KR20060136294A - Electronic component package including joint material having higher heat conductivity - Google Patents

Electronic component package including joint material having higher heat conductivity Download PDF

Info

Publication number
KR20060136294A
KR20060136294A KR1020050094888A KR20050094888A KR20060136294A KR 20060136294 A KR20060136294 A KR 20060136294A KR 1020050094888 A KR1020050094888 A KR 1020050094888A KR 20050094888 A KR20050094888 A KR 20050094888A KR 20060136294 A KR20060136294 A KR 20060136294A
Authority
KR
South Korea
Prior art keywords
bonding material
electronic component
heat
lsi chip
heat sink
Prior art date
Application number
KR1020050094888A
Other languages
Korean (ko)
Other versions
KR100755254B1 (en
KR20070000324A (en
Inventor
나오아키 나카무라
히데아키 요시무라
겐지 후쿠조노
도시히사 사토
Original Assignee
후지쯔 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005186004A external-priority patent/JP2007005670A/en
Application filed by 후지쯔 가부시끼가이샤 filed Critical 후지쯔 가부시끼가이샤
Publication of KR20060136294A publication Critical patent/KR20060136294A/en
Publication of KR20070000324A publication Critical patent/KR20070000324A/en
Application granted granted Critical
Publication of KR100755254B1 publication Critical patent/KR100755254B1/en

Links

Images

Abstract

본 발명은 열을 효율적으로 전달할 수 있는 전자 부품 패키지를 제공하는 것을 목적으로 한다.An object of the present invention is to provide an electronic component package capable of transferring heat efficiently.

접합재(26)는 In 및 3 중량%를 초과하는 범위에서 Ag를 함유하는 재료로 형성된다. 본 발명자의 검증에 따르면, 접합재(26)의 전 중량에 대한 Ag의 함유량이 증대하면 할수록, 접합재(26)에서는 전자 부품(21)이나 열전도 부재(15)와의 접합면에서 공극(void)이 감소하는 것이 확인되었다. 또한, In-Ag는 지금까지의 예컨대 Sn-Pb와 같은 땜납 재료에 비하여 낮은 열저항치를 나타내고, 지금까지의 땜납 재료에 비하여 열전도율이 향상된다. 그 결과, 본 발명의 접합재(26)에 의하면, 전자 부품(21)의 열은 열전도 부재(15)에 효율적으로 전달될 수 있다.The bonding material 26 is formed of a material containing Ag in a range of In and more than 3% by weight. According to the verification of the present inventor, as the content of Ag increases with respect to the total weight of the bonding material 26, the voids decrease in the bonding surface between the electronic component 21 and the heat conductive member 15 in the bonding material 26. Was confirmed. In-Ag also exhibits low thermal resistance compared to conventional solder materials such as Sn-Pb, and improves thermal conductivity compared to conventional solder materials. As a result, according to the bonding material 26 of the present invention, heat of the electronic component 21 can be efficiently transferred to the heat conductive member 15.

접합재, 전자 부품, 열전도 Bonding materials, electronic components, heat conduction

Description

전자 부품 패키지 및 접합 조립체{ELECTRONIC COMPONENT PACKAGE INCLUDING JOINT MATERIAL HAVING HIGHER HEAT CONDUCTIVITY}ELECTRONIC COMPONENT PACKAGE INCLUDING JOINT MATERIAL HAVING HIGHER HEAT CONDUCTIVITY

도 1은 마더 보드의 구조를 개략적으로 도시한 사시도.1 is a perspective view schematically showing the structure of a motherboard.

도 2는 도 1의 2-2선을 따라 취한 단면도로서, 본 발명의 전자 부품 패키지의 구조를 개략적으로 도시한 도면.FIG. 2 is a cross-sectional view taken along line 2-2 of FIG. 1 and schematically showing the structure of an electronic component package of the present invention.

도 3은 Ag의 함유량에 대한 액상점(液相点) 및 고상점(固相点)의 관계를 나타낸 표.3 is a table showing a relationship between a liquid phase point and a solid phase point with respect to Ag content.

도 4는 비교예로서 접합재와 히트 싱크 사이에 구획되는 접합면의 상태를 나타낸 도면.4 is a view showing a state of a bonding surface partitioned between a bonding material and a heat sink as a comparative example.

도 5는 제1 구체예로서 접합재와 히트 싱크 사이에 구획되는 접합면의 상태를 나타낸 X선 사진.Fig. 5 is an X-ray photograph showing a state of a bonding surface partitioned between a bonding material and a heat sink as a first specific example.

도 6은 제2 구체예로서 접합재와 히트 싱크 사이에 구획되는 접합면의 상태를 나타낸 X선 사진.Fig. 6 is an X-ray photograph showing a state of a bonding surface partitioned between a bonding material and a heat sink as a second specific example.

도 7은 제3 구체예로서 접합재와 히트 싱크 사이에 구획되는 접합면의 상태를 나타낸 X선 사진.7 is an X-ray photograph showing a state of a bonding surface partitioned between a bonding material and a heat sink as a third specific example.

도 8은 제4 구체예로서 접합재와 히트 싱크 사이에 구획되는 접합면의 상태를 나타내는 X선 사진.8 is an X-ray photograph showing a state of a bonding surface partitioned between a bonding material and a heat sink as a fourth specific example.

도 9는 접합재의 두께와 열저항과의 관계를 나타낸 그래프.9 is a graph showing the relationship between the thickness of the bonding material and the thermal resistance.

〈도면의 주요 부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

13 : 전자 부품 패키지13: electronic component package

14 : 기판(패키지 기판)14: substrate (package substrate)

15 : 열전도 부재(히트 싱크)15: heat conduction member (heat sink)

15 : 제2 부재(히트 싱크)15: second member (heat sink)

21 : 전자 부품(LSI 칩)21: electronic component (LSI chip)

21 : 제1 부재(LSI 칩)21: first member (LSI chip)

26 : 접합재26: bonding material

27 : 제1 금속체(제1 금속막)27: first metal body (first metal film)

28 : 제1 금속체(제2 금속막)28: first metal body (second metal film)

본 발명은 기판과, 기판의 표면에 실장되는 LSI(대규모 집적 회로) 칩과 같은 전자 부품과, 기판 상에서 전자 부품의 표면에 수용되는 열전도 부재를 포함하는 전자 부품 패키지에 관한 것이다.The present invention relates to an electronic component package comprising a substrate, an electronic component such as an LSI (large scale integrated circuit) chip mounted on the surface of the substrate, and a thermally conductive member received on the surface of the electronic component on the substrate.

전자 부품 패키지에서는 패키지 기판 상에 LSI 칩이 실장된다. LSI 칩의 표면에는 히트 싱크와 같은 열전도 부재가 수용된다. 예컨대 특허 문헌 4에 개시된 바와 같이, LSI 칩과 히트 싱크 사이에는 접합재가 삽입된다. 접합재는 예컨대 땜 납 재료로 형성된다. 땜납 재료에는 예컨대 Sn-Pb가 이용된다.In an electronic component package, an LSI chip is mounted on a package substrate. The surface of the LSI chip houses a thermally conductive member such as a heat sink. For example, as disclosed in Patent Document 4, a bonding material is inserted between the LSI chip and the heat sink. The bonding material is formed of, for example, a solder material. Sn-Pb is used for the solder material, for example.

[특허 문헌 1] 일본 특허 공개 평성 제04-359207호 공보[Patent Document 1] Japanese Patent Application Laid-Open No. 04-359207

[특허 문헌 2] 일본 특허 공개 평성 제10-31136호 공보[Patent Document 2] Japanese Patent Application Laid-Open No. 10-31136

[특허 문헌 3] 일본 특허 공개 평성 제10-189839호 공보[Patent Document 3] Japanese Unexamined Patent Application Publication No. 10-189839

[특허 문헌 4] 일본 특허 공개 제2000-12748호 공보[Patent Document 4] Japanese Patent Application Laid-Open No. 2000-12748

예컨대 Sn-Pb와 같은 땜납 재료에는 습윤성 개선에 있어서 융제(flux )와 같은 활성제가 첨가된다. 그러나, 이러한 융제 첨가의 영향으로 접합재에서는 히트 싱크와의 접촉면이나 LSI 칩과의 접촉면에 소위 공극이 형성되게 된다. 공극으로 인해 접합재와 히트 싱크나 LSI 칩 사이에서 접촉 면적이 감소하게 된다. 열은 효율적으로 전달될 수 없다.Solder materials such as, for example, Sn-Pb, are added with active agents such as fluxes to improve wettability. However, due to the addition of the flux, so-called voids are formed in the bonding material in the contact surface with the heat sink or with the LSI chip. The voids reduce the contact area between the bonding material and the heat sink or LSI chip. Heat cannot be transferred efficiently.

