 중 작은 레벨의 신호부분(비접촉 부분)을 들뜨게 할 수 있음과 아울러, 레벨이 큰 신호 부분(접촉 부분)은 신호 레벨을 억제할 수 있다.
도 35에, 도 34의 예의 레벨 곡선(101)으로 표시되는 출력 신호의 비선형 처리 후의 레벨 곡선의 예를 나타낸다. 도 35의 예의 레벨 곡선(102)은 최대값이 억제되고, 또한 브로드화하고 있다. 그 때문에, 지시체와 센서부(10)의 접촉 및 뜨는 측(가장자리)의 출력 신호가 서로 이웃하는 수신 도체로 연속적으로 연결되어, 지시체의 측(가장자리) 인식 처리를 용이하게 행할 수 있다. 또한, 비선형 처리이고 되고 대수 변환으로는 한정되지 않는다.
이 예에 의하면, 지시체의 터치에 의해 얻어진 출력 신호를 일단, 비선형 변환하고, 지시체와 센서부의 접촉 및 뜨는 측(가장자리)의 출력 신호가 서로 이웃하는 수신 도체로 연속적으로 연결되어, 지시체의 측(가장자리) 인식 처리를 용이하게 행할 수 있도록 하고 있다. 따라, 지시체에 대한 인식 특성을 향상시킬 수 있다. 이와 같은 지시체의 가장자리를 포함한 접촉 면적의 추출은 후술하는 지시체의 좌표ㆍ필압(筆壓) 등의 인식에 있어서 중요하다. 특히, 지시체가 센서부 상을 이동했을 때에, 수신 도체의 환승을 행할 때의 좌표 오차, 즉 환승 전후에서의 수신 도체의 선택 오류 등을 저감할 수 있다.
[변형예 14]
변형예 14는 제1 실시 형태에 있어서, 손가락 등의 지시체가 센서부의 검출면으로부터 떠 있는 상태(이하, 호버링(hovering)이라 칭함)의 식별을 양호하게 행하는데 바람직한 예이다.
지금까지 지시체가 센서부에 접촉하고 있는지 아닌지의 식별은 도 35에 나타내는 바와 같이, 센서부의 수신 도체로부터 얻어진 출력 신호의 레벨 곡선의 엣지(상승)의 기울기 102A만에 기초하여 식별하고 있었다. 예를 들어 이 기울기 102A가 클 때는 손가락(19) 등의 지시체가 센서부와 접촉하고 있다고 식별되고, 기울기 102A가 작을 때는 지시체가 센서부로부터 떠 있다고 식별되어 있었다.
그러나 증폭기의 이득의 설정이 바뀌는 등 하여 접촉 상황의 정확한 식별이 곤란하게 된다. 따라, 검출한 출력 신호의 레벨 변화에 영향을 받는 일 없이, 호버링 상황을 식별할 수 있는 방법을, 도 34 ~ 도 36에 따라 설명한다.
이 변형예 14에 있어서는 센서부의 수신 도체로부터 얻어진 출력 신호의 레벨 곡선의 최대값(이하, 이 최대값를 피크값이라 칭함)과 그 형태로부터 호버링 상태에 있는지를 식별하도록 한다. 그 때문에, 피크값(도 35의 화살표의 길이)과 형태의 일례로서 엣지의 기울기 102A를 각각 검출하고, 그 피크값을 엣지의 기울기 102A로 나눈 값(비율)을 구하는 비계산(比計算) 수단과, 그 비율이 소정의 문턱값보다 큰지의 여부로, 지시체가 호버링 상태에 있는지를 식별하는 호버링 식별 수단을 갖는 구성으로 한다. 구체적으로, 특별히 도시는 하지 않으나, 신호 검출 회로(34)에 비계산 수단 및 호버링 식별 수단의 기능을 설정하고, 신호 검출 회로(34)에서의 식별 결과를 위치 산출 회로(35)에 송신한다. 또는 비계산 수단 및 호버링 식별 수단의 기능은 신호 검출 회로(34) 대신에 제어 회로(40)에 마련해도 된다.
호버링 식별 수단은 지시체가 호버링 상태에 있는지의 여부를 판별하기 위한 소정의 반응을 일으키는 문턱값을 기억하고 있고, 이 소정의 문턱값과, 비계산 수단으로 구한 피크값과 엣지의 비율을 비교하는 기능을 구비한다. 그리고 이 호버링 식별 수단은 피크값과 엣지의 기울기 102A의 비율이, 소정의 문턱값보다 클 때는 비호버링 상태, 즉 지시체가 센서부에 접촉한 상태로 식별한다. 또, 호버링 식별 수단은 비계산 수단으로 피크값과 엣지의 기울기 102A의 비율이 소정의 문턱값보다 작을 때는 호버링 상태, 즉 지시체가 센서부에 접촉하고 있지 않는 상태(비접촉 상태)로서 식별한다. 또한, 호버링 식별 수단은 앞의 소정 문턱값보다도 작은 값의 제2 문턱값을 마련하고, 이 제2 문턱값과 비계산 수단으로 구한 피크값과 엣지의 기울기 102A의 비율을 비교함으로써, 호버링 상황의 정도를 보다 상세하게 식별하는 것도 가능하다.
다음으로, 피크값 및 엣지의 기울기의 구하는 방법의 예를, 도 36을 참조하여 설명한다.
도 36은 수신부(30)에서 검출한 출력 신호의 레벨(출력값)을 정규화한 예를 나타내고 있다. 이 예는 3개의 송신 도체 및 수신 도체에 의해 검출된 어느 순간의 출력 신호의 레벨을 정규화한 값을 나타내고 있다. 중앙에 극대값으로서의 레벨 100, 그 좌우(송신 도체의 방향)에 레벨 50이 각각 검출되어 있으므로, 이 경우 엣지의 기울기는 100-50=50이 된다. 그리고 출력 신호의 레벨 곡선의 극대값은 100이기 때문에, 구해야 할 비율의 값은(엣지의 기울기/극대값)=(50/100)=0.5가 된다. 또한, 이 도 36에 나타낸 예에 있어서는 출력 신호의 피크값과 엣지의 기울기를, 비선형 처리한 레벨 곡선(102; 도 35)으로부터 구하도록 설명하였으나, 비선형 처리 전의 레벨 곡선(101)으로부터 구해도 된다.
이 도 36에 나타낸 예에 의하면, 검출된 출력 신호의 레벨 곡선의 극대값과 그 형태의 비율에 기초하여 호버링 상황을 식별하므로, 안정된 호버링 상황의 식별을 행할 수 있다. 그 때문에, 센서부의 수신 도체로부터 얻어지는 출력 신호의 레벨 변화에 영향을 받지 않고 호버링 상황의 식별을 할 수 있다.
[변형예 15]
변형예 15는 제1 실시 형태에 있어서 호버링의 검출을 확실히 행하는데 바람직한 예이다.
어느 크로스 포인트(또는 검출 에어리어)에 있어서 호버링을 검출하는 경우, 동시에 동작시키는 송신 도체 및 수신 도체의 개수는 일단 소정의 개수가 선택되면, 그 후는 선택되는 도체 수는 고정되어 있었다. 그러나 이와 같은 구성에서는 호버링의 검출을 행할 때, 검출 감도가 낮고, 노이즈의 영향을 크게 받게 되어 확실한 호버링의 검출을 할 수 없다.
따라, 변형예 15에서는 동시에 동작시키는 송신 도체 및 수신 도체의 개수를 동적으로 변화시키는 예를 나타낸다. 이하, 도 37 및 도 38을 참조하여 그 동작을 설명한다.
도 37은 지시체가 센서부의 근처에 있는 경우에 있어서 주기 신호의 공급 형태 및 출력 신호의 검출 형태를 나타내고 있다. 또, 도 38은 지시체가 센서부의 근처에 없는 경우에 있어서 주기 신호의 공급 형태 및 출력 신호의 검출 형태를 나타내고 있다.
도 37 및 38에 나타낸 예는 도 24의 변형예 9와 유사한 구성이다. 이 변형예 9에 있어서는 수신부(30)에 4개의 입력 단자의 극성이 모두 「+」단자인 4 입력 1 출력의 증폭기(98)가 사용된다.
이에 대해, 도 37의 예에서는 서로 이웃하는 2개의 송신 도체(14)를 선택하여 4개의 입력 단자 중 2개를 사용하는 구성이다. 송신부(20)에서는 동일 주파수의 주기 신호를 서로 이웃하는 2개의 송신 도체(14)에 각각 공급하는 것이 바람직하다. 이와 같이, 지시체가 센서부의 근방에 위치하는 경우에는, 송신 도체(14) 및 수신 도체(12)를 각각 2개씩 선택하여 전류 변화를 검출한다. 지시체가 센서부의 근처에 위치하는지의 여부는 변형예 13(도 34, 도 35) 또는 변형예 14(도 35, 도 36) 등을 사용하여 검출할 수 있다.
한편, 도 38에 나타낸 예는 수신부(30)에 4 입력 1 출력의 증폭기(98)를 사용하고, 송신부(20)는 서로 이웃하는 4개의 송신 도체(14)를 선택하여 주기 신호를 공급하는 구성이다. 여기서, 송신부(20)로부터 공급하는 주기 신호는 동일 주파수의 주기 신호를 서로 이웃하는 4개의 송신 도체(14)에 각각 공급하는 것이 바람직하다. 이와 같이, 지시체가 센서부의 근처에 없는 경우에는, 송신 도체(14) 및 수신 도체(12)를 각각 4개씩 선택하여 개수를 늘린다.
이들 수신 도체(12) 및 송신 도체(14)의 선택은 제어 회로(40)가 행한다. 제어 회로(40)는 위치 산출 회로(35)로부터의 출력을 수신하여 센서부와 지시체의 거리를 판정하고, 판정 결과에 기초하여 송신 도체 선택 회로(22) 및 수신 도체 선택 회로(31)에 선택하는 도체의 위치와 개수를 지시한다.
여기서, 호버링의 동작에 대해 도 1, 도 37 및 도 38을 참조하여 구체적인 예를 설명한다.
어느 타이밍에 있어서, 송신 도체(14) 및 수신 도체(12)를 각각 2개 선택하여 스캔을 실행하는 경우를 상정한다(도 37). 또한, 이하의 설명은 다주파 신호 공급 회로(21)로부터 송신 도체군(13)을 구성하는 모든 송신 도체(14)에 대해, 주파수가 다른 주기 신호가 동시에 공급되고 있는 것으로서 설명한다.
이 경우, 우선 제어 회로(40)는 수신 도체 선택 회로(31)를 제어하고, 예를 들어 수신 도체(Xm +1, Xm +2)를 선택시킨다. 이 상태에서, 수신부(40)는 이 선택된 수신 도체(Xm +1, Xm +2)에 대해 지시체의 검출을 행한다. 이 수신부(30)에 의한 검출 처리가 끝난 후, 제어 회로(40)는 수신 도체 선택 회로(31)를 제어하여 수신 도체를 2개 늦추어 전환하고, 수신 도체(Xm+3, Xm+4)를 선택시킨다. 그리고 수신부(30)는 이 새롭게 선택된 수신 도체(Xm +3, Xm +4)에서 검출을 행한다. 이후, 이 수신 도체(14)의 선택과 지시체의 검출을 반복하여 센서부(10) 전체의 스캔을 행한다. 여기서, 수신부(30)가 지시체를 검출할 수 없을 때, 즉 증폭기(98)로부터의 출력 신호가 검출되지 않을 때는 제어 회로(40)는 수신 도체 선택 회로(31)를 제어하고, 수신 도체 선택 회로(31)에 의해 선택되는 수신 도체(12)의 개수를, 예를 들어 4개로 증가시키고(도 38), 이후의 스캔을 실행한다.
이와 같이 수신 도체 선택 회로(31)에 의해 선택되는 수신 도체(14)의 개수를 2개에서 4개로 변경한 경우, 증폭기에 입력되는 수신 도체로부터의 출력 신호가 4 개분으로 되기 때문에 검출 감도가 향상한다. 또 선택되는 개수가 2개에서 4개로 증가하므로, 센서부 전체를 스캔하는 시간도 단축할 수 있다.
또한, 이 변형예 15에 있어서는 수신 도체 선택 회로(31)에 의해 선택되는 도체의 개수를 2개 또는 4개로 하였으나, 도체의 개수가 4개에 한정되는 것은 아니며 몇 개로 구성해도 된다. 또, 동시에 선택되는 수신 도체(14)의 개수는 4개로 한정되지 않는다. 즉 제어 회로(40)가 수신 도체 선택 회로(31)를 제어하여, 센서부와 지시체의 거리가 멀어짐에 따라 수신 도체 선택 회로(31)에 의해 선택되는 개수를 서서히 늘리도록 설정되어 있으면 된다. 또, 도 37 및 도 38의 예에서는 싱글 엔드 동작의 증폭기를 예로 들었으나, 차동 동작의 증폭기라도 된다. 또한, 이 변형예 15에 있어서는 다주파 신호 공급 회로(21)로부터 송신 도체군(13)을 구성하는 모든 송신 도체(14)에 대해, 주파수가 다른 주기 신호가 동시에 공급되고 있는 것으로서 설명하였으나, 주파 신호의 공급은 이 예로 한정되지 않는다. 예를 들어 송신부(20)로부터 공급되는 주기 신호도 동일하게 전환하도록 해도 된다.
본 예에 의하면, 센서부의 근처에 지시체가 없다고 판단된 경우, 송신 도체(14)나 수신 도체(12)의 개수를 늘리도록 제어하고, 검출 감도를 유지 또는 상승시킴으로써 확실한 호버링의 검출이 실현 가능하다.
[변형예 16]
변형예 16은 제1 실시 형태에 있어서, 감도를 올려서 고속으로 행하는 것이 요망되는 올 스캔을 양호하게 실시하는데 바람직한 예이다. 즉, 센서부에 의해 검출된 검출 신호의 신호 레벨에 대응하여 지시체의 검출을 개략적으로 구하는 동작에 대해 설명한다.
여기서, 올 스캔이란, 지시체를 검출하기 위해, 센서부 상의 전체 크로스포인트를 망라하기 위해 수시, 전류 변화의 검출 처리(스캔)를 행하는 것을 말한다. 올 스캔에 대해서는 감도를 올려서 고속으로 행하는 것이 요망된다. 그렇지만 1개 또는 소수 개마다의 송신 도체 및 수신 도체에 대해 올 스캔을 행한 것에서는 감도가 낮고, 또 스캔 포인트가 많아지므로 올 스캔의 시간도 길어진다.
따라, 변형예 16에서, 센서부로부터 출력 신호가 검출되지 않을 때는 한 번의 검출 처리에 사용하는 송신 도체 및 수신 도체의 개수를 늘리고, 스캔포인트를 개략적으로 한다(이하,「스킵 스캔」이라 함). 스킵 스캔에서는 최소 검출 에어리어를 크게 하고, 이 최소 검출 에어리어를 이동의 최소 단위로 하여 전류 변화의 검출 처리를 행하도록 한다.
이 스킵 스캔을 실현하기 위해, 신호 검출 회로(34)에 출력 신호의 유무를 검출하는 기능을 마련한다. 이 신호 검출 회로(34)는 검출 결과를 제어 회로(40)에 송신한다. 이 제어 회로(40)는 신호 검출 회로(34)로부터 검출 결과를 수신하고, 그 검출 결과에 기초하여 송신 도체 선택 회로(22) 및 수신 도체 선택 회로(31)에 선택하는 도체의 개수를 제어한다. 여기서, 지시체가 검출되지 않을 때, 즉 출력 신호가 검출되지 않을 때는 제어 회로(40)는 송신 도체 선택 회로(22) 및 수신 도체 선택 회로(31)를 제어하고, 신호의 송수신에 사용하는 송신 도체(14) 및 수신 도체(12)의 개수를 증가시킨다. 또, 지시체가 검출되었을 때, 즉 출력 신호가 검출되었을 때는 제어 회로(40)는 송신 도체 선택 회로(22) 및 수신 도체 선택 회로(31)를 제어하고, 송신 도체 선택 회로(22) 및 수신 도체 선택 회로(31)에 선택되는 송신 도체(14) 및 수신 도체(11)의 개수를 감소시킨다.
여기서, 스킵 스캔에 대해 구체적인 예를 도 1 및 도 38에 따라 설명한다.
올 스캔을 행하여 출력 신호가 검출되지 않을 때는 제어 회로(40)는 선택되는 송신 도체(14) 및 수신 도체(12)의 개수가 4개(송신 도체(Yn ~ Yn +4), 및 수신 도체(Xm ~ Xm+3))씩 선택되도록 송신 도체 선택 회로(22) 및 수신 도체 선택 회로(31)를 제어하고 스킵 스캔을 개시한다. 그리고 이 선택된 4개의 수신 도체(Xm ~ Xm+3)에서 스캔을 행한 후, 제어 회로(40)는 수신 도체 선택 회로(31)를 제어하여, 선택되는 수신 도체를 4개 늦추어 수신 도체(Xm +4 ~ Xm +7; 도시하지 않음)의 스캔을 행한다. 이후, 이 제어 회로(40)는 송신 도체(14) 및 수신 도체(12)의 선택 및 스캔과, 송신 도체 선택 회로(22) 및 수신 도체 선택 회로(31)에 의해 선택되는 송신 도체(14) 및 수신 도체(12)의 전환을 반복하고, 센서부(10) 전체에 대해 이 동작을 반복한다. 그리고 어느 하나의 단계에 있어서 지시체가 검출되면, 제어 회로(40)는 스킵 스캔을 중지하여 올 스캔을 실행한다.
이 예의 스킵 스캔과 같이, 한 번에 선택되는 수신 도체의 개수를 4개로 한 경우, 감도가 향상됨과 아울러 검출 위치가 크게 이동하므로, 감도가 향상됨과 아울러, 센서부 전체의 검출 시간이 단축된다. 또한, 이 예에서는 한 번에 선택되는 도체의 개수를 4개로 하였으나, 이 예로 한정되는 것은 아니며, 임의의 개수, 예를 들어 2개, 3개, 5개 등과 같이, 올 스캔의 경우보다도 선택되는 개수가 많이 설정되면 된다. 또, 이 예에서는 수신 도체가 전환하는 개수를 4개로 한 경우를 설명하였으나, 전환하는 개수는 이 예로 한정되지 않으며, 예를 들어 수신 도체의 개수가 4개의 경우, 2개 늦춤, 3개 늦춤, 4개 늦춤을 고려할 수 있다. 즉, 이 예에 나타낸 4개 늦춤에서는 최초로 수신 도체(Xm ~ Xm +4)에서 수신을 행한 후, 수신 도체(Xm +5 ~ Xm+7···)와 수신 도체를 전환하고 있으나, 2개 늦춤의 경우는 수신 도체(Xm ~ Xm +4)에서 수신을 행한 후, 수신 도체(Xm +2 ~ Xm +5···)와 같이 늦추게 된다. 또, 이 예에서는 송신 도체와 수신 도체의 개수가 모두 4개씩 선택하는 경우를 예시하였으나, 선택되는 개수는 송신 도체와 수신 도체 사이에서 달라도 된다.
또, 출력 신호의 레벨에 기초하여 한 번에 선택되는 송신 도체 및 수신 도체의 개수를 증감하도록 설명하였으나, 이 예로 한정되지 않는다. 예를 들어 송신 도체 또는 수신 도체 중 어느 일방의 개수를 증감하는 등, 실제로 출력 신호를 검출할 수 있는 유효 면적(최소 검출 에어리어)이 증감하는 방법이면 여러 가지의 방법이 적용 가능하다.
또한, 검출되는 출력 신호의 유무뿐만 아니라, 당해 출력 신호의 레벨의 정도에 기초하여, 사용하는 송신 도체 및 수신 도체의 개수를 변경해도 된다. 예를 들어 출력 신호의 레벨이 미리 설정한 소정의 문턱값보다 클 때는 개수를 감소하고, 당해 출력 신호의 레벨이 소정의 문턱값보다 작을 때는 개수를 증가시킨다. 또, 이 소정의 반응을 일으키는 문턱값은 하나뿐만 아니라, 2 이상 설정해도 된다. 출력 신호의 레벨을 검출하는 방법으로는 변형예 13(도 34, 도 35)이나 변형예 14(도 35, 도 36) 등을 들 수 있다.
본 예에 의하면, 지시체가 검출되지 않을 때는 한 번에 선택되는 송신 도체 및 수신 도체의 개수를 늘림으로써 스캔 포인트를 개략적으로(스킵 스캔) 한다. 이와 같이 함으로써, 검출 감도를 향상시킴과 아울러 고속의 스캔을 실현할 수 있다. 그 때문에, 제1 실시 형태(주파수 다중 방식)에 변형예 16을 적용한 경우, 주파수 다중과의 상승 효과에 의해 종래와 비교하여 1회의 올 스캔에 걸리는 시간을 큰 폭으로 단축할 수 있다.
[변형예 17]
변형예 17은 제1 실시 형태에 있어서, 또는 센서부에 접촉하고 있는 지시체의 접촉 부분 또는 센서부에 접근하고 있는 지시체를 보다 올바르게 검지하는데 바람직한 예이다.
제1 실시 형태(도 2), 변형예 1(도 14) 및 변형예 2(도 15)에서 예시한 바와 같이, 센서부의 구조에는 송신 도체와 수신 도체가 스페이서를 개재시켜 배치된 것, 각 도체가 글래스 기판을 개재시켜 2층으로 배치된 것, 각 도체가 동일층에 배치된 것 등이 있다. 일반적으로 스페이서 또는 글래스 기판을 사용한 구조의 경우, 즉 검출면과 송신 도체 및 수신 도체 사이의 거리가 다른 구조의 경우, 검출면과 송신 도체 및 수신 도체 사이에 작용하는 전계의 강도가 다르기 때문에, 센서부의 검출면으로부터 떨어져 있는 도체에 의한 출력 신호의 레벨 곡선은 브로드하게, 센서부의 검출면에 가까운 도체에 의한 출력 신호의 레벨 곡선은 샤프하게 된다. 환언하면, 검출면으로부터 떨어져 있는 도체에 의한 출력 신호의 레벨 곡선의 엣지의 기울기는 작고, 검출면에 가까운 도체에 의한 출력 신호의 레벨 곡선의 엣지의 기울기는 크다.
여기서, 도 39에, 송신 도체 및 수신 도체가 5개인 경우에 있어서 주기 신호의 공급 형태 및 출력 신호의 검출 형태를 나타낸다. 이 도 39의 예에서는 5 입력 1 출력의 차동 증폭기(99)를 사용한다. 이 차동 증폭기(99)의 5개 입력 단자는 중앙이 「0」 단자, 그 양측에 「+」 단자와 「-」 단자가 각각 2개씩 배치되어 구성된다. 그리고 이들의 입력 단자에는 각각 인접하는 5개의 수신 도체(Xm ~ Xm +4)가 접속된다. 즉, 인접하는 5개의 수신 도체(Xm ~ Xm +4) 중 수신 도체(Xm, Xm +1)는 「-」 단자에, 수신 도체(Xm +2)는 「0」 단자에, 수신 도체(Xm +3, Xm +4)는 「+」 단자에 접속된다. 또, 수신 도체(12)가 접속되는 차동 증폭기(99)의 입력 단자의 극성에 대응하여, 5개의 송신 도체(14) 중 중앙의 송신 도체(Yn+2)는 접지되고, 2개의 송신 도체(Yn+3, Yn+4)에 공급되는 주기 신호는 다른 2개의 송신 도체(Yn, Yn+1)에 공급되는 주기 신호 fk를 위상 반전 회로(87)에 의해 위상 반전하여 공급한다.
도 39에 나타낸 센서부의 구조가 변형예 1(도 14)의 센서부(50)와 같은 경우, 송신 도체(14)는 수신 도체(12)보다도 검출면에 가까운 위치에 배치되므로, 송신 도체(14)에 의한 출력 신호의 레벨 곡선은 브로드하게 되고, 수신 도체(12)에 의한 출력 신호의 레벨 곡선은 샤프하게 된다. 이와 같이 수신측에서 본 경우와 송신측에서 본 경우에서 레벨 곡선의 형상에 차가 생기는 결과, 도 39에 파선으로 나타낸 바와 같이, 지시체의 형상이 둥근 경우에도 타원 형상으로 검출되게 될 가능성이 있다.
따라, 변형예 17에서는 센서부의 검출면으로부터 멀리 배치되어 있는 도체측의 검출 폭은 좁고, 센서부의 검출면에 가까운 도체측의 검출 폭은 넓게 검출하는 구성으로 하여, 수신측과 송신측에서 출력 신호의 레벨 곡선의 형상(검출 폭)에 차가 생기지 않도록 한다.
도 40은 변형예 17에 있어서 주기 신호의 공급 형태 및 출력 신호의 검출 형태를 나타내고 있다. 도 40의 예의 센서부는 도 39의 예와 같이 변형예 1의 센서부(50)와 동일 구조라고 하고, 같은 차동 증폭기(99)를 사용한다. 도 40의 예와 도 39의 예의 차이점은 주기 신호를 공급하는 송신 도체(14)는 3개 선택되어 있는 점, 및, 이 선택된 3개의 송신 도체(14) 중 중앙의 송신 도체(Yn +2)가 접지됨과 아울러 송신 도체(Yn +3)에 대해 위상 반전 회로(87)에 의해 위상 반전한 주기 신호가 공급되고 있는 점이다.
이와 같이 함으로써, 예를 들어 출력 신호의 레벨 곡선을 3차원으로 나타내고, 어느 문턱값에서 그 형상을 잘라내면, 송신측과 수신측에서 출력 신호의 레벨 곡선의 형상(검출 폭)이 거의 동일하게 되므로, 검출 폭에 차가 생기지 않게 된다. 그 결과, 도 40에 파선으로 나타낸 바와 같이, 검출되는 형상은 거의 원형이 된다. 즉 송신측과 수신측의 애퍼추어비(aperture ratio; 종횡비)를 조정할 수 있다.
또한, 이 변형예 17에 있어서는 거의 직선 형상의 송신 도체 및 수신 도체를 거의 평행으로 배열하여 형성한 센서부를 사용한 예를 나타내고 있으나, 송신 도체 및 수신 도체의 형상 등은 이 예에 나타낸 내용으로 한정되지 않는다. 예를 들어 송신 도체 및 수신 도체의 형상은 직선 형상으로 형성하는 경우 외에, 변형예 3에 나타낸 바와 같이, 도체부의 폭보다 넓은 폭을 갖는 랜드부를 마련한 도체를 사용해도 된다. 또한, 송신 도체 및 수신 도체의 폭도 임의의 폭으로 형성해도 되고, 그 배치 패턴도 예를 들어 변형예 5에 나타낸 동심원 형상으로 배열하여 형성해도 되고, 각 도체 사이의 피치도 임의의 피치로 변경해도 된다. 또, 차동 증폭기에 한정되지 않으며 싱글 엔드 구성의 증폭기라도 된다.
또, 본 예에 의하면, 센서부의 검출면으로부터 떨어져 있는 도체측의 검출폭은 좁고, 센서부의 검출면에 가까운 도체측의 검출 폭은 넓게 검출하여, 수신측과 송신측에서 출력 신호의 레벨 곡선의 형상(검출 폭)에 차가 생기지 않도록 구성하였으므로, 애퍼추어비(종횡비)를 1에 가깝게 할 수 있다. 즉, 지시체가 검출면에 접촉해 있는 부분의 형상을 보다 정확하게 인식할 수 있게 된다. 예를 들어 둥근 것이 타원으로 되지 않고 둥글게 검출할 수 있다.
[변형예 18]
변형예 18은 제1 실시 형태에 있어서, 센서부로부터 수신한 출력 신호 전체의 레벨(출력값)에 기초하여, 수신하는 출력 신호의 이득(이하, 「수신 게인」이라 함)을 적절히 제어하는데 바람직한 예이다.
제1 실시 형태에 있어서, 수신 게인은 신호 검출 회로(34)의 동기 검파 회로(37; 도 10)에 의해 출력 신호로부터 특정의 주파수 성분의 신호를 검파하고, 자동 이득 제어 회로(도시하지 않음) 또는 제어 회로(40)가 그 검파된 특정한 주파수 성분의 신호(이하,「검파 신호」라 함)의 레벨을 참조하여 수신 게인을 결정하고, 증폭 회로(32)에 대해 수신 게인을 설정하고 있었다. 그러나 동기 검파 회로(37)에 특정의 주파수 성분 이외의 신호(노이즈)가 입력된 경우, 또는 복수 주파수의 신호를 수신한 경우에는, 그들을 합성한 신호의 강도를 용이하게 얻을 수 없게 되어서, 증폭 회로(32)의 수신 게인을 적절히 설정할 수 없게 된다. 그 결과, 증폭 회로(32)에서 출력 신호를 포화시킬 가능성이 있다.
따라, 변형예 18에서는 수신 도체(12)의 출력 신호로부터 특정한 주파수 성분을 검파하는 수단 이외에, 당해 출력 신호의 전체 주파수 성분의 신호 레벨을 얻는 수단과, 그 전체 주파수 성분의 신호 레벨을 참조하여 수신 게인을 설정하는 수단을 마련한다.
도 41에, 변형예 18에 있어서 지시체 검출 장치의 수신부의 블록 구성도를 나타낸다. 또 도 42에, 절대값 검파 회로의 블록 구성도를 나타낸다. 이 도 41의 예에서는 출력 신호의 전 주파수 성분의 레벨을 얻는 수단의 일례로서 에너지 성분을 검출하는 절대값 검파 회로를 나타내고, 도 42의 예에서는 전 주파수 성분의 신호의 레벨을 참조하여 수신 게인을 설정하는 수단의 일례로서, 절대값 검파 회로로부터 전 주파수 성분의 신호의 레벨을 취득하는 자동 이득 제어 회로(39B)를 마련한 예를 각각 나타낸다.
이 도 41및 도 42에 나타내는 바와 같이, 절대값 검파 회로(39A)는 제1 실시 형태의 신호 검출부(34a; 도 9)에 마련되고, 자동 이득 제어 회로(39B)는 이 절대값 검파 회로(39A)에 마련되어 있다.
도 42에 나타낸 바와 같이, 절대값 검파 회로(39A)는 주로, 입력 단자 (390)와, 검출 신호(출력 신호)의 레벨을 2승(2乘)하는 연산을 행하는 승적기(391)와, 이 승적기(391)의 출력을 적분하는 적분기(392)로 구성된다. 수신 도체(12)로부터 A/D 변환 회로(33a)를 통해 각 절대값 검파 회로(39A)에 검출 신호가 입력되면, 이 검출 신호는 입력 단자(390)에서 분기되어 승적기(391)에 공급된다. 승적기(391)에 2개의 검출 신호가 입력되어 2승 연산된다. 그리고 승적기(391)에서 2승 연산된 검출 신호는 적분기(392)에 입력되어 시간적으로 적분되어 출력된다.
또한, 절대값 검파는 상술한 출력 신호를 2승한 에너지 성분을 적분하는 방법의 외에, 출력 신호의 레벨의 절대값을 적분하는 방법이어도 되고, 전체 주파수 성분의 신호 및 노이즈를 포함하는 신호의 레벨을 검출할 수 있는 방법이면 된다. 또, 절대값 검파 처리는 디지털 신호 처리 수단과 아날로그 회로 수단 중 어느 쪽이어도 된다.
본 예에 의하면, 수신 도체(12)의 출력 신호를 절대값 검파한 신호(전체 주 파수 성분의 신호)의 레벨에 기초하여 수신 게인을 설정하는 구성으로 하였으므로, 수신한 복수 주파수의 신호 및 노이즈를 포함하는 신호의 레벨을 파악하여 적절히 수신 게인을 설정할 수 있다.
[변형예 19]
변형예 19는 제1 실시 형태에 있어서, 전송로인 송신 도체 및 수신 도체의 부유 용량에 따른 주기 신호의 레벨 저하나 위상 지연을 개선하는데 바람직한 예이다. 이하, 도 44 및 도 44를 참조하여 변형예 19를 설명한다.
제1 실시 형태에서는 주기 신호를 송신 도체(14)의 한쪽측으로부터 공급하고 있다. 도 43A에, 한쪽측 공급시 주기 신호의 공급 형태를 나타내고, 도 43B에, 송신 도체(Yk)에 주기 신호를 공급했을 때의 출력 신호의 레벨을 표시한 그래프를 나타낸다. 이 도 43B에 있어서 그래프의 횡축은 수신 도체(12)의 위치를, 종축은 출력 신호의 레벨을 각각 표시하고 있다.
주기 신호의 공급측(도 43A의 예에서는 송신 도체(14)의 우단(右端))으로부터 멀어짐에 따라, 즉 주기 신호의 공급측에 가까운 수신 도체(Xm +8)로부터 먼 수신 도체(Xm)에 걸쳐서 출력 신호의 레벨이 저하하고 있다. 동일하게 위상 지연도 수신 도체(Xm +8)로부터 먼 수신 도체(Xm)에서 가장 커진다. 이와 같이, 주기 신호의 공급측에 가까운 수신 도체(Xm+8)와 먼 수신 도체(Xm)에서는 레벨 차나 위상차가 발생하여 위치 산출시에 있어서 좌표 어긋남의 한 요인이 되어 있었다. 특히 ITO를 사용한 센서부에 있어서는 ITO의 저항값이 높아, 이 전송로의 영향을 크게 받고 있었다.
따라, 변형예 19에서는 다주파 신호 공급 회로(21) 및 송신 도체 선택 회로(22)를 포함하는 송신부를 송신 도체(14)의 양단에 마련하고, 송신 도체(14)에 대하 좌우 동시에 주기 신호를 공급하도록 구성한다.
도 44A에, 변형예 19에 있어서 송신 도체(14)의 양단에 송신부를 마련한 경우 주기 신호의 공급 형태를 나타내고, 도 44B에, 변형예 19에 있어서 송신 도체(Yk)에 주기 신호를 공급했을 때의 출력 신호의 레벨을 표시한 그래프를 나타낸다. 이 도 44B에 있어서 그래프의 횡축은 수신 도체(12)의 위치를, 종축은 출력 신호의 레벨을 각각 나타내고 있다.
이 도 44B에 나타낸 바와 같이, 주기 신호의 공급부에 가까운 수신 도체(Xm 및 Xm +8)로부터 멀어짐에 따라 출력 신호의 레벨이 저하되고 있다. 여기서, 수신 도체(12) 양측의 수신 도체(Xm 및 Xm +8)로부터 가장 먼 수신 도체(Xm +4)까지의 거리는 도 44A의 예에서 가장 떨어져 있는 수신 도체(Xm)로부터 수신 도체(Xm +8)까지의 거리의 절반이기 때문에, 출력 신호의 레벨 저하가 반감된다. 동시에 위상 지연도 반감된다.
또한, 본 예에 있어서는 송신 도체의 양단에 각각 주기 신호의 공급부를 마련한 예를 나타내었으나, 도 1의 송신 도체 선택 회로(22)의 출력 신호를 분기하여 송신 도체(14)의 양단에 공급하도록 해도 된다. 또 주기 신호가 공급되는 송신 도체(14)는 1개뿐만 아니라, 복수개라도 되는 것은 물론이다.
이와 같이, 본 예에 의하면, 송신 도체(14) 양단에 마련한 송신부로부터 좌우 동시에 주기 신호를 공급함으로써, 종래의 편편 공급과 비교하여 주기 신호의 레벨 저하나 위상 지연을 개선할 수 있다. 그 때문에, 수신 도체(12) 사이의 레벨 차나 위상 차가 큰 폭으로 감소하여 검출 감도의 저하를 억제할 수 있다.
[변형예 20]
변형예 20은 제1 실시 형태에 있어서, 손가락 등의 지시체가 센서부의 검출면에 터치했을 때의 압력(이하, 「지압」이라 함)을 검출하는데 바람직한 예이다.
지금까지 지압은 센서부의 검출면과의 접촉 면적과 비례 관계에 있다고 하여 계산하고 있었다. 이 때문에, 예를 들어 손가락이 가는 사람과 손가락이 굵은 사람이 같은 힘으로 검출면을 눌렀을 경우, 손가락이 굵은 사람의 접촉 면적에 비해 손가락이 가는 사람의 접촉 면적은 작아지므로, 손가락이 가는 사람이 강하게 눌러도 가볍게 터치했다고 식별되고 만다. 따라, 변형예 20에서는 손가락 등의 지시체가 센서부의 검출면에 터치했을 때에 검출되는 출력 신호의 레벨의 공간 분포(레벨 곡면)에 기초하여 지압을 검출하는 구성으로 한다.
도 45A에, 지시체가 센서부의 검출면에 터치했을 때에 검출되는 출력 신호의 레벨의 공간 분포(레벨 곡면) 예의 모식도를 나타낸다.
출력 신호에 대한 레벨 곡면(110)은 센서부의 크로스포인트에서의 전류 변화로부터 구해진다. 이 레벨 곡면(110)은 예를 들어 위치 산출 회로(35; 도 1)가 신호 검출 회로(34)의 출력을 해석하여 계산한다. 여기서 높은 레벨값을 얻어진 접촉면의 거의 중심에 위치하는 송신 도체(14)의 좌표를 「0」으로 하고, 그 좌우에 배치되는 송신 도체(14)의 좌표를 「ㆍㆍㆍ-3, -2, -1, 1, 2, 3ㆍㆍㆍ」으로 나타내고 있다. 수신 도체(12)에 대해서도 동일하다. 또한, 레벨 곡면(110)에 있어서 레벨값은 정규화되어 있다. 이 도 45A에 나타낸 바와 같이, 레벨 곡면(110)은 접촉면의 거의 중심을 정점(또는 정상)으로 하는 산과 같은 형상이고, 이 레벨 곡면(110)을 소정 레벨값으로 잘라낸 부분의 체적을 사용하여 지압을 추정한다.
레벨 곡면(110)의 소정 레벨값 이상에서 잘라낸 공간의 체적을 간단하게 구하는 방법으로는 예를 들어 레벨 곡면(110)을 복수의 평면으로 분할하여 각 평면의 면적(2차원 레벨값)의 합계값으로부터 체적을 얻는 방법이 있다. 도 45B를 참조하여 그 체적의 계산 방법을 설명한다.
도 45B에, 레벨 곡면(110)을 복수의 평면으로 분할한 예를 나타낸다. 도 45B의 예에서는 레벨 곡면(111)을 송신 도체(좌표 「-2」~ 2」)를 따라 복수의 평면(111 ~ 115)으로 분할하고 있다. 우선 평면(111 ~ 115)의 면적을 각각 구하고, 평면(111 ~ 115)의 면적을 합계하여 레벨 곡선(101)의 체적을 얻는다. 이 때 평면(111 ~ 115)의 정점의 레벨이 소정 레벨값 이상의 평면에 대해 그 면적을 구하는 것이 바람직하다.
상기의 예에서는 레벨 곡면을 평면으로 분할한 면적의 합계값을 그 레벨 곡면의 체적으로 하였으나, 수치 해석적으로 레벨값을 가중 가산해도 된다. 또한, 체적의 계산 방법은 분할한 평면의 합계값으로 한정되는 것이 아니라, 다차원 곡면 근사(예를 들어 사다리꼴 근사나 2승 근사 등)를 적용하여 체적을 계산하도록 구성해도 된다. 레벨 곡면(111)의 소정 레벨값 이상으로 잘라낸 공간의 체적을 간편하게 구하는 다른 방법을, 도 46을 참조하여 설명한다.
도 46은 송신 도체의 위치와 분할한 평면의 면적의 관계를 나타내는 그래프이다. 횡축에 송신 도체의 위치, 종축에 평면의 면적을 나타낸다.
이 도 46 중, 곡선(120) 상의 데이터점 S1 ~ S5는 각각 도 45B의 평면 111 ~ 115에 대해 구한 면적의 값을 나타내고 있다. 또, 송신 도체의 각 좌표(「-2」 ~ 「2」)와 그것에 대응하는 곡선(120) 상의 각 데이터점 S1 ~ S5를 각각 선분으로 연결하고 있다. 또한 각 데이터점 S1 ~ S5에 대해 인접하는 데이터점끼리를 선분으로 연결하고 있다. 이로 인해, 송신 도체의 위치 「-2」 ~ 「2」의 사이에 4개의 사다리꼴이 형성된다.
구하고 싶은 레벨 곡면(111)의 체적은 도 46의 횡축, 즉 송신 도체의 위치 「-2」 및 「2」의 직선 및 곡선(120)에 의해 둘러싸이는 부분의 면적에 상당한다. 그러나 상기의 레벨 곡면을 복수의 평면으로 분할하여 각 평면의 면적(2차원 레벨값)의 합계값으로부터 체적을 얻는 방법은 데이터점 S1 ~ S5의 값을 가산하여 이것을 간편하게 구한 것이기 때문에 오차가 적지 않다.
따라, 도 46의 예에 대해 사다리꼴 근사를 사용하여 4개 사다리꼴의 면적의 합계값(사선부의 면적)을 구함으로써 레벨 곡면(111)의 체적을 근사한다.
우선 사다리꼴 근사에 따라 각 데이터점에 가중값을 부여한다. 예를 들어 데이터점 S1에 무게 1, 동일하게 데이터점 S2에 2, 데이터점 S3에 2, 데이터점 S4에 2, 데이터점 S5에 1을 부여한다. 체적 V1은 「각 송신 도체( 각 데이터점)에 있어서 가중한 면적의 합계값」을, 「각 사다리꼴에 포함되는 중량값의 평균값」으로 나누어서 구할 수 있다. 즉, 체적 V1
체적 V1=(1*S1+2*S2+2*S3+2*S4+1*S5)/2
이다.
여기서, 중량값의 평균값은 「각 데이터점의 중량값의 합계」를 「사다리꼴의 수」로 나눗셈하여 구할 수 있다. 이 예에서는 (1+2+2+2+1)/4=2 로 된다.
또 다른 예로서, 2승 근사를 사용하여 계산할 수도 있다. 이 경우, 각 데이터점에 부여한 중량값을 각각 2승하여 상기와 동일하게 체적 V2를 계산한다. 즉, 체적 V2
체적 V2=(1*S1+4*S2+2*S3+4*S4+1*S5)/3
이다.
여기서, 중량값의 평균값은 「각 데이터점의 중량값의 2승의 합계」를 「사다리꼴의 수」로 나눗셈하여 구할 수 있다. 이 예에서는 (1+4+2+4+1)/4=3으로 된다.
이 도 46에 나타낸 바와 같이, 4개 사다리꼴의 사변과 곡선(120)의 오차는 작으므로, 사다리꼴 근사를 사용하여 얻어진 계산 결과(사선부의 면적)와 실제의 레벨 곡면(111)의 체적과의 오차가 작아진다. 그 결과, 이 사다리꼴 근사를 사용하여 얻어진 계산 결과는 레벨 곡면을 평면으로 분할한 면적을 합계함으로써 얻어진 계산 결과와 비교하여 정확한 체적이 얻어진다. 또, 근사 계산을 사용하여 체적을 구하도록 한 경우, 레벨 곡선을 평면으로 분할한 면적을 계산하는 것에 비교하여 계산이 간소하므로, 위치 산출 회로(35)에 가해지는 부하를 경감할 수 있다.
또한, 단위 면적당의 압력의 계산은 레벨 곡면의 체적을 접촉 면적으로 나눗셈함으로써 산출하도록 해도 된다. 이 경우, 상기와 같이 하여 구한 체적을, 도 45에 나타낸 접촉 면적 110A로 나눗셈함으로써 단위 면적당의 압력을 구할 수 있다.
본 예에 의하면, 지시체가 센서부의 검출면에 터치했을 때의 지압을, 레벨 곡면을 복수의 평면으로 분할한 각 평면의 면적(2차원 레벨값)을 사용하여 구한 체적에 기초하여 검출하므로, 그 값을 지압값으로 함으로써 터치감에 맞는 지압 검출이 가능하게 된다.
상술한 제1 실시 형태의 각 변형예는 특별한 제약이 없는 한, 이후의 제2 ~ 제4 실시 형태에 대해서도 적용할 수 있다.
<2. 제2 실시 형태>
[지시체 검출 장치의 구성]
제1 실시 형태 및 변형예 6~12, 15~17에서 설명한 바와 같이, 본 발명의 지시체 검출 장치는 다른 주파수의 주기 신호를 복수개의 송신 도체(14)에 공급하고, 복수개의 수신 도체(12)로부터의 출력 신호를 하나의 증폭기에 정리하여 입력할 수 있다. 또, 상기 변형예 6 ~ 12, 15 ~ 17에서 설명한 구성을, 용도나 필요로 하는 감도 등에 따라 한 대의 지시체 검출 장치로 적절히 전환할 수 있도록 구성해도 된다. 즉, 송신 도체군(13)으로의 주기 신호의 공급 형태, 및 수신 도체군(11)으로부터의 출력 신호의 검출 형태를, 용도나 필요로 하는 감도 등에 따라 한 대의 지시체 검출 장치로 적절히 전환할 수 있도록 구성해도 된다. 도 47에, 그와 같은 기능을 갖는 지시체 검출 장치의 구성예를 나타낸다. 또한, 도 47에 있어서, 제1 실시 형태(도 1)와 같은 구성에는 같은 부호로 나타내며 상세한 설명은 생략한다.
제2 실시 형태의 지시체 검출 장치(150)는 센서부(10)와, 송신부(151)와, 수신부(153)와, 송신부(151) 및 수신부(153)의 동작을 제어하는 제어 회로(40)로 구성된다. 센서부(10) 및 제어 회로(40)는 제1 실시 형태와 동일한 구성이다.
송신부(151)는 다주파 신호 공급 회로(21)와 송신 도체 접속 패턴 전환 회로(152)와 송신 도체 선택 회로(22)와 클록 발생 회로(23)를 구비한다. 또한, 다주파 신호 공급 회로(21), 송신 도체 선택 회로(22) 및 클록 발생 회로(23)는 제1 실시 형태와 동일한 구성이다.
송신 도체 접속 패턴 전환 회로(152)는 예를 들어 송신 도체(14)에 공급하는 주기 신호의 공급 형태를 선택하여 전환하는 회로이다. 구체적으로, 송신 도체 접속 패턴 전환 회로(152)는 주기 신호를 공급하는 송신 도체(14)의 개수나 공급 위치, 공급하는 주기 신호의 주파수 등을 용도 등에 따라 적절히 선택하는 회로이다. 예를 들어 송신 도체 접속 패턴 전환 회로(152)는 상기 변형예(6 ~ 12, 15 ~ 17)에서 설명한 주기 신호의 공급 형태 등 중 어느 것을 선택할지를 전환한다. 그리고 송신 도체 접속 패턴 전환 회로(152) 공급 형태의 선택 및 전환 동작은 제어 회로(40)에 의해 제어된다. 또한, 이 송신 도체 접속 패턴 전환 회로(152)의 구성은 후술한다.
송신 도체 선택 회로(22)는 예를 들어 복수의 스위치 등으로 구성된다. 이 송신 도체 선택 회로(22)는 송신 도체 접속 패턴 전환 회로(152)에서 선택된 주기 신호의 공급 형태에 따라, 송신 도체 접속 패턴 전환 회로(152)의 출력 단자를 그것에 대응하는 송신 도체(14)를 선택하여 접속한다. 또한, 송신 도체 선택 회로(22)에 있어서 송신 도체(14)의 선택 및 전환 동작은 제어 회로(40)에 의해 제어된다.
수신부(153)는 도 47에 나타낸 바와 같이, 수신 도체 선택 회로(31)와, 수신 도체 접속 패턴 전환 회로(154)와, 증폭 회로(32)와, A/D 변환 회로(33)와, 신호 검출 회로(34)와, 위치 산출 회로(35)를 구비한다. 또한, 수신 도체 선택 회로(31), 증폭 회로(32), A/D 변환 회로(33), 신호 검출 회로(34), 위치 산출 회로(35)는 제1 실시 형태와 동일한 구성이다.
수신 도체 접속 패턴 전환 회로(154)는 예를 들어 송신 도체(14)로의 주기 신호의 공급 형태에 따라, 수신 도체군(11)으로부터의 출력 신호의 검출 형태를 선택하여 전환하는 회로이다. 구체적으로, 수신 도체 접속 패턴 전환 회로(154)는 하나의 증폭기에 접속하는 수신 도체(12)의 개수나 위치 관계, 이 증폭기에서의 처리(가산 또는 감산) 등을, 주기 신호의 공급 형태, 용도 등에 따라 적절히 선택한다. 예를 들어 수신 도체 접속 패턴 전환 회로(154)는 상기 변형예(6~12, 15~17)에서 설명한 출력 신호의 검출 형태 등 중 어느 하나를 선택할지를 전환한다. 또한, 수신 도체 접속 패턴 전환 회로(154)에 있어서 공급 형태의 선택 및 전환 동작은 제어 회로(40)에 의해 제어된다.
수신 도체 선택 회로(31)는 예를 들어 복수의 스위치 등으로 구성되고, 수신 도체 접속 패턴 전환 회로(154)에서 선택한 출력 신호의 검출 형태에 따라, 수신 도체 접속 패턴 전환 회로(154)의 입력 단자를 그것에 대응하는 수신 도체(12)를 선택하여 접속하는 회로부이다. 또한, 수신 도체 선택 회로(31)에 있어서 수신 도체(12)의 선택 및 전환 동작은 제어 회로(40)에 의해 제어된다.
[송신 도체의 전환]
상술한 바와 같은 구성으로 함으로써, 한 대의 지시체 검출 장치에 있어서, 용도나 필요로 하는 감도 등에 따라 송신 도체군(13)으로의 주기 신호의 공급 형태 및 수신 도체군(11)으로부터의 출력 신호의 검출 형태를 적절히 설정할 수 있다.
상기 제1 실시 형태에 있어서는 송신 도체군(13)의 각 송신 블록(36; 도 1 및 도 7 참조)으로부터 소정 시간마다 1개의 송신 도체(14)를 선택하는 예를 설명하였으나, 본 실시 형태에서는 송신 블록을 구성하는 모든 송신 도체(14)에 각각 주파수가 다른 주기 신호를 동시에 공급하여 위치 검출을 행한다. 그리고 소정 시간마다 주기 신호가 공급되는 송신 블록을 전환하여 동일한 위치 검출을 행한다.
이하, 본 실시 형태의 송신 도체의 전환예에 대해 도 48 및 도 49A 및 B를 참조하여 설명한다. 이 예에서는 하나의 송신 블록(161)이 서로 이웃하는 16개의 송신 도체(14)로 구성되어 있는 경우를 예시하여 설명한다. 하나의 송신 블록(161)은 서로 이웃하는 16개의 송신 도체(14)로 구성되어 있기 때문에, 송신 블록(161)에 공급하는 주기 신호의 주파수 fk의 수는 「16」이 된다. 따라, 이 주기 신호를 공급하는 다주파 신호 공급 회로(21; 도 47 참조) 내의 주기 신호 생성부의 수는 16개로 된다. 또한, 도 49B의 전환 동작은 도 49A의 송신 블록(161)의 전환 동작의 로테이션 방향을 반대로 했을 뿐이므로, 여기서는 도 49A의 예에 대해서만 설명한다.
