KR20080021497A - 묘화 장치 - Google Patents

묘화 장치 Download PDF

Info

Publication number
KR20080021497A
KR20080021497A KR1020070080558A KR20070080558A KR20080021497A KR 20080021497 A KR20080021497 A KR 20080021497A KR 1020070080558 A KR1020070080558 A KR 1020070080558A KR 20070080558 A KR20070080558 A KR 20070080558A KR 20080021497 A KR20080021497 A KR 20080021497A
Authority
KR
South Korea
Prior art keywords
camera
light
illumination light
optical system
reference scale
Prior art date
Application number
KR1020070080558A
Other languages
English (en)
Inventor
도시노리 이노마타
Original Assignee
가부시키가이샤 오크세이사쿠쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 오크세이사쿠쇼 filed Critical 가부시키가이샤 오크세이사쿠쇼
Publication of KR20080021497A publication Critical patent/KR20080021497A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

단시간에 기판 등의 피묘화체의 기준 마크의 위치를 정확하게 계측한다.
회로 패턴을 묘화하는 묘화 장치에 있어서, Y 방향(주 주사 방향)을 따라 이동 가능한 카메라를 배치하고, X 방향(부 주사 방향)을 따라 이동 가능한 기판을 탑재하는 묘화 테이블을 설치한다. 그리고, 기판 스케일(16)을 Y 방향을 따라 배치하고 기대에 대하여 고정시킨다. 또한 카메라(11)에 적색광, 녹색광을 선택적으로 방사하는 광원 유닛을 부착하고, 카메라(11)의 하방에 다이클로익 미러(15)를 설치한다.
Figure P1020070080558
묘화, 마크, 주사 방향, 카메라, 다이클로익 미러, 스케일, 광원, 패턴

Description

묘화 장치{APPARATUS FOR FORMING PATTERN WITH MEASUREMENT MECHANISM}
본 발명은 원판인 포토마스크(레티클) 또는 직접 인쇄 기판이나 실리콘 웨이퍼 등의 피묘화체에 회로 패턴 등의 패턴을 형성하는 묘화 장치에 관한 것이다.
기판 등의 제조 공정에서는 포토레지스트 등의 감광 재료를 도포한 피묘화체에 대하여 패턴 형성을 위한 묘화 처리가 실행되며, 현상 처리, 식각 또는 도금 처리, 레지스트 박리 등의 공정을 거쳐 피묘화체에 패턴이 형성된다. 기판에는 마크, 구멍 등의 기준이 되는 지표가 소정의 장소에 규칙적으로 형성되어 있으며, 기판이 묘화 테이블(묘화 스테이지)에 탑재되면, 묘화 테이블 및 카메라를 이동시킴으로써 기준 마크의 위치가 검출된다. 그리고, 검출된 위치에 기초하여 묘화 패턴을 소정 영역에 형성한다.
기준 마크를 계측할 때 카메라의 정확한 위치를 알 필요가 있기 때문에 예를 들어 묘화 테이블에는 기준 스케일이 부착되어 있으며, 묘화 테이블을 소정 위치로 이동시켜 기준 스케일의 눈금을 기준으로 기준 마크의 위치 좌표를 계측한다(특허 문헌 1). 그리고, 계측된 기준 마크의 위치 좌표에 기초하여 기판의 변형량, 얼라인먼트 오차를 산출하고 묘화 위치를 보정한다.
[특허 문헌 1] 일본 특허 공개 2004-348045호 공보
기준 스케일이 묘화 테이블에 부착되기 때문에 기준 스케일의 마크, 눈금을 계측하는 묘화 테이블을 카메라의 소정 위치(원점 위치)까지 이동시킬 필요가 있다. 따라서 묘화 테이블의 구동 기구에 기인하는 이동 방향을 따른 위치 결정에 오차가 있는 경우, 계측된 위치 좌표에 테이블 오차가 발생한다. 또한 기준 스케일을 사용할 때마다 묘화 테이블을 소정의 원점 위치까지 복귀시킬 필요가 있어 기판의 기준 마크 위치 검출에 시간이 걸린다.
본 발명의 묘화 장치는 기판 등의 피묘화체에 설치된 계측용 마크, 구멍의 위치를 정확하게 단시간에 계측 가능하고, 위치 계측용 기준 마크가 설치된 피묘화체가 탑재되며, 기대에 대하여 상대적으로 제1 주사 방향을 따라 이동 가능한 묘화 테이블과, 기대에 대하여 제1 주사 방향에 직교하는 제2 주사 방향을 따라 이동 가능하게 부착되며, 기준 마크의 위치를 계측하는 카메라를 구비한다. 여기서 기준 마크는 표시, 구멍 등을 포함하며, 예를 들어 기판 등의 피묘화체의 네 귀퉁이에 형성된다. 묘화 테이블, 카메라는 예를 들어 각각 부 주사 방향, 주 주사 방향(또는 그 반대)을 따라 이동시키도록 구성하면 된다.
본 발명의 묘화 장치는 기대에 부착되며, 제2 주사 방향을 따라 연장되는 기준 스케일을 구비하고, 또한 기준 마크의 위치를 계측하기 위하여 제1 조명광을 조사하는 제1 광원과, 기준 스케일을 조명하기 위하여 제1 조명광과 다른 파장 영역 을 갖는 제2 조명광을 조사하는 제2 광원과, 제1 조명광을 피묘화체로 유도하고 그 반사광을 카메라로 유도함과 아울러, 제2 조명광을 기준 스케일로 유도하고 그 반사광을 카메라로 유도하는 계측용 광학계를 구비한다.
계측용 광학계는 제1 조명광, 제2 조명광을 선택하여 기준 마크, 피묘화체로 각각 유도한다. 설계 데이터에 포함되는 묘화 데이터의 위치 좌표에 기초하여 카메라를 제2 주사 방향을 따라 이동시키면, 카메라를 그 장소에서 정지시킨 상태에서 제2 광원으로부터 방사되는 제2 조명광에 의해 기준 스케일이 계측 가능해진다. 그리고, 제1 조명광에 의해 기준 마크의 위치를 그대로 계측 가능해진다. 기준 스케일의 형상, 구성은 임의이지만, 예를 들어 미세한 구멍을 등간격으로 규칙적으로 배열시킨 스케일을 이용하면 좋다. 마크, 눈금의 피치는 묘화 장치의 구성을 따라 정하면 되는데, 카메라를 이동시키는 구동 기구의 구동 오차를 고려하여 구동 오차가 눈금의 피치를 초과하지 않도록 피치를 정하면 된다. 그리고 묘화 장치는 기준 마크의 위치를 계측하는 계측 수단과 계측된 기준 마크의 위치에 기초하여 묘화 위치를 보정하는 보정 수단을 구비한다.
제1 조명광, 제2 조명광을 선택적으로 나누기 위하여, 계측용 광학계에 제1 조명광 및 그 반사광을 투과시키고, 제2 조명광 및 그 반사광을 반사시키는 분광 광학계를 설치하는 것이 좋다. 예를 들어 계측용 광학계에는 제1 및 제2 조명광을 피묘화체로 반사시키고 그 반사광을 그대로 투과시키는 제1 광학계와, 제1 조명광 및 그 반사광을 투과시키고 제2 조명광을 기준 스케일로 반사시킴과 아울러, 그 반사광을 카메라로 반사시키는 제2 광학계가 설치된다. 또는, 제1 조명광을 피묘화 체로 반사시키고 그 반사광을 그대로 투과시키는 제3 광학계와, 제1 조명광 및 그 반사광을 투과시키고 기준 스케일을 통하여 입사하는 제2 조명광을 카메라로 반사시키는 제4 광학계가 설치된다. 제1, 제3 광학계로는 예를 들어 프리즘이 설치된다. 분광 광학계, 제2, 제4 광학계로서 예를 들어 다이클로익 미러가 설치된다.
분광 광학계의 구성으로는 예를 들어 카메라에 일체로 부착하여도 좋으며, 계측용 광학계 및 카메라가 기준 스케일에 대하여 상대적으로 이동한다. 또는, 기준 스케일을 따라 연장되도록 기준 스케일에 부착하여도 좋으며, 카메라가 계측용 광학계 및 기준 스케일에 대하여 상대적으로 이동한다.
본 발명의 묘화 장치의 계측 기구는 기대에 대하여 묘화 테이블이 상대적으로 이동하는 제1 주사 방향에 직교하는 제2 주사 방향을 따라 이동 가능하게 부착되며, 묘화 테이블에 탑재되는 피묘화체에 설치된 기준 마크의 위치를 계측하는 카메라와, 기대에 부착되며, 제2 주사 방향을 따라 연장되는 기준 스케일과, 기준 마크의 위치를 계측하기 위하여 제1 조명광을 조사하는 제1 광원과, 기준 스케일을 조명하기 위하여 제1 조명광과 다른 파장 영역을 갖는 제2 조명광을 조사하는 제2 광원과, 제1 조명광을 피묘화체로 유도하고 그 반사광을 카메라로 유도함과 아울러, 제2 조명광을 기준 스케일로 유도하고 그 반사광을 카메라로 유도하는 계측용 광학계를 구비한 것을 특징으로 한다.
본 발명에 따르면, 단시간에 기판 등의 피묘화체의 기준 마크의 위치를 정확하게 계측할 수 있다.
이하에서는 도면을 참조하여 본 발명의 실시 형태에 대하여 설명한다.
도 1은 본 실시 형태인 묘화 시스템을 모식적으로 도시한 사시도이다.
묘화 시스템인 묘화 장치(10)는 포토레지스트 등의 감광 재료를 표면에 도포한 기판(SW)에 빛을 조사함으로써 회로 패턴을 형성하는 장치이며, 묘화 유닛(30)이 접속되어 있다. 묘화 유닛(30)은 묘화 유닛(30A), 키보드(30B), 모니터(30C)를 구비하며, 회로 패턴에 상응한 CAM 데이터(벡터 데이터)에 기초하여 래스터 데이터를 생성함과 아울러, 묘화 장치(10)의 동작을 제어한다.
묘화 장치(10)는 게이트형 구조체(12), 기대(14)를 구비한다. 기대(14)에는 묘화 테이블(18)이 배치되어 있으며, 묘화 테이블(18) 상에는 각각 기판(SW)이 설치되어 있다. 묘화 테이블은 한 쌍의 가이드 레일(19)에 올려져 가이드 레일(19)을 따라 이동 가능하다.
기대(14)에 고정된 게이트형 구조체(12)에는 기판(SW)의 표면에 회로 패턴을 형성하기 위한 노광 유닛(20)이 설치되어 있다. 노광 유닛(20)은 한 쌍의 가이드 레일(17) 상에 탑재되어 가이드 레일(17)을 따라 이동 가능하다. 기판(SW)은 예를 들어 실리콘 웨이퍼, 필름, 유리 기판 또는 구리를 붙인 적층판이며, 프리베이크 처리, 포토레지스트의 도포 등의 처리가 실시된 블랭크의 상태에서 묘화 테이블(18)에 탑재된다. 여기서는 네거티브형의 포토레지스트가 기판 표면에 형성되어 있다.
기판(SW)의 네 귀퉁이에는 묘화 위치를 조정하기 위한 얼라인먼트 구멍(AM1 ∼AM4)이 형성되어 있으며, 게이트형 구조체(12)에는 얼라인먼트 구멍의 위치를 검출하는 카메라(11)가 부착되어 있다. 게이트형 구조체(12)의 바닥면에는 가이드 레일(17)에 평행한 가이드 레일(도시 생략)이 설치되어 있으며, 카메라(11)는 가이드 레일을 따라 이동 가능하다. 묘화 테이블(18)에 대하여 서로 직교인 X-Y 좌표계가 규정되어 있으며, X-Y 좌표계에 기초하여 기판(SW)이 주사된다. 여기서는 노광 유닛(20)이 이동하는 방향인 주 주사 방향을 Y 방향, 묘화 테이블이 이동하는 방향인 부 주사 방향을 X 방향이라고 한다.
노광 유닛(20)은 광원, DMD(Digital Micro-mirror Device)를 구비하며(여기서는 도시하지 않음), 또한 조명 광학계, 결상 광학계(모두 도시하지 않음)를 구비하고 있다. 광원은 반도체 레이저 등의 빛을 일정한 강도로 연속적으로 방사한다. 방사된 빛은 조명 광학계에 의해 DMD를 전체적으로 조명하는 광속으로 이루어지는 빛으로 성형되어 DMD로 유도된다.
DMD는 미소한 마이크로 미러가 매트릭스형으로 배열된 공간 광 변조기이며, 각 마이크로 미러는 정전계 작용에 의해 회전 변동한다. 각 마이크로 미러는 광원으로부터의 빔을 기판(SW)의 노광면의 방향으로 반사시키는 제1 자세와 노광면 바깥의 방향으로 반사시키는 제2 자세 중 어느 한 자세에서 위치 결정되며, 제어 신호를 따라 자세가 전환된다. DMD에서는 마이크로 미러가 각각 독립적으로 ON/OFF 제어되며, DMD 전체에 조사하는 빛은 각 마이크로 미러에 있어서 선택적으로 반사된 빛의 광속으로 구성되는 빛이 된다. 그 결과, 노광면 상에 있어서 그 장소에 형성할 회로 패턴에 상응한 빛이 조사된다.
묘화 테이블(18)의 이동에 의해 기판(SW)이 묘화 개시 위치에 위치 결정되면, 노광 유닛(20)이 Y 방향을 따라 이동한다. 노광 유닛(20)이 이동하는 동안 DMD의 조사 스폿(노광 영역)의 위치에 상응한 패턴이 형성되도록 DMD의 각 마이크로 미러가 ON/OFF 제어된다. 하나의 주사 영역(주사 밴드)을 따른 노광 영역(20)의 이동이 종료하면, 다음 주사 밴드를 따라 묘화 처리를 행하기 위하여 묘화 테이블(18)이 소정 거리 이동한다. 그리고, 다음 주사 밴드를 주사하기 위하여 노광 유닛(20)은 반대 방향을 따라 일정 속도로 이동하고, 그 동안 DMD가 묘화 패턴에 상응하여 제어된다.
이러한 주사가 반복됨으로써 기판 전체에 회로 패턴이 형성된다. 묘화 처리가 종료된 기판(SW)에 대해서는 현상 처리, 식각 또는 도금, 레지스트 박리 처리 등이 실시되어 회로 패턴이 형성된 기판이 제조된다.
도 2는 카메라를 포함하는 계측 기구의 일부를 개략적으로 도시한 사시도이다. 도 3은 계측 기구의 평면도이다.
게이트형 구조체(12)의 내부 공간(12A)에는 Y 방향을 따라 연장되는 기준 스케일(16)이 설치되어 있으며, 지지 부재(도시 생략)에 의해 게이트형 구조체(12)에 부착되어 있다. 기준 스케일(16)에는 미세한 구멍(눈금)이 일정 간격(여기서는 수 밀리 정도의 간격)으로 형성되어 있다. 카메라(11)의 선단부에는 카메라 렌즈(11A)가 설치되어 있고, 카메라 렌즈(11A)의 하방, 즉 피묘화체 측에는 다이클로익 미러(15)가 설치되어 있다. 다이클로익 미러(15)는 지지 부재(도시 생략)를 통하여 카메라(11)에 일체로 부착되어 있으며, 카메라(11)의 이동을 따라 다이클로익 미러(15)는 Y 방향, 즉 기준 스케일(16)을 따라 이동한다.
도 3에 도시한 바와 같이 카메라 렌즈(11A)의 선단부에는 광섬유(도시 생략) 광원 유닛(13)(도 2에서는 도시 생략)이 수평 방향을 따라 부착되어 있고, 광섬유는 광원 유닛(13)의 빛을 카메라 렌즈(11A) 내부로 전달한다. 광원 유닛(13)은 제1 광원부(13A)와 제2 광원부(13B)를 구비하며, 제1 광원부(13A)는 대략 660nm의 파장을 갖는 적색광(L1)을 발광하고, 제2 광원부는 대략 525nm의 파장을 갖는 녹색광(L2)을 발광한다.
제1 광원부(13A)로부터 방사되는 적색광은 카메라 렌즈(11A) 내에 설치된 프리즘(11B)에 의해 편향되어 카메라 렌즈(11A)의 광축(E)을 따라 다이클로익 미러(15)의 방향으로 유도된다. 또한 제2 광원부(13A)로부터 방사되는 녹색광도 프리즘(11B)에 의해 다이클로익 미러(15)로 유도된다.
다이클로익 미러(15)는 녹색에 상응한 파장 영역(500∼600nm)의 빛을 반사시키고, 적색에 상응한 장파장 영역(600nm∼)의 빛을 투과시킨다. 따라서, 제1 광원부(13A)로부터의 적색광(L1)은 그대로 기판(SW)에 도달하고, 제2 광원부(13B)로부터의 녹색광(L2)은 반사에 의해 기준 스케일(16)로 유도된다.
기판(SW)에 도달한 적색광은 반사되고, 반사광이 다이클로익 미러(15)로 입사한다. 다이클로익 미러(15)는 반사한 적색광을 그대로 투과시키고, 프리즘(11B)도 반사광을 그대로 투과시킨다. 이에 따라 적색광(L1)의 반사광은 카메라(11)로 입사한다. 한편, 기준 스케일(16)에 도달한 녹색광은 반사하고, 반사광이 다이클로익 미러(15)로 입사한다. 다이클로익 미러(15)는 반사한 녹색광을 반사시키고, 녹색광(L2)의 반사광은 프리즘(11B)을 지나 카메라(11)로 입사한다.
도 4는 묘화 장치(10) 및 묘화 제어부(30A)의 블럭도이다.
키보드(30B)에 접속된 묘화 제어부(30A)는 시스템 컨트롤 회로(32), DMD 제어부(34), 스테이지 제어부(38), 스테이지 위치 검출부(40), 광원 제어부(44)를 구비한다. CPU, RAM, ROM 등을 포함하는 시스템 컨트롤 회로(32)는 묘화 장치(10)의 동작 전체를 제어하고, DMD 제어부(34)에 대하여 노광 타이밍을 제어하기 위한 제어 신호를 출력한다. DMD 제어부(34)는 미리 ROM에 저장된 묘화 처리용 프로그램을 따라 DMD(20B)를 제어한다.
벡터 데이터(CAM 데이터)인 회로 패턴 데이터는 워크 스테이션(도시 생략)에서 묘화 제어부(30A)의 래스터 변환부(42)로 입력된다. 입력된 벡터 데이터는 래스터 주사에 상응한 래스터 데이터로 변환되어 DMD 제어부(34)로 전송된다.
DMD 제어부(34)에서는 래스터 데이터가 노광 영역의 상대 위치에 맞추어 소정의 타이밍에서 차례대로 읽혀져나온다. 즉, 읽혀져나온 2차원 도트 데이터와 스테이지 위치 검출부(40)로부터 전송되는 노광 영역의 상대 위치 정보에 기초하여 마이크로 미러를 ON/OFF 제어하는 제어 신호가 비트맵 메모리(43)로부터 읽혀져나 와 DMD(20B)로 출력된다.
X 스테이지 구동기구(37A)는 모터(도시 생략)를 구비하며, 묘화 테이블(18)을 X방향으로 이동시킨다. Y 스테이지 구동기구(37B)도 모터(도시 생략)를 구비하며, 광원(20A), DMD(20B)를 구비한 노광 유닛(20)을 Y 방향을 따라 이동시킨다. 스테이지 제어부(38)는 X 스테이지 구동기구(37A), Y 스테이지 구동기구(37B)의 모 터(도시 생략)를 제어하며, 노광 유닛(20) 및 묘화 테이블(18)의 위치 결정을 제어한다.
스테이지 위치 검출부(40)는 카메라(11)에 설치된 CCD(도시 생략)로부터 전송되는 화상 신호, 즉 광 검출 신호와 스테이지 제어부(38)로부터 전송되는 X 스테이지 구동기구(37A)의 모터 회전 위치를 나타내는 위치 검출 신호에 기초하여 기판(SW)의 얼라인먼트 구멍(AM1∼AM4)의 위치 좌표를 검출한다. 카메라(11)의 Y 방향을 따른 이동은 모터(도시 생략)를 구비한 카메라 구동 기구(39)에 의해 제어되고 있으며, 스테이지 제어부(38)는 카메라 구동 기구(39)를 제어한다.
시스템 컨트롤 회로(32)는 스테이지 위치 검출부(40)로부터 전송되는 얼라인먼트 구멍(AM1∼AM4)의 위치 좌표로부터, 미리 정해진 묘화 데이터의 위치 좌표와 실측한 기판(SW)의 위치 좌표와의 차를 나타내는 얼라인먼트 오차를 산출한다. 그리고, DMD 제어부(34)로 묘화 위치를 보정하는 제어 신호를 출력한다. DMD 제어부(34)에서는 비트맵 메모리(43)에서의 래스터 데이터의 저장 위치가 얼라인먼트 오차에 상응하여 소정량 시프트된다.
광원 제어부(44)는 노광 유닛(20) 내의 광원(20A)를 구동하여, 광원(20A)으로부터 레이저 빛을 방사시킨다. 또한 시스템 컨트롤 회로(32)는 카메라(11)에 부착된 광원 유닛(21)을 구동하여, 도 3에 도시한 제1 광원부(13A), 제2 광원부(13B)를 선택적으로 점등시킨다. 시스템 컨트롤 회로(32)는 카메라(11)로부터 전송되는 광 검출 신호에 기초하여 모니터(30C)로 얼라인먼트 구멍의 화상을 표시하도록 신호 처리를 실행하고 영상 신호를 모니터(30C)로 출력한다.
도 5는 기판(SW)을 도시한 평면도이다. 도 6은 기준 스케일(16)의 얼라인먼트 구멍의 위치를 나타낸 도면이다. 도 7은 얼라인먼트 구멍의 촬영 화면을 나타낸 도면이다. 도 5∼도 7을 이용하여 얼라인먼트 구멍의 계측 순서에 대하여 설명한다.
기판(SW)의 네 귀퉁이에 설치된 얼라인먼트 구멍(AM1∼AM4)의 위치는 기판(SW)의 변형에 의해 X, Y 방향으로 어긋나는 경우가 있으며, 또한 얼라인먼트 구멍(AM1∼AM4) 중 어느 하나의 구멍의 위치를 미리 오프셋시켜 형성할 수 있다. 도 5에서는 얼라인먼트 구멍(AM1)의 위치가 얼라인먼트 구멍(AM2)에 대하여 Y 방향으로 어긋나 있다.
얼라인먼트 구멍(AM1∼AM4)의 위치를 계측하는 경우, X, Y 방향 각각 별도로 위치 계측된다. 벡터 데이터인 회로 패턴 데이터에는 얼라인먼트 구멍(AM1∼AM4)의 위치 좌표 데이터가 포함되어 있으며, 카메라(11)의 Y 방향을 따른 이동량, 묘화 테이블(18)의 이동량이 얼라인먼트 구멍(AM1∼AM4)의 위치 좌표 데이터에 기초하여 정해진다. 또한 Y 좌표에 관해서는 이하에 나타낸 바와 같이 기준 스케일(16)을 이용하여 얼라인먼트 구멍(AM1∼AM4)의 위치가 계측된다.
기판(SW)이 초기 위치(원점 위치)에 배치되면, 이동시키기 위하여 계측할 얼라인먼트 구멍의 Y 좌표 데이터에 기초하여 카메라(11)가 소정 거리 Y 방향을 따라 이동한다. 단, 카메라(11)는 초기 상태에 있어서 Y=0의 위치에 있다. 예를 들어 얼라인먼트 구멍(AM1)을 계측하는 경우 거리 Y1만큼 카메라(11)가 이동한다.
카메라(11)의 구동 기구에는 이송 오차가 발생하고, 실제로 카메라가 이동한 위치 좌표와 묘화 데이터에 포함된 얼라인먼트 구멍의 위치 좌표 사이에 어긋남이 발생한다. 여기서는 기준 스케일(16)에 배열되는 구멍의 피치(수 밀리)의 범위 내에서 오차가 생긴다. 카메라(11)가 이동한 후, 광원 유닛(21)의 제2 광원부(13B)가 점등되어 기준 스케일(16)에 녹색광(L2)이 조사된다. 이송 오차가 생기는 경우, 기준 스케일(16)의 계측되는 얼라인먼트 구멍에 상응한 구멍의 위치가 카메라의 시야의 중심 위치에서 벗어난다. 도 6에서는 이송 오차가 없는 상태의 기준 스케일(16)의 구멍을 T1, 이송 오차가 발생한 실제의 구멍을 T2로 나타내었다.
카메라(11)에 설치된 CCD에는 녹색광(L2)의 반사광이 입력되고, 반사광의 입력 위치를 나타내는 화상 신호, 즉 광 검출 신호가 CCD로부터 출력된다. 그리고, 검출 신호에 기초하여 기준 스케일(16)의 구멍의 위치 어긋남량이 검출된다. 그 후 묘화 테이블(18)이 소정량만큼 X 방향을 따라 이동하고, 카메라(11)가 얼라인먼트 구멍의 머리 위에 위치 결정된다. 묘화 테이블(18)이 정지하면, 광원 유닛(21)의 제1 광원부(13A)가 점등하여 적색광(L1)이 기판(SW)에 조사되고, 제2 광원부(13B)가 소등한다. 또한, X 방향에 관해서는 X 스테이지 구동 기구(37A)의 모터에 부착된 엔코더로부터 출력되는 위치 검출 신호에 기초하여 묘화 테이블(18)의 이동량이 검출된다. 기판(SW)은 X=0의 원점 위치를 초기 위치로 하여 구동된다.
얼라인먼트 구멍의 위치가 변형 등에 의해 어긋난 경우, 얼라인먼트 구멍이 카메라(11)의 시야 중심 위치에서 벗어난다. 이 경우, 오퍼레이터의 키 보드 조작에 의해 얼라인먼트 구멍의 중심 위치가 카메라(11)의 시야 중심 위치에 오도록 카메라(11)를 이동시킨다(도 7 참조). 카메라(11)를 이동시킨 경우, 제1 광원 부(13A)가 소등하고, 다시 제2 광원부(13B)로부터 녹색광(L2)이 기준 스케일(16)에 조사된다. 그리고, 기준 스케일(16)의 얼라인먼트 구멍에 대응하는 구멍의 위치의 어긋남량이 계측된다.
시스템 컨트롤 회로(32)에서는 카메라(11)의 이송 오차에 따라 발생하는 위치 어긋남량, 그리고 얼라인먼트 구멍의 위치 조정에 의해 발생하는 위치 어긋남량에 기초하여 묘화 위치 좌표의 보정량이 검출된다. 그리고, 보정량에 기초하여 래스터 데이터가 수정되고, 기판(SW)의 정확한 묘화 위치를 향해 빛이 조사된다.
이상과 같이 본 실시 형태에 따르면, 카메라(11)가 Y 방향(주 주사 방향)을 따라 이동 가능하며, 기판(SW)을 실은 묘화 테이블(18)이 X 방향(부 주사 방향)을 따라 이동 가능한 묘화 장치에 있어서 기판 스케일(16)이 Y 방향을 따라 배치되어 있고 기대(12)에 대하여 고정되어 있다. 또한 카메라(11)에는 적색광(L1), 녹색광(L2)을 선택적으로 방사하는 광원 유닛(21)이 부착되며, 카메라(11)의 하방에는 다이클로익 미러(15)가 설치되어 있다.
기준 스케일(16)이 묘화 테이블(18)과 일체로 움직이지 않기 때문에, 묘화 테이블을 구동하지 않고 기판에 대한 카메라의 위치를 유지한 채로 기준 스케일의 눈금을 계측할 수 있고, 묘화 테이블(18)의 구동량의 오차가 영향을 미치지 않아 정확한 얼라인먼트 구멍의 위치 정보를 측정할 수 있다.
다음, 도 8을 이용하여 제2 실시 형태인 묘화 시스템에 대하여 설명한다. 제2 실시예에서는 기준 스케일용 광원과 얼라인먼트 구멍 계측용 광원이 독립적으로 설치되어 있다. 그 이외의 구성은 제1 실시 형태와 동일하다.
도 8은 제2 실시 형태의 계측 기구의 평면도이다.
광원 유닛(21')에는 제1 광원부(13'A)만 설치되어 있고, 기준 스케일(16)의 후방에 제2 광원부(13'B)가 설치되어 있다. 제2 광원부(13'B)로부터 녹색광이 방사되면, 기준 스케일(16)의 구멍을 통과한 녹색광이 다이클로익 미러(15)로 입사하고, 다이클로익 미러(15)에 의해 녹색광은 카메라(11)의 방향으로 반사된다.
다음, 도 9를 이용하여 제3 실시 형태인 묘화 시스템에 대하여 설명한다. 제3 실시 형태에서는 다이클로익 미러가 카메라와 함께 이동하지 않는다. 그 이외의 구성에 대해서는 제1 실시 형태와 동일하다.
도 9는 제3 실시 형태의 계측 기구의 일부를 개략적으로 도시한 사시도이다. 다이클로익 미러(15')는 기준 스케일과 평행하게 연장되어 있으며, 게이트형 구조체(12)에 대하여 지시 부재(도시 생략)에 의해 고정되어 있다. 카메라(11)는 다이클로익 미러(15')를 따라 이동한다.
기준 스케일(16)의 피치, 형상은 임의이며, 다른 구성에 의한 기준 스케일을 사용할 수도 있다. 단, 기준 스케일(16)의 구멍의 피치는 카메라의 구동 기구의 이송 오차, 얼라인먼트 구멍의 위치 어긋남량 등을 고려하면서 정하며, 특정한 기준 스케일의 구멍이 카메라 시야에서 벗어나지 않도록 하기 위하여 계측하였을 때의 구멍의 어긋남이 피치의 절반 이하가 되도록 피치를 정하면 된다. 또한 기준 스케일을 부 주사 방향으로도 설치하는 구성으로 할 수도 있다.
다이클로익 미러, 프리즘 이외의 광학계에 의해 적색광, 녹색광을 선택적으로 기판, 기준 스케일로 유도하도록 구성할 수도 있다. 또한 적색광, 녹색광 대신 기판의 감광 재료에 반응하지 않는 파장 영역의 빛을 사용하면 되며, 서로 파장 영역이 다른 빛을 적용하면 된다.
DMD 등의 공간 광 변조기 대신 폴리곤 미러 등을 이용하는 레이저 빔 주사의 묘화 장치에 적용할 수도 있다.
도 1은 본 실시 형태인 묘화 시스템을 모식적으로 도시한 사시도이다.
도 2는 카메라를 포함하는 계측 기구의 일부를 개략적으로 도시한 사시도이다.
도 3은 계측 기구의 평면도이다.
도 4는 묘화 장치 및 묘화 제어부의 블럭도이다.
도 5는 기판을 도시한 평면도이다.
도 6은 기준 스케일의 얼라인먼트 구멍의 위치를 보인 도면이다.
도 7은 얼라인먼트 구멍의 촬영 화면을 보인 도면이다.
도 8은 제2 실시 형태의 계측 기구의 평면도이다.
도 9는 제3 실시 형태의 계측 기구의 일부를 개략적으로 도시한 사시도이다.
<부호의 설명>
10 : 묘화 장치 11 : 카메라
11B : 프리즘 13A : 제1 광원부
13B : 제2 광원부 15 : 다이클로익 미러
16 : 기준 스케일 18 : 묘화 테이블
20 : 노광 유닛 20A : 광원
20B : DMD 21 : 광원 유닛
30A : 묘화 제어부 32 : 시스템 컨트롤 회로
34 : DMD 제어부 38 : 스테이지 제어부
40 : 스테이지 위치 검출부 SW : 기판(피묘화체)
X : 부 주사 방향 Y : 주 주사 방향

Claims (7)

  1. 위치 계측용 기준 마크가 설치된 피묘화체가 탑재되며, 기대에 대하여 상대적으로 제1 주사 방향을 따라 이동 가능한 묘화 테이블과,
    상기 기대에 대하여 상기 제1 주사 방향에 직교하는 제2 주사 방향을 따라 이동 가능하게 부착되며, 상기 기준 마크의 위치를 계측하는 카메라와,
    상기 기대에 부착되며, 상기 제2 주사 방향을 따라 연장되는 기준 스케일과,
    상기 기준 마크의 위치를 계측하기 위하여 제1 조명광을 조사하는 제1 광원과,
    상기 기준 스케일을 조명하기 위하여 상기 제1 조명광과 다른 파장 영역을 갖는 제2 조명광을 조사하는 제2 광원과,
    상기 제1 조명광을 상기 피묘화체로 유도하고 그 반사광을 상기 카메라로 유도함과 아울러, 상기 제2 조명광을 상기 기준 스케일로 유도하고 그 반사광을 상기 카메라로 유도하는 계측용 광학계와,
    상기 기준 마크의 위치를 계측하는 계측 수단과,
    계측된 상기 기준 마크의 위치에 기초하여 묘화 위치를 보정하는 보정 수단을 구비한 것을 특징으로 하는 묘화 장치.
  2. 제 1 항에 있어서, 상기 계측용 광학계가,
    상기 제1 및 제2 조명광을 상기 피묘화체로 반사시키고 그 반사광을 그대로 투과시키는 제1 광학계와,
    상기 제1 조명광 및 그 반사광을 투과시키고 상기 제2 조명광을 상기 기준 스케일로 반사시킴과 아울러, 그 반사광을 상기 카메라로 반사시키는 제2 광학계를 갖는 것을 특징으로 하는 묘화 장치.
  3. 제 1 항에 있어서, 상기 계측용 광학계가,
    상기 제1 조명광을 상기 피묘화체로 반사시키고 그 반사광을 그대로 투과시키는 제3 광학계와,
    상기 제1 조명광 및 그 반사광을 투과시키고 상기 기준 스케일을 통하여 입사하는 상기 제2 조명광을 상기 카메라로 반사시키는 제4 광학계를 갖는 것을 특징으로 하는 묘화 장치.
  4. 제 1 항에 있어서, 상기 계측용 광학계가,
    상기 제1 조명광 및 그 반사광을 투과시키고 상기 제2 조명광 및 그 반사광을 반사시키는 분광 광학계를 갖는 것을 특징으로 하는 묘화 장치.
  5. 제 4 항에 있어서, 상기 분광 광학계가 상기 카메라에 일체로 부착되어 있으며, 상기 계측용 광학계 및 상기 카메라가 상기 기준 스케일에 대하여 상대적으로 이동 가능한 것을 특징으로 하는 묘화 장치.
  6. 제 4 항에 있어서, 상기 분광 광학계가 상기 기준 스케일을 따라 연장되도록 상기 기준 스케일에 부착되며,
    상기 카메라가 상기 계측용 광학계 및 상기 기준 스케일에 대하여 상대적으로 이동 가능한 것을 특징으로 하는 묘화 장치.
  7. 기대에 대하여 묘화 테이블이 상대적으로 이동하는 제1 주사 방향에 직교하는 제2 주사 방향을 따라 이동 가능하게 부착되며, 상기 묘화 테이블에 탑재되는 피묘화체에 설치된 기준 마크의 위치를 계측하는 카메라와,
    상기 기대에 부착되며, 상기 제2 주사 방향을 따라 연장되는 기준 스케일과,
    상기 기준 마크의 위치를 계측하기 위하여 제1 조명광을 조사하는 제1 광원과,
    상기 기준 스케일을 조명하기 위하여 상기 제1 조명광과 다른 파장 영역을 갖는 제2 조명광을 조사하는 제2 광원과,
    상기 제1 조명광을 상기 피묘화체로 유도하고 그 반사광을 상기 카메라로 유도함과 아울러, 상기 제2 조명광을 상기 기준 스케일로 유도하고 그 반사광을 상기 카메라로 유도하는 계측용 광학계를 구비한 것을 특징으로 하는 묘화 장치의 계측 기구.
KR1020070080558A 2006-08-30 2007-08-10 묘화 장치 KR20080021497A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006233675A JP2008058477A (ja) 2006-08-30 2006-08-30 描画装置
JPJP-P-2006-00233675 2006-08-30

Publications (1)

Publication Number Publication Date
KR20080021497A true KR20080021497A (ko) 2008-03-07

Family

ID=39160002

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070080558A KR20080021497A (ko) 2006-08-30 2007-08-10 묘화 장치

Country Status (4)

Country Link
JP (1) JP2008058477A (ko)
KR (1) KR20080021497A (ko)
CN (1) CN101135863A (ko)
TW (1) TW200811619A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021133112A1 (ko) * 2019-12-26 2021-07-01 서울대학교산학협력단 동적 마스크를 이용하여 포토리소그래피를 수행하기 위한 광학시스템 및 방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5305967B2 (ja) * 2009-02-17 2013-10-02 株式会社日立ハイテクノロジーズ 露光装置、露光方法、及び表示用パネル基板の製造方法
JP5355245B2 (ja) * 2009-06-25 2013-11-27 株式会社日立ハイテクノロジーズ 露光装置、露光方法、及び表示用パネル基板の製造方法
CN104062859B (zh) * 2013-03-21 2016-08-10 上海微电子装备有限公司 一种光刻设备对准系统
CN108121177B (zh) * 2016-11-29 2019-11-22 上海微电子装备(集团)股份有限公司 一种对准测量系统及对准方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021133112A1 (ko) * 2019-12-26 2021-07-01 서울대학교산학협력단 동적 마스크를 이용하여 포토리소그래피를 수행하기 위한 광학시스템 및 방법

Also Published As

Publication number Publication date
CN101135863A (zh) 2008-03-05
JP2008058477A (ja) 2008-03-13
TW200811619A (en) 2008-03-01

Similar Documents

Publication Publication Date Title
JP5498243B2 (ja) 露光装置、露光方法及びデバイス製造方法
JP4450739B2 (ja) 露光装置
KR100327999B1 (ko) 투영노광방법및장치
KR101446485B1 (ko) 묘화 시스템
TW200807164A (en) Exposure apparatus and device manufacturing method
US7982852B2 (en) Exposure apparatus and device manufacturing method
JPH0945608A (ja) 面位置検出方法
JP2000346618A (ja) 矩形ビーム用精密アライメント装置と方法
EP3096346A1 (en) Exposure apparatus, exposure method, and device manufacturing method
KR100907779B1 (ko) 기판 이동 장치
KR101446484B1 (ko) 묘화 시스템
CN109100920B (zh) 曝光装置以及物品的制造方法
KR20080021497A (ko) 묘화 장치
JP2006308994A (ja) 露光装置
JP5235062B2 (ja) 露光装置
US20220137522A1 (en) Exposure apparatus, exposure method, and article manufacturing method
JP5209946B2 (ja) 焦点位置検出方法および描画装置
JP3754743B2 (ja) 表面位置設定方法、ウエハ高さ設定方法、面位置設定方法、ウエハ面位置検出方法および露光装置
JP2017067888A (ja) 描画装置および位置情報取得方法
TW201704892A (zh) 曝光裝置、平面顯示器之製造方法、元件製造方法、及曝光方法
JP2014143429A (ja) 露光装置、露光方法及びデバイス製造方法
JP2009194247A (ja) 露光装置
JP2010114265A (ja) 走査露光装置およびその制御方法、ならびにデバイス製造方法
KR20200033723A (ko) 묘화 장치 및 묘화 방법
KR20200002621A (ko) 노광 장치 및 물품의 제조 방법

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination