KR20070121167A - 톡소플라빈과 그 유사체 분해 유전자 tflA와 이를발현하는 형질전환생물체 - Google Patents

톡소플라빈과 그 유사체 분해 유전자 tflA와 이를발현하는 형질전환생물체 Download PDF

Info

Publication number
KR20070121167A
KR20070121167A KR1020060055863A KR20060055863A KR20070121167A KR 20070121167 A KR20070121167 A KR 20070121167A KR 1020060055863 A KR1020060055863 A KR 1020060055863A KR 20060055863 A KR20060055863 A KR 20060055863A KR 20070121167 A KR20070121167 A KR 20070121167A
Authority
KR
South Korea
Prior art keywords
tfla
toxoflavin
gene
protein
amino acid
Prior art date
Application number
KR1020060055863A
Other languages
English (en)
Inventor
황인규
문제선
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020060055863A priority Critical patent/KR20070121167A/ko
Priority to US12/308,524 priority patent/US20100269215A1/en
Priority to PCT/KR2007/003010 priority patent/WO2007148926A1/en
Priority to JP2009516402A priority patent/JP5079799B2/ja
Priority to EP07747044A priority patent/EP2029723A4/en
Priority to AU2007261851A priority patent/AU2007261851B2/en
Priority to CNA2007800226082A priority patent/CN101578360A/zh
Priority to CA002655882A priority patent/CA2655882A1/en
Priority to BRPI0712618-2A2A priority patent/BRPI0712618A2/pt
Publication of KR20070121167A publication Critical patent/KR20070121167A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • C12N15/8258Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon for the production of oral vaccines (antigens) or immunoglobulins

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 톡소플라빈과 그 유사체들을 분해하는 유전자 tflA에 관한 것으로써, 보다 상세하게는 식물체로부터 분리 동정한 페니바실러스 폴리믹사 JH2의 tflA가 벼알마름병의 원인인 톡소플라빈을 분해하는 것을 알아내고, 상기 tflA가 도입되어진 각종 생물체를 개발하는 것에 관한 것이다.
본 발명의 tflA가 발현되는 형질전환 식물체는 톡소플라빈에 저항하는 형질을 부여하게 되고 특히 벼의 경우 세균성벼알마름병에 저항하여 벼의 수량증대와 품질향상을 가져올 수 있다.
세균성 벼알마름병, 톡소플라빈, TflA, 페니바실러스 폴리믹사

Description

톡소플라빈과 그 유사체 분해 유전자 tflA와 이를 발현하는 형질전환생물체{tflA gene degradating toxoflavin and its chemical derivatives and transgenic organism thereof}
도1은 산야지 토양, 논·밭 토양, 벼 종자 등으로부터 페니바실러스 폴리믹사 JH2 (Paenibacillus polymyxa JH2)를 분리 동정하는 과정의 모식도를 나타낸 그림이고,
도2페니바실러스 폴리믹사 JH2의 코스미드 클론(cosmid clone)을 포함한 E. coli HB101의 톡소플라빈 분해를 나타내는 그림이고(모든 클론은 1.5kb EcoRI 절편을 나타낸다),
도3은 에시구오박테리움 종 255-15(Exiguobacterium sp. 255-15)의 ring-cleavage extradiol dioxygenase와 단백질 유사도를 분석한 그림이고((2)Bacillus halodurans C-125의 알려지지 않은 단백질 일종, (3)Bacillus halodurans C-125의 알려지지 않은 단백질 일종, (4)Bacillus sp. JF8의 NahC, (5)Bacillus sp. JF8의 NahH, (6)Sphingopyxis macrogoltabida TFA의 ThnC, (7)Pseudomonas sp. LB400의 BphC, (8)X. axonopodis pv. citri str. 306의 보존된 단백질(conserved hypothetical protein),(9)두 펩타이드 사이에서 보존된 단백질을 별표로 표시).
도4는 정제된 TflA 단백질을 보여주는데, (A)는 TflA 단백질을 쿠마시염색을 하여 관찰한 그림이고, (B)는 Mn++ 와 DTT가 정제된 TflA이 톡소플라빈을 분해할 때 미치는 영향을 알아보기 위해 TLC 플레이트 분석으로 관찰한 그림(모든 레인은 100?M toxoflavin을 포함한다 : 레인 1, 1mM MnCl2; 2, 정제된 His-TflA 와 1mM MnCl2; 3, 5mM DTT; 4, 정제된 His-TflA 와 5mM DTT; 5, 5mM DTT/1mM MnCl2; 6, 정제된 His-TflA plus 와 DTT/1mM MnCl2)이고,
도5의 (A)는 정제된 His-TflA가 톡소플라빈을 분해하는데 최적의 온도를 알아본 그림이고, (B)는 정제된 His-TflA의 시간에 따른 톡소플라빈 분해 정도를 알아본 그림이고,
도6은 정제된 His-TflA에 의한 톡소플라빈 분해에 있어 최적의 pH를 나타내는 그림이고,
도7은 톡소플라빈과 그 유사체를 보여주는 그림이며(원은 다른 종류의 기능기(functional groups)를 보여주는 것이다.),
도8은 His-TflA에 의한 톡소플라빈과 그 유사체의 분해능을 나타내는 그림이며,
도9은 정제된 His-TflA에 의한 톡소플라빈 분해능을 Lineweaver-Burk plots으로 나타낸 그림이고,
도10의 (A)는 pCamLA의 유전자 구조를 나타내는 모식도이며, (B)는 pJ904(pCamLA::tflA)의 구조이며(MCS, multiple cloning site; LB, left border; RB, right border; 35S, 35S promoter; P. PstI; Sm, SmaI; S, SacI),
도11는 형질전환 벼 식물체의 제조과정을 나타내는 그림이고,
도12의 (A)는 pJ904 (pCamLA::tflA)의 유전자 구조를 나타내는 그림이고, (B)는 형질전환 벼의 서던 블럿 분석을 나타내는 그림이고( (A) T-DNA region of pJ904. LB, left border; RB, right border; HygR, hygromycin phosphotransferase; 35S, CaMV 35S promoter. (B) Southern blot analysis of transgenic rice T2 plants. M, Molecular size marker; 1, Cv6-2; 2, Dt1-1; 3, Dt1-2; 4, Dt3-6; 5, Dt27-1; 6, Dt27-2; 7, Dt27-3; 8, Dt27-4; 9, Dt34-1; 10, Dt34-3; 11, Ct36-3; 12, pJ904; 13, Cv10-1; 14, Dt4-1; 15, Dt4-3; 16, Dt7-7; 17, Dt19-5; 18, Dt40-5; 19, Ct18-2; 20, Ct18-4; 21, Ct18-5; 22, Ct18-6; 23, Ct9-1; 24, pJ904; 25, Cv6-4; 26, Dt2-1; 27, Dt2-5; 28, Dt7-3; 29, Dt7-5; 30, Dt7-9; 31, Dt7-10; 32, Dt9-6; 33, Dt16-1; 34, Dt19-3; 35, Dt38-3; 36, pJ904),
도13은 야생벼와 형질전환 T2 식물의 웨스턴 분석을 나타낸 그림이고(M, Marker; WT, Dongjinbyeo wild-type plant; Dt, Dongjinbyeo transgenic T2 plants expressing tflA; TflA, purifeid His6-tagged TflA),
도14는 톡소플라빈을 처리한 벼 잎 조각을 분석한 그림이다(A, Dongjinbyeo wild-type plant; B and C, Individual transgenic lines (B, Dt40-6; C, Dt19-5); D, Dongjinbyeo wild-type plant in the dark).
본 발명은 톡소플라빈과 그 유사체들을 분해하는 유전자 tflA에 관한 것으로써, 보다 상세하게는 식물체로부터 분리 동정한 페니바실러스 폴리믹사 JH2의 tflA가 벼알마름병의 원인인 톡소플라빈을 분해하는 것을 알아내고, 상기 tflA가 도입되어진 각종 생물체를 개발하는 것에 관한 것이다.
벼알마름병은 벌크홀데리아 글루메(Burkholderia glumae)라는 그람음성세균에 의해 일어나는 벼 병으로서 최근 우리나라와 일본, 동남아시아를 비롯해 미국 벼 재배 지역에서 중요시되는 병으로 기후변화에 아주 민감한 병이다. 벼알마름병은 온도와 습도가 높은 개화기에 발생하여 수확량을 34% 정도 줄이는 것으로 보고되어 있다. 벌크홀데리아 글루메는 벼알마름병과 밭작물의 세균성 시들름병을 일으키는 병원성의 필수요소인 톡소플라빈(toxoflavin)과 리우마이신(reumycin) 그리고 페르베눌린(fervenulin)을 분비하고 이중 톡소플라빈(toxoflavin)이 가장 중요한 병원성 요소라는 것이 보고되어 있다.
‘페니바실러스 폴리믹사’는 식물의 뿌리 부근에 서식하면서 식물의 생장을 촉진하고 토양속의 다른 미생물과 상호 작용하여 식물병 발생을 억제하며, 다양한 항생물질과 가수분해 효소를 생산하는 유용미생물이다. 또한 이 미생물은 질소고정을 하는 그람양성 세균으로 최근에 그 중요성이 크게 부각되고 있다.
본 발명은 벼알마름병 저항성 반응에 관여하는 페니바실러스 폴리믹사 JH2의tflA 유전자 및 상기 유전자가 암호화하는 단백질을 제공하고, 아울러 상기 단백질의 특성을 규명하고, 상기 유전자를 재조합하여 형질전환 벼 식물체를 제조하고, 이를 발현시켜 벼알마름병을 일으키는 병충해에 대해 저항성이 증진된 질이 좋은 무독한 벼를 제공하고자 한다.
본 발명자들은 벼알마름병 저항성 반응에 관여하는 페니바실러스 폴리믹사 JH2의 tflA가 발현되어 벼알마름병을 일으키는 병충해에 대한 저항성을 나타내는 형질전환 생물체를 제조함으로써 생물체와 페니바실러스 폴리믹사 JH2의 상호작용을 이해 하고 효과적인 질병통제를 위한 새로운 시스템을 제공할 수 있어 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 톡소플라빈 또는 톡소플라빈 유도체를 분해하는 미생물을 제공하는 것이다.
본 발명의 또 다른 목적은 미생물로서 세균임을 특징으로 하는 미생물을 제공하는 것이다.
본 발명의 또 다른 목적은 세균으로서 페니바실러스 속임을 특징으로 하는 미생물을 제공하는 것이다.
본 발명의 또 다른 목적은 페니바실러스속은 페니바실러스 폴리믹사임을 특징으로 하는 미생물을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 미생물로서 페니바실러스 폴리믹사 JH2임을 특징으로 하는 미생물(기탁번호:KCTC10959BP)을 제공하는 것이다.
본 발명의 또 다른 목적은 톡소플라빈 또는 톡소플라빈 유도체를 분해하는 유전자를 제공하는 것이다.
본 발명의 또 다른 목적은 서열번호 1의 염기서열을 포함하는 tflA 유전자를 제공하는 것이다.
본 발명의 또 다른 목적은 서열번호 2의 아미노산 서열을 포함하는 tflA 단백질을 제공하는 것이다.
본 발명의 또 다른 목적은 서열번호1의 염기서열을 포함하는 톡소플라빈을 분해하는 tflA를 암호화하는 DNA를 제공하는 것이다.
본 발명의 또 다른 목적은 서열번호2의 아미노산 서열을 포함하는 톡소플라빈을 분해하는 tflA를 암호화하는 단백질을 제공하는 것이다.
본 발명의 또 다른 목적은 서열번호 1의 염기서열과 50%이상의 상동성을 가지는 서열을 포함하는 분리된 DNA를 제공하는 것이다.
본 발명의 또 다른 목적은 서열번호 2의 아미노산서열과 50%이상의 상동성을 가지는 서열을 포함하는 분리된 단백질을 제공하는 것이다.
본 발명의 또 다른 목적은 서열번호2에 따른 펩타이드의 아미노산 서열 중 하나 이 상의 아미노산 잔기를 치환 또는 결실시키거나, 상기 펩타이드의 아미노산 서열에 하나 이상의 아미노산을 삽입함으로써, 톡소플라빈 분해능이 유지되는 단백질을 제공하는 것이다.
본 발명의 또 다른 목적은 tflA 유전자를 포함하는 재조합 발현 벡터를 제공하는 것이다.
본 발명의 또 다른 목적은 tflA 유전자를 포함하는 대장균 발현벡터를 제공하는 것이다.
본 발명의 또 다른 목적은 tflA 유전자를 포함하는 바이러스 발현벡터를 제공하는 것이다.
본 발명의 또 다른 목적은 tflA 유전자를 포함하는 식물 발현벡터를 제공하는 것이다.
본 발명의 또 다른 목적은 tflA 유전자를 포함하는 재조합, 대장균, 바이러스와 식물 발현벡터 중 어느 한 벡터에 의해서 발현되는 재조합 tflA 단백질을 제공하는 것이다.
본 발명의 또 다른 목적은 tflA 유전자를 포함하는 재조합, 대장균, 바이러스와 식물 발현벡터 중 어느 한 벡터에 의해서 형질전환된 숙주세포를 제공하는 것이다.
본 발명의 또 다른 목적은 tflA 유전자를 발현하는 형질전환생물체를 제공하는 것이다.
본 발명의 또 다른 목적은 형질전환생물체로서 미생물, 식물, 바이러스 및 동물임을 특징으로 하는 형질전환생물체를 제공하는 것이다.
본 발명의 또 다른 목적은 벼알마름병의 원인인 톡소플라빈을 분해하는 페니바실러스 폴리믹사 JH2의 tflA를 T-DNA 내부에 하이그로마이신 포스포트렌스포라제(hygromycin phophotransferase, HygR)을 포함하고 있으며, T-DNA 외부에 카나마이신(kanamycin) 저항성 유전자를 갖고 있는 벡터 pCamLA에 삽입하여 제작한 tflA 발현벡터를 제공하는 것이다.
본 발명의 또 다른 목적은 벼알마름병의 원인인 톡소플라빈을 분해하는 페니바실러스 폴리믹사 JH2의 tflA를 T-DNA 내부에 하이그로마이신 포스포트렌스포라제(hygromycin phophotransferase, HygR)을 포함하고 있으며, T-DNA 외부에 카나마이신(kanamycin) 저항성 유전자를 갖고 있는 벡터 pCamLA에 삽입하여 제작한 tflA 발현벡터를 이용하여 tflA가 발현되는 것을 특징으로 하는 조직배양에 의해 무성번식되는 형질전환 벼 식물체의 제조방법을 제공하는 것이다.
본 발명은 또 다른 목적은 벼알마름병의 원인인 톡소플라빈을 분해하는 페니바실러스 폴리믹사 JH2의 tflA가 발현되어 벼알마름병에 대하여 저항성을 갖는 것을 특징으로 하는 조직배양에 의해 무성번식되는 형질전환 벼 식물체를 제공하는 것이다.
본 발명은 톡소플라빈과 그 유사체 분해 유전자 tflA와 이를 발현하는 형질전환생물체에 관한 것이다.
본 발명은 톡소플라빈 또는 톡소플라빈 유도체를 분해하는 미생물을 포함한다.
본 발명은 미생물로서 세균임을 특징으로 하는 미생물을 포함한다.
본 발명은 세균으로서 페니바실러스 속임을 특징으로 하는 미생물을 포함한다.
본 발명은 페니바실러스속은 페니바실러스 폴리믹사임을 특징으로 하는 미생물을 포함한다.
본 발명은 상기 미생물로서 페니바실러스 폴리믹사 JH2임을 특징으로 하는 미생물을 포함한다. 이 미생물 세포주는 2006년 6월13일 한국생명공학연구원에 기탁번호 KCTC 10959BP로 기탁하였다.
본 발명은 톡소플라빈 또는 톡소플라빈 유도체를 분해하는 유전자를 포함한다.
본 발명은 서열번호 1의 염기서열을 포함하는 tflA 유전자를 포함한다.
본 발명은 서열번호 2의 아미노산 서열을 포함하는 tflA 단백질을 포함한다.
본 발명은 서열번호1의 염기서열을 포함하는 톡소플라빈을 분해하는 tflA를 암호화하는 DNA를 포함한다.
본 발명은 서열번호2의 아미노산 서열을 포함하는 톡소플라빈을 분해하는 tflA를 암호화하는 단백질을 포함한다.
본 발명은 서열번호 1의 염기서열과 50%이상의 상동성을 가지는 서열을 포함하는 분리된 DNA를 포함한다.
본 발명은 서열번호 2의 아미노산서열과 50%이상의 상동성을 가지는 서열을 포함하 는 분리된 단백질을 포함한다.
본 발명은 서열번호2에 따른 펩타이드의 아미노산 서열 중 하나 이상의 아미노산 잔기를 치환 또는 결실시키거나, 상기 펩타이드의 아미노산 서열에 하나 이상의 아미노산을 삽입함으로써, 톡소플라빈 분해능이 유지되는 단백질을 포함한다.
본 발명은 tflA 유전자를 포함하는 재조합 발현 벡터를 포함한다.
본 발명은 tflA 유전자를 포함하는 대장균 발현벡터를 포함한다.
본 발명은 tflA 유전자를 포함하는 바이러스 발현벡터를 포함한다.
본 발명은 tflA 유전자를 포함하는 식물 발현벡터를 포함한다.
본 발명은 tflA 유전자를 포함하는 재조합, 대장균, 바이러스와 식물 발현벡터 중 어느 한 벡터에 의해서 발현되는 재조합 tflA 단백질을 포함한다.
본 발명은 tflA 유전자를 포함하는 재조합, 대장균, 바이러스와 식물 발현벡터 중 어느 한 벡터에 의해서 형질전환된 숙주세포를 포함한다.
본 발명은 tflA 유전자를 발현하는 형질전환생물체를 포함한다.
본 발명은 형질전환생물체로서 미생물, 식물, 바이러스 및 동물임을 특징으로 하는 형질전환생물체를 포함한다.
본 발명은 벼알마름병의 원인인 톡소플라빈을 분해하는 페니바실러스 폴리믹사 JH2의 tflA를 T-DNA 내부에 하이그로마이신 포스포트렌스포라제(hygromycin phophotransferase, HygR)을 포함하고 있으며, T-DNA 외부에 카나마이신(kanamycin) 저항성 유전자를 갖고 있는 벡터 pCamLA에 삽입하여 제작한 tflA 발현벡터를 포함한다.
본 발명은 벼알마름병의 원인인 톡소플라빈을 분해하는 페니바실러스 폴리믹사 JH2의 tflA를 T-DNA 내부에 하이그로마이신 포스포트렌스포라제(hygromycin phophotransferase, HygR)을 포함하고 있으며, T-DNA 외부에 카나마이신(kanamycin) 저항성 유전자를 갖고 있는 벡터 pCamLA에 삽입하여 제작한 tflA 발현벡터를 이용하여 tflA가 발현되는 것을 특징으로 하는 조직배양에 의해 무성번식되는 색소체 형질전환 벼 식물체의 제조방법을 포함한다.
본 발명은 벼알마름병의 원인인 톡소플라빈을 분해하는 페니바실러스 폴리믹사 JH2 의 tflA가 발현되어 벼알마름병에 대하여 저항성을 갖는것을 특징으로 하는 조직배양에 의해 무성번식되는 색소체 형질전환 벼 식물체를 포함한다.
이하, 본 발명을 보다 상세히 설명한다.
1) 톡소플라빈(Toxoflavin) 분해 유전자 발굴
산야지 토양, 논·밭 토양, 벼 종자 등으로부터 500여종의 세균을 분리하였으며 톡소플라빈을 첨가한 영양 최소배지 (minimal medium)에 배양한 후 독소 분해 후 자라는 세균을 분리하였다. 벼 종자로부터 분리된 세균 중 톡소플라빈을 분해하는 세균을 순수 분리하였으며 16s DNA 염기서열분석, 지방산 분석, Biolog 분석 시스템을 이용하여 동정하였다. 동정결과 페니바실러스 폴리믹사(Paenibacillus polymyxa)로 동정되었고 JH2로 명명하였다(도1). P. polymyxa JH2로부터 염색체 DNA 라이브러리(genomic DNA library)를 E. coli HB101에 제작하였고 라이브러리 클론(library clone) 중 독소배지에 자라는 콜로니(colony)를 선발하였다. 분리된 DNA 클론(DNA clone)으로부터 제한효소로 절단하여 만든 clone으로 독소 분해에 필요한 최소 DNA 절편을 확인하였다(도2). 독소 분해에 필요한 최소 클론인 1.5kb EcoRI 절편을 염기서열분석을 통하여 666bp의 ORF를 확인하였다(서열목록1). NCBI BLAST 분석을 통해 에시구오박테리움 종(Exiguobacterium sp.)의 ring-cleavage extradiol dioxygenase와 67.3%의 유사성(similarity)이 있음을 확인하였다 (도3). 톡소플라빈 분해에 관련된 유전자 tflA는 아직까지 보고 된 바가 없는 신종 유용 유전자인 것으로 밝혀졌다.
2) 독소 분해 유전자 (tflA) 발현과 정제된 단백질에 의한 독소 분해
톡소플라빈 분해 유전자 (tflA)를 발현시키기 위해 pET14-b(T7 프로모터 발현 벡터, Ampr, Novagen )를 이용하였다. PCR을 이용하여 증폭된 유전자를 pBluescript II SK(+)(ColEI, MCS-lacZα, Ampr cloning vector, Ampr, Stratagene) 에 클로닝하여 염기 서열 분석 후 PCR에 의한 문제가 없는 클론을 다시 pET14-b에 클로닝 (pH904) 하였다. pH904를 E. coli BL21(DE3/pLysS)에 형질전환하여 IPTG (1mM)로 유도한 후 Ni-column으로 His-TflA (26.7 kDa) 단백질을 정제하였다(도 4A). 정제한 TflA 단백질로 톡소플라빈 분해 검정을 통해 DTT와 Mn++이 함께 존재할 때 독소가 분해됨을 확인하였다(도 4B).
TflA 단백질에 의한 톡소플라빈 분해에 대한 온도 반응을 알아보기 위해 20, 25, 30, 35, 40℃의 온도별 독소 분해 양을 조사하였고 30℃에서 가장 높은 분해능을 보이는 것을 확인하였고(도 5A), 최적의 pH 조건은 pH6.5임을 확인하였다(도 6). TflA 단백질의 특이적 활성(specific activity)을 측정하기 위해 10분 간격으로 독소 분해를 조사하였고 특이적 활성은 0.0413?moles/min/mg 였다 (도 5B).
3) Toxoflavin과 유도체 합성
TflA에 의한 독소 분해 기작을 연구하기 위해 필요한 독소와 그 유도체를 공동연구를 진행하고 있는 일본 오카야마 대학의 Tomohisa Nagamatsu 교수로부터 화합물을 제공받았다 (도 7). Toxoflavin을 기본 구조로 하여 3번 탄소에 methyl기가 있는 3-Methyltoxoflavin, 4,8번 질소에 수소를 가진 4,8-Dihydrotoxoflavin, 3번 탄소에 methyl기와 4,8번 질소에 수소를 가진 3'-Methyl 4,8-Dihydrotoxoflavin, 1번 질소 대신 8번 질소에 methyl기를 가진 fervenulin, 3번 탄소에 phenyl기를 가진 3-Phenyltoxoflavin, ring구조를 하나 더 가지고 있는 5-Deazaflavin, 1번 질소에 methyl기가 없는 reumycin, reumycin 구조의 3번 탄소에 metyl기를 가진 3-Methylreumycin, 3번 탄소에 phenyl기를 가진 3-Phenylreumycin등으로 TflA에 의한 분해를 검정하였다.
4) TflA에 의한 toxoflavin과 유도체 분해
분리 정제된 TflA 단백질로 toxoflavin과 유도체 분해를 검정한 결과 주어진 시간내에 Toxoflavin, 3-Methyltoxoflavin, 4,8-Dihydrotoxoflavin, 3-Methylreumycin은 완전 분해 되었고 3-Phenyltoxoflavin, 3-Phenylreumycin, 5-Deazaflavin은 분해가 되지 않았다. reumycin, 3-Methyl 4,8-Dihydrotoxoflavin, fervenulin은 일부 분해가 진행되었으나 완전 분해는 되지 않았다. 종합하면, 3번 탄소에 phenyl기가 있는 것은 분해가 진행되지 않은 것으로 미루어보아 TflA 단백질은 toxoflavin의 3번 탄소 주변의 ring 구조를 인식하는 것으로 생각 된다 (도 8).
5) TflA의 동역학(kinetics)
톡소플라빈 분해를 위한 His-TflA의 Michaelis constant (Km), 최대반응속도(maximum reaction rate, Vmax), 그리고 특이적 활성을 조사하였다. 독소 분해 활성은 TLC 분석을 통해 확인하였다. His-TflA의 Km과 Vmax값은 각각 69.72μM과 -0.45 U/mg으로 확인되었고 특이적 활성은 0.4μmol/mg로 나타났다(도 9).
6) 형질전환
형질전환에 사용된 벡터는 pCamLA (도 10)로서 T-DNA 내부에 하이그로마이신 포스포트렌스포라제(hygromycin phophotransferase, HygR)를 포함하고 있으며 T-DNA 외부에 카나마이신(kanamycin) 저항성 유전자를 갖고 있다. 형질전환에 사용한 균주는 아그로박테리움 튜머훼시언스 LBA4404(Agrobacterium tumefaciens LBA4404)를 사용하였다. AB 최소배지(AB minimal medium)에서 아그로박테리움을 배양하였고 세포(cell)를 회수하여 아세토시링완(acetosyringone , 3,5-dimethoxy-4-hydroxy acetophenone, Aldrich)이 포함된 AA 액체 배지에 희석한 후 준비된 동진, 추청, 니폰바래 캘러스를 3-5분 정도 침지시켰다. 접종된 캘러스는 멸균된 여과지로 수분을 제거한 후, 배양기에 캘러스를 치상하고 3일간 28℃의 암조건에서 아그로박테리움과 공동 배양하였다. 3일간 배양된 캘러스로부터 아그로박테리움을 제거하고 N6최소배지(N6 selection medium)에 치상하였다. 광조건 (25℃)에서 30일 정도 배양하여 증식된 캘러스만을 선발하였다. 선발배지에서 증식된 캘러스를 재분화배지에 치상하고 재분화된 식물체를 생장조절물질이 첨가되지 않은 배지에 이식하여 뿌리를 유도하였다 (도 11). 하이그로마이신이 포함된 배지에서 신초(shoot)와 뿌리(root)가 정상적으로 생육한 개체만을 선발하여 순화시킨 뒤 포트(pot)에 형질전환 식물체를 이식하고 온실에서 재배 관리하였다. 반복 실험으로부터 얻어진 형질전환 식물체 중에서 외형적으로 정상적인 생육과정을 거친 식물체로부터 표 1에서 보는 것과 같이 T1 또는 T2 plant를 확보하였다.
표1. 형질전환 벼 리스트
Rice cultivar Gene No . of Line Present
Donjinbyeo tflA Dt 46 T1 plant
Nipponbare tflA Nt 41 T1 plant
Chucheongbyeo tflA Ct 43 T1 plant
7) 형질전환 식물체 (T2 plant) - 서던블럿 분석
T2 세대의 형질전환 식물체 벼의 엽육조직 1g에서 표준적인 절차를 통하여 염색체 DNA(genomic DNA)를 추출하였다. 염색체 DNA 15-20μg을 제한효소 EcoRI으로 처리하여 0.7% 아가로스 겔에서 전개 후 막(membrane)에 블럿팅(blotting)한 다음 히브리디젠이션(hybridization) 하였다. 2.5Kb의 tflA 단편 (3´nos terminator 포함)이 프로브 DNA로 사용되었다. T2 세대의 형질전환 식물체의 엽육조직의 DNA를 tflA 프로브를 이용하여 서던블럿 분석을 실시한 결과를 도 12B와 표2에 나타내었다. 동진, 추청 2 가지 품종 모두에서 다양한 삽입 패턴(integration pattern)과 카피 수(copy number)를 확인할 수 있었다.
8) 형질전환 식물체 (T2 plant) - 웨스턴 블럿 분석
T2 세대의 형질전환 식물체 벼의 엽육조직 300mg을 채취하여 액체질소로 분쇄시킨 후 파쇄 버퍼 (50mM Tris-HCl pH7.5, 150mM NaCl, 1mM EDTA, 10% 글리세롤, 1mM PMSF, 0.05% Tween 20, protease inhibitor cocktail)를 첨가하여 교반한 후 원심분리(4℃, 15,000rpm, 15분)하여 상등액을 얻고 이를 다시 원심분리하여 모든 녹는 단백질(total soluble protein)을 추출하였다. 2× 샘플 버퍼에 모든 녹는 단백질(total soluble protein) 15μl를 첨가하여 100℃ 끓는 물에서 5분간 가열 후 SDS-PAGE에 전개시키고 이를 PVDF 막에 블럿팅했다. 막을 블럿킹 용액(blocking solution, 5% skip milk in TBS-T)에서 블럿킹하고 anti-TflA 항체와 immunoPure? Antibody를 처리한 뒤 NBT/BCIP Detection Kit (Amersham, England)로 검출하였다. 도13에서 보는바와 같이 T2 세대의 형질전환 식물체에서 TflA가 정상적으로 발현되는 것을 알 수 있었다.
9) 형질전환 식물체 (T3 plant) 선발
하이그로마이신이 포함된 선발배지에서 신초와 뿌리가 정상적으로 생육한 개체만을 선발하여 순화시킨 뒤 형질전환 식물체를 포트에 이식하고 온실에서 재배 관리하였다. 반복 실험으로 얻어진 형질전환 식물체 중에서 외형적으로 정상적인 생육과정을 거친 식물체로부터 각각 채종한 종자(T1, T2)를 이용하여 하이그로마이신 저항성 검증에 사용하였다. 완숙종자의 종피를 제거하고 100% 에탄올에 1분 동안 침적한 후 2% 소디움 히포클로라이드(sodium hypochloride) 용액에 20분간 교반하면서 표면 살균하였다. 표면 살균된 종자를 멸균수로 3회 세척하고 하이그로마이신 (50mg/L)을 첨가한 1/2 MS 배지에 종자를 치상하였다. 배양은 26℃ 3000 lux의 연속 광 조건에서 행하여졌으며 저항성 검증은 치상 10일 후에 줄기와 뿌리의 신장을 관찰하여 조사하였다. 각각의 식물체로부터 채종한 종자를 이용하여 하이그로마이신 저항성 유전자의 분리비를 조사하였고 표 2에서 보는 것과 같이 2가지 품종의 형질전환 벼 T3 plant를 확보하여 연구를 수행하였다.
표2. 형질전환 벼 리스트
Gene Rice cultivar T1 lines T2 lines T3 lines
tflA Dongjinbyeo 25 21 16
Chucheongbyeo 15 12 8
10) 형질전환 식물체 (T3 plant) phenotype 검정
T3 세대의 형질전환 벼의 4-5엽기 잎을 이용하여 톡소플라빈에 대한 저항성 검증을 하였다. 선행 연구를 통하여 톡소플라빈이 활성화되는데 빛이 요구됨에 따라 빛이 유지되는 조건에서 실험을 수행하였다. 직경이 60×15mm인 페트리디쉬에 살균수 5ml을 넣고 0, 25, 50, 100μM 농도의 톡소플라빈을 처리하였다. 3×4mm 크기로 자른 4-5엽기의 벼 잎을 톡소플라빈에 처리하여 28℃에서 16시간 광조건, 25℃ 8시간 암조건이 유지되는 생장상에서 48시간 동안 두었다. 도 14에서 보는 바와 같이 톡소플라빈을 처리한 후 40시간 후에 야생 벼 잎에서 독소에 의한 변색 반응이 나타나기 시작하였으나 tflA가 도입된 형질전환 벼 잎에서는 톡소플라빈 처리에 의한 변색 반응이 진행되지 않았다.
이하 본 발명의 내용을 실시예에 의해 보다 상세하게 설명하기로 한다.
다만 이들 실시예는 본 발명의 내용을 이해하기 위해 제시되는 것일 뿐 본 발명의 권리범위가 이들 실시예에 한정되어지는 것으로 해석되어져서는 아니된다.
<실시예 1; 균주배양조건>
페니바실러스 폴리믹사(Paenibacillus polymyxa ) 균주는 28℃, 액체 LB 또는 고체 LB 배지에서 배양하였다. 모든 에스케리치아 콜리(Escherichia coli ) 균주는 37℃, 액체 LB 또는 고체 LB 배지에서 배양하였다. 사용한 항생제의 농도는 다음과 같다: 리팜피신(rifampicin) 50μg/ml; 테트라사이클린(tetracycline) 10μg/ml, 카나마이신(kanamycin) 30μg/ml; 앰피실린(ampicillin) 100μg/ml; 클로람페니콜(chloramphenicol) 25μg/ml.
<실시예 2; 효소와 DNA처리>
1. 염색체 DNA의 준비
페니바실러스 폴리믹사(Paenibacillus polymyxa ) 염색체 DNA 추출은 lysozyme-sodium dodecyl sulfate (SDS) 용해법을 변형시켜 수행하였다 (Leach et al. 1990). 박테리아는 적절한 항생제가 포함된 500ml LB배지에서 230rpm, 28 ℃에서 배양하였다. 박테리아 세포는 원심 분리하여 얻었고, 박테리아 펠렛은 1ml 0.9% NaCl용액으로 씻어주고 330μl GTE(50mM glucose, 25mM Tris-HCl [pH 8.0], 10mM EDTA [pH 8.0])용액으로 녹인 다음 3 μl 리소자임(50mg/ml) 을 첨가하여 37 ℃, 30분 반응시킨다. 세포는 17μl 10% SDS를 첨가하여 깨고, 37. ℃, 10분 반응시킨다. 10μl RNaseA (10mg/ml)를 첨가한 후 37℃,1시간 반응시킨다. 17μl 0.5M EDTA를 첨가하고 37℃, 10분 반응시킨다. 2.5μl proteinase K(20mg/ml) 용액을 첨가하고 37.℃, 6시간 반응시킨다. 25:24:1 (v:v:v) 페놀: 클로로포름: 이소아밀 알 콜(phenol: chloroform: isoamyl alcohol)를 첨가하고 5분동안 격렬하게 섞어준다. 16,816×g, 5분 원심분리 한 후, 상층액은 새 튜브로 옮기고, 페놀을 넣고 추출과정을 두 번 수행한다. 24:1 (v:v) 클로로포름: 이소아밀 알콜(chloroform: isoamyl alcohol)을 새 튜브로 옮긴 상층액과 같은 부피로 넣어주고, 0.1부피의 3M 소디움 아세테이트 [pH 7.0]와 2부피의 95% 에탄올을 넣고 16,816×g, 15분동안 원심분리한다. 원심분리후, 상층액은 조심스럽게 버리고 펠렛은 70% 에탄올로 씻어낸다. 에탄올이 모두 증발하면 펠렛은 0.2ml TE [pH 8.0]를 넣고 녹인 후 -20℃에 보관한다.
2. 플라스미드 DNA 준비
E. coli 플라스미드 DNA는 알칼리 분해법(alkaline lysis method ,Sambrook et al., 1989)으로 수행하였다. E. coli 세포는 적절한 항생제를 넣고, 2ml LB배지, 200rpm, 37℃에서 배양하였다. 박테리아세포는 16,816×g, 1분동안 원심분리하여 획득하였다. 상층액은 제거하고 박테리아 펠렛은 100μl ice-cold solution I (50mM glucose, 25mM Tris-HCl [pH 8.0], 10mM EDTA [pH 8.0])을 넣고 잘 섞어준 다음 5μl of RNaseA solution(20μl /ml)을 첨가하였다. 200μl solution II (0.2N NaOH, 1% SDS)을 첨가한 후 살며시 잘 섞어주고 150μl Ice-cold solution III (5M potassium acetate 60ml, glacial acetic acid 11.5ml, sterile distilled water 28.5ml)를 넣고 잘 섞어준다. 박테리아 용해물은 16,816×g, 4℃, 10분 동안 원심분리한 후 페놀처리 후, 상층액만을 새튜브로 옮기고 1ml 95% 에탄올을 넣고 잘 섞는다. DNA 펠렛은 16,816×g, 4℃, 15분동안 원심분리한다. 펠렛은 70% 에탄올로 씻어낸 후 제거한다. 펠렛은 30μl TE [pH 8.0]에 녹여 4℃에 저장한다.
3. 효소와 아가로스젤 전기영동
제한효소, calf intestinal alkaline phosphatase, T4 DNA ligase과 다른 관련 시약은 Takara (Japan), Boehringer Mannheim (Mannheim, Germany), Stragene (La Jolla, CA), Gibco BLR (Gaithersburg, MD) and Sigma (St. Louis, MO)에서 구입하였다. 분석 조건은 지침서를 따랐다. 박테리아 DNA는 다양한 endonucleases로 자른 뒤 0.5×TBE (45mM Tris-borate, 1mM EDTA) 버퍼를 이용하여 0.7% (w/v) 아가로즈 젤 (Sigma)에서 분리한다(Ausubel et al ., 1991). DNA를 잘 섞고 젤 로딩 버퍼 (0.25% 브로모페놀 블루(bromophenol blue), 0.25% 자일렌 시아놀 FF(xylene cyanol FF), 15% ficoll in water)로 로딩한다. 젤은 0.5μl/ml 에티이움 브로미드 용액(ethydium bromide solution)에 30분 동안 염색한 뒤 트렌스일루미네이터(transilluminator)로 관찰한다.
4. 아가로스 젤에서 DNA 절편 분리
아가로스 젤에서 DNA 절편 분리는 QIAEX II gel extraction kit (150) (QIAGEN, Germany)를 이용한다.
<실시예 3 ; 칼슘 클로라이드(calcium chloride, CaCl2)를 이용한 형질전환>
Maniatis et al. (1982)가 기술한대로 칼슘 클로라이드(calcium chloride)를 이용한 E. coli 형질전환을 수행하였다. E. coli competent cells을 준비하기 위해 12시간 배양 후 exponential phase (A600=0.6)가 될 때까지 230rpm, 37℃에서 배양하였다. 배양액을 모아 20분동안 얼음에 박아 두었다가 4 ℃, 2,700×g에서 원심분리하여 펠렛을 얻은 후 얼음속에 보관해 두었던 CaCl2 용액 (sterilized 10mM 칼슘 클로라이드와 10% 글리세롤)으로 잘 섞어준다. 20분동안 얼음에서 반응시킨 후, 2,700×g , 4 ℃ , 10분동안 원심분리하였다. 펠렛은 얼음에 보관해 두었던 CaCl2 용액을 적당히 넣고 잘 섞어준다. 혼합물은 미리 냉각시킨 원심분리용 튜브에 0.1ml 씩 분주하여 사용전까지 -70℃에 보관한다. 형질전환을 위해 15μl 라이게이션 혼합물(ligation mixture)에 85μl TE를 넣는다. 얼음에서 서서히 녹인 competent cell 에 미리 냉각시켜 둔 라이게이션 혼합물을 넣고 주의해서 섞어준 다음 20분동안 반응시킨다. 42℃, 1ml LB에서 열충격을 준 다음, 세포를 37℃,1시간동안 쉐이킹(shaking) 없이 배양한다. 세포는 적절한 항생제가 첨가된 LB 고체 배지에 잘 펴서 배양한다.
<실시예 4; 톡소플라빈을 분해하는 박테리아의 분리>
밭의 흙 1mg에 2ml 최소배지를 첨가한다. 37℃, 48시간 배양 후, 40μl/ml 톡소플라빈이 포함된 LB 아가 배지에 잘 펴서 배양한다. 1~2일 배양 후, 싱글 콜로니를 분리한다. 멸균한 볍씨는 멸균 후 5ml 최소배지에서 37℃, 24시간 배양 후 40μl/ml 톡소플라빈을 첨가하여 48시간 배양 후 40μl/ml이 포함된 LB아가 배지에 배양액을 잘 펴서 2~3일 배양하고 난 뒤, 싱글 콜로니를 분리하여 순수한 싱클 콜로니를 얻기 위해 한번 더 LB 아가 배지에 잘 펴서 배양한다.
<실시예 5; 균주의 동정>
분리한 균주를 동정하기 위해 생리학적 특성과 배양 특성을 Biolog 프로그램 분석, GC-FAME(gas chromatography of fatty acid methyl esters ), 16S rDNA 시퀀스 분석을 통하여 조사하였다.
분리한 균주의 탄소 이용분석표(carbon source utilization profiles)를 Biolog microplates에서 제조사의 지침서대로 세 번 수행하여 비교하였다(Biolog GN MicroPlate; Biolog, Hayward, CA). 24시간과 48시간 배양 후, 플레이트는 MicroLog 3-Automated Microstation system (Biolog)를 이용하여 데이터를 읽었다. Microlog Gram-positive database (Version 4.0)의 비교를 통하여 박테리아를 동정하였다.
fatty acid methyl ester 분석을 위해, 예상되는 분리된 아홉 개의 균주를 Trypticase soy broth (Becton Dickinson and Co., Franklin Lakes, NJ) 아가 배지에서 28℃, 48h동안 배양하였고, fatty acid methyl esters는 스탠다드 방법을 이용하여 추출하였다(Sasser, M, 1997). 지방산(fatty acids)은 Sherlock Microbial Identification System Version 2.11 (MIDI Inc., Newark, DE)으로 분석하였다. 분 리된 fatty acid methyl ester분석은 세 번 반복 수행하였다.
분리된 균주의 16S rDNA 시퀀싱은 5μl 10×PCR 버퍼 (Takara Bio Inc.,Otsu, Japan), 5 μl씩 각각의 dNTP (2.5mM, Takara), 1 μl 프라이머 (100pmol, 27mF: 5′AGAGTTTGATCMTGGCTCAG3′(서열번호3), 1492mR:5′GGYTACCTTGTTACGACTT-3′(서열번호4)), 0.5 μl Taq polymerase (250U/μl, Takara)와 2 μl 박테리아 부유물 (A600nm=0.1)를 포함하는 총 50μl 반응 부피로 PCR을 수행하였다. PCR 증폭은 automated thermal cycler (model PTC-150, Perkin-Elmer Cetus, Norwalk, CT)으로 수행하였고, 처음 변성조건은 94℃ , 5분으로 다음과 같은 조건으로 29회를 수행하였다: 변성 94℃ /1분, 재결합 55℃/1분, 증폭 72℃/1.5분(마지막에 증폭과정 1회 첨가 72℃ / 10분).
증폭된 DNA는 Sambrook et al. (1989)가 수행한 방법으로 pBluescript II (SK+) (Stratagene, Cedat Creek, TX)의 Sma I 자리로 클로닝한다.
DNA 시퀀싱은 DNA sequencing ABI3700 automated DNA sequencer (Applied Biosystems Ins., Foster City, CA)으로 수행하였다. DNA 시퀀스 자료는 the National Center for Biotechnology Institute (Altschul. et . al. 1990)의 BLAST프로그램으로 분석하였다.
<실시예 6: P. polymyxa JH2 코스미드 라이브러리의 구조>
P. polymyxa JH2 배양액 500ml에서 염색체 DNA를 준비하고 Sau3A으로 부분적으로 자른다(partially digested). 길이가 20~30kb가 되는 절편들을 24,000rpm, 24시간동안 실온에서 sucrose gradient centrifugation (10 to 40% [wt/vol])으로 분리하고, pLAFR3(Tra-, Mob+, RK2 replicon, Tetr, Staskawicz et al ., 1987)와 연결한다.
연결된 DNA는 제조사(Promega, Madison, USA)의 지침서대로 bacteriophage λ로 싸인 뒤 E. coli HB101(F- mcrB mrr hsdS20(rB -mB -) recA13 leuB6 ara-14 proA2 lacY1 galK2 xyl-5 mtl-1 rpsL20(Sm R) suoE44 λ- , Gibco BRL)로 형질전환 한다.
<실시예 7; 라이브러리 스크리닝>
라이브러리는 LB액체 배지에서 230rpm, 37℃에서 배양하여 스크리닝 하였다. 40μg/ml 톡소플라빈이 첨가된 LB 액체배지에서 3시간 배양한 후 12시간을 더 배양하였다. 액체배지를 톡소플라빈 40μg/ml이 첨가된 LB 고체 배지에 잘 펴서 배양하였다. 이 고체 배지에서는 37℃, 1일 배양하여 콜로니를 관찰할 수 있었다.
<실시예 8; 시퀀싱>
1. 시퀀싱 반응
주형 플라스미드 DNA는 QIAprep Spin Miniprep kit (QIAGEN, Germany)를 지침서대로 사용하였다. 1μg BigDye terminat 또는 ready reaction mix가 포함된 리전트(reagents ), 2 pmol T7 프로모터 프라이머, 주형 플라스미드 DNA 5μg(100-200 ng) 를 넣고 잘 섞었다. 반응물은 0.2 ml PCR튜브에 담아서 thermal cycler (MinicyclerTM PTC-150 (MJ Research, Watertown, MA))를 이용하여 95℃, 5 min 동안 열을 가한 후, 다음과 같은 조건에서 25사이클 증폭 과정을 수행하였다; 20 sec, 95℃/ 10 sec, 55℃/ 4 min, 60℃.
2. PCR 산물의 정제
시퀀싱 반응이 완료된 다음에 PCR산물(10μl)은 1.5 ml 원심분리 튜브로 옮긴다. 17리전트 (26μl 증류수, 64μl o 95% 에탄올 )를 10μl 반응산물에 첨가하고 잘 섞어준 다음, 15분 동안 실온에 둔다. 16,816×g, 실온에서 20분 동안 원심분리 후 상층액은 버리고 펠렛은 250μl 70% 에탄올로 씻어낸 후 공기중에서 말리고, -20℃에서 보관한다.
3. DNA 시퀀싱과 데이터 분석
pJ9(코스미드 라이브러리가 클로닝된 플라스미드) 삽입 DNA는 적절한 제한효소로 자르고 시퀀싱에 앞서 pBluescript II SK(+)에 서브클로닝한다. Universal 프라이머(서열번호5)와 reverse primers(서열번호6) 는 기초반응으로 사용하였고, 합성 프라이머(서열번호7,8)는 완전한 두 가닥의 시퀀싱을 위해 사용하였다. DNA 시퀀스 데이터는 BLAST 프로그램(Gish and States, 1993), MEGALIGN 소프트웨어 (DNASTAR)와 GENETYX-WIN 소프트웨어 (Software Development, Tokyo, Japan)으로 분석하였다.
<실시예 9; His-TflA의 과발현과 부분정제>
P. polymyxa JH2의 tflA는 서열번호9와 10을 갖는 프라미어를 이용한 PCR로 증폭하였고, pET14b 벡터(Novagen, Madison, WI, USA)의 NdeI/BamHI로 클로닝하였다. pET14b가 들어간 E. coli BL21(DE3)(pLysS) 균주는 암피실린과 클로람페니콜이 첨가된 LB 액체 배지에서 배양하였고, 교반하며 37 ℃에서 배양하였다. OD600nm가 0.8이 되었을 때, 마지막 농도가 1ml IPTG가 되도록 배지에 첨가하고, 37 ℃에서 2시간 교반하여 배양한 뒤 원심분리에 의해 셀을 획득하였다. 50mM 소디움 포스페이트(50mM sodium phosphate, pH 6.5)를 넣고 펠렛을 잘 섞은 다음 소니케이션한다(sonicated). 원심분리 후 부분적으로 정제된 단백질은 스탠다드로써 BSA를 사용한 Bradford 방법으로 측정하였다(Bradford, 1976). 단백질은 SDS-PAGE후 쿠마시로 염색 후 관찰하였다.
<실시예 10; N-말단 His-TflA정제>
한층 더 깨끗한 정제를 위해, N-말단 His-tagged TflA를 사용하였다. tflA가 클로닝 된 pET14b 벡터 (Novagen, Madison, WI, USA)를 포함한 E. coli BL21(DE3)(pLysS) 액체 LB배지에서 배양하였고, 단백질은 IPTG 유도에 의해 과발현되었다. 세포를 모음 다음 50mM 소디움 포스페이트 (pH 6.5)을 넣고 초음파법(sonication)으로 세포를 깬 다음, 10,000 × g , 20 min , 4 ℃에서 원심분리 한다. 상층액을 Ni-NTA 스핀 컬럼(QIAGEN, Valencia, CA, USA)으로 로딩한다. His-tagged protein을 1,000 × g , 2 min , 4℃에서 원심분리하여 Ni-NTA 메트리스에 붙인다. 매트리스에 붙어있는 단백질은 와싱버퍼(20mM 이미다졸, 50 mM 소디움 포스페이트 (pH 6.5))로 두 번 씻어내어 붙지 못한 단백질은 제거한다. His-tagged protein은 순차적으로 0.1ml elution buffer 1 (10mM 이미다졸, 50mM 소디움 포스페이트 (pH 6.5)) 를 넣고, 0.1ml elution buffer 2 (10mM 이미다졸, 50mM 소디움 포스페이트 (pH 6.5))를 넣어 녹여서 분리해낸다. 녹여 분리된 단백질은 이미다졸을 제거하기 위해 50mM 소디움 포스페이트 (pH 6.5) 을 이용하여 투석한다. 정제된 단백질 농도는 스탠다드로써 Bradford를 이용하여 측정한다(Bradford, 1976).
<실시예 11; His-TflA의 효소 특성>
1. 효소분석
TflA 활성도는 thin layer chromatography plate (TLC)를 이용한 톡소플라빈과 효소반응 혼합물의 반응생성물의 변화를 측정하여 분석하였다. 분석버퍼 (50mM 소디움 포스페이트(pH 6.5)) 에 5μM TflA 단백질, 10μM MnCl2와 5mM DTT (Dothiothreitol)를 넣어 200μl 혼합물을 만들고 25℃에서 반응시켰다. 톡소플라빈은 반응을 시작하기 바로 전에 최종농도가 100μM가 되도록 첨가한다. 10분 후에 200μl 클로로포름을 첨가하여 반응을 중지시킨다. 클로로포름층을 완전히 말린다음 10μl 100% 메탄올을 첨가한다. 메탄올이 있는 반응물은 파이펫으로 TLC에 떨어뜨리고 클로로포름: 메탄(chloroform:methnol, 95:5, V:V) 용매를 포함한 TLC 챔버 에 놓고 실온에 둔다. TLC는 UV(254,365nm)하에서 검출한다.
2. 효소 활성에 있어 금속 이온의 효과
효소 활성에 있어 금속이온의 효과를 조사하였고, 모든 이온은 1mM 농도에서 조사하였다.
3. 효소 반응에 있어 pH와 온도의 효과
TflA 활성은 50mM 소디움 포스페이트 (pH 4.0- 8.0) 버퍼를 이용하여 25℃에서 다양한 pH 범위에서 조사하였다. 효소 활성은 50mM 소디움 포스페이트 (pH 6.5)버퍼를 이용하여 10- 40℃ 범위에서 조사하였다.
4. 효소역학
역학 매개변수(Km and Vmax)는 다른 톡소플라빈의 농도(80-200μM)를 이용하여 Lineweaver-Burk plot으로 결정된다. 각각의 실험 포인트는 적어도 세 번 시도한 값의 평균으로 결정된다.
이상의 실시 예를 통하여 명백하게 나타난 바와 같이, 벼알마름병 저항성 반응에 관여하는 tflA 유전자 및 상기 유전자가 암호화하는 단백질을 제공하고, 아울러 상기 단백질의 특성을 규명하고 상기 유전자를 재조합하여 형질전환 생물체를 제조하고 이를 발현시켜, 톡소플라빈에 저항하는 형질을 부여하게 되고 특히 벼의 경우 세균성벼알마름병에 저항하여 벼의 수량증대와 품질향상을 제공할 수 있다.
<110> Seoul National University Industry Foundation <120> tflA gene degradating toxoflavin and its chemical derivatives and transgenic organism thereof <160> 10 <170> KopatentIn 1.71 <210> 1 <211> 666 <212> DNA <213> Paenibacillus polymyxa <400> 1 atgacttcga ttaaacagct tacattgtat acggccgagc ttgaccggat gctagcattt 60 tatacgaata tgcttggtgc gcagcatgtg catgagcaag cagatgcgtt tacgatccag 120 ctaggagtat cacagattca atttcgtgca gctgctgatg gaacaaagcc cttttaccat 180 attgctatca atatcgcggc aaaccatttt caagagggaa aagcctggct cagcggcttt 240 ggtgaattgc taacggaaaa tgatgaagat caggcatact ttcccttctt taacgcgtac 300 tcctgttatg tagaagaccc gtctggtaat attattgaac tcatctcgcg tcagcaagct 360 gcacctgtac tggataagcc cttctcagcg gatcagctac taagcatcgg tgagattaat 420 ataacaacca gcgatgtaga gcaagctgca acacgattaa agcaagcaga actgcctgta 480 aagctagacc agattgagcc agcaggctta aattttatcg gtgatcagga tttgttcctg 540 ctgctgggtc ctccaggacg acgctggtta ttttcagaac gcgtagccgt gatctatccg 600 ttacagatgg agctggataa cggcgtcagt ctggcgatta cagagacagg tgaactggtg 660 atctaa 666 <210> 2 <211> 221 <212> PRT <213> Paenibacillus polymyxa <400> 2 Met Thr Ser Ile Lys Gln Leu Thr Leu Tyr Thr Ala Glu Leu Asp Arg 1 5 10 15 Met Leu Ala Phe Tyr Thr Asn Met Leu Gly Ala Gln His Val His Glu 20 25 30 Gln Ala Asp Ala Phe Thr Ile Gln Leu Gly Val Ser Gln Ile Gln Phe 35 40 45 Arg Ala Ala Ala Asp Gly Thr Lys Pro Phe Tyr His Ile Ala Ile Asn 50 55 60 Ile Ala Ala Asn His Phe Gln Glu Gly Lys Ala Trp Leu Ser Gly Phe 65 70 75 80 Gly Glu Leu Leu Thr Glu Asn Asp Glu Asp Gln Ala Tyr Phe Pro Phe 85 90 95 Phe Asn Ala Tyr Ser Cys Tyr Val Glu Asp Pro Ser Gly Asn Ile Ile 100 105 110 Glu Leu Ile Ser Arg Gln Gln Ala Ala Pro Val Leu Asp Lys Pro Phe 115 120 125 Ser Ala Asp Gln Leu Leu Ser Ile Gly Glu Ile Asn Ile Thr Thr Ser 130 135 140 Asp Val Glu Gln Ala Ala Thr Arg Leu Lys Gln Ala Glu Leu Pro Val 145 150 155 160 Lys Leu Asp Gln Ile Glu Pro Ala Gly Leu Asn Phe Ile Gly Asp Gln 165 170 175 Asp Leu Phe Leu Leu Leu Gly Pro Pro Gly Arg Arg Trp Leu Phe Ser 180 185 190 Glu Arg Val Ala Val Ile Tyr Pro Leu Gln Met Glu Leu Asp Asn Gly 195 200 205 Val Ser Leu Ala Ile Thr Glu Thr Gly Glu Leu Val Ile 210 215 220 <210> 3 <211> 20 <212> DNA <213> universal 16s rDNA sequence <400> 3 agagtttgat cmtggctcag 20 <210> 4 <211> 19 <212> DNA <213> universal 16s rDNA sequence <400> 4 ggytaccttg ttacgactt 19 <210> 5 <211> 20 <212> DNA <213> pBluescript II SK(+) <400> 5 aattaaccct cactaaaggg 20 <210> 6 <211> 22 <212> DNA <213> pBluescript II SK(+) <400> 6 gtaatacgac tcactatagg gc 22 <210> 7 <211> 19 <212> DNA <213> Paenibacillus polymyxa <400> 7 gaactcatct cgcgtcagc 19 <210> 8 <211> 19 <212> DNA <213> Paenibacillus polymyxa <400> 8 gcagcttgct ctacatcgc 19 <210> 9 <211> 26 <212> DNA <213> Paenibacillus polymyxa <400> 9 catatgactt cgattaaaca gcttac 26 <210> 10 <211> 24 <212> DNA <213> Paenibacillus polymyxa <400> 10 ggatccttag atcaccagtt cacc 24

Claims (21)

  1. 톡소플라빈 또는 톡소플라빈 유도체를 분해하는 미생물.
  2. 제1항에 있어서, 미생물은 세균임을 특징으로 하는 미생물.
  3. 제2항에 있어서, 세균은 페니바실러스 속임을 특징으로 하는 미생물.
  4. 제3항에 있어서, 페니바실러스속은 페니바실러스 폴리믹사임을 특징으로 하는 미생물.
  5. 제4항에 있어서, 상기 미생물은 페니바실러스 폴리믹사 JH2임을 특징으로 하는 미생물(기탁번호:KCTC10959BP).
  6. 톡소플라빈 또는 톡소플라빈 유도체를 분해하는 유전자.
  7. 제 6항에 있어서, 서열번호 1의 염기서열을 포함하는 tflA 유전자.
  8. 제6항에 있어서, 서열번호 2의 아미노산 서열을 포함하는 tflA 단백질.
  9. 서열번호1의 염기서열을 포함하는 톡소플라빈을 분해하는 tflA를 암호화하는 DNA.
  10. 서열번호2의 아미노산 서열을 포함하는 톡소플라빈을 분해하는 tflA를 암호화하는 단백질.
  11. 제7항 또는 제9항에 있어서, 서열번호 1의 염기서열과 50%이상의 상동성을 가지는 서열을 포함하는 분리된 DNA.
  12. 제8항 또는 제10항에 있어서, 서열번호 2의 아미노산서열과 50%이상의 상동성을 가지는 서열을 포함하는 분리된 단백질.
  13. 제8항에 따른 펩타이드의 아미노산 서열 중 하나 이상의 아미노산 잔기를 치환 또는 결실시키거나, 상기 펩타이드의 아미노산 서열에 하나 이상의 아미노산을 삽입함으로써, 톡소플라빈 분해능이 유지되는 단백질.
  14. 제 7항에서 tflA 유전자를 포함하는 재조합 발현 벡터.
  15. 제 7항에서 tflA 유전자를 포함하는 대장균 발현벡터.
  16. 제 7항에서 tflA 유전자를 포함하는 바이러스 발현벡터.
  17. 제 7항에서 tflA 유전자를 포함하는 식물 발현벡터.
  18. 제14항 내지 제17항 중 어느 한 항에 의해서 발현되는 재조합 tflA 단백질.
  19. 제14항 내지 제17항 중 어느 한 항의 벡터에 의해 형질전환된 숙주세포.
  20. tflA 유전자를 발현하는 형질전환생물체.
  21. 제20항의 상기 형질전환생물체는 미생물, 식물, 바이러스 및 동물임을 특징으로 하는 형질전환생물체.
KR1020060055863A 2006-06-21 2006-06-21 톡소플라빈과 그 유사체 분해 유전자 tflA와 이를발현하는 형질전환생물체 KR20070121167A (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020060055863A KR20070121167A (ko) 2006-06-21 2006-06-21 톡소플라빈과 그 유사체 분해 유전자 tflA와 이를발현하는 형질전환생물체
US12/308,524 US20100269215A1 (en) 2006-06-21 2007-06-21 Tfla gene which can degrade toxoflavin and its chemical derivatives and transgenic organisms expressing tfla gene
PCT/KR2007/003010 WO2007148926A1 (en) 2006-06-21 2007-06-21 Tfla gene which can degrade toxoflavin and its chemical derivatives and transgenic organisms expressing tfla gene
JP2009516402A JP5079799B2 (ja) 2006-06-21 2007-06-21 トキソフラビンとその誘導体分解遺伝子tflAとこれを発現する形質転換生物体
EP07747044A EP2029723A4 (en) 2006-06-21 2007-06-21 TFLA-GEN, which may lead to the degradation of toxoflavin and its chemical derivatives, as well as the transgene-expressing transgenic organism
AU2007261851A AU2007261851B2 (en) 2006-06-21 2007-06-21 TFLA gene which can degrade toxoflavin and its chemical derivatives and transgenic organisms expressing TFLA gene
CNA2007800226082A CN101578360A (zh) 2006-06-21 2007-06-21 能降解毒黄素及其化学衍生物的tf1A基因以及表达tf1A基因的转基因生物
CA002655882A CA2655882A1 (en) 2006-06-21 2007-06-21 Tfla gene which can degrade toxoflavin and its chemical derivatives and transgenic organisms expressing tfla gene
BRPI0712618-2A2A BRPI0712618A2 (pt) 2006-06-21 2007-06-21 Cassete de expressão de marcador de seleção para a transformação de planta, ventor recombinante, célula hospedeira, planta, sementes, trangênicos, método de seleção de plantas trangênicas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060055863A KR20070121167A (ko) 2006-06-21 2006-06-21 톡소플라빈과 그 유사체 분해 유전자 tflA와 이를발현하는 형질전환생물체

Publications (1)

Publication Number Publication Date
KR20070121167A true KR20070121167A (ko) 2007-12-27

Family

ID=39138603

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060055863A KR20070121167A (ko) 2006-06-21 2006-06-21 톡소플라빈과 그 유사체 분해 유전자 tflA와 이를발현하는 형질전환생물체

Country Status (2)

Country Link
KR (1) KR20070121167A (ko)
CN (1) CN101578360A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019231177A1 (ko) * 2018-05-28 2019-12-05 경상대학교산학협력단 톡소플라빈 분해 유전자를 이용한 병저항성작물, 식물형질전환용 벡터 및 그 이용 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105319313B (zh) * 2015-12-09 2017-02-01 山东出入境检验检疫局检验检疫技术中心 一种毒黄素的液相色谱‑串联质谱检测方法
CN110938548B (zh) * 2019-11-26 2021-07-27 湖北省农业科学院植保土肥研究所 一种从空气中分离禾谷镰刀菌复合种的选择性培养基
CN114166957A (zh) * 2021-10-29 2022-03-11 湖南省食品质量监督检验研究院 一种检测食品中毒黄素和热诚菌素及其降解产物的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019231177A1 (ko) * 2018-05-28 2019-12-05 경상대학교산학협력단 톡소플라빈 분해 유전자를 이용한 병저항성작물, 식물형질전환용 벡터 및 그 이용 방법
KR20190135088A (ko) * 2018-05-28 2019-12-06 경상대학교산학협력단 톡소플라빈 분해 유전자를 이용한 병저항성작물, 식물형질전환용 벡터 및 그 이용 방법

Also Published As

Publication number Publication date
CN101578360A (zh) 2009-11-11

Similar Documents

Publication Publication Date Title
CN110157719B (zh) 核盘菌SsMAS3基因及其在植物菌核病抗性育种中的应用
CN107109418B (zh) 用于控制植物有害生物的组合物和方法
Liu et al. Identification of virulence genes in the crucifer anthracnose fungus Colletotrichum higginsianum by insertional mutagenesis
CN104145020B (zh) 工程化的杀有害生物蛋白质
EP1859044A2 (en) Resistance against parasitic weeds
CN102070709A (zh) 一种植物转录因子wrky蛋白及其编码基因与应用
KR20070121167A (ko) 톡소플라빈과 그 유사체 분해 유전자 tflA와 이를발현하는 형질전환생물체
JP5079799B2 (ja) トキソフラビンとその誘導体分解遺伝子tflAとこれを発現する形質転換生物体
CN110819634B (zh) 一种细叶百合基因LpNAC6的克隆及其应用
US7419812B2 (en) Sequences encoding PhzO and methods
CN1982464B (zh) 一种与致病力相关的稻瘟菌基因及其应用
JP2011103864A (ja) デオキシニバレノール及びニバレノールの分解活性を有するタンパク質をコードする遺伝子
JP2011103863A (ja) デオキシニバレノールの分解活性を有するタンパク質をコードする遺伝子
KR101999006B1 (ko) 세균성 벼흰잎마름병균의 OprXBo 단백질 및 이의 용도
CN110684749A (zh) 玉米3-磷酸甘油脱氢酶ZmGPDH4及其编码基因在调控植物耐逆性中的应用
CN113969270A (zh) 植物感病相关蛋白TaCIPK14在调控植物条锈病抗性中的应用
KR102173230B1 (ko) 톡소플라빈 분해 유전자를 이용한 병저항성작물, 식물형질전환용 벡터 및 그 이용 방법
JPWO2006082992A1 (ja) 新規高等植物の作出方法、及び高等植物の生長促進方法
CN117088948B (zh) 辣椒疫霉调控游动孢子发育相关蛋白及其编码基因与应用
CN100351269C (zh) 类产碱假单胞菌杀虫蛋白基因
CN117430679B (zh) 来源于小麦的广谱抗病相关蛋白及其相关生物材料与应用
CN112979775B (zh) 抗穗发芽转基因小麦的培育方法及其相关生物材料
Zhang et al. Involvement of gacA gene in the suppression of tomato bacterial wilt by Pseudomonas fluorescens FPT9601
CN115160422A (zh) 甘薯耐盐抗旱相关蛋白IbMYB44及其编码基因与应用
JP4619487B2 (ja) プロモーター遺伝子

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application