KR20060049223A - MTJ 디바이스의 dR/R을 향상시키기 위한 새로운캡핑 구조체 - Google Patents
MTJ 디바이스의 dR/R을 향상시키기 위한 새로운캡핑 구조체 Download PDFInfo
- Publication number
- KR20060049223A KR20060049223A KR1020050051479A KR20050051479A KR20060049223A KR 20060049223 A KR20060049223 A KR 20060049223A KR 1020050051479 A KR1020050051479 A KR 1020050051479A KR 20050051479 A KR20050051479 A KR 20050051479A KR 20060049223 A KR20060049223 A KR 20060049223A
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- thickness
- mtj
- capping
- microns
- Prior art date
Links
- 230000002708 enhancing effect Effects 0.000 title 1
- 230000004888 barrier function Effects 0.000 claims abstract description 62
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims abstract description 48
- 239000004020 conductor Substances 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 43
- 229910052751 metal Inorganic materials 0.000 claims abstract description 31
- 239000002184 metal Substances 0.000 claims abstract description 31
- 230000010287 polarization Effects 0.000 claims abstract description 28
- 239000002131 composite material Substances 0.000 claims abstract description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000001301 oxygen Substances 0.000 claims abstract description 17
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 17
- 230000008569 process Effects 0.000 claims abstract description 15
- 238000005247 gettering Methods 0.000 claims abstract description 12
- 238000011065 in-situ storage Methods 0.000 claims abstract description 7
- 229910003321 CoFe Inorganic materials 0.000 claims description 29
- 239000000758 substrate Substances 0.000 claims description 25
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 claims description 16
- 229910001120 nichrome Inorganic materials 0.000 claims description 16
- 230000003647 oxidation Effects 0.000 claims description 15
- 238000007254 oxidation reaction Methods 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 11
- 238000000151 deposition Methods 0.000 claims description 9
- 229910052715 tantalum Inorganic materials 0.000 claims description 8
- 238000004544 sputter deposition Methods 0.000 claims description 7
- 238000009792 diffusion process Methods 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims 12
- 230000015572 biosynthetic process Effects 0.000 claims 2
- 229910017107 AlOx Inorganic materials 0.000 abstract description 8
- 239000010410 layer Substances 0.000 description 472
- 230000005291 magnetic effect Effects 0.000 description 31
- 230000005290 antiferromagnetic effect Effects 0.000 description 21
- 230000005415 magnetization Effects 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 229920002120 photoresistant polymer Polymers 0.000 description 7
- 239000010949 copper Substances 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 238000005530 etching Methods 0.000 description 4
- 230000005294 ferromagnetic effect Effects 0.000 description 4
- 230000005641 tunneling Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000007737 ion beam deposition Methods 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 229910052741 iridium Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 238000000992 sputter etching Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910019222 CoCrPt Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- -1 Ir and Rh Chemical class 0.000 description 1
- 229910019041 PtMn Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3906—Details related to the use of magnetic thin film layers or to their effects
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3906—Details related to the use of magnetic thin film layers or to their effects
- G11B5/3909—Arrangements using a magnetic tunnel junction
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/161—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1673—Reading or sensing circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1675—Writing or programming circuits or methods
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
- H10N50/85—Magnetic active materials
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Computer Hardware Design (AREA)
- Crystallography & Structural Chemistry (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Physics & Mathematics (AREA)
- Hall/Mr Elements (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Thin Magnetic Films (AREA)
- Magnetic Heads (AREA)
- Semiconductor Memories (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
- Physical Vapour Deposition (AREA)
Abstract
MRAM 어레이 또는 TMR 판독 헤드내의 MTJ는 하부 상호확산 배리어층, 중간 산소 게터링층 및 상부 도전체와 접촉하는 상부 금속층을 포함한다. 합성 캡핑층은 약 17.5 내지 20원자%의 Fe 함량을 갖는 NiFe 같은 중간 스핀 분극 자유층과 함께 사용하기에 특히 유용하다. 캡핑층은 Ru/Ta/Ru 구조를 갖는 것이 바람직하며, 하부 Ru층은 약 10 내지 30Å 두께이고, Ta 층은 약 30Å 두께이다. 결과적으로, 약 40%의 높은 dR/R이 MRAM 어레이의 MTJ의 약 1.0E-6 보다 적은 낮은 자기변형으로 달성된다. 8 내지 10Å 두께 Al 층상에 현장 ROX 프로세스에 의해 형성된 AlOx 터널 배리어층을 사용하여 최상의 결과가 얻어진다.
합성 캡핑층, MTJ, 상호확산 배리어층, 터널 배리어층, 시드층
Description
도 1은 MRAM 구조체의 하부 전극과 상부 전극 사이에 형성되어 있는 종래의 MTJ 소자를 도시하는 단면도.
도 2는 저부 도전체 아래의 절연층내에 워드선이 배치되고, 상부 비트선과 저부 도전체 전극 사이에 MTJ가 형성되어 있는 MRAM 구조체의 단면도.
도 3은 TMR 판독 헤드내의 센서로서 기능하면서, 저부 및 상부 차폐부 사이에 형성된 종래의 MTJ 소자의 단면도.
도 4는 본 발명의 제1 실시예에 따른 캡핑층 및 자유층을 가지는 MTJ 소자가 워드선 위에, 그리고, 저부 도전체상에 형성되어 있는 부분적으로 형성된 MRAM 구조체의 단면도.
도 5는 포토레지스트 마스크가 제거되고, 절연층이 MTJ 소자에 인접하게 형성되며, MTJ 소자의 상부면상에 비트선이 형성된 이후의 도 4의 MRAM 구조체의 단면도.
도 6은 비트선과 워드선 사이에 타원형으로 성형된 MTJ 소자의 어레이가 개재되어 있는 MRAM 어레이의 단면도.
도 7은 본 발명의 제2 실시예에 따른 MTJ 소자가 상부 차폐부와 저부 차폐부 사이에 형성되고, 절연층에 의해 경성 바이어스 층으로부터 분리되어 있는 TMR 판독 헤드의 단면도.
<도면의 주요 부분에 대한 부호의 설명>
36: MRAM 구조체 38: 기판
39: 제1 절연층 40: 워드선
41: 제2 절연층 42: 시드층
43: 도전층 44: 캡핑층
45: 저부 도전체 층 46: 시드층
47: AFM층 48: SyAP 피닝된 층
49: 터널 배리어층
관련 특허 출원
본 출원은 이하, 모두 공통 양수인에게 양도된, 2004년 5월 12일자로 출원된 출원 번호 제10/844,171호인 도켓 # HT03-022 및 2004년 5월 19일자로 출원된 출원 번호 제10/849,310호에 관련한다.
발명의 분야
본 발명은 고성능 자기 터널 접합(MTJ:Magnetic Tunneling Junction) 소자 및 이를 제조하기 위한 방법에 관련하며, 보다 구체적으로는, 자기변형을 최소화하 면서, 자기저항(MR:magnetoresistive) 비율을 증가시키는 캡핑층에 관련한다.
발명의 배경
MTJ 기술과 실리콘 CMOS의 통합에 기초한 자기저항 랜덤 액세스 메모리(MRAM:magnetoresistive random access memory)는 주요 신흥 기술이며, SRAM, DRAM, 플래시 등 같은 현존하는 반도체 메모리와 매우 경쟁력이 있다. MRAM 디바이스는 일반적으로, 수평 평면상의 평행한 제1 도전선의 어레이, 제1 도전선에 수직인 방향으로 형성되어 그 위에 이격 배치된 제2 수평 평면상의 평행한 제2 도전선의 어레이 및 각 교차 위치에서 제1 도전선과 제2 도전선 사이에 보간된 MTJ 소자를 포함한다. 제1 도전선은 워드선이고, 제2 도전선은 비트선이거나 그 반대일 수 있다. 대안적으로, 제1 도전선은 구획화된 라인인 저부 전극일 수 있으며, 제2 도전선은 비트선(또는 워드선)일 수 있다. 통상적으로, 제1 도전선의 어레이 아래의 트랜지스터들 및 다이오드들을 포함하는 기타 디바이스와, 판독 또는 기록 동작들을 위해 MRAM 어레이내의 특정 MRAM 셀들을 선택하기 위해 사용되는 주변 회로가 존재한다.
도 1에서, 두 개의 강자성층들(ferromagnetic layers)이 얇은 비자성(non-magnetic) 유전층에 의해 분리되어 있는 구조를 층의 적층체가 가지고 있는 터널 자기저항(TMR:tunneling magnetoresistance) 효과에 기초한 MTJ 소자(1)가 도시되어 있다. MRAM 디바이스에서, MTJ 소자는 제2 도전선인 상부 전극(9) 및 제1 도전선 같은 저부 전극(2) 사이에 형성되어 있다. 저부 전극(2)은 통상적으로, Ta/Cu/Ta 또는 NiCr/Ru/Ta 같은 시드층/도전층/캡핑층 구조를 갖는다. MTJ 소자(1) 내의 저부층(3)은 일반적으로, 상부 MTJ 층의 평활하고 밀집된 결정 성장을 촉진하는, 예로서, NiCr 또는 Ta/NiCr 일 수 있는 하나 이상의 시드층을 포함한다. 다음에, 반강자성(AFM:antiferromagnetic) 피닝층(4)이 PtMn 또는 IrMn 같이 형성된다. CoFe 층들을 포함하는 다수의 층들의 합성체일 수 있는 AFM 층(4)상의 강자성 "피닝된(pinned)" 층(5)이 존재한다. 피닝된 층(5)위의 얇은 터널 배리어층(6)은 일반적으로, Al 층을 먼저 증착하고, 그후, 현장 산화(in-situ oxidation)를 수행함으로써 형성된 AlOx 같은 유전 재료를 포함한다. CoFe 및 NiFe 양자 모두 또는 그 중 하나를 포함하는 다른 합성층일 수 있는 강자성 "자유(free)"층(7)이 터널 배리어층(6)상에 형성된다. MTJ 적층체의 상부에는 캡핑층(8)이 존재한다. 이 MTJ 적층체는 소위 저부 스핀 밸브 구성(bottom spin valve configuration)를 갖는다. 대안적으로, MTJ 적층체는 시드층상에 자유층이 형성되고, 이어서 순차적으로 터널 배리어층, 피닝된 층, AFM 층 및 캡핑층이 형성되는 상부 스핀 밸브 구성을 가질 수 있다.
피닝된 층(5)은 또한 y 방향으로 자화되는 인접 AFM 층(4)과의 교환 결합에 의해 y 방향으로 고정된 자성 모멘트를 갖는다. 자유층(7)은 피닝된 층의 자성 모멘트에 평행하거나, 반-평행한 자성 모멘트를 갖는다. 터널 배리어 층(6)은 매우 얇으며, 이를 통한 전류는 도전 전자들의 양자 역학적 터널링에 의해 형성될 수 있다. 자유층의 자성 모멘트는 외부 자기장에 응답하여 변할 수 있으며, 터널링 전류, 그리고, 따라서, 터널링 접합부의 저항을 결정하는 자유와 피닝된 층 사이의 자성 모멘트의 상대 배향(relative orientation)이다. 감지 전류(10)가 MTJ 층들에 수직인 방향으로 상부 전극(9)으로부터 저부 전극(3)으로 통과할 때, 자유 및 피닝된 층의 자화 방향들이 평행 상태("1" 메모리 상태)이면 보다 낮은 저항이 검출되고, 이들이 반-평행 상태 또는 "0" 메모리 상태이면 보다 높은 저항이 인지된다.
판독 작업에서, MRAM 셀내에 저장된 정보는 평면에 수직인 전류(CPP:current perpendicular to plane) 구조의 셀을 통해 상부로부터 저부로 흐르는 감지 전류를 통해 MTJ 소자의 자기 상태(저항 레벨)를 감시함으로써 MRAM 셀내에 저장된 정보가 판독된다. 기록 작업 동안, MTJ 소자 아래 또는 위 중 어느 하나의 두 교차 도전선에 비트선 전류 및 워드선 전류를 인가한 결과로서, 외부 자기장을 발생시킴으로써, 자유층 내 자기 상태를 적절한 하나로 변경함으로써, MRAM 셀에 정보가 기록된다. 특정 MRAM 아키텍쳐들에서, 상부 전극 또는 저부 전극은 판독 및 기록 동작 양자 모두에 참여한다.
고성능 MTJ 소자는 dR/R인 자기저항(MR) 비율이 높은 것을 특징으로 하며, 여기서, R은 MTJ 소자의 최소 저항이고, dR은 자유층의 자기 상태를 변경함으로써 관찰되는 저항의 변화이다. 이 결과는 (a) 잘 제어된 자화 및 자유층의 스위칭, (b) 높은 열적 안정성 및 큰 교환 필드를 가지는 피닝된 층의 잘 제어된 자화 및 (c) 터널 배리어 층의 완전성에 의해 달성된다. 높은 파괴 전압(breakdown voltage)(Vb)과 특정 접합부 저항 x 면적(RA) 값 같은 양호한 배리어 특성을 달성하기 위해, AFM 및 피닝된 층의 평활하고 밀도있게 패킹된 성장에 의해 촉진되는 핀홀들이 없는 균일한 터널 배리어층을 갖는 것이 필요하다. 비록, 약 10000ohm-㎛2 의 높은 RA 값이 큰 면적(A)에 대해 허용가능하지만, RA는 보다 작은 면적에 대해 비교적 작아야만 한다(<1000ohm-㎛2). 그렇지 않으면, R은 MTJ에 연결되는 트랜지스터의 고유저항과 일치하기에 너무 높아진다.
자유층을 위한 바람직한 특성은 낮은 자기변형(magnetostriction) 및 낮은 보자력(자성 연성도)을 포함한다. 산업의 경향은 보다 높은 MR 비율을 형성하기 위해, CoFe 조성물내의 Fe가 ≥25원자%인 [(CoFe)0.8B0.2]이거나 Fe의 원자%가 >50%인 NiFe, 또는, Fe의 원자 %가 >20%인 CoFe 같은 고 스핀 분극 재료를 사용하는 것이다. 강자성층의 보다 높은 스핀 분극은 통상적으로 높은 포화 자화(Ms)와 연계된다. 높은 Ms 자유층에서, 자기변형(λs)은 통상적으로 MRAM 애플리케이션들을 위해 적합해지기에는 너무 높다. 따라서, 약 1x 10E-06 미만의 낮은 λs 및 30% 이상의 높은 MR 비율을 갖는 MRAM 어레이의 개선된 MTJ 소자가 필요하다.
도 2를 참조하면, 상부 도전체(19)를 갖는 MRAM 셀(11)내의 저부 도전체(16)상에 배치된 MTJ(1) 소자가 도시되어 있다. 기판(12)은 스터드(stud)(14)에 의해 저면 도전체에 연결되어 있는 것이 일반적인 트랜지스터(미도시)를 포함한다. 워드선(13)은 도면을 단순화하기 위해 도시되어 있지 않은 기판상의 둘 이상의 유전층의 적층체를 포함하는 합성층인 것이 일반적인 제1 절연층(15)내에서, MTJ 소자(1) 아래에 형성되어 있다. MTJ 소자(1)는 캡핑층(18)을 통해 상부 도전체(19)(비트선)와 접촉하며, 저부 도전체(16)상에 배치되어 있는 제2 절연층(17)내에 형성된다. 상-하 사시도로부터(미도시), 복수의 MTJ 소자가 상부 도전체들의 다수의 컬럼들과 하부 도전체들의 다수의 로우들 사이에 어레이로 형성되어 있다.
MRAM 애플리케이션들에 부가하여, 매우 낮은 RA(<5ohm-㎛2)를 제공하도록 보다 얇은 터널 배리어층을 갖는 MTJ 소자가 자기 기록 헤드의 자기저항(MR) 센서로서 사용될 수 있다. 도 3을 참조하면, 기판(21)상의 MR 판독 헤드(20)의 일부가 공기 담지면(ABS: air bearing surface)의 평면으로부터 도시되어 있다. 상부 차폐부(S2)인 상부 리드(30)와 저부 차폐부(S1)인 저부 리드(22) 사이에 형성된 MTJ 소자(23)가 존재한다. MTJ 소자(23)는 시드층(24), AFM 층(25), 피닝된 층(26), 터널 배리어층(27), 자유층(28), 및 캡핑층(29)으로 이루어지고, 이들은 저부 리드(22)상에 순차적으로 형성되며, 전술한 MTJ 소자(1)내의 대응 층들과 유사한 조성 및 기능을 갖는다. 통상적으로, 저부 리드(22)는 NiFe(~2㎛)/T 구조를 가지며, 상부 리드(30)는 Ru/Ta/NiFe(~2㎛) 구조를 갖는다. 본 예에서, 저부 리드(22)내의 NiFe 층은 S1을 나타내며, 상부 리드(30)내의 NiFe 층은 S2를 나타낸다. 판독 동작은 기록 매체 위로 Z 방향으로 ABS를 따라 판독 헤드를 이동시키는 것을 수반하며, 이는 자유층의 자화 방향에 영향을 주기 위해 외부 자기장을 유발한다.
미국 특허 제6,127,045호에서, 고 스핀 분극층(Ni40Fe60)이 MR 비율을 증가시키기 위해 MTJ 디바이스의 피닝된 층 및 자유층 양자 모두내에서 터널 배리어층 부근에 배치된다. 음의 자기변형층(Ni90Fe10)이 양의 자기 변형 계수를 실질적으로 상쇄시키기 위해, 각 양의 자기변형층(Ni40Fe60)에 인접하게 형성된다. 양의 자기변형 층(Co50Fe50)상의 음의 자기변형층(Ni)을 포함하는 합성 자유층은 미국 특허 제6,674,617호에서 니켈의 경도를 오프셋 시켜 자유층의 보자력을 감소시키도록 Ni 층상에 Ni80Fe20 같은 연자성층을 형성함으로써, 변형된다.
일반적으로, 캡핑층의 목적은 상부 비트선에 대한 전기 접점으로서 기능하는 것, 그리고, 에칭 및 CMP 프로세스 동안 MTJ내의 하부 층을 보호하는 것이다. 미국 특허 제6,266,218호는 비-자성 캡층이 Ta, Ru 및 그 산화물을 포함하는 자기 센서를 기술한다. MTJ 센서가 미국 특허 제6,600,638호에 기술되어 있으며, 이는 약 40Å의 Ta 캡핑층을 사용하고, 미국 특허 제6,657,825호에서는 캡층은 Ta 또는 Rh 중 하나이다. 약 200 내지 300Å의 두께를 갖는 Ru 또는 Ta 캡핑층이 미국 특허 제6,703,654호에서 선호된다.
캡핑층은 미국 특허 제6,624,987호에서 보호층이라 언급되고 있으며, 다층 막 또는 Ti, V, Cr, Co, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Pd, Ag, Hf, Ta, W, Re, Os, Ir, Pt, Au, Si, Al, Ni 또는 Re의 질화물 및 또는 산화물의 혼합물일 수 있다. 그러나, 하야시는 어느 원소가 적합한지, 또는 층이 최적의 성능을 제공하기 위해 어떤 순서로 다층 캡핑 구조체로 증착되어야 하는지를 교지하지 않는다. 따라서, 진보된 MRAM 기술을 위해 MTJ가 필요한 낮은 λs 값 및 높은 MR 비율을 달성할 수 있게 하기 위해, 개선된 캡핑층이 필요하다.
본 발명의 목적은 꼬임(kinks) 및 볼텍스(vortex)를 포함하지 않는 R-H(히스 테리시스(hysteresis)) 곡선을 초래하는 잘 제어된 자화 및 스위칭 특성을 갖는 MTJ 소자내의 자유층을 제공하는 것이다.
본 발명의 제2 목적은 MTJ 소자의 MR 비율을 향상시키는, 제1 목적에 따라 형성된 자유층상에 캡핑층을 제공하는 것이다.
본 발명의 제3 목적은 약 1E-06 미만의 낮은 자기변형을 가지는 첫 번째 두가지 목적에 따른 MTJ 소자를 제공하는 것이다.
본 발명의 제4 목적은 낮은 자기변형 및 높은 dR/R 비율을 갖는 MTJ 소자를 형성하는 방법을 제공하는 것이다.
제1 실시예에 따라, 이들 목적은 MRAM 구조체가 형성되는 기판을 제공함으로써 달성된다. 저부 도전체 전극은 기판상에 형성되며, Ta/Cu/Ta/Ru 구조를 가질 수 있으며, 여기서, Ru층은 MTJ 적층체가 증착되기 이전에, 비정질 Ta 캡핑층을 형성하는 스퍼터(sputter) 에치 단계에 의해 후속 제거된다. 그후, 층의 적층체를 포함하는 MTJ 소자가 저부 도전체 전극상에 형성된다. 일 실시예에서, MTJ 소자는 저부 스핀 밸브 구성을 가지며, 여기서, 시드층, AFM층, 합성 반-평행(SyAP) 피닝된 층, 터널 배리어층, 자유층 및 캡층이 순차적으로 형성된다. 시드층은 NiCr이고, AFM 층은 MnPt인 것이 바람직하다. SyAP 피닝된 층은 두 개의 CoFe층 사이에 샌드위치된 Ru 결합층을 갖는 것이 바람직하다. 산화된 Al(AlOx)층이 터널 배리어층으로서 사용된다. 터널 배리어 층 위에는 약 17.5 내지 20원자%의 Fe 함량을 가지는 NiFe를 포함하는 자유층이 존재한다. MTJ 적층체내의 캡핑층은 합성층인 것이 바람직하다. 일 양태에서, 캡핑층은 Ru/Ta/Ru 구조를 가지며, 여기서, 자유층상의 하부 내 부 확산 배리어층은 비교적 얇은 Ru 층이다. 중간층은 Ta 같은 산소 게터링층이다. 상부 금속층은 비교적 두꺼운 Ru 층이다. MTJ 적층체의 모든 층은 스퍼터링 또는 이온 빔 증착(IBD)으로 형성된다. Al 층의 산화는 래디컬 산화(ROX)법에 의해 달성된다. MTJ 소자의 상부면과 측벽을 형성하고, MTJ 측벽에 인접한 제1 절연층을 형성하고, MTJ 상부면상에 상부 도전체 전극(비트선)을 형성하기 위해 종래의 시퀀스가 이어진다.
제2 실시예에서, MTJ 소자는 MR 판독 헤드의 센서로서 형성된다. Ta를 포함하는 상부 차폐 캡핑층을 갖는 NiFe 층 같은 저부 차폐부가 기판상에 형성된다. 제1 실시예에서 설명된 바와 같은 MTJ 소자가 차폐 캡핑층상에 배치된다. MTJ 소자는 약 10원자%의 Fe 함량을 갖는 CoFe와, Fe의 함량이 약 17.5 내지 20원자%인 NiFe를 포함하는 합성 자유층을 갖는 것이 바람직하다. 일 양태에서, 캡핑층은 Ru/Ta/Ru 구조를 갖는다. 유전층은 자유층에 대한 종방향 바이어싱을 제공하는 경성 바이어스 층으로부터 MTJ를 분리시키기 위해 MTJ 소자의 각 측부상에 형성된다. 제2 유전층은 경성 바이어스층상에 형성되며, MTJ의 상부면과 동평면이다. 상부 차폐부인 상부 리드는 제2 유전층상에, 그리고, MTJ의 상부면상에 배치된다.
본 발명은 작은 MTJ 크기들을 가지는 고밀도 디바이스들을 위해 필요한 유용한 특성들인 낮은 자기변형 및 높은 MR 비율을 결과적인 디바이스가 가질 수 있게 하는 층들의 MTJ 적층체에 사용하기 위한 합성 캡핑층이다. 비록, MRAM 및 TMR 판독 헤드 애플리케이션들가 본 명세서에 설명되어 있지만, 본 발명은 본 기술의 숙 련자들이 인지할 수 있는 바와 같이, MTJ 디바이스에 기초한 다른 기술에 사용될 수 있다. 도면은 본 발명의 범주를 제한하기 위한 것이 아니며, 에로서 제공되어 있다. 또한, 도면은 실척대로 그려진 것이 아니며, 다양한 소자의 상대 크기는 실제 디바이스의 것들에 비해 변할 수 있다.
본 발명의 제1 실시예에 따라 형성된 MRAM 구조체를 이제 설명한다. 도 4를 참조하면, 부분 완성된 MRAM 구조체(36)가 도시되어 있으며, 이는 트랜지스터 및 다이오드 같은 기타 디바이스를 통상적으로 포함하는 기술에 사용되는 실리콘 또는 기타 반도체 기판일 수 있는 기판(38)을 포함한다. Al2O3, 실리콘 산화물 등으를 포함하는 제1 절연층(39)이 기판(38)상에 배치된다. 제1 절연층(39)과 동평면이면서 그 내부에 형성되어 있는 예로서, 구리를 포함하는 제1 도전선이 존재한다. 본 설명을 위해, 제1 도전선은 워드선(40)이며, 이는 +y 또는 -y 방향으로 전류를 도전하기 위해 사용된다. 선택적으로, 제1 도전선은 본 기술의 숙련자가 인지할 수 있는 바와 같이, 디지트선, 데이터선, 로우 라인 또는 컬럼 라인이라 지칭될 수 있다. 워드선(40)은 얇은 확산 배리어층(미도시)에 의해 저부와 측부상에서 둘러쌀 수 있다. 제1 절연층(39)과 워드선(40)상에 형성된 실리콘 산화물 또는 Al2O3 같은 제2 절연층(41)이 존재한다. 제2 절연층(41) 위에는 기판(38)내의 하부 트랜지스터에 대한 상호접속을 위한 저부 도전체 층(45)이 존재한다. 저부 도전체 층(45)은 통상적으로 절연층(미도시)과 동평면이다. 일 양태에서, 저부 도전체 층(45)은 시드층(42)/도전층(43)/캡핑층(44) 구조를 갖는 합성층이다.
MRAM 구조체는 평행 비트선 같은 다수의 상부 도전체가 MTJ 어레이 위의 제2 도전층에 형성되어 있고, 다수의 평행 워드선이 제1 도전층에 형성되어 있는 MRAM 어레이의 일부인 것이 이해된다. 대안적으로, 제1 도전층은 평행 비트선들이고, 제2 도전층은 평행 워드선들일 수 있다. 워드선들 및 비트선들은 서로 직교 정열되며, 저부 도전체 층은 기판내의 트랜지스터와 각 MTJ 소자를 연결하기위해 사용될 수 있다. 예시적 실시예에서, MTJ 소자는 워드선 위를 비트선이 교차하는 각 위치에서 비트선과 저부 도전체 층 사이에 형성된다.
저부 도전체 층(45)은 예로서, z 방향으로 두께 및 x, y 평면에서 직사각형 형상을 갖는 구획화된 라인일 수 있다. 대안적으로, 저부 도전체 층(45)은 MTJ 위의 후속 형셩된 제2 워드선에, 그리고, 하부 워드선(40)에 직교 정렬되는 비트선일 수 있다. 일 실시예에서, 저부 도전체 층(45)은 NiCr/Ru/Ta 구조를 가질 수 있으며, 여기서, 제2 절연층(41)상에 형성된 시드층(42)은 약 40 내지 60Å의 두께를 갖는 NiCr로 이루어진다. 선택적으로, 시드층(42)은 약 40 내지 60Å의 두께를 갖는 Ta를 포함할 수 있다. 시드층(42) 위에는 Ru를 포함하는 것이 바람직한, 약 100 내지 200Å 사이의 두께를 갖는 도전층(43)이 있다. 본 명세서에 참조로 포함되어 있는, 헤드웨이 테크놀로지스 인크에 양도된 미국 특허 제6,703,654호에 언급된 바와 같이, 작은 입자 크기 및 평활한 표면을 가지는 Ir 및 Rh 같은 다른 고융점 금속이 도전층(43)으로서 사용될 수 있다. 대안적으로, Au 또는 Cu 같은 다른 금속이 도전층(43)으로서 사용될 수 있다.
캡핑층(44)은 약 30 내지 50Å의 두께를 갖는 Ta 층일 수 있으며, 스퍼터 에 칭 이후, 비정질 특성을 갖는다. 일 실시예에 따라서, 시드층(42), 도전층(43), Ta 캡핑층(44) 및 상부 Ru층(미도시)은 제2 절연층(41)상에 스퍼터링 또는 이온 빔 증착(IBD)에 의해 순차 증착된다. 본 명세서에 참조로 포함되어 있는 헤드웨이 특허 출원 HT0-022에 기술된 바와 같이, Ru층 및 저부 도전체 층(45)내의 하부 Ta 층의 일부는 후속 형성된 MTJ 층의 균일하고 밀도있는 성장을 촉진하기 위해 기능하는 비정질 Ta 캡핑층을 생성하기 위해 스퍼터 에칭에 의해 제거된다.
층의 MTJ 적층체가 이제 저부 도전체 층(45)상에 형성된다. MTJ 적층체는 저부 도전체 층과 동일한 처리 도구에서 형성될 수 있다는 것을 이해하여야 한다. 예로서, 저부 도전체 층(45) 및 MTJ 적층체는 초고 진공 DC 마그네트론 스퍼터 챔버 및 산화 챔버를 포함하는 Anelva 7100 시스템 등에서 형성될 수 있다. 통상적으로, 스퍼터 증착 프로세스는 아르곤 스퍼터 가스를 수반하며, 각 스퍼터 챔버는 다수의 타겟을 가지며, 이들은 저압 방전 캐소드이다. 저부 도전체 층(45) 및 하부 MTJ 층은 처리량을 향상시키기 위해 스퍼터 증착 시스템의 일회 펌프 다운 이후 형성될 수 있다.
양호한 실시예에서, 층의 MTJ 적층체는 시드층, AFM 층, SyAP 피닝된 층, 터널 배리어층, 자유층 및 캡핑층을 순차적으로 형성함으로써 저부 도전체 층(45)상에 배치된다. 시드층(46)은 약 40 내지 60Å의 두께를 가지며, 바람직하게는 45Å의 두께 및 약 35 내지 45원자%의 Cr 함량을 가지는 NiCr 층이다. 그러나, NiFe 또는 NiFeCr은 NiCr 대신 시드층(46)으로서 사용될 수 있다. 시드층(46)이 비정질 Ta 캡핑층(44)상에 성장되기 때문에, 평활하고 밀도있는 <111> 시드층 구조가 얻어진 다. 본 발명자는 NiCr 시드층이 본 명세서에 참조로 포함되어 있는 헤드웨이 특허 출원 HT03-025/031에 기술된 바와 같이 비정질 Ta 층상에 증착되는 프로세스를 이전에 실시하여 왔다. 평활하고 밀도있는 시드층(46)은 후속 형성된 MTJ 층의 평활하고 밀도있게 패킹된 성장을 위해 중요하다.
AFM 층(47)은 약 100 내지 200Å, 보다 바람직하게는 150Å의 두께를 갖는 MnPt로 이루어지는 것이 바람직하지만, 약 50 내지 100Å의 두께를 갖는 IrMn층도 사용할 수 있다. AFM 층은 자성적으로 y 방향으로 정렬된다. 특정 축을 따른 자화에 영향을 미치도록 AFM 층 같은 MTJ 층의 증착 동안 외부 자기장이 적용될 수 있다.
SyAP 피닝된 층(48)은 AP2/Ru/AP1 구조를 갖는다. AP2 층은 AFM 층(47)상에 형성되며, 약 20 내지 30Å, 보다 바람직하게는 23Å의 두께와, 약 10원자% Fe의 조성을 갖는 CoFe를 포함하는 것이 바람직하다. AP2 층의 자성 이동은 AP1 층의 자성 이동에 반-평행 방향으로 피닝된다. AP1 및 AP2 층 사이의 두께의 미소한 편차는 y 축을 따라 SyAP 피닝된 층(48)을 위한 작은 순 자성 모멘트를 발생시킨다. AP2 층과 AP1 층 사이의 교환 결합은 약 7.5Å의 두께를 갖는 바람직하게는 Ru를 포함하는 결합층에 의해 촉진되지만, Rh 또는 Ir이 Ru 대신 사용될 수 있다. 일 실시예에서, Ru 결합층상의 AP1 층은 약 25 내지 50 원자% Fe의 조성 및 약 15 내지 25Å, 보다 바람직하게는 20Å의 두께를 갖는 CoFe를 포함한다. 선택적으로, AP1 층은 CoFe 층 사이에 샌드위치된 FeTaO 또는 CoFeO 같은 얇은 나노-산화물층(NOL)을 포함하는 합성층일 수 있다. 나노-산화물 층은 AP1층의 평활도를 향상시키기 위 해 사용된다.
SyAP 피닝된 층(48) 위에는 이하 AlOx 층이라 지칭되는, Al2O3 스토이키오메트리(stoichiometry)에 근접한 산소 함량을 가지는 산화된 Al 층인 것이 바람직한 얇은 터널 배리어층(49)이 형성되어 있다. 최초에, 약 8 내지 10Å의 두께를 가지는 Al 층이 SyAP 피닝된 층(48)상에 증착되고, 후속하여, 현장 래디컬 산화(ROX)에 의해 산화된다. 그리드형 캡이 상부 이온화 전극과 기판 표면(Al 층) 사이에 산화챔버내에 배치되어 있는 플라즈마 산화 프로세스를 수반하는 ROX의 예는 본 명세서에 참조로 포함되어 있는 관련 특허 출원 HT03-022에 기술되어 있다. 결과적인 AlOx 층은 약 11 내지 15Å, 바람직하게는 14Å의 두께를 갖는다. 터널 배리어층(49)은 평활하고 밀도있게 패킹된 시드층(46), AFM층(47) 및 Ta 캡핑층(44)상에 성장된 SyAP 피닝된 층(48) 때문에 양호한 평활도 및 균일도를 갖는다.
본 발명의 한가지 중요한 특징은 터널 배리어층(49)상에 형성된 자유층(50)이 본 기술의 숙련자가 이해할 수 있는 바와 같이, 중간 스핀 분극 재료로 형성된다는 것이다. 고 스핀 분극 재료는 Fe의 원자%가 >20%인 CoFe 합금, Fe의 원자%가 >50%인 NiFe 합금 또는 CoFe 조성에 ≥25원자% Fe를 가지는 [(CoFe)mBn] 합금으로서 규정된다. 보다 일반적으로, 고 스핀 분극 재료는 상술된 합금들과 같거나 그 보다 큰 자화 포화(Ms) 값을 갖는 것이며, 중간 스핀 분극 재료는 상술한 합금들 보다 작은 Ms 값을 갖는 것으로서 정의된다.
중간 스핀 분극 재료는 MTJ 소자내의 자기변형(λs)을 최소화하는 것을 돕는 다. 예로서, Fe 함량이 약 17.5와 20원자% 사이, 바람직하게는 NiFe(17.5%)라고도 지칭되는 17.5원자%인 NiFe 층이 자유층(50)으로서 유리하게 사용될 수 있다. 이 경우에, NiFe 층은 30과 60Å 사이, 바람직하게는 40Å의 두께를 갖는다. 자유층(50)은 y-축(피닝된 층 방향)을 따라 자성 정렬된다. MTJ가 상면도(도 6)에서 볼 수 있는 바와 같이 타원형으로 형성될 때, MTJ 소자의 이지 축은 장축(y-방향)을 따른다.
본 발명의 핵심 특징은 자유층(50)상에 형성된 합성층인 캡핑층(51)이다. 일 양태에서, 캡핑층(51)은 Ru/Ta/Ru 구조를 가지며, 약 10 내지 30Å, 보다 바람직하게는 20Å의 두께를 가지는 Ru인 것이 바람직한 하부 금속층이 자유층(50)상에 형성된다. 하부 금속층은 NiFe 자유층과 캡핑층(51)내의 중간 금속층 사이의 상호확산 배리어로서 기능한다. 또한, 하부 금속층의 두께는 자유층(50)의 자기변형을 추가로 감소시키도록 조절될 수 있다. 하부 Ru 층상에 성장된 중간 금속층은 낮은 저항을 가지는 α-상(phase) Ta 층인 것이 바람직하며, 약 20 내지 50Å, 바람직하게는 30Å의 두께를 갖는다. 중간 금속층 위에는 상부 금속층이 존재하며, 이는 약 150 내지 250Å, 바람직하게는 210Å의 두께를 갖는 Ru인 것이 바람직하다. 이전에, 본 발명자는 250Å의 두께를 갖는 단일 Ru 층으를 포함하는 표준 캡핑층을 갖는 MTJ 소자를 제조하였다.
MTJ 소자의 측벽을 형성하는 후속 이온 빔 에칭(IBE) 프로세스 및 MTJ의 상부면의 부식을 유발할 수 있는 MTJ에 인접한 절연층의 후속 평탄화로 인해, 두꺼운 상부 금속층이 필요하다는 것을 이해하여야 한다. 상부 금속층의 미소한 두께 소실 은 후속 형성된 비트선 및 자유층(50) 사이의 거리에 최소의 영향을 갖는다. 자유층에서의 비트선 전류에 의해 생성된 자기장 강도가 캡핑층의 두께에 의존하기 때문에, 이 파라미터를 제어하는 기능은 직접적으로 자유층에서의 스위칭 자기장의 제어를 향상시킨다. 부가적으로, 두꺼운 상부 Ru 층은 상부 비트선과의 양호한 전기 접촉을 보증한다. Ru는 또한, Ru가 어닐링 동안 산화에 대해 불활성이며, 낮은 저항의 도전체이기 때문에, 합성 캡핑층(51)내의 하부 금속층과 상부 금속층으로서 양호하다는 것을 인지하여야 한다.
본 발명자는 의외로, 제1 실시예에 따른 캡핑층(51)을 위한 Ru/Ta/Ru 구조가 이전에 달성되지 않은 낮은 λs값 및 높은 MR 비율의 조합을 제공한다는 것을 발견하였다. 예로서, Ru/Ta/Ru 캡핑층(51)이 상술된 바와 같은 NiFe 자유층과 통합될 때, 결과적인 MTJ 소자에서 낮은 자기변형이 관찰된다. 높은 MR 비율을 책임지는 메카니즘은 합성 캡핑층(51)내의 중간 Ta층에 의한 자유층(50)내의 산소 게터링 단계를 수반하는 것으로 믿어진다. 산소는 NiFe 합금 및 Ru 같은 천이 금속내에서 매우 이동성이 높고, 외부로 확산하여 인접 Ta층과 반응하는 강한 경향을 갖는다. Ru/Ta/Ru 캡핑층을 사용함으로써, 하부 NiFe 자유층은 오염된 산소가 보다 적고, 보다 높은 도전성을 갖는다. 매우 작은 양의 산소가 중간 Ta 층에 의해 게터링되며, 이는 캡핑층(51)의 도전성의 미소한 손실을 초래한다.
종래 기술에 비하여 본 발명의 다른 장점은 결과적인 MTJ 디바이스의 개선된 스위칭 특성이다. NiFe(17.5%) 자유층을 갖는 MTJ의 R-H 스위칭(히스테리시스) 곡선은 꼬임 및 볼텍스가 없는 것으로 관찰되었다. 높은 스핀 분극 자유층을 갖는 MTJ는 자유층내의 포화 자화 및 MTJ 소자 형상과 강하게 상관되어 있는 도메인 벽 피닝/드래깅 또는 볼텍스로부터 발생하는 꼬임을 갖는 R-H 곡선(미도시)을 산출한다. 자유층 스위칭이 관련되는 한, NiFe(17.5%) 같은 중간 스핀 분극 층이 바람직하며, 그 이유는 이것이 MRAM 애플리케이션들에 임계적인 보다 제어된 자화 및 스위칭 특성에 연관되기 때문이다.
대안적으로, 캡핑층(51)은 약 10 내지 30Å의 두께를 갖는 Ta 층이 자유층(50)상에 형성되고, 약 150 내지 250Å의 두께를 갖는 Ru층이 Ta 층상에 형성되어 있는 Ta/Ru 합성층을 포함할 수 있다. 그러나, 이 구조는 Ru/Ta/Ru 합성층 보다 덜 양호하며, 그 이유는 상호확산 배리어 층이 생략되어 있고, NiFe 자유층내로의 Ta 확산이 보다 많은 볼택스형 구조체를 초래하기 때문이다. 본 발명자는 또한 MTJ의 V50이 Ta/Ru 캡핑층 구조에서 600 내지 800mV로 증가된다는 것을 발견하였다. 따라서, MTJ 바이어스 조건(통상 400mV)에서 유효 dR/R이 보다 높다.
본 발명은 또한 모든 MTJ 층이 증착된 이후, 측벽 및 상부면(51a)을 갖는 MTJ 소자가 먼저, 캡핑층(51)상에 폭 w를 갖는 포토 레지스트층(52)을 코팅 및 패턴화함으로써 제조된다. 다음에, 포토레지스트층(52)은 에치 마스크에 의해 보호되지 않는 MTJ 적층체 층(46-51)의 영역을 제거하는 IBE 시퀀스 동안 에치 마스크로서 사용된다. 결과적으로, 시드층(46)이 w 보다 큰 폭을 가지고, 캡핑층(51)이 폭 w를 가지는 통상적으로 경사진 측벽을 구비한 MTJ 소자가 형성된다.
도 5를 참조하면, 포토레지스트층(52)은 습식 스트립퍼(wet stripper) 또는 산소 애싱 프로세스(oxygen ashing process)를 수반할 수 있는 종래의 방법에 의해 제거된다. 표준 세정 단계는 스트립핑 단계 이후, 모든 유기 잔류물이 제거되는 것을 보증하기 위해 이 시점에서 수행될 수 있다. 그후, 제3 절연층(53)이 저부 전극(45)상에, 그리고, MTJ 측벽에 인접하게, 종래의 방법에 의해 형성되며, 종래의 방법은 적절한 유전 상수를 갖는 절연 재료를 증착하고, MTJ 소자의 상부면(51a)과 동평면이 되도록 제3 절연층을 평탄화하는 것을 수반할 수 있다.
MRAM 셀(40)의 제조의 다음 단계는 MTJ 소자의 상부면(51a)과 접촉하는 제3 절연층(53)상에 상부 도전체(비트선)(54)를 형성하는 것이다. 비트선(54)은 워드선(40)의 것에 직교하는 방향으로 정렬되며, 하나 이상의 층을 포함할 수 있다. 예로서, Cu, Au 또는 Al 같은 상부 도전체 층이 본 기술의 숙련자들이 인지할 수 있는 바와 같은 확산 배리어층에 의해 측부 및 저부에서 포위될 수 있다. 예시적 실시예에서, 비트선(54)은 +x 또는 -x 방향으로 전류를 전달하기 위해 사용되며, 워드선(40)은 y-축을 다른 길이 방향을 갖는다. 저부 도전체 층(45)이 직사각형 형상을 갖는 구획화된 라인일 때, 보다 긴 측부가 y 방향으로 형성되고, 보다 짧은 측부가 x 방향으로 형성될 수 있다. 잘 알려진 오른손 법칙에 따라, 비트선(54)을 통해 흐르는 전류는 자유층의 이지 축 방향으로 제1 자기장을 발생시키고, 워드선(40)의 전류는 기록 작업 동안 경성 축 방향으로 제2 자기장을 생성한다. 비트선 전류 및 워드선 전류의 흐름 방향 및 크기는 수직인 방향으로 자유층(70)의 자화를 정렬시키도록 변경된다.
도 6을 참조하면, MRAM 어레이의 상면도가 도시되어 있으며, 이는 네 개의 MRAM 셀들, 네 개의 MTJ 소자들, 두 개의 워드선들(40) 및 두 개의 비트선들(54)을 포함한다. 저부 도전체 층(45)은 도면을 단순화하기 위해 도시되어 있지 않다. 워드선(40)은 폭 b를 가지며, 비트선(54)은 폭 v를 갖는다. 비트선(54)은 제1, 제2 및 제3 절연층(39, 41, 53)과 동일한 유전 재료를 포함할 수 있는 제4 절연층(58)과 동평면에 있으며, 그에 의해 분리되어 있다는 것을 이해하여야 한다. 양호한 실시예에서, MTJ 소자의 상부면(51a) 및 MTJ내의 각층(46-51)은 타원형 형상을 가지며, 장축(y-방향)을 따라 길이 w를 가지고, 단축(x-방향)을 따라 폭 a를 갖는다. 그러나, 본 발명은 또한, 원형 또는 직사각형인 MTJ 형상도 고려한다. 비트선(54)의 폭 v는 길이 w 보다 클 수 있으며, 워드선(40)의 폭 b는 MTJ 소자의 폭 a 보다 클 수 있다.
제1 실시예에 따른 MRAM 셀의 저부 도전체층(45)과 비트선(54) 사이에 형성된 MTJ 소자의 성능을 결정하기 위해 실험이 수행되었다. 표 1은 고 스핀 분극 재료를 포함하는 자유층에 비교한, NiFe(17.5%) 자유층의 상대 성능을 나타내는 배경 데이터를 제공한다. 표 1의 결과는 MTJ 소자내의 종래의 Ru 캡핑층으로 얻어졌다. 실제 MTJ 구조는 Ta/NiCr40/MnPt100/CoFe(10%)23/Ru/CoFe(25%)20/Al10-ROX/자유층/Ru250으로 표현된다. 표 1의 결과는 MTJ 소자의 dR/R을 증가시키기 위해, NiFe(60%) 같은 고 스핀 분극 재료가 자유층으로 사용될 수 있지만, 부적합하게 큰 자기변형이 초래된다는 것을 나타낸다. 한편, NiFe(17.5%) 같은 중간 스핀 분극 자유층을 위한 dR/R은 고성능 MTJ를 위한 dR/R >30%의 요구조건을 충족하기에 충분하지 못하다. 약 1.0 E-6 보다 "매우" 큰 λs값은 고밀도 MRAM 어레이의 자유층을 위 해 허용불가하다는 것을 인지하여야 한다. (-)가 압축 응력을, 그리고, (+)가 인장 응력을 나타내고 있는 -1.0E-7 내지 +1.0E-7의 λs값은 비-자기저항성이다.
[표 1]
다양한 자유층들을 가지는 MTJ의 자성 특성
자유층 | 두께(Å) | dR/R(%) | RA(ohm-㎛2) | 람다(λs) |
NiFe(17.5%) | 40 | 25-28 | 3500-4000 | -2.7E-7 |
CoFe(25%) | 40 | 50-55 | 3500-4000 | +5.0E-6 |
[CoFe(25%)]0.8B0.2 | 40 | 50-55 | 4000-5000 | +9.44E-6 |
NiFe(60%) | 40 | 45-50 | 3500-4000 | +1.97E-5 |
NiFe(60%)/NiFe(17.5%) | 5/40 | 35% | 3500-4000 | +4.08E-6 |
NiFe(70%)/NiFe(17.5%) | 5/40 | 38% | 3500-4000 | +6.23E-6 |
본 발명에 따른 MTJ를 제조함으로써 실현된 개선을 예시하기 위해, MRAM 어레이내의 MTJ 적층체가 Anelva 710 스퍼터링 시스템에서 형성되었다. 각 샘플내의 AlOx 터널 배리어층은 먼저, 10Å 두께 Al 막을 증착하고, 상술된 바와 같이, 래디컬 산화(ROX) 프로세스에 의해 현장 산화하여 형성되었다. 모든 샘플은 먼저 Ta/Ru/Ta/Ru를 포함하는 저부 도전체 층을 증착하고, 그후, 비정질 Ta 캡핑층을 제공하도록 스퍼터 에칭함으로써 준비되었다. 각 샘플내의 MTJ는 NiCr 시드층(45Å), MnPt AFM층(150Å), CpFe(10% Fe)AP2층(23Å)/Ru 결합층(7.5Å)/CoFe(25% Fe)AP1(20Å) 구조를 포함하는 SyAP 피닝된 층, AlOx 터널 배리어층, NiFe 자유층(40Å) 및 캡핑층을 순차 증착함으로써 형성된 적층체를 갖는다. 캡핑층 구조는 표 2에 표시된 바와 같이 변한다.
[표 2]
서로 다른 캡핑층들을 가지는 MTJ의 자성 특성
캡핑층 | Al두께 | dR/R(%) | Bs | RA(ohm-㎛2) | 람다(λs) |
Ru250 | 10 | 28.1 | 0.61 | 4500 | -1.90E-7 |
Ru10/Ta30/Ru210 | 10 | 38.2 | 0.61 | 3320 | -2.70E-7 |
Ru30/Ta30/Ru210 | 10 | 40.1 | 0.6 | 3695 | -1.01E-6 |
Ta30/Ru210 | 10 | 39.1 | 0.47 | 3680 | +4.54E-6 |
Ru10/Ta30/Ru210 | 9 | 39.5 | 0.60-0.61 | 1376 | - |
표 2에 도시된 바와 같이, 종래의 Ru 캡핑층을 갖는 기준 MTJ를 위한 RA 및 dR/R은 각각 4500ohm-㎛2 및 28.1%이다. Ru/Ta/Ru 캡핑층 또는 Ta/Ru 캡핑층을 사용할 때, dR/R 비율은 >38% 및 39%로 각각 증가된다. RA는 Ru/Ta/Ru 및 Ta/Ru 구조에 대하여, 종래의 Ru 캡핑층에 비해 감소되었다는 것을 인지하여야 한다. Ta/Ru 샘플에서, 자유층의 Bs는 0.60 내지 0.47로 감소되었으며, 이는 NiFe 자유층과 Ta 층 사이의 안정한 상호 확산이 이루어진다는 것을 나타내며, Ta와 NiFe의 합금이 생성되었다는 것을 나타낸다. 부가적으로, 자유층의 자기변형은 Ta/Ru 합성층으로 캡핑될 때 높다. 본 발명에 따른, Ru/Ta/Ru 캡핑층은 높은 dR/R, 보다 낮은 RA 및 낮은 λs의 최상의 조합을 제공한다. 또한, λs값은 전술된 바와 같이, 보다 낮은 Ru 층의 두께를 조절함으로써 변경될 수 있다. 따라서, 종래 기술에서 얻어지는 것 보다, 높은 성능을 갖는 MTJ 소자가 제조되었다.
표 2의 최종 엔트리는 ROX 프로세스 이전에 10Å에서 9Å으로 Al 층의 두께를 감소시킴으로써 RA가 추가로 감소될 수 있다는 것을 예시한다. 당업자는 유전 터널 배리어층(AlOx)의 RA가 터널 배리어층(Al) 두께의 지수 함수라는 것을 알고 있다. 낮은 RA가 매우 높은 밀도의 MRAM 어레이에 대해 필요할 때, 보다 얇은 Al 층이 증착된다. 예로서, 4000ohm-㎛2의 수준의 RA는 Al10-ROX 터널 배리어층에 대해 관찰되고, 200ohm-㎛2의 수준의 RA는 Al8-ROX 터널 배리어층에서만 얻어진다.
도 7에 도시된 제2 실시예에서, 자기저항(TMR) 판독 헤드(60)가 도시되어 있으며, 여기서, MTJ 소자는 저부(S1) 차폐부(62)와 상부(S2) 차폐부(75) 사이에 형성되어 있다. 합성 캡핑층이 dR/R을 향상시키고, 수용가능한 자기변형을 제공하기 위해, MTJ내의 NiFe(17.5%) 자유층 같은 중간 스핀 분극층상에 형성된다.
기판(62)은 본 기술을 숙련자가 이해할 수 있는 바와 같이, TMR 판독 헤드(60)내의 NiFe를 포함하는 저부 차폐부일 수 있다. 차폐부 캡핑층(64)은 약 50 내지 80Å의 두께를 갖는 Ta층 및 20과 30 Å 사이의 두께를 갖는 Ru층을 저부 차폐부(62)상에 순차 증착하는 것을 수반하는 전술된 방법에 의해 저부 차폐부(62)상에 형성된다. 그후, Ru층이 차폐부 캡핑층(64)으로서 비정질 Ta 층을 형성하기 위해 하부 Ta 층을 또한 부분적으로 제거하는 스퍼터 에치 프로세스에 의해 제거된다. 차폐부 캡핑층(64)은 약 30 내지 50Å의 두께를 가지며, 후속 형성된 MTJ 소자내의 층의 평활하고 밀도있는 성장을 촉진하기 위해 사용된다. 선택적으로, 차폐부 캡핑층(64)은 저부층이 저부 차폐부(62)의 캡핑층으로서 기능하며, 본 기술의 숙련자가 인지할 수 있는 바와 같이 후속 형성된 층의 평활하고 밀도있는 성장을 역시 촉진하는 합성층을 포함할 수 있다. S1 차폐부를 위한 캡핑층은 예로서, 비정질(Co75Fe25)0.8B0.2일 수 있다.
층들의 MTJ 적층체는 차폐부 캡핑층(64)상에 이제 형성되며, 차폐부 캡핑층이 형성되는 동일 처리 도구내에서 증착될 수 있다. 처리 도구는 Anelva 7100 시스 템 등이며, 이는 초고 진공 스퍼터링 챔버 및 산화 챔버를 포함하고, 단일 펌프 다운 단계 이후, MTJ 소자내의 모든 층들을 형성하는 용량을 갖는다.
일 실시예에서, 층의 MRJ 적층체는 시드층(66), AFM층(67), SyAP 피닝된 층(68), 터널 배리어층(69), 자유층(70) 및 캡핑층(71)을 순차적으로 형성함으로써, 차폐부 캡핑층상에 배치된다. 시드층(66)은 제1 실시예의 시드층(46)과 동일한 두께 및 조성을 갖는 NiCr층일 수 있다. 유사하게, AFM층(67), SyAP 피닝된 층(68) 및 터널 배리어층(69)은 AFM 층(47), SyAP 피닝된 층(48) 및 터널 배리어층(49)에 대하여 각각 제1 실시예에서 설명된 바와 동일한 조성을 가질 수 있다. 그러나, TMR 판독 헤드(60)에서, 최초 증착된 Al 층은 약 5.5 내지 6Å 두께이며, 터널 배리어층(69)을 형성하도록 자연적 산화(NOX) 프로세스에 의해 후속 산화된다.
본 발명의 한가지 중요 특징은 터널 배리어층(69) 상에 형성된 자유층(70)이 제1 실시예에서 설명된 NiFe(17.5%)와 같은 낮음 내지 중간 스핀 분극 재료로 제조된다는 것이다. 낮음 내지 중간 스핀 분극 재료는 MTJ 소자의 자기변형(λS)을 최소화하는 것을 보조한다. 바람직하게는, 자유층(70)은 CoFe 합금이 약 10 원자%의 Fe 함량 및 10Å이 바람직한 5 내지 10Å의 두께를 갖는 반면 NiFe층은 약 17.5 내지 20 원자%의 Fe 함량 및 약 30 내지 40Å의 두께를 갖는 CoFe/NiFe 구조를 갖는 합성층이다. 자유층(70)은 증착 중에 x 방향으로 자기적으로 정렬될 수 있다.
본 발명의 주요 특징은 자유층(70) 상에 형성된 합성층인 캡핑층(71)이다. 일 양태에서, 캡핑층(71)은 약 10 내지 30Å, 바람직하게는 20Å의 두께를 갖는 Ru인 것이 바람직한 하부 금속층이 자유층(70)에 형성되는 Ru/Ta/Ru 구조를 갖는다. 하부 금속층은 NiFe 자유층과 캡핑층(71) 내의 중간 금속층 사이의 인터-확산 배리어로서 기능한다. 더욱이, 하부 금속층의 두께는 자유층(70) 내의 자기변형을 더욱 감소시키도록 조정될 수 있다. 이 중간 금속층은 자유층(70)으로부터 산소를 제거하기 위한 산소 게터링층으로서 기능하는 약 20 내지 50Å 및 더 바람직하게는 30Å의 두께를 갖는 α-상 Ta 층인 것이 바람직하다. Ta 층의 상부에는 약 100 내지 200Å 및 바람직하게는 150Å의 두께를 갖는 Ru인 것이 바람직한 상부 금속층이 존재한다. 두꺼운 상부 Ru 층은 MTJ 소자의 측벽을 형성하는 후속의 이온 빔 에칭(IBE) 프로세스에 기인하여 요구된다. Ru는 우수한 도전도를 갖고 양호한 상호확산 배리어로서 기능하고 TMR 판독 헤드의 상부(S2) 실드인 상위의 상부 리드와의 전기적 접촉을 최적화하기 위한 평활면을 형성하기 때문에 합성 캡핑층의 상부 및 하부 금속층으로서 바람직하다.
본 발명자들은 제2 실시예에 따른 캡핑층(71)의 Ru/Ta/Ru 구조가 미리 성취되지 않은 높은 MR비 및 낮은 λS 값의 조합을 제공한다는 것을 의외로 발견하였다. 예를 들면, Ru/Ta/Ru 캡핑층(71)이 상술한 바와 같이 자유층(70)과 일체화될 때, 낮은 자기변형이 최종 MTJ 소자에서 관찰된다. 대안적으로, 캡핑층(71)은 약 30 내지 50Å의 두께를 갖는 Ta 층이 자유층(70) 상에 형성되고 약 100 내지 200의 두께를 갖는 Ru 층이 Ta 층 상에 형성되는 Ta/Ru 합성층을 포함할 수 있다. 그러나, 이 구조는 상호확산 배리어층이 포함되지 않기 때문에 덜 바람직하다.
본 발명은 또한 모든 MTJ 층이 증착된 후에 하나 이상의 어닐링 단계를 포함한다. 예를 들면, AFM 층이 y-축을 따라 외부 자기장을 인가하면서 어닐링될 수 있 다. TMR 판독 헤드의 경우, 자유층이 x-축을 따라 더 작은 외부 자기장을 인가함으로써 어닐링될 수 있다.
모든 MTJ 층이 증착된 후, MTJ 소자는 상부면(71a) 상에 리프트-오프 포토레지스트 패턴(도시 생략)을 형성하고 이어서 포토레지스트 마스크에 의해 보호되지 않는 층(66 내지 71)의 MTJ 적층체의 부분을 선택적으로 제거하기 위해 IBE 에칭함으로써 제조된다. 그 결과, MTJ 소자는 시드층(66)의 폭이 캡핑층(71)의 폭보다 크고 상부면(71a)의 폭이 트랙 폭을 결정하는 경사진 측벽을 일반적으로 갖고 형성된다. IBE 프로세스 후에, 예를 들면 Al2O3를 포함하는 유전층(72)이 MTJ 소자의 측벽 및 실드 캡핑층(64) 상으로의 화학 기상 증착(CVD) 또는 물리 기상 증착(PVD)에 의해 약 100 내지 150Å의 두께로 증착된다. 다음, 바람직하게는 TiW/CoCrPt/Ta 구조(도시 생략)를 갖는 경질 바이어스층(73) 및 제2 Al2O3 유전층(4)이 제1 유전층(72)에 순차적으로 증착된다. 경질 바이어스층은 약 200 내지 300Å의 두께를 갖고, 제2 유전층은 약 200 내지 250Å의 두께를 갖는다. 포토레지스트 마스크 및 상위층(72 내지 74)은 상부면(71a)을 노출시키도록 종래의 방법에 의해 리프트-오프된다. 상부면(71a)은 인접한 제2 유전층(74)과 동일 평면상에 있는 것이 바람직하다. 화학 기계적 연마(CMP) 단계가 제2 유전층을 평탄화하는데 이용될 수 있다. 다음, 상부 실드(75)가 상부면(71a) 및 제2 유전층(74) 상에 형성되어 TMR 판독 헤드(60)를 완성한다.
제2 실시예의 장점은 제1 실시예에서 실현된 것과 동일하다. 제2 실시예의 TMR 판독 헤드의 MTJ 소자에 의해 성취된 dR/R 은 약 1.0E-6 미만의 자기변형을 갖 고 약 20% 더 크다. 따라서, 고성능 TMR 판독 헤드가 본원에 설명된 바와 같은 MTJ 적층체 상에 합성 시드층을 이용함으로써 높은 dR/R, 낮은 RA 및 낮은 자기변형의 고유의 조합으로 실현된다.
본 발명이 그의 바람직한 실시예를 참조하여 상세히 도시되고 설명되었지만, 이 기술 분야의 숙련자들은 형태 및 상세의 다양한 변형이 본 발명의 사상 및 범주로부터 벗어나지 않고 수행될 수 있다는 것을 이해할 수 있을 것이다.
꼬임 및 볼텍스를 포함하지 않는 R-H(히스테리시스) 곡선을 초래하는 잘 제어된 자화 및 스위칭 특성을 갖는 MTJ 소자내의 자유층;
MTJ 소자의 MR 비율을 향상시키는, 제1 목적에 따라 형성된 자유층상에 캡핑층;
약 1E-06 미만의 낮은 자기변형을 가지는 첫 번째 두가지 목적에 따른 MTJ 소자; 및
낮은 자기변형 및 높은 dR/R 비율을 갖는 MTJ 소자를 형성하는 방법이 제공되어, 진보된 MRAM 기술을 위해 MTJ가 필요한 낮은 λs 값 및 높은 MR 비율을 달성할 수 있게 하기 위해, 개선된 캡핑층 및 약 1x 10E-06 미만의 낮은 λs 및 30% 이상의 높은 MR 비율을 갖는 MRAM 어레이의 개선된 MTJ 소자을 달성할 수 있다.
Claims (42)
- 기판상의 저부 도전체 층과 상부 도전체 층 사이에 형성된 MTJ 소자에 있어서,(a) 중간 스핀 분극 자유층(moderate spin polarization free layer); 및(b) 상기 자유층상에 형성된 합성 캡핑층(composite capping layer)을 포함하고,상기 캡핑층은 하부 상호확산 배리어층(lower inter-diffusion barrier layer), 중앙 산소 게터링층(middle oxygen gettering layer) 및 상기 상부 도전체와 접촉하는 상부면을 가지는 상부 금속층을 포함하는, MTJ 소자.
- 제 1 항에 있어서, 상기 중간 스핀 분극 자유층은 약 30 내지 50Å의 두께와 약 17.5 내지 20 원자%의 Fe 함량을 가지는 NiFe를 포함하는, MTJ 소자.
- 제 1 항에 있어서, 저부 도전체상에 순차적으로 형성된 NiCr 시드층(seed layer), MnPt AFM 피닝층(pinning layer), SyAP 피닝된 층 및 산화 알루미늄(AlOx) 터널 배리어층을 더 포함하고, 상기 중간 스핀 분극 자유층 및 상기 합성 캡핑층은 상기 AlOx 터널 배리어층상에 순차적으로 형성되는, MTJ 소자.
- 제 3 항에 있어서, 상기 SyAP 피닝된 층은 약 10원자%의 Fe 함량과 약 23Å 의 두께를 가지는 하부 CoFe층, 약 7.5Å의 두께를 가지는 중간 Ru 결합층(coupling layer) 및 약 25 내지 50원자%의 Fe 함량과 약 20Å의 두께을 가지는 상부 CoFe층을 포함하는, MTJ 소자.
- 제 3 항에 있어서, 상기 AlOx 터널 배리어층은 약 5 내지 12Å의 두께를 가지는 증착된 Al 막의 현장 산화(in-situ oxidation)에 의해 형성되는 MTJ 소자.
- 제 1 항에 있어서, 상기 하부 상호확산 배리어층은 Ru를 포함하고, 약 10 내지 30Å의 두께를 갖는, MTJ 소자.
- 제 1 항에 있어서, 상기 중앙 산소 게터링층은 Ta를 포함하며, 약 20 내지 50Å의 두께를 갖는, MTJ 소자.
- 제 1 항에 있어서, 상부 금속층은 Ru를 포함하며, 약 100 내지 250Å의 두께를 갖는, MTJ 소자.
- 제 1 항에 있어서, 상기 MTJ는 상기 하부 상호확산 배리어층의 두께를 조절함으로써 최소화될 수 있는 자기변형(magnetostriction)을 갖는, MTJ 소자.
- 제 1 항에 있어서, 상기 MTJ 소자는 MRAM 구조체 내에 형성되며, 약 40%의 dR/R 및 약 1.0E-6 미만의 자기변형을 갖는, MTJ 소자.
- 제 1 항에 있어서, 상기 MTJ 소자는 TRM 판독 헤드에 형성되며, 약 20%의 dR/R과 약 1.0 E-6 미만의 자기변형을 갖는, MTJ 소자.
- 기판상에 형성된 MRAM 구조체에 있어서,(a) 기판상에 형성된 저부 도전체층;(b) 측벽들 및 상부면을 구비한 MTJ 소자로서, 상기 저부 도전체층상에 순차적으로 형성되는 시드층, AFM 피닝층, 피닝된 층, 터널 배리어층, 자유층 및 캡핑층을 포함하며, 상기 캡핑층은 하부 상호확산 배리어층, 중앙 산소 게터링층 및 상부 금속층을 포함하는 상기 MTJ 소자; 및(c) 상기 MTJ 소자의 상부면상에 형성된 상부 도전체층을 포함하는, MRAM 구조체.
- 제 12 항에 있어서, 상기 저부 도전체층은 상기 기판 상의 Ta 또는 NiCr로 이루어진 시드층, 상기 시드층상에 Ru 또는 Cu를 포함하는 도전층, 및 상기 도전층상에 Ta를 포함하는 캡핑층을 포함하는, MRAM 구조체.
- 제 12 항에 있어서, 상기 MTJ 소자는 NiCr 시드층, MnPt AFM 피닝층 및 SyAP 피닝된 층을 포함하는, MRAM 구조체.
- 제 12 항에 있어서, 상기 터널 배리어층은 약 11 내지 15Å 사이의 두께를 가지는 AlOx를 포함하는, MRAM 구조체.
- 제 12 항에 있어서, 상기 자유층은 약 17.5 내지 20원자% 사이의 Fe 함량을 가지는 NiFe인 중간 스핀 분극 재료를 포함하는, MRAM 구조체.
- 제 12 항에 있어서, 상기 하부 상호확산 배리어층은 Ru를 포함하고, 약 10 내지 30Å의 두께를 갖는, MRAM 구조체.
- 제 12 항에 있어서, 상기 중앙 산소 게터링층은 Ta를 포함하고, 약 20 내지 50Å 사이의 두께를 갖는, MRAM 구조체.
- 제 12 항에 있어서, 상기 상부 금속층은 Ru를 포함하며, 약 150 내지 250Å의 두께를 갖는, MRAM 구조체.
- 기판상에 형성된 TMR 판독 헤드에 있어서,(a) 기판상에 형성된 저부 차폐부(bottom shield);(b) 상기 저부 차폐부 상에 형성된 측벽들 및 상부면을 가지는 MTJ 소자로서, 중간 스핀 분극 자유층 및 그 위에 형성된 캡핑층을 포함하고, 상기 캡핑층은 하부 상호확산 배리어층, 중앙 산소 게터링층 및 상부 금속층을 포함하는 상기 MTJ 소자; 및(c) 상기 MTJ 소자의 상부면과 접촉하는 상부 차폐부를 포함하는, TRM 판독 헤드.
- 제 20 항에 있어서, 상기 저부 차폐부상에 순차적으로 형성된 NiCr 시드층, MnPt AFM 피닝층, SyAP 피닝된 층 및 AlOx 터널 배리어층을 더 포함하며, 상기 중간 스핀 분극 자유층 및 상기 캡핑층은 AlOx 터널 배리어층상에 순차적으로 형성되는, TRM 판독 헤드.
- 제 21 항에 있어서, 상기 SyAP 피닝된 층은 약 10원자%의 Fe 함량과 약 23Å의 두께를 가지는 하부 CoFe층, 약 7.5Å의 두께를 가지는 중앙 Ru 결합층 및 약 25 내지 50원자%의 Fe 함량과 약 20Å의 두께을 갖는 상부 CoFe층을 포함하는, TRM 판독 헤드.
- 제 20 항에 있어서, 상기 저부 차폐부는 NiFe를 포함하는, TRM 판독 헤드.
- 제 20 항에 있어서, 상기 중간 스핀 분극 자유층은 CoFe층이 약 10원자%의 Fe 함량과 약 5 내지 10Å의 두께를 가지고, NiFe층이 약 17.5% 내지 20% 사이의 Fe 함량과 약 30 내지 40Å의 두께를 가지는 합성 CoFe/NiFe층인, TRM 판독 헤드.
- 제 20 항에 있어서, 상기 하부 상호확산 배리어층은 Ru를 포함하며, 약 10 내지 30Å의 두께를 갖는, TRM 판독 헤드.
- 제 20 항에 있어서, 상기 중앙 산소 게터링층은 Ta를 포함하며, 약 20과 50Å 사이의 두께를 갖는, TRM 판독 헤드.
- 제 20 항에 있어서, 상부 금속층은 Ru를 포함하고, 약 100과 200Å 사이의 두께를 갖는, TRM 판독 헤드.
- 기판상에 MTJ 소자를 형성하는 방법에 있어서,(a) 기판상에 시드층, AFM층, 피닝된 층 및 AlOx 터널 배리어층을 순차적으로 형성하는 단계;(b) AlOx 터널 배리어층상에 중간 스핀 분극 자유층을 형성하는 단계; 및(c) 상기 중간 스핀 분극 자유층상에 캡핑층을 형성하는 단계를 포함하고,상기 캡핑층은 하부 상호확산 배리어층, 중앙 산소 게터링층 및 상부면을 갖는 상부 금속층을 포함하는, MTJ 소자 형성 방법.
- 제 28 항에 있어서, 상기 기판은 MRAM 구조체의 저부 도전체인, MTJ 소자 형성 방법.
- 제 28 항에 있어서, 상기 기판은 TMR 판독 헤드의 저부 차폐부상의 차폐부 캡핑층인, MTJ 소자 형성 방법.
- 제 29 항에 있어서, 상기 상부 금속층의 상부면상에 상부 도전체를 형성하는 단계를 더 포함하는, MTJ 소자 형성 방법.
- 제 30 항에 있어서, 상기 상부 금속층의 상부면상에 상부 차폐부를 형성하는 단계를 더 포함하는, MTJ 소자 형성 방법.
- 제 28 항에 있어서, 상기 시드층은 NiCr를 포함하고, 상기 AFM층은 MnPt를 포함하며, 상기 피닝된 층은 10원자%의 Fe 함량을 가지는 하부 CoFe층, 중앙 Ru 결합층 및 25 내지 50원자%의 Fe 함량을 갖는 상부 CoFe층으을 포함하는 SyAP 피닝된 층인, MTJ 소자 형성 방법.
- 제 29 항에 있어서, 상기 AlOx 터널 배리어층은 상기 피닝된 층상에 약 8 내지 10Å의 두께로 Al 층을 증착하고, 그후, 현장 래디컬 산화(ROX:in-situ radical oxidation) 프로세스를 수행함으로써 형성되는, MTJ 소자 형성 방법.
- 제 30 항에 있어서, 상기 AlOx 터널 배리어층은 상기 피닝된 층상에 약 5 내 지 6Å의 두께로 Al층을 증착하고, 그후, 현장 자연 산화(NOX) 프로세스를 수행함으로써 형성되는, MTJ 소자 형성 방법.
- 제 29 항에 있어서, 상기 중간 스핀 분극 자유층은 약 17.5 내지 20원자%의 Fe 함량과 약 20 내지 50Å의 두께를 가지는 NiFe를 포함하는, MTJ 소자 형성 방법.
- 제 30 항에 있어서, 상기 중간 스핀 분극 자유층은 약 10원자%의 Fe 함량과 약 5 내지 10Å의 두께를 가지는 CoFe 및 약 30 내지 40Å의 두께와 약 17.5 내지 20원자%의 Fe 함량을 갖는 NiFe를 포함하는 합성 CoFe/NiFe층인, MTJ 소자 형성 방법.
- 제 28 항에 있어서, 상기 하부 상호확산 배리어층은 Ru를 포함하며, 약 10 내지 30Å의 두께를 갖는, MTJ 소자 형성 방법.
- 제 28 항에 있어서, 상기 중앙 산소 게터링층은 Ta를 포함하며, 약 20 내지 50Å의 두께를 갖는, MTJ 소자 형성 방법.
- 제 28 항에 있어서, 상기 상부 금속층은 Ru를 포함하고, 약 100 내지 250Å의 두께를 갖는, MTJ 소자 형성 방법.
- 제 28 항에 있어서, 상기 MTJ 소자내의 모든 층들은 스퍼터링 챔버들(sputtering chamber)와 산화 챔버(oxidation chamber)을 포함하는 초고(ultra high) 진공 스퍼터링 시스템에서 증착되며, 일회 펌프 다운 단계 이후 모든 층들이 형성되는, MTJ 소자 형성 방법.
- 제 28 항에 있어서, 상기 기판은 상기 MTJ 소자내의 층들의 평활하고 밀도있는 성장을 촉진하는 상부 비정질 Ta층을 갖는, MTJ 소자 형성 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/868,715 | 2004-06-15 | ||
US10/868,715 US7449345B2 (en) | 2004-06-15 | 2004-06-15 | Capping structure for enhancing dR/R of the MTJ device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060049223A true KR20060049223A (ko) | 2006-05-18 |
KR101142820B1 KR101142820B1 (ko) | 2012-05-08 |
Family
ID=34942846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050051479A KR101142820B1 (ko) | 2004-06-15 | 2005-06-15 | MTJ 디바이스의 dR/R을 향상시키기 위한 새로운캡핑 구조체 |
Country Status (6)
Country | Link |
---|---|
US (1) | US7449345B2 (ko) |
EP (1) | EP1607980B1 (ko) |
JP (1) | JP2006005356A (ko) |
KR (1) | KR101142820B1 (ko) |
AT (1) | ATE459080T1 (ko) |
DE (1) | DE602005019496D1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8445979B2 (en) | 2009-09-11 | 2013-05-21 | Samsung Electronics Co., Ltd. | Magnetic memory devices including magnetic layers separated by tunnel barriers |
Families Citing this family (184)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7394626B2 (en) * | 2002-11-01 | 2008-07-01 | Nec Corporation | Magnetoresistance device with a diffusion barrier between a conductor and a magnetoresistance element and method of fabricating the same |
JP2004200245A (ja) * | 2002-12-16 | 2004-07-15 | Nec Corp | 磁気抵抗素子及び磁気抵抗素子の製造方法 |
US7319262B2 (en) * | 2004-08-13 | 2008-01-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | MRAM over sloped pillar |
US7356909B1 (en) * | 2004-09-29 | 2008-04-15 | Headway Technologies, Inc. | Method of forming a CPP magnetic recording head with a self-stabilizing vortex configuration |
KR100642638B1 (ko) * | 2004-10-21 | 2006-11-10 | 삼성전자주식회사 | 낮은 임계 전류를 갖는 자기 램 소자의 구동 방법들 |
JP2006128410A (ja) * | 2004-10-28 | 2006-05-18 | Alps Electric Co Ltd | 磁気検出素子及びその製造方法 |
US7582923B2 (en) | 2004-11-16 | 2009-09-01 | Nec Corporation | Magnetic memory and manufacturing method for the same |
US7211447B2 (en) * | 2005-03-15 | 2007-05-01 | Headway Technologies, Inc. | Structure and method to fabricate high performance MTJ devices for MRAM applications |
JP4533807B2 (ja) * | 2005-06-23 | 2010-09-01 | 株式会社東芝 | 磁気抵抗効果素子及び磁気ランダムアクセスメモリ |
US7880249B2 (en) * | 2005-11-30 | 2011-02-01 | Magic Technologies, Inc. | Spacer structure in MRAM cell and method of its fabrication |
KR100706806B1 (ko) * | 2006-01-27 | 2007-04-12 | 삼성전자주식회사 | 자기 메모리 소자 및 그 제조 방법 |
US20070187785A1 (en) * | 2006-02-16 | 2007-08-16 | Chien-Chung Hung | Magnetic memory cell and manufacturing method thereof |
JP2007273493A (ja) * | 2006-03-30 | 2007-10-18 | Fujitsu Ltd | 磁気メモリ装置及びその製造方法 |
US7528457B2 (en) * | 2006-04-14 | 2009-05-05 | Magic Technologies, Inc. | Method to form a nonmagnetic cap for the NiFe(free) MTJ stack to enhance dR/R |
US7595520B2 (en) * | 2006-07-31 | 2009-09-29 | Magic Technologies, Inc. | Capping layer for a magnetic tunnel junction device to enhance dR/R and a method of making the same |
JP4862564B2 (ja) | 2006-08-30 | 2012-01-25 | Tdk株式会社 | トンネル型磁気検出素子およびその製造方法 |
US7751156B2 (en) * | 2006-09-29 | 2010-07-06 | Hitachi Global Storage Technologies Netherlands, B.V. | Dual-layer free layer in a tunneling magnetoresistance (TMR) element |
US7672093B2 (en) * | 2006-10-17 | 2010-03-02 | Magic Technologies, Inc. | Hafnium doped cap and free layer for MRAM device |
US8093698B2 (en) * | 2006-12-05 | 2012-01-10 | Spansion Llc | Gettering/stop layer for prevention of reduction of insulating oxide in metal-insulator-metal device |
JP4380693B2 (ja) | 2006-12-12 | 2009-12-09 | ソニー株式会社 | 記憶素子、メモリ |
TWI330366B (en) * | 2007-02-07 | 2010-09-11 | Ind Tech Res Inst | Magnetic memory device |
US7663131B2 (en) | 2007-03-08 | 2010-02-16 | Magic Technologies, Inc. | SyAF structure to fabricate Mbit MTJ MRAM |
US8119424B2 (en) | 2007-09-28 | 2012-02-21 | Everspin Technologies, Inc. | Electronic device including a magneto-resistive memory device and a process for forming the electronic device |
US8497559B2 (en) * | 2007-10-10 | 2013-07-30 | Magic Technologies, Inc. | MRAM with means of controlling magnetic anisotropy |
US9442171B2 (en) * | 2008-01-09 | 2016-09-13 | Seagate Technology Llc | Magnetic sensing device with reduced shield-to-shield spacing |
US7723128B2 (en) * | 2008-02-18 | 2010-05-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | In-situ formed capping layer in MTJ devices |
US8057925B2 (en) * | 2008-03-27 | 2011-11-15 | Magic Technologies, Inc. | Low switching current dual spin filter (DSF) element for STT-RAM and a method for making the same |
JP2009295737A (ja) * | 2008-06-04 | 2009-12-17 | Renesas Technology Corp | 半導体装置及び半導体装置の製造方法 |
US8724264B2 (en) * | 2008-09-04 | 2014-05-13 | Tdk Corporation | Thin film magnetic head, magnetic head slider, head gimbal assembly, head arm assembly, magnetic disk device and method of manufacturing thin film magnetic head |
US8482966B2 (en) * | 2008-09-24 | 2013-07-09 | Qualcomm Incorporated | Magnetic element utilizing protective sidewall passivation |
US7977224B2 (en) * | 2008-12-03 | 2011-07-12 | The United States Of America As Represented By The Secretary Of The Army | Method using multiple layer annealing cap for fabricating group III-nitride semiconductor device structures and devices formed thereby |
US7808027B2 (en) * | 2009-01-14 | 2010-10-05 | Magic Technologies, Inc. | Free layer/capping layer for high performance MRAM MTJ |
US8344433B2 (en) * | 2009-04-14 | 2013-01-01 | Qualcomm Incorporated | Magnetic tunnel junction (MTJ) and methods, and magnetic random access memory (MRAM) employing same |
US8735179B2 (en) * | 2009-08-27 | 2014-05-27 | Qualcomm Incorporated | Magnetic tunnel junction device and fabrication |
US8912012B2 (en) | 2009-11-25 | 2014-12-16 | Qualcomm Incorporated | Magnetic tunnel junction device and fabrication |
US8198620B2 (en) * | 2009-12-14 | 2012-06-12 | Industrial Technology Research Institute | Resistance switching memory |
JP5476185B2 (ja) * | 2010-03-31 | 2014-04-23 | ルネサスエレクトロニクス株式会社 | 半導体装置及び半導体装置の製造方法 |
US9373500B2 (en) * | 2014-02-21 | 2016-06-21 | Lam Research Corporation | Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications |
US9287113B2 (en) | 2012-11-08 | 2016-03-15 | Novellus Systems, Inc. | Methods for depositing films on sensitive substrates |
US9892917B2 (en) | 2010-04-15 | 2018-02-13 | Lam Research Corporation | Plasma assisted atomic layer deposition of multi-layer films for patterning applications |
US8637411B2 (en) | 2010-04-15 | 2014-01-28 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
US9997357B2 (en) | 2010-04-15 | 2018-06-12 | Lam Research Corporation | Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors |
US9611544B2 (en) | 2010-04-15 | 2017-04-04 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
US9390909B2 (en) | 2013-11-07 | 2016-07-12 | Novellus Systems, Inc. | Soft landing nanolaminates for advanced patterning |
US9257274B2 (en) | 2010-04-15 | 2016-02-09 | Lam Research Corporation | Gapfill of variable aspect ratio features with a composite PEALD and PECVD method |
US9337417B2 (en) * | 2010-12-10 | 2016-05-10 | Avalanche Technology, Inc. | Magnetic random access memory with perpendicular interfacial anisotropy |
US9647202B2 (en) * | 2011-02-16 | 2017-05-09 | Avalanche Technology, Inc. | Magnetic random access memory with perpendicular enhancement layer |
US9685320B2 (en) | 2010-09-23 | 2017-06-20 | Lam Research Corporation | Methods for depositing silicon oxide |
US8568602B2 (en) * | 2011-01-19 | 2013-10-29 | HGST Netherlands B.V. | Method of manufacturing a magnetic read sensor having a low resistance cap structure |
JP2013021108A (ja) * | 2011-07-11 | 2013-01-31 | Toshiba Corp | 半導体記憶装置およびその製造方法 |
JP5279879B2 (ja) * | 2011-08-09 | 2013-09-04 | 株式会社東芝 | 不揮発性半導体記憶装置 |
CN103107281B (zh) * | 2011-11-15 | 2015-04-08 | 中芯国际集成电路制造(北京)有限公司 | 半导体器件及其制造方法 |
FR2992466A1 (fr) | 2012-06-22 | 2013-12-27 | Soitec Silicon On Insulator | Procede de realisation de contact pour led et structure resultante |
US20140084399A1 (en) * | 2012-09-27 | 2014-03-27 | Mark L. Doczy | Spin transfer torque memory (sttm) device with topographically smooth electrode and method to form same |
US9355839B2 (en) | 2012-10-23 | 2016-05-31 | Lam Research Corporation | Sub-saturated atomic layer deposition and conformal film deposition |
US8981505B2 (en) | 2013-01-11 | 2015-03-17 | Headway Technologies, Inc. | Mg discontinuous insertion layer for improving MTJ shunt |
WO2014142956A1 (en) * | 2013-03-15 | 2014-09-18 | Intel Corporation | Logic chip including embedded magnetic tunnel junctions |
US20140339661A1 (en) * | 2013-05-20 | 2014-11-20 | T3Memory, Inc. | Method to make mram using oxygen ion implantation |
KR102105078B1 (ko) | 2013-05-30 | 2020-04-27 | 삼성전자주식회사 | 자기 기억 소자 |
US20150137286A1 (en) * | 2013-05-31 | 2015-05-21 | T3Memory, Inc. | Method to form mram by dual ion implantation |
US8958180B1 (en) | 2013-08-28 | 2015-02-17 | HGST Netherlands, B.V. | Capping materials for magnetic read head sensor |
US9461242B2 (en) | 2013-09-13 | 2016-10-04 | Micron Technology, Inc. | Magnetic memory cells, methods of fabrication, semiconductor devices, memory systems, and electronic systems |
US9608197B2 (en) | 2013-09-18 | 2017-03-28 | Micron Technology, Inc. | Memory cells, methods of fabrication, and semiconductor devices |
US9082927B1 (en) | 2013-12-20 | 2015-07-14 | Intermolecular, Inc. | Catalytic growth of Josephson junction tunnel barrier |
US9425376B2 (en) | 2013-12-23 | 2016-08-23 | Intermolecular, Inc. | Plasma cleaning of superconducting layers |
US9281463B2 (en) | 2013-12-23 | 2016-03-08 | Intermolecular, Inc. | Atomic layer deposition of metal-oxide tunnel barriers using optimized oxidants |
US9324767B1 (en) | 2013-12-31 | 2016-04-26 | Intermolecular, Inc. | Superconducting junctions |
US9214334B2 (en) | 2014-02-18 | 2015-12-15 | Lam Research Corporation | High growth rate process for conformal aluminum nitride |
US10454024B2 (en) | 2014-02-28 | 2019-10-22 | Micron Technology, Inc. | Memory cells, methods of fabrication, and memory devices |
US9281466B2 (en) | 2014-04-09 | 2016-03-08 | Micron Technology, Inc. | Memory cells, semiconductor structures, semiconductor devices, and methods of fabrication |
US9184379B1 (en) | 2014-07-18 | 2015-11-10 | Intermolecular, Inc. | Capping thin-film resistors to control interface oxidation |
US9263667B1 (en) | 2014-07-25 | 2016-02-16 | Spin Transfer Technologies, Inc. | Method for manufacturing MTJ memory device |
US9330692B2 (en) | 2014-07-25 | 2016-05-03 | HGST Netherlands B.V. | Confinement magnetic cap |
US9478411B2 (en) | 2014-08-20 | 2016-10-25 | Lam Research Corporation | Method to tune TiOx stoichiometry using atomic layer deposited Ti film to minimize contact resistance for TiOx/Ti based MIS contact scheme for CMOS |
US9478438B2 (en) | 2014-08-20 | 2016-10-25 | Lam Research Corporation | Method and apparatus to deposit pure titanium thin film at low temperature using titanium tetraiodide precursor |
US9337412B2 (en) | 2014-09-22 | 2016-05-10 | Spin Transfer Technologies, Inc. | Magnetic tunnel junction structure for MRAM device |
US9349945B2 (en) | 2014-10-16 | 2016-05-24 | Micron Technology, Inc. | Memory cells, semiconductor devices, and methods of fabrication |
US9564312B2 (en) | 2014-11-24 | 2017-02-07 | Lam Research Corporation | Selective inhibition in atomic layer deposition of silicon-containing films |
US9768377B2 (en) * | 2014-12-02 | 2017-09-19 | Micron Technology, Inc. | Magnetic cell structures, and methods of fabrication |
CN105789122B (zh) * | 2014-12-12 | 2019-05-03 | 财团法人工业技术研究院 | 光电元件的转移方法 |
US10439131B2 (en) | 2015-01-15 | 2019-10-08 | Micron Technology, Inc. | Methods of forming semiconductor devices including tunnel barrier materials |
US10566187B2 (en) | 2015-03-20 | 2020-02-18 | Lam Research Corporation | Ultrathin atomic layer deposition film accuracy thickness control |
US9502238B2 (en) | 2015-04-03 | 2016-11-22 | Lam Research Corporation | Deposition of conformal films by atomic layer deposition and atomic layer etch |
US10468590B2 (en) | 2015-04-21 | 2019-11-05 | Spin Memory, Inc. | High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory |
US9728712B2 (en) | 2015-04-21 | 2017-08-08 | Spin Transfer Technologies, Inc. | Spin transfer torque structure for MRAM devices having a spin current injection capping layer |
CN106291413B (zh) * | 2015-05-21 | 2021-11-30 | 中国科学院宁波材料技术与工程研究所 | 一种自旋阀结构及其作为巨磁电阻应力传感器的应用 |
US9853206B2 (en) | 2015-06-16 | 2017-12-26 | Spin Transfer Technologies, Inc. | Precessional spin current structure for MRAM |
US10526701B2 (en) | 2015-07-09 | 2020-01-07 | Lam Research Corporation | Multi-cycle ALD process for film uniformity and thickness profile modulation |
US9773974B2 (en) | 2015-07-30 | 2017-09-26 | Spin Transfer Technologies, Inc. | Polishing stop layer(s) for processing arrays of semiconductor elements |
US10163479B2 (en) | 2015-08-14 | 2018-12-25 | Spin Transfer Technologies, Inc. | Method and apparatus for bipolar memory write-verify |
KR102465539B1 (ko) | 2015-09-18 | 2022-11-11 | 삼성전자주식회사 | 자기 터널 접합 구조체를 포함하는 반도체 소자 및 그의 형성 방법 |
US10636960B2 (en) | 2015-09-25 | 2020-04-28 | Intel Corporation | Strained perpendicular magnetic tunnel junction devices |
US9837602B2 (en) * | 2015-12-16 | 2017-12-05 | Western Digital Technologies, Inc. | Spin-orbit torque bit design for improved switching efficiency |
US10614953B2 (en) * | 2016-01-12 | 2020-04-07 | University Of Florida Research Foundation, Inc. | Mitigation of contamination of electroplated cobalt-platinum films on substrates |
US9741926B1 (en) | 2016-01-28 | 2017-08-22 | Spin Transfer Technologies, Inc. | Memory cell having magnetic tunnel junction and thermal stability enhancement layer |
EP3440719A4 (en) | 2016-03-28 | 2019-11-13 | INTEL Corporation | CONNECTING CLOSURE METHOD FOR INTEGRATING MRAM DEVICES AND RESULTING STRUCTURES |
US9734850B1 (en) | 2016-06-28 | 2017-08-15 | Western Digital Technologies, Inc. | Magnetic tunnel junction (MTJ) free layer damping reduction |
US9940956B1 (en) * | 2016-06-30 | 2018-04-10 | Western Digital (Fremont), Llc | Apparatus and method for reducing corrosion in capping layer of magnetic recording reader |
US9773643B1 (en) | 2016-06-30 | 2017-09-26 | Lam Research Corporation | Apparatus and method for deposition and etch in gap fill |
US10062563B2 (en) | 2016-07-01 | 2018-08-28 | Lam Research Corporation | Selective atomic layer deposition with post-dose treatment |
US10037884B2 (en) | 2016-08-31 | 2018-07-31 | Lam Research Corporation | Selective atomic layer deposition for gapfill using sacrificial underlayer |
US11119910B2 (en) | 2016-09-27 | 2021-09-14 | Spin Memory, Inc. | Heuristics for selecting subsegments for entry in and entry out operations in an error cache system with coarse and fine grain segments |
US10366774B2 (en) | 2016-09-27 | 2019-07-30 | Spin Memory, Inc. | Device with dynamic redundancy registers |
US10546625B2 (en) | 2016-09-27 | 2020-01-28 | Spin Memory, Inc. | Method of optimizing write voltage based on error buffer occupancy |
US10991410B2 (en) | 2016-09-27 | 2021-04-27 | Spin Memory, Inc. | Bi-polar write scheme |
US10460781B2 (en) | 2016-09-27 | 2019-10-29 | Spin Memory, Inc. | Memory device with a dual Y-multiplexer structure for performing two simultaneous operations on the same row of a memory bank |
US10818331B2 (en) | 2016-09-27 | 2020-10-27 | Spin Memory, Inc. | Multi-chip module for MRAM devices with levels of dynamic redundancy registers |
US10446210B2 (en) | 2016-09-27 | 2019-10-15 | Spin Memory, Inc. | Memory instruction pipeline with a pre-read stage for a write operation for reducing power consumption in a memory device that uses dynamic redundancy registers |
US10437491B2 (en) | 2016-09-27 | 2019-10-08 | Spin Memory, Inc. | Method of processing incomplete memory operations in a memory device during a power up sequence and a power down sequence using a dynamic redundancy register |
US10628316B2 (en) | 2016-09-27 | 2020-04-21 | Spin Memory, Inc. | Memory device with a plurality of memory banks where each memory bank is associated with a corresponding memory instruction pipeline and a dynamic redundancy register |
US10360964B2 (en) | 2016-09-27 | 2019-07-23 | Spin Memory, Inc. | Method of writing contents in memory during a power up sequence using a dynamic redundancy register in a memory device |
US10437723B2 (en) | 2016-09-27 | 2019-10-08 | Spin Memory, Inc. | Method of flushing the contents of a dynamic redundancy register to a secure storage area during a power down in a memory device |
US11151042B2 (en) | 2016-09-27 | 2021-10-19 | Integrated Silicon Solution, (Cayman) Inc. | Error cache segmentation for power reduction |
US11119936B2 (en) | 2016-09-27 | 2021-09-14 | Spin Memory, Inc. | Error cache system with coarse and fine segments for power optimization |
US10062431B2 (en) * | 2016-11-07 | 2018-08-28 | Ambiq Micro, Inc. | SRAM with multiple power domains |
US10665777B2 (en) | 2017-02-28 | 2020-05-26 | Spin Memory, Inc. | Precessional spin current structure with non-magnetic insertion layer for MRAM |
US10672976B2 (en) | 2017-02-28 | 2020-06-02 | Spin Memory, Inc. | Precessional spin current structure with high in-plane magnetization for MRAM |
JP2018147916A (ja) * | 2017-03-01 | 2018-09-20 | ソニーセミコンダクタソリューションズ株式会社 | 磁気記憶素子、磁気記憶装置、電子機器、および磁気記憶素子の製造方法 |
US11063209B2 (en) | 2017-05-30 | 2021-07-13 | Samsung Electronics Co., Ltd. | Method and system for providing magnetic junctions utilizing oxygen blocking, oxygen adsorber and tuning layer(s) |
US10032978B1 (en) | 2017-06-27 | 2018-07-24 | Spin Transfer Technologies, Inc. | MRAM with reduced stray magnetic fields |
US10255935B2 (en) * | 2017-07-21 | 2019-04-09 | Applied Materials, Inc. | Magnetic tunnel junctions suitable for high temperature thermal processing |
WO2019040504A2 (en) | 2017-08-23 | 2019-02-28 | Everspin Technologies, Inc. | METHODS OF MANUFACTURING AN INTEGRATED CIRCUIT USING ENCAPSULATION DURING AN ENGRAVING PROCESS |
US10269559B2 (en) | 2017-09-13 | 2019-04-23 | Lam Research Corporation | Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer |
US10489245B2 (en) | 2017-10-24 | 2019-11-26 | Spin Memory, Inc. | Forcing stuck bits, waterfall bits, shunt bits and low TMR bits to short during testing and using on-the-fly bit failure detection and bit redundancy remapping techniques to correct them |
US10481976B2 (en) | 2017-10-24 | 2019-11-19 | Spin Memory, Inc. | Forcing bits as bad to widen the window between the distributions of acceptable high and low resistive bits thereby lowering the margin and increasing the speed of the sense amplifiers |
US10656994B2 (en) | 2017-10-24 | 2020-05-19 | Spin Memory, Inc. | Over-voltage write operation of tunnel magnet-resistance (“TMR”) memory device and correcting failure bits therefrom by using on-the-fly bit failure detection and bit redundancy remapping techniques |
US10529439B2 (en) | 2017-10-24 | 2020-01-07 | Spin Memory, Inc. | On-the-fly bit failure detection and bit redundancy remapping techniques to correct for fixed bit defects |
US10325639B2 (en) | 2017-11-20 | 2019-06-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Initialization process for magnetic random access memory (MRAM) production |
US10522745B2 (en) | 2017-12-14 | 2019-12-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Low resistance MgO capping layer for perpendicularly magnetized magnetic tunnel junctions |
US10679685B2 (en) | 2017-12-27 | 2020-06-09 | Spin Memory, Inc. | Shared bit line array architecture for magnetoresistive memory |
US10360962B1 (en) | 2017-12-28 | 2019-07-23 | Spin Memory, Inc. | Memory array with individually trimmable sense amplifiers |
US10395712B2 (en) | 2017-12-28 | 2019-08-27 | Spin Memory, Inc. | Memory array with horizontal source line and sacrificial bitline per virtual source |
US10516094B2 (en) | 2017-12-28 | 2019-12-24 | Spin Memory, Inc. | Process for creating dense pillars using multiple exposures for MRAM fabrication |
US10395711B2 (en) | 2017-12-28 | 2019-08-27 | Spin Memory, Inc. | Perpendicular source and bit lines for an MRAM array |
US10891997B2 (en) | 2017-12-28 | 2021-01-12 | Spin Memory, Inc. | Memory array with horizontal source line and a virtual source line |
US10424726B2 (en) | 2017-12-28 | 2019-09-24 | Spin Memory, Inc. | Process for improving photoresist pillar adhesion during MRAM fabrication |
US10811594B2 (en) | 2017-12-28 | 2020-10-20 | Spin Memory, Inc. | Process for hard mask development for MRAM pillar formation using photolithography |
US10424723B2 (en) | 2017-12-29 | 2019-09-24 | Spin Memory, Inc. | Magnetic tunnel junction devices including an optimization layer |
US10236047B1 (en) | 2017-12-29 | 2019-03-19 | Spin Memory, Inc. | Shared oscillator (STNO) for MRAM array write-assist in orthogonal STT-MRAM |
US10886330B2 (en) | 2017-12-29 | 2021-01-05 | Spin Memory, Inc. | Memory device having overlapping magnetic tunnel junctions in compliance with a reference pitch |
US10199083B1 (en) | 2017-12-29 | 2019-02-05 | Spin Transfer Technologies, Inc. | Three-terminal MRAM with ac write-assist for low read disturb |
US10546624B2 (en) | 2017-12-29 | 2020-01-28 | Spin Memory, Inc. | Multi-port random access memory |
US10840439B2 (en) | 2017-12-29 | 2020-11-17 | Spin Memory, Inc. | Magnetic tunnel junction (MTJ) fabrication methods and systems |
US10360961B1 (en) | 2017-12-29 | 2019-07-23 | Spin Memory, Inc. | AC current pre-charge write-assist in orthogonal STT-MRAM |
US10236048B1 (en) | 2017-12-29 | 2019-03-19 | Spin Memory, Inc. | AC current write-assist in orthogonal STT-MRAM |
US10784439B2 (en) * | 2017-12-29 | 2020-09-22 | Spin Memory, Inc. | Precessional spin current magnetic tunnel junction devices and methods of manufacture |
US10840436B2 (en) | 2017-12-29 | 2020-11-17 | Spin Memory, Inc. | Perpendicular magnetic anisotropy interface tunnel junction devices and methods of manufacture |
US10367139B2 (en) | 2017-12-29 | 2019-07-30 | Spin Memory, Inc. | Methods of manufacturing magnetic tunnel junction devices |
US10270027B1 (en) | 2017-12-29 | 2019-04-23 | Spin Memory, Inc. | Self-generating AC current assist in orthogonal STT-MRAM |
US10319900B1 (en) | 2017-12-30 | 2019-06-11 | Spin Memory, Inc. | Perpendicular magnetic tunnel junction device with precessional spin current layer having a modulated moment density |
US10255962B1 (en) | 2017-12-30 | 2019-04-09 | Spin Memory, Inc. | Microwave write-assist in orthogonal STT-MRAM |
US10229724B1 (en) | 2017-12-30 | 2019-03-12 | Spin Memory, Inc. | Microwave write-assist in series-interconnected orthogonal STT-MRAM devices |
US10339993B1 (en) | 2017-12-30 | 2019-07-02 | Spin Memory, Inc. | Perpendicular magnetic tunnel junction device with skyrmionic assist layers for free layer switching |
US10141499B1 (en) | 2017-12-30 | 2018-11-27 | Spin Transfer Technologies, Inc. | Perpendicular magnetic tunnel junction device with offset precessional spin current layer |
US10236439B1 (en) | 2017-12-30 | 2019-03-19 | Spin Memory, Inc. | Switching and stability control for perpendicular magnetic tunnel junction device |
US10468588B2 (en) | 2018-01-05 | 2019-11-05 | Spin Memory, Inc. | Perpendicular magnetic tunnel junction device with skyrmionic enhancement layers for the precessional spin current magnetic layer |
US10438996B2 (en) | 2018-01-08 | 2019-10-08 | Spin Memory, Inc. | Methods of fabricating magnetic tunnel junctions integrated with selectors |
US10438995B2 (en) | 2018-01-08 | 2019-10-08 | Spin Memory, Inc. | Devices including magnetic tunnel junctions integrated with selectors |
US10388861B1 (en) | 2018-03-08 | 2019-08-20 | Spin Memory, Inc. | Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same |
US10446744B2 (en) | 2018-03-08 | 2019-10-15 | Spin Memory, Inc. | Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same |
US20190296228A1 (en) | 2018-03-23 | 2019-09-26 | Spin Transfer Technologies, Inc. | Three-Dimensional Arrays with Magnetic Tunnel Junction Devices Including an Annular Free Magnetic Layer and a Planar Reference Magnetic Layer |
US11107974B2 (en) | 2018-03-23 | 2021-08-31 | Spin Memory, Inc. | Magnetic tunnel junction devices including a free magnetic trench layer and a planar reference magnetic layer |
US10784437B2 (en) | 2018-03-23 | 2020-09-22 | Spin Memory, Inc. | Three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer |
US11107978B2 (en) | 2018-03-23 | 2021-08-31 | Spin Memory, Inc. | Methods of manufacturing three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer |
US10475987B1 (en) * | 2018-05-01 | 2019-11-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for fabricating a magnetic tunneling junction (MTJ) structure |
US10411185B1 (en) | 2018-05-30 | 2019-09-10 | Spin Memory, Inc. | Process for creating a high density magnetic tunnel junction array test platform |
US10600478B2 (en) | 2018-07-06 | 2020-03-24 | Spin Memory, Inc. | Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations |
US10593396B2 (en) | 2018-07-06 | 2020-03-17 | Spin Memory, Inc. | Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations |
US10692569B2 (en) | 2018-07-06 | 2020-06-23 | Spin Memory, Inc. | Read-out techniques for multi-bit cells |
US10559338B2 (en) | 2018-07-06 | 2020-02-11 | Spin Memory, Inc. | Multi-bit cell read-out techniques |
US10522746B1 (en) | 2018-08-07 | 2019-12-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Dual magnetic tunnel junction devices for magnetic random access memory (MRAM) |
US10650875B2 (en) | 2018-08-21 | 2020-05-12 | Spin Memory, Inc. | System for a wide temperature range nonvolatile memory |
US10699761B2 (en) | 2018-09-18 | 2020-06-30 | Spin Memory, Inc. | Word line decoder memory architecture |
US10797225B2 (en) | 2018-09-18 | 2020-10-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Dual magnetic tunnel junction (DMTJ) stack design |
KR102577238B1 (ko) | 2018-09-21 | 2023-09-12 | 삼성전자주식회사 | 반도체 소자 제조 방법 |
US11621293B2 (en) | 2018-10-01 | 2023-04-04 | Integrated Silicon Solution, (Cayman) Inc. | Multi terminal device stack systems and methods |
US10971680B2 (en) | 2018-10-01 | 2021-04-06 | Spin Memory, Inc. | Multi terminal device stack formation methods |
US10580827B1 (en) | 2018-11-16 | 2020-03-03 | Spin Memory, Inc. | Adjustable stabilizer/polarizer method for MRAM with enhanced stability and efficient switching |
KR102698784B1 (ko) * | 2018-11-19 | 2024-08-27 | 삼성전자주식회사 | 자기 기억 소자 |
US11107979B2 (en) | 2018-12-28 | 2021-08-31 | Spin Memory, Inc. | Patterned silicide structures and methods of manufacture |
JP7560013B2 (ja) * | 2019-02-22 | 2024-10-02 | スピンセンシングファクトリー株式会社 | トンネル磁気抵抗センサ |
US11778929B2 (en) | 2019-02-27 | 2023-10-03 | International Business Machines Corporation | Selective encapsulation for metal electrodes of embedded memory devices |
US11744083B2 (en) * | 2019-04-12 | 2023-08-29 | International Business Machines Corporation | Fabrication of embedded memory devices utilizing a self assembled monolayer |
WO2020222853A1 (en) | 2019-05-01 | 2020-11-05 | Lam Research Corporation | Modulated atomic layer deposition |
Family Cites Families (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US626621A (en) * | 1899-06-06 | George l hoir and jean baptiste deham | ||
US5268806A (en) * | 1992-01-21 | 1993-12-07 | International Business Machines Corporation | Magnetoresistive transducer having tantalum lead conductors |
JPH1139611A (ja) * | 1997-07-11 | 1999-02-12 | Hitachi Ltd | 磁気抵抗効果型ヘッド及びそれを用いた磁気記憶装置 |
JP3274392B2 (ja) * | 1997-09-17 | 2002-04-15 | アルプス電気株式会社 | スピンバルブ型薄膜素子 |
US6127045A (en) * | 1998-05-13 | 2000-10-03 | International Business Machines Corporation | Magnetic tunnel junction device with optimized ferromagnetic layer |
JP3234814B2 (ja) * | 1998-06-30 | 2001-12-04 | 株式会社東芝 | 磁気抵抗効果素子、磁気ヘッド、磁気ヘッドアセンブリ及び磁気記録装置 |
JP2000057527A (ja) * | 1998-08-04 | 2000-02-25 | Alps Electric Co Ltd | スピンバルブ型薄膜素子 |
KR100378414B1 (ko) | 1999-05-31 | 2003-03-29 | 닛뽕덴끼 가부시끼가이샤 | 자기저항효과소자, 그 제조방법, 및 그것을 사용한 자기기억장치 |
JP3589346B2 (ja) | 1999-06-17 | 2004-11-17 | 松下電器産業株式会社 | 磁気抵抗効果素子および磁気抵抗効果記憶素子 |
US6266218B1 (en) | 1999-10-28 | 2001-07-24 | International Business Machines Corporation | Magnetic sensors having antiferromagnetically exchange-coupled layers for longitudinal biasing |
JP2001236612A (ja) * | 2000-02-17 | 2001-08-31 | Tdk Corp | 磁気抵抗センサ、薄膜磁気ヘッド、磁気ヘッド装置及び磁気ディスク装置 |
US6700759B1 (en) * | 2000-06-02 | 2004-03-02 | Western Digital (Fremont), Inc. | Narrow track width magnetoresistive sensor and method of making |
US6574079B2 (en) * | 2000-11-09 | 2003-06-03 | Tdk Corporation | Magnetic tunnel junction device and method including a tunneling barrier layer formed by oxidations of metallic alloys |
WO2002058158A2 (en) * | 2000-11-16 | 2002-07-25 | Advanced Micro Devices, Inc. | Field effect transistor with redued gate delay and method of fabricating the same |
JP2002280641A (ja) * | 2001-03-22 | 2002-09-27 | Alps Electric Co Ltd | 交換結合膜及び前記交換結合膜を用いた磁気検出素子 |
JP3774375B2 (ja) * | 2001-03-27 | 2006-05-10 | アルプス電気株式会社 | 磁気検出素子及びその製造方法、ならびに前記磁気検出素子を用いた薄膜磁気ヘッド |
JP2003016613A (ja) * | 2001-06-28 | 2003-01-17 | Hitachi Ltd | 磁気ヘッド |
JP4181035B2 (ja) * | 2001-07-19 | 2008-11-12 | アビザ ヨーロッパ リミティド | タンタル膜の堆積 |
US6709767B2 (en) * | 2001-07-31 | 2004-03-23 | Hitachi Global Storage Technologies Netherlands B.V. | In-situ oxidized films for use as cap and gap layers in a spin-valve sensor and methods of manufacture |
US6657825B2 (en) | 2001-08-02 | 2003-12-02 | International Business Machines Corporation | Self aligned magnetoresistive flux guide read head with exchange bias underneath free layer |
JP3383293B1 (ja) * | 2001-08-24 | 2003-03-04 | ティーディーケイ株式会社 | 薄膜磁気ヘッドおよびその製造方法、ヘッドジンバルアセンブリならびにハードディスク装置 |
US6600638B2 (en) * | 2001-09-17 | 2003-07-29 | International Business Machines Corporation | Corrosion resistive GMR and MTJ sensors |
US6731477B2 (en) * | 2001-09-20 | 2004-05-04 | Hitachi Global Storage Technologies Netherlands B.V. | Current-perpendicular-to-plane spin-valve sensor with metallic oxide barrier layer and method of fabrication |
JP2003183838A (ja) * | 2001-12-13 | 2003-07-03 | Hitachi Ltd | 酸化膜形成装置及び磁気記録再生装置 |
SG108888A1 (en) * | 2001-12-14 | 2005-02-28 | Hoya Corp | Magnetic recording medium |
JP2003198002A (ja) * | 2001-12-25 | 2003-07-11 | Fujitsu Ltd | 磁気抵抗効果膜および強磁性積層構造体 |
JP3843837B2 (ja) * | 2001-12-28 | 2006-11-08 | Tdk株式会社 | スピンバルブ磁気抵抗効果センサの製造方法及び薄膜磁気ヘッドの製造方法 |
US6639291B1 (en) | 2002-02-06 | 2003-10-28 | Western Digital (Fremont), Inc. | Spin dependent tunneling barriers doped with magnetic particles |
US6674617B2 (en) | 2002-03-07 | 2004-01-06 | International Business Machines Corporation | Tunnel junction sensor with a multilayer free-layer structure |
JP2003283000A (ja) * | 2002-03-27 | 2003-10-03 | Toshiba Corp | 磁気抵抗効果素子およびこれを有する磁気メモリ |
JP4382333B2 (ja) * | 2002-03-28 | 2009-12-09 | 株式会社東芝 | 磁気抵抗効果素子、磁気ヘッド及び磁気再生装置 |
JP2004079936A (ja) * | 2002-08-22 | 2004-03-11 | Fujitsu Ltd | 強磁性トンネル接合を有する積層膜、その製造方法、磁気センサ、磁気記録装置、及び、磁気メモリ装置 |
JP3699954B2 (ja) * | 2002-10-25 | 2005-09-28 | 株式会社東芝 | 磁気メモリ |
US6841395B2 (en) * | 2002-11-25 | 2005-01-11 | International Business Machines Corporation | Method of forming a barrier layer of a tunneling magnetoresistive sensor |
JP3673796B2 (ja) * | 2003-01-14 | 2005-07-20 | Tdk株式会社 | 磁気抵抗効果素子の製造方法、磁気ヘッド、ヘッドサスペンションアセンブリ及び磁気ディスク装置 |
JP3892401B2 (ja) * | 2003-01-20 | 2007-03-14 | Hoya株式会社 | 垂直磁気記録媒体用ディスク基板の製造方法、並びに垂直磁気記録ディスクの製造方法 |
US6703654B1 (en) | 2003-02-20 | 2004-03-09 | Headway Technologies, Inc. | Bottom electrode for making a magnetic tunneling junction (MTJ) |
JP3831353B2 (ja) * | 2003-03-27 | 2006-10-11 | 株式会社東芝 | 磁気ランダムアクセスメモリ |
JP2005032780A (ja) * | 2003-07-07 | 2005-02-03 | Tdk Corp | 磁気抵抗効果素子、これを用いた磁気ヘッド、ヘッドサスペンションアセンブリ及び磁気ディスク装置 |
US20050014295A1 (en) * | 2003-07-16 | 2005-01-20 | Manish Sharma | Method of manufacture of a magneto-resistive device |
US7038890B2 (en) * | 2003-07-29 | 2006-05-02 | Hitachi Global Storage Technologies Netherlands B.V. | Current perpendicular to the planes (CPP) sensor with a highly conductive cap structure |
US7001680B2 (en) * | 2003-07-29 | 2006-02-21 | Hitachi Global Storage Tech Nl | Low resistance magnetic tunnel junction structure |
JP2005064075A (ja) * | 2003-08-20 | 2005-03-10 | Toshiba Corp | 磁気記憶装置及びその製造方法 |
US7053429B2 (en) * | 2003-11-06 | 2006-05-30 | Honeywell International Inc. | Bias-adjusted giant magnetoresistive (GMR) devices for magnetic random access memory (MRAM) applications |
US6992910B1 (en) * | 2004-11-18 | 2006-01-31 | Maglabs, Inc. | Magnetic random access memory with three or more stacked toggle memory cells and method for writing a selected cell |
-
2004
- 2004-06-15 US US10/868,715 patent/US7449345B2/en not_active Expired - Fee Related
-
2005
- 2005-06-14 AT AT05392006T patent/ATE459080T1/de not_active IP Right Cessation
- 2005-06-14 EP EP05392006A patent/EP1607980B1/en not_active Ceased
- 2005-06-14 DE DE602005019496T patent/DE602005019496D1/de active Active
- 2005-06-15 JP JP2005175640A patent/JP2006005356A/ja active Pending
- 2005-06-15 KR KR1020050051479A patent/KR101142820B1/ko not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8445979B2 (en) | 2009-09-11 | 2013-05-21 | Samsung Electronics Co., Ltd. | Magnetic memory devices including magnetic layers separated by tunnel barriers |
US9048412B2 (en) | 2009-09-11 | 2015-06-02 | Samsung Electronics Co., Ltd. | Magnetic memory devices including magnetic layers separated by tunnel barriers |
Also Published As
Publication number | Publication date |
---|---|
ATE459080T1 (de) | 2010-03-15 |
US7449345B2 (en) | 2008-11-11 |
EP1607980A3 (en) | 2006-06-14 |
DE602005019496D1 (de) | 2010-04-08 |
KR101142820B1 (ko) | 2012-05-08 |
EP1607980A2 (en) | 2005-12-21 |
US20050276099A1 (en) | 2005-12-15 |
EP1607980B1 (en) | 2010-02-24 |
JP2006005356A (ja) | 2006-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101142820B1 (ko) | MTJ 디바이스의 dR/R을 향상시키기 위한 새로운캡핑 구조체 | |
US7528457B2 (en) | Method to form a nonmagnetic cap for the NiFe(free) MTJ stack to enhance dR/R | |
EP1885006B1 (en) | A novel capping layer for a magnetic tunnel junction device to enhance dR/R and a method of making the same | |
US7497007B2 (en) | Process of manufacturing a TMR device | |
US8736004B2 (en) | Magnetic tunnel junction for MRAM applications | |
US9455400B2 (en) | Magnetic tunnel junction for MRAM applications | |
EP1968130B1 (en) | A novel SyAF structure to fabricate Mbit MTJ MRAM | |
US8722543B2 (en) | Composite hard mask with upper sacrificial dielectric layer for the patterning and etching of nanometer size MRAM devices | |
JP5153061B2 (ja) | 磁気メモリ構造およびトンネル磁気抵抗効果型再生ヘッドならびにそれらの製造方法 | |
US7829963B2 (en) | TMR device with Hf based seed layer | |
US9159908B2 (en) | Composite free layer within magnetic tunnel junction for MRAM applications | |
US7208807B2 (en) | Structure and method to fabricate high performance MTJ devices for MRAM applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20150305 Year of fee payment: 4 |
|
LAPS | Lapse due to unpaid annual fee |