KR20100028434A - 반도체소자의 콘택 형성방법 - Google Patents

반도체소자의 콘택 형성방법 Download PDF

Info

Publication number
KR20100028434A
KR20100028434A KR1020080087473A KR20080087473A KR20100028434A KR 20100028434 A KR20100028434 A KR 20100028434A KR 1020080087473 A KR1020080087473 A KR 1020080087473A KR 20080087473 A KR20080087473 A KR 20080087473A KR 20100028434 A KR20100028434 A KR 20100028434A
Authority
KR
South Korea
Prior art keywords
gate
substrate
contact
forming
gate stacks
Prior art date
Application number
KR1020080087473A
Other languages
English (en)
Inventor
지연혁
김태균
이승미
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020080087473A priority Critical patent/KR20100028434A/ko
Publication of KR20100028434A publication Critical patent/KR20100028434A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823475MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

기판 상에 게이트스페이서 및 게이트하드마스크막을 포함하는 게이트스택들을 형성하고, 게이트스택들을 덮는 층간절연막을 형성한 후, 층간절연막을 선택적으로 식각하여 게이트스택들 사이의 기판 부분을 노출시키는 콘택홀을 형성한다. 콘택홀이 형성된 기판 상에 게이트스페이서의 두께를 보강하는 절연막을 형성하고, 절연막에 수직방향으로 산화시키는 플라즈마 산화 공정을 수행하여 게이트스택들 사이의 기판 위에 형성된 절연막 부분을 산화시킨다. 게이트스택들 사이의 기판 위에 산화된 절연막 부분을 선택적으로 제거하여 게이트스택들 사이의 기판 표면을 노출시키고, 그리고 게이트스택들 사이의 기판 표면 위에 콘택물질을 매립하여 콘택 플러그를 형성하는 반도체소자의 콘택 형성방법을 제시한다.
실리콘나이트라이드, 콘택, 폴리실리콘, 스페이서, 자기 정렬 식각