도 48에 나타낸 바와 같이 송신 도체 접속 패턴 전환 회로(152)는 16개의 스위치(152a)로 구성된다. 그리고 이 송신 도체 접속 패턴 전환 회로(152)는 다주파 신호 공급 회로(21)와 송신 도체 선택 회로(22) 사이에 마련되어, 다주파 신호 공급 회로(21)로부터 주파 신호가 공급된다.
스위치(152a)는 다주파 신호 공급 회로(21)로부터 공급된 주기 신호를 각 송신 블록(161)을 구성하는 송신 도체(14)에 동시에 공급하기 위한 스위치이다. 이 스위치(152a)는 각각이 다주파 신호 공급 회로(21)의 각 주파수 생성부(24; 도 47 참조)에 접속된다. 그리고 이 송신 도체 접속 패턴 전환 회로(152)는 제어 회로(40)에 의해 제어되어서 전환 동작을 행한다.
도 49A 및 B에, 송신 도체의 전환 동작의 일예를 나타낸다.
우선 송신 블록{Y0 ~ Y15}의 송신 도체(Y0 ~ Y15)에 각각 주파수 f0 ~ f15의 주기 신호를 동시에 공급하는 상태(도 49A 상태)를 설명한다.
다주파 신호 공급 회로(21)의 각 주파 신호 생성부(24; 도 3 및 도 47 참조)로부터 출력된 주파수 f0 ~ f15의 주기 신호는 각각 송신 도체 접속 패턴 전환 회로(152)를 구성하는 각 스위치(152a)를 통해 송신 블록{Y0 ~ Y15}의 송신 도체(Y0 ~ Y15)에 공급된다. 이 주파수 f0 ~ f15의 주기 신호가 공급된 상태에서 수신부(153)는 위치 검출을 행한다. 이 수신부(153)가 위치 검출을 행한 후, 송신 도체 접속 패턴 전환 회로(152)는 제어 회로(40)의 제어에 의해, 주기 신호를 공급하는 송신 블록을 송신 블록{Y16 ~ Y31}으로 전환하여, 송신 도체(Y16 ~ Y31)에 각각 주파수 f0 ~ f15의 주기 신호를 동시에 공급한다. 그리고 송신 블록{Y32 ~ Y48}···과 소정 시간마다 주기 신호를 공급하는 송신 블록(161)을 순차 전환하고, 각 송신 블록에 주기 신호를 공급하는 동작과 위치 검출을 반복한다. 그리고 송신 블록{Y48 ~ Y63}으로의 주기 신호의 공급과 위치 검출이 종료되면, 송신 도체 접속 패턴 전환 회로(152)는 제어 회로(40)의 제어에 의해 주기 신호를 공급하는 송신 블록을 송신 블록{Y0 ~ Y15}에 되돌려서 상기 전환 동작을 반복한다. 또한, 이 예에서는 4회째의 전환에서 원래의 송신 블록에 돌아오게 된다.
송신 도체(14)의 전환 동작 및 송신 도체 선택 회로(22) 및 송신 도체 접속 패턴 전환 회로(152)를 상술한 바와 같이 구성함으로써, 다음과 같은 효과가 얻어진다. 예를 들어 제1 실시 형태와 같이 송신 도체군(13)의 각 송신 블록으로부터 소정 시간 ΔT마다 1개의 송신 도체(14)를 선택한 경우, 송신 블록(161) 사이의 경계에 위치하는 송신 도체(14) 사이에서의 검출 시간의 차가 커진다.
이하, 구체적인 예를 들어서 설명한다. 예를 들어 제1 실시 형태에 있어서, 지시체가 송신 도체(Y15와 Y16)의 사이에 위치하는 경우에, 다주파 신호 공급 회로(21)로부터 공급된 주기 신호를, 송신 블록{Y0 ~ Y3}, {Y4 ~ Y7}, ㆍㆍㆍ, {Y60 ~ Y63}내의 각각 송신 도체(Y0, Y4, ㆍㆍㆍ, Y60)에 공급하고, 수신부(30)가 지시체를 검출한 후, 제어 회로(40)의 제어에 의해 송신 도체 선택 회로(22)가 소정 시간 ΔT마다 인덱스가 증가하는 방향에 송신 도체(14)를 순차 전환하여 지시체의 위치를 검출했다고 한다. 이 경우, 다주파 신호 공급 회로(21)로부터 공급된 주기 신호가 송신 도체(Y15 및 Y16)에 공급되고 나서 이 송신 도체(Y15 및 Y16)에 주기 신호가 공급될 때까지의 시간차는 검출 시간차가 16ΔT가 된다. 이 경우, 예를 들어 송신 도체(Y16 및 Y17) 사이와 같은 송신 블록(161) 사이의 경계 부근에서 지시체가 이동하고 있으면, 그 지시체의 검출 정밀도가 저하한다.
이에 대해, 본 실시 형태에서는 송신 블록(161) 단위로 송신 도체(14)를 전환하므로, 송신 블록(161) 사이의 경계에 위치하는 송신 도체(14) 사이에서의 검출 시간의 차가 짧아(ΔT)진다. 그 결과, 이 예에서는 송신 블록(161) 사이의 경계 부근에서 지시체가 이동하고 있어도, 보다 정밀도 좋게 그 지시체를 검출할 수 있다.
[수신 도체의 전환]
또, 상기 제1 실시 형태에 있어서는 수신 도체군(11)의 각 검출 블록(36)으로부터 소정 시간마다 1개의 수신 도체(12)를 선택하는 예를 설명하였으나, 본 실시 형태에서는 검출 블록마다 동시에 위치 검출을 행하고, 소정 시간 후는 다른 검출 블록에 대해 위치 검출을 행한다.
본 실시 형태의 수신 도체의 전환 예에 대해 도 50 및 도 51을 참조하여 설명한다. 이 예에서는 하나의 검출 블록(163)이 서로 이웃하는 16개의 수신 도체(12)로 구성되어 있는 경우를 예시하여 설명한다. 하나의 검출 블록(163)은 서로 이웃하는 16개의 수신 도체(12)로 구성되어 있기 때문에, 증폭 회로 내의 I/V 변환 회로(32a; 증폭기)의 수는 검출 블록(163)을 구성하는 수신 도체(12)의 개수와 동수가 된다. 즉, 증폭 회로(32) 내의 I/V 변환 회로(32a)의 수는 16개가 된다.
도 50에, 이 예의 전환 동작을 행하는 수신 도체 접속 패턴 전환 회로의 한 구성예를 나타낸다. 수신 도체 접속 패턴 전환 회로(154)는 16개의 스위치(154a)로 구성된다. 이 수신 도체 접속 패턴 전환 회로(154)는 수신 도체 선택 회로(31)와 증폭 회로(32) 사이에 마련되어, 수신 도체 선택 회로(31)로부터 수신 신호가 공급된다.
스위치(154a)는 수신 도체 선택 회로(31)로부터 공급된 수신 신호를 후단의 증폭 회로(32)를 구성하는 각 I/V 변환 회로(32a)에 동시에 공급하기 위한 스위치이다. 이 스위치(32a)는 각각이 증폭 회로(32)의 각 I/V 변환 회로(32a)에 접속된다. 그리고 이 수신 도체 접속 패턴 전환 회로(154)는 제어 회로(40; 도 47 참조)에 제어되어 전환 동작을 행한다.
도 51에, 그 수신 도체의 전환 동작의 일례를 나타낸다.
우선 수신 도체 접속 패턴 전환 회로(154)는 제어 회로(40)의 제어에 의해 스위치(154a)를 전환하고, 검출 블록{X0 ~ X15} 내의 모든 수신 도체(12)와 후단의 증폭 회로(32)를 구성하는 I/V 변환 회로(32a)를 접속한다(도 33의 상태). 그리고 수신부(153)는 접속된 모든 수신 도체(12)에 대해 동시에 지시체의 위치 검출을 행한다.
이어서, 수신부(153)가 위치 검출을 종료하면, 제어 회로(40)의 제어에 의해 수신 도체 접속 패턴 전환 회로(154)는 스위치(154a)를 검출 블록{X0 ~ X15}으로부터 검출 블록{X16 ~ X31}로 전환하고, 그 검출 블록(163) 내의 모든 수신 도체(12)와 I/V 변환 회로(32a)를 접속한다. 그리고 수신부(153)는 이 접속된 모든 수신 도체(12)에 대해, 동시에 지시체의 위치 검출을 행한다. 이후, 이 전환 동작을 반복하여 행하고, 검출 블록{X112 ~ X127}에서의 위치 검출이 종료되면, 수신 도체 접속 패턴 전환 회로(154)는 제어 회로(40)의 제어에 의해 스위치(154a)를 전환하여, I/V 변환 회로(32a)에 접속되는 검출 블록을 검출 블록{X0 ~ X15}에 되돌려서, 상기 전환 동작을 반복한다. 또한, 이 예에서는 8회째의 전환으로 원래의 수신 블록으로 돌아오게 된다.
수신 도체(12)의 전환 동작 및 수신 도체 선택 회로(31) 및 수신 도체 접속 패턴 전환 회로(154)를 상술한 바와 같이 구성함으로써, 다음과 같은 효과가 얻어진다. 예를 들어 제1 실시 형태와 같이 수신 도체군(11)의 각 검출 블록으로부터 소정 시간 Δt마다 1개의 수신 도체를 선택한 경우, 검출 블록 사이의 경계에 위치하는 수신 도체(12) 사이에서의 검출 시간의 차가 커진다. 보다 구체적으로 설명하면, 최초, 검출 블록{X0 ~ X15}, {X16 ~ X31}, ㆍㆍㆍ, {X112 ~ X127} 내에서 각각 수신 도체(X0, X16,ㆍㆍㆍ, X112)에서 검출하고, 그 후 소정 시간 Δt마다 인덱스가 증가하는 방향에 수신 도체(12)를 순차 전환하여 지시체의 위치를 검출하면, 수신 도체(X15 및 X16) 사이의 검출 시간차는 15Δt로 되어 커진다. 이 경우, 예를 들어 수신 도체(X15 및 X16) 사이와 같은 검출 블록 사이의 경계 부근에서 지시체가 이동하고 있으면, 그 지시체의 검출 정밀도가 저하한다.
그에 대해, 본 실시 형태에서는 검출 블록(163) 단위로 수신 도체(12)를 전환하므로, 검출 블록(163) 사이의 경계에 위치하는 수신 도체(12) 사이에서의 검출 시간의 차가 짧아(Δt)진다. 그 결과, 이 예에서는 검출 블록 사이의 경계 부근에서 지시체가 이동하고 있어도, 보다 정밀도 좋게 그 지시체를 검출할 수 있다.
<3. 제3 실시 형태>
제3 실시 형태에서는 송신 도체(14)의 전환 동작의 다른 로테이션 예를 설명한다. 또한, 이 제3 실시 형태는 제1 실시 형태에 있어서 지시체 검출 장치의 구성과 동일한 구성을 갖고 있으므로, 당해 구성에 대해서는 그 설명을 생략한다.
제3 실시 형태와 제1 실시 형태의 차이점은 제1 실시 형태에 있어서 로테이션은 다주파 신호 공급 회로(21)로부터 공급된 주파 신호 f0 ~ f15는 각각 공급되는 송신 블록(25; 도 5 참조)이 고정인데 비해, 제3 실시 형태에 있어서 로테이션은 송신 블록에 공급되는 주파 신호가 전환되는 점이다. 도 52A 및 B에, 이 제3 실시 형태에 있어서 송신 도체의 전환 동작의 로테이션 예를 나타낸다. 또한, 도 52B의 전환 동작은 도 52A의 전환 동작의 로테이션 방향을 반대로 했을 뿐이므로, 여기서는 도 52A의 예에 대해서만 설명한다.
우선 다주파 신호 공급 회로(21)로부터 공급된 주파수 f0 ~ f15의 주기 신호는 각 송신 블록(25) 내 최대 인덱스의 송신 도체(14), 즉 송신 도체(Y3, Y7, ㆍㆍㆍ, Y55, Y59 및 Y63)에 각각 동시에 공급된다. 그리고 이 주파수 f0 ~ f15의 주기 신호가 공급된 상태에서 수신부(30)는 위치 검출을 행한다.
그 다음에, 소정 시간 후, 전회, 주기 신호가 공급된 송신 도체(14)로부터 그 인덱스 n이 감소할 방향에 1개만 송신 도체를 전환한다. 즉, 전회 선택된 송신 도체(Y3, Y7, ㆍㆍㆍ, Y55, Y59 및 Y63)를, 각각 송신 도체(Y2, Y6, ㆍㆍㆍ, Y54, Y58 및 Y62)에서 전환한다. 그리고 송신 도체(Y2, Y6, ㆍㆍㆍ, Y54, Y58 및 Y62)에 각각 주파수 f0, f1, ㆍㆍㆍ, f13, f14 및 f15의 주기 신호가 동시에 공급된다. 그리고 이 주파수 f0 ~ f15의 주기 신호가 공급된 상태에서 수신부(30)는 위치 검출을 행한다. 이와 같은 전환 동작을 반복하여, 주파수 f0, f1, ㆍㆍㆍ, f13, f14 및 f15의 주기 신호가 송신 도체(Y0, Y4, ㆍㆍㆍ, Y54, Y58 및 Y60)에 공급되어, 수신부(30)가 위치 검출을 행한 후는 제어 회로(40)는 다주파 신호 공급 회로(21)를 제어하고, 이 다주파 신호 공급 회로(21)의 각 주기 신호 생성부(24)로부터 각 송신 블록(25)에 공급되는 주기 신호의 주파수를 변경한다. 구체적으로, 각 송신 블록(25)으로부터 공급된 주파수 f0, f1, ㆍㆍㆍ, f13, f14 및 f15는 각각 송신 도체(Y63, Y3, ㆍㆍㆍ, Y51, Y55 및 Y59)에 공급된다. 그리고 상기와 동일하게 위치 검출 동작을 행한다. 본 실시 형태에서는 이와 같이 하여 송신 도체의 전환을 행한다.
이 예의 같은 송신 도체(14)의 전환 동작의 로테이션에서는 다음과 같은 효과가 얻어진다. 도 48 ~ 도 49의 예에서는 한 주파수의 주기 신호가 인접하는 16개의 송신 도체에 동시에 공급되므로, 어느 순간에서는 특정 부분에 집중하여 위치 검출을 행할 수 있지만, 이 특정 부분 이외의 부분에서는 위치 검출을 행할 수 없다. 이에 대해, 송신 도체 전체 수(본 예에서는 64개)에 대해 소정 개수(본 예에서는 3개) 이간한 송신 도체에 주기 신호를 공급하고, 송신 도체 전체 수에 대해 순차 시프트(순환)시킨다. 이로 인해, 다른 주파수의 주기 신호가 예를 들어 3개 걸러의 송신 도체에 공급되므로, 센서부 전체에서 균형적으로 지시체의 위치를 검출할 수 있다.
또한, 송신 도체(14)의 전환 동작의 로테이션과 동일하게 하고, 수신부에서도 수신 도체 전체 수(예를 들어 128개)에 대해 소정 개수(예를 들어 7개) 이간한 수신 도체로부터의 출력을 검출하여, 수신 도체 전체 수에 대해 순차 시프트(순환)시키도록 해도 된다. 이와 같이 구성함으로써, 송신부와 동일한 작용 효고가 얻어진다.
[변형예 1]
변형예 1에서는 송신 도체(14)의 전환 동작의 다른 로테이션 예를 설명한다. 또한, 이 변형예 1은 제2 실시 형태에 있어서 지시체 검출 장치의 구성과 동일한 구성을 갖고 있으므로, 당해 구성에 대해서는 그 설명을 생략한다.
이 변형예 1과 제2 실시 형태의 차이점은 제2 실시 형태에 있어서 로테이션은 송신 도체 접속 패턴 전환 회로(152)를 구성하는 16개의 스위치(152a)를 검출 블록(161) 단위로 전환하는데 비해, 이 변형예 1에 있어서 16개의 스위치(152a)를 송신 도체(14)의 인덱스가 증가할 방향에 1개씩 순차 전환하는 점이다. 도 53A 및 B에, 이 변형예 1의 송신 도체의 전환 동작의 로테이션 예를 나타낸다. 또한, 도 53B의 전환 동작은 도 53A의 전환 동작의 로테이션 방향을 반대로 했을 뿐이므로, 도 53A의 예에 대해서만 설명한다.
우선, 다주파 신호 공급 회로(21)로부터 공급된 주파수 f0 ~ f15의 주기 신호는 각각 서로 이웃하는(인덱스 n이 연속하는) 16개의 송신 도체(Y48, Y49, Y50 ㆍㆍㆍ Y63)에 동시에 공급된다. 그리고 이 주파수 f0 ~ f15의 주기 신호가 공급된 상태에서 수신부(30)는 위치 검출을 행한다.
그 다음에, 소정 시간 후, 제어 회로(40)는 송신 도체 접속 패턴 전환 회로(152)를 제어하고, 이 송신 도체 접속 패턴 전환 회로(152)를 구성하는 스위치(152a)가 전회, 주기 신호를 공급한 송신 도체(Y48 ~ Y63)로부터 그 인덱스 n이 감소하는 방향에 1개만 송신 도체를 전환한다. 즉, 주파수 f0 ~ f15의 주기 신호는 각각 송신 도체(Y47 ~ Y62)에 동시에 공급된다. 그리고 이 주파수 f0 ~ f15의 주기 신호가 공급된 상태에서 수신부(153)는 위치 검출을 행한다. 이와 같은 전환 동작을 반복하여, 주파수 f0 ~ f15의 주기 신호가 각각 송신 도체(Y0 ~ Y15)에 동시 공급되어, 수신부(153)가 위치 검출을 행한 후는 제어 회로(40)는 송신 도체 접속 패턴 전환 회로(152)를 제어하여, 스위치(152a)에 의해 접속되는 송신 도체(Y0 및 Y1 ~ Y15)를 각각 송신 도체(Y63 및 Y0 ~ Y14)에서 전환한다. 그리고 수신부(153)는 상기와 동일하게 위치 검출 동작을 행한다. 변형예 1에서는 이와 같이 하여 송신 도체의 전환을 행한다.
이 예와 같은 송신 도체(14)의 전환 동작의 로테이션에서는 다음과 같은 효과가 얻어진다. 주기 신호가 인접하는 16개의 송신 도체에 공급되고, 또한 인접하는 16개의 송신 도체에서 형성된 그룹이 송신 도체를 1개씩 이동하여, 특정 부분에 집중하여 위치 검출이 행해지므로 검출 정밀도를 향상시킬 수 있다.
상술한 바와 같이, 도 52A 및 B 및 도 53A 및 B의 예에서는 복수의 송신 도체(14)에 대해, 서로의 사이에 소정 수 P(P
Figure pat00004
0의 정수)의 송신 도체가 개재 배치된 소정의 송신 도체에, 다주파 신호 생성 회로에서 생성된 각 주파수의 신호를 공급함과 아울러, 소정의 도체를 순차 전환하도록 하고 있다.
또, 복수의 수신 도체(12)에 대해, 서로의 사이에 소정 수 R(R
Figure pat00005
0의 정수)의 수신 도체가 개재 배치된 소정의 수신 도체를 선택함과 아울러, 소정의 도체를 순차 전환하도록 하고 있다.
<4. 제4 실시 형태>
제4 실시 형태는 제1 ~ 제3 실시 형태에 있어서, 복수 주파수의 주기 신호가 중첩되어 신호 검출 회로에 공급된 경우 합성 진폭(윙윙거리는 소리)을 억제하는 것이다.
제1 ~ 제3 실시 형태에 있어서 송신 도체에 동시에 공급하는 복수의 다른 주파수의 주기 신호의 초기 위상은 0도로 맞추어져 있는 것을 상정하고 있다. 수신부(30)에서는 복수의 다른 주파수의 주기 신호의 합성 신호로서 수신되기 때문에, 그 복수의 주기 신호의 윙윙거리는 소리가 커지게 되어, 수신부(30)의 다이나믹 레인지를 넘어 포화할 가능성이 있다. 또, 포화하지 않도록 검출된 출력 신호의 레벨을 조정한 경우, 원하는 검출 감도를 얻을 수 없을 우려가 있다.
따라, 이 예에서는 다주파 신호 생성부로부터 출력되는 주기 신호의 위상을 제어하기 위한 위상 제어 수단을 마련하고, 복수의 주기 신호의 송신 개시 위상을 분산시키는 구성으로 함으로서 윙윙거리는 소리를 억제한다.
도 54에, 제4 실시 형태에 관한 지시체 검출 장치의 개략 구성도를 나타낸다.
지시체 검출 장치(200)는 주로 센서부(10)와 송신부(210)와 수신부(30)와 위치 산출부(35)와 송신부(210) 및 수신부(30)의 동작을 제어하는 제어 회로(40)로 구성된다. 또한, 도 54에 있어서, 제1 실시 형태의 지시체 검출 장치(100; 도 1)와 같은 구성에는 같은 부호로 나타내고 상세한 설명은 생략한다.
송신부(210)는 위상 제어 회로(211)와 다주파 신호 공급 회로(21)와 송신 도체 선택 회로(22)와 클록 발생 회로(23)를 구비한다. 또한, 다주파 신호 공급 회로(21), 송신 도체 선택 회로(22) 및 클록 발생 회로(23)는 제1 실시 형태와 동일한 구성이다.
위상 제어 회로(211)는 다주파 신호 공급 회로(21)에서 생성되는 주기 신호의 위상을 변경하여 송신 도체(14)에 공급하기 위한 것이다. 예를 들어 이 위상 제어 회로(211)는 도 4의 다주파 신호 공급 회로(21) 내의 주기 신호 생성부(24)에 대응하여 초기 위상을 설정할 수 있다. 즉, 도 1의 지시체 검출 장치(100)의 다주파 신호 공급 회로(21)에 있어서, 주기 신호 생성부(24)에 부여하는 초기 위상의 값을 제어함으로써 위상 처리를 행한다. 또한, 위상 제어 회로(211)에 있어서 어느 주기 신호의 위상을 어느 정도 이동시킬지는 제어 회로(40)에 의해 제어된다.
이하, 2개 주파수의 경우를 예로 송신 개시 위상의 위상 제어에 대해 설명한다.
도 55에, 주파수 f0의 주기 신호에 대해 주파수 f1의 주기 신호의 송신 개시 위상을 이동시켜 분산시켰을 경우 각각의 파형을 나타내고 있다. 이 예에서는 서로 이웃하는 주기 신호가 각각 역위상으로 되어 있다. 이와 같이 주파수가 다른 주기 신호끼리의 송신 개시 위상을 이동시키고, 또한 서로 이웃하는 주기 신호가 각각 역위상이 되도록 조합하면 된다. 이로 인해, 송신 개시시나 송신 종료시의 파형의 상승이나 하강에서 주기 신호끼리가 상쇄되어 수신부(30)에 과대한 출력 신호가 흘러드는 것을 방지할 수 있다.
또한 본 예에서는 설명의 편의상 2 주파를 예시하였으나, 2 주파로 한정하지 않고, 그 이상의 복수 주파수라도 된다. 복수 주파수의 경우에 있어서 송신 개시 위상의 분산 형태는 후술한다. 홀수 주파수의 경우, 조합에서 남츤 주파수는 0도 또는 180도로 하면 된다.
또한, 위상 제어의 방법은 이 예로 한정되지 않는다. 예를 들어 위상 제어 회로(211)를, 도 4의 다주파 신호 공급 회로(21) 내의 주기 신호 생성부(24)에 대응하여 16개의 이상기(도시하지 않음)로 구성하도록 해도 된다. 또는 45도의 위상 시프트 회로, 신호 반전 회로, 스위치(모두 도시하지 않음)를 구비함으로써, 위상 시프트 회로에서의 위상 시프트 횟수나 신호 반전 회로에서의 위상 반전을 전환 제어하여, 45도나 90도마다의 위상 제어를 행하도록 해도 된다.
이하, 복수의 주기 신호의 송신 개시 위상의 형태를 예시한다.
도 56 ~ 도 61에, 복수의 주기 신호의 초기 위상을 복수 패턴으로 바꾸었을 경우에 있어서 위상 제어 후의 복수 주기 신호의 합성 파형을 나타낸다. 이 예에서는 다주파 신호 공급 회로(21)에서 발생하는 주기 신호는 송신 블록 수(16개)에 대응하여 100kHz ~ 250kHz까지의 16 주파수로 하여, 수신부(30)에서의 수신 기간은 200㎲이다.
도 56은 16 주파수의 주기 신호에 대해 위상 분산 없음(표 1 참조)의 경우 합성 파형의 예이다. 즉, 100kHz ~ 250kHz까지의 16개의 주기 신호에 대해 아무런 위상 제어를 행하지 않고 송신 도체(14)에 공급한 경우이다.
[표 1]
위상 분산 : 없음
Figure pat00006
수신 기간 : 200㎲
도 57은 16 주파수의 주기 신호에 대해 90도마다 위상 분산한 경우(패턴 0:표 2 참조)의 합성 파형의 예이다. 이 예에서는 90도 이상(移相)과 반전을 전환하여 위상 분산하고 있다.
[표 2]
위상 분산 : 패턴 0(90도마다)
Figure pat00007
수신 기간 : 200㎲
도 58은 16 주파수의 주기 신호에 대해 ±90도마다 위상 분산한 경우(패턴 1:표 3 참조)의 합성 파형의 예이다. 이 예에서는 90도 이상과 반전을 전환하여 위상 분산하고 있다.
[표 3]
위상 분산 : 패턴 1(±90도마다)
Figure pat00008
수신 기간 : 200㎲
도 59는 16 주파수의 주기 신호에 대해 ±45도마다 위상 분산한 경우(패턴 2-1:표 4 참조)의 합성 파형의 예이다. 이 예에서는 45도 이상과 반전을 전환하여 위상 분산하고 있다.
[표 4]
위상 분산 : 패턴 1(±45도마다)
Figure pat00009
수신 기간 : 200㎲
도 60은 16 주파수의 주기 신호에 대해 ±45도마다 위상 분산한 경우(패턴 2-2:표 5 참조)의 합성 파형의 예이다. 이 예에서는 1번째 ~ 8번째의 송신 블록에 공급하는 주기 신호에 대해 45도 이상과 반전의 전환을 행하고, 9번째 ~ 16번째의 송신 블록에 공급하는 주기 신호에 대해서는 8번째와 9번째를 경계로 하여 상하 대칭의 관계가 되도록 위상 분산하고 있다.
[표 5]
위상 분산 : 패턴 2-2(±45도마다, 상하 대칭)
Figure pat00010
수신 기간 : 200㎲
도 61은 16 주파수의 주기 신호에 대해 ±22.5도마다 위상 분산한 경우(패턴 3:표 6 참조)의 합성 파형의 예이다. 이 예에서는 22.5도 이상과 반전을 전환하여 위상 분산하고 있다.
[표 6]
위상 분산 : 패턴 3(±22.5도마다)
Figure pat00011
수신 기간 : 200㎲
도 56 ~ 도 61에 나타낸 각 위상 분산 패턴의 합성 파형의 결과는 이하와 같다.
(패턴) (위상 분산 방법) (효과)
위상 분산(무) 위상 분산 없음 윙윙거리는 소리 대
위상 분산(0) 위상 분산 90도마다 효과 없음
위상 분산(1) 위상 분산 ±90도마다 윙윙거리는 소리 중
위상 분산(2-1) 위상 분산 ±45도마다 윙윙거리는 소리 중
위상 분산(2-2) 위상 분산 ±45도마다 윙윙거리는 소리 소
(상하 대칭)
위상 분산(3) 위상 분산 ±22.5도마다 윙윙거리는 소리 중
각 위상 분산 패턴의 합성 파형에 의하면, 패턴 0의 예와 같이, 단순히 90도마다 위산 분산하더라도, 합성 파형의 윙윙거리는 소리는 작아지지 않음을 알 수 있다. 한편으로 패턴 1 ~ 3의 합성 파형과 같이,±90도마다 등으로 하면 윙윙거리는 소리가 작아진다. 즉, 이상과 반전을 전환하여 위상 분산하면 되는 것을 알 수 있다. 특히, 측정한 합성 파형 중에서는 패턴 2-2일 때에 윙윙거리는 소리의 억제 효과가 가장 컸다. 패턴 2-2는 송신 도체 전체 수(본 예는 16개) 중에서, 전반(No.1 ~ 8)과 후반(No.9 ~ 16)의 송신 블록에서 위상 분산 패턴을 반전시키고 있어, 전반과 후반에 위상 분산 패턴의 반복이 없다. 이에 대해, 패턴 1, 2-1은 송신 블록의 No.1 ~ 16의 사이에서 각각 4회와 2회의 반복 패턴을 볼 수 있다. 패턴 3은 반복 패턴은 없지만 연속하는 송신 블록 사이의 위상차가 작은 것을 비교적 많이 볼 수 있다. 이것으로부터, 합성되는 송신 도체 사이의 위상차의 편차는 아주 큰 편이 바람직하고, 또한 송신 도체 전체 수(본 예는 16개)에 있어서 초기 위상의 반복이 없는 또는 적은 패턴이 좋다고 생각된다.
본 예에 의하면, 복수의 다른 주파수의 주기 신호의 송신 개시 위상을 분산시키는 구성으로 했으므로, 수신측에 있어서 송신 개시나 종료시에 과도 전류가 커지지 않아 윙윙거리는 소리를 작게 할 수 있다. 이로 인해, 수신부(30)에서 검출되는 출력 신호가 다이나믹 레인지를 넘어 포화되는 것이 억제되므로, 증폭 회로의 수신 게인의 설정 자유도가 증가하여 높은 검출 감도가 얻어지게 된다.
상기 제1 ~ 제4 실시 형태에서는 적어도 수신 도체군을 복수의 검출 블록으로 분할하는 예를 설명하였으나, 본 발명은 이것으로 한정되지 않는다. 예를 들어 수신 도체군을 분할하지 않고, 모든 수신 도체에 접속되는 검출 회로를 병렬 처리하여, 전체 수신 도체에서 출력 신호를 동시 검출하는 구성으로 해도 된다.
이상에 기술한 실시 형태는 본 발명을 실시하기 위한 바람직한 형태의 구체적인 예이기 때문에, 기술적으로 바람직한 여러 가지의 한정이 부가되어 있다. 단, 본 발명은 이상의 실시 형태의 설명에 있어서 특히 본 발명을 한정하는 취지의 기재가 없는 한, 이러한 실시 형태로 한정되지 않는다. 예를 들어 이상의 설명에서 든 사용 재료와 그 사용량, 처리 시간, 처리 순서 및 각 파라미터의 수치적 조건 등은 적합한 예에 지나지 않으며, 또 설명에 사용한 각 도면에 있어서 치수, 형상 및 배치 관계 등도 실시 형태의 일례를 나타내는 개략적인 것이다. 따라, 본 발명은 상술한 실시 형태의 예로 한정되지 않으며, 본 발명의 요지를 일탈하지 않는 범위에 있어서 여러 가지의 변형, 변경이 가능하다.
예를 들어 상술한 지시체 검출 장치에서 행해지는 일련의 처리는 하드웨어에 의해 실행시킬 수도 있고, 소프트웨어에 의해 실행시킬 수도 있다. 또, 이러한 처리를 실행하는 기능은 하드웨어와 소프트웨어의 조합에 의해서도 실현할 수 있음은 말할 것도 없다. 일련의 처리를 소프트웨어에 의해 실행시키는 경우에는, 그 소프트웨어를 구성하는 프로그램이 전용의 하드웨어에 내장되어 있는 컴퓨터, 또는 각종 프로그램을 인스톨함으로써 각종의 기능을 실행하는 것이 가능한, 예를 들어 범용의 컴퓨터 등에 프로그램 기록 매체로부터 인스톨된다.
또, 본 명세서에 있어서, 프로그램 기록 매체에 격납되는 프로그램을 기술하는 처리 단계는 기재된 순서에 따라 시계열적으로 행해지는 처리는 물론, 반드시 시계열적으로 처리되지 않더라도, 병렬적 또는 개별적으로 실행되는 처리(예를 들어 병렬 처리 또는 오브젝트에 의한 처리)도 포함하는 것이다.
10ㆍㆍㆍ센서부, 11ㆍㆍㆍ수신 도체군, 12ㆍㆍㆍ수신 도체, 13ㆍㆍㆍ송신 도체군, 14ㆍㆍㆍ송신 도체, 20ㆍㆍㆍ송신부, 21ㆍㆍㆍ다주파 신호 공급 회로, 22ㆍㆍㆍ송신 도체 선택 회로, 22aㆍㆍㆍ스위치, 23ㆍㆍㆍ클록 발생 회로, 24ㆍㆍㆍ주기 신호 생성부, 25ㆍㆍㆍ송신 블록, 30ㆍㆍㆍ수신부, 31ㆍㆍㆍ수신 도체 선택 회로, 31aㆍㆍㆍ스위치, 32ㆍㆍㆍ증폭 회로, 32aㆍㆍㆍI/V 변환 회로, 32bㆍㆍㆍ증폭기, 32cㆍㆍㆍ캐패시터, 33ㆍㆍㆍA/D 변환 회로, 34ㆍㆍㆍ신호 검출 회로, 34aㆍㆍㆍ신호 검출 회로부, 35ㆍㆍㆍ위치 산출 회로, 36ㆍㆍㆍ검출 블록, 37ㆍㆍㆍ동기 검파 회로부, 38ㆍㆍㆍ레지스터, 40ㆍㆍㆍ제어 회로, 85, 86, 93, 94, 95, 96, 97, 99ㆍㆍㆍ차동 증폭기, 90, 91, 92, 98ㆍㆍㆍ증폭기, 100ㆍㆍㆍ지시체 검출 장치, 150ㆍㆍㆍ지시체 검출 장치, 151ㆍㆍㆍ송신부, 152ㆍㆍㆍ송신 도체 접속 패턴 전환 회로, 152aㆍㆍㆍ스위치, 153ㆍㆍㆍ수신부, 154ㆍㆍㆍ수신 도체 접속 패턴 전환 회로, 154aㆍㆍㆍ스위치, 161ㆍㆍㆍ송신 블록, 163ㆍㆍㆍ검출 블록, 200ㆍㆍㆍ지시체 검출 장치, 221ㆍㆍㆍ위상 제어 회로, 241ㆍㆍㆍ가산기, 242ㆍㆍㆍ선택기, 243ㆍㆍㆍD-FF, 244ㆍㆍㆍ구형파 ROM, 245ㆍㆍㆍD-FF, 370ㆍㆍㆍ입력 단자, 371ㆍㆍㆍ신호원, 373ㆍㆍㆍ승적기, 374ㆍㆍㆍ적분기

Claims (40)

  1. 제1 방향에 배치된 복수의 도체와, 상기 제1 방향에 대해 교차하는 제2 방향으로 배치된 복수의 도체로 이루어진 도체 패턴과,
    복수 주파수의 신호를 생성시키기 위한 다주파 신호 생성 회로와,
    상기 제1 방향에 배치된 복수의 도체에 대해, 서로의 사이에 소정 수의 도체 N(N
    Figure pat00012
    0의 정수)이 개재 배치된 각각의 도체에 상기 다주파 신호 생성 회로에서 생성된 소정 주파수의 신호를 선택적으로 공급하기 위한 제1 도체 선택 회로와,
    상기 제1 방향에 대해 교차하는 방향으로 배치된 복수의 도체를 선택적으로 전환하기 위한 제2 도체 선택 회로와,
    상기 제2 도체 선택 회로로부터 공급된 상기 도체 패턴에 있어서 상기 제1 방향의 도체와 상기 제2 방향의 도체의 교차점에 있어서 결합 상태를 나타내는 신호에 대해, 상기 다주파 신호 생성 회로에서 생성된 주파수의 신호에 대응한 주파수마다의 신호를 얻기 위한 신호 검출 회로를 구비한 지시체 검출 장치.
  2. 청구항 1에 있어서,
    상기 제1 도체 선택 회로는
    제1 방향에 배치된 복수의 도체를, 각 그룹이 소정 수 M(M
    Figure pat00013
    2의 정수)의 도체로 이루어진 복수의 그룹으로 구분하고, 상기 다주파 신호 생성 회로에 의해 생성된 각 주파수의 신호를, 상기 각 그룹을 구성하는 소정의 도체에 공급함과 아울러, 상기 각 그룹을 구성하는 도체를 순차 전환하도록 한 것을 특징으로 하는 지시체 검출 장치.
  3. 청구항 1에 있어서,
    상기 제1 도체 선택 회로는
    제1 방향에 배치된 복수의 도체에 대해, 서로의 사이에 소정 수 P(P
    Figure pat00014
    0의 정수)의 도체가 개재 배치된 소정의 도체에, 상기 다주파 신호 생성 회로에서 생성된 각 주파수의 신호를 공급함과 아울러, 상기 소정의 도체를 순차 전환하도록 한 것을 특징으로 하는 지시체 검출 장치.
  4. 청구항 1에 있어서,
    상기 제1 도체 선택 회로는
    제1 방향에 배치된 복수의 도체에 대해, 각 그룹이 소정 수 Q의 도체(Q
    Figure pat00015
    2의 정수)로 이루어진 복수의 그룹으로 구분하고, 소정의 그룹을 선택하고 이 선택된 그룹을 구성하는 각 도체에 상기 다주파 신호 생성 회로에 의해 생성된 각 주파수의 신호를 공급함과 아울러, 상기 소정의 그룹을 순차 전환하도록 한 것을 특징으로 하는 지시체 검출 장치.
  5. 청구항 2 내지 청구항 4 중 어느 한 항에 있어서,
    상기 제1 도체 선택 회로는 상기 다주파 신호 생성 회로에 의해 생성된 각 주파수의 신호를 공급하기 위해 선택된 도체의 근방에 배치된 소정의 도체를 소정의 전위로 설정하도록 한 것을 특징으로 하는 지시체 검출 장치.
  6. 청구항 1에 있어서,
    상기 제1 도체 선택 회로는 상기 다주파 신호 생성 회로에서 생성된 소정 주파수의 신호를 선택적으로 공급하는 도체의 각각에 대해, 서로의 도체가 근방에 배치된 적어도 2 도체를 선택하도록 한 것을 특징으로 하는 지지체 검출 장치.
  7. 청구항 1에 있어서,
    상기 다주파 신호 생성 회로는 동일 주파수이고 위상이 다른 신호를 추가로 생성하고,
    상기 제1 도체 선택 회로는 상기 다주파 신호 생성 회로에 의해 생성된 동일 주파수의 신호가 공급되는 적어도 3개로 이루어진 복수의 도체를 선택하고, 이 복수의 도체에 있어서 단부(端部)에 배치된 도체에 공급되는 신호와는 다른 위상의 신호를 상기 단부의 사이에 개재 배치된 도체에 공급하도록 한 것을 특징으로 하는 지시체 검출 장치.
  8. 청구항 7에 있어서,
    상기 다주파 신호 생성 회로는 동일 주파수이며 위상이 다른 신호를 추가로 생성하고,
    상기 제1 도체 선택 회로는 상기 다주파 신호 생성 회로에 의해 생성된 동일 주파수의 신호가 공급되는 서로가 근방에 배치된 적어도 4개 이상이며 짝수개로 이루어진 도체를 선택하고, 상기 짝수개로 이루어진 도체의 절반의 도체에는 상기 동일 주파수이고 위상이 다른 신호를 공급하도록 한 것을 특징으로 하는 지시체 검출 장치.
  9. 청구항 8에 있어서,
    상기 제1 도체 선택 회로는 상기 동일 주파수이고 위상이 다른 신호를, 상기 적어도 4개 이상의 짝수개로 이루어진 도체로서, 상기 단부의 사이에 개재 배치됨과 아울러 서로가 근방에 배치된 적어도 2개의 도체에 공급하도록 한 것을 특징으로 하는 지시체 검출 장치.
  10. 청구항 2 내지 청구항 4 중 어느 한 항에 있어서,
    상기 제1 도체 선택 회로는 복수의 도체로 이루어진 선택 도체로부터 다음에 선택되어야 할 복수의 도체로 전환할 때에, 상기 복수의 도체로 이루어진 선택 도체로부터 다음에 선택되어야 할 복수의 도체로의 이동 거리를 제어하는 것을 특징으로 하는 지시체 검출 장치.
  11. 청구항 1에 있어서,
    상기 제2 도체 선택 회로는 제2 방향에 배치된 복수의 도체를, 각 그룹이 소정 수의 도체로 이루어진 복수의 그룹으로 구분하고, 각 그룹을 구성하는 적어도 1개의 도체를 각각 선택함과 아울러, 각 그룹을 구성하는 각 도체를 순차 전환하도록 한 것을 특징으로 하는 지시체 검출 장치.
  12. 청구항 1에 있어서,
    상기 제2 도체 선택 회로는 제2 방향에 배치된 복수의 도체에 대해, 서로의 사이에 소정 수 R(R
    Figure pat00016
    0의 정수)의 도체가 개재 배치된 소정의 도체를 선택함과 아울러, 상기 소정의 도체를 순차 전환하도록 한 것을 특징으로 하는 지시체 검출 장치.
  13. 청구항 1에 있어서,
    상기 제2 도체 선택 회로는 제2 방향에 배치된 복수의 도체를, 각 그룹이 소정 수 S(S
    Figure pat00017
    2의 정수)의 도체로 이루어진 복수의 그룹으로 구분하고, 소정의 그룹을 선택하고 이 선택된 그룹을 구성하는 각 도체를 선택함과 아울러, 상기 소정의 그룹을 순차 전환하도록 한 것을 특징으로 하는 지시체 검출 장치.
  14. 청구항 1에 있어서,
    상기 제2 도체 선택 회로는 서로의 사이에 소정 수 T(T
    Figure pat00018
    0의 정수)의 도체가 개재 배치된 소정의 도체를 선택하도록 한 것을 특징으로 하는 지시체 검출 장치.
  15. 청구항 11 내지 청구항 13 중 어느 한 항에 있어서,
    상기 제2 도체 선택 회로는 비선택 상태에 있는 소정의 도체를 소정의 전위로 설정하도록 한 것을 특징으로 하는 지시체 검출 장치.
  16. 청구항 1에 있어서,
    상기 제2 도체 선택 회로는 적어도 3개로 이루어진 복수의 도체를 선택함과 아울러, 이 선택된 복수 도체의 단부의 사이에 개재 배치된 도체를 소정의 전위로 설정하도록 한 것을 특징으로 하는 지시체 검출 장치.
  17. 청구항 7에 있어서,
    상기 제2 도체 선택 회로는 위상이 다른 신호를 포함하는 적어도 3개로 이루어진 복수의 도체를 선택하고,
    상기 신호 검출 회로는 위상이 다른 신호를 포함하는 복수의 신호의 위상을 조작하여 신호 검출을 행하도록 한 것을 특징으로 하는 지시체 검출 장치.
  18. 청구항 17에 있어서,
    상기 다주파 신호 생성 회로는 동일 주파수이며 위상 반전한 신호를 추가로 생성하고,
    상기 신호 검출 회로는 차동 증폭 회로를 구비하고, 위상이 반전한 신호를 포함하는 복수의 신호를 상기 차동 증폭 회로에 공급하여 신호 검출을 행하도록 한 것을 특징으로 하는 지시체 검출 장치.
  19. 청구항 11 내지 청구항 13 중 어느 한 항에 있어서,
    상기 제2 도체 선택 회로는 복수의 도체로 이루어진 선택 도체로부터 다음에 선택되어야 할 복수의 도체로 전환할 때에, 상기 복수의 도체로 이루어진 선택 도체로부터 다음에 선택되어야 할 복수의 도체로의 이동 거리를 제어하는 것을 특징으로 하는 지시체 검출 장치.
  20. 청구항 1에 있어서,
    기판의 일면에 상기 제1 방향에 배치된 복수의 도체와, 상기 제1 방향에 대해 교차하는 방향으로 배치된 복수의 도체로 이루어진 도체 패턴이 배치됨과 아울러, 상기 제1 방향에 배치된 복수의 도체와, 상기 제1 방향에 대해 교차하는 방향으로 배치된 복수의 도체가 교차하는 영역에는 서로를 전기적으로 절연하기 위해 절연재가 배치되어 있고, 추가로 상기 제1 방향에 배치된 복수 도체의 각각은 서로가 전기적으로 접속된 복수의 랜드 형상의 패턴으로 구성되고, 상기 제2 방향에 배치된 복수 도체의 각각은 라인 형상의 패턴으로 구성되어 있고, 상기 랜드 형상의 패턴에 신호가 공급되어, 상기 라인 형상의 패턴을 통해 신호 검출을 행하도록 한 것을 특징으로 하는 지시체 검출 장치.
  21. 청구항 1에 있어서,
    기판의 일면에 상기 제1 방향에 배치된 복수의 도체가 배치되고, 상기 기판의 다른 쪽 면에 상기 제1 방향에 대해 교차하는 방향으로 배치된 복수의 도체가 배치됨과 아울러, 상기 제1 방향에 배치된 복수 도체의 각각은 서로가 전기적으로 접속된 복수의 랜드 형상의 패턴으로 구성되고, 상기 제2 방향에 배치된 복수 도체의 각각은 라인 형상의 패턴으로 구성되어 있고, 상기 랜드 형상의 패턴에 신호가 공급되어, 상기 라인 형상의 패턴을 통해 신호 검출을 행하도록 한 것을 특징으로 하는 지시체 검출 장치.
  22. 청구항 1에 있어서,
    상기 제1 도체 선택 회로는 제1 방향에 배치된 복수의 도체로서, 상기 제1 방향에 대해 교차하는 방향으로 배치된 복수의 도체에 있어서 신호 취출단측에 배치된 도체에 상기 다주파 신호 생성 회로에 의해 생성된 각 주파수의 신호에 있어서 높은 주파수의 신호를 공급하고, 상기 제1 방향에 대해 교차하는 방향으로 배치된 복수의 도체에 있어서 신호 취출단측에 대해 먼 쪽에 배치된 도체에는 낮은 주파수의 신호를 공급하도록 한 것을 특징으로 하는 지시체 검출 장치.
  23. 청구항 1에 있어서,
    상기 제1 방향은 소정의 중심점에 대해 동심원 형상의 복수 도체에 의한 원주 방향이고, 상기 제2 방향과는 라인 형상의 도체가 상기 중심점으로부터 방사 형상으로 연신한 방향인 것을 특징으로 하는 지시체 검출 장치.
  24. 청구항 1에 있어서,
    상기 제1 도체 선택 회로는 상기 제1 방향에 배치된 복수의 도체에 대해, 서로의 사이에 소정 수의 도체 N(N
    Figure pat00019
    0의 정수)가 개재 배치된 각각의 도체의 양단부에 대해 상기 다주파 신호 생성 회로에서 생성된 소정 주파수의 신호를 선택적으로 공급하도록 한 것을 특징으로 하는 지시체 검출 장치.
  25. 청구항 1에 있어서,
    상기 신호 검출 회로에 의해 검출되는 신호에 대응하여, 상기 다주파 신호 생성 회로에서 생성된 소정 주파수의 동일한 신호를 복수개의 도체에 공급하기 위해, 상기 제1 도체 선택 회로에 의해 선택되는 도체의 개수를 제어하도록 한 것을 특징으로 하는 지시체 검출 장치.
  26. 청구항 1에 있어서,
    상기 신호 검출 회로에 의해 검출되는 신호에 대응하여, 상기 제2 도체 선택 회로에 의해 선택되는 도체의 개수를 제어하도록 한 것을 특징으로 하는 지시체 검출 장치.
  27. 청구항 1에 있어서,
    상기 복수 주파수의 신호를 생성시키기 위한 다주파 신호 생성 회로로부터 출력되는 복수의 신호의 위상을 제어하기 위한 위상 제어 회로를 추가로 구비하고,
    상기 다주파 신호 생성 회로에서 생성된 주파수의 신호에 대응한 주파수마다의 신호가 상기 신호 검출 회로에 중첩되어 공급된 경우 합성 진폭을 억제하도록 한 것을 특징으로 하는 지시체 검출 장치.
  28. 청구항 1에 있어서,
    상기 신호 검출 회로에 의해 검출된 신호의 레벨 특성의 최대값과 그 형태에 기초하여, 상기 도체 패턴으로부터 상기 지시체가 떠 있는 상태를 식별하는 것을 특징으로 하는 지시체 검출 장치.
  29. 청구항 1에 있어서,
    상기 제2 도체 선택 회로로부터 공급된 상기 복수 주파수의 신호의 레벨을 검출하기 위한 검파 회로와,
    상기 검파 회로에서 검출된 상기 복수 주파수의 신호의 레벨에 기초하여, 상기 제2 도체 선택 회로로부터 공급된 신호의 이득을 제어하는 이득 제어 회로를 추가로 구비하는 것을 특징으로 하는 지시체 검출 장치.
  30. 청구항 1에 있어서,
    상기 검파 회로에서 검출된 신호 레벨의 공간 분포에 기초하여 상기 도체 패턴에 대한 상기 지시체의 압력을 검출하는 것을 특징으로 하는 지시체 검출 장치.
  31. 청구항 30에 있어서,
    상기 검파 회로에서 검출된 신호 레벨의 공간 분포의 체적, 및 상기 지시체와 도체 패턴의 접촉 면적에 기초하여 상기 도체 패턴에 대한 상기 지시체의 압력을 검출하는 것을 특징으로 하는 지시체 검출 장치.
  32. 제1 방향에 배치된 복수의 도체와, 상기 제1 방향에 대해 교차하는 제2 방향으로 배치된 복수의 도체로 이루어진 도체 패턴과,
    복수 주파수의 신호를 생성시키기 위한 다주파 신호 생성 회로와,
    상기 제1 방향에 배치된 복수의 도체에 대해, 서로의 사이에 소정 수의 도체 N(N
    Figure pat00020
    0의 정수)가 개재 배치된 각각의 도체에 상기 다주파 신호 생성 회로에서 생성된 소정 주파수의 신호를 선택적으로 공급하기 위한 제1 도체 선택 회로와,
    상기 제1 방향에 대해 교차하는 방향으로 배치된 복수의 도체를 선택적으로 전환하기 위한 제2 도체 선택 회로와,
    상기 제2 도체 선택 회로로부터 공급된 상기 도체 패턴에 있어서 상기 제1 방향의 도체와 상기 제2 방향의 도체의 교차점에 있어서 결합 상태를 나타내는 신호에 대해, 상기 다주파 신호 생성 회로에서 생성된 주파수의 신호에 대응한 주파수마다의 신호를 얻기 위한 신호 검출 회로와,
    상기 신호 검출 회로에 의해 검출된 신호에 기초하여 상기 도체 패턴 상의 지시체 위치를 산출하기 위한 위치 산출 회로를 구비한 지시체 검출 장치.
  33. 복수 주파수의 신호를 생성하는 제1 단계와,
    제1 방향에 배치된 복수의 도체와, 상기 제1 방향에 대해 교차하는 방향으로 배치된 복수의 도체로 이루어진 도체 패턴의, 상기 제1 방향에 배치된 복수의 도체에 대해, 서로의 사이에 소정 수의 도체 N(N
    Figure pat00021
    0의 정수)이 개재 배치된 각각의 도체에, 상기 제1 단계에서 생성된 복수의 주파수로부터 소정 주파수의 신호를 선택적으로 공급하는 제2 단계와,
    상기 제1 방향에 대해 교차하는 방향으로 배치된 복수의 도체를 선택적으로 전환하는 제3 단계와,
    상기 제3 단계에 의해 선택된 도체로부터 공급되는 상기 도체 패턴에 있어서 상기 제1 방향의 도체와 상기 제2 방향의 도체의 교차점에 있어서 결합 상태를 나타내는 신호에 대해, 상기 제1 단계에서 생성된 주파수의 신호에 대응한 주파수마다의 신호를 얻는 제4 단계를 포함하는 지시체 검출 방법.
  34. 청구항 33에 있어서,
    상기 제2 단계에 있어서,
    상기 제1 방향에 배치된 복수의 도체를, 각 그룹이 소정 수 M(M
    Figure pat00022
    2의 정수)의 도체로 이루어진 복수의 그룹으로 구분하고, 상기 제1 단계에 의해 생성된 각 주파수의 신호를, 상기 각 그룹을 구성하는 소정의 도체에 공급함과 아울러, 상기 각 그룹 내에서 당해 주파수의 신호를 공급하는 도체를 순차 전환하는 것을 특징으로 하는 지시체 검출 방법.
  35. 청구항 33에 있어서,
    상기 제2 단계에 있어서,
    상기 제1 방향에 배치된 복수의 도체에 대해, 서로의 사이에 소정 수 P(P
    Figure pat00023
    0의 정수)의 도체가 개재 배치된 소정의 도체에, 상기 제1 단계에서 생성된 각 주파수의 신호를 공급함과 아울러, 상기 소정의 도체를 순차 전환하는 것을 특징으로 하는 지시체 검출 방법.
  36. 청구항 33에 있어서,
    상기 제2 단계에 있어서,
    상기 제1 방향에 배치된 복수의 도체에 대해, 각 그룹이 소정 수 Q의 도체(Q
    Figure pat00024
    2의 정수)로 이루어진 복수의 그룹으로 구분하고, 소정의 그룹을 선택하고 이 선택된 그룹을 구성하는 각 도체에 상기 제1 단계에 의해 생성된 각 주파수의 신호를 공급함과 아울러, 상기 소정의 그룹을 순차 전환하는 것을 특징으로 하는 지시체 검출 방법.
  37. 청구항 33에 있어서,
    상기 제3 단계에 있어서,
    상기 제2 방향에 배치된 복수의 도체를, 각 그룹이 소정 수의 도체로 이루어진 복수의 그룹으로 구분하고, 각 그룹을 구성하는 적어도 1개의 도체를 각각 선택함과 아울러, 각 그룹을 구성하는 각 도체를 순차 전환하는 것을 특징으로 하는 지시체 검출 방법.
  38. 청구항 33에 있어서,
    상기 제3 단계에 있어서,
    상기 제2 방향에 배치된 복수의 도체에 대해, 서로의 사이에 소정 수 R(R
    Figure pat00025
    0의 정수)의 도체가 개재 배치된 소정의 도체를 선택함과 아울러, 상기 소정의 도체를 순차 전환하는 것을 특징으로 하는 지시체 검출 방법.
  39. 청구항 33에 있어서,
    상기 제3 단계에 있어서,
    상기 제2 방향에 배치된 복수의 도체를, 각 그룹이 소정 수 S(S
    Figure pat00026
    2의 정수)의 도체로 이루어진 복수의 그룹으로 구분하고, 소정의 그룹을 선택하고 이 선택된 그룹을 구성하는 각 도체를 선택함과 아울러, 상기 소정의 그룹을 순차 전환하는 것을 특징으로 하는 지시체 검출 방법.
  40. 복수 주파수의 신호를 생성하는 제1 단계와,
    제1 방향에 배치된 복수의 도체와, 상기 제1 방향에 대해 교차하는 방향으로 배치된 복수의 도체로 이루어진 도체 패턴의, 상기 제1 방향에 배치된 복수의 도체에 대해, 서로의 사이에 소정 수의 도체 N(N
    Figure pat00027
    0의 정수)이 개재 배치된 각각의 도체에, 상기 제1 단계에서 생성된 복수의 주파수로부터 소정 주파수의 신호를 선택적으로 공급하는 제2 단계와,
    상기 제1 방향에 대해 교차하는 방향으로 배치된 복수의 도체를 선택적으로 전환하는 제3 단계와,
    상기 제3 단계에 의해 선택된 도체로부터 공급되는 상기 도체 패턴에 있어서 상기 제1 방향의 도체와 상기 제2 방향의 도체의 교차점에 있어서 결합 상태를 나타내는 신호에 대해, 상기 제1 단계에서 생성된 주파수의 신호에 대응한 주파수마다의 신호를 얻는 제4 단계와,
    상기 제4 단계에 의해 검출된 신호에 기초하여 상기 도체 패턴 상의 지시체 위치를 산출하는 제5 단계를 포함하는 지시체 검출 방법.
KR1020100050105A 2009-06-18 2010-05-28 지시체 검출 장치 및 지시체 검출 방법 KR101446371B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2009-145879 2009-06-18
JP2009145879A JP5295008B2 (ja) 2009-06-18 2009-06-18 指示体検出装置

Publications (2)

Publication Number Publication Date
KR20100136410A true KR20100136410A (ko) 2010-12-28
KR101446371B1 KR101446371B1 (ko) 2014-10-01

Family

ID=42235838

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100050105A KR101446371B1 (ko) 2009-06-18 2010-05-28 지시체 검출 장치 및 지시체 검출 방법

Country Status (7)

Country Link
US (3) US8487891B2 (ko)
EP (3) EP2264577B1 (ko)
JP (1) JP5295008B2 (ko)
KR (1) KR101446371B1 (ko)
CN (1) CN101930301B (ko)
IL (4) IL205292A0 (ko)
TW (1) TWI467417B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130108177A (ko) * 2012-03-23 2013-10-02 가부시키가이샤 와코무 위치 검출 장치

Families Citing this family (201)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5295008B2 (ja) * 2009-06-18 2013-09-18 株式会社ワコム 指示体検出装置
JP5396167B2 (ja) * 2009-06-18 2014-01-22 株式会社ワコム 指示体検出装置及び指示体検出方法
WO2011041943A1 (zh) 2009-10-09 2011-04-14 禾瑞亚科技股份有限公司 分析位置的方法与装置
TWI414981B (zh) 2009-10-09 2013-11-11 Egalax Empia Technology Inc 雙差動感測的方法與裝置
CN102043521B (zh) * 2009-10-09 2012-12-12 禾瑞亚科技股份有限公司 平行扫描的差动触控侦测装置及方法
JP5295090B2 (ja) * 2009-12-18 2013-09-18 株式会社ワコム 指示体検出装置
TWI493416B (zh) * 2010-01-07 2015-07-21 Novatek Microelectronics Corp 觸控感測系統、電容感測裝置及電容感測方法
JP5442479B2 (ja) * 2010-02-05 2014-03-12 株式会社ワコム 指示体、位置検出装置及び位置検出方法
JP2011233019A (ja) 2010-04-28 2011-11-17 Sony Corp タッチ検出機能付き表示装置、駆動回路、駆動方式、および電子機器
JP2011238146A (ja) * 2010-05-13 2011-11-24 Mitsubishi Electric Corp タッチパネルおよびそれを備える表示装置
US8514192B2 (en) * 2011-01-04 2013-08-20 Ma Lighting Technology Gmbh Method for operating a lighting control console
TWI433022B (zh) * 2011-02-01 2014-04-01 Orise Technology Co Ltd 低功率差動偵測電容式觸控的解調變方法及系統
TWI439898B (zh) * 2011-02-10 2014-06-01 Raydium Semiconductor Corp 觸控感測裝置
TWI448934B (zh) * 2011-03-21 2014-08-11 Au Optronics Corp 觸碰點的判斷方法
TWI423107B (zh) * 2011-04-07 2014-01-11 Raydium Semiconductor Corp 觸控輸入裝置的偵測方法
CN102736809A (zh) * 2011-04-08 2012-10-17 宇辰光电股份有限公司 可加速反应时间与防止干扰的触屏面板
KR101461157B1 (ko) 2011-04-18 2014-11-13 삼성디스플레이 주식회사 터치 스크린 시스템 및 그 구동방법
JP5743198B2 (ja) 2011-04-28 2015-07-01 株式会社ワコム マルチタッチ・マルチユーザ検出装置
CN102799300B (zh) * 2011-05-28 2016-07-06 宸鸿科技(厦门)有限公司 触摸点侦测装置及其侦测方法
FR2976692B1 (fr) * 2011-06-17 2013-06-14 Thales Sa Dispositif tactile multicouches a detection capacitive multi-frequence.
JP5777094B2 (ja) * 2011-07-14 2015-09-09 株式会社ワコム 位置検出センサおよび位置検出装置
US9088255B2 (en) * 2011-08-15 2015-07-21 Innolux Corporation Sensing devices and display devices using a plurality of differential amplifiers and sensing circuits to minimize the time to detect presence of an object
US9619073B2 (en) * 2011-09-27 2017-04-11 Lg Display Co., Ltd. Touch screen driver including out-of-phase driving signals simultaneously supplied to adjacent TX lines for reducing noise from a display panel, and method for driving the same
US20130093719A1 (en) 2011-10-17 2013-04-18 Sony Mobile Communications Japan, Inc. Information processing apparatus
US9058078B2 (en) * 2012-01-09 2015-06-16 Broadcom Corporation High-accuracy touch positioning for touch panels
KR101338285B1 (ko) * 2012-01-12 2013-12-09 주식회사 하이딥 터치 패널에서 터치를 감지하기 위한 방법, 장치 및 컴퓨터 판독 가능 기록 매체
TW201335820A (zh) * 2012-02-17 2013-09-01 Elan Microelectronics Corp 觸控面板的抗雜訊干擾驅動方法及其觸控面板裝置
JP5137150B1 (ja) 2012-02-23 2013-02-06 株式会社ワコム 手書き情報入力装置及び手書き情報入力装置を備えた携帯電子機器
TWI463386B (zh) * 2012-04-03 2014-12-01 Elan Microelectronics Corp A method and an apparatus for improving noise interference of a capacitive touch device
JP5907260B2 (ja) * 2012-06-11 2016-04-26 富士通株式会社 駆動装置、電子機器及び駆動制御プログラム
US9971465B2 (en) * 2012-08-23 2018-05-15 Shanghai Tianma Micro-electronics Co., Ltd. Mutual capacitive touch panel
JP6091833B2 (ja) 2012-10-04 2017-03-08 株式会社ワコム 信号処理回路、信号処理方法、位置検出装置、及び電子機器
US9811178B2 (en) 2013-03-14 2017-11-07 Apple Inc. Stylus signal detection and demodulation architecture
AU2015258278B2 (en) * 2013-03-14 2016-09-15 Apple Inc. Channel aggregation for optimal stylus detection
US10459546B2 (en) 2013-03-14 2019-10-29 Apple Inc. Channel aggregation for optimal stylus detection
AU2014232432A1 (en) * 2013-03-15 2015-09-24 Tactual Labs Co. Fast multi-touch noise reduction
US9019224B2 (en) * 2013-03-15 2015-04-28 Tactual Labs Co. Low-latency touch sensitive device
US9830015B2 (en) * 2013-03-15 2017-11-28 Tactual Labs Co. Orthogonal frequency scan scheme in touch system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9946366B2 (en) 2013-06-03 2018-04-17 Apple Inc. Display, touch, and stylus synchronization
KR20150014679A (ko) * 2013-07-30 2015-02-09 삼성전자주식회사 디스플레이장치 및 그 제어방법
JP2015045909A (ja) * 2013-08-27 2015-03-12 株式会社東海理化電機製作所 操作入力装置
TWI543051B (zh) * 2013-09-18 2016-07-21 義隆電子股份有限公司 調整取樣頻率之掃描方法及使用該掃描方法的觸控裝置
WO2015045867A1 (ja) * 2013-09-27 2015-04-02 株式会社ワコム 位置検出装置
JP6327466B2 (ja) * 2013-10-10 2018-05-23 Tianma Japan株式会社 触覚提示装置、電子機器、および触覚提示方法
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
KR102112528B1 (ko) * 2013-12-10 2020-05-19 엘지디스플레이 주식회사 표시장치 및 그 구동방법
JP6240530B2 (ja) 2014-02-21 2017-11-29 株式会社ワコム 信号処理回路、信号処理方法、位置検出装置及び電子機器
KR101584423B1 (ko) 2014-02-21 2016-01-11 하이디스 테크놀로지 주식회사 모아레 감소를 위한 오버코트층을 구비한 터치 패널, 터치 패널을 구비한 액정표시장치 및 터치 패널 형성 방법
EP2937767A1 (en) * 2014-03-27 2015-10-28 LG Display Co., Ltd. Touch panel, display device and method of driving the same
JP6304814B2 (ja) 2014-05-23 2018-04-04 株式会社ワコム 位置検出装置及び位置指示器
WO2016006272A1 (ja) 2014-07-11 2016-01-14 株式会社ワコム 位置指示器、位置検出装置及び位置検出装置の入力制御方法
CN104199587B (zh) * 2014-07-22 2018-09-07 上海天马微电子有限公司 电感触摸屏及其驱动检测方法、坐标输入装置
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
JP6406697B2 (ja) 2014-09-17 2018-10-17 株式会社ワコム 位置検出装置及び位置検出方法
JP6472196B2 (ja) 2014-09-17 2019-02-20 株式会社ワコム センサ信号処理回路及びセンサ信号処理方法
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
WO2016079776A1 (ja) 2014-11-17 2016-05-26 株式会社ワコム 位置指示器
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
JP6487694B2 (ja) 2014-12-26 2019-03-20 株式会社ワコム 位置指示器及び信号処理装置
EP4345586A2 (en) 2015-01-19 2024-04-03 Wacom Co., Ltd. Position indicator
JP6544791B2 (ja) 2015-02-20 2019-07-17 株式会社ワコム 位置指示器、信号処理回路、信号供給制御方法及び信号処理方法
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
JP2016206992A (ja) * 2015-04-23 2016-12-08 株式会社ジャパンディスプレイ タッチ検出装置及びタッチ検出機能付き表示装置
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10152161B2 (en) * 2015-06-11 2018-12-11 Stmicroelectronics Asia Pacific Pte Ltd Compact touch screen controller having multiplexed sense lines
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
JP6532105B2 (ja) 2015-12-17 2019-06-19 株式会社ワコム タッチパネル、信号処理装置及びグランドカップリング方法
JP6675936B2 (ja) 2016-06-10 2020-04-08 三菱電機株式会社 表示装置
JP6606024B2 (ja) * 2016-06-28 2019-11-13 ルネサスエレクトロニクス株式会社 半導体装置及び位置検出装置
US20170371487A1 (en) * 2016-06-28 2017-12-28 Tactual Labs Co. Frame-phase synchronization in frequency division modulated touch systems
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10136255B2 (en) 2016-12-08 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing on a communication device
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
CN107037927B (zh) * 2017-04-17 2019-10-01 京东方科技集团股份有限公司 一种触控驱动方法、装置以及电子设备
KR102452455B1 (ko) * 2017-07-27 2022-10-11 삼성전자주식회사 디스플레이 장치 및 상기 디스플레이 장치의 제어 방법
US10705667B2 (en) * 2017-08-02 2020-07-07 Tactual Labs Co. Phase shift and phase shift assisted sensing
CN110892368A (zh) * 2017-11-14 2020-03-17 株式会社和冠 传感器控制器
US10691258B2 (en) 2018-01-12 2020-06-23 Idex Biometrics Asa Systems and methods for noise reduction in sensors
CN108469925A (zh) * 2018-02-08 2018-08-31 维沃移动通信有限公司 一种触控检测方法、移动终端
US10915724B2 (en) 2018-08-22 2021-02-09 Idex Biometrics Asa Systems and methods for improving image quality in sensors
US11106310B2 (en) 2019-08-22 2021-08-31 Idex Biometrics Asa Systems and methods for improving image quality in sensors
US11042773B2 (en) 2019-01-11 2021-06-22 Idex Biometrics Asa Systems and methods for accelerating data capture in sensors
US10928946B2 (en) * 2019-02-15 2021-02-23 Dell Products L.P. Touchscreen stylus and display module interface
CN111625110A (zh) * 2019-02-28 2020-09-04 陕西坤同半导体科技有限公司 触控感测电路、触控显示面板、显示装置及电子设备
US10996807B2 (en) * 2019-05-24 2021-05-04 Korea University Research And Business Foundation Touch sensor with modular shape and display device including the same
KR20200142343A (ko) * 2019-06-12 2020-12-22 주식회사 하이딥 터치 장치 및 이의 터치 검출 방법
US11435859B2 (en) 2020-11-02 2022-09-06 Microsoft Technology Licensing, Llc Driving signals for capacitive touch-sensitive surface
US20220197436A1 (en) * 2020-12-22 2022-06-23 Rockwell Collins, Inc. Frequency analysis method of touch detection for projected capacitive touchscreens

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05224818A (ja) 1992-02-10 1993-09-03 Matsushita Electric Ind Co Ltd タッチパネル装置
JPH05233147A (ja) 1992-02-21 1993-09-10 Mitsubishi Electric Corp ディスプレイ一体型タブレット
US7911456B2 (en) * 1992-06-08 2011-03-22 Synaptics Incorporated Object position detector with edge motion feature and gesture recognition
JPH064213A (ja) 1992-06-19 1994-01-14 Olympus Optical Co Ltd タッチパネル式操作装置
JP2605603B2 (ja) 1993-11-15 1997-04-30 日本電気株式会社 タッチパネル入力装置
JPH0887369A (ja) 1994-09-19 1996-04-02 Ricoh Co Ltd タッチパネル入力装置
JPH08179871A (ja) 1994-12-20 1996-07-12 Pentel Kk タッチパネル兼用透明デジタイザ
JPH08190453A (ja) 1995-01-11 1996-07-23 Niles Parts Co Ltd アナログタッチパネル装置
JPH08241161A (ja) 1995-03-01 1996-09-17 Ricoh Co Ltd タッチパネル装置
JPH0945184A (ja) 1995-08-01 1997-02-14 Gunze Ltd マトリックス型タッチパネルの検出装置
JP3607412B2 (ja) 1996-05-14 2005-01-05 アルプス電気株式会社 座標入力装置の製造方法
US5841427A (en) * 1995-12-22 1998-11-24 Symbios, Inc. Method and apparatus for canceling an offset signal in an electrostatic digitizing tablet
JP3251489B2 (ja) 1996-02-16 2002-01-28 シャープ株式会社 座標入力装置
JP3281256B2 (ja) 1996-04-24 2002-05-13 シャープ株式会社 座標入力装置
JP3436637B2 (ja) * 1996-06-04 2003-08-11 アルプス電気株式会社 座標入力装置
JPH10161795A (ja) 1996-12-03 1998-06-19 Mitsubishi Pencil Co Ltd 静電容量型座標入力パッド用入力ペン
US7663607B2 (en) 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
JP2000076014A (ja) 1998-08-27 2000-03-14 Pentel Kk 静電容量式タッチパネル装置
JP3950240B2 (ja) 1998-09-29 2007-07-25 株式会社デジタル アナログ式タッチパネルの検出座標処理方法および装置
JP2000112642A (ja) 1998-09-30 2000-04-21 Digital Electronics Corp タッチパネル
EP1107629B1 (en) * 1999-12-01 2010-06-09 Lg Electronics Inc. Method for generating and transmitting optimal cell ID codes
US6522320B1 (en) 2000-03-30 2003-02-18 Shin Jiuh Corp. Cursor controller
CA2316067A1 (en) 2000-08-17 2002-02-17 Dsi Datotech Systems Inc. A multi-touch sensor pad input device
JP2002076984A (ja) 2000-08-25 2002-03-15 Yazaki Corp スペクトラム拡散通信装置及び多数決論理スペクトル拡散多重通信方法
US6498590B1 (en) 2001-05-24 2002-12-24 Mitsubishi Electric Research Laboratories, Inc. Multi-user touch surface
US7084860B1 (en) 2001-06-08 2006-08-01 Intertact Corporation Method and apparatus for a touch sensitive system employing direct sequence spread spectrum (DSSS) technology
US6933931B2 (en) 2002-08-23 2005-08-23 Ceronix, Inc. Method and apparatus of position location
TWI289973B (en) * 2002-10-10 2007-11-11 Via Tech Inc Method and related circuitry for multiple phase splitting by phase interpolation
DE602004027705D1 (de) 2003-02-10 2010-07-29 N trig ltd Berührungsdetektion für einen digitalisierer
US7075316B2 (en) * 2003-10-02 2006-07-11 Alps Electric Co., Ltd. Capacitance detector circuit, capacitance detection method, and fingerprint sensor using the same
JP4164427B2 (ja) 2003-10-02 2008-10-15 アルプス電気株式会社 容量検出回路及び検出方法並びにそれを用いた指紋センサ
JP2005122814A (ja) 2003-10-16 2005-05-12 Sony Corp ホログラム記録再生装置、ホログラム記録再生方法、位相アドレスコード作成方法及び位相アドレスコード作成プログラム
JP4387773B2 (ja) 2003-11-25 2009-12-24 アルプス電気株式会社 容量検出回路及び検出方法並びにそれを用いた指紋センサ
JP4364609B2 (ja) 2003-11-25 2009-11-18 アルプス電気株式会社 容量検出回路及びそれを用いた指紋センサ
US7411584B2 (en) * 2003-12-31 2008-08-12 3M Innovative Properties Company Touch sensitive device employing bending wave vibration sensing and excitation transducers
TWI272539B (en) * 2004-06-03 2007-02-01 Atlab Inc Electrical touch sensor and human interface device using the same
KR101133753B1 (ko) * 2004-07-26 2012-04-09 삼성전자주식회사 감지 소자를 내장한 액정 표시 장치
KR101061849B1 (ko) * 2004-09-21 2011-09-02 삼성전자주식회사 정보 인식 장치 및 정보 인식 표시 장치
KR101085447B1 (ko) 2004-12-31 2011-11-21 삼성전자주식회사 터치 위치 검출 장치 및 이의 터치 위치 검출 방법과,이를 구비한 터치 스크린 표시 장치
TW200704944A (en) * 2005-07-27 2007-02-01 Mitac Int Corp Touch screen device with automatic calibration prompting function and method thereof
US8931780B2 (en) * 2005-08-11 2015-01-13 N-Trig Ltd. Apparatus for object information detection and methods of using same
US7864160B2 (en) * 2005-10-05 2011-01-04 3M Innovative Properties Company Interleaved electrodes for touch sensing
US7868874B2 (en) 2005-11-15 2011-01-11 Synaptics Incorporated Methods and systems for detecting a position-based attribute of an object using digital codes
US8144125B2 (en) * 2006-03-30 2012-03-27 Cypress Semiconductor Corporation Apparatus and method for reducing average scan rate to detect a conductive object on a sensing device
US7538760B2 (en) 2006-03-30 2009-05-26 Apple Inc. Force imaging input device and system
US8279180B2 (en) * 2006-05-02 2012-10-02 Apple Inc. Multipoint touch surface controller
US8259078B2 (en) * 2006-06-09 2012-09-04 Apple Inc. Touch screen liquid crystal display
TW200802058A (en) * 2006-06-20 2008-01-01 Egalax Inc Scanning control device for capacitive touch panel
US9069417B2 (en) 2006-07-12 2015-06-30 N-Trig Ltd. Hover and touch detection for digitizer
US8284165B2 (en) 2006-10-13 2012-10-09 Sony Corporation Information display apparatus with proximity detection performance and information display method using the same
JP2008129708A (ja) * 2006-11-17 2008-06-05 Alps Electric Co Ltd 透明タッチパネル及びその製造方法
US8232970B2 (en) * 2007-01-03 2012-07-31 Apple Inc. Scan sequence generator
US8711129B2 (en) * 2007-01-03 2014-04-29 Apple Inc. Minimizing mismatch during compensation
US7812827B2 (en) 2007-01-03 2010-10-12 Apple Inc. Simultaneous sensing arrangement
US8125456B2 (en) * 2007-01-03 2012-02-28 Apple Inc. Multi-touch auto scanning
JP4306732B2 (ja) * 2007-01-26 2009-08-05 シャープ株式会社 シート搬送装置、それを備えてなる自動原稿送り装置および画像形成装置
JP2008225821A (ja) 2007-03-13 2008-09-25 Alps Electric Co Ltd 入力装置
JP2008257374A (ja) 2007-04-03 2008-10-23 Sharp Corp 携帯情報端末及び携帯電話機
EP2133776B1 (en) 2007-04-03 2015-06-10 Sharp Kabushiki Kaisha Mobile information terminal device and mobile telephone
TW200844827A (en) * 2007-05-11 2008-11-16 Sense Pad Tech Co Ltd Transparent touch panel device
US20090009483A1 (en) * 2007-06-13 2009-01-08 Apple Inc. Single-chip touch controller with integrated drive system
US8493331B2 (en) * 2007-06-13 2013-07-23 Apple Inc. Touch detection using multiple simultaneous frequencies
TW200901014A (en) * 2007-06-28 2009-01-01 Sense Pad Tech Co Ltd Touch panel device
WO2009058407A1 (en) * 2007-11-02 2009-05-07 Cirque Corporation Proximity sensing by actively driving interested objects
US8232977B2 (en) 2007-11-14 2012-07-31 N-Trig Ltd. System and method for detection with a digitizer sensor
US7830157B2 (en) 2007-12-28 2010-11-09 3M Innovative Properties Company Pulsed capacitance measuring circuits and methods
EP2113828B1 (en) * 2008-04-30 2017-10-11 InnoLux Corporation Display device with touch screen
JP3144241U (ja) 2008-06-10 2008-08-21 洋華光電股▲ふん▼有限公司 コンデンサー式タッチパッド
US8054300B2 (en) * 2008-06-17 2011-11-08 Apple Inc. Capacitive sensor panel having dynamically reconfigurable sensor size and shape
US9606663B2 (en) * 2008-09-10 2017-03-28 Apple Inc. Multiple stimulation phase determination
US8237667B2 (en) * 2008-09-10 2012-08-07 Apple Inc. Phase compensation for multi-stimulus controller
US8592697B2 (en) 2008-09-10 2013-11-26 Apple Inc. Single-chip multi-stimulus sensor controller
US8692776B2 (en) 2008-09-19 2014-04-08 Apple Inc. Correction of parasitic capacitance effect in touch sensor panels
JP5067763B2 (ja) * 2008-10-08 2012-11-07 株式会社ジャパンディスプレイウェスト 接触検出装置、表示装置および接触検出方法
JP5396167B2 (ja) * 2009-06-18 2014-01-22 株式会社ワコム 指示体検出装置及び指示体検出方法
JP5295008B2 (ja) 2009-06-18 2013-09-18 株式会社ワコム 指示体検出装置
US8791907B2 (en) * 2009-08-19 2014-07-29 U-Pixel Technologies Inc. Touch sensing apparatus and method using different modulated driving signals
KR20120083915A (ko) * 2009-10-19 2012-07-26 플라트프로그 라보라토리즈 에이비 터치면 상의 하나 이상의 객체에 대한 터치 데이터를 결정하는 방법
JP5295090B2 (ja) * 2009-12-18 2013-09-18 株式会社ワコム 指示体検出装置
JP5667824B2 (ja) * 2010-09-24 2015-02-12 株式会社ジャパンディスプレイ タッチ検出装置およびその駆動方法、タッチ検出機能付き表示装置、ならびに電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130108177A (ko) * 2012-03-23 2013-10-02 가부시키가이샤 와코무 위치 검출 장치

Also Published As

Publication number Publication date
EP2264576A1 (en) 2010-12-22
KR101446371B1 (ko) 2014-10-01
IL205291A (en) 2016-10-31
TW201104507A (en) 2011-02-01
EP2264578A1 (en) 2010-12-22
US8487891B2 (en) 2013-07-16
EP2264577A3 (en) 2011-01-26
IL205293A (en) 2015-04-30
JP2011003035A (ja) 2011-01-06
IL205293A0 (en) 2010-12-30
IL233039A0 (en) 2014-07-31
EP2264577B1 (en) 2018-06-13
US20100321315A1 (en) 2010-12-23
CN101930301B (zh) 2017-05-17
TWI467417B (zh) 2015-01-01
EP2264576B1 (en) 2018-02-28
US20100321314A1 (en) 2010-12-23
US9158418B2 (en) 2015-10-13
CN101930301A (zh) 2010-12-29
JP5295008B2 (ja) 2013-09-18
IL205291A0 (en) 2010-12-30
US20100321313A1 (en) 2010-12-23
EP2264577A2 (en) 2010-12-22
US8896547B2 (en) 2014-11-25
IL205292A0 (en) 2010-12-30

Similar Documents

Publication Publication Date Title
KR20100136410A (ko) 지시체 검출 장치 및 지시체 검출 방법
JP5295090B2 (ja) 指示体検出装置
KR101356875B1 (ko) 지시체 검출 장치 및 지시체 검출 방법
JP5496735B2 (ja) 指示体位置検出装置及び指示体位置検出方法
US8766949B2 (en) Systems and methods for determining user input using simultaneous transmission from multiple electrodes
JP5738889B2 (ja) オーミックシーム(ohmicseam)を含むトランスキャパシタンス型センサデバイス(transcapacitivesensordevice)
JP2013515298A5 (ko)
US8743080B2 (en) System and method for signaling in sensor devices
US20140043252A1 (en) Touchscreen panel and touchscreen device
US11126311B2 (en) Capacitive sensing acquisition schemes
JPWO2019021572A1 (ja) 位置検出センサ、位置検出装置および情報処理システム
CN102385450B (zh) 触碰事件的探测方法与探测电路

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190916

Year of fee payment: 6