JP5796627B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5796627B2
JP5796627B2 JP2013272601A JP2013272601A JP5796627B2 JP 5796627 B2 JP5796627 B2 JP 5796627B2 JP 2013272601 A JP2013272601 A JP 2013272601A JP 2013272601 A JP2013272601 A JP 2013272601A JP 5796627 B2 JP5796627 B2 JP 5796627B2
Authority
JP
Japan
Prior art keywords
semiconductor device
metal layer
semiconductor element
melting point
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013272601A
Other languages
Japanese (ja)
Other versions
JP2014060458A (en
Inventor
匠 井原
匠 井原
毛利 正美
正美 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Socionext Inc
Original Assignee
Socionext Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Socionext Inc filed Critical Socionext Inc
Priority to JP2013272601A priority Critical patent/JP5796627B2/en
Publication of JP2014060458A publication Critical patent/JP2014060458A/en
Application granted granted Critical
Publication of JP5796627B2 publication Critical patent/JP5796627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Description

本発明は、半導体装置とその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof.

電子機器には様々な半導体装置が搭載される。その半導体装置はパッケージ基板上に半導体素子を搭載してなり、半導体素子で発生した熱は放熱板を伝って外部に逃がされる。   Various semiconductor devices are mounted on electronic devices. The semiconductor device includes a semiconductor element mounted on a package substrate, and heat generated in the semiconductor element is transferred to the outside through a heat sink.

放熱板での放熱効果を高めるには、半導体素子と放熱板とが熱的に良好に接続されているのが好ましい。そのため、ハンダのような熱伝導率の高い合金を介して半導体素子と放熱板とを接続し、半導体素子で発生した熱を放熱板に効率的に伝達する構造が提案されている。   In order to enhance the heat dissipation effect of the heat sink, it is preferable that the semiconductor element and the heat sink are thermally connected. For this reason, a structure has been proposed in which a semiconductor element and a heat sink are connected via an alloy having high thermal conductivity such as solder, and heat generated in the semiconductor element is efficiently transmitted to the heat sink.

そのような構造においては、単に放熱効果を高めるだけでなく、半導体装置の信頼性を向上させるのが好ましい。   In such a structure, it is preferable not only to improve the heat dissipation effect but also to improve the reliability of the semiconductor device.

特開2007−173416号公報JP 2007-173416 A 特開平4−245652号公報Japanese Patent Laid-Open No. 4-245652

半導体装置とその製造方法において、半導体装置の信頼性を高めることを目的とする。   An object of the semiconductor device and the manufacturing method thereof is to improve the reliability of the semiconductor device.

以下の開示の一観点によれば、基板と、前記基板の上方に配設された半導体素子と、前記半導体素子の上方に配設された第1の金属層と、前記第1の金属層の上方に配設された第2の金属層と、前記第2の金属層の上方に配設された放熱部材と、前記第1の金属層と前記第2の金属層とを接続する、In及びAgを含む接続部材とを有し、前記接続部材は、前記第1の金属層の上方に配設され、第1の融点を有する第1の部材と、前記第1の部材の上方に配設され、前記第1の融点よりも高い第2の融点を有し、前記第1の部材よりも広い面積を有する第2の部材と、前記第2の部材の上方に配設され、前記第2の融点よりも低い第3の融点を有し、前記第2の部材よりも狭い面積を有する第3の部材とを有する半導体装置が提供される。 According to one aspect of the following disclosure, a substrate, a semiconductor element disposed above the substrate, a first metal layer disposed above the semiconductor element, and the first metal layer A second metal layer disposed above; a heat dissipating member disposed above the second metal layer; and connecting the first metal layer and the second metal layer to In and have a connection member comprising Ag, the connection member is disposed above the first metal layer, a first member having a first melting point, arranged above the first member A second member having a second melting point higher than the first melting point and having a larger area than the first member; and being disposed above the second member, a third melting point lower than the melting point of the third semiconductor device which have a and member is provided having a smaller area than the second member.

また、その開示の別の観点によれば、基板上に半導体素子を配設する工程と、前記半導体素子の上方に第1の金属層を配設する工程と、前記第1の金属層の上方にIn及びAgを含む接続部材を配設する工程と、放熱部材の一の面に第2の金属層を形成する工程と、前記接続部材の上方に前記第2の金属層が接するように前記放熱部材を加熱押圧しながら接続する工程と、前記放熱部材を押圧しながら、接続部材を加熱することにより、前記半導体素子と前記放熱部材を接続する工程とを有し、前記接続部材は、前記第1の金属層の上方に配設され、第1の融点を有する第1の部材と、前記第1の部材の上方に配設され、前記第1の融点よりも高い第2の融点を有し、前記第1の部材よりも広い面積を有する第2の部材と、前記第2の部材の上方に配設され、前記第2の融点よりも低い第3の融点を有し、前記第2の部材よりも狭い面積を有する第3の部材とを有する半導体装置の製造方法が提供される。 According to another aspect of the disclosure, a step of disposing a semiconductor element on a substrate, a step of disposing a first metal layer above the semiconductor element, and an upper portion of the first metal layer A step of disposing a connection member containing In and Ag, a step of forming a second metal layer on one surface of the heat dissipation member, and the second metal layer in contact with the connection member above the connection member. a step of connecting with heating presses the heat radiation member, while pressing the heat radiating member, by heating the connecting member, possess a step of connecting the heat radiating member and the semiconductor element, wherein the connecting member, the A first member disposed above the first metal layer and having a first melting point; and a first member disposed above the first member and having a second melting point higher than the first melting point. A second member having a larger area than the first member, and above the second member. It is set, a third melting point lower than the second melting point, a method of manufacturing a semiconductor device which have a third member having a smaller area than the second member.

図1は、調査に使用した半導体装置の断面図である。FIG. 1 is a cross-sectional view of the semiconductor device used for the investigation. 図2(a)〜(c)は、調査に使用した半導体装置の製造途中の拡大断面図である。2A to 2C are enlarged cross-sectional views in the course of manufacturing the semiconductor device used for the investigation. 図3は、調査に使用した半導体装置が備えるパッケージ基板の顕微鏡像を基にして描いた断面図である。FIG. 3 is a cross-sectional view drawn on the basis of a microscopic image of a package substrate included in the semiconductor device used for the investigation. 図4は、調査に使用した半導体装置が備えるパッケージ基板の顕微鏡像を基にして描いた平面図である。FIG. 4 is a plan view drawn on the basis of a microscopic image of a package substrate included in the semiconductor device used for the investigation. 図5(a)、(b)は、実験に使用したサンプルの断面図である。5A and 5B are cross-sectional views of samples used in the experiment. 図6(a)〜(c)は、放熱板を取り外した実験サンプルの顕微鏡像を基にして描いた図である。6 (a) to 6 (c) are diagrams drawn on the basis of microscopic images of experimental samples with the heat sink removed. 図7は、接続部材にボイドが形成されることなく、加熱によって溶融した第1の部材と第3の部材が繋がった半導体装置の断面図である。FIG. 7 is a cross-sectional view of the semiconductor device in which the first member and the third member melted by heating are connected without forming voids in the connection member. 図8は、第2の部材が第1の部材と第3の部材によって覆われた半導体装置の顕微鏡像を基にして描いた断面図である。FIG. 8 is a cross-sectional view drawn on the basis of a microscopic image of a semiconductor device in which the second member is covered with the first member and the third member. 図9(a)は、第1の部材と第3の部材の厚さを薄くした半導体装置の断面図であり、図9(b)は、接続部材の全体の大きさを小さくした半導体装置の断面図である。FIG. 9A is a cross-sectional view of a semiconductor device in which the thickness of the first member and the third member is reduced, and FIG. 9B is a diagram of the semiconductor device in which the overall size of the connection member is reduced. It is sectional drawing. 図10は、単層構造の接続部材によって引き起こされる問題について説明するための断面図である。FIG. 10 is a cross-sectional view for explaining a problem caused by a connection member having a single-layer structure. 図11(a)は、放熱板の下面の顕微鏡像を基にして描いた平面図であり、図11(b)は、放熱板とその周囲の顕微鏡像を基にして描いた断面図である。FIG. 11A is a plan view drawn on the basis of a microscopic image of the lower surface of the heat sink, and FIG. 11B is a cross-sectional view drawn on the basis of the heat sink and the surrounding microscopic image. . 図12(a)〜(c)は、接続部材にボイドが発生する原因について示す断面図である。FIGS. 12A to 12C are cross-sectional views illustrating the cause of voids generated in the connection member. 図13(a)、(b)は、第1実施形態に係る半導体装置の製造途中の断面図(その1)である。13A and 13B are cross-sectional views (part 1) in the middle of manufacturing the semiconductor device according to the first embodiment. 図14(a)、(b)は、第1実施形態に係る半導体装置の製造途中の断面図(その2)である。14A and 14B are cross-sectional views (part 2) in the middle of manufacturing the semiconductor device according to the first embodiment. 図15(a)、(b)は、第1実施形態に係る半導体装置の製造途中の断面図(その3)である。FIGS. 15A and 15B are cross-sectional views (part 3) in the course of manufacturing the semiconductor device according to the first embodiment. 図16は、第1実施形態に係る半導体装置の製造途中の断面図(その4)である。FIG. 16 is a cross-sectional view (part 4) of the semiconductor device according to the first embodiment in the middle of manufacture. 図17は、第1実施形態に係る半導体装置の製造途中の断面図(その5)である。FIG. 17 is a cross-sectional view (part 5) in the middle of manufacturing the semiconductor device according to the first embodiment. 図18は、第1実施形態に係る半導体装置の製造途中の断面図(その6)である。FIG. 18 is a cross-sectional view (No. 6) of the semiconductor device according to the first embodiment in the middle of manufacture. 図19は、第1実施形態に係る半導体装置の製造途中の断面図(その7)である。FIG. 19 is a sectional view (No. 7) in the middle of manufacturing the semiconductor device according to the first embodiment. 図20は、第1実施形態で使用する接続部材の斜視図である。FIG. 20 is a perspective view of a connection member used in the first embodiment. 図21は、第1実施形態に係る半導体装置の上面図である。FIG. 21 is a top view of the semiconductor device according to the first embodiment. 図22は、第1実施形態に係る半導体装置によって奏される別の効果について説明するための断面図である。FIG. 22 is a cross-sectional view for explaining another effect produced by the semiconductor device according to the first embodiment. 図23は、第1実施形態に係る半導体装置によって奏される他の効果について説明するための断面図である。FIG. 23 is a cross-sectional view for explaining another effect exhibited by the semiconductor device according to the first embodiment. 図24(a)は、第2実施形態の第1例に係る接続部材の作製方法について説明するための上面図であり、図24(b)は図24(a)のX2−X2線に沿う断面図である。FIG. 24A is a top view for explaining a manufacturing method of the connection member according to the first example of the second embodiment, and FIG. 24B is along the line X2-X2 in FIG. It is sectional drawing. 図15は、第2実施形態の第1例によって作製された接続部材の斜視図である。FIG. 15 is a perspective view of a connection member manufactured according to the first example of the second embodiment. 図26(a)は、第2実施形態の第1例に係る半導体装置の平面図であり、図26(b)は図26(a)のX3−X3線に沿う断面図である。FIG. 26A is a plan view of the semiconductor device according to the first example of the second embodiment, and FIG. 26B is a cross-sectional view taken along the line X3-X3 in FIG. 図27(a)は、第2実施形態の第2例に係る接続部材の作製方法について説明するための上面図であり、図27(b)は図27(a)のX4−X4線に沿う断面図である。FIG. 27A is a top view for explaining a manufacturing method of the connection member according to the second example of the second embodiment, and FIG. 27B is along the line X4-X4 in FIG. It is sectional drawing. 図28は、第2実施形態の第2例によって作製された接続部材の斜視図である。FIG. 28 is a perspective view of a connection member manufactured according to the second example of the second embodiment. 図29(a)は、第2実施形態の第2例に係る半導体装置の平面図であり、図29(b)は図29(a)のX5−X5線に沿う断面図である。FIG. 29A is a plan view of a semiconductor device according to a second example of the second embodiment, and FIG. 29B is a cross-sectional view taken along line X5-X5 in FIG. 図30(a)は、第3実施形態に係る接続部材の作製方法について説明するための上面図であり、図30(b)は図30(a)のX6−X6線に沿う断面図である。FIG. 30A is a top view for explaining a manufacturing method of the connection member according to the third embodiment, and FIG. 30B is a cross-sectional view taken along line X6-X6 in FIG. . 図31(a)は、第3実施形態に係る接続部材の下側層の斜視図であり、図31(b)はその接続部材の斜視図である。FIG. 31A is a perspective view of the lower layer of the connection member according to the third embodiment, and FIG. 31B is a perspective view of the connection member. 図32(a)は、第3実施形態に係る半導体装置の平面図であり、図32(b)は図32(a)のX7−X7線に沿う断面図である。FIG. 32A is a plan view of the semiconductor device according to the third embodiment, and FIG. 32B is a cross-sectional view taken along line X7-X7 in FIG.

本実施形態の説明に先立ち、本願発明者が行った調査結果について説明する。   Prior to the description of the present embodiment, the results of an investigation conducted by the present inventor will be described.

図1は、調査に使用した半導体装置の断面図である。   FIG. 1 is a cross-sectional view of the semiconductor device used for the investigation.

この半導体装置1は、BGA(Ball Grid Array)タイプの半導体装置であって、パッケージ基板2と半導体素子10とを備える。   The semiconductor device 1 is a BGA (Ball Grid Array) type semiconductor device, and includes a package substrate 2 and a semiconductor element 10.

パッケージ基板2の一方の主面2a上には第1の電極パッド3が設けられ、この第1の電極パッド3の上に外部接続端子5として機能するハンダバンプが接合される。   A first electrode pad 3 is provided on one main surface 2 a of the package substrate 2, and a solder bump functioning as an external connection terminal 5 is bonded onto the first electrode pad 3.

一方、パッケージ基板2の他方の主面2b上には第2の電極パッド4が設けられる。その第2の電極パッド4は、ハンダバンプ7を介して半導体素子10の電極8と電気的かつ機械的に接続される。そして、半導体素子10とパッケージ基板2との接続信頼性を高めるために、これらの間の隙間にはアンダーフィル樹脂11が充填される。   On the other hand, a second electrode pad 4 is provided on the other main surface 2 b of the package substrate 2. The second electrode pad 4 is electrically and mechanically connected to the electrode 8 of the semiconductor element 10 via the solder bump 7. In order to increase the connection reliability between the semiconductor element 10 and the package substrate 2, a gap between them is filled with an underfill resin 11.

更に、パッケージ基板2の他方の主面2bには、電子部品14を実装するための第3の電極パッド6が設けられる。電子部品14は、例えばチップコンデンサであって、第3の電極パッド6にハンダ付けされる。   Furthermore, a third electrode pad 6 for mounting the electronic component 14 is provided on the other main surface 2 b of the package substrate 2. The electronic component 14 is a chip capacitor, for example, and is soldered to the third electrode pad 6.

その電子部品14は、半導体素子10と共に、金属製の放熱板18で覆われる。放熱板18は、半導体素子10で発生した熱を外部に逃がす放熱部材としての役割を担うものであり、接着剤19によってパッケージ基板2に接着される。   The electronic component 14 is covered with a metal heat sink 18 together with the semiconductor element 10. The heat radiating plate 18 serves as a heat radiating member that releases heat generated in the semiconductor element 10 to the outside, and is bonded to the package substrate 2 by an adhesive 19.

ここで、放熱板18と半導体素子10との間に隙間があると、その隙間における空気の断熱作用によって半導体素子10の熱が放熱板18に伝わり難くなり、放熱板18による放熱効果が低下する。   Here, if there is a gap between the heat radiating plate 18 and the semiconductor element 10, the heat of the semiconductor element 10 becomes difficult to be transmitted to the heat radiating plate 18 due to the heat insulating action of air in the gap, and the heat radiating effect by the heat radiating plate 18 is reduced. .

そこで、この半導体装置1では、半導体素子10の上面と放熱板18の下面とを金属製の接続部材16で接続することにより、半導体素子10で発生した熱を速やかに放熱板18に伝達させ、放熱板18による放熱効果を高めている。   Therefore, in this semiconductor device 1, by connecting the upper surface of the semiconductor element 10 and the lower surface of the heat radiating plate 18 with a metal connecting member 16, heat generated in the semiconductor element 10 is quickly transmitted to the heat radiating plate 18, The heat dissipation effect by the heat sink 18 is enhanced.

但し、このように接続部材16により放熱板18と半導体素子10とを直接接続すると、放熱板18が熱膨張したときに、放熱板18と半導体素子10との熱膨張率差が原因で半導体素子10に応力が加わることになる。その応力は、半導体素子10にクラックを生じさせたり、半導体素子10とパッケージ基板2との接続信頼性を低下させる原因となる。   However, when the heat radiating plate 18 and the semiconductor element 10 are directly connected by the connecting member 16 in this way, when the heat radiating plate 18 is thermally expanded, the difference in the thermal expansion coefficient between the heat radiating plate 18 and the semiconductor element 10 causes the semiconductor element. 10 is stressed. The stress causes a crack in the semiconductor element 10 and decreases the connection reliability between the semiconductor element 10 and the package substrate 2.

そのため、本例では、接続部材16を第1〜第3の部材21〜23の積層構造にすると共に、第2の部材22として第1、第3の部材23よりもヤング率が小さく変形し易い金属材料を使用して、放熱板18から半導体素子10に加わる応力を緩和する。そのような第2の部材22の材料としては、例えば高融点ハンダがある。   Therefore, in this example, the connection member 16 has a laminated structure of the first to third members 21 to 23, and the Young member has a smaller Young's modulus than the first and third members 23 and is easily deformed as the second member 22. A metal material is used to relieve stress applied to the semiconductor element 10 from the heat sink 18. Examples of the material of the second member 22 include high melting point solder.

また、第1の部材21と第3の部材23は、上記のように応力緩和の役割を担う第2の部材22を半導体素子21や放熱板18に接合するのに使用され、その材料としては低融点ハンダが使用される。   The first member 21 and the third member 23 are used to join the second member 22, which plays a role of stress relaxation as described above, to the semiconductor element 21 and the heat radiating plate 18. Low melting point solder is used.

このように低融点ハンダを使用することで、接続部材16を加熱して放熱板18と半導体素子10に接合するときに、高融点ハンダを含む第2の部材22が溶融するのを防ぎながら、第1及び第3の部材21、23のみを選択的に溶融することができる。   By using the low melting point solder as described above, the second member 22 including the high melting point solder is prevented from melting when the connection member 16 is heated and joined to the heat sink 18 and the semiconductor element 10. Only the first and third members 21 and 23 can be selectively melted.

以上のように、接続部材16は、放熱板18に半導体素子21の熱を効率的に伝える役割に加え、放熱板18から半導体素子10に加わる応力を緩和する役割も担う。   As described above, the connection member 16 plays a role of relieving the stress applied to the semiconductor element 10 from the heat sink 18 in addition to the role of efficiently transferring the heat of the semiconductor element 21 to the heat sink 18.

しかしながら、接続部材16は、半導体装置1の製造時に以下のような問題を引き起こすことが調査によって明らかとなった。   However, the investigation has revealed that the connection member 16 causes the following problems when the semiconductor device 1 is manufactured.

図2(a)〜(c)は、上記の半導体装置1の製造途中の拡大断面図である。   2A to 2C are enlarged cross-sectional views in the course of manufacturing the semiconductor device 1 described above.

半導体装置1を製造するには、図2(a)に示すように、半導体素子10と放熱板18との間に接続部材16を配し、押圧力Fにより接続部材16に放熱板18を押し付けながら接続部材16を加熱する。   In order to manufacture the semiconductor device 1, as shown in FIG. 2A, the connection member 16 is disposed between the semiconductor element 10 and the heat dissipation plate 18, and the heat dissipation plate 18 is pressed against the connection member 16 by the pressing force F. Then, the connecting member 16 is heated.

その加熱により、低融点ハンダを含む第1及び第3の部材21、23が溶融し、半導体素子10と放熱板18の各々の表面に各接続部材21、23が濡れ広がる。なお、本工程での加熱温度は高融点ハンダを含む第2の部材22の融点よりも低くいので、本工程では第2の部材22は溶融しない。   By the heating, the first and third members 21, 23 including the low melting point solder are melted, and the connection members 21, 23 are spread on the surfaces of the semiconductor element 10 and the heat radiating plate 18. Since the heating temperature in this step is lower than the melting point of the second member 22 including the high melting point solder, the second member 22 is not melted in this step.

また、各接続部材21、23の濡れ性を良好にするために、図2(a)のように、半導体素子10の上面にAuメタライズ層25を形成し、放熱板18の下面にメッキ膜26を形成してもよい。そのメッキ膜26は、例えば、放熱板18上にNiメッキ膜51とAuメッキ膜50をこの順に形成してなる。   Further, in order to improve the wettability of each of the connection members 21 and 23, as shown in FIG. 2A, an Au metallized layer 25 is formed on the upper surface of the semiconductor element 10, and a plating film 26 is formed on the lower surface of the radiator plate 18. May be formed. The plated film 26 is formed, for example, by forming a Ni plated film 51 and an Au plated film 50 in this order on the heat sink 18.

このように各接続部材21、23が濡れ広がると、図2(b)に示すように、第2の部材22の側面22aからこれらの接続部材21、23がはみ出すようになる。そして、最終的には、側面22aの横の空気を巻き込みながら各接続部材21、23が接続され、ボイド29が発生する。   When the connection members 21 and 23 spread out in this manner, the connection members 21 and 23 protrude from the side surface 22a of the second member 22 as shown in FIG. And finally, each connection member 21 and 23 is connected, entraining the air of the side 22a, and the void 29 is generated.

図2(c)に示すように、そのボイド29は半導体装置1の製造途中に破裂し、それによりハンダ粒30が飛散する。ボイド29が破裂する原因としては様々なものが考えられる。   As shown in FIG. 2C, the void 29 is ruptured during the manufacturing of the semiconductor device 1, and the solder particles 30 are scattered. There are various possible causes for the void 29 to burst.

例えば、各接続部材21、23が溶融している状態でこれらの部材に加わる押圧力Fが原因でボイド29が破裂すると考えられる。また、各部材21、23が冷えて固化した後に行われる熱工程によりこれらの部材21、23に熱が加わり、その熱によってボイド29内の空気が熱膨張してボイド29の破裂が発生するとも考えられる。そのような熱工程としては、例えば、半導体装置1をマザーボードに搭載するために行われる外部接続端子5(図1参照)のリフロー工程や、マザーボードに電子部品を搭載する工程がある。   For example, it is considered that the void 29 is ruptured due to the pressing force F applied to these connecting members 21 and 23 in a melted state. In addition, heat is applied to the members 21 and 23 by the heat process performed after the members 21 and 23 are cooled and solidified, and the air in the void 29 is thermally expanded by the heat, and the void 29 is ruptured. Conceivable. Examples of such a thermal process include a reflow process of the external connection terminal 5 (see FIG. 1) performed for mounting the semiconductor device 1 on the motherboard, and a process of mounting electronic components on the motherboard.

図3は、このようにボイド29が破裂してハンダ粒30が飛散した状態における半導体装置の顕微鏡像を基にして描いた断面図である。   FIG. 3 is a cross-sectional view drawn on the basis of a microscopic image of the semiconductor device in a state where the void 29 is ruptured and the solder particles 30 are scattered.

図3に示されるように、ボイド29の破裂によって飛散したハンダ粒30がアンダーフィル樹脂11上に点在している。   As shown in FIG. 3, solder particles 30 scattered by the rupture of the voids 29 are scattered on the underfill resin 11.

図4は、ハンダ粒30が飛散した状態のパッケージ基板2の顕微鏡像を基にして描いた上面図である。   FIG. 4 is a top view drawn based on a microscopic image of the package substrate 2 in a state where the solder grains 30 are scattered.

図4に示されるように、パッケージ基板2の表面上には、飛散したハンダ粒30が点在している。   As shown in FIG. 4, scattered solder grains 30 are scattered on the surface of the package substrate 2.

そのハンダ粒30が電子部品14の端子14a等に付着すると、隣接する端子14a同士がハンダ粒30によって電気的にショートする等の不具合が発生してし、ひいては半導体装置の信頼性を低下させてしまう。   If the solder particles 30 adhere to the terminals 14a and the like of the electronic component 14, problems such as electrical short-circuiting between the adjacent terminals 14a due to the solder particles 30 occur, and as a result, the reliability of the semiconductor device is reduced. End up.

本願発明者は、そのハンダ粒30が、実際にボイド29の破裂によって発生することを確かめるため、次のような実験を行った。   The inventor of the present application conducted the following experiment in order to confirm that the solder grains 30 are actually generated by the burst of the voids 29.

その実験では、断面構造が図5(a)のような実験サンプルS1を用意した。   In the experiment, an experimental sample S1 having a sectional structure as shown in FIG.

実験サンプルS1においては、第1の部材21と第3の部材23の各々を、第2の部材22の側面22aから張り出すように設けた。このような構造によれば、加熱により溶融した第1の部材21と第3の部材23が第2の部材22の横で空気を取り込み易くなり、上記したボイド29が形成され易くなると考えられる。   In the experimental sample S1, each of the first member 21 and the third member 23 is provided so as to protrude from the side surface 22a of the second member 22. According to such a structure, it is considered that the first member 21 and the third member 23 melted by heating can easily take in air beside the second member 22 and the above-described void 29 is easily formed.

また、この実験では、比較のために、断面構造が図5(b)のようなレファレンスサンプルS2も用意した。   In this experiment, a reference sample S2 having a sectional structure as shown in FIG. 5B was also prepared for comparison.

リファレンスサンプルS2においては、第1〜第3の部材21〜23の各々の側面を揃えることにより、実験サンプルS1と比較してボイド29が形成され難い構造とした。   In the reference sample S2, the side surfaces of the first to third members 21 to 23 are aligned so that the void 29 is less likely to be formed compared to the experimental sample S1.

上記のサンプルS1、S2をそれぞれ6個作製し、その各々において第1の部材21と第3の部材23を加熱して溶融することにより、接続部材16により半導体素子10と放熱板18とを接続した。   Six samples S1 and S2 are prepared, and the first member 21 and the third member 23 are heated and melted in each of them, thereby connecting the semiconductor element 10 and the heat sink 18 by the connecting member 16. did.

その後、各サンプルS1、S2の放熱板18を取り外し、パッケージ基板2上に飛散しているハンダ粒30の数を計数した。   Then, the heat sink 18 of each sample S1 and S2 was removed, and the number of solder grains 30 scattered on the package substrate 2 was counted.

その結果、レファレンスサンプルS2では、6個の全てにおいてハンダ粒30の発生はなかった。   As a result, in the reference sample S2, no solder particles 30 were generated in all six samples.

一方、実験サンプルS1においては、6個のうち5個においてハンダ粒30の発生が確認され、ハンダ粒30の発生確率は83%(=100×5/6)であった。   On the other hand, in the experimental sample S1, generation of solder grains 30 was confirmed in 5 out of 6 pieces, and the generation probability of the solder grains 30 was 83% (= 100 × 5/6).

このように、ボイド29が形成され易い実験サンプルS1においてハンダ粒30が多く発生したことから、ハンダ粒30の発生原因がボイド29の破裂にあることが確認された。   Thus, since many solder particles 30 were generated in the experimental sample S1 in which the voids 29 were easily formed, it was confirmed that the cause of the generation of the solder particles 30 was the burst of the voids 29.

なお、図6(a)〜(c)は、放熱板18を取り外した実験サンプルS1の顕微鏡像を基にして描いた図である。   6A to 6C are diagrams drawn based on the microscopic image of the experimental sample S1 from which the heat radiating plate 18 is removed.

このうち、図6(a)は側面図であり、図6(b)は断面図であり、図6(c)は上面図である。   6A is a side view, FIG. 6B is a cross-sectional view, and FIG. 6C is a top view.

図6(a)、(b)に示すように、実験サンプルS1の接続部材16にはボイド29が形成されている。そして、図6(c)に示すように、実験サンプルS1のパッケージ基板2上にはハンダ粒30が飛散している。   As shown in FIGS. 6A and 6B, a void 29 is formed in the connection member 16 of the experimental sample S1. Then, as shown in FIG. 6C, solder particles 30 are scattered on the package substrate 2 of the experimental sample S1.

このように、図1の構造の接続部材16では、ボイド29が形成されるとハンダ粒30が飛散するという問題が発生するが、ボイド29が発生しなくても次のような不具合が生じる。   As described above, in the connection member 16 having the structure shown in FIG. 1, when the void 29 is formed, the problem that the solder particles 30 are scattered occurs. However, even if the void 29 is not generated, the following problem occurs.

図7は、ボイド29が形成されることなく、加熱によって溶融した第1の部材21と第3の部材23が繋がった半導体装置の断面図である。   FIG. 7 is a cross-sectional view of the semiconductor device in which the first member 21 and the third member 23 melted by heating are connected without forming the void 29.

この場合、第2の部材22は、その表面の全ての部分が第1の部材21と第3の部材23によって覆われることになる。   In this case, the entire surface of the second member 22 is covered with the first member 21 and the third member 23.

図8は、このように第2の部材22が第1の部材21と第3の部材23によって覆われた場合の顕微鏡を基にして描いた断面図である。   FIG. 8 is a cross-sectional view drawn on the basis of a microscope when the second member 22 is covered with the first member 21 and the third member 23 as described above.

しかしながら、第2の部材22は、放熱板18から半導体素子10に印加される応力を自身が変形することにより吸収する役割を担うものであるから、その周囲が接続部材21、23で囲まれると第2の部材22の変形が阻害されてしまう。そのため、第2の部材22による応力緩和の効果が低減し、半導体素子10とパッケージ基板2との接続信頼性が低下するという不具合が発生してしまう。   However, since the second member 22 plays a role of absorbing the stress applied to the semiconductor element 10 from the heat radiating plate 18 by deformation of the second member 22, the second member 22 is surrounded by the connection members 21 and 23. The deformation of the second member 22 is hindered. Therefore, the effect of stress relaxation by the second member 22 is reduced, resulting in a problem that connection reliability between the semiconductor element 10 and the package substrate 2 is lowered.

このように各接続部材21、23同士が繋がるのを防止するために、次のような構造も考えられる。   In order to prevent the connection members 21 and 23 from being connected to each other in this way, the following structure is also conceivable.

図9(a)は、第1の部材21と第3の部材23の厚さを薄くすることにより、第2の部材22の横にはみ出る各部材21、23の量を低減することを意図した断面構造である。   FIG. 9A is intended to reduce the amount of each of the members 21 and 23 protruding from the side of the second member 22 by reducing the thicknesses of the first member 21 and the third member 23. It is a cross-sectional structure.

但し、この構造では、各部材21、23の量が少ないため、図9(a)のように半導体素子10や放熱板18が反った場合に、その反りに対して各部材21、23が追従し難くなる。そのため、接続部材16と放熱板18との間や、接続部材16と半導体素子10との間に隙間ができ、半導体素子10で発生した熱を効率的に放熱板18に伝達するのが難しくなる。   However, in this structure, since the amount of each member 21 and 23 is small, when the semiconductor element 10 and the heat sink 18 warp as shown in FIG. 9A, each member 21 and 23 follows the warp. It becomes difficult to do. Therefore, a gap is formed between the connection member 16 and the heat radiating plate 18 or between the connection member 16 and the semiconductor element 10, and it becomes difficult to efficiently transmit the heat generated in the semiconductor element 10 to the heat radiating plate 18. .

図9(b)は、図2(a)におけるよりも接続部材16の全体の大きさを小さくすることにより、第2の部材22の横に押し出される接続部材21、23の量を低減することを意図した断面構造である。   9B reduces the amount of the connecting members 21 and 23 that are pushed out to the side of the second member 22 by reducing the overall size of the connecting member 16 than in FIG. 2A. This is a cross-sectional structure intended for.

しかしながら、この構造では、接続部材16を小さくした分だけ接続部材16の横にAuメタライズ層25が露出するようになり、溶融した第1の部材21がそのAuメタライズ層25上を濡れ広がり易くなる。その結果、かえって第1の部材21が第2の部材22の横に押し出されるようになるので、第1の部材21と第3の部材23との接続が助長され、ボイド29が発生する危険性が高くなる。   However, in this structure, the Au metallized layer 25 is exposed to the side of the connecting member 16 as much as the connecting member 16 is reduced, and the melted first member 21 is easily spread over the Au metallized layer 25. . As a result, since the first member 21 is pushed out to the side of the second member 22, the connection between the first member 21 and the third member 23 is promoted, and there is a risk that the void 29 is generated. Becomes higher.

また、ボイド29の発生を抑制するため、上記のように接続部材16を三層構造にするのではなく単層構造とすることも考えられる。   Further, in order to suppress the generation of the voids 29, it is conceivable that the connecting member 16 has a single layer structure instead of a three layer structure as described above.

図10は、単層構造の接続部材16によって引き起こされる問題について説明するための断面図である。   FIG. 10 is a cross-sectional view for explaining a problem caused by the connection member 16 having a single-layer structure.

図10に示すように、接続部材16を単層構造とすると、加熱によって溶融した接続部材16がAuメッキ膜50を伝って横方向に流れ出し、最悪の場合には電子部品14と接触するおそれがある。こうなると、電子部品14と金属製の放熱板18とが電気的にショートしてしまい、半導体装置1の信頼性が低下する。   As shown in FIG. 10, when the connecting member 16 has a single layer structure, the connecting member 16 melted by heating flows laterally along the Au plating film 50, and in the worst case, the connecting member 16 may come into contact with the electronic component 14. is there. In this case, the electronic component 14 and the metal heat sink 18 are electrically short-circuited, and the reliability of the semiconductor device 1 is reduced.

図11(a)は、単層構造の接続部材16によって引き起こされる別の問題について説明するための図であって、放熱板18の下面の顕微鏡像を基にして描いた平面図である。   FIG. 11A is a diagram for explaining another problem caused by the connection member 16 having a single-layer structure, and is a plan view drawn based on a microscopic image of the lower surface of the heat radiating plate 18.

図11(a)に示されるように、加熱により接続部材16を溶融した後に、放熱板18の下面のメッキ膜26に膨れ26aが形成されることがある。膨れ26aは、放熱板18を作製した際に放熱板18の内部に取り込まれた水分が、接続部材16を溶融するときの熱によって膨張し、それが放熱板18とNiメッキ膜51との間に溜まることで発生すると考えられる。   As shown in FIG. 11A, after the connection member 16 is melted by heating, a bulge 26a may be formed on the plating film 26 on the lower surface of the heat sink 18 in some cases. The swelling 26 a expands due to the heat generated when the heat sink 18 melts the connection member 16 when the heat sink 18 is manufactured, and this expands between the heat sink 18 and the Ni plating film 51. It is thought that it occurs by accumulating in

図11(b)は、膨れ26aが発生したときの放熱板18とその周囲の顕微鏡像を基にして描いた断面図である。なお、メッキ膜26は、膜厚が薄いため、図11(b)では現れていない。   FIG. 11B is a cross-sectional view drawn on the basis of the heat sink 18 and the surrounding microscopic image when the swelling 26a occurs. Note that the plated film 26 does not appear in FIG.

図11(b)に示されるように、メッキ膜26に膨れ26aがあると、それが原因で接続部材16にボイド29が発生する。   As shown in FIG. 11B, when the swell 26a is present in the plating film 26, a void 29 is generated in the connection member 16 due to the swelling 26a.

図12(a)〜(c)は、このボイド29の発生原因を示す断面図である。   12A to 12C are cross-sectional views showing the cause of the void 29.

図12(a)に示すように、加熱により接続部材16を溶融する前においては、膨れ26aはNiメッキ膜51と放熱板18との界面に留まっている。   As shown in FIG. 12A, the bulge 26 a remains at the interface between the Ni plating film 51 and the heat radiating plate 18 before the connection member 16 is melted by heating.

そして、図12(b)に示すように、接続部材16を加熱して溶融すると共に、接続部材16に向けて放熱板18を押圧すると、その押圧力によってメッキ膜26が破れる。その結果、膨れ26a内の空気が溶融状態の接続部材16に移動し、接続部材16にボイド29が発生する。   Then, as shown in FIG. 12B, when the connecting member 16 is heated and melted, and when the heat radiating plate 18 is pressed toward the connecting member 16, the plating film 26 is broken by the pressing force. As a result, the air in the bulge 26 a moves to the molten connection member 16, and a void 29 is generated in the connection member 16.

図12(c)に示すように、そのボイド29は、既述のようにハンダ粒30が飛散する原因となる。   As shown in FIG. 12C, the voids 29 cause the solder particles 30 to scatter as described above.

このように、単層の接続部材16でも、ボイド29の発生を完全に抑制するのは困難である。   Thus, even with the single-layer connecting member 16, it is difficult to completely suppress the generation of the voids 29.

本願発明者は、このような知見に鑑み、以下に説明するような各実施形態に想到した。   In view of such knowledge, the inventor of the present application has come up with embodiments as described below.

(第1実施形態)
図13〜図19は、本実施形態に係る半導体装置の製造途中の断面図である。
(First embodiment)
13 to 19 are cross-sectional views of the semiconductor device according to the present embodiment during manufacture.

以下では、半導体装置としてBGA型の半導体装置を製造する。   In the following, a BGA type semiconductor device is manufactured as a semiconductor device.

この半導体装置を製造するには、まず、図13(a)に示すように、ガラスエポキシ樹脂等の絶縁性材料を主にしてなるパッケージ基板2を用意する。   In order to manufacture this semiconductor device, first, as shown in FIG. 13A, a package substrate 2 mainly comprising an insulating material such as a glass epoxy resin is prepared.

そのパッケージ基板2の一方の主面2a上には第1の電極パッド3が複数設けられ、他方の面2b上には第2の電極パッド4と第3の電極パッド6が複数設けられる。これらの電極3、4、6は、例えば、銅メッキ膜をパターニングして形成される。   A plurality of first electrode pads 3 are provided on one main surface 2a of the package substrate 2, and a plurality of second electrode pads 4 and a plurality of third electrode pads 6 are provided on the other surface 2b. These electrodes 3, 4, and 6 are formed by patterning a copper plating film, for example.

次いで、図13(b)に示すように、第3の電極パッド6上に印刷法によりハンダペースト9を印刷する。   Next, as shown in FIG. 13B, a solder paste 9 is printed on the third electrode pad 6 by a printing method.

そして、図14(a)に示すように、ハンダペースト9の上に電子部品14としてチップコンデンサを載せ、この状態でハンダペースト9をリフローすることにより、第3の電極パッド6と電子部品14とを電気的かつ機械的に接続する。   14A, a chip capacitor is placed on the solder paste 9 as the electronic component 14, and the solder paste 9 is reflowed in this state, whereby the third electrode pad 6, the electronic component 14, Are electrically and mechanically connected.

続いて、図14(b)に示すように、電極8上にハンダバンプ7が接合された半導体素子10を用意し、そのハンダバンプ7をリフローすることにより、半導体素子10と第2の電極パッド4とを電気的かつ機械的に接続する。   Subsequently, as shown in FIG. 14B, a semiconductor element 10 having a solder bump 7 bonded on the electrode 8 is prepared, and the solder bump 7 is reflowed, whereby the semiconductor element 10, the second electrode pad 4, and the like. Are electrically and mechanically connected.

なお、その半導体素子10の上面10b上には、後述の接続部材の濡れ性を良好にするためのAuメタライズ層25が0.21μm程度の厚さに予め形成されている。   Note that an Au metallized layer 25 is formed in advance on the upper surface 10b of the semiconductor element 10 to a thickness of about 0.21 μm for improving the wettability of a connecting member described later.

その後、図15(a)に示すように、パッケージ基板2と半導体素子10との熱膨張量の違いに起因してこれらの接続信頼性が低下するのを防止するため、これらの間にディスペンサ33を利用して熱硬化性のアンダーフィル樹脂11を充填する。   Thereafter, as shown in FIG. 15A, in order to prevent the connection reliability from deteriorating due to the difference in thermal expansion between the package substrate 2 and the semiconductor element 10, the dispenser 33 is interposed between them. Is used to fill the thermosetting underfill resin 11.

そして、図15(b)に示すように、半導体素子10の下面全体にアンダーフィル11を充填した後、加熱によりアンダーフィル樹脂11を熱硬化させる。   And as shown in FIG.15 (b), after filling the undersurface 11 in the whole lower surface of the semiconductor element 10, the underfill resin 11 is thermoset by heating.

次に、図16に示す工程について説明する。   Next, the process shown in FIG. 16 will be described.

まず、第1〜第3の部材21〜23を積層してなる接続部材16と放熱板18とを用意する。このうち、放熱板18は、半導体素子10で発生した熱を外部に放熱する放熱部材として機能するものであって、半導体素子10と接続部材16とを収容するキャビティ18bを備える。   First, the connection member 16 and the heat sink 18 formed by laminating the first to third members 21 to 23 are prepared. Among these, the heat radiating plate 18 functions as a heat radiating member that radiates heat generated in the semiconductor element 10 to the outside, and includes a cavity 18 b that accommodates the semiconductor element 10 and the connection member 16.

一方、図20は接続部材16の斜視図である。   On the other hand, FIG. 20 is a perspective view of the connecting member 16.

図20に示すように、接続部材21〜23の各々は概略矩形の平面形状を有する。   As shown in FIG. 20, each of the connection members 21 to 23 has a substantially rectangular planar shape.

接続部材21〜23のうち、第1の部材21は低融点ハンダペレットであって、その厚さは約0.08μmmである。   Of the connecting members 21 to 23, the first member 21 is a low melting point solder pellet and has a thickness of about 0.08 μm.

また、第2の部材22は、第1の部材21の上面に接して設けられる。そして、第2の部材22の上面22yは、第1の部材21の上面21y(図16参照)と半導体素子10の上面10bの各々よりも広い面積を有する。   The second member 22 is provided in contact with the upper surface of the first member 21. The upper surface 22 y of the second member 22 has a larger area than each of the upper surface 21 y (see FIG. 16) of the first member 21 and the upper surface 10 b of the semiconductor element 10.

第2の部材22の材料は特に限定されない。本実施形態では、第2の部材22として厚さが約0.1μmの高融点ハンダペレットを使用する。   The material of the second member 22 is not particularly limited. In the present embodiment, a high melting point solder pellet having a thickness of about 0.1 μm is used as the second member 22.

一方、第3の部材23は、例えば厚さが約0.08μmの低融点ハンダペレットである。そして、第3の部材23の上面23yは、第2の部材22の上面22yよりも狭い面積を有する。   On the other hand, the third member 23 is, for example, a low melting point solder pellet having a thickness of about 0.08 μm. The upper surface 23 y of the third member 23 has a smaller area than the upper surface 22 y of the second member 22.

各接続部材21〜23の具体的なサイズは特に限定されないが、第1の部材21と第3の部材23は一辺の長さL1が約20mmの正方形であって、半導体素子10の平面サイズにほぼ等しい。また、第2の部材22は、一辺の長さL2が約24mmの正方形であって、その平面サイズは半導体素子10よりも大きい。   Although the specific size of each connection member 21-23 is not specifically limited, The 1st member 21 and the 3rd member 23 are the square whose length L1 of one side is about 20 mm, Comprising: It is the planar size of the semiconductor element 10. Almost equal. The second member 22 is a square having a side length L2 of about 24 mm, and its planar size is larger than that of the semiconductor element 10.

なお、本工程の時点では、ペレット状の各部材21〜23は互いに固着されておらず、それらが自重によって積み重なった状態となっている。   At the time of this step, the pellet-shaped members 21 to 23 are not fixed to each other, and are in a state of being stacked by their own weight.

次の表1は、第2の部材22として使用し得る高融点ハンダと、第1及び第3の部材21、23として使用し得る低融点ハンダの各々の物性を示すものである。   Table 1 below shows the physical properties of the high melting point solder that can be used as the second member 22 and the low melting point solder that can be used as the first and third members 21 and 23.

Figure 0005796627
Figure 0005796627

表1に示すように、第2の部材22の材料である高融点ハンダ(Sn-95Pb)は、第1及び第3の部材21、23の材料である低融点ハンダ(Sn-37Pb)の融点(183℃)よりも高い融点(300℃)を有すると共に、当該低融点ハンダよりも小さなヤング率を有する。   As shown in Table 1, the high melting point solder (Sn-95Pb) that is the material of the second member 22 is the melting point of the low melting point solder (Sn-37Pb) that is the material of the first and third members 21 and 23. It has a melting point (300 ° C.) higher than (183 ° C.) and a Young's modulus smaller than that of the low melting point solder.

このように第2の部材22としてヤング率が小さな材料を使用する場合は、第2の部材は外部の応力によって容易に変形するようになる。そのため、この場合は、第2の部材22は放熱板18と半導体素子10との熱膨張率との差が原因で半導体素子10に加わる応力を緩和する機能を有する。   As described above, when a material having a small Young's modulus is used as the second member 22, the second member is easily deformed by an external stress. Therefore, in this case, the second member 22 has a function of relieving the stress applied to the semiconductor element 10 due to the difference between the thermal expansion coefficients of the heat sink 18 and the semiconductor element 10.

なお、表1のような鉛含有ハンダに代えて鉛フリーハンダを使用してもよい。次の表2〜表4は、各部材21〜23の材料として使用し得る鉛非含有の材料の例である。   Note that lead-free solder may be used instead of lead-containing solder as shown in Table 1. The following Tables 2 to 4 are examples of lead-free materials that can be used as materials for the members 21 to 23.

Figure 0005796627
Figure 0005796627

Figure 0005796627
Figure 0005796627

Figure 0005796627
Figure 0005796627

一方、図16の放熱板18は例えばCu等の金属を含み、その下面18aにはメッキ膜26が形成される。そのメッキ膜26は、例えば、厚さが約4μmのNiメッキ膜51と厚さが約0.1μmのAuメッキ膜50とをこの順に形成してなる。   On the other hand, the heat radiating plate 18 in FIG. 16 includes a metal such as Cu, and a plating film 26 is formed on the lower surface 18a thereof. The plating film 26 is formed, for example, by forming a Ni plating film 51 having a thickness of about 4 μm and an Au plating film 50 having a thickness of about 0.1 μm in this order.

更に、放熱板18の縁において、後でパッケージ基板2と当接する部分には、接着剤19が設けられる。   Further, an adhesive 19 is provided on a portion of the edge of the heat radiating plate 18 that will be in contact with the package substrate 2 later.

次いで、図17に示すように、半導体素子10、接続部材16、及び放熱板18の各々の位置合わせを行った後、これらを積層する。   Next, as shown in FIG. 17, the semiconductor element 10, the connection member 16, and the radiator plate 18 are aligned and then stacked.

このとき、接続部材16の各部材21〜23はその各々が自重で積み重なった状態であるため、接続部材16の上に放熱板18を載せるときには各部材21〜23が位置ずれをしないように注意を払うのが好ましい。   At this time, since the members 21 to 23 of the connecting member 16 are stacked with their own weight, care should be taken that the members 21 to 23 are not displaced when the heat sink 18 is placed on the connecting member 16. It is preferable to pay.

そして、図18に示すように、パッケージ基板2に向けて放熱板18を押圧しながら、第1の部材21と第3の部材23を加熱して溶融することにより、接続部材16を介して放熱板18と半導体素子10とを接続する。   Then, as shown in FIG. 18, the first member 21 and the third member 23 are heated and melted while pressing the heat radiating plate 18 toward the package substrate 2, thereby radiating heat through the connection member 16. The plate 18 and the semiconductor element 10 are connected.

このとき、半導体素子10の上面にAuメタライズ層25を形成し、放熱板18の下面にAuメッキ膜50を予め形成したことで、溶融した各部材21、23の濡れ性が良好となる。そのため、第1の部材21とAuメタライズ層25とが良好に金属接合するようになる。同様に、第3の部材23とAuメッキ膜50も互いに良好に金属接合するようになる。   At this time, since the Au metallized layer 25 is formed on the upper surface of the semiconductor element 10 and the Au plating film 50 is previously formed on the lower surface of the heat sink 18, the wettability of the melted members 21 and 23 is improved. For this reason, the first member 21 and the Au metallized layer 25 are favorably metal-bonded. Similarly, the third member 23 and the Au plating film 50 are well metal-bonded to each other.

また、上記のように放熱板18を押圧することで、溶融した各接続部材21、23が横方向に広がってその厚みが減少するため、最終的には接着剤19がパッケージ基板2に当接し、接着剤19を介してパッケージ基板2に放熱板18が接着される。   Further, by pressing the heat radiating plate 18 as described above, the melted connecting members 21 and 23 spread in the lateral direction and the thickness thereof decreases, so that the adhesive 19 finally comes into contact with the package substrate 2. The heat sink 18 is bonded to the package substrate 2 through the adhesive 19.

ここで、本工程における接続部材16の加熱温度は、第1の部材21と第3の部材23の各々の融点よりも高く、かつ、第2の部材22の融点よりも低く設定される。そのため、本工程では、加熱により第2の部材22は溶融せず、第1及び第3の部材21、23のみを選択的に溶融することができる。   Here, the heating temperature of the connection member 16 in this step is set to be higher than the melting points of the first member 21 and the third member 23 and lower than the melting point of the second member 22. Therefore, in this step, the second member 22 is not melted by heating, and only the first and third members 21 and 23 can be selectively melted.

更に、本実施形態では、上記のように第2の部材22の面積よりも第1及び第3の部材21、23の面積を狭くしたので、溶融したこれらの部材21、23が第2の部材22の側面22aの横にはみ出るのを抑制できる。   Furthermore, in this embodiment, since the area of the 1st and 3rd members 21 and 23 was made narrower than the area of the 2nd member 22 as mentioned above, these melted members 21 and 23 are the 2nd member. It can suppress that it protrudes to the side of 22 side 22a.

なお、このように各部材21、22を溶融した後の接続部材16の厚さΔTは約0.2mm程度となる。また、パッケージ基板2と放熱板18とが接着された状態での接着剤19の厚さΔDは約0.5mm程度となる。   Note that the thickness ΔT of the connecting member 16 after the members 21 and 22 are melted in this way is about 0.2 mm. Further, the thickness ΔD of the adhesive 19 in a state where the package substrate 2 and the heat radiating plate 18 are bonded is about 0.5 mm.

更に、パッケージ基板2の主面から半導体素子10の上面までの高さHは約0.61mmである。   Further, the height H from the main surface of the package substrate 2 to the upper surface of the semiconductor element 10 is about 0.61 mm.

その後に、図19に示すように、第1の電極パッド3上に外部接続端子5としてハンダバンプを搭載し、本実施形態に係る半導体装置40の基本構造を完成させる。   After that, as shown in FIG. 19, solder bumps are mounted on the first electrode pads 3 as the external connection terminals 5 to complete the basic structure of the semiconductor device 40 according to the present embodiment.

図21は、半導体装置40の上面図であって、先の図19は図21のX1−X1線に沿う断面図に相当する。   FIG. 21 is a top view of the semiconductor device 40, and FIG. 19 corresponds to a cross-sectional view taken along line X1-X1 of FIG.

図21に示されるように、第3の部材23の面積を第2の部材22のそれよりも狭くしたことで、第3の部材23の側面23aは第2の部材22の側面22aから約1mm程度の後退量ΔLだけ後退する。   As shown in FIG. 21, the side surface 23 a of the third member 23 is about 1 mm from the side surface 22 a of the second member 22 by making the area of the third member 23 smaller than that of the second member 22. Retreat by a certain amount of retraction ΔL.

そして、このように後退した側面22aの横であって、パッケージ基板2の上に、電子部品14が配設される。   Then, the electronic component 14 is disposed on the package substrate 2 next to the side surface 22a thus retracted.

なお、図19のように外部接続端子5を搭載せずに半導体装置の製造工程を終了することにより、LGA(Land Grid Array)型の半導体装置を製造するようにしてもよい。   In addition, as shown in FIG. 19, an LGA (Land Grid Array) type semiconductor device may be manufactured by ending the manufacturing process of the semiconductor device without mounting the external connection terminal 5.

以上説明した本実施形態によれば、図18に示したように、第2の部材22と比較して第1及び第3の部材21、23の面積を狭くしたので、加熱により溶融したこれらの部材21、23が第2の部材22の側面22aの横にはみ出難くなる。   According to this embodiment described above, as shown in FIG. 18, since the areas of the first and third members 21 and 23 are narrower than those of the second member 22, these melted by heating. The members 21 and 23 are unlikely to protrude from the side surface 22a of the second member 22.

その結果、はみ出た各部材21、23によってボイド29(図2(b)参照)が形成される危険性が低減されるようになり、ボイドの破裂が原因のハンダ粒30が発生しなくなる。そのため、ハンダ粒30によって電子部品14の端子が電気的にショートするのを防止でき、半導体装置40の信頼性を向上させることができる。   As a result, the risk that voids 29 (see FIG. 2B) are formed by the protruding members 21 and 23 is reduced, and solder particles 30 caused by void bursting are not generated. Therefore, it is possible to prevent the terminals of the electronic component 14 from being electrically short-circuited by the solder grains 30, and to improve the reliability of the semiconductor device 40.

しかも、上記のように第1の部材21と第3の部材23のはみ出しが抑制されるので、これらの部材21、23によって第2の部材22が完全に囲まれることがない。   Moreover, since the protrusion of the first member 21 and the third member 23 is suppressed as described above, the second member 22 is not completely surrounded by these members 21 and 23.

既述のように、第2の部材22は、自身が変形することで放熱板18から半導体素子10に加わる応力を緩和するものである。よって、上記のように各部材21、23によって第2の部材22が囲まれないことで、第2の部材22の動きの自由度が確保され、第2の部材22による応力緩和の効果を維持することができる。   As described above, the second member 22 relieves the stress applied to the semiconductor element 10 from the heat sink 18 due to its deformation. Therefore, since the second member 22 is not surrounded by the members 21 and 23 as described above, the degree of freedom of movement of the second member 22 is secured, and the stress relaxation effect by the second member 22 is maintained. can do.

図22は、本実施形態の別の効果について説明するための断面図である。   FIG. 22 is a cross-sectional view for explaining another effect of the present embodiment.

図10に示したように、接続部材16を単層構造としたのでは、溶融した接続部材16が電子部品14に接触する危険性があった。   As shown in FIG. 10, if the connection member 16 has a single-layer structure, there is a risk that the molten connection member 16 contacts the electronic component 14.

これに対し、本実施形態のように三層構造の接続部材16のうち第3の部材23の面積を第2の部材22のそれよりも狭くすると、第2の部材22が第3の部材23から張り出すようになる。しかも、第2の部材22の融点は第3の部材23のそれよりも高いので、第3の部材23溶融時に第2の部材22は溶融しない。   On the other hand, when the area of the third member 23 of the connection member 16 having the three-layer structure is narrower than that of the second member 22 as in the present embodiment, the second member 22 becomes the third member 23. Overhang from. In addition, since the melting point of the second member 22 is higher than that of the third member 23, the second member 22 does not melt when the third member 23 melts.

これにより、第2の部材22は、溶融した第3の部材23が下方に滴下するのを防止する庇として機能するようになる。そのため、溶融した第3の接続部23が電子部品14上に滴下するのを防止でき、電子部品14の端子同士が電気的にショートする危険性を低減できる。   Thereby, the 2nd member 22 comes to function as a cage | basket which prevents that the fuse | melted 3rd member 23 dripped below. Therefore, it is possible to prevent the melted third connection portion 23 from dripping onto the electronic component 14, and to reduce the risk that the terminals of the electronic component 14 are electrically short-circuited.

特に、図22の点線のように電子部品14の上方にまで第2の部材22の側面22aを延長すると、溶融した第3の接続部23が電子部品14上に滴下する危険性を一層効果的に低減できる。   In particular, when the side surface 22a of the second member 22 is extended above the electronic component 14 as indicated by the dotted line in FIG. 22, the risk of the molten third connecting portion 23 dripping on the electronic component 14 is more effective. Can be reduced.

図23は、本実施形態により奏される他の効果について説明するための断面図である。   FIG. 23 is a cross-sectional view for explaining another effect achieved by the present embodiment.

図12(a)〜(c)を参照して説明したように、放熱板18の下面にメッキ膜26を形成すると、そのメッキ膜26の膨れ26aが原因で接続部材16にボイド29が発生することがある。   As described with reference to FIGS. 12A to 12C, when the plating film 26 is formed on the lower surface of the heat radiating plate 18, a void 29 is generated in the connection member 16 due to the swelling 26 a of the plating film 26. Sometimes.

本実施形態では、上記のように第2の部材22の側面22aが第3の部材23から張り出すので、仮に図23のようにボイド29が破裂してハンダ粒30が飛散しても、第2の部材22が庇として機能するので、電子部品14にハンダ粒30が付着するのを防止できる。   In the present embodiment, since the side surface 22a of the second member 22 protrudes from the third member 23 as described above, even if the void 29 is ruptured and the solder particles 30 are scattered as shown in FIG. Since the second member 22 functions as a ridge, it is possible to prevent the solder particles 30 from adhering to the electronic component 14.

特に、図23の点線のように電子部品14の上方にまで第2の部材22の側面22aを延長することで、第2の部材22の庇としての機能が高められ、電子部品14上へのハンダ粒30の飛散をより効果的に抑制することが可能となる。   In particular, by extending the side surface 22a of the second member 22 above the electronic component 14 as shown by the dotted line in FIG. It becomes possible to suppress the scattering of the solder grains 30 more effectively.

(第2実施形態)
第1実施形態では、図20を参照して説明したように、面積の異なるハンダペレットをそれらの自重で積み重ねて接続部材16を作製した。
(Second Embodiment)
In the first embodiment, as described with reference to FIG. 20, the connection member 16 is manufactured by stacking solder pellets having different areas with their own weight.

これに対し、本実施形態では、以下の第1例及び第2例のようにハンダシートの圧着により接続部材16を作製する。   On the other hand, in this embodiment, the connection member 16 is produced by crimping a solder sheet as in the following first and second examples.

・第1例
図24(a)は、第1例に係る接続部材16の作製方法について説明するための上面図であり、図24(b)は図24(a)のX2−X2線に沿う断面図である。
First Example FIG. 24A is a top view for explaining a manufacturing method of the connection member 16 according to the first example, and FIG. 24B is along the line X2-X2 in FIG. It is sectional drawing.

図24(a)、(b)に示すように、本実施形態では、第1〜第3のロール41〜43に第1〜第3の部材21〜23として巻き取られたハンダシートを展開し、加圧ローラ46、47により各接続部材21〜23を圧着する。このようなハンダシートの圧着体はクラッド材とも呼ばれる。   As shown in FIGS. 24A and 24B, in the present embodiment, the solder sheets wound up as the first to third members 21 to 23 on the first to third rolls 41 to 43 are developed. The connecting members 21 to 23 are pressure-bonded by the pressure rollers 46 and 47. Such a solder sheet crimp is also referred to as a clad material.

また、これらの接続部材21〜23のうち、第1の部材21と第3の部材23としては、それらの幅W1が第2の部材22の幅W2よりも狭いハンダシートを使用する。   Of these connecting members 21 to 23, as the first member 21 and the third member 23, solder sheets having a width W1 narrower than a width W2 of the second member 22 are used.

そして、上記のようにして各接続部材21〜23のクラッド材を形成した後、カッター49によってそのクラッド材を切断して個片化し、複数の接続部材16を製造する。   And after forming the clad material of each connection member 21-23 as mentioned above, the clad material is cut | disconnected and separated into pieces by the cutter 49, and the several connection member 16 is manufactured.

図25は、このようにして作製された接続部材16の斜視図である。   FIG. 25 is a perspective view of the connection member 16 manufactured in this manner.

本実施形態では、クラッド材を切断して接続部材16を製造するので、接続部材16の切断面16xにおいては各接続部材21〜23の各側面は一平面内にある。   In this embodiment, since the connection member 16 is manufactured by cutting the clad material, the side surfaces of the connection members 21 to 23 are within one plane on the cut surface 16x of the connection member 16.

そして、矩形状の第3の部材23の四辺のうち、切断面16xに現れない対向する二辺のみにおいて、第3の部材23の側面23aが第2の部材22の側面22aから後退する。   Then, of the four sides of the rectangular third member 23, the side surface 23 a of the third member 23 retreats from the side surface 22 a of the second member 22 only on two opposing sides that do not appear on the cut surface 16 x.

図26(a)は、この接続部材16を備えた半導体装置の平面図であり、図26(b)は図26(a)のX3−X3線に沿う断面図である。   FIG. 26A is a plan view of a semiconductor device provided with the connection member 16, and FIG. 26B is a cross-sectional view taken along line X3-X3 in FIG.

図26(a)、(b)に示すように、電子部品14は、第3の部材23の後退した側面23aの横のパッケージ基板2上に設けられる。   As shown in FIGS. 26A and 26B, the electronic component 14 is provided on the package substrate 2 next to the retracted side surface 23 a of the third member 23.

このようにすることで、側面23aから張り出した第2の部材22が、電子部品14にハンダ粒が付着するのを防止する庇として機能するので、第1実施形態と同様にハンダ粒が原因で電子部品14の端子が電気的にショートするのを抑制できる。   By doing so, the second member 22 that protrudes from the side surface 23a functions as a ridge that prevents the solder particles from adhering to the electronic component 14, and therefore, due to the solder particles as in the first embodiment. It is possible to suppress electrical shorting of the terminals of the electronic component 14.

更に、接続部材16の切断面16xの横には電子部品14を設けないので、切断面16xにおいてボイド29が形成されてそれが原因でハンダ粒30が発生しても、そのハンダ粒30が電子部品14に付着することがない。   Further, since the electronic component 14 is not provided beside the cut surface 16x of the connection member 16, even if the void 29 is formed on the cut surface 16x and the solder particles 30 are generated due to the voids 29, the solder particles 30 are It does not adhere to the component 14.

以上説明した本例によれば、3層のハンダシートを圧着してなるクラッド材を切断することにより接続部材16を作製する。これによれば、接続部材16中の各部材21〜23が互いに圧着されているため、各部材21〜23をペレット材から作製してその各々が自重だけで積み重ねっている場合のように、各部材21〜23同士が作業中に位置ずれすることがない。そのため、半導体素子10の上に接続部材16を載せるときに、各部材21〜23の各々の位置合わせをする必要がなく、第1実施形態と比較して作業効率が向上する。   According to this example described above, the connecting member 16 is produced by cutting the clad material formed by pressure-bonding the three-layer solder sheet. According to this, since the members 21 to 23 in the connecting member 16 are pressure-bonded to each other, each member 21 to 23 is made from a pellet material, and each of them is stacked only by its own weight, Each member 21-23 does not shift in position during work. Therefore, when mounting the connection member 16 on the semiconductor element 10, it is not necessary to align each of the members 21 to 23, and the working efficiency is improved as compared with the first embodiment.

・第2例
図27(a)は、第2例に係る接続部材16の作製方法について説明するための上面図であり、図27(b)は図27(a)のX4−X4線に沿う断面図である。なお、これらの図において第1例で説明したのと同じ要素には第1例と同じ符号を付し、以下ではその説明を省略する。
Second Example FIG. 27A is a top view for explaining a manufacturing method of the connection member 16 according to the second example, and FIG. 27B is along the line X4-X4 in FIG. It is sectional drawing. In these drawings, the same elements as those described in the first example are denoted by the same reference numerals as those in the first example, and description thereof will be omitted below.

本例では、図27(a)に示すように、第1の部材21と第3の部材23として、それらの幅W1が第2の部材22の幅W2よりも狭いハンダシートを使用する。   In this example, as shown in FIG. 27A, as the first member 21 and the third member 23, solder sheets whose width W1 is narrower than the width W2 of the second member 22 are used.

そして、各接続部材21〜23の各々の一辺21b〜23bが揃った状態で、各接続部材21〜23を圧着することによりクラッド材を形成し、カッター49によりそのクラッド材を切断して複数の接続部材16を作成する。   And in the state where each side 21b-23b of each connection member 21-23 has gathered, a clad material is formed by crimping each connection member 21-23, and the clad material is cut with a cutter 49, and a plurality of the claws are cut. The connecting member 16 is created.

図28は、このようにして作製された接続部材16の斜視図である。   FIG. 28 is a perspective view of the connection member 16 manufactured in this manner.

本実施形態では、上記のように各接続部材21〜23の各一辺21b〜23bを揃えた状態でクラッド材の切断を行う。そのため、矩形状の第3の部材23は、上記の一辺23bに対向する一辺のみにおいて、その側面23aが第2の部材22の側面22aから後退する。   In the present embodiment, the clad material is cut in a state in which the sides 21b to 23b of the connection members 21 to 23 are aligned as described above. Therefore, the side surface 23 a of the rectangular third member 23 recedes from the side surface 22 a of the second member 22 only on one side facing the one side 23 b.

図29(a)は、この接続部材16を備えた半導体装置の平面図であり、図29(b)は図29(a)のX5−X5線に沿う断面図である。   FIG. 29A is a plan view of a semiconductor device provided with the connection member 16, and FIG. 29B is a cross-sectional view taken along line X5-X5 in FIG.

図29(a)、(b)に示されるように、電子部品14は、第3の部材23の後退した側面23aの横のパッケージ基板2上に設けられ、これ以外の領域には設けられない。そのため、第2の部材22を電子部品14に対する庇として機能させることができ、電子部品14上にハンダ粒が飛散する危険性を低減できる。   As shown in FIGS. 29A and 29B, the electronic component 14 is provided on the package substrate 2 next to the side surface 23a that the third member 23 has retracted, and is not provided in any other region. . Therefore, the 2nd member 22 can be functioned as a cage | basket with respect to the electronic component 14, and the danger that a solder grain will scatter on the electronic component 14 can be reduced.

以上説明した本例においても、第1例と同様に、クラッド材から接続部材16を作製するので、各部材21〜23の全てをペレット材から作製する場合と比較して作業性が向上する。   Also in this example described above, since the connection member 16 is produced from the clad material as in the first example, the workability is improved as compared with the case where all the members 21 to 23 are produced from the pellet material.

(第3実施形態)
第2実施形態では、三層のハンダシートからなるクラッド材を利用して接続部材16を製造した。
(Third embodiment)
In the second embodiment, the connection member 16 is manufactured using a clad material made of a three-layer solder sheet.

これに対し、本実施形態では、以下のようにクラッド材とハンダペレットとを併用して接続部材16を製造する。   On the other hand, in this embodiment, the connection member 16 is manufactured by using a clad material and solder pellets together as follows.

図30(a)は、本実施形態に係る接続部材16の作製方法について説明するための上面図であり、図30(b)は図30(a)のX6−X6線に沿う断面図である。なお、これらの図において第2実施形態で説明したのと同じ要素には第2実施形態と同じ符号を付し、以下ではその説明を省略する。   FIG. 30A is a top view for explaining a manufacturing method of the connection member 16 according to the present embodiment, and FIG. 30B is a cross-sectional view taken along line X6-X6 in FIG. . In these drawings, the same elements as those described in the second embodiment are denoted by the same reference numerals as those in the second embodiment, and description thereof will be omitted below.

接続部材16の製造にあたっては、図30(a)、(b)に示すように、第1及び第2の部材21、22としてロール41、42に巻き取られたハンダシートを展開し、それらを加圧ローラ46、47によって圧着して二層構造のクラッド材を作製する。   In manufacturing the connecting member 16, as shown in FIGS. 30A and 30B, the solder sheets wound around the rolls 41 and 42 as the first and second members 21 and 22 are developed, and they are used. A clad material having a two-layer structure is produced by pressure bonding with pressure rollers 46 and 47.

なお、本実施形態では、これらの接続部材21、22は、それぞれ同一の幅W3を有する。   In the present embodiment, these connecting members 21 and 22 each have the same width W3.

そして、カッター49により上記の二層構造のクラッド材を切断することにより、平面形状が概略矩形の接続部材16の下側層16bを形成する。   Then, the lower layer 16b of the connection member 16 having a substantially rectangular planar shape is formed by cutting the clad material having the two-layer structure with the cutter 49.

図31(a)は、このようにして作製した下側層16bの斜視図である。   FIG. 31A is a perspective view of the lower layer 16b produced in this manner.

その後、図31(b)に示すように、下側層16bの中央に第3の部材23として平面形状が概略矩形の低融点ハンダペレットを積み重ね、接続部材16を完成させる。   Thereafter, as shown in FIG. 31 (b), low melting point solder pellets having a substantially rectangular planar shape are stacked as the third member 23 in the center of the lower layer 16 b to complete the connection member 16.

その第3の部材23は、第2の部材22よりも狭い面積を有しており、矩形の各辺における側面23aは第2の部材22の側面22aから後退している。なお、この第3の部材23は、自重によって第2の部材22の上に載っているだけであり、クラッド材におけるように各部材22、23が圧着されているわけではない。   The third member 23 has a smaller area than the second member 22, and the side surface 23 a on each side of the rectangle is set back from the side surface 22 a of the second member 22. The third member 23 is merely placed on the second member 22 by its own weight, and the members 22 and 23 are not crimped as in the clad material.

図32(a)は、この接続部材16を備えた半導体装置の平面図であり、図32(b)は図32(a)のX7−X7線に沿う断面図である。   FIG. 32A is a plan view of a semiconductor device provided with the connection member 16, and FIG. 32B is a cross-sectional view taken along line X7-X7 in FIG.

図32(a)、(b)に示されるように、第1の部材21と第2の部材22は、電子部品14の上方にまで延在して、電子部品14を覆うように設けられる。   As shown in FIGS. 32A and 32B, the first member 21 and the second member 22 are provided so as to extend above the electronic component 14 and cover the electronic component 14.

以上説明した本実施形態では、接続部材16の下側層16bについてはクラッド材から作製し、第3の部材23についてはハンダペレットから作製する。   In the present embodiment described above, the lower layer 16b of the connection member 16 is made of a clad material, and the third member 23 is made of a solder pellet.

よって、接続部材16の作製に際し、下側層16bと第3の部材23との位置合わせのみ行えばよく、第1〜第3の部材21〜23の全てをハンダペレットから作製する場合のように全ての接続部材21〜23の位置合わせをする必要がなく、作業性がよい。   Therefore, when the connection member 16 is manufactured, only the alignment of the lower layer 16b and the third member 23 may be performed, as in the case where all of the first to third members 21 to 23 are manufactured from solder pellets. It is not necessary to align all the connecting members 21 to 23, and workability is good.

更に、図32(b)に示したように、電子部品14を覆うように第2の部材22を設けるので、メッキ膜26に膨れ26a(図12(a)参照)が存在する場合でも、膨れが破裂したときに発生するハンダ粒が電子部品14上に飛散するのを防止できる。これにより、電子部品14の端子同士がハンダ粒で電気的にショートする危険性を低減でき、半導体装置の信頼性を向上させることができる。   Further, as shown in FIG. 32B, since the second member 22 is provided so as to cover the electronic component 14, even if the swelling 26a (see FIG. 12A) exists in the plating film 26, the swelling is caused. It is possible to prevent the solder particles generated when the rupture of the solder is scattered on the electronic component 14. Thereby, the danger that the terminals of the electronic component 14 are electrically short-circuited with solder grains can be reduced, and the reliability of the semiconductor device can be improved.

1、40…半導体装置、2…パッケージ基板、2a…一方の主面、2b…他方の主面、3…第1の電極パッド、4…第2の電極パッド4、5…外部接続端子、6…第3の電極パッド、7…ハンダバンプ、8…電極、10…半導体素子、10a…側面、10b…上面、11…アンダーフィル樹脂、14…電子部品、14a…端子、16…接続部材、16b…下側層、16x…切断面、18…放熱板、18a…下面、19…接着剤、21〜23…第1〜第3の部材、22a、23a…側面、21b〜23b…一辺、25…Auメタライズ層、26…メッキ膜、26a…膨れ、29…ボイド、30…ハンダ粒、33…ディスペンサ、41〜43…第1〜第3のロール、46、47…加圧ローラ、50…Auメッキ膜、51…Niメッキ膜。
DESCRIPTION OF SYMBOLS 1, 40 ... Semiconductor device, 2 ... Package substrate, 2a ... One main surface, 2b ... The other main surface, 3 ... 1st electrode pad, 4 ... 2nd electrode pad 4, 5 ... External connection terminal, 6 3rd electrode pad 7 Solder bump 8 Electrode 10 Semiconductor element 10a Side surface 10b Upper surface 11 Underfill resin 14 Electronic component 14a Terminal 16 Connection member 16b Lower layer, 16x ... cut surface, 18 ... heat sink, 18a ... lower surface, 19 ... adhesive, 21-23 ... first to third members, 22a, 23a ... side, 21b-23b ... one side, 25 ... Au Metallized layer, 26 ... plating film, 26a ... swelling, 29 ... void, 30 ... solder grain, 33 ... dispenser, 41-43 ... first to third rolls, 46, 47 ... pressure roller, 50 ... Au plating film 51 Ni plating film.

Claims (8)

基板と、
前記基板の上方に配設された半導体素子と、
前記半導体素子の上方に配設された第1の金属層と、
前記第1の金属層の上方に配設された第2の金属層と、
前記第2の金属層の上方に配設された放熱部材と、
前記第1の金属層と前記第2の金属層とを接続する、In及びAgを含む接続部材と、
を有し、
前記接続部材は、前記第1の金属層の上方に配設され、第1の融点を有する第1の部材と、
前記第1の部材の上方に配設され、前記第1の融点よりも高い第2の融点を有し、前記第1の部材よりも広い面積を有する第2の部材と、
前記第2の部材の上方に配設され、前記第2の融点よりも低い第3の融点を有し、前記第2の部材よりも狭い面積を有する第3の部材と、
を有することを特徴とする半導体装置。
A substrate,
A semiconductor element disposed above the substrate;
A first metal layer disposed above the semiconductor element;
A second metal layer disposed above the first metal layer;
A heat dissipating member disposed above the second metal layer;
A connection member containing In and Ag that connects the first metal layer and the second metal layer;
I have a,
The connecting member is disposed above the first metal layer and has a first member having a first melting point;
A second member disposed above the first member, having a second melting point higher than the first melting point, and having a larger area than the first member;
A third member disposed above the second member, having a third melting point lower than the second melting point and having a smaller area than the second member;
Wherein a to have a.
前記接続部材はIn-3Agを含むことを特徴とした、請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the connection member includes In-3Ag. 前記第1の金属層及び前記第2の金属層は、Auを含んだ層を有することを特徴とした、請求項1又は請求項2に記載の半導体装置。   The semiconductor device according to claim 1, wherein each of the first metal layer and the second metal layer includes a layer containing Au. 前記第1の部材は、前記第3の部材と同一の材料を含むことを特徴とする請求項1乃至3のいずれか1項に記載の半導体装置。The semiconductor device according to claim 1, wherein the first member includes the same material as that of the third member. 基板上に半導体素子を配設する工程と、
前記半導体素子の上方に第1の金属層を配設する工程と、
前記第1の金属層の上方にIn及びAgを含む接続部材を配設する工程と、
放熱部材の一の面に第2の金属層を形成する工程と、
前記接続部材の上方に前記第2の金属層が接するように前記放熱部材を加熱押圧しながら接続する工程と、
前記放熱部材を押圧しながら、接続部材を加熱することにより、前記半導体素子と前記放熱部材を接続する工程と、
を有し、
前記接続部材は、前記第1の金属層の上方に配設され、第1の融点を有する第1の部材と、
前記第1の部材の上方に配設され、前記第1の融点よりも高い第2の融点を有し、前記第1の部材よりも広い面積を有する第2の部材と、
前記第2の部材の上方に配設され、前記第2の融点よりも低い第3の融点を有し、前記第2の部材よりも狭い面積を有する第3の部材と、
を有することを特徴とする半導体装置の製造方法。
Disposing a semiconductor element on a substrate;
Disposing a first metal layer above the semiconductor element;
Disposing a connection member containing In and Ag above the first metal layer;
Forming a second metal layer on one surface of the heat dissipation member;
Connecting the heat radiating member while heating and pressing so that the second metal layer is in contact with the connection member; and
Connecting the semiconductor element and the heat dissipation member by heating the connection member while pressing the heat dissipation member;
I have a,
The connecting member is disposed above the first metal layer and has a first member having a first melting point;
A second member disposed above the first member, having a second melting point higher than the first melting point, and having a larger area than the first member;
A third member disposed above the second member, having a third melting point lower than the second melting point and having a smaller area than the second member;
The method of manufacturing a semiconductor device which is characterized in that have a.
前記In及びAgを含む接続部材は、In-3Agを含むことを特徴とする請求項5に記載の半導体装置の製造方法。 6. The method of manufacturing a semiconductor device according to claim 5 , wherein the connection member containing In and Ag contains In-3Ag. 前記第1の金属層及び前記第2の金属層は、Auを含んだ層からなることを特徴とする請求項5又は請求項6に記載の半導体装置の製造方法。 The first metal layer and said second metal layer, a method of manufacturing a semiconductor device according to claim 5 or claim 6, characterized in that it consists of including the Au layer. 前記第2の部材はCuを含み、前記第1の部材及び前記第3の部材はIn-3Agを含むことを特徴とする請求項5乃至7のいずれか1項に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 5, wherein the second member includes Cu, and the first member and the third member include In-3Ag. .
JP2013272601A 2013-12-27 2013-12-27 Semiconductor device and manufacturing method thereof Active JP5796627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013272601A JP5796627B2 (en) 2013-12-27 2013-12-27 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013272601A JP5796627B2 (en) 2013-12-27 2013-12-27 Semiconductor device and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010113498A Division JP5447175B2 (en) 2010-05-17 2010-05-17 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2014060458A JP2014060458A (en) 2014-04-03
JP5796627B2 true JP5796627B2 (en) 2015-10-21

Family

ID=50616591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013272601A Active JP5796627B2 (en) 2013-12-27 2013-12-27 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5796627B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2955749A1 (en) * 2014-06-10 2015-12-16 ABB Technology Oy A method of heat transfer in power electronics applications
JP6038270B1 (en) * 2015-12-22 2016-12-07 有限会社 ナプラ Electronic equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3018554B2 (en) * 1991-04-25 2000-03-13 株式会社日立製作所 Semiconductor module and method of manufacturing the same
US5323294A (en) * 1993-03-31 1994-06-21 Unisys Corporation Liquid metal heat conducting member and integrated circuit package incorporating same
JP2001230351A (en) * 2000-02-14 2001-08-24 Shibafu Engineering Corp Joining material for electronic module, module type semiconductor device, and method of manufacturing the same
JP2007005670A (en) * 2005-06-27 2007-01-11 Fujitsu Ltd Electronic part package and bonding assembly
JP5093235B2 (en) * 2007-06-04 2012-12-12 株式会社村田製作所 Electronic component device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2014060458A (en) 2014-04-03

Similar Documents

Publication Publication Date Title
JP5447175B2 (en) Semiconductor device
US9082763B2 (en) Joint structure for substrates and methods of forming
JP4105409B2 (en) Multi-chip module manufacturing method
CN110416097B (en) Packaging structure and packaging method for preventing indium metal from overflowing
JP4305502B2 (en) Manufacturing method of semiconductor device
US8119451B2 (en) Method of manufacturing semiconductor package and method of manufacturing substrate for the semiconductor package
CN102456660A (en) Stacked semiconductor package, semiconductor device including the stacked semiconductor package and method of manufacturing the stacked semiconductor package
US9293433B2 (en) Intermetallic compound layer on a pillar between a chip and substrate
JP2015149459A (en) Semiconductor device and manufacturing method of the same
JP2013115083A (en) Semiconductor device and method of manufacturing the same
US11444054B2 (en) Semiconductor element mounting structure, and combination of semiconductor element and substrate
CN112310063A (en) Semiconductor device package and method of manufacturing the same
US9142493B2 (en) Semiconductor device
JP3872648B2 (en) Semiconductor device, method for manufacturing the same, and electronic device
JP5796627B2 (en) Semiconductor device and manufacturing method thereof
KR100857365B1 (en) Bump structure for semiconductor device
US20080290528A1 (en) Semiconductor package substrate having electrical connecting pads
KR20130060361A (en) Circuit device and method for manufacturing same
JP7239342B2 (en) ELECTRONIC DEVICE AND METHOD FOR MANUFACTURING ELECTRONIC DEVICE
JPWO2010070779A1 (en) Anisotropic conductive resin, substrate connection structure, and electronic equipment
US20160254241A1 (en) Printed circuit board and soldering method
JP5812123B2 (en) Manufacturing method of electronic equipment
JP5799565B2 (en) Semiconductor device and manufacturing method thereof
EP4095890A1 (en) Chip stacking structure, manufacturing method, and electronic device
JP4823662B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150430

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150803

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5796627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150