KR20070102629A - 렌즈 어레이 및 상기 렌즈 어레이를 제작하기 위한 방법 - Google Patents

렌즈 어레이 및 상기 렌즈 어레이를 제작하기 위한 방법 Download PDF

Info

Publication number
KR20070102629A
KR20070102629A KR1020077022389A KR20077022389A KR20070102629A KR 20070102629 A KR20070102629 A KR 20070102629A KR 1020077022389 A KR1020077022389 A KR 1020077022389A KR 20077022389 A KR20077022389 A KR 20077022389A KR 20070102629 A KR20070102629 A KR 20070102629A
Authority
KR
South Korea
Prior art keywords
lens
microlens
array
dielectric layer
sensor
Prior art date
Application number
KR1020077022389A
Other languages
English (en)
Other versions
KR100876505B1 (ko
Inventor
인 에스. 탕
Original Assignee
인 에스. 탕
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인 에스. 탕 filed Critical 인 에스. 탕
Publication of KR20070102629A publication Critical patent/KR20070102629A/ko
Application granted granted Critical
Publication of KR100876505B1 publication Critical patent/KR100876505B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0043Inhomogeneous or irregular arrays, e.g. varying shape, size, height
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

통합되는 센서 유닛을 갖고 있는, 또는 갖지 않는, 렌즈, 또는 마이크로렌즈, 또는 비구면 렌즈를 위한 시스템 및 방법이 제공된다. 기판과 렌즈 물질 사이의 유전체는 곡선형 오목부를 가지며, 이는 렌즈 물질로 충진된다. 상기 렌즈 물질 층으로 광이 입사하고, 상기 곡선형 오목부에 의해 포커싱된다.

Description

렌즈 어레이 및 상기 렌즈 어레이를 제작하기 위한 방법{LENS ARRAY AND METHOD OF MAKING SAME}
본 발명은 일반적으로 마이크로렌즈 어레이 및 광학 렌즈에 관한 것이며, 더 세부적으로 상기 마이크로렌즈 어레이, 또는 비구면 렌즈를 제작하기 위한 방법에 관한 것이다.
마이크로렌즈 어레이는 이미징 애플리케이션을 위한 소형 패키징으로 광학 다기능을 제공한다. 전통적으로 마이크로렌즈는, 1밀리미터 이하의 직경을 갖는 렌즈로서 정의된다. 그러나 5밀리미터, 또는 그 이상의 직경을 갖는 렌즈가 마이크로렌즈로서 고려될 수도 있다.
리플로우(reflow), 또는 확산(diffusion)을 이용한 마이크로렌즈 어레이를 제작하기 위한 많은 종래의 방법이 존재한다. 도 1A ~ 1C는, 물질을 증착시키고, 패턴화하고, 리플로우함으로써, 마이크로렌즈 어레이를 제작하기 위한 일련의 종래의 단계들을 보여준다. 도 1A에서, 감광성 층(10), 가령 감광성 수지 같은, 감광성 층(10)이, 실리콘 기판 위에 위치하는 평탄화 층(12) 위에 형성된다. 마이크로렌즈 어레이를 형성하기 위해, 감광성 층의 물질이 사용된다. 도 1B에서, 가령, 장방형, 줄무늬, 사각형의 형태(14)의 어레이를 형성하기 위해, 감광성 층(10)이 패턴화되며, 이때 상기 형태들은 개별 마이크로렌즈가 형성될 곳에 위치한다. 예를 들어, 패턴화는 종래의 마스크와, 종래의 포토레지스트 공정을 이용하여 존재할 수 있으며, 이때 상기 포토레지스트 공정에서, 포토레지스트가 감광성 층(10) 위에 증착되며, 불투명한 영역을 갖는 마스크를 통해 노출되고, 상기 포토레지스트의 선택된 부분이 현상(또는 제거)되고, 상기 포트레지스트에 의해 노출되어 남겨진 감광성 층(10)의 영역이 에칭된다. 그 후, 사각형태(14)는 충분히 가열되어 리플로우될 수 있으며, 그에 따라서 반구면 마이크로렌즈의 어레이(16)가 형성될 수 있다(도 1C 참조).
그러나 가열 리플로우에 의해 만들어진 마이크로렌즈는 몇 가지 단점을 갖고 있다. 통상적으로, 감광성 수지는 가시광선 스펙트럼의 청색 영역에서, 비례적으로 더 많은 광을 흡수하는 컴포넌트를 포함한다. 그 결과로, 컬러 스펙트럼이 뒤틀리고, 본래의 이미지보다 더 노란빛을 띄는 이미지를 생성한다. 이러한 컬러 왜곡은 상기 수지의 산화 때문에, 시간이 흐를수록 증가한다. 또 다른 단점은 감광성 수지가 패턴화될 수 있는 분해능이 수지 층의 두께만큼으로 제한된다는 것이다. 상기 수지 층이 더 두꺼워질수록, 어레이에서 마이크로 렌즈가 더 멀리 떨어지며, 이는 어레이의 광 집적의 효율을 감소시킨다. 한편으로, 상기 수지 층은, 리플로우될 때, 최종 마이크로렌즈의 새그(sag)가 요망 포커싱 효과를 야기시키기에 충분하도록 충분히 두꺼워야 한다. 결론적으로, 이러한 방식으로 조립된 마이크로렌즈 어레이를 이용하여, 가장 가능성 높은 집진 효율을 획득하기 어렵다. 또 다른 단점이, 마이크로렌즈의 곡률 반경이 작아짐에 따라, 입사 광이 상기 마이크로렌즈 근처의 지점으로 포커싱되는 사실에 의해 초래된다. 따라서 단순하게 불투명한 영역과, 광 전달 영역으로 나뉘는 마스크를 사용하여, 감광성 층이 셀(cell)의 형태에 따르는 모양으로, 사각형, 또는 장방형이도록 패턴화되고, 마이크로렌즈를 형성하도록 열 처리된다. 따라서 마이크로렌즈의 곡률 반경이 감소한다. 덧붙이자면 장방형으로 형성된 마이크로렌즈는 가로 세로 방향의 곡률 반경 간의 명확한 차이를 갖기 때문에, 대응하는 포토다이오드 상으로 입사 광을 에러 없이 포커싱하는 것이 어렵고, 광의 손실을 초래하고, 감광성 및 분해능의 악화를 초래하면서, 광의 일부분이 평탄화 층 상이나, 포토다이오드와 마이크로렌즈 사이의 필터링 층 상으로 포커싱된다.
확산(diffusion)에 의해 마이크로렌즈 어레이를 형성하기 위한 또 다른 종래의 방법은, M. Oikawa 외의 “Light Coupling Characteristics of Planar Microlens” Proc. SPIE, 1544, 1991, pp. 226-237에서 서술되며, 이는 본원에서 참조로서 인용된다. 도 2A ~ 2G는 두 가지 종류의 확산을 이용하여, 마이크로렌즈 어레이를 형성하기 위한 단계를 보여준다. 도 2A에서, 유리 기판(20)이 제공된다. 도 2B에서, 금속 막(22)이 상기 유리 기판(20) 위에 증착된다. 그 후, 종래의 공정 과정을 이용하여, 금속 막(22)이 패턴화되어, 개별 마이크로렌즈가 형성될 부분(24)이 제거될 수 있다(도 2C 참조). 도 2D와 도 2E는 한 가지 종류의 추가적인 공정을 보여주며, 이때 노출된 영역(24)으로 적정 도펀트와 에너지가 확산하며(도 2D), 그 후, 잔존 금속이 제거되고, 가령, 화학 기계적 연마를 이용하여 표면이 연 마되고, 마이크로렌즈(26)가 형성된다(도 2E). 도 2F와 2G는 추가적인 공정 과정의 또 다른 종류를 보여주며, 이때, 이온, 또는 양자, 또는 그 밖의 다른 적합한 분자가 사용되어, 충격이 가해지고(가령, 낮은 에너지를 이용하여)(도 2F 참조), 기판(20)으로 환산되어, 잔존 금속 부분이 제거되고, 마이크로렌즈(28)를 형성하기 위해, 유기 기체를 이용하여, 조사(照射)된 부분이 “팽창(swelled)"된다(도 2G 참조). 그 결과물은 높은 개구수의 평면 마이크로렌즈 어레이이다. 확산을 사용하는 마이크로렌즈 어레이를 형성의 한 가지 단점은, 광학 축을 따르는 두께의 제어가 제한된다.
마이크로렌즈 어레이는 아래 위치하는 센서의 어레이, 가령, 상보성 금속 산화막 반도체(CMOS: complementary metal oxide semiconductor), 또는 전하 결합 소자(CCD: charge couple device) 센서와 함께 사용되어, 이미징 장치를 형성하는 것이 통상적이다. 마이크로렌즈는 그에 대응하는 센서로 광을 모으고, 포커싱한다. 커다란 광 집적 영역으로부터 광을 집적하고, 센서의 작은 광 감도 영역(가령, 픽셀)으로 포커싱함으로써, 상기 마이크로렌즈는 이미징 장치의 광 감도를 명백하게 향상시킨다. 이미지 신호를 생성하는 종래의 방법이 도 3에서 보여진다. 전술한 공정에 의해 형성되는 평탄화 층(36) 위에 위치하는, 마이크로렌즈의 어레이(34)를 포함하는 마이크로렌즈 층(32)에 의해 광선(30)이 집적되고, 포커싱된다. 평탄화 층(36)을 통과한 후, 필터 층(40)에서, 광선(30)이 컬러 필터(38)에 필터링되며, 이때 각각의 컬러 필터가 특정 컬러(가령 적색(R), 녹색(G), 청색(B))의 광만 지나가도록 허용된다. 상기 필터를 통과한 광은, 그 후 센서의 어레이(44), 가령 포토 다이오드, 또는 CCD 소자를 포함하는 센서 층(42)을 통과한다. 프로세서가 상기 센서로부터의 신호를 조합하여, 컬러 이미지를 생성한다.
마이크로렌즈와, 필터와, 센서의 이러한 배열은 몇 가지 문제점을 갖고 있다. 별도의 마이크로렌즈 층(32)과, 필터 층(40)과, 센서 층(42)을 형성하기 위해 몇 가지 공정 단계가 필요하며, 이는 비용과 시간을 증가시킨다. 또한, 그 층들은 마이크로렌즈와 센서 사이의 이격부를 증가시키며, 이는 요망 센서 대신에 인접 센서를 침해하는 광의 일부분으로 인한 픽셀 사이의 혼선을 증가시킨다.
마이크로렌즈에 추가로, 여러 경우에서, 높은 품질의 비구면 렌즈가 이미징 필드의 핵심 구성요소이다. 핵심적인 광 전파를 제어하기 위해, 그리고 이미지 컬러의 품질을 보정하기 위해, 가령 전문 카메라와 비디오 이미징 설비같은 광학 시스템에서 비구면 렌즈가 매우 넓게 사용된다. 그러나 상기 비구면 렌즈의 제작은 복잡하고, 고도의 훈련받은 전문가에 의한 수작업을 통해서만 제작될 수 있다. 종래의 기계를 사용함으로써 신속하게 제작될 수 있는 구면 렌즈와는 다르게, 비구면, 또는 특수 크기 및 형태의 렌즈는 수작업으로, 그리고 개별적으로 형태가 지워지고, 연마되는 것이 통상적이다. 이는 시간 소모적이고, 비용 소모적일 수 있다.
따라서 종래의 렌즈 어레이의 단점을 극복하는 개선된 렌즈, 마이크로렌즈, 또는 어레이, 그리고 비구면 렌즈를 포함하는 그 제조방법에 대한 필요성이 존재한다. 추가로, 종래의 마이크로렌즈/센서 장치의 단점을 극복하는 집적 마이크로렌즈 어레이와, 센서 어레이에 대한 필요성도 존재한다.
본 발명은 개선된 마이크로렌즈 어레이, 또는 비구면 렌즈를 제공하며, 마이크로렌즈 어레이, 또는 비구면 렌즈를 형성하기 위한 공정을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 마이크로렌즈 어레이는 센서 어레이 상에 형성되며, 통합된 마이크로렌즈/센서 장치를 제공하는 것을 목적으로 한다.
본 발명은 개선된 마이크로렌즈 어레이, 또는 비구면 렌즈를 제공하며, 마이크로렌즈 어레이, 또는 비구면 렌즈를 형성하기 위한 공정을 제공한다. 한 태양에서, 상기 마이크로렌즈 어레이는 센서 어레이 상에 형성되며, 통합된 마이크로렌즈/센서 장치를 도출한다.
하나의 실시예에 따라, 센서의 어레이는 기판 상에서 먼저 조립된다. 유전 층, 가령, 스핀-온 폴리머(가령, 폴리이미드), 또는 옥사이드(가령, SiO2)가 상기 센서 어레이 상으로 증착된다. 다음에, 패턴화 감광성 유전 층, 가령 스핀-온 포토레지스트가 상기 유전 층 위로 형성된다. 개별 센서 위에 놓인 유전 층의, 마이크로렌즈가 형성될 영역을 노출시키기 위해, 상기 패턴 층의 선택된 부분이 제거된다. 그 후, 노출된 부분이 처리되어, 가령 습식 에칭, 또는 그레이-스케일 마스크, 또는 섀도 마스크를 이용하여, 곡선형 오목부를 형성할 수 있다. 상기 곡선형 오목 부는, 상기 마이크로렌즈의 바람직한 특성에 따라 좌우되는, 얕은 오목부에서 깊은 구면 오목부까지, 제어된 형태와 폭을 가질 수 있다. 그 후, 상기 패턴 층의 잔존 부분이 제거된다. 아래 놓인 유전 층보다 더 높은 굴절률을 갖는 무기질 렌즈 물질, 가령 SiO2, SiOxNy, Si3N4, TiO2, 폴리머가 상기 유전 층 위에 증착되어, 통합된 마이크로렌즈의 어레이와 센서를 형성할 수 있다. 원할 경우, 렌즈 물질의 층이 연마될 수 있다.
또 다른 실시예에서, 유전 층이 임의의 기판 위로 증착될 수 있으며, 센서 어레이가 될 필요가 없다. 이러한 경우에서, 상기 공정은 임의의 바람직한 형태의 개별 구면, 또는 비구면 렌즈를 형성하기 위해, 플라스틱 몰딩 템플릿을 형성할 수 있다. 본 발명의 공정에 의해, 렌즈, 또는 마이크로렌즈 어레이는 서로 다른 형태의 비구면, 또는 구면 렌즈를 형성할 수 있다. 이는 렌즈 제작자에게, 낮아진 비용에서 많은 부가적인 종류의 렌즈 어레이를 제작하기 위한 더 많은 유연성을 제공한다.
본 발명은 종래의 마이크로렌즈와 방법을 넘어서는 다수의 이점을 제공한다. 종래의 방법보다 더 적은 공정 단계를 이용하여, 마이크로렌즈 어레이가 상기 센서 어레이 상으로 직접 형성될 수 있기 때문에, 본 발명의 마이크로렌즈/센서 장치는 종래의 장치를 조립하는 것보다 덜 비싸고 더 손쉽다. 마이크로렌즈 또는 공정 제어를 위해 사용되는 유전 물질의 종류에 따라서, 상기 마이크로렌즈의 초점 길이는 제어될 수 있다.
본 발명은 습식 에칭, 그레이-스케일 마스크, 섀도 마스크 공정을 사용하는 비구면 렌즈를 사용함에 따른 개선된 센서 감도를 또한 제공한다. 또 다른 이점은, 유기질이 아닌 물질을 사용하는 것이 신뢰도를 향상시키고, 상기 마이크로렌즈의 수명을 확장시킨다는 것이다. 렌즈 물질은, 이미지를 더 노란빛을 띄게 만드는 청색 광을 더 많이 흡수하는, 수지가 함유된 물질의 바람직하기 못한 특성을 갖지 않기 때문에, 센서에 의해 생성되는 이미지의 컬러 품질이 또한 향상된다. 그러나 또 다른 이점은, 상기 마이크로렌즈 어레이가 센서 소자에 대하여 보호층 기능을 하기 때문에, 최종 마이크로렌즈/센서 장치는 더 얇고, 주변 환경에 더 저항력이 있다는 것이다.
상기 최종 마이크로렌즈 어레이는 다양한 애플리케이션을 위한 장치(가령 카메라, 디지털 카메라 센서, PDA, 랩탑용 소형 디스플레이 스크린에서부터 투사 스크린, 변면크기 디스틀레이 스크린, 광고 스크린용 대형 디스플레이 스크린까지)와 함께 사용될 수 있다. 어레이/센서 유닛의 공정 및 조립은 각각의 어레이/센서 유닛 사이의 특징을 갖는 높은 스로우풋을 허용한다.
도 4는 마이크로렌즈 어레이, 또는 비구면 렌즈를 조립하기 위한 본 발명의 실시예에 따르는 방법(400)을 도식한 흐름도이다. 먼저, 단계(402)에서, 기판이 제공되며, 상기 기판은 CMOS, 또는 CCD 센서의 어레이를 포함할 수 있다. 상기 센서 어레이는 임의의 적합한 크기일 수 있으며, 작은 스크린 애플리케이션에서 큰 디스 플레이 장치까지의 범위일 수 있다. 그 후, 스텝(404)에서, 유전 층이 상기 기판 상에 증착된다. 단계(408)에서, 패턴 층, 가령 스핀-온 포토레지스트, 또는 그 밖의 다른 감광성 물질이 유전 층 위에 증착된다. 제거된 부분이, 마이크로렌즈, 또는 비구면 렌즈가 형성될 유전 층의 영역을 노출시킨다. 센서 어레이를 갖는 실시예를 이용하여, 상기 노출된 영역은 개별 센서 소자의 위치에 대응한다.
단계(410)에서 상기 유전 층의 노출된 부분이, 예를 들어 습식 에칭, 그레이 스케일 마스크(grey scale mask), 또는 섀도 마스크(shadow mask)를 이용하여, 선택적으로 에칭되어, 제어되는 곡선형 오목부를 형성할 수 있다. 상기 곡선형 오목부는 중앙에서 가장 깊고, 측부, 또는 둘레부로 향할수록 점점 얕아진다. 이러한 에칭에 의해, 아래에 위치하는 기판, 또는 센서가 노출되도록 모든 유전 물질이 제거되는 것은 아니다. 덧붙이자면, 상기 곡선형 오목부는 애플리케이션에 따라, 임의의 적합한 형태, 가령 반구면, 또는 비구면 형태일 수 있다. 단계(412)에서, 패턴 층의 잔존 부분이 제거되고, 최종 템플릿이 추가적인 공정 단계를 위해 준비되거나, 또는 특수하게 설계된 렌즈의 플라스틱 몰딩(plastic molding)을 위해 사용될 수 있다. 상기 템플릿이 추가적인 공정에 대해 계속될 때, 무기 렌즈 물질의 층이 유전 층 위로 증착되어(단계(414)), 곡선형 오목부를 충진할 수 있다. 하나의 실시예에서, 상기 렌즈 물질은 유전 층보다 더 높은 굴절률을 갖는다. 적합한 렌즈 물질의 예로는, SiO2, 또는 SiOxNy, 또는 Si3N4, 또는 TiO2, 또는 폴리머, 또는 플라스틱의 경우에서는 플라스틱이 있다(그러나 제한받지 않음). 그 후, 필요하다면, 렌즈 물질의 층이 연마될 수 있다.
도 5A ~ 5G는 본 발명의 하나의 실시예에 따르는, 마이크로렌즈 어레이를 조립하는 다양한 단계를 보여준다. 도 5A는 기판(500)을 도식하며, 이때 상기 기판 위로 마이크로렌즈 어레이가 형성된다. 하나의 실시예에서, 기판(500)은 최종 소자가 마이크로렌즈 어레이인 유리, 또는 실리콘 기판이다. 또 다른 실시예에서, 기판(500)은 지지 기판, 가령 유리, 또는 실리콘 기판의 가장 상부에서 형성되는 센서 어레이이며, 이때 그 최종 소자는 집적 센서/마이크로렌즈 어레이이다. 상기 센서 어레이는 CMOS, 또는 CCD 센서의 어레이, 가령, 포토다이오드, 또는 그 밖의 다른 센서 소자일 수 있다. 센서 어레이의 조립은 종래의 방법으로 이뤄진다. 도 5A는 개별 센서 소자(504)를 갖는 센서 어레이(502)가 지지 기판(506) 위로 형성되는 실시예를 도식한다. 도 5B에서 도식된 바와 같이, 유전 층(508), 가령 옥사이드(즉, SiO2, TiO2), 나이트라이드(즉, SiOxNy), 스핀-온 플리머가 센서 어레이(502) 상에서 증착된다. 유전 층(508)의 두께는 특정 애플리케이션 요구사항에 따라 달라진다. 집적 센서/마이크로렌즈 어레이를 위한 실시예에서, 유전 층(508)은 1㎛ 내지 수 ㎜의 두께를 갖는다. 개별 비구면 렌즈에 대한 또 다른 실시예에서, 유전 층(508)은 1㎝, 또는 그 이상의 두께까지일 수 있다.
다음으로, 도 5C에서, 패턴 층(510)이 유전 층(508) 위로 증착되며, 이때 마이크로렌즈, 또는 비구면 렌즈가 형성될 유전 층의 일부분을 노출시키기 위해, 패터처리 층(510)이 사용될 것이다. 패턴 층(510)은 감광성 유전 물질이며, 사용되는 패턴화 공정의 종류를 기반으로 선택된다. 예를 들어, 포토리소그래피 공정에 대하여, 패턴 층(510)은 스핀-온 포토레지스트일 수 있고, 또는 그 밖의 다른 감광성 물질일 수 있다. 그 후, 포토마스크를 통한 노출을 통해, 요망 패턴이 상기 패턴 층(510) 위에 형성될 수 있다. 상기 포토레지스트가 포지티브형일 경우, 상기 포토마스크는 원형 구멍의 어레이를 가질 수 있으며, 상기 원형 구멍은 마이크로렌즈가 형성될 위치에 대응한다. 상기 마이크로렌즈가 서로다른 형태/크기를 가질 경우, 따라서 포토마스크의 개별 구멍이 적용될 수 있다. 그 후, 상기 패턴 층(510)의 노출된 부분이 제거되어, 마이크로렌즈, 또는 비구면 렌즈가 형성될 유전 층(508)의 부분(512)이 노출된다(도 5D 참조). 아래 위치하는 센서 어레이를 이용하여, 부분(512)이 개별 센서 소자(504)에 대응한다.
도 5E에서, 그 후 유전 층(508)의 노출된 부분(512)이 에칭되어, 센서 소자(504)의 위에 위치하는 곡선형 오목부(514)가 형성될 수 있다. 도 5F에서 도식된 바와 같이, 그리고 도 5E의 평면도에서 도식된 바와 같이, 곡선형 오목부(514)는 반구면일 수 있다. 전술한 바와 같이, 개별 곡선형 오목부(514)의 형태는 마이크로렌즈 애플리케이션에 따라 다양할 수 있다. 덧붙여, 하나의 실시예에서, 제어된 에칭, 가령 습식 에칭에 의해, 또는 그레이 스케일 마스크, 또는 섀도 마스크를 사용하는 패턴화 후의 에칭에 의해 곡선형 오목부(514)가 형성된다. 그 밖의 다른 에칭 공정이 적합할 수 있다. 그 밖의 다른 테이퍼 에칭(tapered etching)을 위한 에칭 공정이 본 발명에 적합할 수 있다. 또한 에칭의 깊이와 테이퍼(taper)가 마이크로렌즈의 광학 특성, 가령 초점 길이를 판단한다. 따라서 유전 층의 에칭을 제어함으 로써, 서로 다른 종류의 마이크로렌즈 어레이가 쉽게 조립될 수 있다.
도 6A와 6B, 그리고 도 7A ~ 7C는 하나의 실시예에 따르는 그레이 스케일 마스크 공정을 사용하여, 제어되는 곡선형 오목부를 형성하기 위한 방법을 도식한다. 도 6A는 그레이 스케일 마스크의 구멍(600)의 예제를 도식하며, 이때 통상적인 그레이 스케일 마스크는 불투명 섹션에 의해 분리되는 이러한 구멍(600)을 다수 개 가질 것이다. 그레이 스케일 마스크에 의해, 서로 다른 양의 광이 구멍의 서로 다른 반경 위치를 통과할 수 있다(도 6B 참조). 그레이 스케일 마스크 상에 위치하는 상기 구멍(600)의 서로 다른 반경에서의 그레이의 정도(degree of grey)가, 아래 위치하는 감광성 유전체(가령 포토레지스트)의 그에 대응하는 위치에서의 광 노출의 정도를 결정한다. 도식된 바와 같이, 중심부에서의 약 100%의 최대값 내지 모서리, 내지 외부 둘레에서의 약 0%인 적어지는 광이 상기 구멍의 중심부로부터 바깥 쪽으로 빠르게 통과한다. 요망 마이크로렌즈, 또는 렌즈를 형성하기 위해, 광 전달 곡선 "a"는 임의의 적합한 형태일 수 있다.
도 7A ~ 7C는 제어되는 곡선형 오목부를 형성하기 위해, 그레이 스케일 마스크를 사용하는 일련의 단계를 도식한다. 도 7A에서, 패턴 층(510)의 작은 부분(가령, 포지티브 포토레지스트)이 그레이 스케일 마스크의 하나의 구멍(600)을 통해 노출된다. x-방향으로의, 상기 그레이 스케일 마스크의 구멍들 사이의 부분은 불투명하다. 도 7B와 도 7C에서, 패턴 층(510)이 현상되고, 건식 에칭은 노출된 패턴을 아래 위치하는 유전 층(508)으로 전이시키기는 것을 수행하여, 곡선형 오목부(514)를 형성할 수 있다. 따라서 상기 그레이 스케일 마스크 상의 그레이의 스케일을 제 어함으로써, 그리고 건식 에칭에 의해서, 구면 마이크로렌즈와 비구면 마이크로렌즈 모두 신속하고 저렴하게 형성될 수 있다.
패턴화와 에칭의 종류에 따라서, 곡선형 오목부(514)는, 상기 곡선형 오목부의 표면 상의 울퉁불퉁한 부분이 매끄럽게 되도록, 취급될 필요가 있다. 이러한 곡선형 오목부의 “거칠기(roughness)”는 가시 광의 파장에 비교하여, 작아야한다. 하나의 실시예에서, 상기 거칠기는 가시 광의 파장의 약 1/10이다. 본원에서 정의되는 “거칠기”은 상기 곡선형 오목부의 표면상의 피크(peak)와 스로우(through) 간의 거리(또는 변이)를 일컫는다. 예를 들어, 곡선형 오목부(514)를 형성하기 위해 건식 에칭을 사용할 때, 빠른 습식 에칭 또는 세척이, 상기 곡선형 오목부(514)의 표면의 임의의 거칠기를 매끄럽게 하기 위해 추가될 수 있다. 빠른 습식 에칭의 또 다른 방법은, 아래에 위치하는 유전 층(508)과 같은 굴절률을 갖는 얇은 유전 물질을 이용하여, 곡선형 오목부(514)의 표면을 코팅시키는 것이다. 상기 오목부(514)의 표면 영역을 매끄럽게 하는 그 밖의 다른 적합한 방법은, 적정하게 설계된 화학 기계적 연마(CMP)를 포함한다.
유전 층(508)의 곡선형 오목부(514)를 형성하고, 필요할 경우에 연마된 후, 그 구조물은, 플라스틱 몰딩을 통한 플라스틱 렌즈를 제작하기 위한 템플릿으로서 사용될 수 있거나, 또는 마이크로렌즈와 센서의 통합을 위한 추가적인 공정을 계속할 수 있다. 렌즈의 플라스틱 몰딩에 있어, 동일한 패턴 설계의 다중 템플릿 및 곡선형 형태, 또는 서로 다른 설계 및 형태가, 특수 애플리케이션에 따라 다르게 사용될 수 있다. 마이크로렌즈/센서 통합에 대해 사용될 때, 도 5G를 다시 참조하여, 유전 층(508)의 곡선형 오목부(514)가 형성되고, 필요하다면 연마된 후, 투명 렌즈 물질(516)의 층이 증착되어, 마이크로렌즈 어레이를 형성할 수 있다. 하나의 실시예에서, 상기 렌즈 물질은 무기질이며, 아래 위치한 유전 층(508)보다 더 높은 굴절률을 갖는다. 렌즈 물질(516)용으로 적합한 물질로는, 유전체, 가령 SiO2, SiOxNy, Si3N4, TiO2, 폴리머, 플라스틱, 그리고 이들의 조합이 포함된다. 따라서 마이크로렌즈 요구사항에 따라서, 유전 층(508)과 렌즈 물질(516)이 선택된다. 하나의 실시예에서, 렌즈 물질(516)의 증착된 두께는 상기 곡선형 오목부의 중심부에서의 두께와 거의 동일하거나, 애플리케이션 요구사항에 따라 더 두꺼울 수 있다. 수지 기반의 리플로우 공정과 달리, 무기질 렌즈 물질의 사용은 사실 색에 더 가까운 이미지를 생성하는 렌즈를 생성할 수 있다. 즉, 노란빛을 띄는 이미지를 만드는, 청색 스펙트럼에서의 흡수가 없다는 것이다. 덧붙이자면, 확산 대신 증착에 의해, 마이크로렌즈를 형성하는 것은, 렌즈 형태와 광 축을 따르는 두께의 더 나은 제어를 제공한다. 렌즈 물질(516)의 증착 후에, 필요할 경우, 평탄하고 매끄러운 표면을 생성하기 위해 상부 표면은 연마될 수 있다.
도 8은 통합된 센서/마이크로렌즈를 갖는 마이크로렌즈 어레이(800)의 도면이다. 투명 렌즈 물질(516)이 그 아래 위치하는 마이크로렌즈(802) 및 센서 어레이(502)를 위한 보호층으로서 기능할 수 있다. 각각의 마이크로렌즈(802)는 아래 위치하는 센서 소자(808)에 대응하며, 상기 센서 소자는 기판(506)에 의해 지지된다. 마이크로렌즈 어레이(800)로 입사하는 광이, 센서 어레이의 개별 센서 방향으 로 발사되며, 이는 대응하는 마이크로렌즈(802)에 의해 이뤄진다. 마이크로렌즈 어레이의 제작 공정에 의해, 더 많은 광이 상기 센서에 이해 수신될 수 있고, 그에 따라서 이미지 감도와 컬러 품질이 개선될 수 있다. 그러나 앞서 전술한 바와 같이, 마이크로렌즈 어레이(800), 또는 개별 비구면 렌즈는 아래 위치하는 센서의 어레이를 필요로 하지 않는다.
본 발명에 의하여, 비구면을 갖는, 또는 서로 다른 크기/형태를 갖는 마이크로렌즈 어레이, 또는 개별 렌즈들이 쉽게 제작될 수 있다. 비구면, 또는 특수 크기/형태의 렌즈를 위한 종래의 공정에서, 상기 렌즈는 통상적으로 형태가 정해지고, 수작업으로 연마되며, 별도로 취급된다. 이는 시간과 노동 집약적일 수 있다. 한편, 종래의 기계를 사용하여, 구면 렌즈 어레이는 신속하게 제작될 수 있다. 그러나 기계에 의해, 비구면 렌즈는 형성될 수 없고, 서로 다른 형태/크기의 렌즈가 하나의 어레이 상에 형성될 수 없다. 바람직하게도, 본 발명에 의해, 서로 다른 형태, 또는 크기를 갖는 비구면 마이크로렌즈, 또는 렌즈를 갖는 마이크로렌즈 어레이, 또는 렌즈가 신속하고 저렴하게 제작될 수 있다.
앞서 언급한 실시예들은 본 발명을 제한하지 않는다. 본 발명의 사상에 따르는 많은 수정예와 변형예가 가능함을 알아야 한다. 가령, 앞서 언급한 실시예들은 유전 층 위에서의 패턴 층의 사용을 서술하고 있지만, 사용가능한 곡선형 오목부를 형성하기 위해, 또는 그 밖의 다른 수단(가령, 적합한 화학 공정, 또는 이온 빔 스퍼터링(ion beam sputtering))을 사용하여 곡선형 오목부를 형성하기 위해, 상기 패턴화 감광성 유전 층이 직접 사용될 경우, 상기 유전 층은 제외될 수 있다. 따라 서 본 발명의 사상은 다음의 청구 범위에 의해서만 정해질 수 있다.
도 1A ~ 1C는 종래의 공정에 따르는 리플로우에 의해 마이크로렌즈 어레이를 제작하는 일련의 통상적인 단계들을 도식한 도면이다.
도 2A ~ 2E는 종래의 공정에 따르는 한 종류의 확산을 이용하여 마이크로렌즈 어레이를 형성하기 위한 단계들을 도식한 도면이다.
도 2A ~ 2C 및 도 2F ~ 2G는 또 다른 종류의 종래의 공정을 이용하여 마이크로렌즈 어레이를 형성하기 위한 단계들을 도식한 도면이다.
도 3은 종래의 마이크로렌즈 어레이와 센서 어레이 장치의 하나의 종류를 도식한 도면이다.
도 4는 본 발명의 하나의 실시예에 따라, 센서 어레이로 마이크로렌즈 어레이를 조립하기 위한 공정을 도식한 흐름도이다.
도 5A ~ 5G는 하나의 실시예에 따르는 마이크로렌즈/센서 어레이를 조립하기 위한 공정에 대한 여러 가지 단계를 도식한 도면이다.
도 6A ~ 6B는 본 발명의 하나의 실시예에서 사용되기 위한, 그레이 스케일 마스크와, 상기 그레이 스케일 마스크의 특성을 도식한 도면이다.
도 7A ~ 7C는 하나의 실시예에 따르는 그레이 스케일 마스크를 사용하여 제어되는 곡선형 오목부를 형성하기 위한 공정에 대한 여러 단계를 도식한다.
도 8은 본 발명의 하나의 실시예에 따르는 마이크로렌즈 어레이의 도면이다.

Claims (7)

  1. 렌즈, 또는 렌즈 어레이를 제작하기 위한 방법에 있어서, 상기 방법은
    기판을 제공하는 단계,
    상기 기판 위로 유전 층을 증착시키는 단계,
    상기 유전 층 상에 곡선형 오목부를 형성하기 위해, 형성될 렌즈에 대응하는 상기 유전 층의 일부분을 선택적으로 제거하는 단계, 그리고
    상기 유전 층 위로 렌즈 물질의 층을 형성하는 단계
    를 포함하는 것을 특징으로 하는 렌즈, 또는 렌즈 어레이를 제작하기 위한 방법.
  2. 제 1 항에 있어서, 상기 유전 층을 증착시키는 단계 전에, 상기 기판 위로 센서 어레이를 형성하는 단계를 더 포함하는 것을 특징으로 하는 렌즈, 또는 렌즈 어레이를 제작하기 위한 방법.
  3. 제 1 항에 있어서, 상기 렌즈 물질의 굴절률은 상기 유전 층보다 더 높은 것을 특징으로 하는 렌즈, 또는 렌즈 어레이를 제작하기 위한 방법.
  4. 제 1 항에 있어서, 상기 형성될 렌즈는 마이크로렌즈임을 특징으로 하는 렌즈, 또는 렌즈 어레이를 제작하기 위한 방법.
  5. 제 1 항에 있어서, 상기 형성될 렌즈는 비구면임을 특징으로 하는 렌즈, 또는 렌즈 어레이를 제작하기 위한 방법.
  6. 제 1 항에 있어서, 상기 형성하는 단계는 상기 곡선형 오목부를 충진시키기 위해 렌즈 물질을 증착하는 단계를 포함하는 것을 특징으로 하는 렌즈, 또는 렌즈 어레이를 제작하기 위한 방법.
  7. 제 1 항에 있어서, 상기 형성하는 단계는, 곡선형 오목부를 갖는 유전 층을 몰딩 템플릿(molding template)으로서 사용하는 단계를 포함하는 것을 특징으로 하는 렌즈, 또는 렌즈 어레이를 제작하기 위한 방법.
KR1020077022389A 2004-03-09 2005-02-04 렌즈 어레이 및 상기 렌즈 어레이를 제작하기 위한 방법 KR100876505B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/797,809 US6940654B1 (en) 2004-03-09 2004-03-09 Lens array and method of making same
US10/797,809 2004-03-09
PCT/US2005/003707 WO2005091784A2 (en) 2004-03-09 2005-02-04 Lens array and method for making same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020067020002A Division KR100857305B1 (ko) 2004-03-09 2005-02-04 렌즈 어레이 및 상기 렌즈 어레이를 제작하기 위한 방법

Publications (2)

Publication Number Publication Date
KR20070102629A true KR20070102629A (ko) 2007-10-18
KR100876505B1 KR100876505B1 (ko) 2008-12-31

Family

ID=34887638

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020077022389A KR100876505B1 (ko) 2004-03-09 2005-02-04 렌즈 어레이 및 상기 렌즈 어레이를 제작하기 위한 방법
KR1020067020002A KR100857305B1 (ko) 2004-03-09 2005-02-04 렌즈 어레이 및 상기 렌즈 어레이를 제작하기 위한 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020067020002A KR100857305B1 (ko) 2004-03-09 2005-02-04 렌즈 어레이 및 상기 렌즈 어레이를 제작하기 위한 방법

Country Status (11)

Country Link
US (1) US6940654B1 (ko)
EP (1) EP1756627A4 (ko)
JP (1) JP2007528515A (ko)
KR (2) KR100876505B1 (ko)
CN (1) CN100504505C (ko)
AU (1) AU2005227046B2 (ko)
CA (1) CA2557714A1 (ko)
MX (1) MXPA06010246A (ko)
MY (1) MY139341A (ko)
TW (1) TWI279910B (ko)
WO (1) WO2005091784A2 (ko)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7016944B1 (en) * 1999-09-30 2006-03-21 Apple Computer, Inc. System and method for passive detection and context sensitive notification of upgrade availability for computer information
AU2003241136A1 (en) * 2002-06-17 2003-12-31 Bar-Ilan University Microlens and method of making same
CN100440544C (zh) * 2002-09-17 2008-12-03 安特约恩股份有限公司 照相装置、制造照相装置的方法以及晶片尺度的封装
US7535649B2 (en) * 2004-03-09 2009-05-19 Tang Yin S Motionless lens systems and methods
US7280278B2 (en) * 2004-06-02 2007-10-09 Micron Technology, Inc. Apparatus and method for manufacturing positive or negative microlenses
JP4013928B2 (ja) * 2004-07-15 2007-11-28 セイコーエプソン株式会社 照明装置、非球面レンズの設計方法、非球面レンズ及びプロジェクタ
KR100617065B1 (ko) * 2004-07-15 2006-08-30 동부일렉트로닉스 주식회사 씨모스 이미지 센서의 제조방법
US7068432B2 (en) * 2004-07-27 2006-06-27 Micron Technology, Inc. Controlling lens shape in a microlens array
KR100640531B1 (ko) * 2004-08-20 2006-10-30 동부일렉트로닉스 주식회사 자기 정렬 이미지 센서 제조방법
SI21525A (sl) * 2004-08-25 2004-12-31 Feri Maribor Mikroleče na vrhu optičnih vlaken in postopek za njihovo izdelavo
US7029944B1 (en) * 2004-09-30 2006-04-18 Sharp Laboratories Of America, Inc. Methods of forming a microlens array over a substrate employing a CMP stop
JP4568076B2 (ja) * 2004-10-13 2010-10-27 Okiセミコンダクタ株式会社 マイクロレンズの製造方法
KR100595601B1 (ko) * 2004-12-14 2006-07-05 동부일렉트로닉스 주식회사 씨모스 이미지 센서 제조방법
US7264976B2 (en) * 2005-02-23 2007-09-04 Taiwan Semiconductor Manufacturing Company, Ltd. Advance ridge structure for microlens gapless approach
US20070026564A1 (en) * 2005-07-08 2007-02-01 Hsin-Ping Wu Method for forming microlenses of different curvatures and fabricating process of solid-state image sensor
JP2007068032A (ja) * 2005-09-01 2007-03-15 Ricoh Co Ltd 画像表示媒体、合成画像表示データの作成方法及び画像生成システム
US7642117B2 (en) 2005-12-28 2010-01-05 Dongbu Hitek Co., Ltd. CMOS image sensor
US20070241268A1 (en) * 2006-04-13 2007-10-18 Wong Weng F Encoder module adapted for a plurality of different resolutions
EP2016620A2 (en) 2006-04-17 2009-01-21 Omnivision Cdm Optics, Inc. Arrayed imaging systems and associated methods
JP2008153331A (ja) * 2006-12-15 2008-07-03 Toppan Printing Co Ltd カラー固体撮像素子及びその製造方法
KR100871552B1 (ko) * 2007-03-14 2008-12-01 동부일렉트로닉스 주식회사 이미지 센서의 제조방법
DE102007031230B3 (de) * 2007-07-04 2008-10-30 Bundesdruckerei Gmbh Dokumentenerfassungssystem und Dokumentenerfassungsverfahren
US8519500B2 (en) * 2007-11-26 2013-08-27 United Microelectronics Corp. Image sensor with correcting lens and fabrication thereof
US8003428B2 (en) * 2008-03-27 2011-08-23 International Business Machines Corporation Method of forming an inverted lens in a semiconductor structure
US7897986B2 (en) * 2008-04-17 2011-03-01 Visera Technologies Company Limited Microlens array and image sensing device using the same
JP5504763B2 (ja) * 2009-09-02 2014-05-28 株式会社ニコン レンズアレイ及び光学系
CN102073075B (zh) * 2009-11-24 2013-12-11 鸿富锦精密工业(深圳)有限公司 遮光元件阵列的制造方法
NL2013093B1 (en) * 2014-06-30 2016-07-11 Anteryon Wafer Optics B V Method for manufacturing a lens structure.
CN105607163B (zh) * 2016-03-03 2017-07-11 北京理工大学 一种具有微透镜或微透镜阵列结构的表面的压痕制造方法
DE102016107595B4 (de) * 2016-04-25 2018-12-13 Precitec Gmbh & Co. Kg Strahlformungsoptik für Materialbearbeitung mittels eines Laserstrahls sowie Vorrichtung mit derselben
CN105956545B (zh) * 2016-04-29 2020-09-25 格科微电子(上海)有限公司 光学指纹识别装置的形成方法
CN110716248B (zh) * 2018-07-12 2021-03-09 安徽省东超科技有限公司 一种多列多排等效负折射率平板透镜的加工工艺
US10551034B1 (en) * 2019-05-15 2020-02-04 Richard S. Belliveau Multicell theatrical light incorporating a plurality of diffuse aureoles
CN116149023B (zh) * 2023-04-17 2023-09-05 江西欧菲光学有限公司 光学镜头、摄像模组及电子设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257119A (ja) * 1989-03-30 1990-10-17 Seiko Epson Corp 液晶表示素子
JP2597037B2 (ja) * 1990-07-09 1997-04-02 シャープ株式会社 固体撮像装置の製造方法
JP3420776B2 (ja) * 1991-04-22 2003-06-30 オリンパス光学工業株式会社 固体撮像装置の製造方法
JP4293664B2 (ja) * 1999-02-18 2009-07-08 Hoya株式会社 マイクロレンズアレイの形成方法およびマイクロレンズアレイ
JP2001096636A (ja) * 1999-07-27 2001-04-10 Seiko Epson Corp マイクロレンズアレイ及びその製造方法並びに光学装置
US6221687B1 (en) * 1999-12-23 2001-04-24 Tower Semiconductor Ltd. Color image sensor with embedded microlens array
US6730459B2 (en) * 2000-07-27 2004-05-04 Seiko Epson Corporation Microlens array, method for fabricating the same and optical devices
JP2002110953A (ja) * 2000-10-04 2002-04-12 Toshiba Corp 固体撮像装置
JP2002196106A (ja) * 2000-12-27 2002-07-10 Seiko Epson Corp マイクロレンズアレイ及びその製造方法並びに光学装置
JP2002196104A (ja) * 2000-12-27 2002-07-10 Seiko Epson Corp マイクロレンズアレイ及びその製造方法並びに光学装置
JP2002283361A (ja) * 2001-03-23 2002-10-03 Seiko Epson Corp マイクロレンズアレイ及びその製造方法並びに光学装置
US6804062B2 (en) * 2001-10-09 2004-10-12 California Institute Of Technology Nonimaging concentrator lens arrays and microfabrication of the same
JP3938099B2 (ja) * 2002-06-12 2007-06-27 セイコーエプソン株式会社 マイクロレンズの製造方法、マイクロレンズ、マイクロレンズアレイ板、電気光学装置及び電子機器
JP2004017477A (ja) * 2002-06-17 2004-01-22 Sony Corp 光学部品の製造方法、および光学部品用型の製造方法
US20040080006A1 (en) * 2002-10-25 2004-04-29 Katsumi Yamamoto Image sensor having concave-shaped micro-lenses

Also Published As

Publication number Publication date
MY139341A (en) 2009-09-30
KR20060122971A (ko) 2006-11-30
CA2557714A1 (en) 2005-10-06
TWI279910B (en) 2007-04-21
US6940654B1 (en) 2005-09-06
AU2005227046B2 (en) 2008-11-27
MXPA06010246A (es) 2007-04-13
EP1756627A2 (en) 2007-02-28
JP2007528515A (ja) 2007-10-11
CN100504505C (zh) 2009-06-24
TW200539438A (en) 2005-12-01
KR100857305B1 (ko) 2008-09-05
WO2005091784A3 (en) 2007-03-08
US20050200960A1 (en) 2005-09-15
KR100876505B1 (ko) 2008-12-31
AU2005227046A1 (en) 2005-10-06
WO2005091784A2 (en) 2005-10-06
EP1756627A4 (en) 2008-03-26
CN1997929A (zh) 2007-07-11

Similar Documents

Publication Publication Date Title
KR100876505B1 (ko) 렌즈 어레이 및 상기 렌즈 어레이를 제작하기 위한 방법
JP4598680B2 (ja) 固体撮像装置及びカメラ
US7427799B2 (en) Complementary metal oxide semiconductor image sensor and method for fabricating the same
US7262072B2 (en) CMOS image sensor and method for fabricating the same
KR100731131B1 (ko) 씨모스 이미지 센서 및 그 제조방법
US7709871B2 (en) CMOS image sensor and method for manufacturing the same
US7339155B2 (en) CMOS image sensor and method for fabricating the same
CN100474603C (zh) Cmos图像传感器及其制造方法
US20070063300A1 (en) CMOS image sensor and method for fabricating the same
US7297570B2 (en) Complementary metal oxide semiconductor image sensor and method for fabricating the same
KR100720524B1 (ko) 씨모스 이미지 센서 및 그 제조방법
JP3992713B2 (ja) Cmosイメージセンサー及びその製造方法
WO2018193986A1 (ja) 固体撮像素子及びその製造方法
JP2017034280A (ja) 固体撮像素子
KR100672697B1 (ko) 씨모스 이미지 센서의 제조방법
KR100720494B1 (ko) 씨모스 이미지 센서 및 그 제조방법
US20070069261A1 (en) CMOS image sensor and a method for manufacturing the same
JP2012109302A (ja) 固体撮像装置及びその製造方法
JP2006049636A (ja) 固体撮像装置とその製造方法

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee