KR20100100900A - 액정 소자 및 광 헤드 장치 및 가변 광 변조 소자 - Google Patents

액정 소자 및 광 헤드 장치 및 가변 광 변조 소자 Download PDF

Info

Publication number
KR20100100900A
KR20100100900A KR1020107013854A KR20107013854A KR20100100900A KR 20100100900 A KR20100100900 A KR 20100100900A KR 1020107013854 A KR1020107013854 A KR 1020107013854A KR 20107013854 A KR20107013854 A KR 20107013854A KR 20100100900 A KR20100100900 A KR 20100100900A
Authority
KR
South Korea
Prior art keywords
liquid crystal
light
crystal layer
transparent substrate
optical
Prior art date
Application number
KR1020107013854A
Other languages
English (en)
Other versions
KR101330860B1 (ko
Inventor
유키히로 다오
겐이치 유야마
Original Assignee
아사히 가라스 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아사히 가라스 가부시키가이샤 filed Critical 아사히 가라스 가부시키가이샤
Publication of KR20100100900A publication Critical patent/KR20100100900A/ko
Application granted granted Critical
Publication of KR101330860B1 publication Critical patent/KR101330860B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0808Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1828Diffraction gratings having means for producing variable diffraction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1369Active plates, e.g. liquid crystal panels or electrostrictive elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133365Cells in which the active layer comprises a liquid crystalline polymer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133371Cells with varying thickness of the liquid crystal layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133726Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films made of a mesogenic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13706Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having positive dielectric anisotropy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13712Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having negative dielectric anisotropy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/305Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/28Function characteristic focussing or defocussing

Abstract

액정 소자로서, 투명 기판과, 액정 재료로 구성되며 주기적인 요철로 이루어지는 요철부를 포함하는 액정층을 갖고, 상기 액정층의 요철부는, 상기 투명 기판측에 위치함과 함께 상기 액정층의 요철부의 계면인 요철면에 위치하는 액정 분자의 장축 방향이 상기 투명 기판측의 요철면에 대해서 실질적으로 수직 방향이 되거나, 또는 상기 액정층의 요철부는, 상기 투명 기판의 반대에 있는 매질측에 위치함과 함께 상기 액정층의 요철부의 계면인 요철면에 위치하는 액정 분자의 장축 방향이 상기 매질측의 요철면에 대해서 실질적으로 수직 방향이 되도록 배향되어 회절 격자를 형성한다.

Description

액정 소자 및 광 헤드 장치 및 가변 광 변조 소자{LIQUID CRYSTAL ELEMENT, OPTICAL HEAD DEVICE, AND VARIABLE OPTICAL MODULATION ELEMENT}
본 발명은, 액정을 사용하여 회절 격자 구조를 갖는 액정 소자 및 그 액정 소자를 사용한 광 디스크 등의 광 기록 매체에 대해 정보의 기록 재생을 실시하는 광 헤드 장치, 그 액정 소자를 사용하여 입사되는 광에 대해 투과되는 광의 광량을 가변하는 가변 광 변조 소자에 관한 것이다.
액정을 사용한 회절 소자는, 액정이 갖는 굴절률 이방성, 요컨대 상광 (常光) 굴절률 (no) 과 이상광 (異常光) 굴절률 (ne) 의 차 Δn 을 이용함으로써 입사되는 광의 편광 상태에 따라 광학 특성이 상이하게 출사되는, 편광 의존성을 갖는 광학 소자로서 이용할 수 있다. 예를 들어, 도 1 에 나타내는 바와 같은 액정 소자 (10) 는, 2 장의 평행한 투명 기판 (11a, 11b) 중 일방의 투명 기판 (11a) 의 일방의 면의 단면이 주기적인 요철 형상이 되는 회절 격자 (14) 를 갖고, 다른 일방의 투명 기판 (11b) 에 대향하여 배치된다. 또한 서로 투명 기판 (11a) 의 면에 배향막 (12a), 투명 기판 (12a) 의 면에 배향막 (12b) 이 형성되고, 각각의 배향막이 대향하도록 배치되어 2 장의 투명 기판의 공극에 액정 재료가 충전된 액정층 (13) 을 갖는 것이다. 배향막은, 유기 재료이면 폴리이미드가 바람직하게 사용되고, 특히 폴리이미드를 형성한 표면을 러빙하여 배향막으로 하고, 배향막 표면에 접하는 액정 분자의 배향 방향을 조정하는 방법이 알려져 있다. 또, SiO2 등의 무기 재료의 배향막을 대향하는 기판의 표면에 기판면의 법선으로부터 일정한 경사 방향에서의 증착을 실시하는 사방 증착 방법도 알려져 있다.
이 때, 액정층 (13) 에 예를 들어, 정 (正) 의 유전률 이방성을 갖는 액정 재료를 사용하고, 그 액정 재료의 액정 분자의 장축 방향은 투명 기판면에 대해 대략 수평 또한 회절 격자 (14) 의 요철 길이 방향 (Y 축 방향) 에 평행한 방향으로 하고, 등방성 광학 재료가 되는 투명 기판 (11a) 의 굴절률 (ns) 을 액정의 상광 굴절률 (no) 과 대략 일치시킨다. 이 액정 소자 (10) 에 대해, Z 축 방향으로 평행하게 진행하는 광이 입사되는 경우, X 축 방향으로 편광된 광은 no 와 ns 의 굴절률 차를 느끼지 않기 때문에 회절이 거의 발생하지 않고 직진 투과되고, Y 축 방향으로 편광된 광은 ne 와 ns 의 굴절률 차를 느껴 회절 현상이 발현된다. 이와 같은 편광 의존성을 가져오는 액정 소자는, 추가로 액정 사이에 ITO 등의 투명 도전막을 배치하여 교류 전압을 인가함으로써, 액정의 배향 상태를 변화시킬 수도 있다. 또, 액정은 유전률 이방성이 정 (正) 인 특성의 재료여도 되고 부 (負) 인 특성의 재료여도 되며, 광학 용도에 따라 액정 재료, 배향 방법 등을 조합할 수 있다. 또한, 회절 격자 (요철부) (14) 에 대해, 오목부 (15), 볼록부 (16) 는 각각, 액정층 (13) 에 대한 오목부, 볼록부를 나타내는 것으로, 이후, 본원 발명에 관련된 액정 소자에 있어서도 특별히 설명되지 않는 경우, 오목부 및 볼록부는, 모두 액정층의 오목부 및 볼록부라는 의미로 표현하는 것으로 한다.
회절 격자 구조는, 요철부의 1 주기의 길이 (이하, 격자 피치라고 한다) 를 좁게 (짧게) 하면 도 1 의 Z 축 방향으로 진행하여 입사되는 Y 축 방향과 평행하게 편광된 광의 회절각 (Z 축 방향과 회절 방향이 이루는 각도) 이 커진다. 이 경우, 예를 들어, 회절되지 않는 X 축 방향과 평행하게 편광된 광은 직진 투과된 방향에 배치된 다른 광학 소자에 높은 투과율로 입사된다. 한편, Y 축 방향과 평행하게 편광된 광은 큰 회절각으로 회절되어 다른 광학 소자에 입사시키지 않도록 할 수 있어, 직진 방향으로 투과되는 광의 소광비 (消光比) 를 높일 수 있다. 또, 회절각을 크게 함으로써, 예를 들어, 회절된 광이 직진 방향으로 배치된 다른 광학 소자에 미광 (迷光) 이 되어 잘 입사되지 않으므로 광학계의 품질을 향상시킬 수 있다.
다음으로, 도 2 에 나타내는 광 헤드 장치 (20) 에 액정 소자 (10) 를 배치했을 때를 예로 들어 설명한다. 광원 (21) 을 X 방향의 직선 편광에 의해 광 디스크 (25) 의 방향으로 출사한 광은, 액정 소자 (10) 를 회절하지 않고 투과한다. 콜리메이터 렌즈 (22) 에 의해 평행광이 된 광이 1/4 파장판 (23) 을 투과하여 예를 들어 우회전의 원 편광이 되어 대물 렌즈 (24) 에 의해 집광되고, 광 디스크 (25) 의 정보 기록면 (25a) 에 도달한다. 정보 기록면 (25a) 에서 반사된 광은, 좌회전의 원 편광이 되어 대물 렌즈 (24) 를 투과하여, 1/4 파장판 (23) 에 의해 Y 방향의 직선 편광이 되고, 액정 소자 (10) 에 의해 회절되어 수광 소자 (26) 에 도달한다. 이 때, 액정 소자 (10) 의 격자 피치가 좁을수록 회절각이 커지므로, 회절광이 큰 회절각이 되도록 편향시킬 수 있으면, 반사된 광은, 예를 들어 광원 (21) 이 되는 반도체 레이저에 대해 미광이 되지 않도록 할 수 있다.
다음으로, 액정 소자 (10) 를, 투과되는 광의 위상차 (광로 길이 차) 를 특정하여 설계하는 경우를 생각한다. 액정층 (13) 내에서 액정 분자가 일정하게 배향되어 있으면, 광로 길이 차는 액정 재료 및 회절 격자의 깊이를 조정함으로써 실현할 수 있다. Z 축 방향으로 진행하는 광이 오목부 (15) 와 볼록부 (16) 를 투과할 때의 광로 길이 차는, 이하와 같이 설명할 수 있다. 입사되는 광의 파장 λ 에 대한 액정 재료의 상광 굴절률을 no, 이상광 굴절률을 ne, 그리고 등방성 재료가 되는 격자 재료의 굴절률을 ns 로 하고, 액정 재료와 격자 재료의 굴절률 차를 각각, Δno = |no-ns|, Δne = |ne-ns| 로 한다. 이 때, 액정 재료의 상광 방향, 요컨대 진상축 방향이 되는 광이 입사되면 격자 깊이 d 의 회절 격자에서 발생하는 광로 길이 차는 Δno·d 가 되며, 액정 재료의 이상광 방향, 요컨대 지상축 방향이 되는 광이 입사되면 Δne·d 가 된다. 예를 들어, 직사각형 상태의 회절 격자에 있어서 ±1 차 회절광의 회절 효율을 크게 하기 위해 위상차를 (2m+1)λ/2 로 하는 조건에서는 (m 은 0 이상의 정수), 액정 재료를 특정하여 격자 깊이 d 를 조정하는 것이 바람직하다. 이와 같이 하면 사용할 수 있는 액정 재료의 종류를 증가시킬 수 있다. 배향 상태가 액정층에서 일정하지 않은 경우에는, 배향 상태에 따라 회절 격자 깊이 등을 조정함으로써 대응할 수 있다.
또, 회절 격자의 격자 피치와 회절각의 관계로서, 격자 피치 P 의 회절 격자를 갖는 액정 소자면에 수직으로 λ 파장의 광이 입사되었을 때, 액정 소자면의 법선 (= 광의 진행 방향) 에 대한 Q 차 회절광의 회절각 θ 은 (1) 식과 같이 된다.
sinθ = Qλ/P … (1) (Q = ±1, ±2, …)
이것으로부터, 예를 들어 고밀도 DVD 용의 광 헤드 장치에 적응한 400 ㎚ 대역과 같이 파장이 짧은 광에 대해 회절각을 크게 하는 경우, 격자 피치를 보다 좁게 할 필요가 있다. 또, 회절 격자의 요철부는 직사각형에 한정되지 않고 블레이즈형이나 블레이즈를 계단 형상에 근사시킨 형상이어도 되고, 이 경우, 하나의 방향의 회절광의 광량을 크게 할 수 있어, 광 이용 효율을 높일 수 있다.
이와 같이 회절 격자는, 입사되는 광의 파장에 맞추어, 격자 피치를 예를 들어 10 ㎛ 이하 (수(數) ㎛) 로 함으로써 회절각을 크게 할 수 있다. 그러나, 종래의 러빙 방법에 의해 회절 격자에 배향막을 형성하고자 하면, 격자 피치가 좁기 때문에 러빙용 섬유가 투명 기판 (11a) 의 홈 (액정층의 볼록부 (16) 에 접촉하는 부분) 에 충분히 닿지 않게 되기 때문에 배향 규제력이 불충분해져, 액정층 볼록부 (16) 의 표면의 액정 분자가 충분히 배향되지 않아 배향 불균일이 발생한다. 또, 러빙천의 섬유는 일반적으로 수십 ㎛ 이고, 이와 같이 격자 피치가 수십 ㎛, 특히 20 ㎛ 이하가 되는 회절 격자 구조에 대해 러빙을 하여 액정 분자의 배향을 제어하는 것은 곤란하였다. 이 때문에, 액정 소자에 입사되는 광의 회절 효율 및 회절되는 광의 편광 상태 등의 광학 특성이 안정적으로 얻어지지 않는다는 문제가 있었다.
이와 같은 배향 불균일의 영향을 줄이는 방법으로서, 특허문헌 1 에서는, 투명 도전막 상에 배향막을 형성하고, 그 위에 전자선 레지스트에 의해 회절 격자 패턴을 형성하는 방법이 제시되어 있다. 이 방법에서는, 레지스트가 제거된 부분에 배향막이 노출되어, 배향막과 접하는 액정 분자가 수직 배향되어 있다.
또, 이 밖에 러빙레스에 의해 수 ㎛ 의 격자 피치를 얻는 방법으로서, 포토리소그래피와 에칭에 의해 직접 기판 표면을 가공하는 방법 외에 요철을 형성하는 투명 기판을 투명 수지로 하거나, 또는 표면에 수지 막을 형성한 기판 상에 요철 패턴을 형성한 스탬퍼를 가압하여 수지 막에 수 ㎛ 의 격자 피치의 요철 패턴을 전사하는 성형 가공 기술인 임프린트 방법을 이용한 액정의 배향 방법이 알려져 있다. 임프린트법에는, 열 경화형의 열 임프린트법, 자외선을 조사하여 레지스트제 등을 경화시키는 광 임프린트법이 있다. 특허문헌 2 에서는, 수 ㎛ 격자 피치의 회절 격자 표면에 투명 도전막을 형성하고, 대향하는 투명 도전막을 갖는 평탄한 기판에 의해 액정을 협지시켜 전압을 인가하여 액정 분자를 배향시킨 상태에서 고분자 액정으로 한 액정 소자 및 액정 소자의 제조 방법이 보고되어 있다. 이 방법에서는, 배향막을 형성할 필요가 없기 때문에, 러빙에 의한 배향 불균일은 발생하지 않는다.
일본 특허공보 평6-052348호 일본 공개특허공보 2005-353207호
그러나, 특허문헌 1 은, 액정층 내에서는 회절 격자와 접하는 부분도 포함하여 일정하게 배향되어 있기 때문에, 회절 격자 패턴을 이용하여 오목부와 볼록부를 투과하는 광의 광로 길이 차가 회절 격자의 홈의 깊이에만 의존한다. 이 때문에, 광로 길이 차를 조정하기 위해서는 회절 격자의 홈의 깊이를 정확히 형성하지 않으면 안되어 가공이 용이하지 않다는 문제가 있었다. 또한 회절 격자면 전체에 배향 처리가 되어 있지 않기 때문에, 전압 무인가시에는 액정의 배향 불균일이 발생하기 쉬워, 투과율의 저하를 초래할 뿐만 아니라, 회절 격자를 출사하는 광이 기대하는 편광 상태가 되지 않기도 하고, 원하는 회절 효율이 얻어지기 않기도 하는 문제도 있었다.
또, 특허문헌 2 는, 격자에 테이퍼를 부착하는 것에 의해 전기장 방향을 광의 입사 방향에 대해 경사진 각도로 함으로써, 액정의 복굴절을 이용하기 때문에, 액정 자체가 구비하고 있는 굴절률 이방성보다 매우 작은 굴절률 이방성밖에 이용할 수 없고, 격자의 홈 깊이가 매우 커지기 쉬워 용이하게 가공할 수 없다는 문제가 있었다. 또한 특허문헌 2 는, 액정층이 고분자 액정으로 구성되어 있으므로, 액정을 고분자화한 액정 소자에는 외부 전압을 인가할 필요는 없다. 그 때문에, 고분자 액정을 협지하는 투명 도전막 및 절연막은 입사되는 광의 투과율을 저하시키는 요인이 되어, 광 이용 효율도 저하된다는 문제가 있었다. 또, 투명 도전막은, 투명 기판 (11a) 의 오목부 바닥면 (액정층 볼록부 (16) 의 상면에 접촉하는 부분) 뿐만 아니라 투명 기판 (11a) 의 오목부 측면에도 실시되므로, 액정층에 전압을 인가했을 때의 액정의 배향 상태는, 액정층의 두께 방향으로 일정하게 평행하게는 되지 않는다. 특히, 격자 피치가 좁아질수록 일정하게 평행하게 되기 어렵기 때문에, 고분자 액정이 충전된 회절 격자의 오목부 (홈부) 를 투과하는 광의 광로 길이를 제어하기 어려워진다는 문제가 있었다.
본 발명은, 종래 기술에 관련되는 문제를 해결하기 위해서 이루어진 것으로, 전압을 인가하지 않고 액정을 배향시킴과 함께 배향 방향을 회절 격자의 요철면에 대해 대략 수직이 되는 액정 소자로 함으로써, 요철부의 액정 배향 규제력이 높고 액정 소자에 입사되는 광의 광로 길이를 제어하기 쉬움과 함께 생산성이 양호한 액정 소자를 제공하는 것을 목적으로 한다.
과제를 해결하기 위한 수단
본 발명은, 투명 기판과, 액정 재료로 구성되며 주기적인 요철로 이루어지는 요철부를 포함하는 액정층을 갖는 액정 소자로서, 상기 액정층의 요철부는, 상기 투명 기판측에 위치함과 함께 상기 액정층의 요철부의 계면인 요철면에 위치하는 액정 분자의 장축 방향이 상기 투명 기판측의 요철면에 대해 실질적으로 수직 방향이 되거나, 또는 상기 액정층의 요철부는, 상기 투명 기판의 반대에 있는 매질측에 위치함과 함께 상기 액정층의 요철부의 계면인 요철면에 위치하는 액정 분자의 장축 방향이 상기 매질측의 요철면에 대해 실질적으로 수직 방향이 되도록 배향되어 회절 격자를 형성하는 액정 소자를 제공한다.
이 구성에 의해, 회절 격자를 형성하는 요철부의 홈의 바닥면뿐만 아니라 벽면에 대해서도 액정 분자가 대략 수직으로 배향되므로, 격자 피치가 좁은 경우에도 충분한 배향 규제력이 얻어져, 품질 높은 광학 특성을 갖는 액정 소자를 실현할 수 있다. 또, 격자 피치가, 입사되는 광의 파장 정도보다 작아지는 경우에는, 편광도가 높아 파장 분산성이 우수하고, 액정 자체의 복굴절성에 의해, 통상적인 등방성 재료를 사용한 구조 복굴절 소자에 비해 애스펙트비가 저감되므로, 높은 가공 정밀도를 필요로 하지 않고 용이하게 구조 복굴절 소자를 제조할 수 있다. 또, 복굴절성 재료와 등방성 재료의 계면에 있어서의 액정 분자의 배향 분포에 의해 연속적으로 굴절률을 변화시킬 수 있으므로, 편광 의존성을 억제한 반사 방지 효과를 얻는 구조를 제조할 수 있다. 또, 격자 피치가, 입사되는 광의 파장 정도보다 커지는 경우에는, 편광 의존성이 높은 편광 회절 격자를 제조할 수 있다. 또한 이 구성에 의해, 액정층 중 회절 격자 (요철부) 와는 상이한 부분의 굴절률을 제어함으로써, 요철부의 높이와 굴절률을 제어할 수 있고, 액정의 배향 방향에 대해, 수직 방향에서 입사되는 광의 회절 효율과 수평 방향에서 입사되는 광의 회절 효율을 독립적으로 조정할 수 있게 된다.
또, 상기 매질은, 투명 기판으로서, 1 쌍의 투명 기판에 의해 상기 액정층이 충전, 평탄화되어 있는 상기에 기재된 액정 소자를 제공한다.
이 구성에 의해, 강직성이 높은 투명 기판에 의해 액정층을 협지하기 때문에, 액정 소자의 기계적 신뢰성을 향상시킬 수 있다.
또, 상기 액정층은, 상기 요철부가 형성된 면과 대향하는 상기 액정층의 면이 평탄하고, 평탄한 상기 액정층의 면의 액정 분자가 일정하게 배향되어 있는 상기에 기재된 액정 소자를 제공한다. 또, 상기 액정층은, 평탄한 상기 액정층의 면의 액정 분자가 평탄한 상기 액정층의 면에 대해 실질적으로 수평 방향으로 배향되는 상기에 기재된 액정 소자를 제공한다.
이 구성에 의해, 액정층 내의 오목부의 액정 분자의 장축 방향이 액정층의 두께 방향에서 변화되는 이른바 하이브리드 배향이 된다. 한편, 액정층 내의 볼록부의 액정 분자의 장축 방향은 거의 일정하게 할 수 있기 때문에, 액정층의 두께 방향으로 진행되는 광에 대해 광학적으로 오목부와 볼록부의 광로 길이 차가 커진다. 이 때문에, 격자 피치에 대한 볼록부의 두께의 비로 나타내는, 애스펙트비를 크게 하지 않아도 큰 광로 길이 차를 얻을 수 있고, 회절 격자의 제조에 있어서 높은 가공 정밀도를 필요로 하지 않게 되므로, 제조 공정의 부담이 감소된다.
또, 상기 액정층의 요철부가 형성된 면이 복수의 영역으로 구성되어, 각 영역 요철부의 주기 방향이 상이하거나, 또는 상기 액정층의 요철부의 요철 방향이 연속적으로 변화되어 분포하고, 상기 액정층은, 평탄한 상기 액정층의 면의 액정 분자가 평탄한 상기 액정층의 면에 대해 실질적으로 수직 방향으로 배향되는 상기에 기재된 액정 소자를 제공한다.
이 구성에 의해, 입사되는 랜덤한 광에 대해 영역마다 편광 상태를 바꾸어 출사시킬 수 있음과 함께, 각 영역을 출사하는 광의 성분과 직교하는 성분의 광을 회절시킬 수 있다. 또, 대향 기판측을 수평 배향으로 했을 경우, 동일 기능을 갖게 하기 위해서, 영역에 따라 상이한 방향으로 배향되도록, 배향 처리의 패터닝이 필요하게 된다. 또한 회절 격자를 갖는 기판과, 그 기판과 대향하는 기판과의 중첩에 따른 어긋남에 의해서도 특성이 열화됨과 함께, 중첩의 정밀도가 필요하기 때문에, 실제상의 제조가 곤란한 것에 대해, 이 구성에 의해 상기의 중첩 정밀도 및 배향 처리의 패터닝이 불필요하다는 특징이 있다. 또한, 실질적으로 수직은 대략 수직으로, 실질적으로 수평은 대략 수평으로 표현한다.
또, 상기 액정층의 요철부측의 매질이 등방성 재료로 형성되고, 상기 등방성 재료의 굴절률이 액정의 상광 굴절률 (no) 또는 이상광 굴절률 (ne) 과 실질적으로 동등한 상기에 기재된 액정 소자를 제공한다.
이 구성에 의해, 입사되는 광에 대해 편광 의존성을 갖는 액정 소자가 되므로, 편광 필터, 편향 분리 소자 등의 광학 소자로서 사용할 수 있다.
또, 광원과, 상기 광원으로부터의 출사광을 광 기록 매체 상에 집광시키기 위한 대물 렌즈와, 집광되어 상기 광 기록 매체에 의해 반사된 상기 출사광을 수광하는 광 검출기와, 상기 광원과 상기 광 기록 매체 사이의 광로 중 또는 상기 광 기록 매체와 상기 광 검출기 사이의 광로 중에 배치된 상기에 기재된 액정 소자를 구비하는 광 헤드 장치를 제공한다.
이 구성에 의해, 광원으로부터 광 디스크로 향하는 광로인 왕로 (往路) 의 광에 대해, 광을 거의 투과시키고, 광 디스크에서 반사되어 광 검출기를 향하는 광로인 복로 (復路) 의 광에 대해, 광을 회절시켜 광 검출기에 도달시키는 액정 소자로서 사용할 수 있다. 또, 편광 의존성을 갖는 점에서 직교하는 2 개의 성분의 광 중 일방을 거의 직진 투과시키고, 다른 일방의 광을 회절시키는 것에 의해 편광 필터로서 기능시킬 수 있다.
또한 1 쌍의 투명 기판에 액정이 협지된 액정 셀과, 상기에 기재된 액정 소자와, 상기 액정 셀에 전압을 인가하여 상기 액정의 배향 상태를 바꾸는 전압 제어장치를 구비하는 가변형 광 변조 소자를 제공한다.
이 구성에 의해, 액정 셀에 인가되는 전압의 크기에 따라 입사되는 광의 편광 상태를 바꿔, 입사되는 광 중 제 1 편광 방향의 광을 직진 투과시키고, 제 1 방향과 직교하는 제 2 편광 방향의 광을 회절시킬 수도 있다. 이로써 예를 들어, 액정 셀에 인가되는 전압을 조정하여, 제 1 편광 방향의 광을 거의 100 % 로 하여 액정 소자에 입사시켜 직진 투과율 (0 차 회절 효율) 을 거의 100 % 로 하거나, 제 2 편광 방향의 광을 거의 100 % 로 하여 액정 소자에 입사시켜 직진 투과율 (0 차 회절 효율) 을 거의 0 % 로 하거나 할 수 있다. 또, 액정 소자의 회절 격자를 형성하는 요철부의 높은 가공 정밀도를 필요로 하지 않고 직진 투과되는 광의 높은 소광비를 얻는 것을 기대할 수 있다.
본 발명은, 액정이 접하는 회절 격자의 요철부의 면 (요철면) 에 대해 액정을 실질적으로 수직으로 배향시킴으로써 격자 피치가 좁은 회절 격자에 있어서도, 충분한 배향 규제력을 가짐과 함께 회절 특성을 비롯한 광학 특성이 양호한 회절 소자를 얻을 수 있고, 더욱 생산성이 우수한 액정 소자를 실현할 수 있다.
도 1 은, 회절 격자 구조를 갖는 액정 소자이다.
도 2 는, 편광 의존성을 갖는 액정 소자를 배치한 광 헤드 장치이다.
도 3 은, 제 1 실시형태 및 실시예 1 에 관련된 액정 소자이다.
도 4 는, 제 1 실시형태에 관련된 액정 소자의 액정층 내 배향 상태의 단면 모식도이다.
도 5 는, 액정 소자 (40) 의 두께 d2 에 대한 회절 효율비 (η01) 의 특성예를 나타내는 그래프이다.
도 6 은, 제 1 실시형태에 관련된 액정 소자의 다른 구성예를 나타내는 단면 모식도이다.
도 7 은, 제 2 실시형태에 관련된 액정 소자의 프로세스를 나타내는 모식도이다.
도 8 은, 제 3 실시형태에 관련된 액정 소자의 평면 모식도이다.
도 9 는, 제 3 실시형태에 관련된 액정 소자의 액정층 내의 배향 상태의 단면 모식도이다.
도 10 은, 액정 소자 (60) 의 영역 (64) 에 있어서의, 두께 d2 에 대한 회절 효율비 (η01) 의 특성예를 나타내는 그래프이다.
도 11 은, 편광 의존성을 갖는 액정 소자를 편광 필터로서 배치한 광 헤드 장치이다.
도 12 는, 제 1 실시형태에 관련된 액정 소자를 사용한 가변형 광 변조 소자의 단면 모식도이다.
도 13 은, 실시예 1 에 관련된 액정 소자이다.
부호의 설명
10, 30a, 30b, 30c, 30d, 40, 45a, 45b, 60a, 60b, 100 : 액정 소자
11a, 11b, 31a, 31b, 31c, 31d, 41a, 41b, 46a, 46b, 48a, 48b, 55, 58, 71a, 71b, 92, 101a, 101b : 투명 기판
12a, 12b, 34, 35, 54, 105, 106 : 배향막
13, 32, 37, 39, 47, 49, 93, 102 : 액정층
14, 36, 38 : 회절 격자 (요철부)
15, 43, 61a, 61b : 오목부
16, 44, 62a, 62b : 볼록부
20, 80 : 광 헤드 장치
21 : 광원
22 : 콜리메이터 렌즈
23 : 1/4 파장판
24 : 대물 렌즈
25 : 광 디스크
25a : 정보 기록면
26, 85 : 수광 소자
33 : 등방성의 광학 재료
39a, 39b : 액정부
42, 72 : 액정 분자
51 : 몰드 기판
52 : 수직 배향 처리 재료층
53 : 중합성 액정층
56 : 액정 폴리머층
57 : 투명 폴리머층
63, 64, 65, 66 : 회절 격자 영역
81 : 편광 필터
82 : 그레이팅
83 : 편광 빔 스플리터
84 : 프론트 모니터
90 : 가변형 변조 소자
91 : 액정 셀
94a, 94b, 103a, 103b : 투명 도전막
95 : 시일제
96 : 전압 제어 장치
97 : 집광 렌즈
98 : 수광 소자
104 : 격자 형상
발명을 실시하기 위한 최선의 형태
(제 1 실시형태)
도 3(a) 에 제 1 실시형태에 관련된 액정 소자 (30a) 의 구조를 나타낸다. 액정 소자 (30a) 는, 평행하게 배치된 투명 기판 (31a, 31b) 중 31b 의 일방의 면에 배향막 (35) 을 형성하여 액정층 (32) 이 협지된다. 투명 기판 (31a) 과 접하는 등방성의 광학 재료 (33) 는 단면 (斷面) 이 요철 형상인 회절 격자 구조를 갖고, 추가로 요철 형상의 면에 배향막 (34) 을 갖고, 액정층 (32) 이 충전되어 있다. 등방성의 광학 재료 (33) 는, 투명 기판 (31a) 과 상이한 재료로 했지만, 투명 기판 (31a) 에 대해 직접, 회절 격자의 형상으로 가공하고, 등방성의 광학 재료 (33) 를 형성하지 않는 구성으로 해도 된다. 혹은, 광학 재료 (33) 를 등방성 재료 대신에 굴절률 이방성을 갖는 복굴절성의 재료로 해도 된다. 또, 요철 형상은 단면이 직사각형인 회절 격자에 한정되지 않고, 다단의 스텝형 회절 격자 구조, 블레이즈형의 구조여도 된다. 또, 등방성의 광학 재료 (33) 는, 격자면 상에 수직 배향 처리가 가능한 재료이면 되고, 온도 변화에 의한 액정 재료의 굴절률의 변화에 가까운 특성을 갖는 재료이면 바람직하다. 또한, 요철 형상이 형성된 부분을 요철부로 한다.
투명 기판 (31a, 31b) 은, 아크릴계 수지, 에폭시계 수지, 염화 비닐계 수지, 폴리카보네이트 등을 사용해도 되지만, 내구성 등의 점에서 무기 재료로서 석영 기판, 유리 기판이 바람직하다. 또, 투명 기판 (31a, 31b) 중 서로 대향하지 않는 쪽의 표면에는 반사 방지 (AR) 막이 형성되어 있으면 투과율이 향상되어 바람직하다.
또, 도 3(b), 도 3(c) 및 도 3(d) 는, 각각 액정 소자 (30b, 30c 및 30d) 의 구조를 나타내는 단면 모식도이다. 예를 들어, 액정 소자 자체의 내구성 등의 요구가 심하지 않은 경우, 이들에 나타내는 바와 같이 투명 기판이 어느 일방에만 형성되어 있어도 되고, 액정층의 투명 기판측과는 반대측에 있는 매질은 공기가 된다. 이 경우, 액정 소자의 박형화나 비용면에서의 우위성을 기대할 수 있다. 또, 이 경우, 액정층을 구성하는 액정 재료로서 고분자 액정이 바람직하게 사용된다. 또한, 도 3(b) ∼ 도 3(d) 에서는 생략되어 있지만, 액정 소자 (30b, 30c 및 30d) 에 배향막이 형성되어 있어도 된다.
액정 소자 (30b) 는, 액정 소자 (30a) 로부터 투명 기판 (31a) 및 등방성의 광학 재료 (33) 를 제외한 구조이고, 액정층 (32) 은 요철부 (회절 격자) (36) 를 갖는다. 또, 액정 소자 (30c) 는, 투명 기판 (31c) 이 회절 격자 형상의 요철 (형상) 을 갖고, 이 요철을 충전함과 함께 투명 기판 (31c) 을 덮도록 액정층 (37) 이 형성되는 구조이고, 액정층 (37) 은 요철부 (회절 격자) (38) 를 갖는다. 또, 액정 소자 (30d) 는, 평탄한 투명 기판 (31d) 면 상에 액정부 (39a, 39b) 가 이격되어 회절 격자 형상을 형성하는 구조이다. 이와 같이 액정부가 이격되어 있는 경우에도, 이들 액정부 (39a, 39b) 를 통틀어 액정층 (39) 으로서 정의한다. 이 경우, 액정 소자 (30d) 의 요철부는 액정층 (39) 에 상당한다.
또, 도시되지 않지만, 이것에 한정되지 않고, 예를 들어 도 3(c) 의 액정 소자 (30c) 의 액정층 (37) 이 투명 기판 (31c) 의 홈부에만 이격되도록 형성되어 있는 것이어도 된다. 또한, 액정 소자 (30d) 와 같이 액정층이 복수의 액정부에 이격되는 구조를 제외하면, 투명 기판을 형성하지 않고 액정층만이 회절 격자 형상 (요철부) 을 가져 액정 소자를 구성하는 것이어도 된다. 또, 투명 기판을 사용하지 않는 경우의 제법으로는, 예를 들어 투명 기판 (31a, 31b) 에 이형 처리를 실시하여 액정층 (32) 의 요철부 (회절 격자) 를 형성하고 나서, 투명 기판 (31a, 31b) 을 제거하거나, 등방성의 광학 재료 (33) 에 액정 모노머를 직접 도포하고, 계면 활성제 등을 첨가함으로써 액정의 공기 계면을 일정하게 배향시키고, 액정 모노머를 경화시켜 액정층 (32) 을 형성하거나 해도 된다.
또한 도시되지 않지만, 액정층을 ITO 등의 투명 도전막에 의해 협지하고, 전압을 인가할 수 있도록 해도 된다. 이 경우, 투과율은 감소하지만, 회절 효율을 전압 인가에 의해 가변시킬 수 있게 된다. 또, 전압 무인가시에도 격자의 측벽이나 상면이나 바닥면으로부터의 배향 규제력에 의해 액정의 배향이 안정됨으로써 전압 인가, 비인가에 관계없이, 배향 불균일에 의한 편광 의존성, 소광비의 저하가 발생하지 않는 고품질의 가변형 편광 회절 소자로 할 수 있다. 또한, 이하에서는, 도 3(a) 의 액정 소자 (30a) 에 대해 설명한다.
액정층 (32) 에 사용되는 액정 재료는, 배향막의 접촉면에 대해 대략 수직, 대략 수평 방향으로 배향 제어할 수 있는 재료가 좋고, 저분자 액정 조성물, 고분자 액정을 형성하기 위한 중합성 액정 조성물이 사용된다. 회절 격자 표면에 형성되는 배향막 (34) 은, 배향막 표면에서 액정이 수직 배향되도록 처리되고, 배향막 (35) 은, 배향막 표면에서 액정이 수평 배향되도록 처리되어 있다. 또, 예를 들어 등방성의 광학 재료 (33) 그 자체가 액정에 대해 수직 배향능을 갖고 있는 재료이면 수직 배향 처리된 배향막 (34) 을 형성하지 않아도 된다. 배향막 (35) 은 수평 배향 처리에 한정되지 않고, 수직 배향 처리되어도 되지만, 후술하는 바와 같이 회절 격자 구조의 위상 단차를 강조할 수 있는 점에서 수평 배향 처리가 바람직하다. 또한, 요철부와 회절 격자는 동일한 것으로서, 액정층 요철부의 계면을 요철면 또는 회절 격자면으로 한다.
도 4(a) 의 액정 소자 (40) 는, 액정 소자 (30a) 의 액정층 부분을 모식적으로 나타낸 것으로, 회절 격자 구조에 충전된 액정 분자 (42) 의 배향 상태를 나타내는 단면 모식도이다. 도 4(a) 는, 도시되지 않은 배향막이 형성되어 있고, 투명 기판 (41a) 의 액정측 (회절 격자 구조) 의 표면은 수직 배향 처리, 투명 기판 (41b) 의 액정측의 표면은 수평 배향 처리가 실시되어 있다. 또, 회절 격자 구조 중 오목부가 되는 영역 (43) 과, 볼록부가 되는 영역 (44) 의 2 개의 영역으로 나누어 설명한다. 이들은, 오목부 영역 (43) 및 볼록부 영역 (44) 의 X 방향의 폭을 갖는 액정의 공간을 나타내는 것이다. 도 4(b) 는, 도 4(a) 의 볼록부 (44) 및 오목부 (43) 의 일부의 액정 분자의 배향의 분포를 더욱 미시적으로 나타낸 모식도로서, 액정 분자를 연속체로서 해석한 결과를 나타낸 분포에 상당한다.
도 4(a) 및 도 4(b) 로부터, 액정층 중 회절 격자 구조 (요철부) 측은 수직 배향 처리가 되어 있기 때문에, 회절 격자면 (요철면) 에 대해 액정 분자는 대략 수직 방향으로 배향된다. 요컨대, 도 4(a) 및 도 4(b) 에 있어서, 회절 격자면의 X 축 방향과 평행하는 면에 접촉하는 액정 분자는 그 장축 방향이 Z 축 방향과 대략 평행 (X 방향과 대략 수직) 하는 방향으로 배향되고, Z 축 방향과 평행하는 면에 접촉하는 액정 분자는 그 장축 방향이 X 축과 대략 평행 (Z 축 방향과 대략 수직) 하는 방향으로 배향된다. 한편으로 투명 기판 (41b) 측은, 수평 배향 처리되어, 41b 의 면에 접촉하는 액정 분자는 그 장축 방향이 X 축 방향과 대략 평행하게 배향된다. 또한, 대략 수직은 접촉면의 법선에 대해 0 ∼ 15°의 각도이면 되고, 대략 수평은 접촉면에 대해 0 ∼ 15°의 각도이면 된다. 또, 액정 분자의 배향을 가지런히 하기 위해서 일정한 프리틸트 각을 갖는 배향이면 되고, 상기 각각 0.1 ∼ 15°가 바람직하고, 1 ∼ 15°이면 보다 바람직하다.
여기에서, 우선 오목부 (43) 영역의 액정 (분자) 의 배향 분포에 대해 설명한다. 수직 배향 처리된 투명 기판 (41a) 과 대향하는 수평 배향 처리된 투명 기판 (41b) 에 협지된 영역 (두께 d2) 의 액정은, 투명 기판 (41a) 면으로부터 투명 기판 (41b) 면을 향해 투명 기판 (41a) 면에 대해 수직 배향으로부터 투명 기판 (41b) 면에 대해 수평 배향으로 공간적으로 변화되는 이른바 하이브리드 배향된 상태로 분포한다. 이에 대하여, 볼록부 (44) 영역의 액정 중, 투명 기판 (41a) 의 X 축에 평행한 면과 접촉하는 액정 분자는 수직 배향되지만, 투명 기판 (41a) 의 Z 축에 평행한 면 (회절 격자의 측면) 과 접촉하는 액정 분자도 대략 수직으로 배향된다. 따라서, X 축과 평행이 되는 투명 기판 (41a) 면의 근방도 액정 분자의 장축이 X 축 방향과 대략 평행하게 배향된다. 또, 투명 기판 (41b) 과 접하는 면도 동일하게 X 축 방향으로 대략 평행하게 배향된다. 또한, 볼록부 (44) 의 d2 의 두께 영역은 서로 이웃하는 오목부의 하이브리드 배향이 되는 영향을 받아 X 방향보다 경사져 배향된다.
여기에서, 액정층 내의 액정 분자가, 투과되는 광의 편광 방향에 대해 이상광 굴절률이 되는 방향으로 거의 일정하게 배향되고 있음과 함께, 회절 격자의 액정의 상광 굴절률과 대략 동등한 굴절률 (ns) 을 갖는 등방성 재료로 충전되어 있는 (no = ns) 도시되지 않은 회절 소자를 생각한다. 이 경우, 오목부를 투과하는 광의 광로 길이와 볼록부를 투과하는 광의 광로 길이의 차인 광로 길이 차는, 격자 깊이 d (도 4(a) 에서 말하는 d1-d2 에 상당) 에 비례하여 커진다. 따라서, 회절 격자에 충전하도록 배치되는 액정층에 동일한 액정 재료를 사용하여 구성하는 경우, 광로 길이 차를 크게 하기 위해서는 격자 깊이 d 를 크게 할 필요가 있다.
이에 대하여, 도 4(a), 도 4(b) 와 같이 액정층 내의 액정 분자가 분포되어 있으면, 굴절률 이방성의 특성으로부터 회절 격자를 Z 축 방향으로 평행하게 투과하는 광에 대해, 오목부 (43) 를 투과하는 광의 광로 길이와 볼록부 (44) 를 투과하는 광의 광로 길이의 차 (= 광로 길이 차) 를 크게 할 수 있다. 특히 액정 소자 (40) 는, 두께 d2 를 조정함으로써 광로 길이 차의 크기를 조정할 수 있으므로, 회절 격자의 깊이 (d1-d2) 만을 크게 하지 않아도 되어, 회절 격자의 가공을 용이하게 할 수 있다. 이하, 이 원리에 대해 설명한다.
예를 들어, 액정 분자의 장축 방향의 유전률 ε 과 액정 분자의 단축 방향의 유전률 ε 의 차가 되는 유전률 이방성 Δε (=ε) 이 정의 특성을 갖는 재료인 경우를 생각한다. 또, 굴절률 이방성을 갖는 액정의 파장 λ 의 광에 대한 이상광 굴절률 (ne) 과 상광 굴절률 (no) 의 관계는, ne > no 로서 액정 분자의 장축 방향과 평행하는 편광 상태의 광은 이상광 굴절률을 느낀다. 액정 소자 (40) 에, Z 축과 평행 방향으로 진행하고, X 방향으로 진동하는 직선 편광의 광이 입사되면, X 축 방향으로 배향된 액정에 대해 이상광 굴절률, Z 축 방향으로 배향된 액정에 대해 상광 굴절률이 되어 진행한다. 또, 투명 기판 (41a) 의 굴절률 ns 를 상광 굴절률 no 와 일치시킨다. 이 때, 액정층을 투과하는 광로 길이 L 은, 상광 굴절률로 진행하는 액정층의 두께를 do, 이상광 굴절률로 진행하는 액정층의 두께를 de 로 하면,
L = no·do+ne·de … (2)
로 나타낼 수 있다.
여기에서, 제 1 실시형태의 액정 소자 (40) 의 광학 특성에 대해 동일하게 굴절률의 관계를 no = ns 로 했을 때에 대해 설명한다. 볼록부 (44) 의 이상광 굴절률이 되는 두께, 상광 굴절률이 되는 두께를 각각 de1, do1 로 하고, 오목부 (43) 의 이상광 굴절률이 되는 두께, 상광 굴절률이 되는 두께를 각각 de2, do2 로 한다. 회절 격자면에 대해 수직 배향 처리를 실시한 액정 소자 (40) 에 있어서, Z 축과 평행 방향으로 진행하고, X 방향의 직선 편광이 입사될 때, 볼록부 (44) 의 평균의 광로 길이 L1 은, 볼록부의 두께를 d1 로 하면, d1 의 두께에 있어서 상광 굴절률 no 에 대해 이상광 굴절률 ne 를 크게 느끼기 때문에 de1>do1 ≠ 0 이 된다. 따라서, (ne+no)·d1/2<L1<ne·d1 의 관계가 된다.
한편, 오목부 (43) 의 액정은 하이브리드 배향 상태이므로, 오목부 (43) 의 광로 길이 L2 는, L2 ≒ (ne+no)·d2/2 가 된다. 또한 오목부 (43) 와 투명 기판 (41a) 의 일부 (두께 : d1-d2) 를 투과하는 광의 d1 의 두께의 광로 길이를 L2' 로 하면, ns = no 이므로, L2' = L2+no·(d1-d2) 이 된다.
이와 같이, 광로 길이 차 ΔL (=L1-L2') 은, 특정의 액정 재료에 대해 두께 d1 및 두께 d2 에 의해 조정할 수 있다. 예를 들어, 특정의 광로 길이 차 (위상차) ΔL 을 부여하는 액정 소자를 실현할 때, 오목부 (43) 의 영역 중 두께 d2 에 있어서의 광로 길이와, 볼록부 (44) 의 영역 중 두께 d2 에 있어서의 광로 길이의 차가 발생하므로, 격자 깊이 d(=d1-d2) 에서 발생시키는 오목부 (43) 와 볼록부 (44) 의 광로 길이 차를 크게 하지 않아도 된다. 그 때문에, 격자 깊이 d 를 작게 할 수 있으므로, 원하는 광로 길이 차를 얻기 위해서 격자 깊이 (d1-d2) 를 크게 하지 않아도 되어, 회절 격자의 가공을 용이하게 할 수 있다. 또, 원하는 회절 효율을 얻기 위해서 격자 깊이 d 를 변화시키지 않고 두께 d2 를 변화시킴으로써 조정할 수 있으므로, 회절 격자 구조의 가공에 있어서 생산성의 향상을 기대할 수 있다.
도 5 는, 구체적으로 격자 깊이 d 를 일정값으로 하고, 액정 소자 (40) 의 두께 d2 를 변화시켰을 때의 1 차 회절 효율 η1 과 0 차 회절 효율 (직진 투과율) η0 의 비로 나타내는 회절 효율비 (η01) 의 변화에 대해 시뮬레이션에 의해 구한 결과이다. 또한, 입사되는 광은 파장이 405 ㎚ 인 X 방향의 직선 편광으로서 Z 방향으로 진행하는 것으로 하고, 액정의 굴절률 이방성 Δn 이 0.17 로서, 투명 기판 (41a, 41b) 은, 액정의 상광 굴절률 no 와 일치하는 것으로 한다. 이 때, 회절 격자는, 격자 피치를 2 ㎛, 격자 피치의 볼록부 폭과 오목부 폭의 비인 Duty 를 1 : 1, 격자 깊이 d 를 1.27 ㎛ 로 하였다. 도 5 의 결과로부터, 두께 d2 가 약 2 ∼ 6 ㎛ 사이에서는, 0 차 회절 효율 ηo 이 거의 0 이지만, 그 이외의 두께이면 일정량의 0 차 회절광 (직진 투과광) 도 발생하여, 두께 d2 의 값과 회절 효율비 (η01) 사이에 상관성을 갖는다. 이와 같이, 격자 깊이 d 를 바꾸지 않고 액정 소자 (40) 의 광학 특성을 조정할 수 있기 때문에, 회절 격자 구조를 바꾸지 않고 자유도가 높은 광학 설계를 할 수 있다.
또, 액정 소자 (40) 의 격자 피치는, 상기의 식 (1) 로부터 입사되는 광의 파장 λ 및 입사되는 광에 대해 회절시켜 투과되는 광의 회절각 θ 의 구체적인 설정값에도 따르지만, 원하는 회절각 θ 을 크게 하기 위해서 격자 피치 P 를 좁게 (짧게) 할 필요가 있는 바, 본원 발명의 액정 소자 (40) 는 이 경우에 적절한 구조가 된다. 격자 피치 P 의 길이에는 특별히 제한없이 본원 발명의 액정 소자 (40) 를 사용할 수 있지만, 특히 러빙에 의한 배향 제어가 곤란하나 회절각 θ 을 크게 할 수 있는, 격자 피치 P = 20 ㎛ 이하의 회절 격자면에 대해 양호하게 액정을 배향시킬 수 있음과 함께, 격자 피치 P 가 짧아져도 격자 깊이 d 를 크게 하지 않고 원하는 광학 특성을 얻을 수 있다.
또, 가공 정밀도가 허락하는 한, 격자 피치의 최소값을 작게 하여 본원 발명의 액정 소자 (40) 를 적용할 수 있고, 파장보다 격자 피치가 작아졌을 경우에 있어서도, 액정의 굴절률 이방성과 구조 복굴절성을 가진, 통상보다 우수한 굴절률 이방성의 분산 특성을 갖는 파장판으로서 본원 발명의 액정 소자 (40) 를 적용할 수 있다. 또, 지금까지, 단면이 직사각형 형상이 되는 회절 격자에 대해 설명했지만, 이것에 한정되지 않고, 전술한 바와 같이 단면 형상이 블레이즈형이나 블레이즈를 계단 형상으로 근사한 형상이어도 되고, 이 경우의 격자 피치 P 도 1 ∼ 20 ㎛ 이면, 특히 가공 용이성, 광학 특성에 있어서 유효하다.
이 때, d2 의 값은 0 이상이면 되지만, 큰 광로 길이 차 ΔL 을 얻기 위해서는 큰 회절 격자 깊이 (d1-d2) 를 필요로 하므로, 격자 홈의 가공을 용이하게 하기 위해서는 0 보다 큰 값이면 바람직하다. 그리고, d2 를 크게 하면, 도 4 의 액정층 내의 액정 분자 (42) 의 배향 모식도와 같이 두께 d2 의 액정층의 오목부 (43) 에 대해 볼록부 (44) 의 광로 길이를 크게 할 수 있다. 그러나, 한편, 두께 d2 를 더욱 크게 하면, 볼록부 (44) 의 두께 d2 부분의 액정 분자가 서로 이웃하는 오목부의 하이브리드 배향의 영향을 받기 쉬워진다. 그 때문에, 두께 d2 에 있어서의 볼록부 (44) 와 오목부 (43) 의 광로 길이 차가 작아진다. 따라서, d2 의 두께는, (d1-d2) 의 두께인 격자 깊이에 대해 10 이하이면 바람직하고, 5 이하이면 보다 바람직하다.
또, 회절 소자 (40) 에 Z 축 방향과 평행 방향으로 진행하고, Y 방향으로 진동하는 직선 편광이 입사되면, 볼록부 (44) 및 오목부 (43) 모두 상광 굴절률로 진행한다. 이 때 투명 기판 (41a) 의 굴절률을 상광 굴절률 no 와 일치시키면, 입사되는 광은 회절하지 않고 직진 투과하여, 편광 의존성을 갖는 액정 소자를 실현할 수 있다. 액정은 정의 유전률 이방성을 갖는 재료를 사용한 경우에 대해 설명했지만, 부의 유전률 이방성을 갖는 재료여도 된다. 또, 회절 격자의 길이 방향은, 액정 소자 (30a) 와 같이 Y 방향의 1 방향에만 한정되지 않고, 광이 입사되는 영역 내에 2 방향 이상 있어, 선택적으로 광을 회절시키는 것이어도 된다.
다음으로, 회절 격자의 제조 방법에 대해 설명한다. 회절 격자의 단면 형상을 예를 들어 직사각형 형상으로 하는 방법으로는, 포토리소그래피 및 에칭, 임프린트법, 절삭 등에 의한 가공이 가능하다. 또, 배향 처리로는, 수직 배향법으로서, 폴리이미드 도포, SiO2 미립자 막, 사방 증착, 알킬기, 퍼플루오로기 등을 갖는 실란제에 의한 실란 처리 등에 의해, 혹은 그들의 조합으로 배향막을 형성할 수 있다.
평탄한 (투명) 기판면에 대해서는, 수평 방향이 되는 수평 배향법 및, 평탄한 (투명) 기판면에 대해 수직 방향이 되는 수직 배향법을 들 수 있다. 수평 배향법으로서, 투명 기판 상에 폴리이미드 막을 형성하여 표면을 러빙하는 방법, 사방 증착법, 광 배향법, 이온 빔 배향법, 홈 구조에 의한 배향 등에 의해, 혹은 그들의 조합에 의해 배향막을 형성할 수 있다. 한편, 수직 배향법에 관해서는 상기에 나타낸 격자 가공면의 배향 처리와 동일한 방법을 이용할 수 있다.
또, 회절 격자 구조를 투명 기판 (31a) 에만 형성하는 액정 소자 (30a) 에 대해 설명했는데, 이것에 한정되지 않는다. 예를 들어, 회절 격자를 투명 기판 (32b) 의 액정층 (32) 측에도 형성하고, 액정층 (32) 의 양측을 회절 격자 구조로 협지해도 된다. 도 6 은, 2 개의 투명 기판이 대향하는 각각의 면에 회절 격자 구조를 갖는 액정 소자 (45a, 45b) 의 단면 모식도를 나타내는 것이다. 도 6(a) 의 액정 소자 (45a) 는, 투명 기판 (46a) 측, 투명 기판 (46b) 측의 격자 피치 각각의 격자 피치를 동일하게 하고, 액정층 (47) 을 협지한 양측에서, 각각의 홈이 되는 부분을 가지런히 하여 배치시킨 것이다. 이 경우, 오목부를 투과하는 광의 광로 길이와 볼록부를 투과하는 광의 광로 길이의 차인 광로 길이 차를 크게 할 수 있으므로, 편측의 회절 격자만으로 원하는 광로 길이 차를 얻는 경우에 비해, 편측의 회절 격자의 애스펙트비를 작게 할 수 있다. 또, 회절 소자로서, 액정층 (47) 의 양측에 동일 피치의 격자를 배치하여 이용하는 경우에는, 오목부 간의 갭이 20 ㎛ 이내인 것이 바람직하고, 10 ㎛ 이내인 것이 더욱 바람직하다.
또, 액정층 (47) 의 양측에 상이한 격자 피치의 회절 격자를 배치하고, 편광 회절 격자로서 사용하는 경우에는, 입사되는 광에 대해 직진 투과하는 광의 소광비를 향상시킬 수 있다는 효과가 있다. 이 경우, 액정층의 오목부 사이의 갭이, 일반적으로는, 10 ㎛ 이상 떨어져 있으면 바람직하고, 또한 20 ㎛ 이상 떨어져 있으면 보다 바람직하다. 또, 도 6(b) 의 액정 소자 (45b) 는, 투명 기판 (48a) 측의 격자 피치에 대해, 투명 기판 (48b) 측의 격자 피치와의 관계가 정수배, 여기에서는 2 배로 하고, 액정층 (49) 을 협지하여, 투명 기판 (48b) 측의 홈의 에지가 되는 부분을 투명 기판 (48a) 측의 홈의 에지에 가지런히 하여 배치시킨 것이다. 이 경우, X 축 방향에 대해 액정층 (49) 의 두께가 4 단계로 바뀌므로, 액정층 (49) 을 Z 방향으로 투과되는 광의 광로 길이를 나타내면 계단 형상이 되어, 의사 (擬似) 적으로 단면이 스텝형인 회절 소자로 할 수도 있다. 그리고 액정 소자 (45a, 45b) 를 사용하여 입사되는 광에 대해 직진 투과하는 광의 소광비를 향상시키고자 하는 경우에는, 상기와 마찬가지로 오목부 사이의 갭이 20 ㎛ 이내인 것이 바람직하고, 10 ㎛ 이내인 것이 더욱 바람직하다.
(제 2 실시형태)
제 2 실시형태는, 제 1 실시형태의 액정 소자 (30a) 와 동일한 구조를 갖는 것이지만, 액정층 (32) 에는 고분자 액정 재료를 사용하고 있는 것이다. 이 때, 고분자 액정의 배향 상태는 회절 격자면 (도 4(a) 의 투명 기판 (41a) 에 접하는 면) 에 대해 수직 배향 처리되는 배향막이 형성됨과 함께 회절 격자면과 대향하는 투명 기판면 (도 4(a) 의 투명 기판 (41b) 에 접하는 면) 은 수평 배향 처리되는 배향막이 형성된다. 도 7 은, 액정을 제 1 실시형태로 대표되는 배향 상태를 유지하여 고화시키는 방법의 하나인 광 임프린트 방법의 프로세스를 나타내는 모식도로서, 이하에 그 방법에 대해 구체적으로 설명한다.
도 7(a) 의 투명 기판 (55) 상에 형성된 배향막 (54) 은, X 방향으로 대략 평행이 되도록 수평 배향 처리되어 있고, 배향막 (54) 상에는 중합성 액정층 (53) 이 형성되어 있다. 이 중합성 액정층 (53) 은 메소겐기를 갖는 아크릴계 중합성 액정 등으로 구성된다. 몰드 기판 (51) 에는 형 (型) 을 형성하는 면에 회절 격자 형상을 갖고, 이 회절 격자면에 대해 수직 배향 처리가 실시된 재료로 이루어지는 수직 배향 처리 재료층 (52) 이 형성되어 있다. 몰드 기판은, 내구성의 관점에서 석영, 실리콘 등의 무기 재료이면 바람직하다. 수직 배향 처리 재료층 (52) 은, 액정을 수직 배향시킬 수 있음과 함께 중합성 액정층 (53) 을 중합 후에 이형 처리할 수 있는 것이다. 수직 배향 재료층 (52) 은, 예를 들어, 퍼플루오로기를 갖는 실란제 등을 들 수 있다.
도 7(a) 의 수직 배향 처리 재료층 (52) 을 갖는 몰드 기판 (51) 을 중합성 액정층 (53) 에 가압하여 격자 형상을 형성하고, 그 상태를 유지하면서 자외선을 닿게 하거나 하여 중합성 액정을 중합시킨다. 중합 후의 액정 (액정 중합체) 으로부터 몰드 기판 (51) 을 이형하면, 도 7(b) 와 같이 표면이 격자 형상이 되는 액정 폴리머층 (56) 이 생성된다. 또한, 액정 폴리머층 (56) 의 액정도 제 1 실시형태에 관련된 액정 소자 (40) 에 나타내는 바와 같은 배향이 되는 분포를 나타내고, 동일하게 두께 d2 의 값을 바꿈으로써 광학 특성을 제어할 수 있다.
도 7(b) 의 격자 구조의 액정 폴리머를 포함하는 기판에 대향하여 평행한 투명 기판 (58) 을 배치하여 양 기판 간에 충전재로서, 등방성의 투명 모노머를 협지하여 충전하고, 등방성의 투명 폴리머층 (57) 으로 한다. 이 때, 투명 폴리머층 (57) 의 굴절률은, 고분자 액정의 상광 굴절률 또는 이상광 굴절률 중 어느 일방에 대략 동일하게 하면 바람직하다. 또, 충전재는 등방성 재료에 한정되지 않고 복굴절 재료여도 되고, 투명한 중합성 재료여도 된다.
또, 등방성의 투명 폴리머층 (57) 을 사용하지 않는 액정 소자의 구성도 가능하다. 이 때, 예를 들어, 액정층 (56) 의 회절 격자 (요철부) 의 격자 피치를, 입사되는 광의 파장 λ 보다 더욱 짧게 하여, 구조 복굴절 소자로서 이용하는 경우에 유효하다. 이 경우, 등방성 재료에 의해 회절 격자 구조를 형성하는 것에 비해, 굴절률의 파장 분산의 제어성을 향상시킬 수 있는 이점이 있다.
예를 들어, 등방성 재료에 의해 회절 격자 구조를 형성하는 경우, 복굴절성을 향상시키기 위해서 회절 격자 구조에 충전 재료를 사용하지 않고, 공기와 회절 격자를 구성하는 재료 사이에 발생하는 굴절률 차를 이용하기 때문에 굴절률의 파장 분산의 제어성이 부족해진다. 그러나, 이 경우, 액정 자체가 복굴절성을 보유하고 있음으로써 구조 복굴절을 구성할 때의 파라미터를 증가시킬 수 있기 때문에, 공기와의 굴절률 차를 이용한 경우에도, 등방성 재료보다 파장 분산의 제어성이나 복굴절성을 향상시킬 수 있어, 파장 선택성이나 광대역성을 내기 쉬운 이점이 크다. 또, 회절 격자 구조를 입사되는 광에 대해 반사 방지 효과를 갖는 구조로서 이용할 수도 있다. 이 경우, 액정에 복굴절성이 있기 때문에, 이상 (異常) 분산측 편광과 상 (常) 분산측 편광의 양방 모두의 굴절률이 비연속으로 변화되지 않고, 연속적으로 변화시키는 것이 가능해져, 공기 계면과 같은 등방성 매질에 대해 편광 의존성이 매우 작은 반사 방지 효과를 갖는 구조로서 이용하는 것도 가능하다.
(제 3 실시형태)
제 3 실시형태로서 회절 격자를 갖는 면의 요철의 주기 방향인 격자 방향이 일정하지 않은 액정 소자를 도 8 에 나타낸다. 액정 소자의 예로서, X-Y 평면에서 본 도 8(a) 의 액정 소자 (60a) 와 같이 예를 들어 서로 이웃하는 영역 (63, 64, 65 및 66) 의 격자 방향이 서로 상이하도록 패터닝되는 것이거나, 도 8(b) 의 액정 소자 (60b) 와 같이 회절 격자 방향이 원의 중심으로부터 반경 방향으로 방사상으로 연속하고 있는 패터닝이거나 해도 된다. 영역은 특별히 사각형에 한정되지 않고, 임의의 형상이어도 되고, 연속하는 패턴도 회절 격자 방향이 임의로 변화되어도 된다. 또, 61a 및 61b 는, 회절 격자의 오목부를 나타내고, 62a 및 62b 는 볼록부를 나타낸다.
또, 도 8 에 있어서, 대향하는 도시되지 않은 평탄한 투명 기판측 액정의 배향 처리에 대해, 투명 기판에 대해 수평 배향 처리인 경우에는, 회절 격자의 길이 방향에 평행하게 변화시킨다. 수평 배향 처리의 패터닝 방법에 대해서는, 홈 구조에 의한 배향에 의한 패터닝, 마스킹법을 이용한 배향 처리의 패터닝이 있다. 한편, 수직 배향 처리인 경우에는, 상기와 같은 패터닝은 불필요해지고, 또, 중첩 정밀도 등도 불필요해지기 때문에 바람직하다. 이하, 제 3 실시형태에서는, 대향하는 도시되지 않은 평탄한 투명 기판측의 액정을 수직 배향 처리했을 경우를 전제로 설명한다.
도 9(a) 에 액정 소자 (60a) 의 A-A' 로 절단했을 때의 부분적인 단면 모식도를 나타낸다. 액정이 투명 기판에 의해 협지되어 있는 것은, 제 1 및 제 2 실시형태와 동일하다. 액정 소자 (60a) 는, 평면이 되는 투명 기판 (71b) 과 접하는 액정 분자 (의 장축) 의 배향 방향은 투명 기판 (71b) 면에 대해 대략 수직 방향이 되는 Z 축 방향으로 배향되어 있고, 회절 격자를 갖는 투명 기판 (71a) 과 접하는 액정 분자의 배향 방향은 각각의 면에 대해 대략 수직 방향으로 배향되고 있다. 오목부가 되는 71a (두께 d2) 는 서로 수직 배향되어 있으므로 액정층 내의 배향도 대략 수직 상태가 된다.
한편, 볼록부 (62a) (두께 d1) 중, 투명 기판 (71a) 과 접하는 액정은 투명 기판 (71a) 면에 대해 수직 배향되어 있지만, 도 9(a) 에 나타내는 바와 같이 회절 격자 벽면 (Z 축에 평행한 면) 에서도 수직 배향되어 있기 때문에, X 방향과 평행하게 액정 분자가 배향된다. 한편, 볼록부 (62a) 중 투명 기판 (71b) 과 접하는 액정도 상기와 같이 투명 기판 (71b) 면에 대해 수직 배향되어 있으므로, 볼록부 (62a) 는 대향하는 회절 격자를 향해 틸트각이 두께 방향으로 변화되는 분포를 갖고 배향된다. 즉, 볼록부 (62a) 에 있어서, 액정 분자의 장축 방향은, 투명 기판 (71b) 면으로부터 투명 기판 (71a) 을 향해, Z 방향에서 X 방향 그리고, X 방향에서 Z 방향으로 거의 평행한 분포로 하이브리드 배향된다. 도 9(b) 는, 도 9(a) 의 볼록부 (62a) 및 오목부 (61a) 일부의 액정 분자의 배향 분포를 더욱 미시적으로 나타낸 모식도로서, 액정 분자를 연속체로서 해석한 결과를 나타낸 분포에 상당한다.
도 9(a), 도 9(b) 와 같이 액정층 중 투명 기판 (71b) 측의 액정 분자가 대략 수직 방향으로 배향되는 경우로서, 제 1 실시형태에 관련된 액정 소자 (40) 와 같이 격자 깊이 d 를 변화시키지 않고, 두께 d2 를 변화시킴으로써도 광학 특성을 제어할 수 있다.
도 10 은, 구체적으로 격자 깊이 d 를 일정값으로 하고, 액정 소자 (60a) 의 영역 (64) 에 대해, 두께 d2 를 변화시켰을 때의 1 차 회절 효율 η1 과 0 차 회절 효율 (직진 투과율) η0 의 비로 나타내는 회절 효율비 (η01) 의 변화에 대해 시뮬레이션에 의해 구한 결과이다. 또한, 입사되는 광은 파장이 405 ㎚ 인 X 방향의 직선 편광으로서 Z 방향으로 진행되는 것으로 하고, 액정의 굴절률 이방성 Δη 이 0.17 로서, 투명 기판 (71a, 71b) 은, 액정의 상광 굴절률 no 와 일치하는 것으로 한다. 이 때, 회절 격자는, 격자 피치를 2 ㎛, 격자 피치의 볼록부 폭과 오목부 폭의 비인 Duty 를 1 : 1, 격자 깊이 d 를 1.5 ㎛ 로 하였다. 도 10 의 결과로부터, 두께 d2 가 약 7 ㎛ 이상에서는, 0 차 회절 효율 η0 이 거의 0 이지만, 두께 d2 가 약 6 ㎛ 보다 작아지면 일정량의 0 차 회절광 (직진 투과광) 도 발생시켜, 두께 d2 의 값과 회절 효율비 (η01) 사이에 상관성을 갖는다. 이와 같이, 투명 기판 (71b) 측의 액정 분자가 대략 수직 방향으로 배향되는 경우라도, 격자 깊이 d 를 바꾸지 않고 광학 특성을 조정할 수 있고, 회절 격자 구조의 가공 정밀도를 바꾸지 않고 자유도가 높은 광학 설계를 할 수 있다.
상기와 같이, 액정 소자 (60a) 의 영역 (64) 에 있어서, 입사되는 X 방향의 직선 편광에 대해 회절 효율비를 조정할 수 있고, Y 방향의 직선 편광에 대해서는 상광 굴절률 no 가 되므로, 회절되지 않고 거의 100 % 의 높은 0 차 회절 효율이 얻어진다. 따라서 편광 상태에 의해 회절 효율비 등의 광학 특성을 제어할 수도 있다. 이와 같이, 예를 들어, 도 8(a) 의 영역 64 이면 볼록부 (62a) 중 일부의 액정 분자는 X 방향으로 배향되지만, 영역 63 이면 동일한 볼록부 (62a) 중 일부의 액정 분자는 Y 방향으로 배향된다. 또, 도 8(b) 이면, 원 영역의 중심으로부터 반경 (래디얼) 방향으로 배향된다. 이와 같이 회절 격자 방향이 X-Y 평면 내에서 상이한 경우, Z 방향으로 진행하는 광이 입사되면, 각각 볼록부의 액정 분자의 틸트 방향에 맞춘 편광 방향 성분의 광이 되어 투과된다.
이와 같이 영역마다 투과하는 광의 편광 상태를 상이하게 할 수 있는 액정 소자는, 예를 들어, 정보 기록면이 2 층 이상인 복층 광 디스크를 재생하는 도 1 의 광 헤드 장치에 있어서, 액정 소자 (10) 와 광 검출기 (26) 사이의 광로 중에 배치하여, 재생되는 정보 기록층과 상이한 층으로부터 반사되는 광 (이하, 미광이라고 한다) 에 의한 간섭을 억제하는 효과를 기대할 수 있다. 또, 재생되는 정보 기록층으로부터 반사되는 광을 신호광으로 한다. 이 때, 신호광이 액정 소자 (60a) 에 대해 Z 방향으로 진행함과 함께 X 및 Y 방향에 대해 45°의 직선 편광이 되도록 배치하면, 영역마다 편광 방향이 다르게 출사되어 도시되지 않은 실린드리컬 렌즈를 투과하여 광 검출기에 집광된다. 한편, 미광은 광 검출기 상에서는 집광되지 않기 때문에, 예를 들어 광 검출기 상의 하나의 영역에 있어서 신호광을 X 방향의 편광에 의해 도달시키고, 미광을 Y 방향의 편광에 의해 도달시킬 수 있다.
(제 4 실시형태)
제 1 실시형태 또는 제 2 실시형태에서 제조한 액정 소자를 사용한 광 헤드 장치에 관련된 제 4 실시형태의 예를 도 11 에 나타낸다. 또한, 광 헤드 장치 (80) 는, 도 2 의 광 헤드 (20) 와 공통되는 광학 부품 등을 사용하고 있고, 동일 부분에는 동일 부호를 붙여 중복 설명을 피한다. 광원이 되는 반도체 레이저 (21) 로부터 광이 출사되어, Y 방향으로 편광된 직선 편광으로 한다. 광은, Y 방향의 직선 편광만 직진 투과시키는 편광 필터 (81) 를 투과하여, 그레이팅 (82) 에 의해 1 개의 메인 빔과 2 개의 서브 빔으로 분리된다. 편광 빔 스플리터 (83) 에 입사되는 광은, 직진 방향과 프론트 모니터 (84) 의 방향으로 분리된다. 프론트 모니터는, 광 디스크측으로 진행되는 광량과 프론트 모니터에서 수광되는 광량의 비율을 모니터하고, 도시되지 않은 제어 회로를 통해 반도체 레이저측에 이 비율이 일정해지도록 광량 조정의 제어를 실시하는 것이다.
편광 빔 스플리터를 직진 투과한 광은, 콜리메이터 렌즈 (22) 에 의해 평행 광이 되고, 1/4 파장판 (23) 에 의해 직선 편광으로부터 원 편광이 된다. 원 편광은 예를 들어 우회전의 원 편광으로 한다. 대물 렌즈 (24) 에 의해 수속 (收束) 된 광은, 광 디스크 (25) 의 정보 기록면 (25a) 에 집광되고, 정보 기록면 상에서 반사된 광은, 좌회전의 원 편광이 되어, 대물 렌즈 (24) 를 투과한다. 1/4 파장판 (23) 을 투과한 광은, X 방향의 직선 편광이 되어 콜리메이터 렌즈 (22) 를 투과하고, 다시 빔 스플리터 (83) 에 입사된다. X 방향의 직선 편광의 광은 빔 스플리터에 의해 수광 소자 (65) 의 방향으로 집광되어, 광 디스크의 재생 정보를 읽어낼 수 있다.
이 광 헤드 장치 (80) 에 있어서, 반도체 레이저는, Y 방향이 되도록 일정한 방향으로 진동하는 직선 편광으로 하고 있지만, 이 직선 편광의 방향은, 온도, 레이저의 개체 차에 의해, 편차가 발생한다. 요컨대, X 방향 성분의 광도 조건에 따라서 발현된다. 따라서, 상기 서술한 바와 같이 프론트 모니터 (84) 에서 수광되는 광량과 광 디스크 (25) 측으로 분리되는 광량의 비율을 일정하게 하기 위해, 반도체 레이저로부터 출사되는 광의 편광 방향의 편차를 없애기 위해서 반도체 레이저의 근처에 편광 필터 (81) 가 필요하게 된다.
이 편광 필터 (81) 로서, 본원 제 1 실시형태 및 제 2 실시형태의 액정 소자를 사용할 수 있다. 예를 들어, 회절 격자의 주기 방향을 X 방향으로 하고, 액정의 상광 굴절률 (no) 과 등방성의 광학 재료 (33) 의 굴절률을 일치시킨다. Y 방향으로 편광된 광은 액정층 내에서 상광 굴절률이 되지만, X 방향의 성분을 갖는 광은 액정층 내에서 이상광 굴절률이며, 상광 굴절률에 상당하는 광학 재료와의 굴절률 차에 의해 회절이 발생하므로, 직진 방향으로 진행하는 광은 거의 Y 방향 성분의 직선 편광이 된다. 예를 들어, 입사되는 광의 파장을 λ[㎚] 로 하여, 본원 발명의 액정 소자의 볼록부를 투과하는 X 방향으로 편광된 광과 오목부를 투과하는 X 방향으로 편광된 광의 광로 길이 차를 (2m+1)λ/2 [㎚] 로 함으로써 (m
Figure pct00001
0 인 정수) 회절 효율이 최대가 되어, 직진 투과광을 발생시키지 않는다. 따라서, 특정 편광 방향의 광을 직진 투과시켜, 그 편광 방향과 직교하는 편광 방향의 광을 직진 투과시키지 않는 편광 필터로서 기능시킬 수도 있다.
또, 편광 필터로서 기능하는 경우, 직진시키지 않는 광의 편광 성분은 회절 작용에 의해 직진 방향과 상이한 방향으로 진행 (편향) 시킬 수 있는데, 이 경우에도 회절각이 큰 쪽이, 불필요한 광의 편광 성분이, 직진 투과하는 편광 성분을 이용하는 광학 부품 등에 있어서 미광이 되기 어려우므로 바람직하다. 전술한 바와 같이, 회절각을 크게 하기 위해서는 회절 격자의 격자 피치가 작은 액정 소자를 사용하는 것이 바람직하지만, 액정의 배향 방향을 조정하는 본원 발명의 액정 소자를 사용함으로써 애스펙트비를 크게 하지 않아도 양호한 광학 특성이 얻어짐과 함께 고품질의 편광 필터를 실현할 수 있고, 동시에 고품질의 광 헤드 장치를 실현할 수 있다.
(제 5 실시형태)
도 12(a) 는, 제 5 실시형태로서, 제 1 실시형태에 관련된 액정 소자 (30a) 를 포함하는 가변형 광 변조 소자 (90) 의 단면을 나타내는 모식도이다. 또한, 가변형 광 변조 소자 (90) 에는 제 1 실시형태에 관련된 액정 소자 (30a) 에 한정되지 않고, 제 2 실시형태에 관련된 액정 소자여도 된다. 또, 가변형 광 변조 소자 (90) 는, 투명 기판 (31b) 을 공유하고, 투명 기판 (31b) 의 액정층 (32) 과는 반대의 면에 투명 도전막 (94a) 을 갖는다. 또한 투명 도전막 (94a) 과, 투명 기판 (92) 의 일방의 면에 형성된 투명 도전막 (94b) 사이에 일정한 두께의 액정층 (93) 을 갖고, 액정층 (93) 의 주변부에 시일제 (95) 가 형성되어 있다. 그리고, 투명 도전막 (94a 및 94b) 을 개재하여, 액정층 (93) 에 전압을 인가하여 투과되는 광의 편광 상태를 제어하는 전압 제어 장치 (96) 가 구비되어 있다. 또, 투명 기판 (31b) (의 일부), 투명 도전막 (94a), 액정층 (93), 투명 도전막 (94) 및 투명 기판 (92) 을 포함하는 구성을 액정 셀 (91) 로 한다.
또한, 투명 기판 (31b, 92) 중 제 2 액정층 (93) 측의 면에는 도시되지 않은 배향막이 구비되어 있고, 투명 기판 (92) 의 배향막의 배향 방향은 Y 방향, 액정층 (93) 측의 투명 기판 (31b) 의 배향막의 배향 방향은 X 방향으로 한다. 그리고, 액정 셀 (91) 의 액정층 (93) 에 전압이 인가되지 않을 때 (이하, 「전압 비인가시」라고 한다), 액정 분자가 두께 방향으로 90°트위스트되어 있는 것으로 한다. 그리고, 액정층 (93) 에 전압이 인가될 때 (이하, 「전압 인가시」라고 한다) 에는 액정 분자의 장축 방향이 전계 방향과 평행 (Z 방향) 이 된다.
다음으로, 전압 비인가시 및 전압 인가시에 있어서의 가변형 광 변조 소자 (90) 의 작용에 대해 설명한다. 도 12(b) 는, 가변형 광 변조 소자 (90) 에 Y 방향의 편광이 입사되는 모습을 나타낸 모식도이다. 먼저, 전압 비인가시에는, 액정층 (93) 의 액정 분자가 트위스트되어 있으므로, 투명 기판 (92) 측에서 Z 방향으로 진행하는 Y 방향의 편광은, 액정층 (93) 에서 X 방향의 편광이 된다. 그리고, X 방향의 편광은 액정 소자 (30a) 의 회절 격자에 의해 회절된다. 가변형 광 변조 소자 (90) 를 투과한 광은 집광 렌즈 (97) 에 입사되지만, 예를 들어 광 파이버 등의 수광 소자 (98) 의 위치에 초점이 맞지 않는다. 이 경우, 회절 소자 (30) 에서 회절각을 크게 함으로써, 전압 비인가시에 있어서 수광 소자 (98) 로부터 필요 없게 된 회절광을 멀리할 수 있으므로, 미광으로서 입사되는 광량이 작아진다.
한편, 전압 인가시에는, 액정층 (93) 의 액정 분자의 장축 방향은 전계 방향인 두께 방향으로 배향되므로, Y 방향의 편광은 편광 상태를 바꾸지 않고 액정층 (93) 을 투과하여, 액정 소자 (30a) 에 입사된다. 액정 소자 (30a) 도, Y 방향의 편광을 직진 투과시키므로, 집광 렌즈 (97) 에 의해 수광 소자 (98) 에 양호하게 집광된다. 이와 같이, 전압 제어 장치 (96) 에 의한 인가 전압의 크기에 의해 수광 소자 (98) 에 입사되는 광의 광량을 제어할 수 있지만, 본원 발명의 액정 소자를 사용함으로써 회절 격자의 피치를 좁게 (짧게) 할 수 있기 때문에 회절광의 회절각을 크게 할 수 있으므로, 전압 비인가시에 수광 소자 (98) 에 입사되는 미광을 크게 저감시킬 수 있는 점에서, 소광비를 높게 할 수 있다.
또, 도 12(a) 에 나타낸 가변형 광 변조 소자 (90) 는 일례로서, 액정 소자의 구조는 이것에 한정되지 않는다. 예를 들어, 액정층 (32) 에 고분자 액정을 사용하거나, 또, 회절 격자 구조가 (유사) 블레이즈 형상이어도 된다. 또, 액정 셀 (91) 의 액정층 (93) 의 액정은 유전률 이방성 Δε 이 정인 것에 한정되지 않고, Δε 가 부이고 전압 비인가시에 투명 기판면에 대해 대략 수직, 전압 인가시에 투명 기판면에 대략 수평으로 배향하는 특성을 갖는 것이어도 된다. 또한 도 12(b) 에서는, 가변형 광 변조 소자 (90) 를 직진 투과하는 방향으로 수광 소자 (98) 를 배치한 예를 나타냈지만, 회절광이 진행하는 방향으로 수광 소자를 배치하는 구성이어도 되고, 또, 가변형 광 변조 소자 (90) 에 도시되지 않은 반사층을 형성하고, 예를 들어 1 개의 광섬유로부터 발사된 광을 반사시키고, 반사된 광을 수광하는 것이어도 된다. 또한 예를 들어 회절 격자를 구비한 액정 소자 (30a) 가 1 개에 한정되지 않고 2 개 중첩되도록 구성되는 것이어도 된다.
(실시예 1)
실시예로서 도 13 에 나타내는 액정 소자 (100) 를 제조한다. 두께 0.5 mm 의 석영 기판을 세정하여 일방의 면에 (도시되지 않은) 반사 방지막을 형성하는 투명 기판 (101b) 을 준비하였다. 반사 방지막과 반대의 면에 스퍼터링에 의해 ITO 로 이루어지는 투명 도전막 (103b) 을 형성하였다. 투명 도전막 (103b) 상에 도시되지 않은 절연막으로서 SiO2 층을 형성하고, 그 위에 폴리이미드를 도포하고, 소성 공정을 거쳐 러빙에 의해 수평 배향 처리를 실시하여, 배향막 (106) 을 형성하였다.
마찬가지로 두께 0.5 mm 의 석영 기판을 세정하여 일방의 면에 (도시되지 않은) 반사 방지막을 형성하는 투명 기판 (101a) 을 준비하고, 다른 일방의 면에 ITO 로 이루어지는 투명 도전막 (103a) 을 형성하였다. ITO 막 (103a) 상에 도시되지 않은 절연막으로서 SiO2 층을 형성한 후에, 두께 약 1.35 ㎛ 의 SiON 막을 증착하였다. 이 때, 등방성 재료인 SiON 막의 굴절률은 405 ㎚ 의 광에 대해 1.51 이 되었다. SiON 의 면에 포토리소그래피 공정에 의해 단면의 격자 피치가 약 2 ㎛, 격자 피치의 볼록부 폭과 오목부 폭의 비인 Duty 를 1 : 1 로 한 격자 형상으로 레지스트를 패터닝하였다. 레지스트를 패터닝한 면을 깊이 약 1.27 ㎛ 가 되도록 에칭을 실시하고, 레지스트를 박리하여 애싱함으로써 SiON 으로 이루어지는 격자 형상 (104) 을 제조하였다. 격자 형상 (104) 의 면에 수직 배향되는 폴리이미드를 도포 후, 소성 공정을 거쳐 배향막으로 하였다.
배향막 또는 배향 처리를 실시한 면을 대향시키고, 이 때, 배향막 (106) 의 수평 배향 방향을 X 방향에 평행하게 함과 함께, 격자 형상의 격자의 주기 방향 (격자 방향) 을 X 방향으로 한다. 배향막 (106) 상에 도시되지 않은 직경 3.5 ㎛ 의 스페이서를 산포하고, 도시되지 않은 시일제에 의해 기판 주변을 시일하고, 스페이서에 의해 만들어진 공극에 도시되지 않은 주입구로부터, 액정을 주입하고 충전하여 액정층 (102) 을 형성하였다. 이 때, 주입되는 액정은, 405 ㎚ 의 광에 대해 상광 굴절률 (no) = 1.51, 이상광 굴절률 (ne) = 1.68, 굴절률 이방성 Δn = 0.17 인 특성의 재료를 사용하였다. 또, 투명 도전막 (103a, 103b) 사이에는 액정층 (102) 에 전압을 인가할 수 있도록 도시되지 않은 전압 제어 장치가 접속되어 있다.
제조한 광학 소자 다이싱 소 (saw) 에 의해 사방 약 5 mm 크기로 절단하여 액정 소자로 하고, 광 헤드 장치에 적용할 수 있는 형상으로 하였다. 절단 후, 파장 약 633 ㎚ 의 He-Ne 레이저를 사용하여 이 액정 소자의 투과 파면 수차를 측정하면 25 m λrms 이하이며, 광학 소자로서 충분히 사용할 수 있는 것이 확인되었다.
또, 제조한 액정 소자에 405 ㎚ 의 광을 입사하여, 회절 특성을 측정한다. 405 ㎚ 의 광을 Z 축에 평행한 진행 방향으로, X 방향의 편광 방향으로 입사시키면, 전압 비인가시에서는 입사되는 광의 직진 투과율은 10 % 이하가 되어, ±1 차 회절 효율은 약 40 % 가 되었다. 한편, 액정층에 1 kHz 의 구형 교류파 전압을 약 40 Vrms 인가하면, 액정이 전압에 의해 구동하여 회절 효율이 변화되고, 직진 투과율은 90 % 이상이 되었다. 이로써, 전압을 제어함으로써 직진 투과 광량을 변화시키는 광량 조정 소자로서도 사용할 수 있다.
(실시예 2)
도 7(c) 에 나타내는 액정 소자를 제조한다. 두께 0.5 mm 의 석영 기판을 세정하여 일방의 면에 (도시되지 않은) 반사 방지막을 형성하는 투명 기판 (55) 을 준비하였다. 반사 방지막과 반대의 면에 폴리이미드를 도포하고, 소성 공정을 거쳐 러빙에 의해 수평 배향 처리를 실시하여, 배향막 (54) 을 형성하였다. 또, 새롭게 두께 1.0 ㎜ 의 석영 기판을 세정하여 일방의 면에 (도시되지 않은) 반사 방지막을 형성하는 투명 기판 (58) 을 준비하였다.
투명 기판 상에 포토리소그래피 공정에 의해 단면의 격자 피치가 약 2 ㎛, Duty 를 1 : 1 로 한 격자 형상으로 레지스트를 패터닝하였다. 레지스트를 패터닝한 면을 깊이 약 1.27 ㎛ 가 되도록 에칭을 실시하고, 레지스트를 박리하여 애싱함으로써 몰드 기판 (51) 을 제조한다. 몰드 기판 (51) 의 격자 형상 표면에 퍼플루오로기를 갖는 실란제에 의해 수식 (修飾) 하여, 수직 배향 재료층 (52) 을 형성하였다.
배향막 (54) 의 수평 배향 방향을 X 방향에 평행하게 하고, 배향막 (54) 상에 도시되지 않은 직경 3.5 ㎛ 의 스페이서를 산포하고, 도시되지 않은 시일제에 의해 기판 주변을 시일하여, 스페이서에 의해 만들어진 공극에 중합성 액정 조성물을 주입하고 충전하여 중합성 액정층 (53) 을 형성하였다. 이 때 주입되는 중합성 액정 조성물은, 광 중합에 의해 폴리머화함으로써, 405 ㎚ 의 광에 대해 상광 굴절률 (no) = 1.51, 이상광 굴절률 (ne) = 1.68, 굴절률 이방성 Δn = 0.17 인 특성의 재료를 사용하였다. 몰드 기판 (51) 의 격자의 주기 방향을 X 축과 평행이 되는 방향으로 하여 중합성 액정층 (53) 에 중첩시키고, 중합성 액정 조성물이 몰드 기판의 격자 형상이 되도록 가압하였다.
몰드 기판을 꽉 누른 상태에서 UV 광을 노광하여 액정 폴리머화한다. 폴리머화한 후에 몰드 기판을 이형 처리하여 도 7(b) 와 같은 회절 격자 형상의 액정 폴리머층 (56) 을 형성하였다. 다음으로 도 7(c) 와 같이 액정 폴리머층 (56) 상에 액정 폴리머의 상광 굴절률과 거의 동일하고 온도 의존성도 동일한 투명 폴리머 (57) 가 되는 광 중합성의 모노머를 충전하였다. 그 후, 도시되지 않은 반사 방지막 처리를 한 두께 약 0.5 mm 의 투명 기판 (58) 을 대향시켰다.
대향시킨 상태에서, 투명 모노머에 UV 광을 노광하여 투명 폴리머화하였다. 제조한 광학 소자 다이싱소에 의해 사방 약 5 mm 크기로 절단하여 액정 소자로 하고, 광 헤드 장치에 적용할 수 있는 형상으로 한다. 절단 후, 파장 약 633 ㎚ 의 He-Ne 레이저를 사용하여 이 액정 소자의 투과 파면 수차를 측정하면 25 m λrms 이하이며, 광학 소자로서 충분히 사용할 수 있는 것이 확인되었다.
또, 405 ㎚ 의 광을 Z 축에 평행한 진행 방향으로, X 방향의 편광 방향으로 입사시키면, 광의 직진 투과율 (0 차 회절 효율) η0 는 5 % 이하가 되었다. 한편, X 방향의 편광 방향으로 입사시키면, 직진 투과율 (0 차 회절 효율) η0 은 95 % 이상이 되었다. 이로써, 회절 효율이 입사 편광 방향 의존성을 가짐과 함께 애스펙트비가 작아 액정 소자를 실현할 수 있다.
(실시예 3)
실시예 2 와 동일한 제조 방법을 이용하여 도 8(a) 에 나타내는 액정 소자를 제조한다. 이 때, 영역 (64) 및 영역 (65) 의 회절 격자의 길이 방향과, 영역 (63) 및 영역 (66) 의 회절 격자의 길이 방향을 직교하도록 하고, 각각의 격자 피치가 약 2 ㎛, 격자 깊이 d 가 약 1.5 ㎛, 그리고, 산포되는 스페이서의 직경을 약 7.0 ㎛ 로 하고, 회절 격자측과 반대의 투명 기판측의 배향막 (도 8(c) 에서 말하는 배향막 (54)) 을, 수직 배향능을 갖는 폴리이미드 막으로 한다. 또, 이 폴리이미드 막은 러빙 처리는 하지 않고 제조하고, 그 밖의 조건은 실시예 1 과 동일한 것으로 한다.
이 결과, 영역 (63) ∼ 영역 (66) 의 각각의 회절 격자의 길이 방향과 직교하는 편광 방향의 광이 입사되면, 직진 투과율 (0 차 회절 효율) η0 은 5 % 이하가 되고, 한편, 회절 격자의 길이 방향과 평행한 편광 방향의 광이 입사되면, 직진 투과율 (0 차 회절 효율) η0 은 95 % 이상이 되어, 패터닝 편광자로서 충분한 효과가 얻어진다.
산업상 이용가능성
이상과 같이, 본 발명에 이러한 액정 소자는, 회절 격자면의 배향막을 수직 배향 대향하는 평면을 수평 배향 처리로 함으로써 일정한 회절각이 되는 회절 격자 구조를 저(低)애스펙트비로 실현할 수 있다. 또, 회절 격자의 격자 깊이를 변화시키지 않고, 회절 격자의 홈부를 포함하지 않는 액정층의 두께를 바꿈으로써 회절 효율 등의 광학 특성을 제어할 수 있다. 또한 본 발명에 관련된 액정 소자는, 투명 도전막이나 절연막을 필요로 하지 않는 점에서 투과율을 저하시키지 않고 높은 광 이용 효율을 실현할 수 있다. 이것으로부터, 생산성이 높고 품질이 양호한 액정 소자를 실현할 수 있음과 함께 광 헤드 장치에 구비함으로써 액정 소자, 편광 필터, 광량 가변 소자로서 사용할 수 있다.

Claims (8)

  1. 투명 기판과,
    액정 재료로 구성되며 주기적인 요철로 이루어지는 요철부를 포함하는 액정층을 갖는 액정 소자로서,
    상기 액정층의 요철부는, 상기 투명 기판측에 위치함과 함께 상기 액정층의 요철부의 계면인 요철면에 위치하는 액정 분자의 장축 방향이 상기 투명 기판측의 요철면에 대해 실질적으로 수직 방향이 되거나, 또는
    상기 액정층의 요철부는, 상기 투명 기판의 반대에 있는 매질측에 위치함과 함께 상기 액정층의 요철부의 계면인 요철면에 위치하는 액정 분자의 장축 방향이 상기 매질측의 요철면에 대해 실질적으로 수직 방향이 되도록 배향되어 회절 격자를 형성하는, 액정 소자.
  2. 제 1 항에 있어서,
    상기 매질은, 투명 기판으로서, 1 쌍의 투명 기판에 의해 상기 액정층이 충전, 평탄화되어 있는, 액정 소자.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 액정층은, 상기 요철부가 형성된 면과 대향하는 상기 액정층의 면이 평탄하고, 평탄한 상기 액정층의 면의 액정 분자가 일정하게 배향되어 있는, 액정 소자.
  4. 제 3 항에 있어서,
    상기 액정층은, 평탄한 상기 액정층의 면의 액정 분자가 평탄한 상기 액정층의 면에 대해 실질적으로 수평 방향으로 배향되는, 액정 소자.
  5. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 액정층의 요철부가 형성된 면이 복수의 영역으로 구성되어, 각 영역의 요철부의 주기 방향이 상이하거나, 또는 상기 액정층의 요철부의 요철 방향이 연속적으로 변화되어 분포하고,
    상기 액정층은, 평탄한 상기 액정층의 면의 액정 분자가 평탄한 상기 액정층의 면에 대해 실질적으로 수직 방향으로 배향되는, 액정 소자.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 액정층의 요철부측의 매질이 등방성 재료로 형성되고, 상기 등방성 재료의 굴절률이 액정의 상광 굴절률 (no) 또는 이상광 굴절률 (ne) 과 실질적으로 동일한, 액정 소자.
  7. 광원과, 상기 광원으로부터의 출사광을 광 기록 매체 상에 집광시키기 위한 대물 렌즈와,
    집광되어 상기 광 기록 매체에 의해 반사된 상기 출사광을 수광하는 광 검출기와,
    상기 광원과 상기 광 기록 매체 사이의 광로 중 또는 상기 광 기록 매체와 상기 광 검출기 사이의 광로 중에 배치된 제 1 항 내지 제 6 항 중 어느 한 항에 기재된 액정 소자를 구비하는, 광 헤드 장치.
  8. 1 쌍의 투명 기판에 액정이 협지된 액정 셀과,
    제 1 항 내지 제 6 항 중 어느 한 항에 기재된 액정 소자와,
    상기 액정에 전압을 인가하여 상기 액정의 배향 상태를 바꾸는 전압 제어 장치를 구비하는, 가변형 광 변조 소자.
KR1020107013854A 2007-12-27 2008-12-25 액정 소자 및 광 헤드 장치 및 가변 광 변조 소자 KR101330860B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2007-336725 2007-12-27
JP2007336725 2007-12-27
PCT/JP2008/073651 WO2009084604A1 (ja) 2007-12-27 2008-12-25 液晶素子および光ヘッド装置および可変光変調素子

Publications (2)

Publication Number Publication Date
KR20100100900A true KR20100100900A (ko) 2010-09-15
KR101330860B1 KR101330860B1 (ko) 2013-11-18

Family

ID=40824318

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107013854A KR101330860B1 (ko) 2007-12-27 2008-12-25 액정 소자 및 광 헤드 장치 및 가변 광 변조 소자

Country Status (5)

Country Link
US (1) US8300512B2 (ko)
JP (1) JPWO2009084604A1 (ko)
KR (1) KR101330860B1 (ko)
CN (1) CN101911191B (ko)
WO (1) WO2009084604A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152694A1 (ko) * 2014-04-04 2015-10-08 주식회사 엘지화학 액정 소자
US10196550B2 (en) 2014-04-04 2019-02-05 Lg Chem, Ltd. Liquid crystal element

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8643822B2 (en) * 2007-07-03 2014-02-04 Jds Uniphase Corporation Non-etched flat polarization-selective diffractive optical elements
US8384861B2 (en) * 2008-07-28 2013-02-26 Pixel Qi Corporation Diffractive liquid crystal display
JP5399833B2 (ja) * 2009-09-15 2014-01-29 スタンレー電気株式会社 光学装置及びその製造方法
WO2011129404A1 (ja) * 2010-04-15 2011-10-20 旭硝子株式会社 液晶素子を製造する方法及び液晶素子
KR101646674B1 (ko) * 2010-10-13 2016-08-08 삼성전자주식회사 백라이트 유닛 및 이를 적용한 디스플레이장치
US8830426B2 (en) 2010-11-17 2014-09-09 Pixel Qi Corporation Color shift reduction in transflective liquid crystal displays
TWI457665B (zh) * 2011-10-27 2014-10-21 Benq Materials Corp 圖案相位延遲膜及其製造方法
US9946134B2 (en) * 2012-08-24 2018-04-17 Lumentum Operations Llc Variable optical retarder
KR101536225B1 (ko) * 2013-11-29 2015-07-14 경북대학교 산학협력단 회절광 노이즈를 제거한 액정상 고분자 필름 및 그 제조방법
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
EP3245444B1 (en) 2015-01-12 2021-09-08 DigiLens Inc. Environmentally isolated waveguide display
KR101979778B1 (ko) * 2015-02-16 2019-05-17 주식회사 엘지화학 액정 소자
NZ738352A (en) 2015-06-15 2019-07-26 Magic Leap Inc Method of manufacturing a liquid crystal device
EP3359999A1 (en) 2015-10-05 2018-08-15 Popovich, Milan Momcilo Waveguide display
US10103357B2 (en) 2016-02-17 2018-10-16 The Curators Of The University Of Missouri Fabrication of multilayer nanograting structures
CN106154682A (zh) * 2016-08-30 2016-11-23 京东方科技集团股份有限公司 一种显示装置
US11067860B2 (en) 2016-11-18 2021-07-20 Magic Leap, Inc. Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same
IL310194A (en) 2016-11-18 2024-03-01 Magic Leap Inc Liquid crystal refraction lattices vary spatially
JP7164525B2 (ja) 2016-12-14 2022-11-01 マジック リープ, インコーポレイテッド 表面整合パターンのソフトインプリント複製を用いた液晶のパターン化
CN106959531A (zh) * 2017-03-31 2017-07-18 深圳市华星光电技术有限公司 显示装置、液晶显示光栅及制备方法
JPWO2020004497A1 (ja) * 2018-06-28 2021-05-13 富士フイルム株式会社 光学素子及び光学素子の製造方法
KR20210138609A (ko) 2019-02-15 2021-11-19 디지렌즈 인코포레이티드. 일체형 격자를 이용하여 홀로그래픽 도파관 디스플레이를 제공하기 위한 방법 및 장치
US11543696B2 (en) * 2019-07-18 2023-01-03 Himax Technologies Limited Optical surface mapping system
KR20220054386A (ko) * 2019-08-29 2022-05-02 디지렌즈 인코포레이티드. 진공 브래그 격자 및 이의 제조 방법
WO2021060394A1 (ja) * 2019-09-27 2021-04-01 富士フイルム株式会社 光学素子
WO2022091733A1 (ja) * 2020-10-29 2022-05-05 富士フイルム株式会社 液晶部材およびミリ波用変調素子
TWI816461B (zh) * 2022-07-07 2023-09-21 明基材料股份有限公司 適用於一電致發光顯示器的圖案化光學膜

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729640A (en) * 1984-10-03 1988-03-08 Canon Kabushiki Kaisha Liquid crystal light modulation device
JPH0652348A (ja) 1992-07-28 1994-02-25 Sumitomo Metal Ind Ltd マーク読み取りの際の搬送誤差補償方法及びシステム
US5313479A (en) 1992-07-29 1994-05-17 Texas Instruments Incorporated Speckle-free display system using coherent light
JPH08278477A (ja) * 1994-12-27 1996-10-22 Seiko Epson Corp 回折素子、光ヘッド及び光記録再生装置
JPH10199004A (ja) * 1996-12-26 1998-07-31 Asahi Glass Co Ltd 液晶位相制御素子、光ヘッド装置及び光ディスク装置
CN1311449C (zh) * 1998-11-09 2007-04-18 松下电器产业株式会社 光信息处理装置和光学元件
US6584059B1 (en) * 1999-02-17 2003-06-24 Matsushita Electric Industrial Co., Ltd. Information recording and reproducing apparatus
EP1126291B1 (en) * 1999-08-26 2004-10-27 Asahi Glass Company Ltd. Phase shifter and optical head device mounted with the same
JP4341332B2 (ja) * 2002-07-31 2009-10-07 旭硝子株式会社 光ヘッド装置
JP4269788B2 (ja) * 2003-06-10 2009-05-27 旭硝子株式会社 反射型光変調素子および可変光減衰器
EP1688783B1 (en) * 2003-11-27 2009-10-14 Asahi Glass Company Ltd. Optical element using liquid crystal having optical isotropy
KR20060126668A (ko) * 2004-02-03 2006-12-08 아사히 가라스 가부시키가이샤 액정 렌즈 소자 및 광헤드 장치
JP4360929B2 (ja) * 2004-02-16 2009-11-11 シャープ株式会社 光学素子およびその製造方法
JP4275097B2 (ja) * 2004-04-22 2009-06-10 シャープ株式会社 液晶表示装置およびその製造方法
CN100412619C (zh) * 2004-04-30 2008-08-20 旭硝子株式会社 液晶透镜元件和激光头装置
JP2005353207A (ja) * 2004-06-11 2005-12-22 Ricoh Co Ltd 偏光ホログラム素子、光ピックアップ装置及びこれらの製造方法
EP1780582A4 (en) * 2004-07-29 2009-07-08 Asahi Glass Co Ltd POLARIZED BENDING FILTER AND HISTORIZED POLARIZED BENDING FILTER
JP4552556B2 (ja) * 2004-08-04 2010-09-29 旭硝子株式会社 液晶レンズ素子および光ヘッド装置
WO2006013901A1 (ja) * 2004-08-04 2006-02-09 Asahi Glass Company, Limited 液晶レンズ素子および光ヘッド装置
KR20070065317A (ko) * 2004-10-19 2007-06-22 아사히 가라스 가부시키가이샤 액정 회절 렌즈 소자 및 광헤드 장치
JP2006252638A (ja) * 2005-03-09 2006-09-21 Asahi Glass Co Ltd 偏光回折素子および光ヘッド装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152694A1 (ko) * 2014-04-04 2015-10-08 주식회사 엘지화학 액정 소자
US10196550B2 (en) 2014-04-04 2019-02-05 Lg Chem, Ltd. Liquid crystal element

Also Published As

Publication number Publication date
CN101911191B (zh) 2012-10-24
WO2009084604A1 (ja) 2009-07-09
KR101330860B1 (ko) 2013-11-18
JPWO2009084604A1 (ja) 2011-05-19
US20100260030A1 (en) 2010-10-14
US8300512B2 (en) 2012-10-30
CN101911191A (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
KR101330860B1 (ko) 액정 소자 및 광 헤드 장치 및 가변 광 변조 소자
KR100642951B1 (ko) 광헤드 장치 및 이의 제조 방법
US20110216255A1 (en) Polarization diffraction grating, method for manufacturing the same, and optical pickup apparatus using the polarization diffraction grating
KR100497586B1 (ko) 광헤드장치와 그에 적합한 회절소자 및 회절소자와광헤드장치의 제조방법
KR101105186B1 (ko) 편광성 회절소자 및 광 헤드장치
US20070229955A1 (en) Diffraction device
WO2012160740A1 (ja) 光回折素子、光ピックアップ及び光回折素子の製造方法
JP2006252638A (ja) 偏光回折素子および光ヘッド装置
JP5107313B2 (ja) 偏光性回折素子
KR100447017B1 (ko) 광헤드장치및그제조방법그리고그에적합한회절소자
JP4792679B2 (ja) アイソレータおよび電圧可変アッテネータ
JP4387141B2 (ja) 偏光性回折格子
JP3598703B2 (ja) 光ヘッド装置及びその製造方法
JP5152366B2 (ja) アイソレータおよび電圧可変アッテネータ
JPH1010307A (ja) 光学回折格子の製造方法及びそれを用いた光ヘッド装置
JP4999485B2 (ja) 光束分割素子および光束分割方法
JPH11312329A (ja) 偏光性回折素子および光ヘッド装置
JP3947828B2 (ja) 光ヘッド装置及びその製造方法
JPH10188321A (ja) 偏光回折格子及びそれを用いた光ヘッド装置
JPH1068820A (ja) 偏光回折素子及びそれを用いた光ヘッド装置
JP2003029014A (ja) 偏光性回折素子
JP4631679B2 (ja) 光ヘッド装置
JPH11211905A (ja) 回折素子の製造方法及びこの回折素子を用いた光ヘッド装置
WO2006025629A1 (en) Wave selection type diffractive optical elements and optical pickup device has them
JP2005339654A (ja) 光ヘッド装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161104

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171103

Year of fee payment: 5