본 발명은 상기 실상을 감안하여 이루어진 것으로서, 열을 효율적으로 전달할 수 있는 전자 부품 패키지를 제공하는 것을 목적으로 한다. 본 발명은 또한 전자 부품 패키지의 실현에 크게 기여하는 접합 조립체를 제공하는 것을 목적으로 한다.This invention is made | formed in view of the said real thing, and an object of this invention is to provide the electronic component package which can transmit heat efficiently. It is also an object of the present invention to provide a joint assembly which greatly contributes to the realization of an electronic component package.

상기 목적을 달성하기 위해서 본 발명에 따르면, 기판과, 기판의 표면에 실장되는 전자 부품과, 기판 상에서 전자 부품의 표면에 수용되는 열전도 부재와, 전자 부품과 열전도 부재 사이에 삽입되어 In 및 3 중량%를 초과하는 범위에서 Ag를 함유하는 재료로 형성되는 접합재를 포함하는 것을 특징으로 하는 전자 부품 패키 지가 제공된다.In order to achieve the above object, according to the present invention, In and 3 weights are inserted between a substrate, an electronic component mounted on the surface of the substrate, a thermally conductive member accommodated on the surface of the electronic component on the substrate, and the electronic component and the thermally conductive member. An electronic component package is provided comprising a bonding material formed of a material containing Ag in a range exceeding%.

이러한 전자 부품 패키지에서는, 접합재는 In 및 3 중량%를 초과하는 범위에서 Ag를 함유하는 재료로 형성된다. 본 발명자의 검증에 따르면, 접합재의 전 중량에 대한 Ag의 함유량이 증대하면 할수록 접합재에서는 전자 부품이나 열전도 부재와의 접합면에서 공극이 감소하는 것이 확인되었다. 또한, In 및 3 중량%를 초과하는 범위에서 Ag를 함유하는 재료는 지금까지의 예컨대 Sn-Pb와 같은 땜납 재료에 비하여 낮은 열저항치를 나타내고, 지금까지의 땜납 재료에 비하여 열전도율이 향상된다. 그 결과, 본 발명의 접합재에 따르면, 전자 부품의 열은 열전도 부재에 효율적으로 전달될 수 있다.In such electronic component packages, the bonding material is formed of a material containing In and Ag in a range exceeding 3% by weight. According to the verification of the present inventor, it was confirmed that as the content of Ag increases with respect to the total weight of the bonding material, the voids decrease in the bonding surface with the electronic component or the heat conductive member in the bonding material. In addition, the material containing Ag in the range of In and more than 3% by weight has a lower thermal resistance value than the conventional solder material such as Sn-Pb, and the thermal conductivity is improved as compared with the conventional solder material. As a result, according to the bonding material of the present invention, heat of the electronic component can be efficiently transferred to the heat conductive member.

덧붙여, 특히 In의 탄성률은 Pb의 탄성률보다 낮게 설정된다. 열전도 부재 및 전자 부품의 열팽창률 차에 기초하여 열전도 부재와 접합재 사이나 접합재와 전자 부품 사이에서 응력이 생성되더라도, 그러한 응력은 접합재에 의해 충분히 흡수될 수 있다. 열전도 부재와 접합재 사이, 접합재와 전자 부품 사이에서 접합재의 박리는 가능한 한 막을 수 있다.In addition, in particular, the elastic modulus of In is set lower than that of Pb. Although stress is generated between the thermally conductive member and the bonding material or between the bonding material and the electronic component based on the thermal expansion coefficient difference between the thermally conductive member and the electronic component, such stress can be sufficiently absorbed by the bonding material. Peeling of the bonding material between the heat conductive member and the bonding material and between the bonding material and the electronic component can be prevented as much as possible.

이러한 전자 부품 패키지에서는, 접합재의 융점은 기판 및 전자 부품을 접속하는 단자의 융점보다 낮게 설정되면 좋다. 전자 부품 패키지의 조립에 있어서, 단자에 기초하여 전자 부품은 기판에 실장된다. 실장에 있어서, 단자는 가열에 기초하여 용융된다. 전자 부품을 실장한 후, 접합재에 기초하여 열전도 부재가 전자 부품 상에 실장된다. 이 때, 접합재는 가열에 기초하여 용융된다. 접합재의 융점이 단자의 융점보다 낮게 설정되면, 단자의 소위 2차 용융은 막을 수 있다. In such an electronic component package, melting | fusing point of a bonding material should just be set lower than melting | fusing point of the terminal which connects a board | substrate and an electronic component. In assembling an electronic component package, an electronic component is mounted on a board | substrate based on a terminal. In the mounting, the terminals are melted based on heating. After mounting the electronic component, a heat conductive member is mounted on the electronic component based on the bonding material. At this time, the bonding material is melted based on heating. If the melting point of the bonding material is set lower than the melting point of the terminal, so-called secondary melting of the terminal can be prevented.

이러한 전자 부품 패키지에서는, 접합재의 융점은 전자 부품의 내열 온도보다 낮게 설정되면 좋다. 전술한 바와 같이, 열전도 부재의 실장에 있어서, 접합재는 가열에 기초하여 용융된다. 접합재의 융점이 전자 부품의 내열 온도보다 낮으면, 접합재의 용융에 있어서, 전자 부품의 파괴는 막을 수 있다. 접합재의 융점은 예컨대 기판의 내열 온도보다 낮게 설정되어도 좋다. 이렇게 해서 접합재의 용융에 있어서 기판의 파괴는 막을 수 있다.In such an electronic component package, the melting point of the bonding material may be set lower than the heat resistance temperature of the electronic component. As described above, in mounting the heat conductive member, the bonding material is melted based on heating. If the melting point of the bonding material is lower than the heat resistance temperature of the electronic component, breakage of the electronic component can be prevented in melting the bonding material. The melting point of the bonding material may be set lower than the heat resistance temperature of the substrate, for example. In this way, breakage of the substrate can be prevented in melting the bonding material.

In 및 3 중량%를 초과하는 범위로 Ag를 함유하는 재료에서는, 접합재의 전 중량에 대한 Ag의 함유량이 증대하면, 액상점, 즉 융점의 온도는 상승한다. 따라서, Ag의 함유량은 기판 및 전자 부품을 접속하는 단자의 융점이나 전자 부품의 내열 온도, 기판의 내열 온도에 따라 적절히 설정되면 좋다. Ag의 함유량은 접합재의 전 중량에 대하여 예컨대 20 중량% 이하로 설정되면 좋다.In a material containing Ag in a range exceeding In and 3% by weight, when the content of Ag increases with respect to the total weight of the bonding material, the temperature of the liquid point, that is, the melting point, increases. Therefore, what is necessary is just to set content of Ag suitably according to melting | fusing point of the terminal which connects a board | substrate and an electronic component, the heat resistance temperature of an electronic component, and the heat resistance temperature of a board | substrate. The content of Ag may be set to, for example, 20% by weight or less based on the total weight of the bonding material.

이상과 같은 전자 부품 패키지의 실현에 있어서 접합 조립체가 제공되어도 좋다. 접합 조립체는 적어도 부분적으로 표면에서 제1 금속체를 노출시키는 제1 부재와, 적어도 부분적으로 표면에서 제2 금속체를 노출시키고 이 제2 금속체에 의해 제1 금속체에 수용되는 제2 부재와, 제1 금속체와 제2 금속체 사이에 삽입되어 In 및 3 중량%를 초과하는 범위에서 Ag를 함유하는 재료로 형성되는 접합재를 포함하면 좋다.The joining assembly may be provided in realizing the above-mentioned electronic component package. The joining assembly includes a first member that at least partially exposes the first metal body at the surface, and a second member that at least partially exposes the second metal body at the surface and is received in the first metal body by the second metal body; And a joining material interposed between the first metal body and the second metal body and formed of a material containing Ag in a range of more than 3 wt% In and 3 wt%.

실시예Example

이하, 첨부 도면을 참조하면서 본 발명의 일 실시예를 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, one Example of this invention is described, referring an accompanying drawing.

도 1은 마더 보드(11)의 구조를 개략적으로 도시한다. 이 마더 보드(11)는 대형의 프린트 배선 기판(12)을 포함한다. 프린트 배선 기판(12)의 표면에는 1개 또는 복수 개의 전자 부품 패키지(13)가 실장된다. 전자 부품 패키지(13)는 프린트 배선 기판(12)의 표면에 실장되는 패키지 기판(14)을 포함한다. 패키지 기판(14)에는, 예컨대 수지제 기판이나 세라믹 기판이 이용되면 좋다.1 schematically shows the structure of the motherboard 11. This motherboard 11 includes a large printed wiring board 12. One or a plurality of electronic component packages 13 are mounted on the surface of the printed wiring board 12. The electronic component package 13 includes a package substrate 14 mounted on the surface of the printed wiring board 12. For example, a resin substrate or a ceramic substrate may be used for the package substrate 14.

패키지 기판(14) 상에는 열전도 부재, 즉 히트 싱크(15)가 수용된다. 히트 싱크(15)에는 평판형의 본체, 즉 열 수용부(15a)와, 이 열 수용부(15a)로부터 수직 방향으로 상승하는 복수 매의 핀(15b)이 형성된다. 인접한 핀(15b)들 사이에는 동일 방향으로 연장되는 통기로(16)가 구획된다. 이러한 전자 부품 패키지(13)에서는, 예컨대 송풍 유닛(도시되지 않음)의 작동에 의해 통기로(16)를 통과하는 기류가 생성되면, 핀(15b)으로부터 효율적으로 방열될 수 있다. 히트 싱크(15)는, 예컨대 Cu나 Al, Cu나 Al을 주성분으로 하는 복합 재료, 카본 복합 재료와 같은 높은 열전도성 재료로 성형되면 좋다.The heat conduction member, that is, the heat sink 15, is accommodated on the package substrate 14. The heat sink 15 is formed with a flat body, that is, a heat receiving portion 15a, and a plurality of fins 15b that rise in the vertical direction from the heat receiving portion 15a. An aeration passage 16 extending in the same direction is partitioned between adjacent pins 15b. In such an electronic component package 13, when the airflow passing through the air passage 16 is generated, for example, by the operation of a blower unit (not shown), it is possible to efficiently radiate heat from the fin 15b. The heat sink 15 may be formed of a high thermal conductive material such as, for example, Cu or Al, a composite material mainly containing Cu or Al, or a carbon composite material.

도 2에 도시된 바와 같이, 패키지 기판(14)의 실장에 있어서 패키지 기판(14)에는 볼 그리드 어레이(ball grid array; 17)가 형성된다. 볼 그리드 어레이(17)는 소정의 패턴에 따라 배열되는 복수의 볼형 도전 단자(18)를 포함한다. 각각의 도전 단자(18)는 프린트 배선 기판(12) 상의 단자, 즉 도전 패드(19)에 수용된다. 이렇게 해서 패키지 기판(14)과 프린트 배선 기판(12) 사이에서 전기 접속이 확립된다. 여기서는 도전 단자(18)에는 예컨대 Sn-37Pb(중량%)가 이용되면 좋다.As shown in FIG. 2, a ball grid array 17 is formed on the package substrate 14 in mounting the package substrate 14. The ball grid array 17 includes a plurality of ball type conductive terminals 18 arranged in a predetermined pattern. Each conductive terminal 18 is housed in a terminal on the printed wiring board 12, ie, the conductive pad 19. In this way, an electrical connection is established between the package substrate 14 and the printed wiring board 12. In this case, for example, Sn-37Pb (% by weight) may be used for the conductive terminal 18.

패키지 기판(14) 상에는 전자 부품, 즉 LSI 칩(21)이 실장된다. 실장에 있어서, LSI 칩(21)에는 볼 그리드 어레이(22)가 형성된다. 볼 그리드 어레이(22)는 전 술한 바와 같이 소정의 패턴에 따라 배열되는 복수의 볼형 도전 단자(23)를 포함한다. 각각의 도전 단자(23)는 패키지 기판(14) 상의 단자, 즉 도전 패드(24)에 수용된다. 이렇게 해서 LSI 칩(21)과 패키지 기판(14) 사이에서 전기 접속이 확립된다. 여기서는, 도전 단자(18)와 마찬가지로, 도전 단자(23)에는 예컨대 Sn-37Pb(중량%)가 이용되면 좋다.An electronic component, that is, an LSI chip 21, is mounted on the package substrate 14. In the mounting, a ball grid array 22 is formed on the LSI chip 21. The ball grid array 22 includes a plurality of ball type conductive terminals 23 arranged according to a predetermined pattern as described above. Each conductive terminal 23 is housed in a terminal on the package substrate 14, ie, the conductive pad 24. In this way, an electrical connection is established between the LSI chip 21 and the package substrate 14. Here, for example, Sn-37Pb (% by weight) may be used for the conductive terminal 23 similarly to the conductive terminal 18.

패키지 기판(14)의 표면에는, LSI 칩(21)에 부가하여 예컨대 커패시터나 칩 저항(모두 도시되지 않음)과 같은 전자 소자가 실장되어도 좋다. 전자 소자는 예컨대 패키지 기판(14)의 이면에 실장되어도 좋다. LSI 칩(21)과 패키지 기판(14) 사이에는 언더필(underfill) 재료막(25)이 삽입된다. 언더필 재료막(25)은 도전 단자(23)들의 간극을 충전한다. 이렇게 해서 도전 단자(23)들은 확실하게 절연될 수 있다. 언더필 재료막(25)은, 예컨대 에폭시를 주성분으로 하는 수지 재료로 형성되면 좋다.In addition to the LSI chip 21, an electronic element such as a capacitor or a chip resistor (both not shown) may be mounted on the surface of the package substrate 14. The electronic element may be mounted on, for example, the back surface of the package substrate 14. An underfill material film 25 is inserted between the LSI chip 21 and the package substrate 14. The underfill material film 25 fills the gap between the conductive terminals 23. In this way, the conductive terminals 23 can be insulated reliably. The underfill material film 25 may be formed of, for example, a resin material containing epoxy as a main component.

LSI 칩(21)의 표면에는 전술한 히트 싱크(15)가 수용된다. 히트 싱크(15)와 LSI 칩(21) 사이에는 접합재(26)가 삽입된다. 접합재(26)는 In과, 접합재(26) 전체에 대하여 3 중량%를 초과하는 범위에서 Ag를 함유하는 재료로 형성되면 좋다. 여기서는, 접합재(26)는 In-Ag로 형성된다. Ag의 함유량은 접합재(26)의 전 중량에 대하여 예컨대 20 중량% 이하의 범위에서 설정되면 좋다.The heat sink 15 described above is accommodated on the surface of the LSI chip 21. The bonding material 26 is inserted between the heat sink 15 and the LSI chip 21. The bonding material 26 may be formed of a material containing In and Ag in a range exceeding 3% by weight based on the entire bonding material 26. Here, the bonding material 26 is formed of In-Ag. The content of Ag may be set in the range of, for example, 20% by weight or less based on the total weight of the bonding material 26.

도 3의 표에 나타낸 바와 같이, 공정(共晶)을 나타내는 In-3Ag(중량%)에서는, 액상점 및 고상점은 모두 141℃를 나타낸다. Ag의 함유량이 증대함에 따라 액상점은 141℃에서부터 상승한다. 한편, Ag의 함유량이 증대하여도 고상점은 141℃ 로 유지된다. 그 결과, Ag의 함유량이 증대함에 따라 액상점 및 고상점의 차가 증대한다.As shown in the table of FIG. 3, in In-3Ag (% by weight) showing the process, both the liquid point and the solid point represent 141 ° C. As content of Ag increases, a liquidus point rises from 141 degreeC. On the other hand, even if content of Ag increases, a solid-phase point is maintained at 141 degreeC. As a result, the difference between the liquid phase and the solid phase increases as the content of Ag increases.

다시 도 2를 참조하여, LSI 칩(21)의 표면에는 제1 금속체, 즉 제1 금속막(27)이 형성된다. 이렇게 해서 제1 부재, 즉 LSI 칩(21)은 적어도 부분적으로 표면에서 제1 금속막(27)을 노출시킨다. 여기서는, 제1 금속막(27)은 LSI 칩(21)의 표면의 전면에 형성되면 좋다. 제1 금속막(27)은 예컨대 Ti막과, Au막이나 Cu막과의 적층체로 형성되면 좋다. 이렇게 해서 LSI 칩(21)은 제1 금속막(27)에 의해 접합재(26)를 수용한다.Referring back to FIG. 2, a first metal body, that is, a first metal film 27, is formed on the surface of the LSI chip 21. In this way, the first member, i.e., the LSI chip 21, at least partially exposes the first metal film 27 from the surface. Here, the first metal film 27 may be formed on the entire surface of the surface of the LSI chip 21. The first metal film 27 may be formed of, for example, a laminate of a Ti film and an Au film or a Cu film. In this way, the LSI chip 21 accommodates the bonding material 26 by the first metal film 27.

한편, LSI 칩(21)에 마주 보게 되는 히트 싱크(15)의 표면, 즉 대향면에는 제2 금속체, 즉 제2 금속막(28)이 형성된다. 이렇게 해서 제2 부재, 즉 히트 싱크(15)는 적어도 부분적으로 대향면에서 제2 금속막(28)을 노출시킨다. 제2 금속막(28)은 예컨대 Ni막 및 Au막의 적층체로 형성되면 좋다. 이렇게 해서 접합재(26)는 제2 금속막(28)에 의해 히트 싱크(15)를 수용한다.On the other hand, a second metal body, that is, a second metal film 28, is formed on the surface of the heat sink 15 facing the LSI chip 21, that is, the opposite surface. In this way, the second member, that is, the heat sink 15, exposes the second metal film 28 at least partially on the opposite surface. The second metal film 28 may be formed of, for example, a laminate of Ni films and Au films. In this way, the bonding material 26 accommodates the heat sink 15 by the second metal film 28.

이렇게 해서 접합재(26)는 제1 금속막(27)과 제2 금속막(28) 사이에 삽입된다. 바꿔 말하면, 히트 싱크(15)는 제2 금속막(28)에 의해 LSI 칩(21)의 제1 금속막(27)에 수용된다. 이렇게 해서 LSI 칩(21) 및 히트 싱크(15)는 접합재(26)에 의해 접합된다. 여기서는, 본 발명의 접합 조립체는 제1 부재, 즉 LSI 칩(21)과, 제2 부재,즉 히트 싱크(15)와, 접합재(26)를 포함한다.In this way, the bonding material 26 is inserted between the first metal film 27 and the second metal film 28. In other words, the heat sink 15 is accommodated in the first metal film 27 of the LSI chip 21 by the second metal film 28. In this way, the LSI chip 21 and the heat sink 15 are joined by the bonding material 26. Here, the bonding assembly of the present invention includes a first member, that is, an LSI chip 21, a second member, that is, a heat sink 15, and a bonding material 26.

히트 싱크(15)는 지지 부품(29)에 의해 패키지 기판(14)에 고정된다. 지지 부품(29)은, 예컨대 Cu나 스테인리스강과 같은 패키지 기판(14)의 열팽창률에 가까 운 재료로 형성되면 좋다. 고정에 있어서 히트 싱크(15)와 지지 부재(29) 사이, 지지 부재(29)와 패키지 기판(14) 사이에는 예컨대 접착 시트(도시되지 않음)가 삽입된다. 접착 시트에는 예컨대 에폭시계의 접착 시트가 이용되면 좋다. 접착 시트에는 예컨대 유리 섬유나 무기 필러가 포함되면 좋다. 이러한 유리 섬유나 무기 필러의 작용으로 접착 시트의 두께는 가능한 한 균일하게 유지될 수 있다.The heat sink 15 is fixed to the package substrate 14 by the support component 29. The support component 29 may be formed of a material close to the coefficient of thermal expansion of the package substrate 14 such as, for example, Cu or stainless steel. In fixing, for example, an adhesive sheet (not shown) is inserted between the heat sink 15 and the support member 29 and between the support member 29 and the package substrate 14. As the adhesive sheet, for example, an epoxy adhesive sheet may be used. An adhesive sheet should just contain glass fiber and an inorganic filler, for example. By the action of such glass fibers or inorganic fillers, the thickness of the adhesive sheet can be kept as uniform as possible.

이상과 같은 마더 보드(11)에서는, LSI 칩(21)의 동작 중에 LSI 칩(21)은 발열한다. LSI 칩(21)의 열은 제1 금속막(27), 접합재(26), 제2 금속막(28)으로부터 히트 싱크(15)의 열 수용부(15a)로 전달된다. 열 수용부(15a)로 전달된 열은 핀(15b)으로 전달된다. 히트 싱크(15)는 핀(15b)의 작용으로 큰 표면적의 표면으로부터 대기중으로 열을 방산한다. 예컨대 송풍 유닛의 작동으로 통기로(16)에는 기류가 유통한다. 이렇게 해서 LSI 칩(21)의 온도 상승은 효과적으로 억제된다.In the motherboard 11 as described above, the LSI chip 21 generates heat during the operation of the LSI chip 21. The heat of the LSI chip 21 is transferred from the first metal film 27, the bonding material 26, and the second metal film 28 to the heat receiving portion 15a of the heat sink 15. Heat transferred to the heat receiving portion 15a is transferred to the fin 15b. The heat sink 15 dissipates heat from the surface of the large surface area into the atmosphere by the action of the fin 15b. For example, the airflow flows through the air passage 16 by the operation of the blower unit. In this way, the temperature rise of the LSI chip 21 is effectively suppressed.

다음에, 이상과 같은 전자 부품 패키지(13)의 제조 방법을 간단히 설명한다. 우선, 패키지 기판(14)이 준비된다. 패키지 기판(14)에는 예컨대 0.4∼0.7 ㎜ 두께의 세라믹 기판이나 유기 기판이 이용되면 좋다. 세라믹 기판에는 예컨대 Al2O3나 AlN, 유리와 같은 재료가 포함되어도 좋다. 이러한 패키지 기판(14)의 표면에는 지지 부품(29)이 고정된다. 고정에 있어서, 패키지 기판(14)과 지지 부품(29) 사이에는 접착 시트가 삽입된다. 지지 부품(29)은 패키지 기판(14)의 표면 쪽으로 압박된다. 압박력은 예컨대 1.96×10-3 [Pa] 이하로 설정되면 좋다.Next, the manufacturing method of the above-mentioned electronic component package 13 is demonstrated briefly. First, the package substrate 14 is prepared. As the package substrate 14, a ceramic substrate or an organic substrate having a thickness of 0.4 to 0.7 mm may be used, for example. The ceramic substrate may contain a material such as Al 2 O 3 , AlN or glass, for example. The support component 29 is fixed to the surface of the package substrate 14. In fixing, an adhesive sheet is inserted between the package substrate 14 and the support component 29. The support component 29 is pressed against the surface of the package substrate 14. The pressing force may be set to, for example, 1.96 × 10 −3 [Pa] or less.

계속해서, 패키지 기판(14)의 표면에는 LSI 칩(21)이 실장된다. 도전 단자 (23)에는 예컨대 Sn-37Pb와 같은 땜납 재료가 이용되면 좋다. 도전 단자(23)는 미리 LSI 칩(21)에 부착된다. 각 도전 단자(23)는 패키지 기판(14) 상의 도전 패드(19)에 위치 결정된다. 도전 단자(23)는 가열된다. 가열에 있어서, 예컨대 230℃ 이하의 피크 온도가 설정된다. 도전 단자(23)는 용융된다. 그 후, 냉각에 기초하여 도전 단자(23)는 경화한다. 이렇게 해서 LSI 칩(21)은 패키지 기판(14)에 실장된다.Subsequently, the LSI chip 21 is mounted on the surface of the package substrate 14. For the conductive terminal 23, a solder material such as Sn-37Pb may be used. The conductive terminal 23 is attached to the LSI chip 21 in advance. Each conductive terminal 23 is positioned on a conductive pad 19 on the package substrate 14. The conductive terminal 23 is heated. In heating, for example, a peak temperature of 230 ° C. or lower is set. The conductive terminal 23 is melted. Thereafter, the conductive terminal 23 cures based on cooling. In this way, the LSI chip 21 is mounted on the package substrate 14.

계속해서, LSI 칩(21)과 패키지 기판(14) 사이에는 언더필 재료막(25)이 삽입된다. 언더필 재료막(25)을 삽입하는 데에 있어서 에폭시를 주성분으로 하는 액체형의 수지 재료가 준비된다. 수지 재료는 LSI 칩(21)과 패키지 기판(14) 사이에 충전된다. 수지 재료가 충전된 후, 수지 재료에는 예컨대 150℃의 열이 가해진다. 열에 기초하여 수지 재료는 경화한다. 이렇게 해서 경화하는 수지 재료에 기초하여 LSI 칩(21)과 패키지 기판(14) 사이에는 언더필 재료막(25)이 형성된다.Subsequently, an underfill material film 25 is inserted between the LSI chip 21 and the package substrate 14. In inserting the underfill material film 25, a liquid resin material composed mainly of epoxy is prepared. The resin material is filled between the LSI chip 21 and the package substrate 14. After the resin material is filled, heat of 150 ° C. is applied to the resin material, for example. The resin material cures based on heat. An underfill material film 25 is formed between the LSI chip 21 and the package substrate 14 based on the cured resin material.

계속해서, 히트 싱크(15)의 대향면에는 소정의 영역에서 제2 금속막(28)이 적층 형성된다. 히트 싱크(15)의 대향면에는 예컨대 막 두께 3 ㎛ 정도의 Ni막이 형성된다. 그 후, Ni막의 표면에는 예컨대 막 두께 0.3 ㎛ 정도의 Au막이 형성된다. Ni막이나 Au막의 형성에 있어서 예컨대 전해 도금이 실시된다. 이러한 Ni막 및 Au막에 기초하여 전술한 제2 금속막(28)이 적층 형성된다.Subsequently, the second metal film 28 is laminated on the opposite surface of the heat sink 15 in a predetermined region. On the opposite surface of the heat sink 15, for example, a Ni film having a thickness of about 3 m is formed. Thereafter, an Au film having a thickness of about 0.3 μm is formed on the surface of the Ni film. In forming the Ni film or Au film, for example, electrolytic plating is performed. Based on these Ni films and Au films, the above-mentioned second metal film 28 is laminated.

한편, LSI 칩(21)의 표면에는 제1 금속막(27)이 적층 형성된다. LSI 칩(21)의 표면에는 예컨대 막 두께 500 [㎚] 정도의 Ti막이 형성된다. 그 후, Ti막의 표면에는 예컨대 막 두께 0.3 ㎛ 정도의 Au막이 형성된다. Ti막이나 Au막의 형성에 있어서 예컨대 스퍼터링이 실시된다. 이러한 Ti막 및 Au막에 기초하여 전술한 제1 금속막(27)이 적층 형성된다.On the other hand, the first metal film 27 is laminated on the surface of the LSI chip 21. On the surface of the LSI chip 21, for example, a Ti film having a thickness of about 500 [nm] is formed. Thereafter, an Au film having a thickness of about 0.3 μm is formed on the surface of the Ti film. For example, sputtering is performed to form a Ti film or an Au film. The above-described first metal film 27 is laminated on the basis of the Ti film and the Au film.

여기서는, 히트 싱크(15)에는 예컨대 무산소 Cu가 이용되면 좋다. 히트 싱크(15)의 대향면에서는 Ni막 및 Au막과 같은 제2 금속막(28)의 작용으로 산화는 막을 수 있다. 한편, 제1 금속막(27) 및 제2 금속막(28)의 작용으로 접합재(26)의 습윤성이 향상될 수 있다.Here, for example, oxygen-free Cu may be used for the heat sink 15. On the opposite surface of the heat sink 15, oxidation can be prevented by the action of the second metal film 28 such as the Ni film and the Au film. Meanwhile, the wettability of the bonding material 26 may be improved by the action of the first metal film 27 and the second metal film 28.

계속해서, 히트 싱크(15)가 LSI 칩(21)의 표면에 실장된다. 실장에 있어서, 제1 금속막(27)과 제2 금속막(28) 사이에는 접합재(26)가 삽입된다. 접합재(26)는 예컨대 시트형으로 형성된다. 여기서는, 접합재(26)에는 예컨대 In-10Ag가 이용되면 좋다. 동시에, 히트 싱크(15)와 지지 부품(29) 사이에는 전술한 바와 같이 접착 시트가 삽입된다. 히트 싱크(15) 및 지지 부품(29)은 패키지 기판(14)의 표면 쪽으로 압박된다. 압박력은 예컨대 1.96×10-3 [Pa] 이하로 설정되면 좋다. 이 때, 히트 싱크(15) 및 LSI 칩(21)은 가열된다. 가열에 기초하여 접합재(26)는 용융된다. 그 후, 냉각에 기초하여 접합재(26)는 경화한다. 이렇게 해서, 히트 싱크(15)는 LSI 칩(21)의 표면에 실장된다.Subsequently, the heat sink 15 is mounted on the surface of the LSI chip 21. In the mounting, the bonding material 26 is inserted between the first metal film 27 and the second metal film 28. The bonding material 26 is formed in a sheet shape, for example. In this case, for example, In-10Ag may be used for the bonding material 26. At the same time, an adhesive sheet is inserted between the heat sink 15 and the support component 29 as described above. The heat sink 15 and the support component 29 are pressed toward the surface of the package substrate 14. The pressing force may be set to, for example, 1.96 × 10 −3 [Pa] or less. At this time, the heat sink 15 and the LSI chip 21 are heated. The bonding material 26 is melted based on the heating. Thereafter, the bonding material 26 cures based on cooling. In this way, the heat sink 15 is mounted on the surface of the LSI chip 21.

그 후, 패키지 기판(14)의 배면에는 도전 단자(18)가 부착된다. 도전 단자(18)는 예컨대 Sn-37Pb와 같은 땜납 재료로 형성된다. 도전 단자(18)는 가열된다. 예컨대 230℃ 정도의 피크 온도가 설정된다. 도전 단자(18)는 용융된다. 그 후, 냉각에 기초하여 도전 단자(18)는 경화한다. 도전 단자(18)는 패키지 기판(14)의 배면에 부착된다. 이렇게 해서 전자 부품 패키지(13)가 제조된다. 그 후, 전자 부품 패키지(13)는 프린트 배선 기판(12)의 표면에 실장되면 좋다.Thereafter, a conductive terminal 18 is attached to the rear surface of the package substrate 14. The conductive terminal 18 is formed of a solder material such as Sn-37Pb, for example. The conductive terminal 18 is heated. For example, a peak temperature of about 230 ° C. is set. The conductive terminal 18 is melted. Thereafter, the conductive terminal 18 is cured based on cooling. The conductive terminal 18 is attached to the back side of the package substrate 14. In this way, the electronic component package 13 is manufactured. Thereafter, the electronic component package 13 may be mounted on the surface of the printed wiring board 12.

이상과 같은 전자 부품 패키지(13)에서는, 접합재(26)에 예컨대 In-10Ag가 이용된다. 도 3으로부터 알 수 있는 바와 같이 액상점은 231℃를 나타낸다. 따라서, 예컨대 도전 단자(18, 23)에 Sn-37Pb가 이용되는 경우, Sn-37Pb는 230℃ 이하의 온도에서 용융된다. 따라서, 도전 단자(18, 23)의 용융에 있어서 접합재(26)에서는 2차 용융은 막을 수 있다. 이렇게 해서 접합재(23)의 액상점, 즉 융점이 도전 단자(18, 23)의 융점보다 높게 설정되면, 예컨대 제1 금속막(27)에서는 Ni막의 형성은 생략될 수 있다. 제1 금속막(27)은 지금까지 이상으로 간소화될 수 있다.In the electronic component package 13 as described above, for example, In-10Ag is used for the bonding material 26. As can be seen from FIG. 3, the liquid point represents 231 ° C. Thus, for example, when Sn-37Pb is used for the conductive terminals 18 and 23, the Sn-37Pb is melted at a temperature of 230 ° C or lower. Therefore, secondary melting can be prevented in the bonding material 26 in the melting of the conductive terminals 18 and 23. In this way, if the liquid point of the bonding material 23, that is, the melting point is set higher than the melting points of the conductive terminals 18 and 23, for example, the formation of the Ni film in the first metal film 27 can be omitted. The first metal film 27 can be simplified more than ever.

한편, 접합재(26)에 예컨대 In-5Ag나 In-7Ag가 이용되면, 도 3으로부터 알 수 있는 바와 같이 액상점은 160℃나 200℃를 나타낸다. 즉, 접합재(26)의 융점은 도전 단자(18, 23)의 융점보다 낮게 설정된다. 예컨대 패키지 기판(14)에 유기 기판이 이용되어도, 접합재(26)는 패키지 기판(14)의 내열 온도 범위 내의 온도에 기초하여 용융될 수 있다. 마찬가지로, 접합재(26)는 전자 부품, 즉 LSI 칩(21)의 내열 온도 범위 내의 온도에 기초하여 용융될 수 있다. 이렇게 해서 접합재(26)의 융점이 도전 단자(18, 23)의 융점이나 패키지 기판(14)의 내열 온도, LSI 칩(21)의 내열 온도보다 낮게 설정되면, 도전 단자(18, 23)의 2차 용융, 패키지 기판(14)이나 LSI 칩(21)의 파괴는 막을 수 있다.On the other hand, when In-5Ag or In-7Ag is used for the bonding material 26, as can be seen from FIG. 3, the liquid point represents 160 ° C or 200 ° C. That is, the melting point of the bonding material 26 is set lower than the melting points of the conductive terminals 18 and 23. For example, even if an organic substrate is used for the package substrate 14, the bonding material 26 may be melted based on a temperature within the heat resistant temperature range of the package substrate 14. Similarly, the bonding material 26 can be melted based on a temperature within the heat resistance temperature range of the electronic component, ie, the LSI chip 21. In this way, when the melting point of the bonding material 26 is set lower than the melting point of the conductive terminals 18 and 23, the heat resistance temperature of the package substrate 14, and the heat resistance temperature of the LSI chip 21, the two of the conductive terminals 18 and 23 are set. Differential melting and destruction of the package substrate 14 and the LSI chip 21 can be prevented.

또한, 특히 In의 탄성률은 예컨대 Pb의 탄성률보다 낮게 설정된다. 탄성률은 Pb에 비하여 예컨대 1/4∼1/2 정도로 저감될 수 있다. 히트 싱크(15)나 LSI 칩(21)의 열팽창률 차에 기초하여 히트 싱크(15)와 접합재(26) 사이나 접합재(26)와 LSI 칩(21) 사이에서 응력이 생성되어도, 그러한 응력은 접합재(26)에 의해 충분히 흡수될 수 있다. 히트 싱크(15)와 접합재(26) 사이, 접합재(26)와 LSI 칩(21) 사이에서 접합재(26)의 박리는 가능한 한 막을 수 있다.In particular, the elastic modulus of In is set lower than the elastic modulus of Pb, for example. The modulus of elasticity can be reduced to about 1/4 to 1/2 as compared to Pb. Even if stress is generated between the heat sink 15 and the bonding material 26 or between the bonding material 26 and the LSI chip 21 based on the difference in thermal expansion coefficient of the heat sink 15 or the LSI chip 21, such stress is It can be sufficiently absorbed by the bonding material 26. Peeling of the bonding material 26 between the heat sink 15 and the bonding material 26 and between the bonding material 26 and the LSI chip 21 can be prevented as much as possible.

다음에, 본 발명자는 접합재(26)의 조성에 기초한 공극의 발생을 검증하였다. 검증에 있어서, 본 발명자는 제1 내지 제4 구체예 및 비교예를 준비하였다. 제1 구체예에서는 접합재(26)에 In-5Ag가 이용되었다. 제2 구체예에서는 접합재(26)에 In-7Ag가 이용되었다. 제3 구체예에서는 접합재(26)에 In-10Ag가 이용되었다. 제4 구체예에서는 접합재(26)에 In-15Ag가 이용되었다. 비교예에서는 접합재에 In-3Ag가 이용되었다. 제1 내지 제4구체예에 따른 접합재(26) 및 비교예에 따른 접합재는 가열에 기초하여 히트 싱크(15)와 LSI 칩(21) 사이에 삽입되었다. 이 때, 예컨대 접합재(26)와 히트 싱크(15) 사이에 구획되는 접합면의 상태가 관찰되었다.Next, the present inventor verified the generation of voids based on the composition of the bonding material 26. In verification, the present inventors prepared the first to fourth specific examples and comparative examples. In the first embodiment, In-5Ag is used for the bonding material 26. In the second embodiment, In-7Ag is used for the bonding material 26. In the third embodiment, In-10Ag is used for the bonding material 26. In the fourth embodiment, In-15Ag is used for the bonding material 26. In-3Ag was used for the bonding material in the comparative example. The bonding material 26 according to the first to fourth embodiments and the bonding material according to the comparative example were inserted between the heat sink 15 and the LSI chip 21 based on heating. At this time, for example, the state of the joint surface partitioned between the bonding material 26 and the heat sink 15 was observed.

그 결과, 도 4에 도시된 바와 같이, 비교예에서는 접합재의 표면에 다수의 공극이 형성되는 것이 확인되었다. 한편, 제1 구체예에서는 도 5에 도시된 바와 같이, 비교예에 비하여 공극의 수가 감소하는 것이 확인되었다. 제2 구체예에서는 도 6에 도시된 바와 같이, 제1 구체예에 비하여 공극의 수가 감소하는 것이 확인되었다. 제3 구체예에서는 도 7에 도시된 바와 같이, 제2 구체예에 비하여 공극의 수가 감소하는 것이 확인되었다. 제4 구체예에서는 도 8에 도시된 바와 같이, 공극은 거의 관찰되지 않는 것이 확인되었다.As a result, as shown in FIG. 4, in the comparative example, it was confirmed that a large number of voids were formed on the surface of the bonding material. On the other hand, in the first embodiment, as shown in FIG. 5, it was confirmed that the number of voids was reduced as compared with the comparative example. In the second embodiment, as shown in FIG. 6, it was confirmed that the number of voids was reduced in comparison with the first embodiment. In the third embodiment, as shown in FIG. 7, it was confirmed that the number of voids was reduced as compared with the second embodiment. In the fourth embodiment, as shown in FIG. 8, it was confirmed that little void was observed.

이상의 검증 결과, 접합재(26)의 전 중량에 대하여 Ag의 함유량이 증대함에 따라 공극이 감소하는 것이 확인되었다. 바꿔 말하면, Ag의 함유량이 증대함에 따 라 접합재(26)의 습윤성이 향상되는 것이 확인되었다. 도 3의 표로부터 알 수 있는 바와 같이 바와 같이, 고상점 및 액상점의 차가 증대함에 따라 공극의 수가 감소하는 것이 확인되었다. 이렇게 해서 공극의 발생이 저감되면, 융제와 같은 활성제의 첨가 없이 접합재(26)는 지금까지 이상으로 높은 밀도로 히트 싱크(15)나 LSI 칩(21)에 접촉할 수 있다. LSI 칩(21)으로부터 히트 싱크(15)로 열의 전달이 효율적으로 실현될 수 있다.As a result of the above verification, it was confirmed that the voids decrease as the content of Ag increases with respect to the total weight of the bonding material 26. In other words, it was confirmed that the wettability of the bonding material 26 is improved as the content of Ag increases. As can be seen from the table of FIG. 3, it was confirmed that the number of voids decreased as the difference between the solid phase and the liquid phase point increased. In this way, when the generation of voids is reduced, the bonding material 26 can contact the heat sink 15 or the LSI chip 21 with a higher density than ever before without the addition of an active agent such as a flux. Heat transfer from the LSI chip 21 to the heat sink 15 can be efficiently realized.

다음에, 본 발명자는 접합재(26)의 재료의 열저항을 계측하였다. 계측에 있어서, 본 발명자는 구체예 및 제1 내지 제3 비교예를 준비하였다. 구체예에는 In-10Ag이 준비되었다. 제1 비교예에는 In-48Sn이 준비되었다. 제2 비교예에는 Sn-20Pb가 준비되었다. 제3 비교예에는 Sn-20Pb와 Sn-95Pb와 Sn-20Pb와의 적층체가 준비되었다. 구체예 및 제1 내지 제3 비교예의 열저항치[℃/W]가 계측되었다.Next, the inventor measured the thermal resistance of the material of the bonding material 26. In the measurement, the present inventors prepared specific examples and first to third comparative examples. In-10Ag was prepared in the specific example. In-48Sn was prepared for the first comparative example. Sn-20Pb was prepared for the second comparative example. In the third comparative example, a laminate of Sn-20Pb, Sn-95Pb, and Sn-20Pb was prepared. The thermal resistance value [degreeC / W] of the specific example and the 1st-3rd comparative examples was measured.

그 결과, 구체예에서는 0.0383[℃/W]의 값이 계측되었다. 제1 비교예에서는 0.0696[℃/W]의 값이 계측되었다. 제2 비교예에서는 0.0543[℃/W]의 값이 계측되었다. 제3 비교예에서는 0.0545[℃/W]의 값이 계측되었다. 구체예에서는 제1 내지 제3 비교예에 비하여 열저항치가 저감되는 것이 확인되었다. 지금까지의 땜납 재료에 비하여 열전도율이 향상되는 것이 확인되었다. 이러한 접합재(26)에 따르면, LSI 칩(21)으로부터 히트 싱크(15)로 열의 전달은 효율적으로 실현될 수 있다.As a result, in the specific example, the value of 0.0383 [° C / W] was measured. In the first comparative example, a value of 0.0696 [° C / W] was measured. In the second comparative example, a value of 0.0543 [° C / W] was measured. In the third comparative example, a value of 0.0545 [° C / W] was measured. In the specific example, it was confirmed that the thermal resistance value was reduced compared with the 1st-3rd comparative example. It was confirmed that the thermal conductivity is improved as compared with the conventional solder material. According to this bonding material 26, heat transfer from the LSI chip 21 to the heat sink 15 can be efficiently realized.

다음에, 본 발명자는 접합재(26)의 두께와 열저항치와의 관계를 검증하였다. 검증에 있어서, 본 발명자는 구체예 및 제1 내지 제3 비교예를 준비하였다. 구체예에는 In-10Ag가 준비되었다. 제1 비교예에는 Sn-37Pb와 Sn-95Pb와 Sn-37Pb와의 적 층체가 준비되었다. 제2 비교예에는 Sn-20Pb가 준비되었다. 제3 비교예에는 In-52Sn이 준비되었다. 구체예 및 제1 내지 제3 비교예에서는, 100 ㎛, 200 ㎛, 250 ㎛의 두께를 갖는 3개의 샘플이 각각 준비되었다. 3개의 샘플로 열저항치[℃/W]가 계측되었다.Next, the present inventor verified the relationship between the thickness of the bonding material 26 and the heat resistance value. In verification, the present inventors prepared specific examples and first to third comparative examples. In-10Ag was prepared in the specific example. In the first comparative example, a laminate of Sn-37Pb, Sn-95Pb, and Sn-37Pb was prepared. Sn-20Pb was prepared for the second comparative example. In-52Sn was prepared for the third comparative example. In the specific examples and the first to third comparative examples, three samples having thicknesses of 100 μm, 200 μm, and 250 μm were prepared, respectively. The thermal resistance value [° C./W] was measured with three samples.

그 결과, 도 9에 도시된 바와 같이 구체예에서는, 제1 내지 제3 비교예에 비하여 모든 샘플에서 상대적으로 열저항치가 저감되는 것이 확인되었다. 지금까지의 땜납 재료에 비하여 열전도율이 향상되는 것이 확인되었다. LSI 칩(21)으로부터 히트 싱크(15)로 열이 효율적으로 전달되는 것이 확인되었다.As a result, as shown in FIG. 9, in the specific example, it was confirmed that the thermal resistance value was relatively reduced in all the samples as compared with the first to third comparative examples. It was confirmed that the thermal conductivity is improved as compared with the conventional solder material. It was confirmed that heat is efficiently transferred from the LSI chip 21 to the heat sink 15.

이상과 같이 본 발명에 따르면, 열을 효율적으로 전달할 수 있는 전자 부품 패키지가 제공될 수 있다. 본 발명에 따르면, 전자 부품 패키지의 실현에 크게 기여하는 접합 조립체가 제공될 수 있다.As described above, according to the present invention, an electronic component package capable of efficiently transferring heat may be provided. According to the present invention, a bonding assembly can be provided which greatly contributes to the realization of the electronic component package.

Claims (4)

기판과, 기판의 표면에 실장되는 전자 부품과, 기판 상에서 전자 부품의 표면에 수용되는 열전도 부재와, 전자 부품과 열전도 부재 사이에 삽입되어 In 및 3 중량%를 초과하는 범위에서 Ag를 함유하는 재료로 형성되는 접합재를 포함하는 것을 특징으로 하는 전자 부품 패키지.A material containing Ag in a range exceeding 3% by weight of the substrate, an electronic component mounted on the surface of the substrate, a thermally conductive member accommodated on the surface of the electronic component on the substrate, and inserted between the electronic component and the thermally conductive member An electronic component package comprising a bonding material formed of. 제1항에 있어서, 상기 접합재의 융점은 상기 기판 및 상기 전자 부품을 접속하는 단자의 융점보다 낮은 것을 특징으로 하는 전자 부품 패키지.The electronic component package according to claim 1, wherein a melting point of the bonding material is lower than a melting point of a terminal connecting the substrate and the electronic component. 제1항에 있어서, 상기 접합재의 융점은 상기 전자 부품의 내열 온도보다 낮은 것을 특징으로 하는 전자 부품 패키지.The electronic component package according to claim 1, wherein a melting point of the bonding material is lower than a heat resistance temperature of the electronic component. 적어도 부분적으로 표면에서 제1 금속체를 노출시키는 제1 부재와, 적어도 부분적으로 표면에서 제2 금속체를 노출시키고 이 제2 금속체에 의해 제1 금속체에 수용되는 제2 부재와, 제1 금속체와 제2 금속체 사이에 삽입되어 In 및 3 중량%를 초과하는 범위에서 Ag를 함유하는 재료로 형성되는 접합재를 포함하는 것을 특징으로 하는 접합 조립체.A first member at least partially exposing the first metal body at the surface, a second member at least partially exposing the second metal body at the surface and received in the first metal body by the second metal body; And a bonding material interposed between the metal body and the second metal body and formed of a material containing Ag in a range of In and more than 3% by weight.
KR1020050094888A 2005-06-27 2005-10-10 Electronic component package including joint material having higher heat conductivity KR100755254B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2005-00186004 2005-06-27
JP2005186004A JP2007005670A (en) 2005-06-27 2005-06-27 Electronic part package and bonding assembly

Publications (3)

Publication Number Publication Date
KR20060136294A true KR20060136294A (en) 2007-01-02
KR20070000324A KR20070000324A (en) 2007-01-02
KR100755254B1 KR100755254B1 (en) 2007-09-05

Family

ID=37036788

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050094888A KR100755254B1 (en) 2005-06-27 2005-10-10 Electronic component package including joint material having higher heat conductivity

Country Status (6)

Country Link
US (1) US20070012477A1 (en)
EP (1) EP1739743A3 (en)
JP (1) JP2007005670A (en)
KR (1) KR100755254B1 (en)
CN (1) CN1889255A (en)
TW (1) TWI276210B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211457B2 (en) * 2006-09-19 2013-06-12 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof
JP4553032B2 (en) * 2008-05-12 2010-09-29 株式会社デンソー Load drive device
JP5447175B2 (en) 2010-05-17 2014-03-19 富士通セミコンダクター株式会社 Semiconductor device
US20120126387A1 (en) * 2010-11-24 2012-05-24 Lsi Corporation Enhanced heat spreader for use in an electronic device and method of manufacturing the same
JP5983032B2 (en) * 2012-05-28 2016-08-31 富士通株式会社 Semiconductor package and wiring board unit
JP6036083B2 (en) * 2012-09-21 2016-11-30 株式会社ソシオネクスト Semiconductor device and method for manufacturing the same, electronic device and method for manufacturing the same
JP6056490B2 (en) * 2013-01-15 2017-01-11 株式会社ソシオネクスト Semiconductor device and manufacturing method thereof
JP5796627B2 (en) * 2013-12-27 2015-10-21 株式会社ソシオネクスト Semiconductor device and manufacturing method thereof
US9401590B2 (en) * 2014-01-06 2016-07-26 Hamilton Sundstrand Corporation Heat sink for contactor in power distribution assembly
CN108260273A (en) * 2016-12-29 2018-07-06 盟创科技股份有限公司 Network communication device and its electronics module and structure of heat dissipation substrate

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4034469A (en) * 1976-09-03 1977-07-12 Ibm Corporation Method of making conduction-cooled circuit package
US4265775A (en) * 1979-08-16 1981-05-05 International Business Machines Corporation Non-bleeding thixotropic thermally conductive material
JPS6332956A (en) * 1986-07-26 1988-02-12 Nec Corp Package
JPS63192250A (en) * 1987-02-04 1988-08-09 Hitachi Ltd Thermal conduction cooling module device
US4869954A (en) * 1987-09-10 1989-09-26 Chomerics, Inc. Thermally conductive materials
US4914551A (en) * 1988-07-13 1990-04-03 International Business Machines Corporation Electronic package with heat spreader member
US5213715A (en) * 1989-04-17 1993-05-25 Western Digital Corporation Directionally conductive polymer
US5538789A (en) * 1990-02-09 1996-07-23 Toranaga Technologies, Inc. Composite substrates for preparation of printed circuits
US5213868A (en) * 1991-08-13 1993-05-25 Chomerics, Inc. Thermally conductive interface materials and methods of using the same
KR960003764B1 (en) * 1992-03-06 1996-03-22 신꼬오 덴기 고오교오 가부시끼가이샤 Process for making a package for accommodating electronic elements
JP3039584B2 (en) * 1992-07-03 2000-05-08 株式会社日立製作所 Assembly method of semiconductor integrated circuit module
US5527998A (en) * 1993-10-22 1996-06-18 Sheldahl, Inc. Flexible multilayer printed circuit boards and methods of manufacture
US5551627A (en) * 1994-09-29 1996-09-03 Motorola, Inc. Alloy solder connect assembly and method of connection
JPH08130267A (en) * 1994-11-01 1996-05-21 Mitsubishi Electric Corp Resin sealed semiconductor package, resin sealed semiconductor device and manufacture thereof
JPH0970687A (en) * 1995-07-04 1997-03-18 Toyota Central Res & Dev Lab Inc Leadless solder alloy
US5736790A (en) * 1995-09-21 1998-04-07 Kabushiki Kaisha Toshiba Semiconductor chip, package and semiconductor device
US5730932A (en) * 1996-03-06 1998-03-24 International Business Machines Corporation Lead-free, tin-based multi-component solder alloys
KR980006783A (en) * 1996-05-13 1998-03-30 이. 힐러 윌리엄 Low cost phase locked motor control method and structure
JPH09306954A (en) * 1996-05-20 1997-11-28 Hitachi Ltd Semiconductor device, mounting thereof and mounting structure
US20010002982A1 (en) * 1996-06-12 2001-06-07 Sarkhel Amit Kumar Lead-free, high tin ternary solder alloy of tin, silver, and bismuth
WO1997047426A1 (en) * 1996-06-12 1997-12-18 International Business Machines Corporation Lead-free, high tin ternary solder alloy of tin, silver, and indium
US5738936A (en) * 1996-06-27 1998-04-14 W. L. Gore & Associates, Inc. Thermally conductive polytetrafluoroethylene article
US5786635A (en) * 1996-12-16 1998-07-28 International Business Machines Corporation Electronic package with compressible heatsink structure
US6114413A (en) * 1997-07-10 2000-09-05 International Business Machines Corporation Thermally conducting materials and applications for microelectronic packaging
JP2000012748A (en) * 1998-06-22 2000-01-14 Hitachi Ltd Electronic circuit device
KR100315023B1 (en) * 1998-12-26 2002-04-24 박종섭 Lead frame junctions in stack packages and bonding methods using them
US6176947B1 (en) * 1998-12-31 2001-01-23 H-Technologies Group, Incorporated Lead-free solders
US6706219B2 (en) * 1999-09-17 2004-03-16 Honeywell International Inc. Interface materials and methods of production and use thereof
JP2001127074A (en) * 1999-10-29 2001-05-11 Hitachi Ltd Semiconductor device and full-wave rectificaton device using the same
US6365973B1 (en) * 1999-12-07 2002-04-02 Intel Corporation Filled solder
JP2001308215A (en) * 2000-04-24 2001-11-02 Ngk Spark Plug Co Ltd Semiconductor device
US6724078B1 (en) * 2000-08-31 2004-04-20 Intel Corporation Electronic assembly comprising solderable thermal interface
JP2003112288A (en) * 2001-10-03 2003-04-15 Mitsubishi Heavy Ind Ltd Silver solder material
US7311967B2 (en) * 2001-10-18 2007-12-25 Intel Corporation Thermal interface material and electronic assembly having such a thermal interface material
US6504242B1 (en) * 2001-11-15 2003-01-07 Intel Corporation Electronic assembly having a wetting layer on a thermally conductive heat spreader
US7036573B2 (en) * 2002-02-08 2006-05-02 Intel Corporation Polymer with solder pre-coated fillers for thermal interface materials
US7436058B2 (en) * 2002-05-09 2008-10-14 Intel Corporation Reactive solder material
US7029358B2 (en) * 2002-06-28 2006-04-18 Canon Kabushiki Kaisha Hermetic container and image display apparatus using the same
JP3761846B2 (en) * 2002-07-11 2006-03-29 内橋エステック株式会社 Alloy type thermal fuse and wire for thermal fuse element
CN1738694A (en) * 2002-11-18 2006-02-22 霍尼韦尔国际公司 Coating compositions for solder spheres, powders and preforms, methods of production and uses thereof
US7210227B2 (en) * 2002-11-26 2007-05-01 Intel Corporation Decreasing thermal contact resistance at a material interface
US6841867B2 (en) * 2002-12-30 2005-01-11 Intel Corporation Gel thermal interface materials comprising fillers having low melting point and electronic packages comprising these gel thermal interface materials
US20070164424A1 (en) * 2003-04-02 2007-07-19 Nancy Dean Thermal interconnect and interface systems, methods of production and uses thereof
US7030485B2 (en) * 2003-06-26 2006-04-18 Intel Corporation Thermal interface structure with integrated liquid cooling and methods
US7218000B2 (en) * 2003-06-27 2007-05-15 Intel Corporation Liquid solder thermal interface material contained within a cold-formed barrier and methods of making same
US20060113683A1 (en) * 2004-09-07 2006-06-01 Nancy Dean Doped alloys for electrical interconnects, methods of production and uses thereof

Similar Documents

Publication Publication Date Title
KR100755254B1 (en) Electronic component package including joint material having higher heat conductivity
KR20060136294A (en) Electronic component package including joint material having higher heat conductivity
US6822331B2 (en) Method of mounting a circuit component and joint structure therefor
US7038313B2 (en) Semiconductor device and method of manufacturing the same
US20070205017A1 (en) Circuit device and method of manufacturing the same
US7080445B2 (en) Method for connecting printed circuit boards and connected printed circuit boards
JP2010109132A (en) Thermoelectric module package and method of manufacturing the same
JP4992310B2 (en) Manufacturing method of laminated substrate
WO2007037306A1 (en) Heat sink module and process for producing the same
JP2007157863A (en) Power semiconductor device, and method of manufacturing same
JP2005191156A (en) Wiring plate containing electric component, and its manufacturing method
JP2006100640A (en) Ceramic circuit board and power semiconductor module using same
JP5240982B2 (en) Heat conduit
JP2012074497A (en) Circuit board
JP2004356625A (en) Semiconductor device and method for manufacturing the same
JP2006269966A (en) Wiring substrate and its manufacturing method
JP2004266074A (en) Wiring board
JP2008218617A (en) Heat radiation substrate and circuit module using the same
JP3981090B2 (en) Manufacturing method of electronic device
JP2005236276A (en) Insulated heat transfer structure and substrate for power module
WO2007138771A1 (en) Semiconductor device, electronic parts module, and method for manufacturing the semiconductor device
JP4712449B2 (en) Metal core circuit board
JP4407509B2 (en) Insulated heat transfer structure and power module substrate
JP2008199057A (en) Electronic equipment and method of manufacturing the same
JP4882394B2 (en) Semiconductor device