KR20040084796A - 냉매 사이클 장치 - Google Patents

냉매 사이클 장치 Download PDF

Info

Publication number
KR20040084796A
KR20040084796A KR1020040020178A KR20040020178A KR20040084796A KR 20040084796 A KR20040084796 A KR 20040084796A KR 1020040020178 A KR1020040020178 A KR 1020040020178A KR 20040020178 A KR20040020178 A KR 20040020178A KR 20040084796 A KR20040084796 A KR 20040084796A
Authority
KR
South Korea
Prior art keywords
refrigerant
compressor
compression element
cooling circuit
compression
Prior art date
Application number
KR1020040020178A
Other languages
English (en)
Other versions
KR101020916B1 (ko
Inventor
야마사끼하루히사
이시가끼시게야
야마나까마사지
후지와라가즈아끼
유모또쯔네히사
마쯔모또겐조
Original Assignee
산요덴키가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 산요덴키가부시키가이샤 filed Critical 산요덴키가부시키가이샤
Publication of KR20040084796A publication Critical patent/KR20040084796A/ko
Application granted granted Critical
Publication of KR101020916B1 publication Critical patent/KR101020916B1/ko

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

내부 고압형 다단 압축식 압축기를 구비한 냉매 사이클 장치에 있어서, 중간 냉각 회로로 압축 효율을 개선하면서, 제2 압축 요소의 액 압축의 발생을 미연에 방지한다.
압축기(10)의 제1 회전 압축 요소(32)로부터 토출된 냉매를 방열시키기 위한 중간 냉각 회로(135)를 구비하고, 중간 냉각 회로(135)의 출구에 있어서 냉매가 응축되는 일이 없는 냉매 온도/압력이 되도록 제어 수단으로서의 마이크로 컴퓨터(80)가 외기 온도 센서(174), 냉매 온도 센서(178)의 출력 및 냉장 기기 본체(105)의 제어 장치(90)로부터의 신호를 기초로 하여 압축기(10)의 회전수를 제어한다.

Description

냉매 사이클 장치{REFRIGERANT CYCLE APPARATUS}
본 발명은 압축기, 가스 쿨러, 교축 수단 및 증발기를 차례로 접속하여 냉매 회로가 구성된 냉매 사이클 장치에 관한 것이다.
종래의 이러한 종류 냉매 사이클 장치는 로터리 압축기, 가스 쿨러, 교축 수단(모세관 튜브 등) 및 증발기 등을 차례로 환형으로 배관 접속하여 냉매 사이클(냉매 회로)이 구성되어 있다. 그리고, 로터리 압축기의 회전 압축 요소의 흡입 포트로부터 냉매 가스가 실린더의 저압실측으로 흡입되고, 롤러와 베인의 동작에 의해 압축이 행해져 고온 고압의 냉매 가스가 되고, 고압실측으로부터 토출 포트 및 토출 소음실을 지나서 가스 쿨러로 토출된다. 이 가스 쿨러로 냉매 가스는 방열한 후, 교축 수단으로 교축되어 증발기에 공급된다. 그래서 냉매가 증발되어 그 때에 주위로부터 흡열함으로써 냉각 작용을 발휘하는 것이었다(예를 들어, 특허 문헌 1 참조).
[특허 문헌 1]
일본 특허 공고 평7-18602호 공보
그러나, 이러한 냉매 사이클 장치에 압축기의 밀폐 용기 내가 고압(내부 고압)이 되는 압축기를 사용한 경우, 상기 압축기에서는 밀폐 용기 내에 고온 고압의 냉매 가스가 토출되므로, 압축기 자체의 온도가 높아지고, 압축기의 압축 요소로 흡입되는 냉매가 따뜻해져 버려 압축 효율이 저하된다는 문제가 발생하고 있었다.
이로 인해, 종래부터 다단 압축식의 압축기를 사용하여 압축 도중의 냉매를 중간 냉각하는 냉매 사이클 장치를 생각할 수 있다. 즉, 제1 및 제2 압축 요소를구비한 다단 압축식의 압축기를 사용하는 동시에, 제1 압축 요소(1단째)로 압축된 냉매를 방열시키기 위한 중간 냉각 회로를 설치하고, 제1 압축 요소로 압축된 냉매를 중간 냉각 회로로 방열한 후, 제2 압축 요소(2단째)로 흡입하여 압축하여 밀폐 용기 내로 토출하는 구성으로 한다. 이에 의해, 제1 압축 요소로 압축된 냉매를 냉각할 수 있기 때문에, 제2 압축 요소에 있어서의 압축 효율이 향상된다. 또한, 제2 압축 요소로 흡입되는 냉매 가스가 냉각되므로 제2 압축 요소로 압축되고, 밀폐 용기 내나 가스 쿨러 등으로 토출되는 냉매 가스의 온도 상승도 억제할 수 있기 때문에, 증발기에 있어서의 냉각 능력의 개선을 도모할 수 있게 된다.
그러나, 상술한 바와 같이 중간 냉각 회로를 설치하여 제1 압축 요소로 압축된 냉매를 냉각한 경우, 외기 온도나 압축기의 운전 상황 등에 의해, 도4에 도시한 바와 같이 냉매의 일부가 액화되는 경우가 있다. 즉, 냉매가 가스/액체의 이상 혼합 상태가 되고(도4의 ③의 상태), 상기 냉매가 이 상태로 제2 압축 요소로 흡입되면, 제2 압축 요소가 액 압축하여 손상을 받는다는 문제가 발생하고 있었다.
본 발명은, 이러한 종래의 기술적 과제를 해결하기 위해 이루어진 것으로, 내부 고압형 다단 압축식 압축기를 구비한 냉매 사이클 장치에 있어서, 중간 냉각 회로로 압축 효율을 개선하면서, 제2 압축 요소의 액 압축의 발생을 미연에 방지하는 것을 목적으로 한다.
도1은 본 발명의 냉매 사이클 장치에 사용하는 실시예의 로터리 압축기의 종단면도.
도2는 본 발명의 냉매 사이클 장치의 냉매 회로도.
도3은 도2의 냉매 회로의 p-h선도.
도4는 종래의 냉매 회로의 p-h선도.
<도면의 주요 부분에 대한 부호의 설명>
10 : 압축기
12 : 밀폐 용기
14 : 전동 요소
16 : 회전축
32 : 제1 회전 압축 요소
34 : 제2 회전 압축 요소
67 : 토출 구멍
80 : 마이크로 컴퓨터
90 : 제어 장치
100 : 응축 유닛
105 : 냉장 기기 본체
110 : 냉매 사이클 장치
120, 122 : 냉매 도입관
124 : 냉매 토출관
126, 128 : 냉매 배관
135 : 중간 냉각 회로
140 : 가스 쿨러
150 : 내부 열 교환기
154, 156 : 스트레이너
155 : 하수 로크 커플링
158 : 모세관 튜브
160, 166 : 밸브 장치
170 : 토출 온도 센서
172 : 고압 스위치
174 : 외기 온도 센서
176, 178 : 냉매 온도 센서
192 : 증발기
194 : 냉매 배관
즉, 본 발명의 냉매 사이클 장치로는, 압축기는 밀폐 용기 내에 제1 및 제2압축 요소를 구비하고, 제1 압축 요소로 압축되어 토출된 냉매를 제2 압축 요소로 흡입하여 압축하고, 밀폐 용기 내로 토출한 후 가스 쿨러로 토출하는 동시에, 제1 압축 요소로부터 토출된 냉매를 방열시키기 위한 중간 냉각 회로를 구비하고, 이 중간 냉각 회로 출구에 있어서 냉매가 응축되는 일이 없는 냉매 온도 및 압력이 되므로, 제2 압축 요소에 액 냉매가 흡입되는 문제점을 미연에 방지할 수 있게 된다.
청구항 2의 발명에서는 상기 발명 외에, 압축기의 회전수를 제어하기 위한 제어 수단을 구비하고, 이 제어 수단은 중간 냉각 회로 출구에 있어서 냉매가 응축되는 일이 없는 냉매 온도 및 압력이 되도록 압축기의 회전수를 제어하는 것을 특징으로 한다.
청구항 3의 발명에서는 청구항 2의 발명 외에, 제어 수단은 제2 압축 요소로 흡입되는 냉매 온도, 및/또는 제2 압축 요소로 흡입되는 냉매 압력을 기초로 하여 압축기의 회전수를 제어하는 것을 특징으로 한다.
다음에, 도면을 기초로 본 발명의 실시 형태를 상세하게 서술한다. 도1은 본 발명의 냉매 사이클 장치(110)에 사용하는 압축기의 실시예로서, 제1 회전 압축 요소(제1 압축 요소)(32) 및 제2 회전 압축 요소(제2 압축 요소)(34)를 구비한 내부 고압형 다단(2단) 압축식 로터리 압축기(10)의 종단 측면도, 도2는 본 발명의 냉매 사이클 장치(110)의 냉매 회로도이다.
각 도면에 있어서, 부호 10은 이산화탄소(CO2)를 냉매로서 사용하는 내부 고압형 다단 압축식 로터리 압축기이고, 이 압축기(10)는 강판으로 이루어지는 원통형의 밀폐 용기(12)와, 이 밀폐 용기(12)의 내부 공간의 상측에 배치 수납된 구동 요소로서의 전동 요소(14) 및 이 전동 요소(14)의 하측에 배치되고, 전동 요소(14)의 회전축(16)에 의해 구동되는 제1 회전 압축 요소(32)(1단째) 및 제2 회전 압축 요소(34)(2단째)로 이루어지는 회전 압축 기구부(18)로 구성되어 있다.
밀폐 용기(12)는 바닥부를 오일 저장으로 하고, 전동 요소(14)와 회전 압축 기구부(18)를 수납하는 용기 본체(12A)와, 이 용기 본체(12A)의 상부 개구를 폐색하는 대략 주발형의 엔드 캡(덮개 부재)(12B)으로 구성되고, 또한 이 엔드 캡(12B)의 상면 중심에는 원형의 부착 구멍(12D)이 형성되어 있고, 이 부착 구멍(12D)에는 전동 요소(14)에 전력을 공급하기 위한 터미널(배선을 생략)(20)이 부착되어 있다.
전동 요소(14)는 소위 자극 집중 권취식의 DC 모터이며, 밀폐 용기(12)의 상부 공간의 내주면에 따라서 환형으로 부착된 고정자(22)와, 이 고정자(22)의 내측에 약간의 간격을 두고 삽입 설치된 회전자(24)로 이루어진다. 이 회전자(24)는 중심을 통해 연직 방향으로 연장되는 회전축(16)에 고정되어 있다. 고정자(22)는 도우넛형의 전자 강판을 적층한 적층체(26)와, 이 적층체(26)의 치부에 직권취(집중 권취) 방식에 의해 권취 장착된 고정자 코일(28)을 갖고 있다. 또한, 회전자(24)는 고정자(22)와 마찬가지로 전자 강판의 적층체(30)로 형성되고, 이 적층체(30) 내에 영구 자석(MG)을 삽입하여 형성되어 있다.
상기 제1 회전 압축 요소(32)와 제2 회전 압축 요소(34) 사이에는 중간 구획판(36)이 협지되어 있다. 즉, 제1 회전 압축 요소(32)와 제2 회전 압축 요소(34)는 중간 구획판(36)과, 이 중간 구획판(36)의 상하에 배치된 상부 실린더(38), 하부 실린더(40)와, 이 상하부 실린더(38, 40) 내를 180도의 위상차를 두고 회전축(16)에 설치된 상하 편심부(42, 44)에 의해 편심 회전되는 상하 롤러(46, 48)와, 이 상하 롤러(46, 48)에 접촉하여 상하부 실린더(38, 40) 내를 각각 저압실측과 고압실측으로 구획하는 베인(52)(상측의 베인은 도시하지 않음)과, 상부 실린더(38)의 상측의 개구면 및 하부 실린더(40)의 하측의 개구면을 폐색하여 회전축(16)의 베어링을 겸용하는 지지 부재로서의 상부 지지 부재(54) 및 하부 지지 부재(56)로 구성되어 있다.
한편, 상부 지지 부재(54) 및 하부 지지 부재(56)에는 흡입 포트(161)(하측의 흡입 포트는 도시하지 않음)에서 상하부 실린더(38, 40)의 내부와 각각 연통하는 흡입 통로(58, 60)와, 일부를 오목하게 함몰시켜 이 오목 함몰부를 상부 커버(66), 하부 커버(68)에서 폐색함으로써 형성되는 토출 소음실(62, 64)이 설치되어 있다.
제2 회전 압축 요소(34)의 토출 소음실(62)과 밀폐 용기(12) 내는 상부 커버(66)를 관통하여 밀폐 용기(12) 내의 전동 요소(14)측에 개구하는 토출 구멍(67)에서 연통되어 있고, 이 토출 구멍(67)으로부터 제2 회전 압축 요소(34)로 압축된 고압의 냉매 가스가 밀폐 용기(12) 내로 토출된다.
그리고, 냉매로서는 지구 환경에 유익한 가연성 및 독성 등을 고려하여 자연 냉매인 전술한 이산화탄소(CO2)가 사용되고, 윤활유로서의 오일은, 예를 들어 광물유(미네랄 오일), 알킬벤젠 오일, 에테르 오일, 에스테르 오일, PAG(폴리알킬렌 글리콜) 등 기존의 오일이 사용된다.
밀폐 용기(12)의 용기 본체(12A)의 측면에는, 상부 지지 부재(54)와 하부 지지 부재(56)의 흡입 통로(58, 60) 및 토출 소음실(64), 고정자(22)의 상측[전동 요소(14)의 바로 위)에 대응하는 위치에 슬리브(141, 142, 143, 144)가 각각 용접 고정되어 있다. 슬리브(141, 142)는 상하로 인접하는 동시에, 슬리브(143)는 슬리브(142)의 대략 대각선 상에 있다. 또한, 슬리브(144)는 슬리브(143)의 상방에 위치한다. 그리고, 슬리브(141) 내에는 상부 실린더(38)에 냉매 가스를 도입하기 위한 냉매 도입관(120)이 삽입 접속되고, 이 냉매 도입관(120)의 일단부는 상부 실린더(38)의 흡입 통로(58)와 연통한다. 냉매 도입관(120)은 후술하는 중간 냉각 회로(135)에 설치된 가스 쿨러(140)를 지나서 슬리브(143)에 도달하고, 타단부는 슬리브(143) 내에 삽입 접속되어 제1 회전 압축 요소(32)의 토출 소음실(64)과 연통한다.
여기서, 상기 중간 냉각 회로(135)는 제1 회전 압축 요소(32)로부터 토출된 냉매를 방열시키기 위한 것으로, 이 중간 냉각 회로(135)의 냉매 도입관(120)은 가스 쿨러(140)를 통과하도록 설치되어 있다.
슬리브(142) 내에는 하부 실린더(40)로 냉매 가스를 도입하기 위한 냉매 도입관(122)의 일단부가 삽입 접속되고, 이 냉매 도입관(122)의 일단부는 하부 실린더(40)의 흡입 통로(60)와 연통되고, 냉매 도입관(122)의 타단부는 스트레이너(156)에 접속되어 있다. 이 스트레이너(156)는 냉매 회로 내를 순환하는 냉매 가스로 혼입한 먼지나 절삭 부스러기 등의 이물질을 확보하여 여과하기 위한 것으로, 스트레이너(156)의 타단부측에 형성된 개구부와 이 개구부로부터 스트레이너(156)의 일단부측을 향해 가늘게 되는 대략 원추형상을 이룬 도시하지 않은 필터를 구비하여 구성되어 있다. 이 필터의 개구부는 스트레이너(156)의 타단부에 접속된 냉매 배관(128)에 밀착된 상태로 장착되어 있다. 또한, 슬리브(144) 내에는 냉매 토출관(124)이 삽입 접속되고, 이 냉매 토출관(124)의 일단부는 전동 요소(14) 상방의 밀폐 용기(12) 내에 연통한다.
다음에 도2에 있어서, 상술한 압축기(10)는 도2에 도시한 본 발명의 냉매 사이클 장치(110)의 냉매 회로의 일부를 구성한다. 여기서, 본 실시예의 냉매 사이클 장치(110)는 예를 들어 점포에 설치되는 쇼케이스가다. 냉매 사이클 장치(110)는 응축 유닛(100)과 냉각 기기 본체가 되는 냉장 기기 본체(105)로 구성된다. 따라서, 냉장 기기 본체(105)는 쇼케이스의 본체이다.
압축기(10)의 냉매 토출관(124)은 가스 쿨러(140)의 입구에 접속된다. 이 가스 쿨러(140)에는 외기 온도를 검출하기 위한 온도 센서로서의 외기 온도 센서(174)가 설치되어 있고, 이 외기 온도 센서(174)는 응축 유닛(100)의 제어 장치로서의 후술하는 마이크로 컴퓨터(80)에 접속되어 있다.
그리고, 가스 쿨러(140)의 출구에 접속된 냉매 배관(126)은 전술한 바와 같은 스트레이너(154)와 전자 밸브(145)를 지나서 내부 열 교환기(150)를 통과한다. 이 내부 열 교환기(150)는 가스 쿨러(140)로부터 나온 제2 회전 압축 요소(34)로부터의 고압측의 냉매와 냉장 기기 본체(105)에 설치된 증발기(192)로부터 나온 저압측의 냉매를 열 교환시키기 위한 것이다. 또한, 전자 밸브(145)는 마이크로 컴퓨터(80)에 접속되어 있다. 그리고, 마이크로 컴퓨터(80)는 전자 밸브(145)를 압축기(10)의 기동에 수반하여 개방하여, 압축기(10)의 운전이 정지되면 폐쇄하도록 제어한다.
그리고, 내부 열 교환기(150)를 통과한 고압측의 냉매 배관(126)은 교축 수단인 모세관 튜브(158)에 이른다. 모세관 튜브(158)를 나온 냉매 배관(126)은 밸브 장치(160)(고압측의 밸브 장치)의 입구에 접속되어 있다. 냉장 기기 본체(105)의 냉매 배관(194)의 일단부에는 접속 수단으로서의 하수 로크 커플링(155)이 부착되어 있다. 이 하수 로크 커플링(155)은 밸브 장치(160)와 냉장 기기 본체(105)로부터 나와 있는 냉매 배관(194)의 일단부를 착탈 가능하게 접속하기 위한 것이다.
한편, 스트레이너(156)의 타단부에 접속된 냉매 배관(128)은 상기 내부 열 교환기(150)를 지나서 밸브 장치(166)(저압측의 밸브 장치)의 출구에 접속되어 있다. 또한, 냉장 기기 본체(105)의 냉매 배관(194)의 타단부에는 전술한 바와 같은 하수 로크 커플링(155)이 연결 수단으로서 부착되어 있다. 이 하수 로크 커플링(155)에 의해 냉장 기기 본체(105)로부터 나와 있는 냉매 배관(194)의 타단부는 밸브 장치(166)의 입구에 착탈 가능하게 접속된다.
상기 냉매 토출관(124)에는 압축기(10)로부터 토출되는 냉매 가스의 온도를 검출하기 위한 방전 센서(170) 및 냉매 가스의 압력을 검출하기 위한 고압 스위치(172)가 설치되어 있고, 이들은 마이크로 컴퓨터(80)에 접속되어 있다.
또한, 모세관 튜브(158)와 밸브 장치(160) 사이의 냉매 배관(126)에는 모세관 튜브(158)로부터 나온 냉매의 온도를 검출하기 위한 냉매 온도 센서(176)가 설치되어 있고, 이것도 상기 마이크로 컴퓨터(80)에 접속되어 있다. 또한, 중간 냉각 회로(135)의 가스 쿨러(140)의 출구의 냉매 도입관(120)에는 압축기(10)의 제2 회전 압축 요소(32)로 흡입되는 냉매 온도를 검출하기 위한 냉매 온도 센서(178)가 설치되어 있고, 이것도 상기와 같이 마이크로 컴퓨터(80)에 접속되어 있다.
또한, 부호 140F는 가스 쿨러(140)로 통풍하여 공기 냉각하기 위한 팬이며, 부호 192F는 냉장 기기 본체(105)의 도시하지 않은 덕트 내에 설치된 증발기(192)와 열 교환한 냉기를 냉장 기기 본체(105)의 내측에서 순환시키기 위한 팬이다. 또한, 부호 165는 압축기(10)의 전동 요소(14)의 통전 전류를 검출하여 운전을 제어하기 위한 전류 센서이다. 팬(140F)과 전류 센서(165)는 응축 유닛(100)의 마이크로 컴퓨터(80)에 접속되고, 팬(192F)은 냉장 기기 본체(105)의 후술하는 제어 장치(90)에 접속된다.
여기서, 마이크로 컴퓨터(80)는 응축 유닛(100)의 제어를 담당하는 제어 장치이며, 마이크로 컴퓨터(80)의 입력에는 상기 방전 센서(170), 고압 스위치(172), 외기 온도 센서(174), 냉매 온도 센서(176), 냉매 온도 센서(178), 전류 센서(165) 및 냉장 기기 본체(105)의 제어 수단으로서의 제어 장치(90)로부터의 신호가 접속되어 있다. 그리고, 이들의 출력을 기초로 출력에 접속된 압축기(10)나 전자 밸브(145) 및 팬(140F)이 제어된다. 또한, 마이크로 컴퓨터(80)는 중간 냉각 회로(135)의 출구에 있어서 냉매가 응축되는 일이 없는 냉매 온도 및 압력이 되도록 제어하고 있다.
즉, 마이크로 컴퓨터(80)는 통상의 압축기(10)의 회전수 제어 외에, 제1 회전 압축 요소(32)로 압축된 냉매가 중간 냉각 회로(135)로 응축되는 일이 없는 냉매 온도 및 압력이 되도록 외기 온도 센서(174), 냉매 온도 센서(178)의 출력 및 냉장 기기 본체(105)의 제어 장치(90)로부터의 송신 신호를 기초로 하여 압축기(10)의 회전수를 제어하고 있다. 이는, 상기 각 센서에 의해 검출되는 온도가 미리 설정된 설정치 이하로 저하하고, 냉장 기기 본체(105)의 제어 장치(90)로부터 후술하는 소정의 신호가 송출된 경우, 마이크로 컴퓨터(80)는 통상 행하고 있는 회전수 제어에 상관없이, 중간 냉각 회로(135)로 냉매가 응축되지 않는(냉매가 가스/액체의 이상 혼합 상태가 되지 않음) 냉매 온도 및 압력이 되도록 압축기(10)의 회전수를 강제적으로 소정 Hz 인상하는 것이다.
또한, 냉장 기기 본체(105)의 전술한 제어 장치(90)에는 챔버 내의 온도를 검출하기 위한 상기 챔버 내의 온도 센서 및 챔버 내의 온도를 조절하기 위한 온도 조절 다이얼이나, 그 외 압축기(10)를 정지하기 위한 기능이 마련되어 있다. 그리고, 제어 장치(90)는 이들의 출력을 기초로 하여 팬(192F)을 제어하는 동시에, 응축 유닛(100)의 마이크로 컴퓨터(80)로 신호를 송출한다. 즉, 제어 장치(90)는 챔버 내의 온도 센서로 검출되는 냉장 기기 본체(105)의 챔버 내의 온도가 상한 온도가 되면 온, 하한 온도가 되면 오프의 신호를 마이크로 컴퓨터(80)로 송출하고 있다. 또한, 제어 장치(90)는 챔버 내의 온도 센서로 검출되는 냉장 기기 본체(105)의 챔버 내의 온도가 설정치로 저하되면 전술한 소정의 신호를 마이크로 컴퓨터(80)로 송출한다.
그리고, 제어 장치로부터 마이크로 컴퓨터(80)에 상기 소정의 신호가 이송될때에, 외기 온도 센서(174) 및 냉매 온도 센서(178)로 검출되는 온도가 미리 설정된 설정치에 저하되면, 마이크로 컴퓨터(80)는 전술한 바와 같은 압축기(10)의 회전수를 강제적으로 소정 Hz 인상한다. 이에 의해, 중간 냉각 회로(135)로 냉매가 응축되지 않는 냉매 온도 및 압력으로 할 수 있다.
이와 같이, 마이크로 컴퓨터(80)는 제1 회전 압축 요소(32)로 압축되고, 중간 냉각 회로(135)로 유입하는 냉매가 가스 쿨러(140)로 방열해도 응축되지 않는 냉매 온도 및 압력이 되도록 외기 온도 센서(174) 및 냉매 온도 센서(178)의 출력이나 냉장 기기 본체(105)의 제어 장치(90)로부터의 신호를 기초로 하여 압축기(10)의 회전수를 제어하고 있으므로, 중간 냉각 회로(135)로 냉매가 응축되고, 제2 회전 압축 요소(34)에 액 냉매가 흡입되어 액 압축하는 문제점을 미연에 방지할 수 있다.
이러한 냉매 사이클 장치(110)의 냉매로서는 지구 환경에 유익한 가연성 및 독성 등을 고려하여 자연 냉매인 전술한 이산화탄소(CO2)가 사용되고, 윤활유로서의 오일은, 예를 들어 광물유(미네랄 오일), 알킬벤젠 오일, 에테르 오일, 에스테르 오일, PAG(폴리알킬글리콜) 등 기존의 오일이 사용된다.
또한, 상기 냉장 기기 본체(105)는 증발기(192)와 상기 증발기(192) 내를 통과하는 냉매 배관(194)으로 구성되어 있다. 냉매 배관(194)은 증발기(192) 내를 사행형으로 통과하고 있고, 이 사행형의 부분에는 열 교환용의 핀이 부착되어 증발기(192)가 구성되어 있다. 냉매 배관(194)의 양단부는 하수 로크 커플링(155)에착탈 가능하게 접속되어 있다.
이상의 구성으로 다음에 도3의 p-h선도(몰리에르 선도)를 참조하면서 냉매 사이클 장치(110)의 동작을 설명한다. 냉장 기기 본체(105)에 설치된 도시하지 않은 시동 스위치를 온하거나, 혹은 냉장 기기 본체(105)의 전원 소켓이 콘센트에 접속되면, 마이크로 컴퓨터(80)는 전자 밸브(145)를 개방하여 터미널(120) 및 도시되지 않은 배선을 통해 압축기(10)의 전동 요소(14)의 고정자 코일(28)에 통전된다. 이에 의해, 전동 요소(14)가 기동하여 회전자(24)가 회전하고, 회전축(16)과 일체로 설치한 상하 편심부(42, 44)에 끼워 맞춘 상하 롤러(46, 48)가 상하부 실린더(38, 40) 내를 편심 회전한다.
이에 의해, 냉매 도입관(122) 및 하부 지지 부재(56)에 형성된 흡입 통로(60)를 경유하여 도시하지 않은 흡입 포트로부터 실린더(40)의 저압실측으로 흡입된 저압(도3의 ①의 상태)의 냉매 가스는 롤러(48)와 베인(52)의 동작에 의해 압축되어 중간압이 되고(도3의 ②의 상태), 고압실측으로부터 도시하지 않은 토출 포트를 통해 하부 지지 부재(56)에 형성된 토출 소음실(64)을 지나서 냉매 도입관(120)으로 들어가고, 슬리브(143)로부터 나와 중간 냉각 회로(135)로 유입한다.
그리고, 냉매는 중간 냉각 회로(135)가 가스 쿨러(140)를 통과하는 과정에서 공기 냉각 방식에 의해 방열한다(도3의 ③의 상태). 이와 같이, 제1 회전 압축 요소(32)로 압축된 중간압의 냉매 가스를 중간 냉각 회로(135)를 통과시킴으로써 가스 쿨러(140)로 효과적으로 냉각할 수 있으므로, 제2 회전 압축 요소(34) 및 밀폐용기(12) 내의 온도 상승을 억제하고, 제2 회전 압축 요소(34)에 있어서의 압축 효율도 향상시킬 수 있게 된다.
여기서, 마이크로 컴퓨터(80)는 외기 온도 센서(174)로 검출되는 외기 온도와 냉매 온도 센서(178)로 검출되는 냉매 온도 및 냉장 기기 본체(105)의 제어 장치(90)로부터의 신호를 기초로 하여, 중간 냉각 회로(135)로 냉매가 응축되지않는 냉매 온도 및 압력이 되도록 압축기(10)의 회전수를 제어하고 있다. 즉, 상기 각 센서로 검출되는 온도가 미리 설정된 설정치로 저하하고, 냉장 기기 본체(105)의 제어 장치(90)로부터 소정의 신호가 송출된 경우, 마이크로 컴퓨터(80)는 압축기(10)의 통상의 회전수 제어에 상관없이, 중간 냉각 회로(135)로 응축되지 않는 냉매 온도 및 압력이 되도록, 압축기(10)의 회전수를 소정 Hz 상승한다.
마이크로 컴퓨터(80)가 상기한 바와 같이 압축기(10)의 회전수를 제어를 행하지 않는 경우, 외기 온도 및 중간 냉각 회로(135)에 있어서의 냉매 온도 및 냉장 기기 본체(105)의 챔버 내의 온도가 낮은 상태에서, 압축기(10)의 회전수를 낮게 운전하면 제1 회전 압축 요소(32)로 압축된 냉매 온도 및 압력이 낮아지고, 중간 냉각 회로(135)를 통과하는 과정에서 가스 쿨러(140)로 냉각된 중간압의 냉매는 도4의 ③에서 나타낸 바와 같이 가스/액체의 이상 혼합체가 된다.
이에 의해, 중간 냉각 회로(135)로 가스/액체의 이상 혼합체가 된 냉매가 이 상태대로 압축기(10)의 제2 회전 압축 요소(34)로 흡입되면, 압축기(10)의 제2 회전 압축 요소(34)가 액 압축되고, 그 결과 압축기(10)가 손상될 우려가 있다.
그러나, 본 발명에서는 외기 온도 센서(174) 및 냉매 온도 센서(178)의 출력및 냉장 기기 본체(105)의 제어 장치(90)로부터의 신호를 기초로 하여, 각 센서로 검출되는 온도가 설정치로 저하되고, 또한 제어 장치(90)로부터 소정의 신호가 송출되는 경우에는 마이크로 컴퓨터(80)에 의해 통상의 회전수 제어에 상관없이, 강제적으로 압축기(10)의 회전수가 상승되므로, 제1 회전 압축 요소(32)로 압축된 냉매는 중간 냉각 회로(135)의 가스 쿨러(140)로 응축되지 않는 냉매 온도 및 압력이 된다(도3의 ③의 상태).
이에 의해, 압축기(10)의 제2 회전 압축 요소(34)에 있어서의 액 압축을 미연에 방지할 수 있어, 압축기(10)가 안정된 운전을 확보할 수 있게 된다.
따라서, 내부 고압형의 압축기(10)를 사용한 경우라도, 중간 냉각 회로(135)의 방열 효과에 의한 제2 회전 압축 요소(34)의 압축 효율의 개선을 도모하면서, 압축기(10)의 제2 회전 압축 요소(34)에 있어서의 액 압축의 발생을 미연에 방지하는 것이 가능하므로, 냉매 사이클 장치(110)의 성능 및 신뢰성의 향상을 도모할 수 있게 된다.
한편, 중간 냉각 회로(135)로 냉각된 중간압의 냉매 가스는 상부 지지 부재(54)에 형성된 흡입 통로(58)를 경유하여 흡입 포트(161)로부터 제2 회전 압축 요소(34)의 상부 실린더(38)의 저압실측으로 흡입되고, 롤러(46)와 도시하지 않은 베인의 동작에 의해 2단째의 압축이 행해져 고압 고온의 냉매 가스가 되고, 고압실측으로부터 도시하지 않은 토출 포트를 통해 상부 지지 부재(54)에 형성된 토출 소음실(62)을 지나서, 토출 구멍(67)으로부터 밀폐 용기(12) 내의 전동 요소(14) 하측으로 토출된다. 이에 의해, 밀폐 용기(12) 내는 고온 고압이 된다. 이 때, 냉매는 적절한 초임계 압력까지 압축되어 있다(도3의 ④의 상태).
밀폐 용기(12)로 토출된 냉매 가스는 전동 요소(14)의 간극을 통과하고, 고정자(22)의 상측에 형성된 냉매 토출관(124)로 들어가고, 슬리브(144)로부터 나와 가스 쿨러(140)로 유입한다. 그래서 냉매 가스는 공기 냉각 방식에 의해 방열한 후(도3의 ⑤'의 상태), 냉매 배관(126)에 들어가 스트레이너(154) 및 전자 밸브(145)를 지나서 내부 열 교환기(150)를 통과한다. 냉매는 저압측의 냉매에 열을 빼앗겨 더 냉각된다(도3의 ⑤의 상태). 이에 의해, 냉매의 과냉각도가 커진다는 효과에 의해, 증발기(157)에 있어서의 냉매의 냉각 능력이 향상된다.
내부 열 교환기(150)로 냉각된 고압측의 냉매 가스는 모세관 튜브(158)에 이른다. 또한, 모세관 튜브(158)의 입구에서는 냉매 가스는 아직 초임계의 상태이다. 냉매는 모세관 튜브(158)에 있어서의 압력 저하에 의해, 가스/액체의 이상 혼합체가 되고(도3의 ⑥의 상태), 밸브 장치(160) 및 하수 로크 커플링(155)을 지나서 냉장 기기 본체(105)의 냉매 배관(194)으로부터 증발기(192) 내로 유입한다. 그래서 냉매는 증발하고, 주위의 공기로부터 흡열함으로써 냉각 작용을 발휘하여 냉장 기기 본체(105)의 내측을 냉각한다.
이상과 같이, 제1 회전 압축 요소(32)로 압축된 중간압의 냉매 가스를 중간 냉각 회로(135)에 흐르게 하여 방열시키고, 제2 회전 압축 요소(34) 및 밀폐 용기(12) 내의 온도 상승을 억제한다는 효과에 의해, 제2 회전 압축 요소(34)에 있어서의 압축 효율의 향상을 도모할 수 있게 되고, 덧붙여 내부 열 교환기(150)에서 저압측의 냉매와 열 교환함으로써, 냉매의 과냉각도가 커진다는 효과에 의해 냉장기기 본체(105)의 증발기(192)에 있어서의 냉각 능력의 향상을 도모할 수 있게 된다.
그 후, 냉매는 증발기(192)로부터 유출하여 냉매 배관(194)으로부터 응축 유닛(100)의 하수 로크 커플링(155), 밸브 장치(166)를 지나서 내부 열 교환기(150)에 이른다. 그래서 전술한 고압측의 냉매로부터 열을 빼앗아 가열 작용을 받는다. 여기서, 증발기(192)로 증발하여 저온이 되고, 증발기(192)를 나온 냉매는 완전하게 기체의 상태가 아니라 액체가 혼재된 상태가 되는 경우도 있지만, 내부 열 교환기(150)를 통과시켜서 고압측의 냉매와 열 교환시킴으로써 냉매가 가열된다. 이 시점에, 냉매의 과열도가 확보되어 완전하게 기체가 된다.
이에 의해, 증발기(192)로부터 나온 냉매를 확실하게 가스화시킬 수 있게 되므로, 저압측에 어큐뮬레이터 등을 설치하는 일 없이, 압축기(10)에 액 냉매가 흡입되는 액 백을 확실하게 방지하고, 압축기(10)가 액 압축으로 손상을 받는 문제점을 방지할 수 있게 된다. 따라서, 냉각 장치(110)의 신뢰성의 향상을 도모할 수 있게 된다.
또한, 내부 열 교환기(150)로 가열된 냉매는 스트레이너(156)를 지나서 냉매 도입관(122)으로부터 압축기(10)의 제1 회전 압축 요소(32) 내로 흡입되는 사이클을 반복한다.
이와 같이, 마이크로 컴퓨터(80)가 중간 냉각 회로(135) 출구에 있어서 냉매가 응축되는 일이 없는 냉매 온도 및 압력이 되도록 외기 온도 센서(174) 및 냉매 온도 센서(178)의 출력 및 냉장 기기 본체(105)의 제어 장치(90)로부터의 신호를기초로 하여 압축기(10)의 회전수를 제어하기 때문에, 중간 냉각 회로(135)로 제1 회전 압축 요소(32)로부터의 냉매가 응축되어 없어진다. 이에 의해, 제2 회전 압축 요소(34)에 액 냉매가 흡입되는 액 백을 미연에 방지할 수 있게 된다.
따라서, 내부 고압이 되는 로터리 압축기를 사용한 경우라도, 중간 냉각 회로(135)의 방열 효과에 의한 제2 회전 압축 요소(34)의 압축 효율의 개선을 도모하면서, 압축기(10)의 제2 회전 압축 요소(34)에 있어서의 액 압축의 발생을 미연에 방지할 수 있으므로, 냉매 사이클 장치의 성능 및 신뢰성의 향상을 도모할 수 있게 된다.
또한, 본 실시예에서는 마이크로 컴퓨터(80)가 외기 온도 센서(174), 냉매 온도 센서(178)의 출력 및 냉장 기기 본체(105)의 제어 장치(90)로부터의 신호를 기초로 하여 중간 냉각 회로(135)의 출구에 있어서 냉매가 응축되는 일이 없는 냉매 온도 및 압력이 되도록 압축기(10)의 회전수를 제어하는 것으로 하였지만, 본 발명은 이에 한정되지 않고, 예를 들어 가스 쿨러(140)의 팬(140F)의 바람량을 응축하지 않는 바람량으로 제어하거나, 냉매 사이클 장치에 중간 냉각 회로(135)로 응축하지 않는 양의 냉매를 봉입하는 것으로서도 좋다.
또한, 중간 냉각 회로(135)에 제2 회전 압축 요소(34)로 흡입되는 냉매 온도를 검출하는 냉매 온도 센서(178)를 설치하지 않는 경우에는, 압축기로부터 토출된 냉매 온도나 압축기로 흡입되는 냉매 온도 등으로부터 마이크로 컴퓨터(80)가 중간 냉각 회로 출구에 있어서의 냉매 온도 및 압력을 추정하는 것으로서도 상관없다.
또, 마이크로 컴퓨터(80)는 외기 온도 센서(174), 냉매 온도 센서(178) 및냉장 기기 본체(105)의 챔버 내의 온도 센서 이외의 센서로부터의 출력이나, 냉매 회로 내의 냉매 압력을 기초로 하여 중간 냉각 회로(135)의 출구에 있어서 냉매가 응축되는 일이 없는 냉매 온도 및 압력에 제어하는 것일지라도 상관없다.
게다가 또한, 본 실시예에서는 압축기(10)는 내부 고압형의 다단(2단) 압축식 로터리 압축기를 이용하여 설명하였지만, 본 발명에 사용 가능한 압축기는 이에 한정되는 것이 아니라, 내부 고압이 되는 2단 이상의 압축 요소를 구비한 다단 압축식 압축기이면 상관없다.
또한, 본 실시예에서는 이산화탄소를 냉매로서 사용하였지만, 냉매는 그에 한정되는 것이 아니라, 탄화 수소계 냉매나 아산화질소 등, 여러 종류의 냉매가 적용 가능하다.
이상 상세하게 서술한 바와 같이 본 발명의 냉매 사이클 장치에 따르면, 압축기는 밀폐 용기 내에 제1 및 제2 압축 요소를 구비하고, 제1 압축 요소로 압축되어 토출된 냉매를 제2 압축 요소로 흡입하여 압축하고, 밀폐 용기 내로 토출한 후 가스 쿨러로 토출하는 동시에, 제1 압축 요소로부터 토출된 냉매를 방열시키기 위한 중간 냉각 회로를 구비하고, 이 중간 냉각 회로 출구에 있어서 냉매가 응축되는 일이 없는 냉매 온도 및 압력이 되므로, 예를 들어 청구항 2 및 청구항 3과 같이 압축기의 회전수를 제어하기 위한 제어 수단을 구비하고, 이 제어 수단은 제2 압축 요소로 흡입되는 냉매 온도 및/또는 제2 압축 요소로 흡입되는 냉매 압력을 기초로 하여 압축기의 회전수를 제어함으로써, 중간 냉각 회로로 냉매가 응축되지 않는 냉매 온도 및 압력으로 할 수 있다.
이에 의해, 압축기의 제2 압축 요소에 있어서의 액 압축을 미연에 방지할 수 있어 압축기가 안정된 운전을 확보할 수 있게 된다.
따라서, 내부 고압형 다단 압축식 압축기를 구비한 냉매 사이클 장치에 있어서, 중간 냉각 회로의 방열 효과에 의한 제2 압축 요소의 압축 효율의 개선을 도모하면서, 압축기의 제2 압축 요소에 있어서의 액 압축의 발생을 미연에 방지할 수 있으므로, 냉매 사이클 장치의 성능 및 신뢰성의 향상을 도모할 수 있게 된다.

Claims (3)

  1. 압축기, 가스 쿨러, 교축 수단 및 증발기를 차례로 접속하여 냉매 회로가 구성된 냉매 사이클 장치이며,
    상기 압축기는 밀폐 용기 내에 제1 및 제2 압축 요소를 구비하고, 상기 제1 압축 요소로 압축되어 토출된 냉매를 상기 제2 압축 요소로 흡입하여 압축하고, 상기 밀폐 용기 내로 토출한 후, 상기 가스 쿨러로 토출하는 동시에,
    상기 제1 압축 요소로부터 토출된 냉매를 방열시키기 위한 중간 냉각 회로를 구비하고, 상기 중간 냉각 회로 출구에 있어서 냉매가 응축되는 일이 없는 냉매 온도 및 압력이 되는 것을 특징으로 하는 냉매 사이클 장치.
  2. 제1항에 있어서, 상기 압축기의 회전수를 제어하기 위한 제어 수단을 구비하고,
    상기 제어 수단은 상기 중간 냉각 회로 출구에 있어서 냉매가 응축되는 일이 없는 냉매 온도 및 압력이 되도록 상기 압축기의 회전수를 제어하는 것을 특징으로 하는 냉매 사이클 장치.
  3. 제2항에 있어서, 상기 제어 수단은 상기 제2 압축 요소로 흡입되는 냉매 온도, 및/또는 상기 제2 압축 요소로 흡입되는 냉매 압력을 기초로 하여 상기 압축기의 회전수를 제어하는 것을 특징으로 하는 냉매 사이클 장치.
KR1020040020178A 2003-03-26 2004-03-25 냉매 사이클 장치 KR101020916B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2003-00085242 2003-03-26
JP2003085242A JP4219198B2 (ja) 2003-03-26 2003-03-26 冷媒サイクル装置

Publications (2)

Publication Number Publication Date
KR20040084796A true KR20040084796A (ko) 2004-10-06
KR101020916B1 KR101020916B1 (ko) 2011-03-09

Family

ID=32821493

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040020178A KR101020916B1 (ko) 2003-03-26 2004-03-25 냉매 사이클 장치

Country Status (7)

Country Link
US (1) US7111471B2 (ko)
EP (1) EP1462738A1 (ko)
JP (1) JP4219198B2 (ko)
KR (1) KR101020916B1 (ko)
CN (1) CN1316212C (ko)
MY (1) MY137092A (ko)
TW (1) TWI251064B (ko)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI308631B (en) * 2002-11-07 2009-04-11 Sanyo Electric Co Multistage compression type rotary compressor and cooling device
US7600390B2 (en) * 2004-10-21 2009-10-13 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a two-stage compressor
JP2006213345A (ja) * 2005-02-02 2006-08-17 Sanyo Electric Co Ltd 飲料供給装置
JP4583230B2 (ja) * 2005-04-22 2010-11-17 三洋電機株式会社 低温ショーケース
US20070071628A1 (en) * 2005-09-29 2007-03-29 Tecumseh Products Company Compressor
JP2007100513A (ja) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd 冷媒圧縮機及びその冷媒圧縮機を備えた冷媒サイクル装置
JP2007263431A (ja) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd 遷臨界冷凍サイクル装置の製造方法
JP2008106738A (ja) * 2006-09-29 2008-05-08 Fujitsu General Ltd ロータリ圧縮機およびヒートポンプシステム
US7621475B2 (en) 2006-12-21 2009-11-24 Whirlpool Corporation Mechanism for shaving ice in a refrigeration appliance
JP4916383B2 (ja) * 2007-06-01 2012-04-11 サンデン株式会社 電動型スクロール圧縮機の起動制御装置及びその起動制御方法
JP5141269B2 (ja) * 2008-01-30 2013-02-13 ダイキン工業株式会社 冷凍装置
JP2014088974A (ja) * 2012-10-29 2014-05-15 Mitsubishi Electric Corp 冷凍機及び冷凍装置
JP5796588B2 (ja) * 2013-02-27 2015-10-21 三菱電機株式会社 オープンショーケース
JP2016095105A (ja) * 2014-11-17 2016-05-26 パナソニックIpマネジメント株式会社 空気調和装置
US11709006B2 (en) 2018-08-23 2023-07-25 Thomas U. Abell System and method of controlling temperature of a medium by refrigerant vaporization
US11719473B2 (en) 2018-08-23 2023-08-08 Thomas U. Abell System and method of controlling temperature of a medium by refrigerant vaporization and working gas condensation
CN111174268B (zh) * 2020-01-15 2021-03-23 西安交通大学 一种空气源跨临界二氧化碳热泵供暖系统及控制方法
CN112361684B (zh) * 2020-11-30 2021-09-07 珠海格力电器股份有限公司 一种两级变频压缩制冷系统控制方法、装置及空调机组

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3719057A (en) * 1971-10-08 1973-03-06 Vilter Manufacturing Corp Two-stage refrigeration system having crankcase pressure regulation in high stage compressor
US3759052A (en) * 1972-02-28 1973-09-18 Maekawa Seisakusho Kk Method of controlling high stage and low stage compressors
US4787211A (en) 1984-07-30 1988-11-29 Copeland Corporation Refrigeration system
US4947655A (en) * 1984-01-11 1990-08-14 Copeland Corporation Refrigeration system
JPH0420751A (ja) 1990-05-15 1992-01-24 Toshiba Corp 冷凍サイクル
JPH0718602A (ja) 1993-06-29 1995-01-20 Sekisui Chem Co Ltd 埋込栓
KR20010014817A (ko) * 1999-07-06 2001-02-26 다카노 야스아키 냉매압축기 및 이것을 이용한 냉동냉방장치
US6568198B1 (en) * 1999-09-24 2003-05-27 Sanyo Electric Co., Ltd. Multi-stage compression refrigerating device
JP3600163B2 (ja) * 2001-02-13 2004-12-08 三洋電機株式会社 車載空気調和機
JP2002327690A (ja) * 2001-04-27 2002-11-15 Daikin Ind Ltd 2段圧縮機
WO2003019085A1 (en) * 2001-08-31 2003-03-06 Mærsk Container Industri A/S A vapour-compression-cycle device
JP2003074999A (ja) * 2001-08-31 2003-03-12 Daikin Ind Ltd 冷凍機
US6698234B2 (en) * 2002-03-20 2004-03-02 Carrier Corporation Method for increasing efficiency of a vapor compression system by evaporator heating

Also Published As

Publication number Publication date
TW200419119A (en) 2004-10-01
TWI251064B (en) 2006-03-11
US7111471B2 (en) 2006-09-26
MY137092A (en) 2008-12-31
EP1462738A1 (en) 2004-09-29
CN1532473A (zh) 2004-09-29
JP2004293871A (ja) 2004-10-21
KR101020916B1 (ko) 2011-03-09
US20040216484A1 (en) 2004-11-04
CN1316212C (zh) 2007-05-16
JP4219198B2 (ja) 2009-02-04

Similar Documents

Publication Publication Date Title
KR101020916B1 (ko) 냉매 사이클 장치
US7143595B2 (en) Supercritical refrigerant cycle system
KR100950412B1 (ko) 다단 압축식 로터리 컴프레서 및 냉각 장치
KR20040020013A (ko) 냉매 사이클 장치 및 냉매 사이클 장치에 사용되는 컴프레서
KR20040111018A (ko) 냉매 사이클 장치
KR20040084978A (ko) 냉매 사이클 장치
JP4039921B2 (ja) 遷臨界冷媒サイクル装置
JP2004116957A (ja) 冷媒サイクル装置
US7000424B2 (en) Refrigerant cycling device
JP2011012630A (ja) スクロール圧縮機
JP2004317073A (ja) 冷媒サイクル装置
WO2023144953A1 (ja) 圧縮機及び冷凍サイクル装置
JP4278402B2 (ja) 冷媒サイクル装置
JP4556934B2 (ja) 圧縮機および冷媒回路装置
JP4241127B2 (ja) 遷臨界冷媒サイクル装置
JP2004028485A (ja) Co2冷媒サイクル装置
JP2004251492A (ja) 冷媒サイクル装置
JP2000104690A (ja) 回転式圧縮機
JP2004251514A (ja) 冷媒サイクル装置
JP2003279172A (ja) インバータ制御コンプレッサを用いた冷媒回路
JP2004170043A (ja) 冷却装置
JP2004309012A (ja) 冷媒サイクル装置
JP2004011957A (ja) 超臨界冷媒サイクル装置
JP2000104688A (ja) 回転式圧縮機
JP2006275035A (ja) 冷凍装置、冷蔵庫及び圧縮機

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee