KR19990005482A - Method for forming charge storage electrode of semiconductor device - Google Patents

Method for forming charge storage electrode of semiconductor device Download PDF

Info

Publication number
KR19990005482A
KR19990005482A KR1019970029680A KR19970029680A KR19990005482A KR 19990005482 A KR19990005482 A KR 19990005482A KR 1019970029680 A KR1019970029680 A KR 1019970029680A KR 19970029680 A KR19970029680 A KR 19970029680A KR 19990005482 A KR19990005482 A KR 19990005482A
Authority
KR
South Korea
Prior art keywords
forming
interlayer insulating
etching
storage electrode
charge storage
Prior art date
Application number
KR1019970029680A
Other languages
Korean (ko)
Other versions
KR100265359B1 (en
Inventor
서원준
김상욱
김대희
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR1019970029680A priority Critical patent/KR100265359B1/en
Publication of KR19990005482A publication Critical patent/KR19990005482A/en
Application granted granted Critical
Publication of KR100265359B1 publication Critical patent/KR100265359B1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

1. 청구범위에 기재된 발명이 속한 기술분야1. TECHNICAL FIELD OF THE INVENTION

본 발명은 반도체 제조 분야에 관한 것임.The present invention relates to the field of semiconductor manufacturing.

2. 발명이 해결하려고 하는 기술적 과제2. The technical problem to be solved by the invention

본 발명은 단차를 유발을 억제하여 후속 공정을 용이하게 하는 반도체 장치의 전하저장 전극 형성방법을 제공하고자 함.An object of the present invention is to provide a method for forming a charge storage electrode of a semiconductor device which suppresses the generation of steps to facilitate subsequent processes.

3. 발명의 해결방법의 요지3. Summary of Solution to Invention

본 발명은 통상적인 경사 식각 공정 및 도핑 및 비도핑 산화막의 높은 식각 선택비를 갖는 등방성 식각 공정을 실시하여 자기정렬 콘택을 이루며, 전하저장 전극에 의한 단차를 높이지 않으면서 충분한 정전용량을 갖는 전하저장 전극을 형성함.The present invention forms a self-aligned contact by performing a conventional gradient etching process and an isotropic etching process having a high etching selectivity of the doped and undoped oxide film, and has a sufficient capacitance without increasing the step by the charge storage electrode. Forming a storage electrode.

4. 발명의 중요한 용도4. Important uses of the invention

반도체 메모리 장치 제조에 이용됨.Used to manufacture semiconductor memory devices.

Description

반도체 장치의 전하저장 전극 형성방법Method for forming charge storage electrode of semiconductor device

본 발명은 반도체 제조 분야에 관한 것으로, 특히 반도체 메모리 장치의 캐패시터 제조 공정에 관한 것이다.TECHNICAL FIELD The present invention relates to the field of semiconductor manufacturing, and more particularly, to a capacitor manufacturing process of a semiconductor memory device.

반도체 장치의 집적도가 증가함에 따라 반도체 장치의 리프레시(refresh) 특성이 큰 문제로 부각되었으며, 이를 해결하는 하나의 방안으로서 캐패시터의 하부 전극인 전하저장 전극의 높이를 올려 정전용량을 증가시키는 기술에 대한 많은 연구·개발이 진행되어 왔다.As the degree of integration of semiconductor devices has increased, the refresh characteristics of semiconductor devices have emerged as a big problem. As a solution to this problem, a technique for increasing capacitance by increasing the height of a charge storage electrode, which is a lower electrode of a capacitor, has been described. Many research and developments have been conducted.

그러나, 이러한 전하저장 전극 높이의 증가는 전하저장 전극이 있는 지역(셀지역)과 없는 지역(주변회로 지역)간의 단차를 만들어, 후속 금속 배선 형성 공정에서 브릿지(bridge)를 유발하는 원인으로 작용하며, 이러한 브릿지는 반도체 장치의 신뢰도 및 수율을 저하시키는 요인이 된다. 때문에, 전하저장 전극의 높이를 증가시키는 방법에는 한계가 있다고 할 수 있다.However, this increase in charge storage electrode height creates a step between the region where the charge storage electrode is located (cell region) and the region where there is no (circuit circuit region), which causes a bridge in the subsequent metallization process. This bridge becomes a factor of lowering the reliability and yield of the semiconductor device. Therefore, it can be said that there is a limit to the method of increasing the height of the charge storage electrode.

본 발명은 단차를 유발을 억제하여 후속 공정을 용이하게 하는 반도체 장치의 전하저장 전극 형성방법을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming a charge storage electrode of a semiconductor device which suppresses the generation of steps to facilitate subsequent processing.

도 1a 내지 도 1e는 본 발명의 일실시예에 따른 전하저장 전극 형성 공정도.1A to 1E are diagrams illustrating a process of forming a charge storage electrode according to an exemplary embodiment of the present invention.

도 2a는 도 1c의 전자 현미경 사진.2A is an electron micrograph of FIG. 1C.

도 2b는 도 1d의 전자 현미경 사진.2b is an electron micrograph of FIG. 1d.

도면의 주요부분에 대한 부호의 설명Explanation of symbols for main parts of the drawings

10 : 실리콘 기판 11 : 게이트 산화막10 silicon substrate 11 gate oxide film

12 : 게이트 전극 13 : 마스크 산화막12 gate electrode 13 mask oxide film

14 : 스페이서 산화막 15 : 층간 절연막14 spacer oxide film 15 interlayer insulating film

16 : 산화막 17 : 포토레지스트 패턴16 oxide film 17 photoresist pattern

18 :전하저장 전극18: charge storage electrode

상기 목적을 달성하기 위하여 본 발명의 전하저장 전극 형성방법은 반도체 기판 상에 게이트 산화막과, 마스크 산화막 및 스페이서 절연막으로 절연된 게이트 전극을 형성하는 제1 단계; 전체구조 상부에 제1 층간 절연막 및 제2 층간 절연막을 차례로 형성하는 제2 단계; 전하저장 전극 콘택홀 형성을 위한 마스크를 사용하여 상기 제2 층간 절연막 및 상기 제1 층간 절연막을 차례로 선택적으로 경사 식각하는 제3 단계: 상기 제1 층간 절연막의 등방성 식각을 실시하여 상기 제2 층간절연막 하부에 언더컷 부위를 형성하는 제4 단계; 및 전체구조 상부에 전하저장 전극 형성을 위한 전도막을 형성하는 제5 단계를 포함하여 이루어진다.In order to achieve the above object, the charge storage electrode forming method of the present invention includes a first step of forming a gate oxide film, a gate oxide insulated with a mask oxide film and a spacer insulating film on a semiconductor substrate; A second step of sequentially forming a first interlayer insulating film and a second interlayer insulating film over the entire structure; A third step of selectively obliquely etching the second interlayer insulating layer and the first interlayer insulating layer using a mask for forming a charge storage electrode contact hole: isotropic etching of the first interlayer insulating layer to perform the second interlayer insulating layer A fourth step of forming an undercut portion in the lower portion; And a fifth step of forming a conductive film for forming a charge storage electrode on the entire structure.

이하, 첨부된 도면을 참조하여 본 발명을 상술한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1a 내지 도 1e는 본 발명의 일실시예에 따른 전하저장 전극 형성 공정도이다.1A to 1E are flowcharts of forming a charge storage electrode according to an exemplary embodiment of the present invention.

우선 도 1a에 도시된 바와 같이 실리콘 기판(10) 상에 게이트 산화막(11)과, 스페이서 절연막(14) 및 마스크 산화막(13)으로 절연된 게이트 전극(12)를 형성한다. 이때 스페이서 절연막(14) 및 마스크 산화막(13)은 TEOS(TetraEthy Osso Silicate)계 산화막, LTO(Low Temperature Oxide), MTO(Medium Temperature Oxide), HTO(High Temperature Oxide) 등의 비도핑 산화막(undoped oxide)을 사용하여 형성하며, 그 형성 공정은 통상적인 방식을 사용한다.First, as shown in FIG. 1A, a gate oxide film 11 and a gate electrode 12 insulated from the spacer insulating film 14 and the mask oxide film 13 are formed on the silicon substrate 10. In this case, the spacer insulating layer 14 and the mask oxide layer 13 are undoped oxides such as a TEOS (TetraEthy Osso Silicate) oxide layer, a low temperature oxide (LTO), a medium temperature oxide (MTO), and a high temperature oxide (HTO). ), And the forming process uses a conventional method.

다음으로 도 1b에 도시된 바와 같이 소정의 층간 절연막(15) 및 산화막(16)을 차례로 증착하고, 그 상부에 전하저장 전극 콘택홀 형성을 위한 포토레지스트 패턴(17)을 형성한다. 이때 층간 절연막(15)로서 BSG(Boro Silicate Glass)막, PSG(Phospho Silicate Glass)막, BPSG(BoroPhospho Silicate Glass)막 등의 도핑 산화막(doped oxide)을 사용하며, 산화막(16)으로서 비도핑 산화막을 사용한다.Next, as shown in FIG. 1B, a predetermined interlayer insulating film 15 and an oxide film 16 are sequentially deposited, and a photoresist pattern 17 for forming a charge storage electrode contact hole is formed thereon. In this case, a doped oxide film such as a BSG (Boro Silicate Glass) film, a PSG (Phospho Silicate Glass) film, or a BPSG (BoroPhospho Silicate Glass) film is used as the interlayer insulating film 15, and the undoped oxide film is used as the oxide film 16. Use

계속하여, 도 1c에 도시된 바와 같이 포토레지스트 패턴(17)을 식각 장벽으로하여 산화막(16) 및 층간 절연막(15)를 건식 식각하여 일차적인 전하저장 전극 콘택홀을 형성하고, 포토레지스트 패턴(17)을 제거한다.Subsequently, as illustrated in FIG. 1C, the oxide layer 16 and the interlayer insulating layer 15 are dry-etched using the photoresist pattern 17 as an etch barrier to form a primary charge storage electrode contact hole, and the photoresist pattern ( 17) Remove.

여기서 건식 식각은 하부의 게이트 전극(12)과 콘택간의 단락(short)을 방지할 수 있도록 콘택홀과 게이트 전극(12)과의 중첩 정확도(overlay accuracy)까지 고려하여 최종적인 CD(Critical Dimension)가 작아지도록 즉, DICD(Develop Inspection Critical Dimension)와 FICD(Final Inspection Critical Dimension)의 비가 2 : 1 이상이 되도록 경사 정도를 크게 한다.In this case, dry etching may be performed in consideration of the overlay accuracy of the contact hole and the gate electrode 12 to prevent short between the gate electrode 12 and the contact at the bottom. The degree of inclination is increased so that the ratio becomes smaller, that is, the ratio of the development inspection critical dimension (DICD) and the final inspection critical dimension (FICD) is 2: 1 or more.

경사 식각 방식은 통상적인 방식을 사용하며 그 세부 공정 조건을 살펴보면, 가열 실리콘 루프(heated silicon roof)가 장착된 ICP(Induced coupled plasma) 방식의 고밀도 플라즈마 방식의 건식 식각 챔버를 사용하며, C3F8가스 및 CO 가스를 사용하되, 총 가스유량을 30∼150 sccm로 하고, C3F8가스와 CO 가스의 플로우 비를 1 : 0.5∼5로 한다. 여기서 C3F8가스는 CF4, CHF3, CH3F, C2F6, C3F8, C4F8, CH2F2가스 등의 CF 계열 가스로 대체하여 사용할 수 있다. 또한 220℃∼290℃ 범위의 실리콘 루프 온도와, 1600 W∼2800 W 범위의 ICP RF 전력 및 600 W∼1800 W 범위의 바아어스(bias) RF 전력을 사용한다. 또한, 경사 식각은 CF4, NF3, CHF3, CH3F, C2F6, C3F8, C4F8, CH2F2가스 등의 F기를 포함하는 가스를 주 반응 가스로 하는 플라즈마 식각 방식을 사용할 수도 있으며, NH3가스를 주 반응 가스로 하는 플라즈마 식각 방식을 사용할 수도 있다. 도 2a에 경사 식각 후의 전자 현미경 사진을 도시하였다.The gradient etching method uses a conventional method, and the detailed process conditions include a dry etch chamber of a high density plasma method of an induced coupled plasma (ICP) method with a heated silicon roof, and C 3 F 8 gas and CO gas are used, the total gas flow rate is 30-150 sccm, and the flow ratio of C 3 F 8 gas and CO gas is 1: 0.5-5. The C 3 F 8 gas may be replaced with CF-based gas such as CF 4 , CHF 3 , CH 3 F, C 2 F 6 , C 3 F 8 , C 4 F 8 , CH 2 F 2 gas. Silicon loop temperatures in the range of 220 ° C. to 290 ° C., ICP RF power in the 1600 W to 2800 W range and bias RF power in the 600 W to 1800 W range are also used. Incidentally, the gradient etching is performed using a gas containing F groups such as CF 4 , NF 3 , CHF 3 , CH 3 F, C 2 F 6 , C 3 F 8 , C 4 F 8 , and CH 2 F 2 gas as the main reaction gas. A plasma etching method may be used, and a plasma etching method using NH 3 gas as a main reaction gas may be used. 2A shows an electron micrograph after oblique etching.

이어서, 도 1d에 도시된 바와 같이 산화막(16), 마스크 산화막(13) 및 스페이서 절연막(14)에 대한 층간 절연막(10)의 높은 식각 선택비를 갖는 등방성 식각 공정을 실시한다. 이때 등방성 식각은 인산(H3PO4)을 주 식각제로 하고, NH4OH와 과수 및 순수의 혼합비를 적절히 조절하여 사용할 수 있다. 그리고 통상적인 건식 식각 및 습식 세정 공정을 진행할 수도 있다. 도 2b에 등방성 식각 후의 전자 현미경 사진을 도시하였다.Next, as shown in FIG. 1D, an isotropic etching process having a high etching selectivity of the interlayer insulating film 10 with respect to the oxide film 16, the mask oxide film 13, and the spacer insulating film 14 is performed. In this case, the isotropic etching may be used by using phosphoric acid (H 3 PO 4 ) as the main etchant and by appropriately adjusting the mixing ratio of NH 4 OH, fruit water and pure water. In addition, conventional dry etching and wet cleaning processes may be performed. 2B shows an electron micrograph after isotropic etching.

다음으로, 도 1e에 도시된 바와 같이 폴리실리콘막, 금속산화물 등의 전도막을 증착하고, 전하저장 전극 형성을 위한 마스크를 사용하여 전도막을 선택적 식각함으로써 전하저장 전극(18)을 디파인한다.Next, as illustrated in FIG. 1E, a conductive film such as a polysilicon film or a metal oxide is deposited, and the charge storage electrode 18 is defined by selectively etching the conductive film using a mask for forming the charge storage electrode.

상기한 실시예에 나타난 바와 같이 본 발명은 통상적인 경사 식각 공정 및 도핑 및 비도핑 산화막의 높은 식각 선택비를 갖는 등방성 식각 공정을 실시하여 자기정렬 콘택을 이루며, 전하저장 전극에 의한 단차를 높이지 않으면서 충분한 정전용량을 갖는 전하저장 전극을 형성할 수 있다.As shown in the above embodiment, the present invention performs self-aligned contact by performing a conventional oblique etching process and an isotropic etching process having a high etching selectivity of doped and undoped oxide films, thereby increasing the step by the charge storage electrode. It is possible to form a charge storage electrode having a sufficient capacitance without.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes can be made in the art without departing from the technical spirit of the present invention. It will be apparent to those of ordinary knowledge.

상기한 바와 같이 본 발명은 비교적 간단한 공정을 통해 단차를 유발하지 않으면서 큰 전하보존용량을 가지는 전하저장 전극을 형성할 수 있다.As described above, the present invention can form a charge storage electrode having a large charge storage capacity without causing a step through a relatively simple process.

또한, 통상적으로 사용되는 질화막 식각장벽을 이용한 자기 정렬 콘택홀 공정보다 용이하게 자기 정렬 효과를 얻을 수 있다.In addition, the self-aligning effect may be more easily obtained than a self-aligning contact hole process using a nitride film etching barrier.

Claims (10)

반도체 기판 상에 게이트 산화막과, 마스크 산화막 및 스페이서 절연막으로 절연된 게이트 전극을 형성하는 제1 단계; 전체구조 상부에 제1 층간 절연막 및 제2 층간 절연막을 차례로 형성하는 제2 단계; 전하저장 전극 콘택홀 형성을 위한 마스크를 사용하여 상기 제2 층간 절연막 및 상기 제1 층간 절연막을 차례로 선택적으로 경사 식각하는 제3 단계: 상기 제1 층간 절연막의 등방성 식각을 실시하여 상기 제2 층간절연막 하부에 언더컷 부위를 형성하는 제4 단계; 및 전체구조 상부에 전하저장 전극 형성을 위한 전도막을 형성하는 제5 단계를 포함하여 이루어진 반도체 장치의 전하저장 전극 형성방법.Forming a gate electrode insulated from the gate oxide film, the mask oxide film, and the spacer insulating film on the semiconductor substrate; A second step of sequentially forming a first interlayer insulating film and a second interlayer insulating film over the entire structure; A third step of selectively obliquely etching the second interlayer insulating layer and the first interlayer insulating layer using a mask for forming a charge storage electrode contact hole: isotropic etching of the first interlayer insulating layer to perform the second interlayer insulating layer A fourth step of forming an undercut portion in the lower portion; And a fifth step of forming a conductive film for forming a charge storage electrode on the entire structure. 제 1 항에 있어서, 상기 제1 층간 절연막이 불순물을 포함하는 산화막으로 구성된 반도체 장치의 전하저장 전극 형성방법.2. The method of claim 1, wherein the first interlayer insulating film is formed of an oxide film containing impurities. 제 1 항 또는 제 2 항에 있어서, 상기 제2 층간 절연막이 불순물을 포함하지 않는 산화막으로 구성된 반도체 장치의 전하저장 전극 형성방법.3. The method for forming a charge storage electrode of a semiconductor device according to claim 1 or 2, wherein said second interlayer insulating film is formed of an oxide film containing no impurities. 제 3 항에 있어서, 상기 경사 식각은 상기 마스크의 선폭(DICD)과 상기 콘택홀 하부의 선폭(FICD)이 적어도 2 : 1이 되도록 실시하는 반도체 장치의 전하저장 전극 형성방법.The method of claim 3, wherein the inclined etching is performed such that the line width (CDD) of the mask and the line width (FICD) under the contact hole are at least 2: 1. 제 3 항에 있어서, 상기 경사 식각이 인산, NH4OH, 과수 및 순수를 포함하는 혼합 용액을 사용하여 이루어진 반도체 장치의 전하저장 전극 형성방법.The method of claim 3, wherein the oblique etching is performed using a mixed solution containing phosphoric acid, NH 4 OH, fruit water, and pure water. 제 3 항에 있어서, 상기 등방성 식각이 건식 식각 및 세정 공정을 사용하여 이루어진 반도체 장치의 전하저장 전극 형성방법.The method of claim 3, wherein the isotropic etching is performed using a dry etching and cleaning process. 제 3 항에 있어서, 상기 경사 식각이 적어도 불소를 포함하는 가스를 주 반응 가스로 하여 이루어진 반도체 장치의 전하저장 전극 형성방법.4. The method of claim 3, wherein the gradient etching comprises at least a gas containing fluorine as the main reaction gas. 제 3 항에 있어서, 상기 경사 식각이 NH3가스 또는 CF계 가스를 주 반응 가스로 하여 이루어진 반도체 장치의 전하저장 전극 형성방법.The method of claim 3, wherein the gradient etching comprises NH 3 gas or CF-based gas as the main reaction gas. 제 8 항에 있어서, 상기 경사 식각이 CO 가스를 더 사용하여 이루어진 반도체 장치의 전하저장 전극 형성방법.The method of claim 8, wherein the oblique etching is further performed using CO gas. 제 9 항에 있어서, 상기 CF계 가스와 상기 CO 가스의 플로우 비가 1 : 0.5∼5인 반도체 장치의 전하저장 전극 형성방법.10. The method of claim 9, wherein the flow ratio of the CF-based gas and the CO gas is 1: 0.5-5.
KR1019970029680A 1997-06-30 1997-06-30 A method for forming storage node in semiconductor memory device KR100265359B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970029680A KR100265359B1 (en) 1997-06-30 1997-06-30 A method for forming storage node in semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970029680A KR100265359B1 (en) 1997-06-30 1997-06-30 A method for forming storage node in semiconductor memory device

Publications (2)

Publication Number Publication Date
KR19990005482A true KR19990005482A (en) 1999-01-25
KR100265359B1 KR100265359B1 (en) 2000-10-02

Family

ID=19512634

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970029680A KR100265359B1 (en) 1997-06-30 1997-06-30 A method for forming storage node in semiconductor memory device

Country Status (1)

Country Link
KR (1) KR100265359B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403328B1 (en) * 1999-11-03 2003-10-30 주식회사 하이닉스반도체 Forming method for self aligned contact of semiconductor device
KR100603929B1 (en) * 2002-03-04 2006-07-24 삼성전자주식회사 Cylindrical capacitors having a stepped sidewall and methods for fabricating the same
KR100604555B1 (en) * 2001-06-21 2006-07-28 주식회사 하이닉스반도체 Method of forming a capacitor in a semiconductor device
KR100625624B1 (en) * 1999-01-22 2006-09-20 후지쯔 가부시끼가이샤 Semiconductor device and method for fabricating the same
KR100753122B1 (en) * 2002-06-29 2007-08-29 주식회사 하이닉스반도체 Method for fabricating capacitor in semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507863B1 (en) * 1998-06-30 2005-11-16 주식회사 하이닉스반도체 Method for forming contact hole in semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3020257B2 (en) * 1989-09-13 2000-03-15 沖電気工業株式会社 Method for manufacturing semiconductor memory device
JPH05283643A (en) * 1992-03-31 1993-10-29 Sanyo Electric Co Ltd Manufacture of semiconductor element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100625624B1 (en) * 1999-01-22 2006-09-20 후지쯔 가부시끼가이샤 Semiconductor device and method for fabricating the same
KR100403328B1 (en) * 1999-11-03 2003-10-30 주식회사 하이닉스반도체 Forming method for self aligned contact of semiconductor device
KR100604555B1 (en) * 2001-06-21 2006-07-28 주식회사 하이닉스반도체 Method of forming a capacitor in a semiconductor device
KR100603929B1 (en) * 2002-03-04 2006-07-24 삼성전자주식회사 Cylindrical capacitors having a stepped sidewall and methods for fabricating the same
KR100753122B1 (en) * 2002-06-29 2007-08-29 주식회사 하이닉스반도체 Method for fabricating capacitor in semiconductor device

Also Published As

Publication number Publication date
KR100265359B1 (en) 2000-10-02

Similar Documents

Publication Publication Date Title
JP2765478B2 (en) Semiconductor device and manufacturing method thereof
US7875547B2 (en) Contact hole structures and contact structures and fabrication methods thereof
US6010930A (en) Vertically oriented structure with sloped opening and method for etching
US20040043542A1 (en) Methods of forming self-aligned contact structures in semiconductor integrated circuit devices
KR100302930B1 (en) etching method
US6400029B1 (en) Self-limiting method of reducing contamination in a contact opening, method of making contacts and semiconductor devices therewith, and resulting structures
US7105453B2 (en) Method for forming contact holes
US5668039A (en) Method for forming crown-shape capacitor node with tapered etching
US6083845A (en) Etching method
KR100265359B1 (en) A method for forming storage node in semiconductor memory device
US5946568A (en) Self aligned method of fabricating a DRAM with improved capacitance
US20060011586A1 (en) Method of etching nitrides
US6074952A (en) Method for forming multi-level contacts
KR19990030836A (en) Self-aligning contact hole formation method
US6140218A (en) Method for fabricating a T-shaped hard mask/conductor profile to improve self-aligned contact isolation
KR100513051B1 (en) Method for forming gate electrode of semiconductor device_
KR100440079B1 (en) Forming method for self aligned contact of semiconductor device
KR19990005143A (en) Contact hole formation method of semiconductor device
CN101399221A (en) Method for manufacturing contact window for reducing contact resistance
KR0141949B1 (en) Manufacturing method of semiconductor device
KR0135164B1 (en) Semiconductor memory device and fabrication method thereror
JPH10341005A (en) Interconnection of high-density integrated circuit, and formation method for conductor
KR19990060812A (en) Method of forming a contact hole in a semiconductor device
JPH11135628A (en) Manufacture of semiconductor device
KR19990057377A (en) Self-aligned Contact Method of Semiconductor Devices

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080527

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee