JP2017067888A - 描画装置および位置情報取得方法 - Google Patents

描画装置および位置情報取得方法 Download PDF

Info

Publication number
JP2017067888A
JP2017067888A JP2015190810A JP2015190810A JP2017067888A JP 2017067888 A JP2017067888 A JP 2017067888A JP 2015190810 A JP2015190810 A JP 2015190810A JP 2015190810 A JP2015190810 A JP 2015190810A JP 2017067888 A JP2017067888 A JP 2017067888A
Authority
JP
Japan
Prior art keywords
light
base material
pattern
heads
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015190810A
Other languages
English (en)
Inventor
浅田 和彦
Kazuhiko Asada
和彦 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2015190810A priority Critical patent/JP2017067888A/ja
Publication of JP2017067888A publication Critical patent/JP2017067888A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】描画装置において短時間に正確な位置情報を取得する技術を提供する。
【解決手段】校正用スケールに設けられた透過パターンは、複数の描画ヘッドから照射される光の照射パターンと対応した複数の単位透過パターンを有する。複数の単位透過パターンは、校正用スケールにおいて第1方向に互いにずれつつ第1方向と直交する第2方向に並んで形成されている。このため、複数の描画ヘッドと校正用スケールとを相対移動しつつ光量センサが経時的に透過パターンの透過光を検出することで、検出された光量を基に各描画ヘッドと校正用スケールとの相対位置関係が得られる。
【選択図】図13

Description

この発明は、基材の主面に光を照射して基材にパターンを描画する描画装置、および、該描画装置における位置情報取得方法に関する。
基材上に塗布された感光材料に回路などのパターンを露光するにあたって、マスクなどを用いず、パターンを記述したデータに応じて変調した光によって基材上の感光材料を走査することによって、当該感光材料に直接パターンを露光する露光装置(いわゆる、描画装置)が知られている。この種の描画装置は、例えば、光ビームを画素単位でオン・オフ変調するための空間光変調器を備える描画ヘッドから、該描画ヘッドに対して相対的に移動する基材に対して描画光を照射して、基材にパターンを露光するものが知られている。
このような基材に直接パターンを描画する描画装置では、基材の表面に設けられたアライメントマークを撮像するアライメント用カメラや描画ヘッドを撮像してその位置を把握する校正用カメラ等を用いて、基材と描画ヘッドとの相対的な位置関係が把握される。そして、この相対的な位置関係は、描画データ(パターンデータ)に基づいた描画処理が行われる際にパターン描画する位置などを補正するために利用され、高精度な描画処理が実行される。
特開2014−197136号公報 特開2005−3762号公報
例えば、特許文献1の態様では、校正用カメラが描画ヘッドと校正用スケールとを撮像することで、描画ヘッドと校正用スケールとの相対位置関係が把握される。しかしながら、この態様においては、描画ヘッドと校正用スケールと校正用カメラとをそれぞれ相対移動させた状態では撮像のピントが合い難く、描画ヘッドと校正用スケールと校正用カメラとをそれぞれ静止させた状態でなければ正確な上記相対位置関係が得られない。このため、撮像の度に各部を静止させる必要が生じ、上記相対位置関係を得るのに長時間を要する。
また、例えば、特許文献2の態様では、ステージに光を選択的に透過させる透過パターンが形成されており、描画ヘッドから出射された1画素分の光が透過パターンを透過してディテクタにより検出されることで、ステージと描画ヘッドとの相対位置関係が把握される。しかしながら、この態様においては、光の照射パターンと透過パターンとが非対応であるため、相対移動方向に沿って何度も描画ヘッドと透過パターンとの相対移動を繰り返さなければ上記相対位置関係を得ることができない。また、この態様においては、1画素分の光を用いて上記相対位置関係を得るため、得られる位置情報において装置各部の誤差が影響しやすく、正確な位置情報を取得することが困難である。
本発明は、上記課題に鑑みなされたものであり、描画装置において短時間に正確な位置情報を取得する技術を提供することを目的とする。
本発明の第1の態様にかかる描画装置は、基材の主面に光を照射して前記基材にパターンを描画する描画装置であって、基材を保持する基材保持部と、それぞれが光を出射する複数の描画ヘッドと、位置指標および光を選択的に透過させる透過パターンが形成された校正用スケールと、前記基材保持部に保持された前記基材および前記校正用スケールに形成された前記位置指標を撮像する撮像部と、前記複数の描画ヘッドから出射された光のうち前記透過パターンを透過した透過光の光量を検出する光量センサと、を備え、描画処理の際には、前記複数の描画ヘッドから前記基材に向けて空間変調された光を照射しつつ、前記複数の描画ヘッドと前記基材とが相対移動され、前記透過パターンは前記複数の描画ヘッドから照射される光の照射パターンと対応した複数の単位透過パターンを有し、前記複数の単位透過パターンは、前記校正用スケールにおいて第1方向に互いにずれつつ前記第1方向と直交する第2方向に並んで形成されていることを特徴とする。
本発明の第2の態様にかかる描画装置は、本発明の第1の態様にかかる描画装置であって、前記透過パターンは、前記複数の単位透過パターンに加え、前記複数の描画ヘッドの配列方向に伸びる直線透過パターンをさらに有し、前記配列方向は前記第1方向と一致し、前記光量センサによって光検出される際の前記複数の描画ヘッドと前記校正用スケールとの相対移動方向は前記第2方向と一致することを特徴とする。
本発明の第3の態様にかかる描画装置は、本発明の第1の態様または第2の態様にかかる描画装置であって、前記第2方向に隣接する各単位透過パターンでは、前記第1方向についての互いのずれ量が同一であり、前記ずれ量は、前記基材の前記主面に前記描画ヘッドから照射される光を前記第1方向について変位可能な最小単位に相当することを特徴とする。
本発明の第4の態様にかかる描画装置は、本発明の第1の態様ないし第3の態様のいずれかにかかる描画装置であって、前記複数の描画ヘッドと前記校正用スケールとが連続的に相対移動されている状態で、前記複数の描画ヘッドから前記校正用スケールに向けて光を照射し、前記光量センサは、前記複数の描画ヘッドから出射された光のうち前記透過パターンを透過した透過光の光量を経時的に検出することを特徴とする。
本発明の第5の態様にかかる位置情報取得方法は、本発明の第1の態様にかかる描画装置において前記複数の描画ヘッドと前記基材との位置関係を把握する位置情報取得方法であって、a)前記撮像部が前記基材保持部に保持された前記基材を撮像することにより、前記撮像部と前記基材との相対的な位置関係を得る工程と、b)前記撮像部が前記校正用スケールに形成された前記位置指標を撮像することにより、前記撮像部と前記校正用スケールとの相対的な位置関係を得る工程と、c)前記複数の描画ヘッドと前記校正用スケールとを相対移動しつつ前記複数の描画ヘッドから前記校正用スケールに向けて光を照射し、前記光量センサが前記複数の描画ヘッドから出射された光のうち前記透過パターンを透過した透過光の光量を経時的に検出して、前記複数の単位透過パターンを透過する透過光が前記光量センサによって最大で検出されるタイミングを基にこのタイミングと対応する一の単位透過パターンを特定して、この一の単位透過パターンが校正用スケールに形成されている前記第1方向の位置を基に、前記複数の描画ヘッドと前記校正用スケールとの位置関係を前記第1方向について得る工程と、d)前記a)工程ないし前記c)工程によって得られた各位置関係を基に、前記複数の描画ヘッドと前記基材との前記第1方向についての位置関係を得る工程と、を備えることを特徴とする。
本発明の第6の態様にかかる位置情報取得方法は、本発明の第5の態様にかかる位置情報取得方法であって、前記透過パターンは、前記複数の単位透過パターンに加え、前記複数の描画ヘッドの配列方向に伸びる直線透過パターンをさらに有し、前記配列方向は前記第1方向と一致し、前記c)工程における前記複数の描画ヘッドと前記校正用スケールとの相対移動方向は前記第2方向と一致し、前記c)工程では、さらに、前記直線透過パターンを透過する透過光が前記光量センサによって最大で検出されるタイミングを基に、このタイミングと対応する前記複数の描画ヘッドと前記校正用スケールとの位置関係を前記第2方向について得て、前記d)工程では、前記複数の描画ヘッドと前記基材との位置関係を得る、ことを特徴とする。
本発明の第7の態様にかかる位置情報取得方法は、本発明の第5の態様または第6の態様にかかる位置情報取得方法であって、前記第2方向に隣接する各単位透過パターンでは、前記第1方向についての互いのずれ量が同一であり、前記ずれ量は、前記基材の前記主面に前記描画ヘッドから照射される光を前記第1方向について変位可能な最小単位に相当することを特徴とする。
本発明の第8の態様にかかる位置情報取得方法は、本発明の第5の態様ないし第7の態様のいずれかにかかる位置情報取得方法であって、前記c)工程では、前記複数の描画ヘッドと前記校正用スケールとを連続的に相対移動することを特徴とする。
本発明では、透過パターンは複数の描画ヘッドから照射される光の照射パターンと対応した複数の単位透過パターンを有し、複数の単位透過パターンは校正用スケールにおいて第1方向に互いにずれつつ第1方向と直交する第2方向に並んで形成されている。このため、複数の描画ヘッドと校正用スケールとを相対移動しつつ光量センサが経時的に透過パターンの透過光を検出することで、検出された光量を基に各描画ヘッドと校正用スケールとの相対位置関係が得られる。
これに対して、光量センサに代えて校正用カメラを有する他の態様(例えば、特許文献1の態様)では、描画ヘッドと校正用スケールと校正用カメラとをそれぞれ相対移動させた状態では撮像のピントが合い難く、描画ヘッドと校正用スケールと校正用カメラとをそれぞれ静止させた状態でなければ正確な上記相対位置関係が得られない。本発明の態様では、該他の態様と異なり、各部を動作させつつより短時間で上記相対位置関係を得ることができ、望ましい。
また、光を透過する透過パターンが光の照射パターンと非対応な他の態様(例えば、特許文献2の態様)では、相対移動方向に沿って何度も描画ヘッドと透過パターンとの相対移動を繰り返さなければ描画ヘッドの位置調整を行うことができない。本発明の態様では、該他の態様と異なり、1回の相対移動で上記相対位置関係を得ることができ、望ましい。
また、該他の態様では、描画ヘッドから照射された1画素分の光が透過パターンを透過してディテクタで検出されることにより描画ヘッドの位置情報が得られるが、このように1画素分の光を用いて位置情報を得る態様では、得られる位置情報において装置各部の誤差が影響しやすく、正確な位置情報を取得することが困難である。これに対して、本発明の態様では、複数の描画ヘッドから照射される光の照射パターン(言い換えると、複数画素によって構成される照射パターン)を用いて上記相対位置関係を得るため、各描画ヘッドの振動や光量センサのノイズ等の計測誤差成分が平均化される。このため、本発明の態様では、該他の態様と異なり、より正確に上記相対位置関係を得ることができ、望ましい。
描画装置の概略斜視図である。 描画装置の概略平面図である。 描画装置のバス配線図である。 露光部の概略を示す斜視図である。 描画処理が行われている基材を示す平面図である。 描画ヘッドの概略を示す側面図である。 各アライメント用カメラと基材保持プレートに保持された基材との相対位置関係を得る様子を示す概略平面図である。 各アライメント用カメラと基材保持プレートに保持された基材との相対位置関係を得る様子を示す概略側面図である。 各アライメント用カメラと校正用スケールとの相対位置関係を得る様子を示す概略平面図である。 各アライメント用カメラと校正用スケールとの相対位置関係を得る様子を示す概略側面図である。 各描画ヘッドと校正用スケールとの相対位置関係を得る様子を示す概略平面図である。 各描画ヘッドと校正用スケールとの相対位置関係を得る様子を示す概略側面図である。 各描画ヘッドと校正用スケールとの相対位置関係を得る様子を示す拡大平面図である。 変形例において、各描画ヘッドと校正用スケールとの相対位置関係を得る様子を示す拡大平面図である。 変形例において、各描画ヘッドと校正用スケールとの相対位置関係を得る様子を示す拡大平面図である。 変形例において、各描画ヘッドと校正用スケールとの相対位置関係を得る様子を示す拡大平面図である。
以下、図面を参照しながら、本発明の実施形態について説明する。図面では同様な構成および機能を有する部分に同じ符号が付され、重複説明が省略される。なお、以下の実施形態は、本発明を具体化した一例であり、本発明の技術的範囲を限定する事例ではない。また、図面においては、理解容易のため、各部の寸法や数が誇張または簡略化して図示されている場合がある。また、図面には、方向を説明するためにXYZ直交座標軸がふされる場合がある。座標軸における+Z方向は鉛直上方向であり、XY平面は水平面である。
<1 実施形態>
図1は、第1実施形態に係る描画装置100の概略斜視図である。また、図2は、描画装置100の概略平面図である。さらに図3は、描画装置100のバス配線図である。図2においては、説明の都合上、架橋構造体11および描画ヘッド33が二点鎖線によって図示されている。
描画装置100は、基材90(例えば、プリント基板)の主面に形成された感光材料の層(例えば、レジストの感光体)に光を照射してデバイス形成のためのパターンを描画する装置である。図1および図2に示されるように、描画装置100は、主に架台1、移動プレート群2、露光部3、および制御部5を備えている。
架台1は、略直方体状の外形を有しており、その上面の略水平な領域には、架橋構造体11や移動プレート群2が備えられる。架橋構造体11は、移動プレート群2の上方に略水平に掛け渡されるようにして架台1上に固定されている。図1に示すように、架台1は、移動プレート群2と架橋構造体11とを一体的に支持する。
移動プレート群2は、主に、基材90をその上面の略水平な領域に保持する基材保持プレート21(基材保持部)と、基材保持プレート21を下方から支持する支持プレート22と、支持プレート22を下方から支持するベースプレート23と、ベースプレート23を下方から支持する基台24と、基材保持プレート21をZ軸回りに回動させる回動機構211と、支持プレート22をX軸方向に移動させるための副走査機構221と、ベースプレート23をY軸方向に移動させるための主走査機構231とを備える。
基材保持プレート21の上面には、図示省略の複数の吸着孔が分散して設けられている。これらの吸着孔は、真空ポンプに接続されており、当該真空ポンプを動作することによって、基材90と基材保持プレート21との間の雰囲気を排気することができる。これにより、基材90が基材保持プレート21の上面に吸着保持される。
図2に示されるように、回動機構211は、基材保持プレート21の−Y側端部に取り付けられた移動子と、支持プレート22の上面に設けられた固定子とにより構成されるリニアモータ211aを有する。また、回動機構211は、基材保持プレート21の中央部下面側と支持プレート22との間に、回動軸211bを有する。リニアモータ211aを動作させることによって、固定子に沿って移動子がX軸方向に移動し、基材保持プレート21が支持プレート22上の回動軸211bを中心として所定角度の領域内で回動する。
副走査機構221は、支持プレート22の下面に取り付けられた移動子と、ベースプレート23の上面に設けられた固定子とにより構成されるリニアモータ221aを有する。また、副走査機構221は、支持プレート22とベースプレート23との間に、X軸方向に延びる一対のガイド部221bを有する。リニアモータ221aを動作させることによって、支持プレート22がベースプレート23上のガイド部221bに沿ってX軸方向に移動する。
主走査機構231は、ベースプレート23の下面に取り付けられた移動子と、基台24上に設けられた固定子とにより構成されるリニアモータ231aを有する。また、主走査機構231は、ベースプレート23と架台1との間に、Y軸方向に延びる一対のガイド部231bを有する。リニアモータ231aを動作させることによって、ベースプレート23が基台24上のガイド部231bに沿ってY軸方向移動する。したがって、基材保持プレート21に基材90を保持した状態で主走査機構231を動作させることによって、基材90をY軸方向に沿って移動させることができる。なお、これら移動機構は、制御部5により、その動作が制御される。
なお、回動機構211、副走査機構221および主走査機構231の駆動については、上述のリニアモータ211a,221a,231aを利用したものに限定されない。例えば、回動機構211および副走査機構221については、サーボモータおよびボールネジ駆動を利用したものであってもよい。また、基材90を移動させる代わりに、露光部3を移動させる移動機構を設けてもよい。さらに、基材90および露光部3の双方を移動させるようにしてもよい。また、図示を省略するが、例えば、基材保持プレート21をZ軸方向に昇降させることによって、基材90を上下に昇降させる昇降機構を設けてもよい。
図1に戻って、露光部3は、LED光源部31、照明光学系32および描画ヘッド33で構成される光学ユニットを複数台(本実施形態では、5台)備えている。なお、図1では、図示が省略されているが、各描画ヘッド33に対して、LED光源部31および照明光学系32がそれぞれ設けられている。LED光源部31は、制御部5から送られる所要の駆動信号に基づいて、所要波長のレーザ光を出射する光源装置である。LED光源部31から出射された光ビームは、ロッドインテグレーター、レンズおよびミラーなどで構成される照明光学系32を介して、描画ヘッド33へ導かれる。
各描画ヘッド33は、照明光学系32から出射される光線を、基材90の上面に照射するものである。各描画ヘッド33は、X軸方向に沿って架橋構造体11の側面上部に等ピッチで配設されている。
図4は、露光部3の概略を示す斜視図である。図4において、光変調部4および投影光学系332は、各描画ヘッド33の内部の所定位置に配置されている。LED光源部31から出射された光ビームは、照明光学系32にて当該ビームの形状が整えられる。そして、照明光学系32にて断面矩形状に成形される。そして、照明光学系32を通過した光ビームは、光変調部4へと導かれ、光変調部4の変調動作有効領域に照射される。
光変調部4へ照射された光ビームは、制御部5の制御に基づいて空間的に変調され、投影光学系332へと入射する。投影光学系332は、入射してきた光を所要の倍率に変倍して、主走査方向へ移動する基材90上へ導く。
光変調部4は、電気的な制御によって入射光を空間変調させて、パターンの描画に寄与させる必要光と、パターンの描画に寄与させない不要光とを、互いに異なる方向に反射させる、デジタルミラーデバイス(DMD)を備えている。DMDは、例えば、1辺約10μmの正方形の微小ミラーが、1920×1080個マトリクス状に配列された空間変調素子である。各々のミラーがメモリセルに書き込まれたデータに従って、正方形の対角を軸として、所要角度で傾くように構成されている。制御部5からのリセット信号によって、各々のミラーは、一斉に駆動される。
DMDに表示されたパターンは、投影光学系332によって、基材90の露光面上に投影される。また、DMDに表示されるパターンは、後述するように、主走査機構231による基材保持プレート21の移動に伴って、主走査機構231のエンコーダー信号を元に作られるリセットパルスによって連続的に書き換えられる。これによって、描画光が基材90の露光面上に照射され、ストライプ状の像が形成される。
図5は、描画処理が行われている基材90を示す平面図である。描画処理は、制御部5の制御下で主走査機構231および副走査機構221が基材保持プレート21に載置された基材90を、複数台の描画ヘッド33に対して相対的に移動させつつ、複数の描画ヘッド33のそれぞれから基材90の上面に空間変調された光を照射することによって行われる。
本実施形態では、主走査機構231によって基材90が移動された際の、基材90から見た描画ヘッド33の移動方向を主走査方向とする。また、副走査機構221によって基材90が移動された際の、基材90から見た描画ヘッド33の移動方向を副走査方向とする。図5に示される例では、主走査方向は+Y方向(矢印AR11)および−Y方向(矢印AR13)となっており、副走査方向は+X方向(矢印AR12)となっている。
まず、主走査機構231によって、基材保持プレート21が−Y方向に移動され、基材90が複数の描画ヘッド33に対して相対的に移動される(主走査)。これを基材90から見ると、複数の描画ヘッド33が矢印AR11で示されるように+Y方向に相対的に移動したことになる。この主走査が行われる間、各描画ヘッド33は、パターンデータ541に応じて変調された断面矩形状の各描画光を基材90に連続的に照射する。すなわち、各描画光が基材90の露光面に投影される。各描画ヘッド33が主走査方向(+Y方向)に沿って基材90を1回横断すると、各描画光に対応した描画領域33Rが基材90上を通過することによって、帯状領域R1にパターンが描画されることなる。この帯状領域R1は、主走査方向に延びており、副走査方向に沿う幅が、描画光の幅(ストライプ幅)に相当する領域である。ここでは、5台の描画ヘッド33が、同時に基材90上を横断するため、1回の主走査により同時の5本の帯状領域R1のそれぞれに、パターンが描画されることになる。
1回の主走査が終了すると、副走査機構221によって、基材保持プレート21が+X方向に、既定の距離だけ移動させることによって、基材90を描画ヘッド33に対して相対的に移動させる(副走査)。これを基材90からみると、矢印AR12で示されるように、複数の描画ヘッド33が、副走査方向(+X方向)に既定の距離分だけ移動することになる。
副走査が終了すると、再び主走査が行われる。すなわち、主走査機構231によって、基材保持プレート21が+Y方向に移動させることによって、基材90を複数の描画ヘッド33に対して相対的に移動させる。これを基材90から見ると、各描画ヘッド33は、−Y方向に移動することによって、矢印AR13で示されるように、基材90上における、直前の主走査で描画された帯状領域R1に隣接する領域を横断することとなる。この主走査においても、各描画ヘッド33は、パターンデータ541に応じて変調された描画光を、基材90に向けて連続的に照射する。これによって、先の主走査で描画された帯状領域R1に隣接する帯状領域R2に、パターンが描画される。
以後、上記と同様に、主走査と副走査とが繰り返して行われ、基材90上の描画対象領域の全域にパターンが描画されると、描画処理が終了する。図5に示される例では、2回の副走査を挟んだ3回の主走査によって、各描画ヘッド33が帯状領域R1,R2,R3を横断し、これによって、描画対象領域の全域にパターンが形成される。
図3に示されるように、制御部5は、CPU51、読取専用のROM52、主にCPU51の一時的なワーキングエリアとして使用されるRAM53および不揮発性の記録媒体であるメモリ54を備えている。また、制御部5は、表示部56、操作部57、回動機構211、副走査機構221、主走査機構231、LED光源部31(詳細には、光源ドライバ)、光変調部4およびオートフォーカス機構6といった描画装置100の各構成とバス配線、ネットワーク回線またはシリアル通信回線などにより接続されており、これら各構成の動作の制御を行う。
CPU51は、ROM52内に格納されているプログラム55を読み取りつつ実行することにより、RAM53またはメモリ54に記憶されている各種データについての演算を行う。このように、描画装置100は、CPU51、ROM52、RAM53およびメモリ54を備えることにより、一般的なコンピュータとしての構成を備えている。画像処理部511、光量処理部512、および、描画制御部513は、CPU51がプログラム55に従って動作することにより実現される機能ブロックである。ただし、これらの要素の一部または全部は、論理回路などによって実現されてもよい。これらの要素の動作内容の詳細については、後述する。
メモリ54は、基材90上に描画すべきパターンについてのパターンデータ541を記憶する。パターンデータ541は、例えば、CADソフトなどによって作成されたベクトル形式のデータを、ラスター形式のデータに展開した画像データである。制御部5は、このパターンデータ541に基づき、光変調部4を制御することによって、描画ヘッド33から出射する光ビームを変調する。なお、描画装置100では、主走査機構231のリニアモータ231aから送られてくるリニアスケール信号に基づいて、変調のリセットパルスが生成される。このリセットパルスに基づいて動作する光変調部4によって、基材90の位置に応じて変調された描画光が、各描画ヘッド33から出射される。
なお、本実施形態では、パターンデータ541は、単一の画像(基材90全面に形成すべきパターンが表現された画像)についてのデータとしてもよいが、例えば、単一画像についてのパターンデータ541から、描画ヘッド33のそれぞれが描画を担当する部分についての画像データを、描画ヘッド33毎に個別に生成する構成としてもよい。
表示部56は、一般的なCRTモニタや液晶ディスプレイなどで構成され、制御部5の制御によりオペレータに対して各種データを表示する。また、操作部57は、各種ボタンやキー、マウス、タッチパネル等から構成され、描画装置100に対して指示を入力するために、オペレータにより操作される。
図6は、描画ヘッド33の概略を示す側面図である。図6に示されるように、各描画ヘッド33には、オートフォーカス機構6がそれぞれ設けられている。オートフォーカス機構6は、描画ヘッド33および基材90(詳細には、露光面)の間の離間距離L1の変動を検出するための検出器61を備えている。オートフォーカス機構6は、検出器61によって検出された離間距離L1の変動に合わせて、描画ヘッド33の描画光の焦点を調整する。
検出器61は、レーザ光を基材90に照射する照射部611と、基材90を反射したレーザ光を受光する受光部613とで構成されている。照射部611は、基材90の表面に対する法線方向(ここでは、Z軸方向)に対して所定の角度だけ傾斜した軸に沿って基材90の上面に入射させ、スポット状に照射する。受光部613は、例えばZ軸方向に延びるラインセンサーで構成されている。該ラインセンサー上におけるレーザ光の入射位置によって、基材90の上面の変動が検出されることとなる。検出器61は、描画ヘッド33の投影光学系332の筐体外周面に設けられている取付機構62を介して、描画ヘッド33に対して固定される。
また、オートフォーカス機構6は、検出器61によって検出された変動量に応じて、投影光学系332のレンズをZ軸方向に上下させる昇降機構63を備えている。検出器61が検出した変動量が、制御部5または不図示の専用の演算回路などに渡され、所要のプログラムに従った演算処理が行われる。これによって、昇降機構63によるレンズの昇降量が決定される。
図7は、各アライメント用カメラ41と基材保持プレート21に保持された基材90との相対位置関係(以下、「第1位置関係」と呼ぶ)を得る様子を示す概略平面図である。図8は、第1位置関係を得る様子を示す概略側面図である。
基材90の表面の周端部付近には、複数のアライメントマークAM(図7に示す例では、6個のアライメントマークAM)が形成されている。また、図1では図示が省略されているが、アライメント用カメラ41は、架台1に固定されかつ移動プレート群2を跨ぐように架け渡される架橋構造体(図示せず)に取り付けられている。アライメント用カメラ41は、該架橋構造体に設けられたスライド機構によって、X軸方向に移動するように構成されている。この移動機構によってアライメント用カメラ41をX軸方向に沿って移動させるとともに、基材保持プレート21をY軸方向に沿って移動させることによって、アライメント用カメラ41と基材90の各アライメントマークAMとの位置関係が調節される。そして、6つのアライメントマークAMが各アライメント用カメラ41によって撮像される。
この撮像によって取得された撮像情報543が、画像処理部511に送信され、所要の画像処理が行われる。これによって、第1位置関係が取得され、メモリ54などの記憶部(RAM53などの一時的に情報を記憶するものも含む。)に保存される。
図9は、各アライメント用カメラ41と校正用スケール71との相対位置関係(以下、「第2位置関係」と呼ぶ)を得る様子を示す概略平面図である。図10は、第2位置関係を得る様子を示す概略側面図である。
校正用スケール71は透明な素材に不透明な膜をパターニングして得た部材であり、その表面のうち−Y側の領域にはX方向に伸びる目盛り711が形成されている。この目盛りのZ軸方向の高さは、基材保持プレート21に保持された基材90の表面の高さ(すなわち、複数のアライメントマークAMが形成されている高さ)にほぼ一致している。校正用スケール71は、移動プレート群2(例えば、Y軸方向に沿って移動する基材保持プレート21)の+Y側に固定されている。このため、校正用スケール71は、基材保持プレート21とともに、Y軸方向に移動される。上記移動機構によってアライメント用カメラ41をX軸方向に沿って移動させるとともに、基材保持プレート21とともに校正用スケール71をY軸方向に沿って移動させることによって、アライメント用カメラ41と校正用スケール71の目盛り711との位置関係が調節される。そして、位置指標としての目盛り711が各アライメント用カメラ41によって撮像されることにより、第2位置関係が得られる。
この撮像によって取得された撮像情報543が、画像処理部511に送信され、所要の画像処理が行われる。これによって、第2位置関係が取得され、メモリ54などの記憶部(RAM53などの一時的に情報を記憶するものも含む。)に保存される。このように、各アライメント用カメラ41が、基材保持プレート21に保持された基材90および校正用スケール71に形成された位置指標を撮像する撮像部として機能する。
図11は、各描画ヘッド33と校正用スケール71との相対位置関係(以下、「第3位置関係」と呼ぶ)を得る様子を示す概略平面図である。図12は、第3位置関係を得る様子を示す概略側面図である。図13は、第3位置関係を得る様子を示す拡大平面図である。
校正用スケール71の表面のうち+Y側の領域には、光を選択的に透過させる透過パターン712が形成されている。また、校正用スケール71の下方には、複数の描画ヘッド33から出射された光のうち透過パターン712を透過した透過光の光量を検出する光量センサ72が設けられる。光量センサ72についても、校正用スケール71と同様に、移動プレート群2に固定されており、基材保持プレート21とともにY軸方向に移動される。
透過パターン712は、複数の描画ヘッド33から照射される光の照射パターンPsと対応した複数の単位透過パターンPa〜Peを有し、複数の単位透過パターンPa〜Peは校正用スケール71においてX方向(第1方向)に互いにずれつつY方向(第2方向)に並んで形成されている。
照射パターンPsは、5つの描画ヘッド33から基材90の表面に照射される光のパターンであり、5つの矩形の照射領域をX方向に間隔をあけて構成される。単位透過パターンPcは、各描画ヘッド33が描画処理時の理想位置に配されている場合に、照射パターンPsと一致するパターンである。単位透過パターンPbは、各描画ヘッド33が描画処理時の理想位置から+X方向に所定距離ずれて配されている場合に、照射パターンPsと一致するパターンである。単位透過パターンPaは、各描画ヘッド33が描画処理時の理想位置から+X方向に上記所定距離の2倍ずれて配されている場合に、照射パターンPsと一致するパターンである。単位透過パターンPdは、各描画ヘッド33が描画処理時の理想位置から−X方向に所定距離ずれて配されている場合に、照射パターンPsと一致するパターンである。単位透過パターンPeは、各描画ヘッド33が描画処理時の理想位置から−X方向に上記所定距離の2倍ずれて配されている場合に、照射パターンPsと一致するパターンである。
このように、Y方向に隣接する各単位透過パターンPa〜Peでは、X方向についての互いのずれ量が上記所定距離で同一とされる。そして、この所定距離は、基材90の表面に描画ヘッド33から照射される光をX方向について変位可能な最小単位(本実施形態では、DMDにて変調可能な1画素)に相当する。なお、図13においては、単位透過パターンPa〜PeのX方向ずれが誇張して描かれているが、実際にはこのずれ量は微小(例えば、1μm)である。このため、図7、図9、図11では、このずれが無いものとして透過パターン712が簡略的に描かれている。
そして、複数の描画ヘッド33と校正用スケール71とがY方向に連続的に(例えば、等速で)相対移動されている状態で、複数の描画ヘッド33から校正用スケール71に向けて光を照射し、光量センサ72は複数の描画ヘッド33から出射された光のうち複数の単位透過パターンPa〜Peを透過した透過光の光量を経時的に検出する。
この光量情報544が、光量処理部512に送信され、所要の解析処理が行われる。具体的には、複数の単位透過パターンPa〜Peを透過する透過光が光量センサ72によって最大で検出されるタイミングを基に、このタイミングと対応する一の単位透過パターン(単位透過パターンPa〜Peのいずれか)が特定される。そして、この一の単位透過パターンが校正用スケール71に形成されているX方向位置を基に、X方向についての第3位置関係が得られる。また、この一の単位透過パターンが校正用スケール71に形成されているY方向位置を基に、Y方向についての第3位置関係が得られる。得られた第3位置関係が、メモリ54などの記憶部(RAM53などの一時的に情報を記憶するものも含む。)に保存される。
また、透過パターン712は、複数の単位透過パターンPa〜Peよりも+Y側の領域に、複数の描画ヘッド33の配列方向(X方向)に伸びる直線透過パターンPxをさらに有する。そして、複数の描画ヘッド33と校正用スケール71とがY方向に連続的に(例えば、等速で)相対移動されている状態で、複数の描画ヘッド33から校正用スケール71に向けて光を照射し、光量センサ72は複数の描画ヘッド33から出射された光のうち直線透過パターンPxを透過した透過光の光量を経時的に検出する。
この光量情報544が、光量処理部512に送信され、所要の解析処理が行われる。具体的には、直線透過パターンPxを透過する透過光が光量センサ72によって最大で検出されるタイミングを基に、このタイミングと対応するY方向についての第3位置関係が得られる。得られたY方向についての第3位置関係が、メモリ54などの記憶部(RAM53などの一時的に情報を記憶するものも含む。)に保存される。
このように、Y方向についての第3位置関係は、一の単位透過パターンを透過した透過光の光量に基づいて得ることもできるし、直線透過パターンPxを透過する透過光の光量に基づいて得ることもできる。なお、第3位置関係を得る際には、各描画ヘッド33の振動等の影響により、校正用スケール71に到達する各照射光が理想的な位置から僅かにX方向およびY方向にずれる場合がある。そして、このずれの影響が、一の単位透過パターンを透過した透過光の光量検出の際にはX方向およびY方向その両方について生じるのに対し、直線透過パターンPxを透過した透過光の光量検出の際にはY方向についてのみ生じる。したがって、より高精度に位置関係を把握したい場合には、本実施形態のように、直線透過パターンPxを透過する透過光の光量に基づいてY方向についての第3位置関係を得ればよい。他方、装置構成や演算処理をより簡易にしたい場合には、本実施形態とは異なり、校正用スケール71に直線透過パターンPxを設けず、一の単位透過パターンを透過する透過光の光量に基づいてY方向についての第3位置関係を得ればよい。
そして、メモリ54などの記憶部に保存された第1位置関係ないし第3位置関係を基に、まず、複数の描画ヘッド33と基材90との相対的な位置関係が求められる。この相対的な位置関係は、パターンデータ541に基づいた描画処理が行われる際に、描画制御部513によってパターン描画する位置などを補正するために利用される。また、所定期間描画処理を実行する度に(或いは、所定のロット数の描画処理を実行する度に)、上記相対的な位置関係が求められ、描画制御部513によってパターン描画する位置などが適宜補正される。
本実施形態では、複数の描画ヘッド33と校正用スケール71とをY方向に相対移動しつつ光量センサ72が経時的に透過パターン712の透過光を検出し、検出された光量を基に第3位置関係が得られる。これに対して、光量センサ72に代えて校正用カメラを有する他の態様(例えば、特許文献1の態様)では、描画ヘッドと校正用スケールと校正用カメラとをそれぞれ相対移動させた状態では撮像のピントが合い難く、描画ヘッドと校正用スケールと校正用カメラとをそれぞれ静止させた状態でなければ正確な第3位置関係が得られない。本実施形態の態様では、該他の態様と異なり、各部を動作させつつより短時間で第3位置関係を得ることができ、望ましい。
また、本実施形態では、透過パターン712が複数の描画ヘッド33から照射される光の照射パターンPsと対応した複数の単位透過パターンPa〜Peを有し、複数の単位透過パターンPa〜Peは校正用スケール71においてX方向に互いにずれつつY方向に並んで形成されている。これに対して、光を透過する透過パターンが光の照射パターンと非対応な他の態様(例えば、特許文献2の態様)では、Y方向に沿って何度も描画ヘッド33と透過パターン712との相対移動を繰り返さなければ描画ヘッド33の位置調整を行うことができない。本実施形態の態様では、該他の態様と異なり、1回の相対移動で第3位置関係を得ることができ、望ましい。
また、該他の態様では、描画ヘッドから照射された1画素分の光が透過パターンを透過してディテクタで検出されることにより描画ヘッドの位置情報が得られるが、このように1画素分の光を用いて位置情報を得る態様では、得られる位置情報において装置各部の誤差が影響しやすく、正確な位置情報を取得することが困難である。これに対して、本実施形態の態様では、複数の描画ヘッド33から照射される光の照射パターンPs(言い換えると、複数画素によって構成される照射パターンPs)を用いて第3位置関係を得るため、各描画ヘッドの振動や光量センサのノイズ等の計測誤差成分が平均化される。このため、本実施形態の態様では、該他の態様と異なり、より正確に第3位置関係を得ることができ、望ましい。
<2 変形例>
以上、本発明の実施の形態について説明したが、この発明はその趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。
図14は、変形例の描画装置100Aにおいて、第3位置関係を得る様子を示す拡大平面図である。以下では、図14を参照しつつ変形例における描画装置100Aについて説明するが、上記実施形態と同一の要素については同一の符号を付し重複説明を省略する。
照射パターンPs1は、5つの描画ヘッド33Aから基材90の表面に照射される光のパターンであり、5つの矩形の照射領域をX方向に間隔をあけて構成される。また、5つの描画ヘッド33Aにおいて、5つの矩形の照射領域の各長辺および各短辺がX方向およびY方向に対して所定角度だけ傾斜するよう各光学素子が設けられる。
そして、透過パターン712Aは、複数の描画ヘッド33Aから照射される光の照射パターンPs1と対応した複数の単位透過パターンPa1〜Pe1を有し、複数の単位透過パターンPa1〜Pe1は校正用スケール71Aにおいて第1方向(X方向から上記所定角度だけ傾斜した方向)に互いにずれつつ第2方向(Y方向から上記所定角度だけ傾斜した方向)に並んで形成されている。
単位透過パターンPc1は、各描画ヘッド33Aが描画処理時の理想位置に配されている場合に、照射パターンPs1と一致するパターンである。単位透過パターンPb1は、各描画ヘッド33Aが描画処理時の理想位置から第1方向の一方側に所定距離ずれて配されている場合に、照射パターンPs1と一致するパターンである。単位透過パターンPa1は、各描画ヘッド33Aが描画処理時の理想位置から第1方向の一方側に上記所定距離の2倍ずれて配されている場合に、照射パターンPs1と一致するパターンである。単位透過パターンPd1は、各描画ヘッド33Aが描画処理時の理想位置から第1方向の他方側に所定距離ずれて配されている場合に、照射パターンPs1と一致するパターンである。単位透過パターンPe1は、各描画ヘッド33Aが描画処理時の理想位置から第1方向の他方側に上記所定距離の2倍ずれて配されている場合に、照射パターンPs1と一致するパターンである。
上記実施形態では照射パターンPsを構成する各矩形領域の各長辺および各短辺がX方向およびY方向に平行な態様について説明したが、これに限られるものではない。本変形例のように、各矩形領域が基材90と描画ヘッド33Aとの相対移動方向(XY方向)から所定角度だけ傾斜した態様であっても構わない。
図15は、変形例の描画装置100Bにおいて、第3位置関係を得る様子を示す拡大平面図である。以下では、図15を参照しつつ変形例における描画装置100Bについて説明するが、上記実施形態と同一の要素については同一の符号を付し重複説明を省略する。
描画装置100Bでは、第3位置関係を得る際に各描画ヘッド33から基材90の表面に照射される光のパターンがそれぞれX方向に間隔をあけた2個の矩形の照射領域で構成される。照射パターンPs2は、5つの描画ヘッド33から基材90の表面に照射される光のパターンであり、10個の矩形の照射領域をX方向に間隔をあけて構成される。
そして、透過パターン712Bは、複数の描画ヘッド33から照射される光の照射パターンPs2と対応した複数の単位透過パターンPa2〜Pe2を有し、複数の単位透過パターンPa2〜Pe2は校正用スケール71BにおいてX方向に互いにずれつつY方向に並んで形成されている。
単位透過パターンPc2は、各描画ヘッド33が描画処理時の理想位置に配されている場合に、照射パターンPs2と一致するパターンである。単位透過パターンPb2は、各描画ヘッド33が描画処理時の理想位置から+X方向に所定距離ずれて配されている場合に、照射パターンPs2と一致するパターンである。単位透過パターンPa2は、各描画ヘッド33が描画処理時の理想位置から+X方向に上記所定距離の2倍ずれて配されている場合に、照射パターンPs2と一致するパターンである。単位透過パターンPd2は、各描画ヘッド33が描画処理時の理想位置から−X方向に所定距離ずれて配されている場合に、照射パターンPs2と一致するパターンである。単位透過パターンPe2は、各描画ヘッド33が描画処理時の理想位置から−X方向に上記所定距離の2倍ずれて配されている場合に、照射パターンPs2と一致するパターンである。
上記実施形態では、第3位置関係を得る際に各描画ヘッド33から基材90の表面に照射される光のパターンがそれぞれ1個の照射領域で構成される態様について説明したが、これに限られるものではない。本変形例のように、第3位置関係を得る際に各描画ヘッド33から基材90の表面に照射される光のパターンがそれぞれ複数個の照射領域で構成される態様であっても構わない。
図16は、変形例の描画装置100Cにおいて、第3位置関係を得る様子を示す拡大平面図である。以下では、図16を参照しつつ変形例における描画装置100Cについて説明するが、上記実施形態と同一の要素については同一の符号を付し重複説明を省略する。
透過パターン712Cは、透過パターン712と同様に、複数の描画ヘッド33から照射される光の照射パターンPsと対応した複数の単位透過パターンPa〜Peを有する。ただし、透過パターン712Cは、複数の単位透過パターンPa〜PeをY方向に間隔をあけて有する点で、透過パターン712とは異なる。
第3位置関係を得る際には、各描画ヘッド33の振動等の影響により、校正用スケール71Cに到達する各照射光が理想的な位置から僅かにX方向およびY方向にずれる場合がある。このため、複数の単位透過パターンPa〜PeがY方向に間隔をあけずに配される上記実施形態の態様では、ある単位透過パターンに向けて照射されるはずの光がY方向に隣接する単位透過パターンに向けて誤って照射されて、光量センサ72によって透過光の光量が誤検出されるおそれがあった。本変形例の態様では、複数の単位透過パターンPa〜PeをY方向に間隔をあけて配されるため、このような誤検出が抑制され、望ましい。
以上、実施形態およびその変形例に係る描画装置および位置情報取得方法について説明したが、これらは本発明に好ましい実施形態の例であって、本発明の実施の範囲を限定するものではない。本発明は、その発明の範囲内において、各実施形態の自由な組み合わせ、あるいは各実施形態の任意の構成要素の変形、もしくは各実施形態において任意の構成要素の増減が可能である。
100,100A〜100C 描画装置
2 移動プレート群
21 基材保持プレート
211 回動機構
221 副走査機構
231 主走査機構
3 露光部
33,33A 描画ヘッド
4 光変調部
41 アライメント用カメラ
5 制御部
511 画像処理部
512 光量処理部
513 描画制御部
54 メモリ
541 パターンデータ
543 撮像情報
544 光量情報
71,71A〜71C 校正用スケール
711 目盛り
712,712A〜712C 透過パターン
72 光量センサ
90 基材
AM アライメントマーク
Ps,Ps1,Ps2 照射パターン
Pa〜Pe,Pa1〜Pe1,Pa2〜Pe2 単位透過パターン
Px 直線透過パターン

Claims (8)

  1. 基材の主面に光を照射して前記基材にパターンを描画する描画装置であって、
    基材を保持する基材保持部と、
    それぞれが光を出射する複数の描画ヘッドと、
    位置指標および光を選択的に透過させる透過パターンが形成された校正用スケールと、
    前記基材保持部に保持された前記基材および前記校正用スケールに形成された前記位置指標を撮像する撮像部と、
    前記複数の描画ヘッドから出射された光のうち前記透過パターンを透過した透過光の光量を検出する光量センサと、
    を備え、
    描画処理の際には、前記複数の描画ヘッドから前記基材に向けて空間変調された光を照射しつつ、前記複数の描画ヘッドと前記基材とが相対移動され、
    前記透過パターンは前記複数の描画ヘッドから照射される光の照射パターンと対応した複数の単位透過パターンを有し、
    前記複数の単位透過パターンは、前記校正用スケールにおいて第1方向に互いにずれつつ前記第1方向と直交する第2方向に並んで形成されていることを特徴とする描画装置。
  2. 請求項1に記載の描画装置であって、
    前記透過パターンは、前記複数の単位透過パターンに加え、前記複数の描画ヘッドの配列方向に伸びる直線透過パターンをさらに有し、
    前記配列方向は前記第1方向と一致し、前記光量センサによって光検出される際の前記複数の描画ヘッドと前記校正用スケールとの相対移動方向は前記第2方向と一致することを特徴とする描画装置。
  3. 請求項1または請求項2に記載の描画装置であって、
    前記第2方向に隣接する各単位透過パターンでは、前記第1方向についての互いのずれ量が同一であり、
    前記ずれ量は、前記基材の前記主面に前記描画ヘッドから照射される光を前記第1方向について変位可能な最小単位に相当することを特徴とする描画装置。
  4. 請求項1ないし請求項3のいずれかに記載の描画装置であって、
    前記複数の描画ヘッドと前記校正用スケールとが連続的に相対移動されている状態で、前記複数の描画ヘッドから前記校正用スケールに向けて光を照射し、
    前記光量センサは、前記複数の描画ヘッドから出射された光のうち前記透過パターンを透過した透過光の光量を経時的に検出することを特徴とする描画装置。
  5. 請求項1に記載の描画装置において前記複数の描画ヘッドと前記基材との位置関係を把握する位置情報取得方法であって、
    a)前記撮像部が前記基材保持部に保持された前記基材を撮像することにより、前記撮像部と前記基材との相対的な位置関係を得る工程と、
    b)前記撮像部が前記校正用スケールに形成された前記位置指標を撮像することにより、前記撮像部と前記校正用スケールとの相対的な位置関係を得る工程と、
    c)前記複数の描画ヘッドと前記校正用スケールとを相対移動しつつ前記複数の描画ヘッドから前記校正用スケールに向けて光を照射し、前記光量センサが前記複数の描画ヘッドから出射された光のうち前記透過パターンを透過した透過光の光量を経時的に検出して、前記複数の単位透過パターンを透過する透過光が前記光量センサによって最大で検出されるタイミングを基にこのタイミングと対応する一の単位透過パターンを特定して、この一の単位透過パターンが校正用スケールに形成されている前記第1方向の位置を基に、前記複数の描画ヘッドと前記校正用スケールとの位置関係を前記第1方向について得る工程と、
    d)前記a)工程ないし前記c)工程によって得られた各位置関係を基に、前記複数の描画ヘッドと前記基材との前記第1方向についての位置関係を得る工程と、
    を備えることを特徴とする位置情報取得方法。
  6. 請求項5に記載の位置情報取得方法であって、
    前記透過パターンは、前記複数の単位透過パターンに加え、前記複数の描画ヘッドの配列方向に伸びる直線透過パターンをさらに有し、
    前記配列方向は前記第1方向と一致し、前記c)工程における前記複数の描画ヘッドと前記校正用スケールとの相対移動方向は前記第2方向と一致し、
    前記c)工程では、さらに、前記直線透過パターンを透過する透過光が前記光量センサによって最大で検出されるタイミングを基に、このタイミングと対応する前記複数の描画ヘッドと前記校正用スケールとの位置関係を前記第2方向について得て、
    前記d)工程では、前記複数の描画ヘッドと前記基材との位置関係を得る、ことを特徴とする位置情報取得方法。
  7. 請求項5または請求項6に記載の位置情報取得方法において、
    前記第2方向に隣接する各単位透過パターンでは、前記第1方向についての互いのずれ量が同一であり、
    前記ずれ量は、前記基材の前記主面に前記描画ヘッドから照射される光を前記第1方向について変位可能な最小単位に相当することを特徴とする位置情報取得方法。
  8. 請求項5ないし請求項7のいずれかに記載の位置情報取得方法において、
    前記c)工程では、前記複数の描画ヘッドと前記校正用スケールとを連続的に相対移動することを特徴とする位置情報取得方法。
JP2015190810A 2015-09-29 2015-09-29 描画装置および位置情報取得方法 Pending JP2017067888A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015190810A JP2017067888A (ja) 2015-09-29 2015-09-29 描画装置および位置情報取得方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015190810A JP2017067888A (ja) 2015-09-29 2015-09-29 描画装置および位置情報取得方法

Publications (1)

Publication Number Publication Date
JP2017067888A true JP2017067888A (ja) 2017-04-06

Family

ID=58494596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015190810A Pending JP2017067888A (ja) 2015-09-29 2015-09-29 描画装置および位置情報取得方法

Country Status (1)

Country Link
JP (1) JP2017067888A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100446A1 (ja) * 2018-11-15 2020-05-22 インスペック株式会社 キャリブレーションシステム及び描画装置
WO2021193494A1 (ja) * 2020-03-23 2021-09-30 サンエー技研株式会社 露光装置及び露光方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100446A1 (ja) * 2018-11-15 2020-05-22 インスペック株式会社 キャリブレーションシステム及び描画装置
JPWO2020100446A1 (ja) * 2018-11-15 2021-09-24 インスペック株式会社 キャリブレーションシステム及び描画装置
EP3882699A4 (en) * 2018-11-15 2022-01-12 Inspec Inc. CALIBRATION SYSTEM AND DRAWING DEVICE
JP7079983B2 (ja) 2018-11-15 2022-06-03 インスペック株式会社 キャリブレーションシステム及び描画装置
WO2021193494A1 (ja) * 2020-03-23 2021-09-30 サンエー技研株式会社 露光装置及び露光方法

Similar Documents

Publication Publication Date Title
JP5498243B2 (ja) 露光装置、露光方法及びデバイス製造方法
EP1921506A2 (en) Position Detecting Method and Device, Patterning Device, and Subject to be detected
KR101446484B1 (ko) 묘화 시스템
CN108681213B (zh) 数字化光刻系统和方法
JP5032821B2 (ja) 基板移動装置
JP6117594B2 (ja) 描画装置および描画方法
JP2017067888A (ja) 描画装置および位置情報取得方法
KR101588946B1 (ko) 묘화 장치 및 묘화 방법
JP2008058477A (ja) 描画装置
US20220355548A1 (en) Calibration systems and methods for additive manufacturing systems with multiple image projection
EP4377070A1 (en) Calibration systems and methods for additive manufacturing systems with multiple image projection
JP2014052403A (ja) 描画露光方法
JP2019163956A (ja) チップ位置測定装置
CN110308626B (zh) 图案描画装置及图案描画方法
JP2016031502A (ja) 描画装置および描画方法
TWI597582B (zh) 檢查方法及檢查裝置
JP5872310B2 (ja) 描画装置、テンプレート作成装置、および、テンプレート作成方法
WO2024070047A1 (ja) 露光装置および露光装置におけるビーム間隔計測方法
KR20230031140A (ko) 묘화 장치 및 묘화 방법
JP2014143429A (ja) 露光装置、露光方法及びデバイス製造方法
JP7489913B2 (ja) 描画装置および描画方法
JP2024041379A (ja) 描画装置
KR20240038572A (ko) 묘화 장치 및 묘화 방법
KR20230113395A (ko) 노광 방법 및 노광 장치
JP2022137849A (ja) 露光方法および露光装置