TW200811619A - Drawing device - Google Patents

Drawing device Download PDF

Info

Publication number
TW200811619A
TW200811619A TW096129603A TW96129603A TW200811619A TW 200811619 A TW200811619 A TW 200811619A TW 096129603 A TW096129603 A TW 096129603A TW 96129603 A TW96129603 A TW 96129603A TW 200811619 A TW200811619 A TW 200811619A
Authority
TW
Taiwan
Prior art keywords
light
camera
optical system
reference scale
measuring
Prior art date
Application number
TW096129603A
Other languages
Chinese (zh)
Inventor
Toshinori Inomata
Original Assignee
Orc Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Mfg Co Ltd filed Critical Orc Mfg Co Ltd
Publication of TW200811619A publication Critical patent/TW200811619A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position

Abstract

The object of the present invention is to correctly survey the location of reference mark of an object to be drawn, such as a substrate, in a short time. The solution of the present invention is that in a drawing device for drawing circuit pattern that is provided with a camera that is movable in a Y direction (primary scanning direction), a drawing table that carries a substrate that is movable in an X direction (secondary scanning direction) is provided. A reference marking rule 16 is set along the Y direction and is fixed with respect to a base. In the camera 11, a light unit that selectively gives off red light and green light is mounted. A dichroic mirror 15 is arranged below the camera 11.

Description

200811619 九、發明說明: 【發明所屬之技術領域】 本發明係有關於朝成為原版的光罩(photo_mask, ret i c 1 e)、或直接地朝印刷基板或矽晶圓等的被繪製體形 成電路樣式(pattern)等的樣式的緣製裂置。 【先前技術】 在基板等的製造工程中,對於塗佈光阻(photo_resi st) 等的感光材料的被繪製體,樣式形成用的繪製處理被實 行,經過顯像處理、蝕刻或鍍層處理、光阻(resist)剝離 等工程,在被繪製體,樣式被形成。在基板,成為記號 (mark)、孔等的基準的指標係朝所定場所規則地被形成, 基板被搭載到繪製桌(table)(繪製台[5饨代])時,藉由使 繪製桌和照相機移動,基準記號的位置被檢測出。又,基 於被檢測出的位置,將繪製樣式朝所定區域形成。 在量測基準記號時,由於必須知道照相機的正確位 置’例如,在繪製桌’基準刻度尺(sca 1 e)被安裝,使緣製 桌移動至所定位置’將基準刻度尺的刻度作為基準,量測 基準記號的位置座標(專利文獻1)。又,基於被量測的基 準記號的位置座標,算出基板的變形量、對準(aUgnment) 誤差,補正緣製位置。 [專利文獻1]日本特開2004-348045號公報 【發明内容】 2258-8920-PF;Tungming 5 200811619 [發明所欲解決之問題] 由於基準刻度尺係被安裝在緣製桌,必須使量測基準 衮1度尺的記號、刻度的繪製桌移動至照相機的所定位 占位置)為止。因此,起因於緣製桌的驅動機構#,沿著移 動方向的位置決定有誤差時’在被量測的位置座標,桌爷 差會產生。又,每次使用基準刻度尺,必須使緣製桌回到 所定的原點位置為止,在基板的基準記號位置檢, 需花費時間。 [解決問題之技術手段] 本發明的緣製裝置係可正確地且以短時間地量測設置 於基板等的被繪製體的量測用的記號、孔的位置,包括: 位置里❹的基準記號被設置的被㈣ :相對地沿著第-掃描方向可移動的羯丄= 與第一掃描方向正交的第二掃描方向可移動地被安 ,:量測基準記號位置的照相機。在此的基準記號係包含 等例如,被形成在基板等的被繪製體的四角。使 緣製桌、、照相機係’例如’分別沿著副婦描方向、主掃描 方向(或其相反)被移動般構成即可。 本發明的緣製裝置係包括被安裂在基台'沿著第二掃 描方向延伸的基準刻度尺,又,包括:照射量測基準記號 位置用的第—照明光的第一光源、照射照明基準刻度尺用 的具有和第一照明光不同的波長領域的第二照明光的第二 w、以及導引第—照明光至被緣製體且將其反射光導引 至照明機、並將第二照明光導引至基準刻度尺且將其反射 2258-8920-PF;Tungming 6 200811619 光導引至照相機的量測用光學系統。 置測用光學系統係選擇第一照明光、第二照明光,分 別導引至基準記號、被繪製體。基於包含於設計資料的: 製資料的位置座標’使照相機沿著第二掃描方向移動二 話,在使照相機停止在此場所的狀態下,藉由從第二光源 被放射的第二照明光,基準刻度尺係成為可量測。又,藉 由第-照明光’可直接量測基準記號的位置。&準刻度尺 的形狀、構成係為任意’例如M吏用微細的孔以等間隔規 則地排列的刻度尺即可。記號、刻度的間距係依據綠製裝 置的構成即可,但須考慮移動照相機的驅動機構的驅動誤 差,以驅動誤差不超過刻度的間距(pitch)的方式決定間距 即可。又,緣製裝置係包括:量測基準記號位置的量測裝 置、以及基於被量測的基準記號的位置、補正繪製位置的 補正裝置。 為了選擇地區分第-照明光、第二照明光,在量測用 光學系統,最好設置使第一照明光以及其反射光透過、使 第二照明光以及其反射光反射的分光光學系統。例如,在 量測用光學系,统’設置有使第一和第二照明光朝被綠製體 反射、使其反射光直接透過的第一光學系统、以及將第一 照明光以及其反射光透過、使第二照明光朝基準刻度尺反 射且使其反射光朝照相機反射的第二光學系統。或者,役 置有使第-照明光朝被緣製體反射、使其反射光直接透: 的第三光學系'统 '以及將第一照明光以及其反射光透過、 使經由基準刻度尺入射的第二照明光朝照相機反射的第四 2258-8 920-PF;Tungming 7 200811619 光學系統。作為第一、第三光學系統, ^ v 彳如,稜鏡被設置。 作為分光光學系統、第二、第四弁風 · 子糸統,例如,分色鐘200811619 IX. Description of the Invention: [Technical Field] The present invention relates to forming a circuit for a photomask (photo_mask, ret ic 1 e) that is an original, or directly to a drawn object such as a printed substrate or a germanium wafer. The pattern of patterns such as patterns is split. [Prior Art] In the manufacturing process of a substrate or the like, a drawing process for pattern formation of a photosensitive material such as a photoresist is applied, and development processing, etching or plating treatment, and light are performed. The work such as resistance peeling is formed in the drawn body. In the substrate, an index that serves as a reference for a mark, a hole, or the like is regularly formed at a predetermined place, and when the substrate is mounted on a drawing table (drawing table [5 generation]), by drawing the table and The camera moves and the position of the reference mark is detected. Further, based on the detected position, the drawing pattern is formed toward the predetermined area. When measuring the reference mark, it is necessary to know the correct position of the camera 'for example, when the drawing table' reference scale (sca 1 e) is installed, and the edge table is moved to the predetermined position', the scale of the reference scale is used as a reference. The position coordinate of the reference mark is measured (Patent Document 1). Further, based on the position coordinates of the measured reference mark, the amount of deformation and the alignment error of the substrate are calculated, and the position of the edge is corrected. [Patent Document 1] Japanese Laid-Open Patent Publication No. 2004-348045 [Draft of the Invention] 2258-8920-PF; Tungming 5 200811619 [Problem to be Solved by the Invention] Since the reference scale is mounted on the edge table, measurement must be made. The reference 衮 1 degree mark, the scale drawing table moves to the position occupied by the camera). Therefore, the driving mechanism # caused by the edge table determines the position along the moving direction when there is an error, and the table difference is generated at the position coordinates to be measured. Further, each time the reference scale is used, it is necessary to return the edge table to the predetermined origin position, and it takes time to check the reference mark position of the substrate. [Means for Solving the Problems] The edge device of the present invention can accurately and in a short time measure the position of the mark or the hole for measurement of the object to be drawn provided on the substrate or the like, including: The mark is set to (4): 羯丄 which is relatively movable in the first scanning direction = the second scanning direction orthogonal to the first scanning direction is movably: a camera which measures the position of the reference mark. Here, the reference symbol includes, for example, the four corners of the object to be drawn such as a substrate. The edge table and the camera system 'e.g.' may be configured to be moved in the direction in which the daughter-in-law is drawn, or in the main scanning direction (or vice versa). The edge device of the present invention includes a reference scale that is split on the base station to extend along the second scanning direction, and further includes: a first light source for illuminating the first illumination light for measuring the position of the reference mark, and illumination illumination a second w of the second illumination light having a wavelength region different from the first illumination light, and guiding the illumination light to the edged body and guiding the reflected light to the illumination device, and The second illumination light is directed to the reference scale and reflects 2258-8920-PF; Tungming 6 200811619 light is directed to the measuring optical system of the camera. The optical system for measurement selects the first illumination light and the second illumination light, and guides them to the reference mark and the drawn object, respectively. Based on the positional coordinates included in the design data: the camera moves in the second scanning direction, and the second illumination light emitted from the second light source is referenced in a state where the camera is stopped at the location. The scale is measurable. Further, the position of the reference mark can be directly measured by the first illumination light. The shape and configuration of the quasi-scale are arbitrary. For example, a scale having fine holes arranged at regular intervals may be used. The pitch of the mark and the scale may be based on the configuration of the green device, but the driving error of the driving mechanism of the moving camera must be considered, and the pitch may be determined so that the driving error does not exceed the pitch of the scale. Further, the edge device includes a measuring device that measures the position of the reference mark, and a correcting device that corrects the drawing position based on the position of the measured reference mark. In order to selectively distinguish between the first illumination light and the second illumination light, it is preferable to provide a spectroscopic optical system that transmits the first illumination light and the reflected light and reflects the second illumination light and the reflected light in the measurement optical system. For example, in the optical system for measurement, a first optical system that reflects the first and second illumination lights toward the green body and directly transmits the reflected light, and the first illumination light and the reflected light thereof are provided. A second optical system that transmits and reflects the second illumination light toward the reference scale and reflects the reflected light toward the camera. Alternatively, a third optical system that reflects the first illumination light toward the edged body and directly reflects the reflected light is disposed, and the first illumination light and the reflected light are transmitted through the reference scale. The second illumination light is reflected towards the camera by a fourth 2258-8 920-PF; Tungming 7 200811619 optical system. As the first and third optical systems, ^ v , for example, 稜鏡 is set. As a spectroscopic optical system, a second, a fourth hurricane, a sub-system, for example, a color separation clock

Cdichroic mirror)被設置。 作為分光光學系統的構成,例、 $壯曰 ,可與照相機一體地 女衣,置測用光學系統以及照相機係對於基準刻度尺相對 地移動。或者,沿著基準刻度尺延伸般,安裝在基準刻度 尺也可,照相機係對於量測用光擧 又 予糸統以及基準刻度尺相 對地移動。 』又尺相 本發明的繪製裝置的量測機構係 再你包括·照相機,在沿 著與緣製桌對於基台相對地移動的第一 J ^ 輙描方向正交的第 二掃描方向可移動地被安裝、量測設置於被搭載於綠製桌 的被繪製體的基準記號的位置;&準刻度尺,被安事在基 f,沿著第二掃描方向延伸;第-光源,照射量測基準: 號位置用的第一照明光;第二光源,照射照明基準刻度尺 用的具有和第一照明光不同的波長領域的第二照明光,·以 及量測用光學系統,將第一照明光導引至被繪製體且將^ 反射光導引至照相機,並將第二照明光導引至基準刻度尺 且將其反射光導引至照相機。 [發明的效果] 根據本發明,可在短時間正確地量測基板等的被繪製 體的基準記號的位置。 " 【實施方式】 以下參考圖示說明本發明的實施例 2258-8920-PF;Tungming 8 200811619Cdichroic mirror) is set. As a configuration of the spectroscopic optical system, for example, a feminine garment can be integrated with the camera, and the optical system for measuring and the camera system relatively move with respect to the reference scale. Alternatively, it may be attached to the reference scale as it extends along the reference scale, and the camera moves relative to the measurement scale and the reference scale. Further, the measuring mechanism of the drawing device of the present invention is further comprised of a camera movably movable in a second scanning direction orthogonal to the first J^ scanning direction relative to the edge table relative to the base table. Mounted and measured at the position of the reference mark of the drawn object mounted on the green table; & the scale is held at the base f along the second scanning direction; the first light source, the amount of exposure The first illumination light for the position: the second illumination source, the second illumination light having a wavelength region different from the first illumination light for illuminating the illumination reference scale, and the optical system for measurement, the first The illumination light is directed to the drawn object and directs the reflected light to the camera, and directs the second illumination light to the reference scale and directs its reflected light to the camera. [Effect of the Invention] According to the present invention, the position of the reference mark of the object to be drawn such as the substrate can be accurately measured in a short time. <Embodiment> Embodiments of the present invention will be described below with reference to the drawings 2258-8920-PF; Tungming 8 200811619

體圖。 圖係為以模式表示作為本實施例”製系統的立 繪製系統的繪製裝置10係為藉由朝在表面塗佈光阻 等的感光材料的基板SW照射光以形成電路樣式的裝置,繪 製單元30被連接。繪製單元30係包括繪製單元心、‘ 盤30B、螢幕30C,基於對應於電路樣式的資料(向量 [vector]資料)’生成網格(raster)資料的同時,控制繪= 裝置1 0的動作。 繪製裝置10係包括柵門(gate)狀構造體12、基台14。 在基台14,繪製桌18被配置,在緣製桌18上,基口板別 分別被配置。繪製桌係在一對導執19上被承載,可沿著導 執19移動。 ' 在固定於基台14的柵門狀構造體12,形成電路樣式 在基板SW表面用的曝光單元20係被設置。曝光單元係 在一對導軌17上被搭載,可沿著導軌17移動。基板別係, 例如,為矽晶圓(silicon wafer)、薄膜(fUm)、玻璃基板、 或貼銅層積板,在預烤(prebake)處理、光阻塗佈等處理被 施加的母片(blanks)的狀態下,在繪製桌18被搭載。在 此負型的光阻係在基板表面被形成。 在基板sw的四角,調整繪製位置用的對準孔ami〜am4 被形成,在栅門狀構造體12,檢測出對準孔位置的照相機 11係被安裝。在栅門狀構造體12的底面,與導執17平行 的導執(未圖示)被設置,照相機11係可沿著導執移動。對 於繪製桌18,互相正交的Χ —γ座標系被規定,基於X —^座 2258-8920-PF;Tungming 9 200811619 標系,基板sw被掃描。在 聆曝光單元20的移動方— 的主掃描方向作A y 勒万甸 作為Y方向將繪製桌的移動方向的 方向作為X方向。 r 4田 曝光單元20係包括光源、麵(數位微型反射鏡 dlgltalm咖★而device),又,包括照明光m, 2=學“(任-個均未圖示)。光源係料導體雷射等 =以—及的強度連續地放射。被放射的光係由藉由照明 子系統將勵全體照明的光束構成的光被成形,被導引 至DMD。 I^ _ 2為微小微型反射鏡以矩陣狀被㈣的空間光調 义為’各微型反射鏡係藉由靜電場作用迴轉變動。各微型 反射鏡係在將來自光源的光束朝基板SW㈣光面的方向 被反射的第-安勢、以及朝曝光面外的方向反射的第二攻 勢的任-姿勢被決定位置,依據控制信號,姿勢係被㈣^ 在MD ’破型反射鏡係分別獨立而被ΟΝ/OFF控制,照射於 刪全體的光係成為從在各微型反射鏡中被選擇地反射的 光的光束構成的光。其結果,在曝光面上,對應於應形成 在此場所的電路樣式的光係被照射。 —错由繪製桌18的移動,基板SW朝繪製開始位置被決 疋位々置的蛞’冑光單元20係沿著Y方向移動。曝光單元 2〇牙夕動期間,對應於DMD的照射點(spot)(曝光區域)的位 勺樣式被形成般,DMD的各微型反射鏡係被⑽層f控 制—〜著個知描領域(掃描帶[band])的曝光區域20的移 動几成的4 ’進行沿著下一掃描帶的繪製處理用的繪製桌 2258-8920一pf;Tungming 10 200811619 18係移動所定距離。又,為了 2〇 #、、,l牮士口 口 + 田下一掃描帶,曝光單元 係/口者相反方向以一定速度移 士 於繪製樣式被控制。 &之間’ DMD係對應 藉由此類的掃描被重複,電跋 髀。#也路樣式係被形成在基板全 體對於繪製處理完成的基板sw, 亦阳專丨紐士 ”、員像處理、蝕刻或鍍層、 ..〇 樣式破形成的基板被製造。 圖μ概略地表示含有照相機的量職構的一部 刀、—圖,第3圖係為量測機構的平面圖。 在栅門狀構造體12的内部空間12Α,沿著γ方向延伸 的基準刻度尺16被設置,藉由 文得構件(未圖示),在柵門 狀構以體1 2被安裝。在基準刻 j度尺1 6,微細的孔(刻度) 以-1間隔(在此為數厘米程度的間隔)被形成。在照相機 11的财端部’照相機鏡片(cameralens)11A被設置,在照 相機鏡片11A的下方’亦即,在被繪製體侧,分色鏡15被 設置。分色鏡15係經由支持構件(未圖示),被一體地安裝Body map. The drawing device 10 which is a schematic drawing of the vertical drawing system of the system of the present embodiment is a device which forms a circuit pattern by irradiating light to a substrate SW of a photosensitive material coated with a photoresist or the like on the surface to form a circuit pattern. 30 is connected. The drawing unit 30 includes a drawing unit heart, a 'disk 30B, a screen 30C, and generates raster data based on data corresponding to the circuit pattern (vector [vector] data), and controls drawing = device 1 The drawing device 10 includes a gate-like structure 12 and a base 14. On the base 14, the drawing table 18 is disposed, and on the edge table 18, the base plates are separately arranged. The table is carried on a pair of guides 19 and is movable along the guide 19. 'In the gate-like structure 12 fixed to the base 14, an exposure unit 20 for forming a circuit pattern on the surface of the substrate SW is set. The exposure unit is mounted on the pair of guide rails 17, and is movable along the guide rail 17. The substrate is, for example, a silicon wafer, a film (fUm), a glass substrate, or a copper laminated board. Prebake treatment, photoresist coating In the state in which the applied blanks are processed, the drawing table 18 is mounted. The negative photoresist is formed on the surface of the substrate. At the four corners of the substrate sw, the alignment holes ami for the drawing position are adjusted. Am4 is formed, and the camera 11 that detects the position of the alignment hole is attached to the gate structure 12. On the bottom surface of the gate structure 12, a guide (not shown) parallel to the guide 17 is provided. The camera 11 is movable along the guide. For the drawing table 18, mutually orthogonal Χ-γ coordinate systems are specified, based on the X^^2258-8920-PF; Tungming 9 200811619 standard, the substrate sw is scanned. In the main scanning direction of the moving unit of the exposure unit 20, A y Lewanian is used as the Y direction to take the direction of the moving direction of the table as the X direction. r 4 Field exposure unit 20 includes a light source and a surface (digital micro mirror) Dlgltalm coffee ★ and device), in addition, including illumination light m, 2 = learning "(any - not shown). The light source is a conductor, a laser, etc., and is continuously radiated with a strength of -. The emitted light is shaped by light that is composed of a beam of light that is illuminated by the illumination subsystem, and is guided to the DMD. I^ _ 2 is a small micromirror that is spatially defined by (4) spatial light in a matrix. The micromirrors are rotated by an electrostatic field. Each of the micromirrors is determined at a position in which a first-amplitude that reflects the light beam from the light source toward the light surface of the substrate SW (four) and a second attack that reflects in a direction outside the exposure surface is determined, according to the control signal. The posture system is (4). The MD's broken mirror system is independently controlled by ΟΝ/OFF, and the light system that has been irradiated is the light that is formed by the light beams that are selectively reflected by the respective micro mirrors. As a result, on the exposure surface, the light system corresponding to the circuit pattern to be formed in this place is irradiated. The error is caused by the movement of the drawing table 18, and the substrate SW is moved toward the drawing start position. During the exposure of the exposure unit 2, the spot spoon pattern corresponding to the spot (exposure area) of the DMD is formed, and the micro mirrors of the DMD are controlled by the (10) layer f. The movement of the exposure area 20 of the scanning band [band] is 4', and the drawing table 2258-8920-pf; Tungming 10 200811619 18 is moved along the next scanning zone. Also, for the 2〇, ,, l gentleman's mouth + the next scan zone, the exposure unit/mouth is moved at a constant speed in the opposite direction to the drawing style. The & DMD system is repeated by this kind of scanning, and the power is reduced. #也路式制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制制A knives including a camera, a figure, and a third drawing are plan views of the measuring mechanism. In the internal space 12 of the gate structure 12, a reference scale 16 extending in the γ direction is provided. By means of the eigen-member (not shown), the body 12 is mounted in the gate-like configuration. At the reference j-scale 1, the fine holes (scales) are separated by -1 (here, the interval is several centimeters) In the end portion of the camera 11, a camera lens 11A is provided below the camera lens 11A, that is, on the side of the object to be drawn, a dichroic mirror 15 is provided. The dichroic mirror 15 is via Support member (not shown), installed integrally

於照相機1卜依據照相機n的移動,分色鏡15係沿著Y 方向,亦即,沿著基準刻度尺16移動。 第圖所示般,在照相機鏡片11 a的前端部,光纖 ⑴ber未圖770光源單元13(在第2圖,未g|示)係沿著 尺平方向被文g ,光纖係將光源單&】3白◊光傳達至照相機 鏡片m内部。光源單元】3係包括第一光源部】μ和第二 光源部Ι3β,第一光源部I3A係將具有大概6 60nffl波長的 紅色光u發光,第二光源部係將具有大概525題波長的綠 色光L2發光。 2258-8920-pF;Tungming 11 200811619 從第一光源部1 3A被放射的紅色光係藉由設置於照相 機鏡片11A内的稜鏡丄1B被偏向,沿著照相機鏡片(i A的 光轴E被導引至分色鏡丨5的方向。又,從第二光源部1 3八 被放射的綠色光也藉由稜鏡丨丨B被導引至分色鏡i 5。 分色鏡15係將對應於綠色的波長領域(5〇〇〜6〇〇nm)的 光反射,使對應於紅色的長波長領域(6〇〇nm〜)的光透過。 因此’來自第-光源部13A的紅色光u係、直接到達基板 SW,來自第二光源部13B的綠色光L2係藉由反射被導引至 基準刻度尺1 6。 到達基板SW的紅色光係反射,反射光係朝分色鏡15 入射。分色鏡15係使反射的紅色光直接透過,稜鏡UB也 直接使反射光透過。藉此,紅色光u的反射光係入射至照 相機n。另一方面,到達基準刻度尺Η的綠色光係反射, 反射光係朝分色鏡15入射。分色鏡15係將反射的綠色光 反射’綠色光L2的反射光係通過稜鏡】1β,朝照相機u 入射。 弟4圖係為緣製裝置1〇以及繪製控制部3〇a的方塊 兴緵盤SUB連接 ,…“吓匕何示玩控制電 2、DMD控制部34、台控制部%、台位置檢測部4〇、 先源控制部44。含有CPU、RAM、娜等的系統控制電M2 係控制緣製裝置1〇的動作全體,對於麵控制部34,將The dichroic mirror 15 moves along the Y direction, that is, along the reference scale 16, in accordance with the movement of the camera n. As shown in the figure, at the front end portion of the camera lens 11a, the optical fiber (1) ber is not shown in Fig. 770. The light source unit 13 (shown in Fig. 2, not shown) is along the ruler direction, and the optical fiber is used to light source &;] 3 white light is transmitted to the inside of the camera lens m. The light source unit 3 includes a first light source unit μ and a second light source unit Ι3β, the first light source unit I3A emits red light u having a wavelength of about 6 60nff, and the second light source unit will have a green color of about 525 questions. Light L2 emits light. 2258-8920-pF; Tungming 11 200811619 The red light emitted from the first light source unit 1 3A is biased by the 稜鏡丄 1B provided in the camera lens 11A, along the optical axis E of the camera lens (i A Guided to the direction of the dichroic mirror 丨 5. Further, the green light radiated from the second light source portion 138 is also guided to the dichroic mirror i 5 by 稜鏡丨丨B. The dichroic mirror 15 will Corresponding to the light reflection in the green wavelength region (5 〇〇 to 6 〇〇 nm), the light corresponding to the long wavelength region of red (6 〇〇 nm 〜) is transmitted. Therefore, the red light from the first light source portion 13A The system is directly connected to the substrate SW, and the green light L2 from the second light source unit 13B is guided to the reference scale 16 by reflection. The red light reaching the substrate SW is reflected, and the reflected light is incident on the dichroic mirror 15 The dichroic mirror 15 transmits the reflected red light directly, and the 稜鏡UB directly transmits the reflected light, whereby the reflected light of the red light u is incident on the camera n. On the other hand, the green light reaches the reference scale Η. The light system reflects, and the reflected light is incident on the dichroic mirror 15. The dichroic mirror 15 reverses the reflected green light. 'The reflected light of the green light L2 passes through 稜鏡1β, and is incident on the camera u. The younger figure 4 is the edge device 1〇 and the drawing control unit 3〇a is connected to the block SUB,... Play control power 2, DMD control unit 34, station control unit %, station position detecting unit 4, and source control unit 44. The system control electric M2 control edge device 1 including CPU, RAM, Na, etc. For the surface control unit 34,

Sr:光0讀―卿)用的控制信號輪出。歸D控制部34 係依據預先儲存在㈣㈣製處理用程式控制_ 2258-8920-PF;Tungming 12 200811619 作為向量資料(CAM資料)的電路樣式資料係從工作站 (work statlC)n,未圖示)被輸入至緣製控制部_的網格 變換部42。被輪入的向量資料係被變換為對應於網格掃: 的網格資料,被送至DMD控制部34。 田 在DMD控制部34,網格資料係配合曝光區域的相對位 置’以所定的時間依序被讀出。㈣,基於從被讀出的二 次元點資料以及台位置檢測# 4〇送出的曝光區域的相對 位錢報1微型反射鏡〇N/〇FF控制的控制信號從點陣圖 記憶體(bitmap memory)43被讀出,朝DMD 2〇β被輸出。Sr: Light 0 read - Qing) The control signal is rotated. The D control unit 34 is based on the (4) (4) processing program control _ 2258-8920-PF; Tungming 12 200811619 as the vector data (CAM data) circuit pattern data system from the workstation (work statl C) n, not shown) It is input to the mesh conversion unit 42 of the edge control unit_. The wheeled vector data is converted into mesh data corresponding to the mesh scan: and sent to the DMD control unit 34. In the DMD control unit 34, the grid data is read in order with the relative position of the exposure area at a predetermined time. (4) Based on the bit-map memory (bitmap memory) controlled by the micro-mirror 〇N/〇FF control signal from the read-out secondary element data and the position detection #4〇 ) 43 is read and output to DMD 2 〇 β.

X 口機構3 7 A係具備馬達(未圖示),使繪製桌丨8朝X 方向移動。Y台機構37B也具備馬達(未圖示),使具備光 源20A、DMD 2 0B的曝光單元20沿著γ方向移動。台控制 部38係控制x台機構37Α、γ台機構3?b的馬達(未圖示), 控制曝光單元20、以及繪製台18的位置決定。 台位置檢測部40係基於從設置於照相機u的CCD(未 圖不)傳送過來的影像信號(亦即,光檢測信號)、以及表示 從台控制部38傳送過來的χ台機構37A的馬達迴轉位置的 位置檢測信號,將基板SW的對準孔AM1〜AM4的位置座標檢 測出著照相機11的Y方向的移動係藉由具備馬達(未 圖不)的照相機驅動機構39被控制,台控制部38係控制照 相機驅動機構3 9。 、,系、、先拴制電路3 2係從來自台位置檢測部4 〇傳送過來 j、·、準孔AM 1〜ΑΜ4的位置座標,算出表示被預先設定的繪 製資料的位置座標和實際量測的基板的位置座標間的 2258-8920~pF;Tungm.ng ^ 200811619 差的對準誤差。又,朝_控制部34輸出補正给製位置的 控制信號。纟DMD控制部34,在點陣圖記憶體43中的網 格貧料的收納位置係對應於對準誤差被移動(shi^)所〜 量。 光源控制部44係驅動曝光單元2〇内的光源2〇a, 士自光源2。A的雷射光放射。又,系統控制電路3 2 安裝於照相機U的光源單元21,使第3圖所示的第 源部13A、第二光源部13B被選擇地亮燈。系統控 32係基於從„機η被傳送過來的光檢測信號, 30C顯示對準孔的影像般,實 出至勞幕咖。 號輪 弟5圖係為表示基板sw的平面圖。第6圖 準刻度尺16的對準孔的位置的圖示。第7圖係為表示對^ 孔的攝影晝面的圖示。利用第5 孔的量測料。 H㈣有關對準 设置於基板SW的四角的對進了丨請 對旱孔AM1〜ΑΜ4的位置係有莪 由基板SW的變形而在χ、γ 係有稭 乃冋偏移的情形,又,右 準孔ΑΜ1〜ΑΜ4的任一孔形成在 有使對 中,對準孔腿的位置係對於對準孔方向2圖 量測對準孔AM卜AM4的位置日士 ,v °私 )1立置日守,在χ、γ方向 測。在作為向量資料的電路樣式 里 位置座俨資料在、* 6人 、4對率孔ΑΜ1〜ΑΜ4的 位置庄係被包含,沿著照相機 量、繪製桌18的移動量係基於對準 方向的移動 ^ M irb 'i. L AMI 〜AM4 的位置座才# 貝枓被決定。又,關於Y座標,如 置压‘ 下所不般,利用基準 2258-8920-PF;Tungming 200811619 』度尺1 6 ’對準孔趙卜綱的位置被量测。 甘基板SW係被配置在初期位置(原點位置)的話,為了使 /、移動’基於量測的對準孔的 … 座標貧料,照相機Π係沿 疋 #向移動。只是,照相機η係在初期狀能中, 位在μ的位置。例如,量測對準孔AM1時,照相機^只 移動距離Y1。 在照相機11的驅動機構,產生傳送誤差,實際上,照 相機私動的位置座標和在繪製資料被包含的對準孔的位置 座払之間’產生偏差。在此,誤差在排列於基準刻度尺16 的孔=間距(數厘米)的範圍内產生。照相機η㈣之後, 光源早兀21的第二光源部13Β被亮燈,綠色光被照射 在基準刻度尺1 6上。產生傳送誤差時,對應於基準刻度尺 1 6的被里測的對準孔的孔的位置係i照相冑的視野的中心 位置偏。在第6圖巾,將沒有傳送誤差的狀態中的基準刻 度尺16的孔以T1表*,將產生傳送誤差的實際的孔以T2 表示。 在σ又置於照相機11的CCD,綠色光L2的反射光被輸 入,表示反射光的輸入位置的影像信號(亦即,光檢測信號) 係k CCD被輸出。又,基於檢測信號,基準刻度尺1 6的孔 的位置偏差量被檢測出。之後,繪製桌18只沿著X方向移 動所疋星’照相機1 1的位置係被決定在對準孔的頂上。繪 製桌18停止的話,光源單元21的第一光源部13A亮燈, 紅色光L1係照射至基板sw,第二光源部1 3B係關燈。又, 關於X方向’基於從安裝於X台驅動機構37A的馬達的解 2258-892◦-PF;Tungming 15 200811619 碼器(encoder)被輸出的位置檢 曰、 1細列L旒,繪製桌1 8的移動 里被檢測出。基板SW係將)[=〇的眉 幻原·、、、ύ位置作為初期位置被 驅動。 對準孔的位置藉由·變报堂 7等而產生偏差時,對準孔係從 :照相機η的視野中心位置偏離。此時,藉由操作者的鍵盤 知作,對準孔的中心位置朝照相機π的視料心位置過來 般使照相機1 1移動(夂者篦 — 匕亏弟7圖)。使照相機π移動時, 弟一光源部1 3 Α關燈,異-会;μ、庄a 關且冉认攸第一光源部13β,綠色光 舨射至基準刻度尺H , 蚵應於基準刻度尺1 6的對準 孔的孔的位置的偏差量係被量測。 在系統控制電路32,基於藉由照相機n的傳送誤差 產生=置偏差量’又’藉由對準孔的位置調整產生的位 置:差置,繪製位置座標的補正量被檢測出。X,基於補 正里、’網格資料被修正’朝向基板SW的正確料製位置, 光係被照射。 如上述般,根據本實施例,在照相機11可沿著Y方向 (主知描方向)移動、載置基板SW的緣製桌18可沿著χ方 向(副掃描方向)移動的繪製裝置中,基板刻度尺16係沿著 Y方向被配置’對於基台12被固定。又,在照相機11 紅色光L1、绛岛本τ 〇 、、录色先L2選擇地放射的光源單元21係 在照相機11的下士 衣 i的下方’分色鏡1 5被設置。 於基準刻度尺1 6係不和繪製桌18 —體地動作, 用驅動纷製卓;七 表果而在維持對於基板的照相機的位置 下,可量測其進古丨由 狀怨 4土丰刻度尺的刻度,不會被繪製桌18的驅動量 2258-8920-PF;Tungming “ 200811619 的誤差而受影響而可正確地量測對準孔的位置情報。 其次,利用第8圖,說明有關作為第二實施例的緣製 系統。在第二實施例中,基準刻度尺用的光源和對準孔量 測用的光源係獨立地被設置。此以外的構成係和第一實施 例相同。 第8圖係為纟第二實施 <列中的^測機構的平面圖。 在光源單元21’ ,僅設置第一光源部13, A,在基準 刻度尺16的後#,第二光源部13,β被設置。從第二光源 部13’ Β綠色光被放射的話,通過基準刻度尺16的孔的綠 色光係入射至分色鏡15,藉由分色鏡15,綠色光係朝^目 機11的方向被反射。 /其次」利用第9圖,說明有關作為第三實施例的繪製 系統。在弟三實施例中,分色鏡係不會和照相機—起移動。 此以外的構成係和第一實施例相同。 第9圖係為概略地表示在第三實施例中的量測機構的 -部份的立體圖。分色豸15,係、和基準刻度尺平行地延 伸,對於柵門狀構造Μ 12藉由指示構件(未圖示)被固定。 照相機11係沿著分色鏡15,移動。 基準刻度尺16的間距、形狀係為任意,使用根據盆他 ,成的基準刻度尺也可。只是,基準刻度尺Μ的孔的間距 糸f考慮照相機的驅動機構的傳送誤差、對準孔的位置偏 :而决疋’由於特定的基準刻度尺的孔係不從照相機 子野洛工,置測時的孔的偏差係成為間距的一半以下般争 定間距即可。又,脸1、隹,> 〆、 將基準刻度尺在副掃描方向設置的構成 2258-8920-PF;Tungming 17 200811619 也可。 藉由分色鏡、稜鏡以外的光學系統,將紅色光、綠色 光述擇地導引至基板、基準刻度尺般構成也可。又,代替 紅色光、綠色光,使用對於基板的感光材料不反應的波長 領域的光即可,只要適用相互的波長領域不同的光即可。 代替DMD等的空間光調變器,適用於利用多面鏡 (Polygon mirror)等的雷射光束掃描的繪製裝置也可。兄 【圖式簡單說明】 弟1圖係為以模式表示作為本實施例的 體圖; 1 部 以 弟2圖係為概略地表示含有照相機的量測機構的 份的立體圖; 第3圖係為量測機構的平面圖; 第 第 第 第 第 圖係為緣製裝置以及繪製控制部的方塊圖; 圖係為表示基板的平面圖; 圖係為表示基準刻度尺的對準孔的位置的圖; 圖係為表示對準孔的攝影晝面的圖示; 及 圖係為在第二實施例中的量測機構的平面圖 部份的立體圖。 弟' 9圖係為概略地表示在第三實施例中的量測機構的 【主要元件符號說明】 18 2258-8920-PF;Tungming 200811619 10〜繪製裝置; 1卜照相機; 11B〜稜鏡; 13A〜第一光源部; 13B〜第二光源部; 1 5〜分色鏡; 16〜基準刻度尺; 18〜繪製桌; 2 0〜曝光单元; 2 0 A〜光源; 20B〜_ ; 21〜光源單元; 30A〜繪製控制部; 3 2〜系統控制電路; 34〜DMD控制部; 38〜台控制部; 4 0〜台位置檢測部; SW〜基板(被繪製體) X〜副掃描方向; Y〜主掃描方向。 2258-8920-PF;Tungming 19The X-port mechanism 3 7 A is equipped with a motor (not shown) to move the drawing table 8 in the X direction. The Y stage mechanism 37B also includes a motor (not shown), and moves the exposure unit 20 including the light source 20A and the DMD 20B in the γ direction. The stage control unit 38 controls a motor (not shown) of the x stage mechanism 37A and the γ stage mechanism 3b, and controls the position of the exposure unit 20 and the drawing table 18. The stage position detecting unit 40 is based on a video signal (that is, a light detection signal) transmitted from a CCD (not shown) provided in the camera u, and a motor rotation indicating the stage mechanism 37A transmitted from the stage control unit 38. The position detection signal of the position, the position coordinates of the alignment holes AM1 to AM4 of the substrate SW are detected, and the movement of the camera 11 in the Y direction is controlled by a camera drive mechanism 39 including a motor (not shown). The 38 series controls the camera drive mechanism 39. The system and the first control circuit 3 2 transmit the position coordinates of the j, ·, and the alignment holes AM 1 to ΑΜ 4 from the stage position detecting unit 4, and calculate the position coordinates and the actual amount indicating the previously drawn drawing data. Measured substrate position coordinates 2258-8920~pF; Tungm.ng ^ 200811619 Poor alignment error. Further, the control unit 34 outputs a control signal for correcting the position of the feed. The 纟DMD control unit 34 shifts the storage position of the mesh lean material in the dot matrix memory 43 in accordance with the alignment error. The light source control unit 44 drives the light source 2A in the exposure unit 2A from the light source 2. A laser emits light. Further, the system control circuit 3 2 is attached to the light source unit 21 of the camera U, and the first source portion 13A and the second light source portion 13B shown in Fig. 3 are selectively turned on. The system control 32 is based on the light detection signal transmitted from the machine n, and the 30C displays the image of the alignment hole, and the picture is displayed to the screen. The figure of the wheel is shown as a plan view of the substrate sw. A diagram showing the position of the alignment hole of the scale 16. Fig. 7 is a view showing the photographic plane of the hole. The material is measured by the amount of the fifth hole. H (4) The alignment is set at the four corners of the substrate SW. In the case of the dry holes AM1 to ΑΜ4, the position of the dry holes AM1 to ΑΜ4 is changed by the deformation of the substrate SW, and the γ and γ systems are offset by the sag, and any hole of the right vertical holes ΑΜ1 to ΑΜ4 is formed. There is the alignment, the position of the alignment hole is aligned with the direction of the alignment hole 2 to measure the alignment hole AM, the position of the AM4, the Japanese, the v ° private) 1 standing day, measured in the χ, γ direction. In the circuit pattern of the vector data, the position coordinates are included in the position of *6 persons and 4 pairs of apertures ΑΜ1 to ΑΜ4. The movement amount of the drawing table 18 along the camera amount is based on the movement in the alignment direction^ M irb 'i. L AMI ~ AM4 position seat only # 贝枓 was decided. Also, about the Y coordinate, such as the pressure on the next In the case of the initial position (original position), the position of the slab is based on the reference 2258-8920-PF; Tungming 200811619. Measuring the alignment hole... The coordinate is poor, and the camera system moves along the 疋# direction. However, the camera η is in the initial state and is located at the position of μ. For example, when measuring the alignment hole AM1, the camera ^ Only the distance Y1 is moved. At the driving mechanism of the camera 11, a transmission error is generated, and in fact, a deviation occurs between the position coordinates of the camera's private movement and the position of the alignment hole in which the drawing data is included. Here, the error is The hole is arranged in the range of the hole = pitch (several centimeters) of the reference scale 16. After the camera η (four), the second light source portion 13A of the light source early 21 is illuminated, and the green light is irradiated on the reference scale 16. When the error is transmitted, the position of the hole corresponding to the aligned hole of the reference scale 16 is the center position of the field of view of the camera. In the sixth figure, the reference scale in the state where there is no transmission error. Ruler 16 In the T1 table*, the actual hole that causes the transmission error is represented by T2. When σ is again placed in the CCD of the camera 11, the reflected light of the green light L2 is input, indicating the image signal of the input position of the reflected light (that is, the light The detection signal) is outputted by the k CCD. Further, based on the detection signal, the positional deviation amount of the hole of the reference scale 16 is detected. Thereafter, the drawing table 18 moves only the position of the comet 'camera 1 1 along the X direction. When the drawing table 18 is stopped, the first light source unit 13A of the light source unit 21 is turned on, the red light L1 is irradiated to the substrate sw, and the second light source unit 13B is turned off. In addition, the X direction 'based on the position of the motor mounted on the X stage drive mechanism 37A 2258-892◦-PF; Tungming 15 200811619 encoder is output, 1 column L旒, draw table 1 The movement of 8 is detected. The substrate SW is driven by the position of the [= 〇 眉 幻 original, 、, ύ 作为. When the position of the alignment hole is deviated by the change, the alignment hole is deviated from the center of the field of view of the camera η. At this time, by the operator's keyboard, the center position of the alignment hole is moved toward the position of the camera π, so that the camera 11 moves (夂 篦 匕 匕 匕 7 7 7). When the camera π is moved, the light source unit 1 3 turns off the light, and the light is turned off, and the μ light source is turned on and the green light is emitted to the reference scale H, and the light is applied to the reference scale. The amount of deviation of the position of the hole of the aligning hole of the ruler 16 is measured. In the system control circuit 32, based on the transmission error of the camera n, the position of the deviation is determined by the positional adjustment of the alignment hole: the difference is found, and the correction amount of the drawing position coordinate is detected. X, based on the correction, the 'grid data is corrected' toward the correct material position of the substrate SW, and the light system is illuminated. As described above, according to the present embodiment, in the drawing device in which the camera 11 can move in the Y direction (the main scanning direction) and the edge table 18 on which the substrate SW is placed can be moved in the x direction (sub scanning direction), The substrate scale 16 is arranged in the Y direction to be fixed to the base 12 . Further, the light source unit 21 selectively emitted by the camera 11 red light L1, the island τ 〇 , and the recording color first L2 is disposed below the vestibule i of the camera 11 ’ dichroic mirror 15 is provided. On the basis of the scale 1 6, the machine does not move with the drawing table 18, and the drive is made up; the seven-segment is in the position of the camera that maintains the substrate, and the measurement can be measured. The scale of the scale will not be drawn by the driving amount of the table 18 2258-8920-PF; Tungming "200811619 error will be affected and the position information of the aligning hole can be correctly measured. Secondly, use Fig. 8 to explain As the edge system of the second embodiment, in the second embodiment, the light source for the reference scale and the light source for the alignment hole measurement are independently provided. The other configuration is the same as that of the first embodiment. Fig. 8 is a plan view of the measuring mechanism in the second embodiment <column. In the light source unit 21', only the first light source unit 13, A is provided, and the rear side of the reference scale 16 is the second light source unit 13. When β is emitted from the second light source unit 13 ′, the green light passing through the hole of the reference scale 16 is incident on the dichroic mirror 15 , and the dichroic mirror 15 causes the green light system to be directed toward the eye. The direction of the machine 11 is reflected. /Second" Three rendering system of an embodiment. In the third embodiment, the dichroic mirror does not move with the camera. The configuration other than this is the same as that of the first embodiment. Fig. 9 is a perspective view schematically showing a portion of the measuring mechanism in the third embodiment. The color separation 豸15 is extended in parallel with the reference scale, and is fixed to the gate structure 藉12 by an indicating member (not shown). The camera 11 moves along the dichroic mirror 15. The pitch and shape of the reference scale 16 are arbitrary, and a reference scale based on the pot may be used. However, the pitch 孔f of the hole of the reference scale 考虑f considers the transmission error of the drive mechanism of the camera and the positional deviation of the alignment hole: and the decision is made because the hole of the specific reference scale is not from the camera. The deviation of the holes to be measured may be a pitch equal to or less than half the pitch. Also, face 1, 隹, > 〆, the setting of the reference scale in the sub-scanning direction 2258-8920-PF; Tungming 17 200811619. The red light and the green light may be guided to the substrate or the reference scale by an optical system other than the dichroic mirror or the cymbal. Further, instead of red light or green light, light in a wavelength region that does not react with the photosensitive material of the substrate may be used, and light having a different wavelength region may be applied. Instead of a spatial light modulator such as a DMD, it is also applicable to a drawing device that uses a laser beam scanning such as a polygon mirror.兄 [Brief description of the drawing] The first drawing is a perspective view showing the body diagram of the present embodiment in a mode; and the second drawing is a perspective view showing a part of the measuring mechanism including the camera; A plan view of the measuring mechanism; the first and second figures are block diagrams of the edge device and the drawing control portion; the drawing is a plan view showing the substrate; the figure is a view showing the position of the alignment hole of the reference scale; It is a diagram showing the photographic plane of the alignment hole; and the figure is a perspective view of the plan view part of the measuring mechanism in the second embodiment. The '9' diagram is a schematic diagram showing the main components of the measuring mechanism in the third embodiment. 18 2258-8920-PF; Tungming 200811619 10~ drawing device; 1 camera; 11B~稜鏡; 13A ~ first light source part; 13B ~ second light source part; 1 5 ~ dichroic mirror; 16 ~ reference scale; 18 ~ drawing table; 2 0 ~ exposure unit; 2 0 A ~ light source; 20B ~ _; Unit; 30A to drawing control unit; 3 2 to system control circuit; 34 to DMD control unit; 38 to station control unit; 40 to station position detecting unit; SW to substrate (drawn body) X to sub-scanning direction; Y ~ Main scanning direction. 2258-8920-PF; Tungming 19

Claims (1)

200811619 十、申請專利範圍·· 1 · 一種繪製裝置,包括: 繪製桌,位置量測用的基準記號被設置的被繪製體被 格載,可對於基台相對地沿著第一掃描方向移動·, 照相機,可對於上述基台沿著與上述第一掃描方向正 父的第二掃描方向移動地被安裝,量測上述基準記號位置· 基準刻度尺,被安裝在上述基台、沿著上述第二掃描 方向延伸; 田 光; 第一光源,照射量測上述基準記號位置用的第—照明 斤第二光源、,照射照明上述基準収尺用的具有和上述 第知、明光不同的波長領域的第二照明光; 量測用光學系統,將上述第一照明光導引至上述被繪 製體且將其反射光導引至上述照相機,並將上述第二照明 光導引至上述基準刻度尺且將其反射光導引至上述昭相 機; ’、 量測裝置,量測上述基準記號的位置;以及 補正裝置,基於被量測的上述基準記號的位置,補正 繪製位置。 2.如申請專利範圍第1項所述之綠製裝置,其中上述 量測用光學系統包括: 第光子系統,使上述第一和第二照明光朝上述被繪 製體反射,將其反射光直接透過;以及 照明光以及其反射光透 弟一^光學糸統’將上述第 2258-8 920-PF;Tungming 20 200811619 過’使上述第二照明光朝上述 光朝上述照相機反射。 度尺反射且使其反射 3.如申請專利範圍第i項所述 量測用光學系統包括: 衣置,、中上述 第三光學系統,使上述第一昭 …、月先朝上述被繪製體反 射使其反射光直接透過;以及 第四光學系統,使上述第一日 …、月先以及其反射光透 避’使經由上述基阜势| p BS1 , ^判度尺人射的上述第二照明光朝上述 A相機反射。 Θ 4·如申請專利範圍第!項所述之緣製裝置,其甲上述 里測用光㈣統包括將上述第_照明光以及其反射光透 過、將上述第二照明光以及其反射光反射的分光光學系統。 5.如申請專利範圍第4項所述之緣製裝置,其中上述 分光光學系統係朝上述照相機—體地被安裝,上述量測用 光予系統以及上述照相機係可對於上述基準刻度尺相對地 移動。 八e·如申請專利範圍$4項所述之繪製裝置,其中上述 刀光光學系統係沿著上述基準刻度尺延伸般被安裝在上述 基準刻度尺,上述照相機係可對於上述量測用光學系統以 及上述基準刻度尺相對地移動。 7 · —種繪製裝置的量測機構,包括: 照相機,可沿著對於基台、與繪製桌相對地移動的第 掃描方向正交的第二掃描方向移動地被安裝,量測設置 於被搭載於上述繪製桌的被繪製體的基準記號的位置; 2258-8920-PF;Tungming 200811619 基準 刻 度 尺 被安 裝在 上述基 台 , 沿 著 上 述 第 二 掃描 方向延伸 9 第一 光 源 照 射 量 測 上 述基準 記 號 位 置 用 的 第 — 照明 光; ) 第二 光 源 照 射 as 明 上 述基準 刻 度 尺 用 的 具 有 和 上述 第- -照明 光 不 同 的 波 長 領 域 的第二 昭 明 光 ; 以 及 量測用 光 學 系 統 將 上 述第一 日召 4 明 光 導 引 至 上 述被繪 製體且將 其 反射 光 導 引 至 上 述照相 機 5 並 將 上 述 第 • — 照明 光導引至上述基準刻度尺且將其反射光導引至上述照相 機0 2258-8920-PF;Tungming200811619 X. Patent Application Range·· 1 · A drawing device, comprising: drawing table, the drawing object set for the position measurement is set to be drawn, and the base can be relatively moved along the first scanning direction. a camera that is attached to the base in a second scanning direction that is opposite to the first scanning direction, and that measures the reference mark position and the reference scale, and is mounted on the base and along the a second light source, a first light source, a second light source for measuring the position of the reference mark, and a second wavelength source for illuminating the reference scale having a wavelength different from the above-mentioned known and bright light a second illumination light; the optical system for measuring, guiding the first illumination light to the object to be drawn and guiding the reflected light to the camera, and guiding the second illumination light to the reference scale and The reflected light is guided to the above-mentioned camera; ', the measuring device measures the position of the reference mark; and the correcting device is based on the measured The position of said reference mark, the drawing position correction. 2. The green device according to claim 1, wherein the measuring optical system comprises: a first light subsystem, wherein the first and second illumination lights are reflected toward the drawn object, and the reflected light is directly reflected And the illumination light and the reflected light thereof pass through the 2258-8 920-PF; Tungming 20 200811619 to reflect the second illumination light toward the camera. The optical system for measuring and reflecting according to the invention of claim i includes: a garment, wherein the third optical system is configured to cause the first first to be drawn toward the body The reflection causes the reflected light to pass therethrough directly; and the fourth optical system causes the first day, the first month, and the reflected light thereof to evade the second portion of the ruler by the base potential | p BS1 , ^ The illumination light is reflected toward the above A camera. Θ 4· If you apply for a patent scope! The apparatus for edge detection includes a spectroscopic optical system that transmits the first illumination light and the reflected light, and reflects the second illumination light and the reflected light thereof. 5. The edge device according to claim 4, wherein the spectroscopic optical system is mounted to the camera body, and the measuring light system and the camera system are opposite to the reference scale. mobile. [8] The drawing device of claim 4, wherein the knife optical system is mounted on the reference scale along the reference scale, and the camera system is applicable to the measuring optical system and The above reference scale is relatively moved. The measuring mechanism of the drawing device includes: a camera that is movably mounted along a second scanning direction orthogonal to a scanning direction of the base that moves relative to the drawing table, and is measured and mounted Position of the reference mark of the drawn object of the drawing table; 2258-8920-PF; Tungming 200811619 The reference scale is mounted on the base, extending along the second scanning direction. 9 The first light source is irradiated to measure the reference mark a first light source for illuminating; the second light source illuminating as the second illuminating light having a wavelength region different from the first illuminating light for the reference scale; and the measuring optical system The light is directed to the drawn body and directs the reflected light to the camera 5 and guides the illumination light to the reference scale and directs the reflected light to the camera 0 2258-8920 -PF;Tungming
TW096129603A 2006-08-30 2007-08-10 Drawing device TW200811619A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006233675A JP2008058477A (en) 2006-08-30 2006-08-30 Drawing device

Publications (1)

Publication Number Publication Date
TW200811619A true TW200811619A (en) 2008-03-01

Family

ID=39160002

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096129603A TW200811619A (en) 2006-08-30 2007-08-10 Drawing device

Country Status (4)

Country Link
JP (1) JP2008058477A (en)
KR (1) KR20080021497A (en)
CN (1) CN101135863A (en)
TW (1) TW200811619A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5305967B2 (en) * 2009-02-17 2013-10-02 株式会社日立ハイテクノロジーズ Exposure apparatus, exposure method, and manufacturing method of display panel substrate
JP5355245B2 (en) * 2009-06-25 2013-11-27 株式会社日立ハイテクノロジーズ Exposure apparatus, exposure method, and manufacturing method of display panel substrate
CN104062859B (en) * 2013-03-21 2016-08-10 上海微电子装备有限公司 A kind of photolithography equipment aligning system
CN108121177B (en) * 2016-11-29 2019-11-22 上海微电子装备(集团)股份有限公司 A kind of alignment measurement systems and alignment methods
KR102362864B1 (en) * 2019-12-26 2022-02-14 서울대학교산학협력단 Optical system and method for performing photolithography using dynamic mask

Also Published As

Publication number Publication date
CN101135863A (en) 2008-03-05
KR20080021497A (en) 2008-03-07
JP2008058477A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP5326259B2 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
US20090097002A1 (en) Exposure device
TW200402089A (en) Exposure apparatus and stage device and device manufacturing method
JP2008249958A (en) Reference position measuring instrument and method, and drawing device
JP6465591B2 (en) Drawing device
JPH08264427A (en) Method and device for alignment
KR101446484B1 (en) Pattern forming system
JP3643572B2 (en) Projection exposure apparatus and alignment apparatus
TW200811619A (en) Drawing device
TW201107905A (en) Measurement apparatus, exposure apparatus, and device fabrication method
JPH10153866A (en) Illuminator and exposure device provided with it
TW200919122A (en) Direct image exposure device
WO2020151000A1 (en) Digital double-sided photolithography or exposure system and method
KR20150087538A (en) Focus regulator and focus regulating method of camera module
JPH08316123A (en) Projection aligner
KR20080016494A (en) Method and apparatus for measuring drawing position, and method and apparatus for drawing image
KR20130020408A (en) Maskless exposure apparatus and method for getting spot beam position using the same
CN102207694A (en) Imaging adjustment unit and focusing and leveling control system using the unit
CN101826454A (en) The manufacture method of semiconductor device
JP2009170681A (en) Exposure apparatus, exposure method, and device manufacturing method
JP5064862B2 (en) Alignment mark measuring method and apparatus, and drawing method and apparatus
CN111736438A (en) Direct imaging optical apparatus
JP4583827B2 (en) Image forming apparatus and image forming method
JP2008177308A (en) Position detection apparatus, exposure apparatus, and device manufacturing method
JPWO2009093594A1 (en) Surface position detection apparatus, exposure apparatus, and device manufacturing method