WO2021193494A1 - 露光装置及び露光方法 - Google Patents

露光装置及び露光方法 Download PDF

Info

Publication number
WO2021193494A1
WO2021193494A1 PCT/JP2021/011627 JP2021011627W WO2021193494A1 WO 2021193494 A1 WO2021193494 A1 WO 2021193494A1 JP 2021011627 W JP2021011627 W JP 2021011627W WO 2021193494 A1 WO2021193494 A1 WO 2021193494A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
drawing head
reference mark
coordinate system
predetermined direction
Prior art date
Application number
PCT/JP2021/011627
Other languages
English (en)
French (fr)
Inventor
三宅 健
俊博 高木
Original Assignee
サンエー技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンエー技研株式会社 filed Critical サンエー技研株式会社
Priority to KR1020227036399A priority Critical patent/KR20220157448A/ko
Priority to CN202180021552.9A priority patent/CN115335772A/zh
Priority to JP2022510463A priority patent/JPWO2021193494A1/ja
Publication of WO2021193494A1 publication Critical patent/WO2021193494A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7019Calibration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits

Definitions

  • the present invention relates to an exposure apparatus and an exposure method capable of drawing a circuit with high accuracy.
  • a substrate stage on which a substrate is placed and reciprocated is provided, a substrate position mark on the substrate is read by a substrate position detection camera, and a substrate on the substrate stage is read.
  • the position is recognized, and the circuit is drawn by irradiating the substrate with a light beam from the drawing head while reciprocating the substrate stage based on the result.
  • the position where the substrate position is detected and the position where the drawing is drawn are different. Therefore, in order to draw with high accuracy, it is necessary to maintain a correlation between the substrate position detection coordinate system and the drawing head coordinate system. be.
  • the conventional maskless exposure apparatus only corrects the coordinate system using the reference marks provided separately, and cannot correlate, resulting in good circuit drawing accuracy. Was difficult.
  • a first aspect of the present invention is in an exposure apparatus in which a substrate (10) is exposed by a drawing head (4X) and a circuit is drawn directly on the substrate.
  • a reference mark means (9; 9A, 9B) integrally provided with the substrate stage (5) and having one or more reference marks (9C).
  • a substrate position detecting means (6) having a substrate position detecting coordinate system and reading a substrate position mark (10a) of the substrate (10) by moving relative to the substrate stage (5) at least in the predetermined direction.
  • the drawing head position detecting means (8) reads the reference mark (9C) on the reference mark means (9) and the light beam (4a) in an overlapping manner, and corrects the drawing head coordinate system based on the result.
  • the substrate position detecting means (6) reads the reference mark (9C) on the same reference mark means (9) as read by the drawing head position detecting means (8), and based on the result, the substrate position detecting means (6) reads the reference mark (9C).
  • the exposure apparatus is characterized in that the drawing head coordinate system and the substrate position detection coordinate system are matched with each other by correcting the position detection coordinate system.
  • the drawing head (4X) is fixed in position with respect to at least the predetermined direction, and the substrate stage (5) and the substrate position detecting means (6) are in the predetermined direction. It is an exposure apparatus characterized by being movable.
  • a third aspect of the present invention is that the drawing head (4X) is movable at least in the predetermined direction, and the substrate stage (5) is fixed in position with respect to at least the predetermined direction.
  • An exposure apparatus characterized by.
  • a fourth aspect of the present invention is an exposure apparatus characterized in that the correction operation is performed for each different substrate (10) each time.
  • a fifth aspect of the present invention is a substrate surface on which a circuit on the substrate (10) of the substrate stage (5) is drawn, and a reference mark (9C) surface on the reference mark means (9).
  • the exposure apparatus is characterized in that a height adjusting means (11) that can be adjusted so that the heights are the same is further provided.
  • a sixth aspect of the present invention is characterized in that the substrate stage (5) is arranged in pairs (5A, 5B) facing each other with the drawing head (4X) sandwiched in the predetermined direction. It is an exposure apparatus.
  • a seventh aspect of the present invention is an exposure method in which a substrate (10) is exposed by a drawing head (4X) and a circuit is drawn directly on the substrate.
  • a step of providing a substrate stage (5) on which the substrate (10) having one or more substrate position marks (10a) is placed and movable in a predetermined direction and A step of providing the drawing head (4X) having a drawing head coordinate system and moving relative to the substrate stage (5) in a predetermined direction to draw a circuit on the substrate (10).
  • a step for providing a drawing head position detecting means (8) is provided.
  • the drawing head position detecting means (8) reads the reference mark (9C) on the reference mark means (9) and the light beam (4a) in an overlapping manner, and corrects the drawing head coordinate system based on the result.
  • the substrate position detecting means (6) reads the reference mark (9C) on the same reference mark means (9) as read by the drawing head position detecting means (8), and based on the result, the substrate position detecting means (6) reads the reference mark (9C).
  • This exposure method is characterized in that the drawing head coordinate system and the substrate position detection coordinate system are matched with each other by correcting the position detection coordinate system.
  • the drawing head (4X) is fixed in position with respect to at least the predetermined direction, and the substrate stage (5) and the substrate position detecting means (6) are in the predetermined direction. It is an exposure method characterized by being movable.
  • a ninth aspect of the present invention is that the drawing head (4X) is movable at least in the predetermined direction, and the substrate stage (5) is fixed in position with respect to at least the predetermined direction.
  • This is an exposure method characterized by.
  • a tenth aspect of the present invention is an exposure method characterized in that the correction operation is performed for each different substrate (10) each time.
  • An eleventh embodiment of the present invention comprises a substrate surface level on which a circuit on the substrate (10) of the substrate stage (5) is drawn and a reference mark (9C) level on the reference mark means (9).
  • the exposure method is characterized in that the height level adjusting means (11), which can be adjusted so that the height levels are the same, is further provided with a step.
  • a twelfth aspect of the present invention is characterized in that the substrate stage (5) is arranged in pairs (5A, 5B) facing each other with the drawing head (4X) sandwiched in the predetermined direction. This is the exposure method.
  • the drawing head coordinate system and the board position detection coordinate system are corrected based on the common (same) reference prototype 9, so that the correlation between the two coordinate systems can be obtained. Therefore, the circuit of the board 10 is drawn. The accuracy can be improved.
  • FIG. 2 is an enlarged front view of the left side substrate stage portion in FIG.
  • FIG. 2 is an enlarged front view of the left side substrate stage portion in FIG.
  • FIG. 8 (A) and 8 (B) are enlarged front views showing a component of the substrate position detection camera and the reference mark member, and a component of the drawing head and the reference mark member, respectively.
  • FIG. 5A It is a perspective view which shows the substrate position detection camera and the reference mark member. It is a figure which shows the positional deviation of the light beam from a drawing head, and the reference mark of a reference prototype.
  • the vertical axis indicates the operation step
  • the horizontal axis indicates the time.
  • FIG. 1 to 3 are a perspective view of a schematic configuration of an exposure apparatus as an embodiment of the present invention, a front view of a main part of the exposure apparatus shown in FIG. 1, and an enlarged front view of a left substrate stage in FIG. ..
  • a plurality of exposure devices 1 are mounted on a bed 3 (extending in the directions of arrows A and B) on the gantry 2 and a plurality of drawing head units 4 (in directions orthogonal to the directions of arrows A and B). (Having 5 drawing heads 4X in this embodiment) and a pair of substrate stages 5A and 5B (on which substrates 10A and 10B are mounted, respectively) on both sides of the drawing head unit 4 in the directions of arrows A and B.
  • Also provided with a pair of substrate position detection camera units 6A and 6B on both sides (each having, for example, three substrate position detection cameras 6AX and 6BX in the orthogonal directions).
  • the drawing head 4X includes a drawing head coordinate system for drawing a circuit on the substrate 10, and the substrate position detection cameras 6AX and 6BX have a substrate position detection coordinate system for detecting a position on the substrate 10. I have. Further, as will be described later, the drawing head 4X can reciprocate not only in the arrows A and B directions (main scanning direction) but also in the orthogonal direction (secondary scanning direction).
  • the board stages 5A and 5B (mounted on the carriages 7A and 7B, respectively) and the board position detection camera units 6A and 6B can be reciprocally moved in the directions of arrows A and B, respectively.
  • the substrate position detection cameras 6AX and 6BX may be reciprocally movable not only in the directions of arrows A and B but also in the orthogonal direction thereof in order to detect the position on the substrate 10.
  • 8A and 8B are a pair of drawing light beam detection cameras (sensors) integrally attached to the left and right substrate stages 5A and 5B, respectively, and five each corresponding to five drawing heads 4X.
  • 9A and 9B are reference prototypes integrally attached to the left and right carriages 7A and 7B, respectively, and have a plurality of reference marks 9C (see FIG. 9).
  • 11 is a height adjusting mechanism for adjusting the height of the left side substrate stage 5A
  • the drive shaft 14 from the electric motor 12 via the reduction mechanism 13 is a vertical elongated hole (longitudinal hole) of the flange portion 5a of the substrate stage 5A. (Not shown) is inserted and the eccentric cam 15 is provided.
  • the eccentric cam 15 is rotationally driven, the substrate stage 5A is pressed and the height is finely adjusted in the vertical direction.
  • a similar height adjustment mechanism is provided for the right substrate stage 5B.
  • FIGS. 4 to 7 and FIG. 11 time chart
  • the vertical axis represents each operation step (B1 to B7, A1 to A7) of the right side substrate stage 5B and the left side substrate stage 5A
  • the horizontal axis indicates the time required for each operation step.
  • the right side substrate stage 5B (where the unexposed substrate 10B is placed) moves in the direction of arrow A from the standby position of the movement limit in the direction of arrow B (corresponding to position 10B1 in FIG. 7).
  • the drawing preparation position shown in FIG. 4 (corresponding to the position 10B2 in FIG. 7) is reached. (See step B1 in FIG. 11)
  • the light beam 4a from the drawing head 4X passes near the reference mark 9C of the right reference prototype 9B and is imaged by the drawing light beam detection camera 8B, and the reference mark 9C is captured. And the light beam 4a are read in an overlapping manner (see FIG. 10).
  • the reference mark 9C and the light beam 4a originally match, but the DMD of the drawing head causes a slight positional deviation ⁇ 1 due to heat or the like, that is, a deviation of the drawing head coordinate system of the drawing head 4X. .. Therefore, a software correction is performed by a control circuit (not shown) so that the deviation of the drawing head coordinate system becomes zero. (See step B2 in FIG. 11) Since this correction operation is repeatedly performed each time the drawing head 4X corresponds to the reference prototype 9 (9A, 9B) repeatedly, the position calibration (or correction) of the drawing head 4X with respect to the reference prototype 9 is performed. ) Will be performed each time.
  • the left side substrate stage 5A moves from the previous drawing end position (corresponding to the position 10A2 in FIG. 7) to the standby position of the arrow A direction movement limit shown in FIG. 4 (corresponding to the position 10A1 in FIG. 7).
  • the substrate chuck (not shown) removes the substrate 10A that has been exposed and drawn, and a new unexposed substrate 10A is placed on the substrate stage 5A. It will be placed.
  • steps A5 and A6 in FIG. 11 At this standby position, when the left board position detection camera 6AX in FIG.
  • the right side substrate stage 5B (where the right side substrate 10B is placed) is moved from the drawing preparation position shown in FIG. 4 (corresponding to the position 10B2 in FIG. 7) to the position shown in FIG. 5 (position 10B3 in FIG. 7).
  • the drawing head 4X irradiates the right side substrate 10B with the light beam 4a while moving in the direction of the arrow A to directly draw the circuit.
  • the right substrate stage 5B moves from the position 10B3 in FIG. 7 to the drawing preparation position shown in FIG. 4 (corresponding to the position 10B2 in FIG. 7) in the arrow B direction.
  • the drawing head While moving back to, the drawing head irradiates the right side substrate 10B with the light beam 4a to directly draw the circuit.
  • the drawing operation by this series of reciprocating movements is repeated as necessary until the full width of the substrate can be drawn in the sub-scanning direction of the substrate. However, if it is not necessary, it may be completed only by moving and drawing in the A direction described above. (Refer to step B3 in FIG. 11)
  • the substrate position (alignment) information obtained from the right substrate position detection camera 6BX based on the substrate position mark 10a on the right substrate 10B (step in FIG. 11). B7) is used as the basis.
  • the left board position detection camera 6AX moves relatively in the direction of arrow A with respect to the board 10A mounted on the left board stage 5A that remains stopped in the standby position, and the board.
  • the position of the substrate 10A to be drawn by imaging (reading) the substrate position marks 10a provided on the 10A for example, there are a total of 9 marks 10a in FIG. 7, but the number may be 9 or less or more).
  • (Alignment) Detect information This is called alignment work. (See step A7 in FIG. 11)
  • the right side substrate stage 5B returns to the standby position of the movement limit in the arrow B direction (corresponding to the position 10B1 in FIG.
  • the substrate chuck As described above, the substrate 10B that has been exposed and drawn is removed, and a new unexposed substrate 10B is placed on the substrate stage 5B. (See steps B5 and B6 in FIG. 11) Further, at this standby position, the right substrate position detection camera 6BX images the reference mark 9C of the right reference prototype 9B, and is the same as the case described in the left substrate 10A of FIG. The substrate position detection coordinate system is corrected based on the displacement amount ⁇ 2 between the imaged reference mark 9C and the image pickup center. (See step B7 in FIG. 11) During this time, in FIG.
  • the left substrate stage 5A moves in the direction of arrow B and is in the drawing preparation position (corresponding to position 10A2 in FIG. 7), and the drawing light beam detection camera 8A moves the light beam 4a from the drawing head 4X.
  • the reference mark 9C of the left reference prototype 9A are superimposed and imaged, and the drawing head coordinate system is similarly corrected based on the positional deviation ⁇ 1.
  • the same alignment work as for the substrate 10A in FIG. 5 is performed on the substrate 10B mounted on the right substrate stage 5B (FIG. 11). (See step B7), and thereafter, the repetitive work is performed in the same manner.
  • the drawing head coordinate system of the drawing head 4X itself is the reference of the light beam 4a and the reference prototype 9A read by the drawing light beam detection camera 8A. It is calibrated by zero-correcting the deviation amount ⁇ 1 from the mark 9C, and the substrate position detection coordinate system of the board position detection camera 6AX itself zero-corrects the deviation amount ⁇ 2 between the camera imaging center and the reference mark 9C of the reference prototype 9A. It is calibrated by doing.
  • the reference mark 9C is common (same) in some cases. ) But may be different.
  • the substrate 10 is attached / detached and the imaging (reading) work is performed by the substrate position detection camera 6 on one substrate stage 5A (or 5B), the substrate by the drawing head 4X is simultaneously performed on the other substrate stage 5B (or 5A). Since the drawing work to 10 is performed, the alignment work and the coordinate system correction can be performed over a sufficient time without impairing the productivity.
  • the focal position of the light beam 4a from the drawing head 4X and the focal position of the image taken by the substrate position detection cameras 6AX and 6BX are the detection reference mark surface of the reference prototype 9 (9A, 9B) and the upper surface of the substrate 10 (10A, 10B). It is preferable that both of them match with each other in order to perform high-precision drawing.
  • a height adjusting mechanism 11 for adjusting the substrate 10A in the height direction is provided.
  • the height adjusting mechanism 11 has an electric motor 12, a drive shaft 14 provided via the reduction mechanism 13, and an eccentric cam 15 provided on the drive shaft 14 on the carriage 7A. 14 inserts a long hole (not shown) in the vertical direction of the flange portion 5a provided on the substrate stage 5A. Therefore, when the electric motor 12 is driven, the eccentric cam 15 rotates to push up the substrate stage 5A to raise it, or allow it to descend due to gravity, so that the upper surface of the substrate 10 is at the same height as the reference mark 9C of the reference prototype 9A. Adjust so that it is in the correct position.
  • the mechanism for moving the substrate stage 5A up and down is not limited to the eccentric cam, and various mechanisms such as a screw mechanism or a mechanism using a taper mechanism can be considered, and the reference prototype 9A is moved up and down instead of moving the substrate 10 up and down. You may move it. The same applies to the right side substrate 10B.
  • the positions of the drawing head unit 4 in the arrow A and B directions are fixed, and the board stages 5A and 5B (mounted on the carriages 7A and 7B, respectively) and the board position detection.
  • the camera units 6A and 6B were able to reciprocate in the same direction, respectively, but the substrate stages 5A and 5B are fixed in positions in the directions of arrows A and B, and the drawing head unit 4 is not limited to this. It may be reciprocated with respect to the fixed position board stages 5A and 5B, or the drawing head unit 4 and the board position detection camera 6 are each fixed in position, and the board stages 5A and 5B are in the directions of arrows A and B. It may be possible to move back and forth to.
  • the plurality of drawing heads 4X of the drawing head unit 4 are arranged in one row in the direction orthogonal to the arrows A and B directions, but the present invention is not limited to this, and two or more rows are provided in the orthogonal direction.
  • the drawing heads 4X may be arranged in a staggered pattern among the rows, and the distance that the drawing heads 4X reciprocate in the sub-scanning direction can be reduced to one-third of the number of rows.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

高精度の回路描画が可能な露光装置及び露光方法を提供する。 基板ステージ(5)に対して所定方向へ相対移動して基板(10)上に回路を描画する描画ヘッド(4X)と、前記基板ステージ(5)と一体的に設けられた基準マーク(9C)と、前記基板ステージ(5)に対して前記所定方向へ相対移動して前記基板(10)上の位置マーク(10a)を読み取る基板位置検出手段(6)と、前記基板ステージ(5)と一体的に設けられた描画ヘッド位置検出手段(8)と、を備えた露光装置において、前記描画ヘッド位置検出手段(8)は、前記基準マーク(9C)と前記描画ヘッド(4X)からの光ビーム(4a)とを重ねて読み取った結果に基づいて描画ヘッド座標系を補正し、前記基板位置検出手段(6)は、前記基準マーク(9C)を読み取った結果に基づいて基板位置検出座標系を補正することにより、前記描画ヘッド座標系と前記基板位置検出座標系とを互いに一致させる。

Description

露光装置及び露光方法
 本発明は、高精度の回路描画を行い得る露光装置及び露光方法に関する。
 従来、表面に感光層を有する基板の露光面に導電パターン等を形成するために、基板と、パターンが描かれたフォトマスクとを重ねて配置し、フォトマスクを通じて基板に光を照射することにより、パターンを基板表面の感光層に転写する露光方法が広く行われてきた。これに対して、フォトマスクを用いずに所定のパターンを基板に直接形成するマスクレス露光(直接露光)方式が提案されている(例えば、下記の特許文献1)。かかるマスクレス露光方式によれば、フォトマスクが不要となるため、コスト的に有利であり、また、高精度露光が可能であるとされている。
特開2006-250982号公報
 そのマスクレス露光装置の一つの従来例としては、例えば、基板を載置して往復移動する基板ステージを有し、基板位置検出カメラにより基板上の基板位置マークを読み取って、基板ステージ上の基板位置を認識し、その結果を基に基板ステージを往復移動させながら、描画ヘッドより光ビームを基板上に照射して回路描画を行う。基板位置検出カメラのCCD(撮像素子)及び描画ヘッドのDMD(Digital Mirror Device=光学変調素子)は、熱等によって微小な位置ずれを生じるので、各々別個に設けられた基準マークを用いて、基板位置検出カメラ及び描画ヘッドの座標補正を行っていた。マスクレス露光装置は、基板位置を検出する位置と描画する位置とが異なるため、精度良く描画するためには、基板位置検出座標系と描画ヘッド座標系との相関をとっておくことが必要である。しかるに、従来のマスクレス露光装置は前述のとおり、各々別個に設けられた基準マークを用い座標系の補正をするにとどまり、相関をとることができず、結果的に良好な回路描画精度を得るのが困難であった。
 本発明の第1の形態は、描画ヘッド(4X)により基板(10)を露光して該基板上に直接的に回路を描画する露光装置において、
 一個以上の基板位置マーク(10a)を有する前記基板(10)を載置された基板ステージ(5)と、
 描画ヘッド座標系を有し、前記基板ステージ(5)に対して所定方向へ相対的に移動して前記基板(10)上に回路を描画する前記描画ヘッド(4X)と、
 前記基板ステージ(5)と一体的に設けられ、一個以上の基準マーク(9C)を有する基準マーク手段(9;9A、9B)と、
 基板位置検出座標系を有し、前記基板ステージ(5)に対して少なくとも前記所定方向へ相対的に移動して前記基板(10)の基板位置マーク(10a)を読み取る基板位置検出手段(6)と、
 前記基板ステージ(5)と一体的に設けられ、前記描画ヘッド(4X)からの光ビーム(4a)と前記基準マーク手段(9;9A、9B)上の基準マーク(9C)とを重ねて読み取る描画ヘッド位置検出手段(8)とを備え、
 前記描画ヘッド位置検出手段(8)は、前記基準マーク手段(9)上の基準マーク(9C)と前記光ビーム(4a)とを重ねて読み取りその結果に基づいて前記描画ヘッド座標系を補正し、前記基板位置検出手段(6)は、前記描画ヘッド位置検出手段(8)が読み取ったのと同一の前記基準マーク手段(9)上の基準マーク(9C)を読み取りその結果に基づいて前記基板位置検出座標系を補正することにより、前記描画ヘッド座標系と前記基板位置検出座標系とを互いに一致させることを特徴とする露光装置である。
 本発明の第2の形態は、前記描画ヘッド(4X)は少なくとも前記所定方向に対して位置が固定されており、且つ前記基板ステージ(5)及び基板位置検出手段(6)が前記所定方向に移動可能であることを特徴とする露光装置である。
 本発明の第3の形態は、前記描画ヘッド(4X)は少なくとも前記所定方向に対して移動可能であり、且つ前記基板ステージ(5)が少なくとも前記所定方向に対して位置が固定されていることを特徴とする露光装置。
 本発明の第4の形態は、前記補正作業は、異なる基板(10)毎に毎回行うことを特徴とする露光装置である。
 本発明の第5の形態は、前記基板ステージ(5)の前記基板(10)上の回路を描画される基板面と、前記基準マーク手段(9)上の基準マーク(9C)面との、高さが同一になるように調整し得る高さ調整手段(11)が更に設けられていることを特徴とする露光装置である。
 本発明の第6の形態は、前記基板ステージ(5)は、前記所定方向上に前記描画ヘッド(4X)を挟んで互いに対向して一対分(5A、5B)配設されていることを特徴とする露光装置である。
 本発明の第7の形態は、描画ヘッド(4X)により基板(10)を露光して該基板上に直接的に回路を描画する露光方法において、
 一個以上の基板位置マーク(10a)を有する前記基板(10)を載置され且つ所定方向へ移動自在の基板ステージ(5)を設けるステップと、
 描画ヘッド座標系を有し、且つ前記基板ステージ(5)に対して所定方向に相対的に移動して前記基板(10)上に回路を描画する前記描画ヘッド(4X)を設けるステップと、
 前記基板ステージ(5)と一体的に設けられ、一個以上の基準マーク(9C)を有する基準マーク手段(9;9A、9B)を設けるステップと、
 基板位置検出座標系を有し、且つ前記基板ステージ(5)に対して少なくとも前記所定方向に相対的に移動して前記基準マーク手段(9)上の基準マーク(9C)を読み取る基板(10)の基板位置マーク(10a)を読み取る基板位置検出手段(6)を設けるステップと、
 前記基板ステージ(5)と一体的に設けられ、前記描画ヘッド(4X)からの光ビーム(4a)と前記基準マーク手段(9;9A、9B)上の基準マーク(9C)とを重ねて読み取る描画ヘッド位置検出手段(8)を設けるステップとを備え、
 前記描画ヘッド位置検出手段(8)は、前記基準マーク手段(9)上の基準マーク(9C)と前記光ビーム(4a)とを重ねて読み取りその結果に基づいて前記描画ヘッド座標系を補正し、前記基板位置検出手段(6)は、前記描画ヘッド位置検出手段(8)が読み取ったのと同一の前記基準マーク手段(9)上の基準マーク(9C)を読み取りその結果に基づいて前記基板位置検出座標系を補正することにより、前記描画ヘッド座標系と前記基板位置検出座標系とを互いに一致させることを特徴とする露光方法である。
 本発明の第8の形態は、前記描画ヘッド(4X)は少なくとも前記所定方向に対して位置が固定されており、且つ前記基板ステージ(5)及び基板位置検出手段(6)が前記所定方向に移動可能であることを特徴とする露光方法である。
 本発明の第9の形態は、前記描画ヘッド(4X)は少なくとも前記所定方向に対して移動可能であり、且つ前記基板ステージ(5)が少なくとも前記所定方向に対して位置が固定されていることを特徴とする露光方法である。
 本発明の第10の形態は、前記補正作業は、異なる基板(10)毎に毎回行うことを特徴とする露光方法である。
 本発明の第11の形態は、前記基板ステージ(5)の前記基板(10)上の回路を描画される基板面レベルと、前記基準マーク手段(9)上の基準マーク(9C)レベルとの、高さレベルが同一になるように調整し得る高さレベル調整手段(11)が更に設けられるステップを有することを特徴とする露光方法である。
 本発明の第12の形態は、前記基板ステージ(5)は、前記所定方向上に前記描画ヘッド(4X)を挟んで互いに対向して一対分(5A、5B)配設されていることを特徴とする露光方法である。
 本発明は、共通(同一)の基準原器9を基に上記描画ヘッド座標系と上記基板位置検出座標系の補正を行う事により、両座標系の相関がとれるので、基板10の回路の描画精度を向上し得る。
本発明の一実施例としての露光装置の概略構成の斜視図である。 図1に示す露光装置の要部の正面図である。 図2中、左側基板ステージ部分の拡大正面図である。 図1に示す露光装置の要部の第1の工程を示す正面図である。 同上、第2の工程を示す正面図である。 同上、第3の工程を示す正面図である。 同上、全ての工程を示す平面図である。 図8(A)及び(B)は夫々、基板位置検出カメラと基準マーク部材との構成部分、及び描画ヘッドと基準マーク部材との構成部分を示す拡大正面図である。 基板位置検出カメラと基準マーク部材とを示す斜視図である。 描画ヘッドからの光ビームと基準原器の基準マークとの位置ずれを示す図である。 基板ステージ5A及び5Bについて、縦軸がその動作ステップを示し、横軸が時間を示すタイムチャートである。
 図1乃至図3は、本発明の一実施例としての露光装置の概略構成の斜視図、図1に示す露光装置の要部の正面図、及び図2中左側基板ステージの拡大正面図である。
 図1中、露光装置1は、架台2上のベッド3(矢印A及びB方向へ伸びている)上に載置された、描画ヘッドユニット4(上記矢印A及びB方向と直交する方向に複数(本実施例では5個)の描画ヘッド4Xを有する)と、描画ヘッドユニット4の矢印A及びB方向の両側の一対の基板ステージ5A及び5B(夫々基板10A及び10Bが載置される)と、同じく両側の一対の基板位置検出カメラユニット6A及び6B(夫々上記直交方向に例えば3個の基板位置検出カメラ6AX、6BXを有する)を備える。
 なお、描画ヘッド4Xは、基板10上へ回路を描画するための描画ヘッド座標系を備え、また基板位置検出カメラ6AX、6BXは、基板10上の位置を検出するための基板位置検出座標系を備えている。また、後述する如く、描画ヘッド4Xは、矢印A及びB方向(主走査方向)だけでなく、その直交方向(副走査方向)へも往復移動可能である。
 基板ステージ5A及び5B(夫々キャリジ7A及び7Bに載置されている)と、基板位置検出カメラユニット6A及び6Bは夫々矢印A及びB方向へ往復的に移動可能である。なお、基板位置検出カメラ6AX、6BXは基板10上の位置を検出するために矢印A及びB方向だけでなく、その直交方向へも往復移動可能としてよい。
 図2中、8A及び8Bは夫々、左右の基板ステージ5A及び5Bに一体的に取付けられた一対の描画光ビーム検出カメラ(センサー)であり、5個の描画ヘッド4Xに対応して夫々5個の描画光ビーム検出カメラ8A及び8Bを有する。(図9参照)
 また、9A及び9Bは夫々、左右のキャリジ7A及び7Bに一体的に取付けられた基準原器であり、複数個の基準マーク9C(図9参照)を有する。
 また図3中、11は左側基板ステージ5Aの高さを調節する高さ調節機構で、電動モータ12から減速機構13を介した駆動軸14が基板ステージ5Aのフランジ部5aの垂直方向長孔(図示せず)を挿通すると共に偏心カム15有しており、偏心カム15が回転駆動されることにより、基板ステージ5Aが押圧されて上下方向に高さが微調節的に移動される。右側基板ステージ5Bについても同様の高さ調節機構が設けられる。
 次に、本発明の露光装置1の動作について、主に図4乃至図7及び図11(タイムチャート)を使用して説明する。なお、図11は縦軸が右側基板ステージ5B及び左側基板ステージ5Aの各動作ステップ(B1~B7、A1~A7)であり、横軸は各動作ステップに要した時間を示す。
 図4中、右側基板ステージ5B(未露光の基板10Bが載置されている)が、矢印B方向移動限界の待機位置(図7中の位置10B1に対応)から、矢印A方向へ移動して、図4に示す描画準備位置(図7中の位置10B2に対応)へ至る。(図11のステップB1参照)この描画準備位置において、描画ヘッド4Xからの光ビーム4aが右側基準原器9Bの基準マーク9C付近を通過して描画光ビーム検出カメラ8Bにより撮像され、基準マーク9Cと光ビーム4aとが重ねて読み取られる(図10参照)。ここで、基準マーク9Cと光ビーム4aとは本来一致するのが好ましいが、描画ヘッドのDMDが熱等に起因して微小な位置ずれδ1、即ち描画ヘッド4Xの描画ヘッド座標系のずれを生ずる。従って、この描画ヘッド座標系のずれがゼロになるように制御回路(図示せず)によりソフト的な補正を行う。(図11のステップB2参照)この補正作業は描画ヘッド4Xが基準原器9(9A、9B)に対して繰り返し対応する都度行われるので、描画ヘッド4Xの基準原器9に対する位置校正(又は補正)がその都度行われることになる。
 この間、左側基板ステージ5Aはそれ以前の描画終了位置(図7中の位置10A2に対応)から、図4に示した矢印A方向移動限界の待機位置(図7中の位置10A1に対応)へ移動しており、(図11のステップA4参照)この位置で基板チャック(図示せず)により露光・描画が終了した基板10Aが取り去られて、新たな未露光の基板10Aが基板ステージ5A上に載置される。(図11のステップA5及びA6参照)
 この待機位置で、図4中、左側基板位置検出カメラ6AXが左側基準原器9Aの基準マーク9Cを撮像したとき、カメラ6AXの撮像用CCDの熱によるゆらぎ等に起因して基準マーク9Cと撮像中心との位置ずれ量δ2、即ち基板位置検出カメラ6AXの基板位置検出座標系のずれを生ずる。従って、この基板位置検出座標系のずれがゼロになるように制御回路(図示せず)によりソフト的な補正を行なう。(図11のステップA7参照)この補正作業は基板位置検出カメラ6AX(又は6BX)が基準原器9(9A、9B)に対して繰り返し対応する都度行われるので、基板位置検出カメラ6AX、6BXの基準原器9に対する位置校正(又は補正)がその都度行われることになる。
 続いて、右側基板ステージ5B(右側基板10Bが載置される)は、図4に示す描画準備位置(図7中の位置10B2に対応)から、図5に示す位置(図7中の位置10B3に対応)まで矢印A方向へ移動しながら、描画ヘッド4Xから光ビーム4aを右側基板10Bに対して照射し、直接的に回路を描画する。そして、描画ヘッド4Xが所定量副走査方向へ移動した後、右側基板ステージ5Bは、図7中の位置10B3から図4に示す描画準備位置(図7中の位置10B2に対応)まで矢印B方向へ戻り移動しながら、描画ヘッドから光ビーム4aを右側基板10Bに対し照射し、直接的に回路を描画する。この一連の往復移動による描画動作は、基板の副走査方向に基板の全幅描画できるまで必要に応じて繰り返される。しかしながら、必要がなければ、先に述べたA方向への移動および描画のみで終了しても良い。(図11のステップB3参照)この回路描画作業は、それ以前に右側基板10Bの基板位置マーク10aを基にして右側基板位置検出カメラ6BXから得られた基板位置(アライメント)情報(図11のステップB7参照)を基にして行われる。
 他方この間、図5に示す如く、待機位置に停止したままの左側基板ステージ5Aに載置された基板10Aに対して、左側基板位置検出カメラ6AXが矢印A方向へ相対的に移動しながら、基板10A上に設けられた基板位置マーク10a(例えば、図7中合計9箇所のマーク10aが存在するが9箇所以下又は以上の個数でもよい)を撮像し(読取り)、描画すべき基板10Aの位置(アライメント)情報を検出する。これをアライメント作業と呼ぶ。(図11のステップA7参照)
 続いて、図6に示す如く、右側基板ステージ5Bは矢印B方向移動限界の待機位置(図7中の位置10B1に対応)まで戻り、(図11のステップB4参照)この待機位置で、基板チャックにより上記の如く露光・描画が終了した基板10Bが取り去られて、新たな未露光の基板10Bが基板ステージ5B上に載置される。(図11のステップB5及びB6参照)またこの待機位置で、右側基板位置検出カメラ6BXが右側基準原器9Bの基準マーク9Cを撮像して、図4の左側基板10Aで述べた場合と同様に撮像した基準マーク9Cと撮像中心との位置ずれ量δ2に基づいて基板位置検出座標系が補正される。(図11のステップB7参照)
 この間、図6中、左側基板ステージ5Aが矢印B方向へ移動して描画準備位置(図7中、位置10A2に対応)にあって、描画光ビーム検出カメラ8Aが描画ヘッド4Xからの光ビーム4aと左側基準原器9Aの基準マーク9Cとを重ねて撮像してその位置ずれδ1に基づいて同様に描画ヘッド座標系が補正される。
 続いて、右側基板ステージ5Bが待機位置に停止したままで、図5の基板10Aに対するのと同様のアライメント作業が、右側基板ステージ5Bに載置された基板10Bに対して行われ(図11のステップB7参照)、以後、繰り返しの作業が同様にして行われる。
 上記構成及び動作によれば、例えば左側基板ステージ5Aに着目して見ると、描画ヘッド4X自体の描画ヘッド座標系は、描画光ビーム検出カメラ8Aにより読み取った光ビーム4aと基準原器9Aの基準マーク9Cとのずれ量δ1をゼロ補正することにより校正され、また基板位置検出カメラ6AX自体の基板位置検出座標系はカメラ撮像中心と基準原器9Aの基準マーク9Cとのずれ量δ2をゼロ補正することにより校正される。更に基板位置検出カメラ6AXにより基板位置マーク10aを読み取る際に、前記2つの座標系がゼロ補正されていることに起因して、実際の基板の位置を正確に検出することができ、描画ヘッド4Xにより基板上に正確な回路描画を行い得る。しかるに、本発明では特に、上記2つの座標系の補正作業の際に、同一の基準原器9Aを共通に使用しているため、従来の如く双方の座標系で別個の基準原器を使用した場合に比して、上記補正後の2つの座標系(描画ヘッド座標系及び基板位置検出座標系)を互いに一致させることができるから、上記基板への描画を一層高精度に行い得る。これは右側基板ステージ5Bについても同様である。なお、「互いに一致」とは、厳密に一致でなくとも微小なずれは含んでもよい。
 なお、描画ヘッド4X及び基板位置検出カメラ6AX、6BXに対する校正作業が、基準原器9Aに対向する都度、即ち描画作業を行う都度毎回行っているので、それだけ描画精度を向上し得る。
 また、上記描画ヘッド座標系の補正作業と上記基板位置検出座標系の補正作業とを共通(同一)の基準原器9Aを用いて行うのであれば、場合によっては、基準マーク9Cは共通(同一)でなく異なってもよい。
 また、一方の基板ステージ5A(又は5B)において基板10の着脱及び基板位置検出カメラ6による撮像(読取り)作業が行われる間に、同時に他方の基板ステージ5B(又は5A)において描画ヘッド4Xによる基板10への描画作業が行われるから、生産性を損なうことなく、十分な時間をかけて、アライメント作業及び座標系補正を行うことができる。
 次に、基板10(10A、10B)上面の高さ調節作業について説明する。描画ヘッド4Xからの光ビーム4aの焦点位置及び基板位置検出カメラ6AX、6BXによる撮像の焦点位置が、基準原器9(9A、9B)の検出用基準マーク面と基板10(10A、10B)上面との双方に一致していることが高精度の描画を行うために好ましい。
 このため、図3に示す如く、基板10Aを高さ方向に調節する高さ調節機構11が設けられている。同図中、高さ調節機構11は、キャリジ7Aに、電動モータ12と、減速機構13を介して設けた駆動軸14と、該駆動軸14に設けた偏心カム15とを有し、駆動軸14が基板ステージ5Aに設けたフランジ部5aの垂直方向長孔(図示せず)を挿通している。従って、電動モータ12が駆動されると偏心カム15が回転して基板ステージ5Aを押し上げて上昇させるか又は重力による下降を許容して、基板10上面を基準原器9Aの基準マーク9Cと同一高さ位置になるように調節する。なお、基板ステージ5Aを上下動させる機構は偏心カムに限らず、ねじ機構又はテーパー機構を利用した機構等の種々の機構が考えられ、また基板10を上下動させるのでなく基準原器9Aを上下動させても良い。なお、右側基板10Bについても同様である。
 上記実施例では、描画ヘッドユニット4は矢印A及びB方向(主走査方向)の位置が固定され、且つ基板ステージ5A及び5B(夫々キャリジ7A及び7Bに載置されている)と、基板位置検出カメラユニット6A及び6Bとが夫々、同方向へ往復移動可能であったが、これに限ることなく、基板ステージ5A及び5Bが矢印A及びB方向へ位置固定であって、描画ヘッドユニット4がこれら位置固定の基板ステージ5A及び5Bに対して往復移動するようにしてもよく、又は描画ヘッドユニット4及び基板位置検出カメラ6が夫々位置固定であって、基板ステージ5A及び5Bが矢印A及びB方向へ往復移動可能であってもよい。
 また、上記実施例では、描画ヘッドユニット4の複数の描画ヘッド4Xは矢印A及びB方向と直交する方向に1列であったが、これに限らず、上記直交方向に2列以上設けて、各列どうしで描画ヘッド4Xを千鳥状に配列しても良く、これによれば描画ヘッド4Xが副走査方向へ往復移動する距離を列数分の1に低減できる。
 以上、いくつかの実施例に基づいて本発明の実施の形態について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることはもちろんである。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の組み合わせ、または、省略が可能である。
1…露光装置
2…架台
3…ベッド
4…描画ヘッドユニット
4X…描画ヘッド
4a…光ビーム
5(5A、5B)…基板ステージ
5a…フランジ部
6(6A、6B)…基板位置検出カメラユニット
6AX、6BX…基板位置検出カメラ
7(7A、7B)…キャリジ
8(8A、8B)…描画光ビーム検出カメラ
9(9A、9B)…基準原器
9C…基準マーク
10(10A、10B)…基板
10a…基板位置マーク
11…高さ調節機構
12…電動モータ
13…減速機構
14…駆動軸
15…偏心カム

Claims (12)

  1.  描画ヘッド(4X)により基板(10)を露光して該基板上に直接的に回路を描画する露光装置において、
     一個以上の基板位置マーク(10a)を有する前記基板(10)を載置された基板ステージ(5)と、
     描画ヘッド座標系を有し、前記基板ステージ(5)に対して所定方向へ相対的に移動して前記基板(10)上に回路を描画する前記描画ヘッド(4X)と、
    前記基板ステージ(5)と一体的に設けられ、一個以上の基準マーク(9C)を有する基準マーク手段(9;9A、9B)と、
     基板位置検出座標系を有し、前記基板ステージ(5)に対して少なくとも前記所定方向へ相対的に移動して前記基板(10)の基板位置マーク(10a)を読み取る基板位置検出手段(6)と、
     前記基板ステージ(5)と一体的に設けられ、前記描画ヘッド(4X)からの光ビーム(4a)と前記基準マーク手段(9;9A、9B)上の基準マーク(9C)とを重ねて読み取る描画ヘッド位置検出手段(8)と、
     を備え、
     前記描画ヘッド位置検出手段(8)は、前記基準マーク手段(9)上の基準マーク(9C)と前記光ビーム(4a)とを重ねて読み取りその結果に基づいて前記描画ヘッド座標系を補正し、前記基板位置検出手段(6)は、前記描画ヘッド位置検出手段(8)が読み取ったのと同一の前記基準マーク手段(9)上の基準マーク(9C)を読み取りその結果に基づいて前記基板位置検出座標系を補正することにより、前記描画ヘッド座標系と前記基板位置検出座標系とを互いに一致させる、
     露光装置。
  2.  請求項1に記載の露光装置において、
     前記描画ヘッド(4X)は少なくとも前記所定方向に対して位置が固定されており、且つ前記基板ステージ(5)及び基板位置検出手段(6)が前記所定方向に移動可能である、
     露光装置。
  3.  請求項1に記載の露光装置において、
     前記描画ヘッド(4X)は少なくとも前記所定方向に対して移動可能であり、且つ前記基板ステージ(5)が少なくとも前記所定方向に対して位置が固定されている、
     露光装置。
  4.  請求項1乃至3の何れかに記載の露光装置において、
     前記補正作業は、異なる基板(10)毎に毎回行う
     露光装置。
  5.  請求項1乃至4の何れかに記載の露光装置において、
     前記基板ステージ(5)の前記基板(10)上の回路を描画される基板面と、前記基準マーク手段(9)上の基準マーク(9C)面との、高さが同一になるように調整し得る高さ調整手段(11)が更に設けられている
     露光装置。
  6.  請求項1乃至5の何れかに記載の露光装置において、
     前記基板ステージ(5)は、前記所定方向上に前記描画ヘッド(4X)を挟んで互いに対向して一対分(5A、5B)配設されている
     露光装置。
  7.  描画ヘッド(4X)により基板(10)を露光して該基板上に直接的に回路を描画する露光方法において、
     一個以上の基板位置マーク(10a)を有する前記基板(10)を載置され且つ所定方向へ移動自在の基板ステージ(5)を設けることと、
     描画ヘッド座標系を有し、且つ前記基板ステージ(5)に対して所定方向に相対的に移動して前記基板(10)上に回路を描画する前記描画ヘッド(4X)を設けることと、
     前記基板ステージ(5)と一体的に設けられ、一個以上の基準マーク(9C)を有する基準マーク手段(9;9A、9B)を設けることと、
     基板位置検出座標系を有し、且つ前記基板ステージ(5)に対して少なくとも前記所定方向に相対的に移動して前記基準マーク手段(9)上の基準マーク(9C)を読み取る基板(10)の基板位置マーク(10a)を読み取る基板位置検出手段(6)を設けることと、
     前記基板ステージ(5)と一体的に設けられ、前記描画ヘッド(4X)からの光ビーム(4a)と前記基準マーク手段(9;9A、9B)上の基準マーク(9C)とを重ねて読み取る描画ヘッド位置検出手段(8)を設けることと、
     を備え、
     前記描画ヘッド位置検出手段(8)は、前記基準マーク手段(9)上の基準マーク(9C)と前記光ビーム(4a)とを重ねて読み取りその結果に基づいて前記描画ヘッド座標系を補正し、前記基板位置検出手段(6)は、前記描画ヘッド位置検出手段(8)が読み取ったのと同一の前記基準マーク手段(9)上の基準マーク(9C)を読み取りその結果に基づいて前記基板位置検出座標系を補正することにより、前記描画ヘッド座標系と前記基板位置検出座標系とを互いに一致させる、
     露光方法。
  8.  請求項7に記載の露光方法において、
    前記描画ヘッド(4X)は少なくとも前記所定方向に対して位置が固定されており、且つ前記基板ステージ(5)及び基板位置検出手段(6)が前記所定方向に移動可能であることを特徴とする露光方法。
  9.  請求項7に記載の露光方法において、
     前記描画ヘッド(4X)は少なくとも前記所定方向に対して移動可能であり、且つ前記基板ステージ(5)が少なくとも前記所定方向に対して位置が固定されている、
     露光方法。
  10.  請求項7乃至9の何れかに記載の露光方法において、
     前記補正作業は、異なる基板(10)毎に毎回行うことを特徴とする露光方法。
  11.  請求項7乃至10の何れかに記載の露光方法において、
     前記基板ステージ(5)の前記基板(10)上の回路を描画される基板面と、前記基準マーク手段(9)上の基準マーク(9C)面との、高さが同一になるように調整し得る高さ調整手段(11)が更に設けられるステップを有することを特徴とする露光方法。
  12.  請求項7乃至11の何れかに記載の露光方法において、
     前記基板ステージ(5)は、前記所定方向上に前記描画ヘッド(4X)を挟んで互いに対向して一対分(5A、5B)配設されている
     露光方法。
PCT/JP2021/011627 2020-03-23 2021-03-22 露光装置及び露光方法 WO2021193494A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227036399A KR20220157448A (ko) 2020-03-23 2021-03-22 노광 장치 및 노광 방법
CN202180021552.9A CN115335772A (zh) 2020-03-23 2021-03-22 曝光装置及曝光方法
JP2022510463A JPWO2021193494A1 (ja) 2020-03-23 2021-03-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020051233 2020-03-23
JP2020-051233 2020-03-23

Publications (1)

Publication Number Publication Date
WO2021193494A1 true WO2021193494A1 (ja) 2021-09-30

Family

ID=77890387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011627 WO2021193494A1 (ja) 2020-03-23 2021-03-22 露光装置及び露光方法

Country Status (5)

Country Link
JP (1) JPWO2021193494A1 (ja)
KR (1) KR20220157448A (ja)
CN (1) CN115335772A (ja)
TW (1) TW202141202A (ja)
WO (1) WO2021193494A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186302A (ja) * 2004-11-26 2006-07-13 Sanee Giken Kk 走査型露光用光源ユニット
JP2006330534A (ja) * 2005-05-30 2006-12-07 Nikon Corp 基準指標板、基準指標板の調整方法、露光装置及びマイクロデバイスの製造方法
JP2008233638A (ja) * 2007-03-22 2008-10-02 Dainippon Screen Mfg Co Ltd 描画装置および描画方法
JP2010231062A (ja) * 2009-03-27 2010-10-14 Dainippon Screen Mfg Co Ltd 描画装置および描画方法
JP2013257409A (ja) * 2012-06-12 2013-12-26 San Ei Giken Inc 露光装置、露光方法
JP2014197136A (ja) * 2013-03-29 2014-10-16 大日本スクリーン製造株式会社 描画装置および描画方法
JP2017067888A (ja) * 2015-09-29 2017-04-06 株式会社Screenホールディングス 描画装置および位置情報取得方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4472560B2 (ja) 2005-03-08 2010-06-02 日立ビアメカニクス株式会社 マスクレス露光装置及びその露光方法並びに配線基板の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186302A (ja) * 2004-11-26 2006-07-13 Sanee Giken Kk 走査型露光用光源ユニット
JP2006330534A (ja) * 2005-05-30 2006-12-07 Nikon Corp 基準指標板、基準指標板の調整方法、露光装置及びマイクロデバイスの製造方法
JP2008233638A (ja) * 2007-03-22 2008-10-02 Dainippon Screen Mfg Co Ltd 描画装置および描画方法
JP2010231062A (ja) * 2009-03-27 2010-10-14 Dainippon Screen Mfg Co Ltd 描画装置および描画方法
JP2013257409A (ja) * 2012-06-12 2013-12-26 San Ei Giken Inc 露光装置、露光方法
JP2014197136A (ja) * 2013-03-29 2014-10-16 大日本スクリーン製造株式会社 描画装置および描画方法
JP2017067888A (ja) * 2015-09-29 2017-04-06 株式会社Screenホールディングス 描画装置および位置情報取得方法

Also Published As

Publication number Publication date
JPWO2021193494A1 (ja) 2021-09-30
TW202141202A (zh) 2021-11-01
CN115335772A (zh) 2022-11-11
KR20220157448A (ko) 2022-11-29

Similar Documents

Publication Publication Date Title
US8710403B2 (en) Laser processing a multi-device panel
KR101485437B1 (ko) 기준 위치 측정 장치 및 방법, 및 패턴 형성 장치
US20080112609A1 (en) Position detecting method and device, patterning device, and subject to be detected
JP4450739B2 (ja) 露光装置
TWI415703B (zh) 雷射加工裝置及基板位置檢測方法
JP3446741B2 (ja) 光ビームの偏向制御方法及び光造形装置
US20090059297A1 (en) Calibration method for image rendering device and image rendering device
KR20100106311A (ko) 스캔 헤드 보정 시스템 및 그 방법
TWI633279B (zh) 基板測量裝置及雷射加工系統
JP6223091B2 (ja) 位置計測装置、アライメント装置、パターン描画装置および位置計測方法
KR102504473B1 (ko) 노광 장치, 노광 장치의 얼라인먼트 방법, 및 프로그램
JP2006284890A (ja) アライメントセンサの位置校正方法、基準パターン校正方法、露光位置補正方法、校正用パターン及びアライメント装置
CN111699440A (zh) 接近式曝光装置、接近式曝光方法以及接近式曝光装置用光照射装置
KR20060069802A (ko) 보정파일 생성기능을 갖는 레이저마킹 시스템 및 그보정파일 생성방법
JP2008251797A (ja) 基準位置計測装置及び方法、並びに描画装置
JP2000035676A (ja) 分割逐次近接露光装置
KR200422239Y1 (ko) 보정파일 생성기능을 갖는 레이저 마킹장치
WO2021193494A1 (ja) 露光装置及び露光方法
WO2006090823A1 (ja) 位置合わせ機能の校正方法
KR101836685B1 (ko) 보정 정보 생성 장치, 묘화 장치, 보정 정보 생성 방법 및 묘화 방법
KR20090011265A (ko) 레이저 마킹 시스템의 스캔헤드 틀어짐에 따른 중심점오프셋 자동 보정 방법
CN108886887B (zh) 基板作业装置及元件安装装置
JP2008242218A (ja) 描画装置及び描画方法
KR100856564B1 (ko) 레이저 마킹 시스템의 스캔헤드 틀어짐에 따른 마킹 오프셋자동 보정 방법
JP2021021816A (ja) 露光方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510463

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227036399

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776436

Country of ref document: EP

Kind code of ref document: A1