Description

반도체소자의 콘택 형성방법{Method for fabricating contact in semicondutor device}
본 발명은 반도체소자의 제조 방법에 관한 것으로, 보다 구체적으로 반도체소자의 콘택 형성 방법에 관한 것이다.
반도체소자가 고집적화됨에 따라, 제한된 면적 내에서 패턴을 형성하기 위해 반도체소자를 구현하기 위한 다양한 방법들이 제안되고 있다. 반도체소자를 구현하는데 있어서, 패턴의 임계치수를 낮추는 것도 중요하지만, 상 하 패턴들 간의 안정적인 콘택을 확보하는 것도 중요해지고 있다. 따라서, 하부 패턴과, 상부 패턴간의 안정적인 콘택을 확보하기 위해, 랜딩 플러그 콘택(landing plug contact)을 이용하고 있으며, 아울러, 산화막과 질화막간의 식각선택비를 이용하여 식각프로파일을 얻는 자기정렬 콘택(SAC;Self Align Contact) 공정을 적용하고 있다.
랜딩 플러그 콘택을 형성하기 위해서는, 게이트스택과 랜딩플러그콘택 사이를 절연하기 위한 게이트스페이서를 반도체기판 위의 게이트스택 측면에 형성한다. 그리고, 전면에 절연막을 증착한 후, 자기정렬콘택 식각을 수행하여 랜딩플러그 콘택이 형성될 게이트스택 사이로 반도체기판이 노출되도록 한다. 다음에, 게이트 스 택 사이의 랜딩플러그 도전막 예컨대, 폴리실리콘막을 증착한 후에, 평탄화하여 인접하는 랜딩 플러그콘택를 상호 분리시킨다.
그런데, 랜딩플러그콘택 형성과정에서, 자기정렬컨택(SAC) 식각시 과도한 식각으로 인하여 게이트스페이서도 함께 식각되거나, 또는 게이트스택 상부에 위치하여 하부의 게이트스택을 보호하는 하드마스크막의 손실(loss)이 과도하게 발생될 수 있다. 게이트스페이서막이 함께 식각되는 경우, 게이트스택이 손상(attact) 받거나, 랜딩플러그콘택과 게이트스택 사이의 전기적인 절연이 이루어지지 않게 되어 소자의 오동작을 유발할 수 있다. 또한, 하드마스크질화막의 손실이 과도하게 발생되는 경우에는, 게이트스택과 비트라인콘택 사이의 브리지(bridge)나, 게이트스택과 스토리지노드콘택 사이의 브리지가 발생할 수 있다.
이에 따라, 자기정렬콘택 식각을 이용한 랜딩플러그 콘택을 형성하는 과정에서 콘택홀 형성 후, 콘택홀 내벽에 질화막을 추가적으로 증착하는 공정이 수반되고 있다. 이러한 질화막은 콘택 매립 물질 예컨대, 폴리실리콘막과 게이트스택 사이의 절연성을 보완해주는 역할을 한다. 그런데, 콘택홀 내벽에 형성된 질화막은 자기정렬콘택 식각 시 유발되는 결함(SAC fail)을 개선하는 이점이 있지만, 콘택과 하부 패턴 예컨대, 반도체기판이 접속되는 질화막 부분을 제거하지 못할 경우, 콘택홀이 오픈되지 못하는 결함(Not open fail)이 발생될 수 있다.
따라서, 자기정렬콘택 식각을 이용한 랜딩플러그콘택 형성과정에서, 자기정렬콘택 식각 시 유발되는 결함을 개선함과 동시에, 콘택홀이 오픈되지 못하는 결함을 개선할 수 있는 공정 기술이 요구되고 있다.
본 발명에 따른 반도체소자의 콘택 형성방법은, 기판 상에 게이트스페이서 및 게이트하드마스크막을 포함하는 게이트스택들을 형성하는 단계; 상기 게이트스택들을 덮는 층간절연막을 형성하는 단계; 상기 층간절연막을 선택적으로 식각하여 상기 게이트스택들 사이의 기판 부분을 노출시키는 콘택홀을 형성하는 단계; 상기 콘택홀이 형성된 기판 상에 상기 게이트스페이서의 두께를 보강하는 절연막을 형성하는 단계; 상기 절연막에 수직방향으로 산화시키는 플라즈마 산화 공정을 수행하여 상기 게이트스택들 사이의 기판 위에 형성된 절연막 부분을 산화시키는 단계; 상기 게이트스택들 사이의 기판 위에 산화된 절연막 부분을 선택적으로 제거하여 상기 게이트스택들 사이의 기판 표면을 노출시키는 단계; 및 상기 게이트스택들 사이의 기판 표면 위에 콘택물질을 매립하여 콘택 플러그를 형성하는 단계를 포함한다.
상기 절연막은 실리콘나이트라이드막을 포함하여 형성하는 것이 바람직하다.
상기 절연막을 형성하는 단계 이후에, 상기 절연막이 형성된 게이트스택 상부를 감싸면서, 상기 게이트스택 사이의 기판 위에 형성된 절연막 부분을 노출시켜 상기 게이트스택 측벽의 산화를 방지하는 보호막을 형성하는 단계를 더 포함할 수 있다.
상기 보호막은 상기 게이트스택 상부 모서리 부분은 두껍게 성장되어 오버행을 유발시키는 언도프트 실리게이트 글래스(Undoped silicate glass)막으로 형성하는 것이 바람직하다.
상기 플라즈마 산화 공정은, 500 내지 900℃의 온도 및 4 내지 5 토르의 압력에서 수행하는 것이 바람직하다.
상기 플라즈마 산화 공정은, 상기 기판 뒷면(backside)쪽에 바이어스를 인가하여 수직방향으로의 산화 작용을 유도하는 것이 바람직하다.
상기 게이트스택들 사이의 기판 위에 산화된 절연막 부분은 습식 세정을 수행하여 선택적으로 제거하는 것이 바람직하다.
(실시예)
도 1을 참조하면, 반도체기판(100) 내에 활성영역을 설정하는 소자분리막(110)을 형성한다. 구체적으로, 반도체기판(100) 상에 포토리소그라피(photolithography) 공정 및 식각공정을 수행하여 반도체기판(100) 부분을 선택적으로 식각하여 소자분리트렌치를 형성하고, 소자분리트렌치 내에 절연막 예컨대 SOD(Spin On Dielectric)막 또는 HDP(High Density Plasma)막을 매립한다. 다음에, 평탄화 예컨대, 화학기계 연마(CMP;Chemical Mechanical Polishing) 공정을 수행한다. 그러면, 반도체기판(100) 내에 소자분리막(110)이 형성되어 활성영역 및 소자분리막이 설정된다.
다음에, 활성영역의 반도체기판(100) 내에 선택적으로 리세스 트렌치(101)를 형성한다. 구체적으로, 반도체기판(100) 상에 리세스 트랜치가 형성될 영역을 선택적으로 노출시키는 마스크 패턴(도시되지 않음)을 형성하고, 마스크 패턴을 식각마스크로 노출된 활성영역의 반도체기판(100) 부분을 식각하여 채널 길이를 보다 더 확장시켜주는 리세스 트렌치(101)를 형성한다.
도 2를 참조하면, 리세스 트렌치(101)가 형성된 반도체기판(100) 상에 절연막(121), 도전막(122), 금속막(123) 및 게이트하드마스크막(124)을 순차적으로 형성한다.
절연막(121)은 고온 산화공정으로 성장된 실리콘옥사이드(SiO2)막으로 형성할 수 있다. 도전막(122)은 800 내지 1000Å 두께의 폴리실리콘막으로 형성할 수 있으며, 금속막(123)은 텅스텐(W)을 포함하여 형성할 수 있다. 이때, 도전막(122)과, 금속막(123) 계면에, 배리어금속(barrier metal) 예컨대, 텅스텐나이트라이드(WN)막을 형성할 수 있다. 게이트하드마스크막(124)은 실리콘나이트라이드(SiN)막 및 비정질 카본(amprphous caborn)막을 포함하여 형성할 수 있다.
도 3을 참조하면, 포토리소그라피(photolithography) 공정 및 식각(etching)공정을 수행하여 게이트하드마스크막(124)을 포함하는 게이트스택(120)을 형성한다. 다음에, 게이트스택(120) 양 측벽에 게이트스페이서(130)를 형성한다. 게이트스페이서(130)는 실리콘나이트라이드(SiN)와 같은 절연물질을 포함하여 형성할 수 있다. 구체적으로, 게이트스택(120)이 형성된 반도체기판(100) 상에 게이트스페이서막을 형성한 후, 이방성 식각 예컨대, 에치백(etch back) 공정을 수행하여 게이트스택(120) 사이의 반도체기판(100) 부분을 선택적으로 노출시킨다. 게이트스페이서(130)는 후속 식각 공정 시 게이트스택(120)을 보호하는 역할을 한다.
도 4를 참조하면, 게이트스페이서(130)가 형성된 반도체기판(100) 상에 층간 절연막(140)을 형성한 후, 자기정렬콘택(SAC;Self Align Contact) 식각공정을 수행하여 게이트스페이서(130) 사이의 반도체기판(100) 부분을 노출시키는 개구부(opening)를 형성한다. 구체적으로, 층간절연막(140) 상에 랜딩플러그콘택이 형성될 영역을 선택적으로 노출시키는 랜딩플러그마스크막(150)을 형성하고, 랜딩플러그마스크막(150)에 의해 노출된 층간절연막(140) 부분을 식각하여 게이트스페이서(130) 및 게이트하드마스크막(124)에 의해 자기정렬된 개구부를 형성한다.
그런데, 자기정렬콘택(SAC) 식각 공정 시 과도한 식각으로 인하여 게이트스페이서(130)가 함께 식각되거나, 또는 게이트스택(120) 상부에 위치하여 하부의 게이트스택(120)을 보호하는 게이트하드마스크막(124)의 손실(loss)이 발생될 수 있다. 이로 인해, 게이트스택(120)이 손상(attact) 받거나, 게이트스택(120)과 콘택 사이의 브리지(bridge) 등 자기정렬콘택 식각 시 유발되는 결함(SAC fail)이 발생되고 있다.
도 5를 참조하면, 랜딩플러그마스크막(도 4의 150)을 제거한 후, 개구부가 형성된 반도체기판(100) 전면에, 게이트스페이서(130)의 두께를 보강하기 위한, 절연막(160)을 형성한다. 절연막(160)은 게이트스페이서(130)와 대등한 물질막 예컨대, 실리콘나이트라이드막으로 형성할 수 있다. 절연막(160)은 개구부가 형성된 기판의 프로파일(profile)을 따라 형성할 수 있다. 절연막(160)은 자기정렬콘택 식각 과정에서 손실되는 게이트스페이서(130) 또는 게이트하드마스크막(124)의 두께를 보강시켜 랜딩플러그 콘택과 게이트스택(120) 사이를 절연성을 확보한다. 이에 따라, 게이트스택(120)이 손상받거나, 게이트스택과 콘택 사이의 브릿지(bridge)를 최소한으로 억제시켜, 자기정렬 식각 공정 시 유발되는 결함(SAC fail)을 방지할 수 있다.
도 6을 참조하면, 수평방향으로 산화시키는 플라즈마 산화(plasma oxidation) 공정을 수행한다. 그러면, 게이트스페이서(130) 사이의 반도체기판(100)에 형성된 절연막(160) 부분이 선택적으로 산화되어 산화영역(160a)이 형성된다. 이때, 층간절연막(140) 상부 표면에 형성된 절연막(160) 부분 또는 게이트하드마스크막(124) 상부 표면에 형성된 절연막(160) 부분에 산화영역(160a)이 함께 형성될 수 있다.
구체적으로, 절연막(160)이 형성된 반도체기판(100)을 반응 챔버 예컨대, 플라즈마 챔버 내부로 로딩(loading)하고, 챔버의 히터(heater)를 이용해 챔버 내부의 온도를 고온 예컨대, 500 내지 900℃ 온도까지 끌어올리고, 챔버 내부의 압력이 4 내지 5 토르(torr)로 유지시킨다. 챔버 내부로 산소가스를 공급하고, 챔버에 바이어스를 인가하여 이온 플라즈마 및 활성 라디컬을 발생시킨다. 이때, 고온에서 형성된 이온 플라즈마 및 활성 라디컬은 증가된 에너지로 인해, 실리콘나이트라이드막을 포함하는 절연막을 산화시킬 수 있다. 계속해서, 챔버의 바닥쪽에 300 내지 350 V 정도의 바이어스를 인가하여 플라즈마 산화 공정에서 수직 방향으로의 산화 작용을 증가시켜 게이트스페이서(130) 사이의 반도체기판(100)에 형성된 절연막(160) 부분을 산화시킨다.. 이때, 낮은 압력에서 플라즈마 산화 공정을 수행함으로써, 이온 플라즈마 및 활성 라디컬 간에 서로 충돌하는 확률을 감소시켜 수직 방향으로 이동하는 이온 플라즈마 및 활성 라디컬에 의해 게이트스페이서(130) 사이 의 반도체기판(100)에 형성된 절연막 부분을 산화시킬 수 있다.
한편, 산화공정에는 건식 산화 및 습식 산화 공정이 존재하지만, 건식 산화 및 습식산화 공정은 실리콘나이트라이드막을 실리콘옥사이드막으로 산화시킬 수 없을 뿐만 아니라, 수직 방향 및 수평 방향으로 이루어져 산화 방향성을 제어하기가 어렵다. 이에 반해, 본 발명의 실시예에서는, 챔버의 바닥쪽에 바이어스를 인가하여 수평 방향 산화보다 수직 방향의 산화 작용을 증가시킴으로써, 수직 방향으로 상대적으로 더 빠르게 산화되는 효과를 얻을 수 있다. 따라서, 이온 플라즈마와 활성 라디컬의 방향성을 제어하여 게이트스페이서 측벽의 절연막 부분은 산화를 억제시키고, 게이트스페이서 사이의 반도체기판 상에 형성된 절연막 부분을 국부적으로 산화시킬 수 있다.
도 7을 참조하면, 세정공정으로 절연막(160)이 산화된 산화 영역(도 6의 160a)을 제거하여 게이트스페이서(130) 사이의 반도체기판(100) 부분을 선택적으로 노출시키는 콘택홀(contact hole)을 형성한다. 세정 공정은, 예컨대 BOE(Buffered Oxide Etchant) 용액 DHF(Dilute HF) 용액을 사용한 습식 세정으로 수행할 수 있다.
도 8을 참조하면, 콘택홀 내에 도전막 에컨대, 폴리실리콘막을 매립하여 랜딩플러그콘택(170)을 형성한다. 이때, 게이트스페이서(130)의 두께를 보강하기 위한, 절연막(160)이 게이트스페이서(130) 사이의 반도체기판(100) 상에는 제거되어 있으므로, 랜딩플러그콘택(170)이 오픈되지 않는 (not open) 결함을 방지할 수 있다.
(실시예 2)
도 9를 참조하면, 반도체기판(200) 상에 게이트하드마스크막(224)을 포함하는 게이트스택(220) 및 게이트스페이서(230)를 형성한다. 게이트스택(220)을 형성하기 이전에, 반도체기판(200) 내에 활성영역을 설정하는 소자분리막(210)을 형성하고, 활성 영역의 반도체기판(200)을 선택적으로 식각하여 리세스 트렌치를 형성한다. 이때, 게이트스택(220)은 절연막(221), 도전막(222), 금속막(223)으로 형성할 수 있다.
다음에, 게이트스택(220) 및 게이트스페이서(230)를 덮는 층간절연막(240)을 형성하고, 자기정렬콘택 식각공정을 수행하여 게이트스페이서(230) 사이의 반도체기판(200) 부분을 선택적으로 노출시키는 개구부를 형성한다. 구체적으로, 층간절연막(240) 상에 랜딩플러그콘택이 형성될 영역을 선택적으로 노출시키는 랜딩플러그마스크막(250)을 형성하고, 랜딩플러그마스크막(250)에 의해 노출된 층간절연막(140) 부분을 선택적으로 식각하여 게이트스페이서(230) 및 게이트하드마스크막(224)에 의해 자기정렬된 개구부를 형성한다.
도 10을 참조하면, 자기정렬콘택 식각 공정 시 과도한 식각으로 인해, 손실되는 게이트스페이서(230)의 두께를 보강하기 위한 절연막(260)을 형성한다. 절연막(260)은 게이트스페이서(230)와 대등한 물질막 예컨대, 실리콘나이트라이드막으로 형성할 수 있다. 절연막(260)은 개구부가 형성된 기판의 프로파일(profile)을 따라 형성할 수 있다. 절연막(260)은 자기정렬콘택 식각 과정에서 손실되는 게이트스페이서(260) 또는 게이트하드마스크막(224)의 두께를 보강시켜 랜딩플러그콘택과 게이트스택(120) 사이를 절연성을 확보한다. 이에 따라, 게이트스택이 손상받거나, 게이트스택과, 콘택 사이의 브릿지를 최소한으로 억제시켜, 자기정렬 식각 공정 시 유발되는 결함(SAC fail)을 방지할 수 있다.
도 11을 참조하면, 절연막(260)이 형성된 게이트스택(220) 상부에 게이트스페이서(230) 및 게이트스택(220) 상에 형성된 절연막(260)을 보호하는 보호막(270)을 형성한다. 보호막(270)은 절연막(260)이 형성된 게이트스택(220) 상부를 감싸면서, 게이트스택(270) 사이의 반도체기판(200) 위에 형성된 절연막(260) 부분을 노출시켜 게이트스택(220) 측벽의 산화를 방지하는 역할을 한다. 이때, 보호막(270)은 게이트스택(220) 상부 모서리 부분은 두껍게 성장되어 오버행을 유발시키는 언도프트 실리게이트 글래스(Undoped silicate glass)막으로 형성할 수 있다. 보호막(270)은 게이트스페이서(230) 사이의 반도체기판(200) 상에 형성된 절연막(260) 부분을 제거하는 공정에서, 게이트스페이서(230) 측벽에 형성된 절연막(260) 부분이 산화되거나 손실되는 것을 방지하고 보호하는 역할을 한다.
도 12를 참조하면, 수직방향으로 산화시키는 플라즈마 산화(plasma oxidation) 공정을 수행한다. 그러면, 게이트스페이서(230) 사이의 반도체기판(100) 부분에 형성된 절연막(260) 부분에 산화영역(260a)이 형성된다.
구체적으로, 절연막(260)이 형성된 반도체기판(100)을 반응 챔버 예컨대, 플라즈마 챔버 내부로 로딩(loading)하고, 챔버의 히터(heater)를 이용해 챔버 내부의 온도를 고온 예컨대, 500 내지 900℃ 온도까지 끌어올리고, 챔버 내부의 압력이 4 내지 5 토르(torr)로 유지시킨다. 챔버 내부로 산소가스를 공급하고, 챔버에 바 이어스를 인가하여 이온 플라즈마 및 활성 라디컬을 발생시킨다. 이때, 고온에서 형성된 이온 플라즈마 및 활성 라디컬은 증가된 에너지로 인해, 실리콘나이트라이드막을 포함하는 절연막을 산화시킬 수 있다. 계속해서, 챔버의 바닥쪽에 300 내지 350 V 정도의 바이어스를 인가하여 플라즈마 산화 공정에서 수직 방향의 산화 작용을 증가시켜 게이트스페이서(230) 사이의 반도체기판(20) 위에 절연막(260) 부분을 산화시킬 수 있다. 이때, 낮은 압력에서 플라즈마 산화 공정을 수행함으로써, 이온 플라즈마 및 활성 라디컬 간에 서로 출동하는 확률을 감소시켜 수직 방향으로 이동하는 이온 플라즈마 및 활성 라디컬에 의해 게이트 스페이서(260) 사이의 반도체기판 위에 형성된 절연막 부분을 산화시킬 수 있다. 즉, 챔버의 바닥쪽에 바이어스를 인가하여 수평 방향 산화보다 수직 방향의 산화 특성을 증가시킴으로써, 수직 방향으산화되는 효과를 얻을 수 있다.
도 13을 참조하면, 세정공정으로 절연막(260)이 산화된 산화 영역(260a)을 제거하여 게이트스페이서(230) 사이의 반도체기판(200) 부분을 선택적으로 노출시키는 콘택홀을 형성한다. 세정 공정은, 예컨대 BOE 용액 DHF 용액을 사용한 습식 세정으로 수행할 수 있다. 이때, BOE 용액 DHF 용액을 사용한 습식 세정은 산화막을 제거할 수 있는 공정이므로, 게이트스택(220) 상부에 형성된 보호막(도 7의 160)도 함께 제거되어 진다.
도 14를 참조하면, 콘택홀 내에 도전막 에컨대, 폴리실리콘막을 매립하여 랜딩플러그콘택(280)을 형성한다. 이때, 게이트스페이서(230)의 두께를 보강하기 위한, 절연막(260)이 게이트스페이서(230) 사이의 반도체기판(200) 위에는 제거되어 있으므로, 랜딩플러그콘택(280)이 오픈되지 않는 (not open) 결함을 방지할 수 있다.
본 발명에 따르면, 자기정렬콘택 식각 공정을 수행한 이후에, 절연막을 추가적으로 형성하여 게이트스택과 폴리실리콘막과의 절연특성을 보강하고, 게이트스택 사이의 절연막 부분에 수직방향의 산화 특성이 증가된 플라즈마 산화 공정을 수행하여 국부적으로 산화시킨 후, 세정공정으로 산화된 절연막 부분을 제거한다. 이에 따라, 게이트스택이 노출되는 결함(SAC fail)을 방지하면서, 동시에 콘택과 반도체기판 부분이 전기적으로 접속하지 못하는 결함(not open fail)을 방지할 수 있다.
이상 본 발명의 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않으며, 본 발명의 바람직한 기술적 사상 내에서 당분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능함은 당연하다.
도 1 내지 도 8은 본 발명의 일 실시예 따른 반도체소자의 콘택 형성방법을 설명하기 위해 나타내 보인 단면도들이다.
도 9 내지 도 14은 본 발명의 다른 실시예에 따른 반도체소자의 콘택 형성방법을 설명하기 위해 나타내 보인 단면도들이다.

Claims (7)

  1. 기판 상에 게이트스페이서 및 게이트하드마스크막을 포함하는 게이트스택들을 형성하는 단계;
    상기 게이트스택들을 덮는 층간절연막을 형성하는 단계;
    상기 층간절연막을 선택적으로 식각하여 상기 게이트스택들 사이의 기판 부분을 노출시키는 콘택홀을 형성하는 단계;
    상기 콘택홀이 형성된 기판 상에 상기 게이트스페이서의 두께를 보강하는 절연막을 형성하는 단계;
    상기 절연막에 수직방향으로 산화시키는 플라즈마 산화 공정을 수행하여 상기 게이트스택들 사이의 기판 위에 형성된 절연막 부분을 산화시키는 단계;
    상기 게이트스택들 사이의 기판 위에 산화된 절연막 부분을 선택적으로 제거하여 상기 게이트스택들 사이의 기판 표면을 노출시키는 단계; 및
    상기 게이트스택들 사이의 기판 표면 위에 콘택물질을 매립하여 콘택 플러그를 형성하는 단계를 포함하는 반도체소자의 콘택 형성방법.
  2. 제1항에 있어서,
    상기 절연막은 실리콘나이트라이드막을 포함하여 형성하는 반도체소자의 콘택 형성 방법.
  3. 제1항에 있어서,
    상기 절연막을 형성하는 단계 이후에,
    상기 절연막이 형성된 게이트스택 상부를 감싸면서, 상기 게이트스택 사이의 기판 위에 형성된 절연막 부분을 노출시켜 상기 게이트스택 측벽의 산화를 방지하는 보호막을 형성하는 단계를 더 포함하는 반도체소자의 콘택 형성 방법.
  4. 제3항에 있어서,
    상기 보호막은 상기 게이트스택 상부 모서리 부분은 두껍게 성장되어 오버행을 유발시키는 언도프트 실리게이트 글래스(Undoped silicate glass)막으로 형성하는 반도체소자의 콘택 형성방법.
  5. 제1항에 있어서,
    상기 플라즈마 산화 공정은, 500 내지 900℃의 온도 및 4 내지 5 토르의 압력에서 수행하는 반도체소자의 콘택 형성 방법.
  6. 제4항에 있어서,
    상기 플라즈마 산화 공정은, 상기 기판 뒷면(backside)쪽에 바이어스를 인가하여 수직방향으로의 산화 작용을 유도하는 반도체소자의 콘택 형성 방법.
  7. 제1항에 있어서,
    상기 게이트스택들 사이의 기판 위에 산화된 절연막부분은 습식 세정을 수행하여 선택적으로 제거하는 반도체소자의 콘택 형성방법.
KR1020080087473A 2008-09-04 2008-09-04 반도체소자의 콘택 형성방법 KR20100028434A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080087473A KR20100028434A (ko) 2008-09-04 2008-09-04 반도체소자의 콘택 형성방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080087473A KR20100028434A (ko) 2008-09-04 2008-09-04 반도체소자의 콘택 형성방법

Publications (1)

Publication Number Publication Date
KR20100028434A true KR20100028434A (ko) 2010-03-12

Family

ID=42179118

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080087473A KR20100028434A (ko) 2008-09-04 2008-09-04 반도체소자의 콘택 형성방법

Country Status (1)

Country Link
KR (1) KR20100028434A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10032906B2 (en) 2016-04-29 2018-07-24 Samsung Electronics Co., Ltd. Vertical field effect transistor and method of fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10032906B2 (en) 2016-04-29 2018-07-24 Samsung Electronics Co., Ltd. Vertical field effect transistor and method of fabricating the same

Similar Documents

Publication Publication Date Title
KR100532503B1 (ko) 쉘로우 트렌치 소자 분리막의 형성 방법
US20090029523A1 (en) Method of Fabricating Flash Memory Device
US20070232019A1 (en) Method for forming isolation structure in nonvolatile memory device
US8598012B2 (en) Method for fabricating semiconductor device with buried gates
KR100636031B1 (ko) 불휘발성 메모리 장치의 제조 방법.
KR20090072089A (ko) 반도체 메모리 소자의 소자 분리막 형성 방법
CN110911343A (zh) 浅沟槽隔离结构及其制备方法
US7678676B2 (en) Method for fabricating semiconductor device with recess gate
KR20090025778A (ko) 반도체 소자의 콘택홀 형성 방법
US7476622B2 (en) Method of forming a contact in a semiconductor device
US6156636A (en) Method of manufacturing a semiconductor device having self-aligned contact holes
US7838407B2 (en) Method for protecting the gate of a transistor and corresponding integrated circuit
CN114446891A (zh) 一种半导体结构的形成方法、结构以及存储器
KR20100028434A (ko) 반도체소자의 콘택 형성방법
KR100680948B1 (ko) 반도체 소자의 스토리지 노드 콘택 형성방법
KR100554835B1 (ko) 플래시 소자의 제조 방법
KR20120098295A (ko) 반도체장치 제조방법
KR20090062757A (ko) 반도체 소자의 제조 방법
KR20080000785A (ko) 낸드 플래시 메모리 소자의 제조 방법
KR100629694B1 (ko) 반도체 소자 제조 방법
KR100760829B1 (ko) 액티브 영역 식각 공정을 이용한 듀얼 트랜치 소자 분리공정 및 플래쉬 메모리 소자의 제조 방법
KR100932336B1 (ko) 플래시 메모리 소자의 소자 분리막 형성 방법
KR101143631B1 (ko) 소자분리층을 포함하는 반도체 소자 형성 방법
US7608536B2 (en) Method of manufacturing contact opening
KR20070114462A (ko) 반도체소자의 랜딩플러그컨택 형성방법

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination