KR20010080451A - 반도체 디바이스 - Google Patents

반도체 디바이스 Download PDF

Info

Publication number
KR20010080451A
KR20010080451A KR1020017006074A KR20017006074A KR20010080451A KR 20010080451 A KR20010080451 A KR 20010080451A KR 1020017006074 A KR1020017006074 A KR 1020017006074A KR 20017006074 A KR20017006074 A KR 20017006074A KR 20010080451 A KR20010080451 A KR 20010080451A
Authority
KR
South Korea
Prior art keywords
region
conductivity type
zone
type
buried layer
Prior art date
Application number
KR1020017006074A
Other languages
English (en)
Other versions
KR100751100B1 (ko
Inventor
반로이젠레이몬드
에그베르즈요한네스에이치에이치에이
헤린가안코
Original Assignee
롤페스 요하네스 게라투스 알베르투스
코닌클리즈케 필립스 일렉트로닉스 엔.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롤페스 요하네스 게라투스 알베르투스, 코닌클리즈케 필립스 일렉트로닉스 엔.브이. filed Critical 롤페스 요하네스 게라투스 알베르투스
Publication of KR20010080451A publication Critical patent/KR20010080451A/ko
Application granted granted Critical
Publication of KR100751100B1 publication Critical patent/KR100751100B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0626Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a localised breakdown region, e.g. built-in avalanching region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

강 도핑된 컨택트존(4)이 제공된 약 도핑된 영역(3)을 포함하는 고전압 디바이스에서는, 컨택트 존의 코너에서 국부적 항복 현상에 의한 손상이 고전류 밀도에서 Kirk 효과에 의해 발생할 수 있다. 디바이스의 강건성을 향상시키기 위해서, 동일한 도전형의 환형 보호존(14)이 제공되어 가까운 거리에서 컨택트 존을 둘러싸게 된다. 결과적으로, 항복 현상은 보호존의 코너에서 처음에 발생할 것이다. 그러나 보호존과 컨택트존간의 저항 때문에, 보다 더 균일한 전류 분포을 얻고, 국부적 전류 집중에 의한 손상을 방지한다.

Description

반도체 디바이스{SEMICONDUCTOR DEVICE}
이러한 엘리먼트는 동작 중에 큰 전류 흐름이 존재하는 동시에 제 2 영역과 제 4 영역 사이의 pn-접합 양단에 역방향으로 고전압이 인가되면 종종 손상을 입기쉽다는 것이 알려져 있다. 이러한 손상은 온도의 국부적 증가와 후속하는 전류 증가를 일으킬 수 있는 영역 3부터 영역 4까지의 접합에서 전기장의 증가를 야기하는 항복 현상(breakdown)의 결과로서 국부적 전류 집중에 의해 야기될 수 있다. 예를 들어 제 3 영역에서 항복 전압의 증가는 제 2 영역의 가장자리에 반대 도전형의 전기적으로 유동하는 링이나 존을 제공하여 전기장의 감소를 일으킴에 의해서 성취될 수 있다는 것이 잘 알려져 있다. 이러한 존의 도전형은 제 3 영역의 전도타입과 반대되기 때문에, 이러한 존의 제공은 추가적인 공정 단계를 요구한다. 게다가, 이러한 링은 비교적 많은 공간을 차지하여 회로 엘리먼트 크기의 증가를 일으켜 특히 집적 회로에서 불편할 수 있다. 또한 이러한 방법은 엘리먼트의 직렬 저항의 증가를 일으킬 수 있다. 이러한 방법의 다른 단점은 제 3 영역과 제 4 영역간의 접합에서의 전기장 증가와 전류 집중이 거의 억제되지 않거나 전혀 억제되지 않는다는 것이다.
발명의 개요
특히, 본 발명은 추가적인 공정 단계 없이 전류 집중과 전기장 증가에 의해 야기되는 손상을 방지하는 효과적인 방법을 제공한다. 이를 이루기 위해서, 서두에서 언급된 타입의 반도체 디바이스는 본 발명에 따라 제 3 영역에 이 제 3 영역보다 높은 도핑 농도를 갖는 제 1 도전형의 보호 존━보호 존은 제 3 영역에 의해 제 2 영역으로부터 격리되고, 제 4 영역 근처에 위치하며, 제 3 영역의 중간의 상대적 고 임피던스 영역에 의해 제 4 영역으로부터 격리됨━이 제공됨을 특징으로 한다. 특히, 본 발명은 고전류 밀도에서 pn-접합 양단의 차단 전압은 전기장 강도의 최고점이 전류로 인해 pn-접합에서 컨택트 존으로 옮겨지도록 하게 하는 Kirk 효과를 일으킬 수 있다는 인식에 기초한다. Kirk 효과를 초래하는 전류는 기생 pnp 또는 npn 작용에 의해서 제 1 영역으로부터 발생할 수 있다. 예를 들어, 컨택트 존의 만곡부(curvature)나 이 컨택트 존의 확산 전방에서의 국부적 불규칙성은 항복 현상 발생 시의 전류 집중과 관련 손상을 일으키는 전기장 강도에서 국부적 피크를 초래할 수 있다. 컨택트 존 근처에 그러나 제 3 영역의 고임피던스 재료에 의해서 컨택트 존으로부터 격리되도록, 동일한 도전형의 강 도핑된(heavily doped) 존을, 예를 들어, 컨택트 존을 두르는 링의 형태로 제공함으로써, 전술한 Kirk 효과가 처음에 보호 존의 가장자리를 따라 일어나도록 할 수 있다. 전류 경로에 저항을 형성하는 고 임피던스 영역은 보호 존과 컨택트 존간에 위치하고, 항복 현상 발생 시의 전류 집중은 방지되거나 실질적으로 적어도 억제된다. 추가적인 공정 단계가 필요치 않도록 보호 존과 컨택트 존은 일반적으로 동시에 형성될 수 있음이 나중에 기술될 것이다. 게다가, 보호 존은 추가적인 공간을 거의 차지하지 않아서 디바이스의 크기의 증가가 거의 없거나 전혀 없다.
본 발명에 따른 반도체 디바이스의 실시예는 제 3 영역이 반도체 바디의 표면과 인접하는 제 1 도전형의 표면 영역에 의해 형성되고, 제 4 영역과 보호 존은 제 1 도전형의 인접하는 표면 존으로서 제공된다는 특징을 가지고 있다. 또한 본 발명은 횡형 형태로 응용될 수도 있지만, 종형 형태로 응용될 때 특별한 장점을 얻을 수 있다. 종형 구조를 갖는 본 발명에 따른 반도체 디바이스는 제 3 영역이 표면의 반대측에서 제 2 도전형의 제 2 영역과 접하고, 제 1 도전형의 제 1 영역은표면 상에서 보았을 때 제 2 영역 아래에 위치하는 영역에 의해서 형성되는 것을 특징으로 한다. 특히 집적 회로에서의 사용에 적합한 실시예는 제 3 영역이 제 2 도전형의 기판 상에 제공된 에피테셜층의 섬 모양(island-shaped)의 부분에 의해서 형성되고, 제 1 영역과 제 2 영역은 각기 제 1 도전형의 매립층과 제 2 도전형의 매립층에 의해 형성되며, 위의 두 매립층은 에피테셜층과 기판간에 한 층이 다른 층 위에 배열되고, 제 2 도전형의 제 2 매립층은 에피테셜층과 제 1 도전형의 제 1 매립층을 서로 격리시키면서, 제 1 매립층에 의해 제 2 도전형의 기판으로부터 격리되는 특징을 가지고 있다. 다른 실시예는 제 1 도전형의 섬 모양의 부분과 제 2 도전형의 매립층이 집적 회로에서 회로 엘리먼트로 기능하는 다이오드를 형성한다. 이 다이오드는, 예를 들어, 정전기적 방전(ESD)에 의해서 야기되는 손상으로부터 회로를 보호하는 데 사용될 수 있는 장점이 있다.
본 발명의 이런 측면들과 다른 측면들은 나중에 기술될 실시예를 참조하여 설명될 것이고 자명해질 것이다.
본 발명은 제 1 도전형의 제 1 영역과, 이 제 1 영역에 인접하고 제 1 도전형과 반대되는 제 2 도전형의 제 2 영역과, 제 2 영역에 인접하며 제 2 영역에 의해 제 1 영역으로부터 격리된 제 1 도전형의 제 3 영역과, 제 3 영역에 의해 제 2 영역으로부터 격리되며 제 3 영역보다 보다 더 높은 도핑 농도를 가진 제 1 도전형의 제 4 영역을 구비한 반도체 바디를 포함하는 반도체 디바이스에 관한 것으로서, 제 1, 2, 4 영역에는 각각 단자가 제공된다. 상기 제 4 영역은 동일한 도전형의 제 3 영역의 컨택트 존(contact zone)으로 간주될 수 있다. 결과적으로, 본 명세서에서 기술된 다양한 영역의 연속은 예를 들어 트랜지스터(바이폴라 또는 MOS)나 다이오드로서 적절히 사용될 수 있는 수평이나 수직 npn 또는 pnp 구조체를 형성한다.
도 1은 그 자체로 알려진 반도체 디바이스의 단면도,
도 2는 본 발명에 따른 반도체 디바이스의 단면도,
도 3은 도 2에 도시한 실시예에서 보호 존과 컨택트 존간의 거리가 ESD 강도에 미치는 영향을 그래픽적으로 도시하는 도면,
도 4는 본 발명에 따른 반도체 디바이스의 다른 실시예의 단면도.
도면은 단지 개략적인 것이며 동일한 축척으로 도시된 것이 아님을 주의할 필요가 있다. 여기서부터, 본 발명은, 예를 들어, 집적 회로에서 회로를 ESD로부터 보호하는 다이오드로 사용되는 데 적합한 다이오드에 의해서 기술될 것이다. 본 발명을 예시하기 위해서, 도 1은 기존 다이오드를 도시하고, 도 2는 본 발명에 따른 다이오드의 실시예를 도시한다. 이 다이오드는 제 1 도전형(본 예에서는 n-형)의 제 1 영역(1)과, 이 제 1 영역에 인접하며 제 2 도전형과 반대인(본 예에서는 p-형)의 제 2 영역(2)과, 제 2 영역에 의해 제 1 영역으로부터 격리되고 제 2 영역에 인접하는 n-형의 제 3 영역(3)과, 이 제 3 영역에 인접하며 컨택트 존을 형성하고 제 3 영역보다 더 높은 도핑 농도을 갖는 n-형의 제 4 영역이 제공되는 반도체 바디를 포함한다. 제 3 영역은 p-형 실리콘 기판(6) 상에 제공된 실리콘의 n-형 에피테셜층(5)의 섬 모양의 부분에 의해 형성된다. 이 에피테셜층 내에서, 섬(3)은 층(5)의 두께를 곧게 가로질러 연장되는 깊은 p-형 존(a deep p-type zone)(7)에 의해 전기적으로 절연된다. 제 1 영역(1)과 제 2 영역(2)은 에피테셜층(5)과 기판(6)간의 계면에 제공된 n-형 매립층과 p-형 매립층에 의해 각기 형성된다. n-형 매립층(1)은 p-형 매립층(2)과 p-형 기판(6)간을 전기적으로 격리시키고, p-형 매립층(2)은 한편에 있는 n-형 매립층(1)을 다른 한편에 있는 n-형 섬(3) 및 n-형 컨택트 존(4)과 격리시킨다. 매립 존(1,2)에는 깊은 n-형 컨택트 존(8)과 깊은 p-형 컨택트 존(9)이 각기 제공된다. 이 존(8,9)에는 다이오드의 양극(anode)을 형성하는 공통 단자(10)가 제공된다. 존(4)은 음극을 형성하는 금속 컨택트(11)에 접속된다.
실제적인 실시예에서, 에피테셜층(5)의 두께는 대략 9 ㎛였고 도핑 농도는 3.5ⅹ1015/cm3였다. n-형 컨택트 존(4)의 깊이는 대략 1.0 ㎛였다. 기판과 에피테셜층간의 계면으로부터 측정된 매립된 p-형 존의 상향 확산은 대략 5 ㎛가 되었으므로, n-형 컨택트 존(4)과 p-형 존(2)간의 거리는 대략 3 마아크로미터였다.
본 다이오드는 예를 들어 전원(음극)과 접지(양극)사이에서 집적 회로의 보호 다이오드로 사용될 수 있다. 전압이 순방향으로 다이오드의 양단에 인가되었을 때, 영역(2)와 영역(3)간의 pn-접합(12)은 순바이어스가 되고 전자를 p-형 영역(2)로 주입한다. p-형 영역(2)을 통해 확산하는 전자는 n-형 영역(1)에 의해 수집되고 단자(10)를 경유하여 다이오드 전류로서 적어도 대부분 방전된다. 주입된 전자의 오직 적은 부분만이 기판(6)에 도달할 것이기 때문에, 이런 다이오드는 "저누설 다이오드(low leakage diodes)"로 호칭된다. 다이오드가 역바이어스가 될 때, 적어도 전류가 흐르지 않는 동안은 전기장 강도는 p-형 매립층(2)과 n-형 영역(3)간의 pn-접합(12)에서 가장 커진다. 전류가 항복 현상의 결과로서 영역(2)과 영역(3)간에 흐르기 시작할 때, 영역(1)과 영역(2)간의 pn-접합은 순바이어스가 된다. 이런 결과적인 전류는 전기장의 최고점이 전류 밀도에 의해 야기된 Kirk 효과의 결과로 인해 pn-접합(12)에서 컨택트 존(14)로 이동하게 한다. 전기장이 컨택트 존(4)의 만곡부(13)에서 가장 커지기 때문에 항복 전압은 이 지점에서 더 낮아진다. 이 항복 전압의 낮아짐으로 인해, 전류는 더 커지며 영역(1)과영역(2)간의 접합은 보다 더 순바이스어가 되어 항복 전압이 더욱 감소하도록 한다. 그 결과로, 다이오드를 손상시킬 수 있는 큰 전류가 흐르게 된다.
도 2는 일치하는 부분이 도 1에서와 같은 참조 부호를 쓰고 있는 본 발명에 따른 다이오드의 단면도이다. 도 2에서 도시된 디바이스는 컨택트 존(4)을 두르고 있는 강 도핑된 n-형 링(14)을 포함한다는 점에서 도 1에서 도시된 디바이스와 주로 다르다. 이 링(14)과 컨택트 존(4)간의 거리는 특정 실시예에서 대략 2 ㎛였다. 이는 마스크의 크기 정도 되기 때문에 , 존(4)과 존(14)의 확산 프로파일의 말단(talis)━도 2에서 분리되게 도시됨━이 측방향 확산의 결과로 인해 부분적으로 중첩될 수 있다. 그러나 이 경우에, 존(4)과 존(14)은 중간의 고 임피던스 물질에 의해서 서로 분리될 것이라고 예상된다. 존(14)은 소정의 컨택트, 즉 컨택트(11)에 직접적으로 접속되지 않는다는 것이 중요하다. 존(14)는 존(4)에 가깝기 때문에, 다이오드 양단에 인가되는 역방향 전압은 전기장의 최고점이 링(14)의 만곡부(15)에 위치하도록 할 것이다. 항복 현상은 도 1에서 도시된 실시예에서처럼 존(4)에서 발생하지 않고 존(14)에 발생할 것이다. 링(14)과 존(4)간의 호형(arch-shaped) 영역은 존(15)과 컨택트(11)간의 저항을 형성하고, 그것은 애벌런치 효과(avalanche effect)와 전류 집중에 의해 초래되는 다이오드의 국부적 손상을 방지한다. 결과적으로, 도 2에서 도시된 다이오드는 도 1에서 도시된 다이오드보다 훨씬 더 강건하고 특히 ESD에 대한 보호로서 적절하다. 도 3의 측정치는 다이오드가 ESD 보호(인체 모델(Human Body Model))에 대해 수 kV에서도 손상되지 않고 견딜 수 있음을 도시한다. 이와 비교해서, 보호링(14)이 없는 다이오드는 대략 1.5 킬로볼트에서도 손상될 수 있었다.
존(14)은 추가적인 공정 단계를 거칠 필요가 없이 존(4)과 동시에 제공될 수 있다. 게다가, 존(14)은 추가적인 공간을 거의 차지하지 않아서 디바이스의 표면적이 거의 증가하지 않거나 전혀 증가하지 않는다.
컨택트존(4)과 보호존(14)간의 거리는 중요한 변수다. 도 3은 다수의 다이오드 중의 사전결정된 비율이 손상되기 쉬운 kV의 ESD 전압과 링(14)과 컨택트존(4)간의 거리간의 관계을 도시한다. 최적점은 대략 2 ㎛에서이다. 만약 거리가 1.5 ㎛보다 가까워진다면, 저항이 너무 낮기 때문에 효과는 줄어든다. 만일 거리가 2.5 ㎛보다 멀어지면, 소정 거리보다 클 때에는 도 1에서 도시된 디바이스에서와 같은 효과가 일어나기 때문에 보호존의 효과는 거리가 증가함에 따라서 급속하게 줄어들 것이다.
다이오드와는 별도로, 본 발명은 또한 다른 유형의 회로 엘리먼트에도 사용되는 장점을 가질 수 있다. 도 4는 횡형 DMOS 트랜지스터(a Lateral DMOS transistor)를 포함하는 본 발명에 따른 디바이스의 단면도이다. 이 경우에도, 디바이스는 n-형 에피테셜층(5)이 제공되는 p-형 기판(6)을 포함하는 실리콘 반도체 바디(1)를 포함한다. 트랜지스터는 제 2 영역 p-형 백게이트(21)내에 위치하는 n-형 소스(제 1 영역)(20)를 포함한다. 상기 백게이트 영역은 에피테셜층(5)의 일부에 의해 형성되고 백게이트 영역의 반대편에서 강 도핑된 제 n-형 드레인(제 4 영역)(23)과 혼합된 고임피던스 n-형 드리프트 영역(제 3 영역)(22)에 접한다. 소스 영역(20)과 드리프트 영역(22)간에 위치한 백게이트 영역(21)의 일부 위에,절연 게이트(24)가 제공된다. 소스는 본 예에서는 백게이트 영역(21)에 접속된 소스 컨택트(25)에 접속된다. 깊은 p-형 존(26)을 경유하여, 백게이트 영역은 본 예에서는 기판(접지)(6)에 접속되나 이것은 반드시 필요한 것이 아님은 명백하다. 드레인은 드레인 컨택트(27)에 접속된다. 드레인(23)과 벡게이트 영역(21)간에, 본 예에서는 드레인(23)의 어느 한 편 상에, 강 도핑된 n-형 보호존(14)이 제공된다. 이 경우에도, 존(14)은 드레인(23)으로부터, 예를 들어, 2 ㎛의 가까운 거리에 위치하고 드레인(23)과 동일한 공정 단계 동안에 형성된다. 고전압이 드레인(23)과 벡게이트 영역(21)및/또는 기판(6)간에 인가되고, 고전류 밀도에서 Kirk 효과의 결과로 인해 전기장의 최고점이 비도전성 pn-접합을 지나 드레인(23)으로 이동할 때, 항복 현상은 처음으로 보호존(14)에서 재발할것이며 존(14)과 단자(27)간의 저항은 전류 집중을 방지하여 디바이스의 손상 위험을 줄인다.
본 발명은 본 명세서의 예로만 한정되는 것이 아니라 본 발명의 범주 내에서 수많은 변경이 당업자에게 가능하다. 예를 들어, 마지막으로 언급된 예에서, p-형 기판(6)은 전기 절연 물질의 기판으로 대체될 수 있다. 보호존이 도 2에서 도시된 것처럼 존(4) 주위에 환형으로 제공되지 않고 존(14)이 없이 Kirk 효과에 의한 항복 현상이 예상될 수 있는 컨택트 존(4)의 부분 주위로만 연장되는 실시예도 가능하다. 예를 들어 도 4에 따르는 LDMOST의 드리프트 영역(drift region)같은 약 도핑된 제 3 영역의 두께와 도핑 농도는 RESURF 원리에 해당되도록 유리하게 선택될 수 있다.
게다가, 위에서 기술된 예에서, 도전형은 서로 바뀔수 있다. 또한, 반도체바디는 실리콘이 아닌 물질로 구성될 수 있다.

Claims (8)

  1. 제 1 도전형의 제 1 영역과,
    상기 제 1 영역에 인접하며 상기 제 1 도전형과 반대되는 도전형의 제 2 영역과,
    상기 제 2 영역에 인접하며 상기 제 2 영역에 의해 상기 제 1 영역으로부터 분리된 상기 제 1 도전형의 제 3 영역과,
    상기 제 3 영역에 의해 상기 제 2 영역으로부터 분리되며 상기 제 3 영역보다 보다 더 높은 도핑 농도를 가진 상기 제 1 도전형의 제 4 영역━상기 제 1, 2, 4 영역에는 단자가 제공됨━을 구비한 반도체 바디를 포함하는 반도체 디바이스에 있어서,
    상기 제 3 영역에는 상기 제 3 영역보다 더 높은 도핑 농도를 가진 상기 제 1 도전형의 보호존이 제공되며,
    상기 보호존은 상기 제 3 영역에 의해 상기 제 2 영역으로부터 분리되고 상기 제 4 영역 근처에 위치하며 중간의 상대적 고 임피던스 영역에 의해 상기 제 4 영역으로부터 분리되는 것을 특징으로 하는 반도체 디바이스.
  2. 제 1 항에 있어서,
    상기 제 3 영역은 상기 반도체 바디의 표면에 인접하는 상기 제 1 도전형의표면 영역에 의해 형성되며,
    상기 제 4 영역과 상기 보호존은 상기 제 1 도전형의 인접 표면존으로서 제공되는 것을 특징으로 하는 반도체 디바이스.
  3. 제 2 항에 있어서,
    상기 제 3 영역은 상기 표면의 반대편에서 상기 제 2 도전형의 상기 제 2 영역과 접하며,
    상기 제 1 도전형의 상기 제 1 영역은 상기 표면으로부터 보았을 때 상기 제 2 영역 아래에 위치하는 영역에 의해 형성되는 것을 특징으로 하는 반도체 디바이스.
  4. 제 3 항에 있어서,
    상기 제 3 영역은 상기 제 2 도전형의 기판 상에 제공된 에피테셜층의 섬 모양의 부분에 의해 형성되고,
    상기 제 1 영역과 제 2 영역은 상기 제 1 도전형의 매립층과 상기 제 2 도전형의 매립층에 의해 각기 형성되며,
    상기 매립층들은 상기 에피테셜층과 상기 기판간에 한 층이 다른 층 위에 배열되고,
    상기 제 2 도전형의 상기 제 2 매립층은 상기 에피테셜층과 상기 제 1 도전형의 상기 제 1 매립층을 서로 격리시키며,
    상기 제 2 매립층은 상기 제 1 매립층에 의해 상기 제 2 도전형의 상기 기판으로부터 격리되는 것을 특징으로 하는 반도체 디바이스.
  5. 제 4 항에 있어서,
    상기 제 1 도전형의 상기 섬 모양의 부분과 상기 제 2 도전형의 상기 매립층은 집적 회로에서 회로 엘리먼트로 기능하는 다이오드를 형성하는 것을 특징으로 하는 반도체 디바이스.
  6. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 제 3 영역과 제 4 영역은 횡형 DMOS 트랜지스터(a Lateral DMOS transistor)의 드리프트 영역과 드레인 영역을 각기 형성하는 것을 특징으로 하는 반도체 디바이스.
  7. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
    상기 제 1 영역과 제 2 영역에는 공통 제 1 단자가 제공되고, 상기 제 4 영역에는 제 2 단자가 제공되는 것을 특지으로 하는 반도체 디바이스.
  8. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
    상기 반도체 디바이스가 제 3 영역의 두께와 도핑 농도가 대략 1012원자/cm2인 RESURF 타입인 반도체 디바이스.
KR1020017006074A 1999-09-16 2000-08-31 반도체 디바이스 KR100751100B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP99203019.7 1999-09-16
EP99203019 1999-09-16

Publications (2)

Publication Number Publication Date
KR20010080451A true KR20010080451A (ko) 2001-08-22
KR100751100B1 KR100751100B1 (ko) 2007-08-22

Family

ID=8240645

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020017006074A KR100751100B1 (ko) 1999-09-16 2000-08-31 반도체 디바이스

Country Status (5)

Country Link
US (1) US6933559B1 (ko)
EP (1) EP1138082A1 (ko)
JP (1) JP2003509867A (ko)
KR (1) KR100751100B1 (ko)
WO (1) WO2001020682A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100772474B1 (ko) * 2005-03-31 2007-11-02 가부시키가이샤 리코 반도체 장치

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6882023B2 (en) * 2002-10-31 2005-04-19 Motorola, Inc. Floating resurf LDMOSFET and method of manufacturing same
JP2006190837A (ja) * 2005-01-06 2006-07-20 Renesas Technology Corp フルアイソレーションダイオード
US7541247B2 (en) * 2007-07-16 2009-06-02 International Business Machines Corporation Guard ring structures for high voltage CMOS/low voltage CMOS technology using LDMOS (lateral double-diffused metal oxide semiconductor) device fabrication
JP5222548B2 (ja) 2007-12-25 2013-06-26 ルネサスエレクトロニクス株式会社 半導体装置
WO2010029503A1 (en) 2008-09-11 2010-03-18 Nxp B.V. Protection for an integrated circuit
TWI397180B (zh) * 2008-12-17 2013-05-21 Vanguard Int Semiconduct Corp 在積體電路中具靜電放電防護能力的水平擴散金氧半導體電晶體(ldmos)元件
JP5172654B2 (ja) * 2008-12-27 2013-03-27 株式会社東芝 半導体装置
US8278710B2 (en) 2010-07-23 2012-10-02 Freescale Semiconductor, Inc. Guard ring integrated LDMOS
CN102479720B (zh) * 2010-11-29 2015-12-09 联华电子股份有限公司 抗击穿漏电流的金属氧化物半导体晶体管及其制造方法
KR101986090B1 (ko) 2012-04-06 2019-06-05 삼성전자 주식회사 가드링을 포함하는 반도체 장치 및 이를 포함하는 반도체 시스템
US10381342B2 (en) 2015-10-01 2019-08-13 Texas Instruments Incorporated High voltage bipolar structure for improved pulse width scalability
JP7140349B2 (ja) * 2018-07-18 2022-09-21 株式会社東海理化電機製作所 半導体装置及びその製造方法
JP7404600B2 (ja) * 2019-11-01 2023-12-26 株式会社東海理化電機製作所 半導体集積回路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1140822A (en) 1967-01-26 1969-01-22 Westinghouse Brake & Signal Semi-conductor elements
SE427598B (sv) * 1981-08-25 1983-04-18 Ericsson Telefon Ab L M Halvledardiod avsedd att inga i integrerade kretsar
DE3579391D1 (de) * 1984-02-21 1990-10-04 American Telephone & Telegraph Generisches mehrzweckchipsubstrat.
US5386136A (en) * 1991-05-06 1995-01-31 Siliconix Incorporated Lightly-doped drain MOSFET with improved breakdown characteristics
US5146298A (en) * 1991-08-16 1992-09-08 Eklund Klas H Device which functions as a lateral double-diffused insulated gate field effect transistor or as a bipolar transistor
DE4201276C1 (ko) * 1992-01-18 1993-06-17 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
EP0685891B1 (en) * 1994-05-31 2001-08-08 STMicroelectronics S.r.l. Integrated semiconductor diode
JP3581447B2 (ja) * 1995-08-22 2004-10-27 三菱電機株式会社 高耐圧半導体装置
JPH10321842A (ja) * 1997-05-15 1998-12-04 Toshiba Microelectron Corp 半導体装置
US6211551B1 (en) * 1997-06-30 2001-04-03 Matsushita Electric Works, Ltd. Solid-state relay

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100772474B1 (ko) * 2005-03-31 2007-11-02 가부시키가이샤 리코 반도체 장치

Also Published As

Publication number Publication date
KR100751100B1 (ko) 2007-08-22
EP1138082A1 (en) 2001-10-04
US6933559B1 (en) 2005-08-23
JP2003509867A (ja) 2003-03-11
WO2001020682A1 (en) 2001-03-22

Similar Documents

Publication Publication Date Title
US5998837A (en) Trench-gated power MOSFET with protective diode having adjustable breakdown voltage
US7968936B2 (en) Quasi-vertical gated NPN-PNP ESD protection device
EP0746030B1 (en) Trench-gated power MOSFET with protective diodes in a periodically repeating pattern
US6140678A (en) Trench-gated power MOSFET with protective diode
US20040232510A1 (en) HV-SOI LDMOS device with integrated diode to improve reliability and avalanche ruggedness
KR100751100B1 (ko) 반도체 디바이스
CN115699328A (zh) 具有分段沟槽和屏蔽件的沟槽功率器件
US20070096166A1 (en) Semiconductor device
US6507050B1 (en) Thyristors having a novel arrangement of concentric perimeter zones
KR20080106050A (ko) 쇼트키 다이오드 및 그 형성 방법
US5612564A (en) Semiconductor device with limiter diode
CN112071905B (zh) 半导体器件的终端结构和绝缘栅双极型晶体管
KR100397882B1 (ko) 전계효과-제어가능반도체소자
US4975751A (en) High breakdown active device structure with low series resistance
US5091336A (en) Method of making a high breakdown active device structure with low series resistance
US20200321329A1 (en) Device of protection against electrostatic discharges
JP3522887B2 (ja) 高耐圧半導体素子
US4868921A (en) High voltage integrated circuit devices electrically isolated from an integrated circuit substrate
US20050173757A1 (en) Trench-gate semiconductor devices
US6236100B1 (en) Semiconductor with high-voltage components and low-voltage components on a shared die
US11257919B2 (en) Schottky barrier diode with improved Schottky contact for high voltages
US10971632B2 (en) High voltage diode on SOI substrate with trench-modified current path
TWI696329B (zh) 高突波瞬變電壓抑制器
US5155568A (en) High-voltage semiconductor device
CN212967714U (zh) 具有沟槽自对准P Plus掩蔽埋层的碳化硅SBD器件元胞结构

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20120802

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130805

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee