KR100265359B1 - A method for forming storage node in semiconductor memory device - Google Patents

A method for forming storage node in semiconductor memory device Download PDF

Info

Publication number
KR100265359B1
KR100265359B1 KR1019970029680A KR19970029680A KR100265359B1 KR 100265359 B1 KR100265359 B1 KR 100265359B1 KR 1019970029680 A KR1019970029680 A KR 1019970029680A KR 19970029680 A KR19970029680 A KR 19970029680A KR 100265359 B1 KR100265359 B1 KR 100265359B1
Authority
KR
South Korea
Prior art keywords
storage electrode
etching
charge storage
forming
oxide
Prior art date
Application number
KR1019970029680A
Other languages
Korean (ko)
Other versions
KR19990005482A (en
Inventor
서원준
김상욱
김대희
Original Assignee
김영환
현대전자산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업주식회사 filed Critical 김영환
Priority to KR1019970029680A priority Critical patent/KR100265359B1/en
Publication of KR19990005482A publication Critical patent/KR19990005482A/en
Application granted granted Critical
Publication of KR100265359B1 publication Critical patent/KR100265359B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A storage electrode formation method is provided to increase a capacitance by increasing the surface area of the storage electrode using simplified processes. CONSTITUTION: Gate electrode patterns having a gate oxide(11), an insulating spacer(14) and a masking oxide(13) are formed on a silicon substrate(10). A doped oxide(15) and an undoped oxide(16) are sequentially formed on the resultant structure. By selectively etching the undoped oxide(16) and the doped oxide(15), a storage contact hole is formed. At this time, the etching profile of the undoped oxide(16) has a positive slope. An undercut region is formed at lower portion of the undoped oxide(16) by isotropic etching the undoped oxide(16) using etching selectivity between the doped and the undoped oxides(15,16). Then, a storage electrode(18) is formed.

Description

반도체 메모리 소자의 전하저장 전극 형성방법{A METHOD FOR FORMING STORAGE NODE IN SEMICONDUCTOR MEMORY DEVICE}A charge storage electrode formation method of a semiconductor memory device {A METHOD FOR FORMING STORAGE NODE IN SEMICONDUCTOR MEMORY DEVICE}

본 발명은 반도체 제조 기술에 관한 것으로, 특히 반도체 메모리 소자의 캐패시터 하부전극인 전하저장 전극 형성 공정에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to semiconductor manufacturing technology, and more particularly, to a process of forming a charge storage electrode, which is a capacitor lower electrode of a semiconductor memory device.

반도체 메모리 소자의 집적도가 증가함에 따라 소자의 리프레시(refresh) 특성이 큰 문제로 부각되었으며, 이를 해결하는 하나의 방안으로서 캐패시터의 하부 전극인 전하저장 전극의 높이 증가를 통한 표면적 확보를 통해 정전용량을 증가시키는 기술에 대한 많은 연구·개발이 진행되어 왔다.As the degree of integration of semiconductor memory devices has increased, the refresh characteristics of the devices have emerged as a big problem. As a solution to this problem, the capacitance is increased by securing the surface area by increasing the height of the charge storage electrode, which is the lower electrode of the capacitor. Much research and development has been conducted on increasing technology.

그러나, 이러한 전하저장 전극 높이의 증가는 전하저장 전극이 있는 지역(셀 지역)과 없는 지역(주변회로 지역)간의 단차를 만들어, 후속 금속배선 형성 공정에서 브리지(bridge)를 유발하는 원인으로 작용하며, 이러한 브리지는 소자의 신뢰도 및 수율을 저하시키는 요인이 된다. 때문에, 전하저장 전극의 높이를 증가시켜 정전용량을 확보하는데는 한계가 있다.However, this increase in charge storage electrode height creates a step between the region where the charge storage electrode is located (cell region) and the region where there is no (circuit circuit region), which causes a bridge in subsequent metallization process. This bridge becomes a factor of lowering the reliability and yield of the device. Therefore, there is a limit in securing the capacitance by increasing the height of the charge storage electrode.

본 발명은 단차 유발을 억제하면서 그 표면적을 증가시킬 수 있는 반도체 메모리 소자의 전하저장 전극 형성방법을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming a charge storage electrode of a semiconductor memory device which can increase the surface area while suppressing step generation.

도 1a 내지 도 1e는 본 발명의 일 실시예에 따른 전하저장 전극 형성 공정도.1A to 1E are diagrams illustrating a process of forming a charge storage electrode according to an exemplary embodiment of the present invention.

도 2a는 도 1c의 주사전자현미경(SEM) 사진.Figure 2a is a scanning electron microscope (SEM) picture of Figure 1c.

도 2b는 도 1d의 주사전자현미경(SEM) 사진.Figure 2b is a scanning electron microscope (SEM) picture of Figure 1d.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

10 : 실리콘 기판 11 : 게이트 산화막10 silicon substrate 11 gate oxide film

12 : 게이트 전극 13 : 마스크 산화막12 gate electrode 13 mask oxide film

14 : 스페이서 산화막 15 : 층간절연막14 spacer oxide film 15 interlayer insulating film

16 : 산화막 17 : 포토레지스트 패턴16 oxide film 17 photoresist pattern

18 : 전하저장 전극18: charge storage electrode

상기의 기술적 과제를 달성하기 위한 본 발명의 반도체 메모리 소자의 전하저장 전극 형성방법은, 반도체 기판 상에 게이트 절연막과, 그 상부 및 측벽이 절연된 게이트 전극을 형성하는 제1 단계; 상기 제1 단계를 마친 전체 구조 상부에 불순물을 포함하는 제1 산화막 및 불순물을 포함하지 않은 제2 산화막을 차례로 형성하는 제2 단계; 상기 제2 산화막 및 상기 제1 산화막을 선택 식각하여 전하저장 전극 콘택홀을 형성하되, 적어도 상기 제2 산화막의 식각 프로파일이 포지티브 경사를 이루도록 하는 제3 단계: 상기 제1 및 제2 산화막의 식각 선택비를 이용하여 상기 제2 산화막의 등방성 식각을 실시하되, 상기 제2 산화막 하부에 언더컷 영역이 형성되도록 하는 제4 단계; 및 상기 제4 단계를 마친 전체 구조 표면을 따라 전하저장 전극용 전도막을 형성하는 제5 단계를 포함하여 이루어진다.According to an aspect of the present invention, there is provided a method of forming a charge storage electrode of a semiconductor memory device, the method including: forming a gate insulating film and a gate electrode having an upper sidewall and an insulating side thereof formed on a semiconductor substrate; A second step of sequentially forming a first oxide film including an impurity and a second oxide film not including an impurity on the entire structure after the first step; Selecting and etching the second oxide layer and the first oxide layer to form a charge storage electrode contact hole, wherein at least an etching profile of the second oxide layer forms a positive slope: etching selection of the first and second oxide layers Performing an isotropic etching of the second oxide film using a ratio, wherein an undercut region is formed under the second oxide film; And a fifth step of forming a conductive film for a charge storage electrode along the entire structure surface of the fourth step.

이하, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자가 본 발명을 보다 용이하게 실시할 수 있도록 하기 위하여 본 발명의 바람직한 실시예를 소개하기로 한다.Hereinafter, preferred embodiments of the present invention will be introduced in order to enable those skilled in the art to more easily carry out the present invention.

첨부된 도면 도 1a 내지 도 1e는 본 발명의 일 실시예에 따른 전하저장 전극 형성 공정을 도시한 것으로, 이하 이를 참조하여 설명한다.1A to 1E illustrate a process of forming a charge storage electrode according to an exemplary embodiment of the present invention, which will be described below with reference to the drawings.

본 실시예에 따른 전하저장 전극 형성 공정은, 우선 도 1a에 도시된 바와 같이 실리콘 기판(10) 상에 게이트 산화막(11)과, 스페이서 절연막(14) 및 마스크 산화막(13)으로 절연된 게이트 전극(12)을 형성한다. 이때, 스페이서 절연막(14) 및 마스크 산화막(13)으로는 TEOS(TetraEthylOthoSilicate)계 산화막, LTO(Low Temperature Oxide), MTO(Medium Temperature Oxide), HTO(High Temperature Oxide) 등의 비도핑 산화막(undoped oxide)을 사용하며, 그 형성 공정은 통상적인 방식에 따른다.In the process of forming a charge storage electrode according to the present embodiment, first, as shown in FIG. 1A, a gate electrode insulated from the gate oxide film 11, the spacer insulating film 14, and the mask oxide film 13 is formed on the silicon substrate 10. (12) is formed. In this case, the spacer insulating film 14 and the mask oxide film 13 may be undoped oxides such as a TEOS (TetraEthylOthoSilicate) oxide film, a low temperature oxide (LTO), a medium temperature oxide (MTO), or a high temperature oxide (HTO). ), And the formation process is in a conventional manner.

다음으로, 도 1b에 도시된 바와 같이 소정의 층간절연막(15) 및 산화막(16)을 차례로 증착하고, 그 상부에 전하저장 전극 콘택홀 형성을 위한 포토레지스트 패턴(17)을 형성한다. 이때 층간절연막(15)으로 BSG(Boro Silicate Glass)막, PSG(Phospho Silicate Glass)막, BPSG(BoroPhospho Silicate Glass)막 등의 도핑 산화막(doped oxide)을 사용하며, 산화막(16)으로서 비도핑 산화막을 사용한다.Next, as shown in FIG. 1B, a predetermined interlayer insulating film 15 and an oxide film 16 are sequentially deposited, and a photoresist pattern 17 for forming a charge storage electrode contact hole is formed thereon. In this case, a doped oxide film such as a BSG (Boro Silicate Glass) film, a PSG (Phospho Silicate Glass) film, or a BPSG (BoroPhospho Silicate Glass) film is used as the interlayer insulating film 15, and the undoped oxide film is used as the oxide film 16. Use

계속하여, 도 1c에 도시된 바와 같이 포토레지스트 패턴(17)을 식각 장벽으로 하여 산화막(16) 및 층간절연막(15)을 건식 식각함으로써 일차적인 전하저장 전극 콘택홀을 형성하고, 포토레지스트 패턴(17)을 제거한다.Subsequently, as shown in FIG. 1C, dry etching of the oxide layer 16 and the interlayer insulating layer 15 using the photoresist pattern 17 as an etching barrier forms a primary charge storage electrode contact hole, thereby forming a photoresist pattern ( 17) Remove.

이때, 건식 식각은 하부의 게이트 전극(12)과 콘택간의 단락(short)을 방지할 수 있도록 콘택홀과 게이트 전극(12)과의 중첩 정확도(overlay accuracy)까지 고려하여 최종적인 CD(Critical Dimension)가 작아지도록 즉, DICD(Develop Inspection Critical Dimension)와 FICD(Final Inspection Critical Dimension)의 비가 2 : 1 이상이 되도록 경사 정도를 크게 한다.In this case, dry etching may be performed in consideration of an overlay accuracy between the contact hole and the gate electrode 12 to prevent short between the gate electrode 12 and the contact in the lower part, and thus final CD (Critical Dimension) The degree of inclination is increased so that is smaller, that is, the ratio of the Development Inspection Critical Dimension (DICD) to the Final Inspection Critical Dimension (FICD) is 2: 1 or more.

이러한 경사 식각 방식의 세부 공정 조건을 살펴보면, 가열 실리콘 루프(heated silicon roof)가 장착된 ICP(Induced coupled plasma) 방식의 고밀도 플라즈마 방식의 건식 식각 챔버를 사용하며, C3F8가스 및 CO 가스를 사용하되, 총 가스유량을 30∼150 sccm으로 하고, C3F8가스와 CO 가스의 유량비를 1 : 0.5∼5로 한다. 여기서 C3F8가스는 CF4, CHF3, CH3F, C2F6, C3F8, C4F8, CH2F2가스 등의 CF 계열 가스로 대체하여 사용할 수 있다. 또한 220℃∼290℃ 범위의 실리콘 루프 온도와, 1600 W∼2800 W 범위의 ICP RF 전력 및 600 W∼1800 W 범위의 바이어스(bias) RF 전력을 사용한다. 또한, 경사 식각은 NF3가스와 같이 F기를 포함하는 가스를 주 반응 가스로 하는 플라즈마 식각 방식을 사용할 수도 있으며, NH3가스를 주 반응 가스로 하는 플라즈마 식각 방식을 사용할 수도 있다. 도 2a에 경사 식각 후의 전자 현미경 사진을 도시하였다.The detailed process conditions of the inclined etching method include a dry etch chamber of a high density plasma method of an induced coupled plasma (ICP) method equipped with a heated silicon roof, and a C 3 F 8 gas and a CO gas. The total gas flow rate is 30 to 150 sccm, and the flow rate ratio of C 3 F 8 gas and CO gas is 1: 0.5 to 5. The C 3 F 8 gas may be replaced with CF-based gas such as CF 4 , CHF 3 , CH 3 F, C 2 F 6 , C 3 F 8 , C 4 F 8 , CH 2 F 2 gas. Silicon loop temperatures in the range 220 ° C. to 290 ° C., ICP RF power in the 1600 W to 2800 W range and bias RF power in the 600 W to 1800 W range are also used. In addition, the gradient etching may use a plasma etching method using a gas containing F group as a main reaction gas, such as NF 3 gas, or may use a plasma etching method using NH 3 gas as a main reaction gas. 2A shows an electron micrograph after oblique etching.

이어서, 도 1d에 도시된 바와 같이 산화막(16), 마스크 산화막(13) 및 스페이서 절연막(14)에 대한 층간절연막(10)의 높은 식각 선택비를 갖는 등방성 식각 공정을 실시한다. 이때 등방성 식각은 인산(H3PO4)을 주 식각제로 하고, NH4OH와 과수 및 순수의 혼합비를 적절히 조절하여 사용할 수 있다. 그리고 통상적인 건식 식각 및 습식 세정 공정을 진행할 수도 있다. 도 2b에 등방성 식각 후의 전자 현미경 사진을 도시하였다.Next, as shown in FIG. 1D, an isotropic etching process having a high etching selectivity of the interlayer insulating film 10 with respect to the oxide film 16, the mask oxide film 13, and the spacer insulating film 14 is performed. In this case, the isotropic etching may be used by using phosphoric acid (H 3 PO 4 ) as the main etchant and by appropriately adjusting the mixing ratio of NH 4 OH, fruit water and pure water. In addition, conventional dry etching and wet cleaning processes may be performed. 2B shows an electron micrograph after isotropic etching.

다음으로, 도 1e에 도시된 바와 같이 폴리실리콘막, 금속산화물 등의 전도막을 증착하고, 전하저장 전극 형성을 위한 마스크를 사용하여 전도막을 선택 식각함으로써 전하저장 전극(18)을 디파인한다.Next, as illustrated in FIG. 1E, a conductive film such as a polysilicon film or a metal oxide is deposited, and the charge storage electrode 18 is defined by selectively etching the conductive film using a mask for forming the charge storage electrode.

상기한 실시예에 나타난 바와 같이 본 발명은 경사 식각 공정 및 도핑 산화막과 및 비도핑 산화막의 높은 식각 선택비를 갖는 등방성 식각 공정을 실시하여 자기정렬 콘택을 이루며, 전하저장 전극에 의한 단차를 높이지 않으면서 충분한 전하저장 전극의 표면적을 확보할 수 있다.As shown in the above embodiment, the present invention forms a self-aligned contact by performing an inclined etching process and an isotropic etching process having a high etching selectivity of the doped oxide film and the undoped oxide film, thereby increasing the step by the charge storage electrode. It is possible to secure a sufficient surface area of the charge storage electrode without.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes can be made in the art without departing from the technical spirit of the present invention. It will be apparent to those of ordinary knowledge.

상기한 바와 같이 본 발명은 비교적 간단한 공정을 통해 단차를 유발하지 않으면서 큰 정전용량을 가지는 캐패시터를 제조할 수 있으며, 통상적으로 사용되는 질화막 식각장벽을 이용한 자기 정렬 콘택홀 공정보다 용이하게 자기 정렬 효과를 얻을 수 있다.As described above, the present invention can manufacture a capacitor having a large capacitance without causing a step through a relatively simple process, and the self-aligning effect is easier than a self-aligned contact hole process using a nitride film etching barrier that is commonly used. Can be obtained.

Claims (7)

반도체 기판 상에 게이트 절연막과, 그 상부 및 측벽이 절연된 게이트 전극을 형성하는 제1 단계;A first step of forming a gate insulating film and a gate electrode insulated from the top and sidewalls of the semiconductor substrate; 상기 제1 단계를 마친 전체 구조 상부에 불순물을 포함하는 제1 산화막 및 불순물을 포함하지 않은 제2 산화막을 차례로 형성하는 제2 단계;A second step of sequentially forming a first oxide film including an impurity and a second oxide film not including an impurity on the entire structure after the first step; 상기 제2 산화막 및 상기 제1 산화막을 선택 식각하여 전하저장 전극 콘택홀을 형성하되, 적어도 상기 제2 산화막의 식각 프로파일이 포지티브 경사를 이루도록 하는 제3 단계:A third step of selectively etching the second oxide layer and the first oxide layer to form a charge storage electrode contact hole, wherein at least an etching profile of the second oxide layer is inclined positively; 상기 제1 및 제2 산화막의 식각 선택비를 이용하여 상기 제2 산화막의 등방성 식각을 실시하되, 상기 제2 산화막 하부에 언더컷 영역이 형성되도록 하는 제4 단계; 및Performing isotropic etching of the second oxide layer using an etch selectivity of the first and second oxide layers, wherein an undercut region is formed below the second oxide layer; And 상기 제4 단계를 마친 전체 구조 표면을 따라 전하저장 전극용 전도막을 형성하는 제5 단계A fifth step of forming a conductive film for a charge storage electrode along the entire structure surface of the fourth step; 를 포함하여 이루어진 반도체 메모리 소자의 전하저장 전극 형성방법.Method for forming a charge storage electrode of a semiconductor memory device comprising a. 제1항에 있어서,The method of claim 1, 상기 경사 식각은,The inclined etching is, 상기 콘택홀 상부의 선폭(DICD)과 상기 콘택홀 하부의 선폭(FICD)이 적어도 2 : 1이 되도록 실시하는 것을 특징으로 하는 반도체 메모리 소자의 전하저장 전극 형성방법.And a line width (DICD) above the contact hole and a line width (FICD) below the contact hole to be at least 2: 1. 제1항에 있어서,The method of claim 1, 상기 등방성 식각은,The isotropic etching is, 인산, NH4OH, 과수 및 순수를 포함하는 혼합 용액을 사용하여 수행하는 것을 특징으로 하는 반도체 메모리 소자의 전하저장 전극 형성방법.A charge storage electrode forming method of a semiconductor memory device, characterized in that performed using a mixed solution containing phosphoric acid, NH 4 OH, fruit water and pure water. 제1항에 있어서,The method of claim 1, 상기 경사 식각은,The inclined etching is, 적어도 불소를 포함하는 가스를 주 반응 가스로 사용하여 수행하는 것을 특징으로 하는 반도체 메모리 소자의 전하저장 전극 형성방법.A method of forming a charge storage electrode of a semiconductor memory device, characterized in that it is carried out using a gas containing at least fluorine as the main reaction gas. 제1항에 있어서,The method of claim 1, 상기 경사 식각은,The inclined etching is, NH3가스를 주 반응 가스로 사용하여 수행하는 것을 특징으로 하는 반도체 메모리 소자의 전하저장 전극 형성방법.A method of forming a charge storage electrode of a semiconductor memory device, characterized in that performed using NH 3 gas as the main reaction gas. 제4항에 있어서,The method of claim 4, wherein 상기 경사 식각은,The inclined etching is, 상기 적어도 불소를 포함하는 가스에 CO 가스를 더 사용하여 수행하는 것을 특징으로 하는 반도체 메모리 소자의 전하저장 전극 형성방법.And a CO gas is further used for the gas containing at least fluorine. 제6항에 있어서,The method of claim 6, 상기 적어도 불소를 포함하는 가스가 CF계 가스인 경우,When the gas containing at least fluorine is a CF-based gas, 상기 CF계 가스와 상기 CO 가스의 유량비를 1 : 0.5∼5로 하는 것을 특징으로 하는 반도체 메모리 소자의 전하저장 전극 형성방법.The flow rate ratio of the CF-based gas and the CO gas is 1: 0.5 to 5, the charge storage electrode forming method of a semiconductor memory device.
KR1019970029680A 1997-06-30 1997-06-30 A method for forming storage node in semiconductor memory device KR100265359B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970029680A KR100265359B1 (en) 1997-06-30 1997-06-30 A method for forming storage node in semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970029680A KR100265359B1 (en) 1997-06-30 1997-06-30 A method for forming storage node in semiconductor memory device

Publications (2)

Publication Number Publication Date
KR19990005482A KR19990005482A (en) 1999-01-25
KR100265359B1 true KR100265359B1 (en) 2000-10-02

Family

ID=19512634

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970029680A KR100265359B1 (en) 1997-06-30 1997-06-30 A method for forming storage node in semiconductor memory device

Country Status (1)

Country Link
KR (1) KR100265359B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507863B1 (en) * 1998-06-30 2005-11-16 주식회사 하이닉스반도체 Method for forming contact hole in semiconductor device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4070919B2 (en) * 1999-01-22 2008-04-02 富士通株式会社 Semiconductor device and manufacturing method thereof
KR100403328B1 (en) * 1999-11-03 2003-10-30 주식회사 하이닉스반도체 Forming method for self aligned contact of semiconductor device
KR100604555B1 (en) * 2001-06-21 2006-07-28 주식회사 하이닉스반도체 Method of forming a capacitor in a semiconductor device
KR100603929B1 (en) * 2002-03-04 2006-07-24 삼성전자주식회사 Cylindrical capacitors having a stepped sidewall and methods for fabricating the same
KR100753122B1 (en) * 2002-06-29 2007-08-29 주식회사 하이닉스반도체 Method for fabricating capacitor in semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174767A (en) * 1989-09-13 1991-07-29 Oki Electric Ind Co Ltd Manufacture of semiconductor memory device
JPH05283643A (en) * 1992-03-31 1993-10-29 Sanyo Electric Co Ltd Manufacture of semiconductor element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174767A (en) * 1989-09-13 1991-07-29 Oki Electric Ind Co Ltd Manufacture of semiconductor memory device
JPH05283643A (en) * 1992-03-31 1993-10-29 Sanyo Electric Co Ltd Manufacture of semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507863B1 (en) * 1998-06-30 2005-11-16 주식회사 하이닉스반도체 Method for forming contact hole in semiconductor device

Also Published As

Publication number Publication date
KR19990005482A (en) 1999-01-25

Similar Documents

Publication Publication Date Title
KR100553839B1 (en) Capacitor, Method for manufacturing the capacitor, Semiconductor device including the capacitor, and Method for manufacturing the semiconductor device
JP2765478B2 (en) Semiconductor device and manufacturing method thereof
US7875547B2 (en) Contact hole structures and contact structures and fabrication methods thereof
US6432765B1 (en) Funnel shaped structure in polysilicon and method of making
US6093943A (en) Semiconductor device and method of producing the same
KR100360739B1 (en) Dram capacitor strap
KR100302930B1 (en) etching method
US5668039A (en) Method for forming crown-shape capacitor node with tapered etching
US6083845A (en) Etching method
KR100265359B1 (en) A method for forming storage node in semiconductor memory device
KR100252039B1 (en) Method for forming a self-aligned contact hole
KR100536042B1 (en) Method for forming recess gate electrode in semiconductor process
KR100513051B1 (en) Method for forming gate electrode of semiconductor device_
US6238970B1 (en) Method for fabricating a DRAM cell capacitor including etching upper conductive layer with etching byproduct forming an etch barrier on the conductive pattern
KR100458296B1 (en) Method for forming contact hole of semiconductor device to easily form self-aligned contact pattern and enlarge desired plug size
KR100691484B1 (en) Method for fabricating plug in semiconductor device
KR100507863B1 (en) Method for forming contact hole in semiconductor device
KR100652361B1 (en) Method for fabricating a semiconductor device using self aligned contact
KR100681209B1 (en) Method for forming a deep contact hole in semiconductor device
KR19990005143A (en) Contact hole formation method of semiconductor device
KR100695417B1 (en) Method for fabrication of semiconductor device capable of forming fine pattern
KR19990021371A (en) Method of manufacturing fine contact of semiconductor device
JP2652985B2 (en) Method for manufacturing semiconductor memory device
KR20040007112A (en) Method for forming plug of semiconductor device
KR19990021368A (en) Method of manufacturing fine contact of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080527

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee