KR102630866B1 - 고체 촬상 장치 및 전자 기기 - Google Patents

고체 촬상 장치 및 전자 기기 Download PDF

Info

Publication number
KR102630866B1
KR102630866B1 KR1020237015984A KR20237015984A KR102630866B1 KR 102630866 B1 KR102630866 B1 KR 102630866B1 KR 1020237015984 A KR1020237015984 A KR 1020237015984A KR 20237015984 A KR20237015984 A KR 20237015984A KR 102630866 B1 KR102630866 B1 KR 102630866B1
Authority
KR
South Korea
Prior art keywords
pixel
pixels
photoelectric conversion
protrusion
inter
Prior art date
Application number
KR1020237015984A
Other languages
English (en)
Other versions
KR20230069266A (ko
Inventor
쇼우이치로 시라이시
타쿠야 마루야마
신이치로 야기
쇼헤이 시마다
신야 사토
Original Assignee
소니 세미컨덕터 솔루션즈 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018095949A external-priority patent/JP7316764B2/ja
Application filed by 소니 세미컨덕터 솔루션즈 가부시키가이샤 filed Critical 소니 세미컨덕터 솔루션즈 가부시키가이샤
Priority to KR1020247002711A priority Critical patent/KR20240016450A/ko
Publication of KR20230069266A publication Critical patent/KR20230069266A/ko
Application granted granted Critical
Publication of KR102630866B1 publication Critical patent/KR102630866B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/04Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14641Electronic components shared by two or more pixel-elements, e.g. one amplifier shared by two pixel elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

본 기술은, 촬상 화상의 열화를 억제하면서, 위상차 검출의 정밀도의 향상을 도모할 수 있도록 하는 고체 촬상 장치 및 전자 기기에 관한 것이다. 하나의 온 칩 렌즈에 대해 복수의 광전변환 소자를 형성한 화소를 포함하는 복수의 화소를 2차원형상으로 배열한 화소 어레이부를 구비하고, 화소 사이에 형성되는 화소간 분리부 및 화소간 차광부의 적어도 일방은, 그 일부가 화소의 중심을 향하여 돌기형상으로 나와 돌기부를 형성하고 있는 고체 촬상 장치가 제공된다. 본 기술은, 예를 들면 위상차 검출용의 화소를 갖는 CMOS 이미지 센서에 적용할 수 있다.

Description

고체 촬상 장치 및 전자 기기{SOLID-STATE IMAGING DEVICE AND ELECTRONIC APPARATUS}
본 기술은, 고체 촬상 장치 및 전자 기기에 관한 것으로 특히, 촬상 화상의 열화를 억제하면서, 위상차 검출의 정밀도의 향상을 도모할 수 있도록 한 고체 촬상 장치 및 전자 기기에 관한 것이다.
근래, 오토 포커스의 속도 향상을 도모하기 위해 상면(像面) 위상차 검출 화소를 배치한 고체 촬상 장치가 사용되고 있다.
이런 종류의 고체 촬상 장치에서는, 온 칩 렌즈로 집광한 광을 동분할(瞳分割)하기 위해 금속막 등에 의해 부분적으로 차광하는 방식이 많이 채용되고, 일반적이지만, 차광 화소에서 얻어지는 정보는, 촬상 화상의 정보로서는 사용할 수가 없기 때문에 주변의 화소로부터 얻어지는 정보를 이용하여 보간하지 않으면 안된다.
또한, 차광 화소는, 유효 화소에 대해 전면(全面) 배치를 할 수가 없기 때문에 위상차 화소 전체가 받는 광량이 적어지고, 특히 약광량시에 있어서의 위상차 검출의 정밀도가 저하된다는 결점이 있다.
이것을 회피하기 위한 기술로서는, 하나의 온 칩 렌즈의 하측에 광전변환 소자를 복수 매입함으로써, 동분할을 행하는 방식이 있고, 예를 들면 1안 리플렉스 카메라나 스마트 폰 내장 카메라용의 고체 촬상 장치로서 채용되고 있다(예를 들면 특허 문헌 1 참조).
특허 문헌 1 : 일본 특개2002-165126호 공보
그런데, 단일한 온 칩 렌즈 직하에 2개의 광전변환 소자를 갖는 고체 촬상 장치에서는, 일방의 광전변환 소자의 출력에 타방의 광전변환 소자의 출력이 섞임으로써, 위상차 검출의 정밀도의 저하를 초래하게 되는 경우가 있다.
이것을 회피하기 위한 기술로서는, 2개의 광전변환 소자 사이에 물리적인 분리부를 마련하는 것이 상정된다. 그렇지만, 특히 포커스가 일치하고 있는 경우에 이 분리부가 광전변환 소자에서의 광전변환의 장애가 되고, 감도가 저하되어 버리는 것에 더하여 이 분리부에서 광의 산란이 발생함으로써, 분광 특성이 열화되고, 결과로서, 촬상 화상의 화질의 저하를 초래하여 버릴 우려가 있다.
본 기술은 이와 같은 상황을 감안하여 이루어진 것으로 촬상 화상의 열화를 억제하면서, 위상차 검출의 정밀도의 향상을 도모할 수 있도록 하는 것이다.
본 기술의 한 측면의 고체 촬상 장치는, 하나의 온 칩 렌즈에 대해 복수의 광전변환 소자를 형성한 화소를 포함하는 복수의 화소를 2차원형상으로 배열한 화소 어레이부를 구비하고, 상기 화소 사이에 형성되는 화소간(畵素間) 분리부 및 화소간 차광부의 적어도 일방은, 그 일부가 상기 화소의 중심을 향하여 돌기형상으로 나와 돌기부를 형성하고 있는 고체 촬상 장치이다.
본 기술의 한 측면의 고체 촬상 장치에서는, 하나의 온 칩 렌즈에 대해 복수의 광전변환 소자를 형성한 화소를 포함하는 복수의 화소를 2차원형상으로 배열한 화소 어레이부가 마련되고, 상기 화소 사이에 형성되는 화소간 분리부 및 화소간 차광부의 적어도 일방은, 그 일부가 상기 화소의 중심을 향하여 돌기형상으로 나옴에 의해 돌기부가 형성된다.
본 기술의 한 측면의 고체 촬상 장치는, 하나의 광전변환 소자를 형성한 화소를 포함하는 복수의 화소를 2차원형상으로 배열한 화소 어레이부를 구비하고, 상기 화소 어레이부는, 하나의 온 칩 렌즈에 대해 배치된 복수의 화소를 포함하고, 상기 복수의 화소를 구성하는 화소 사이에 형성되는 화소간 분리부 및 화소간 차광부의 적어도 일방은, 그 일부가 상기 복수의 화소의 중심을 향하여 돌기형상으로 나와 돌기부를 형성하고 있는 고체 촬상 장치이다.
본 기술의 한 측면의 고체 촬상 장치에서는, 하나의 광전변환 소자를 형성한 화소를 포함하는 복수의 화소를 2차원형상으로 배열한 화소 어레이부가 마련되고, 상기 화소 어레이부에는, 하나의 온 칩 렌즈에 대해 배치된 복수의 화소가 포함되고, 상기 복수의 화소를 구성하는 화소 사이에 형성되는 화소간 분리부 및 화소간 차광부의 적어도 일방은, 그 일부가 상기 복수의 화소의 중심을 향하여 돌기형상으로 나옴에 의해 돌기부가 형성된다.
본 기술의 한 측면의 전자 기기는, 하나의 온 칩 렌즈에 대해 복수의 광전변환 소자를 형성한 화소를 포함하는 복수의 화소를 2차원형상으로 배열한 화소 어레이부를 가지며, 상기 화소 사이에 형성되는 화소간 분리부 및 화소간 차광부의 적어도 일방은, 그 일부가 상기 화소의 중심을 향하여 돌기형상으로 나와 돌기부를 형성하고 있는 고체 촬상 장치가 탑재된 전자 기기이다.
본 기술의 한 측면의 전자 기기에 탑재된 고체 촬상 장치에서는, 하나의 온 칩 렌즈에 대해 복수의 광전변환 소자를 형성한 화소를 포함하는 복수의 화소를 2차원형상으로 배열한 화소 어레이부가 마련되고, 상기 화소 사이에 형성되는 화소간 분리부 및 화소간 차광부의 적어도 일방은, 그 일부가 상기 화소의 중심을 향하여 돌기형상으로 나옴으로 돌기부가 형성된다.
본 기술의 한 측면에 의하면 촬상 화상의 열화를 억제하면서, 위상차 검출의 정밀도의 향상을 도모할 수 있다.
또한, 여기에 기재된 효과는 반드시 한정되는 것이 아니고, 본 개시 중에 기재된 어느 하나의 효과라도 좋다.
도 1은 본 기술을 적용한 고체 촬상 장치의 한 실시의 형태의 구성례를 도시하는 도면.
도 2는 하나의 온 칩 렌즈의 직하에 2개의 광전변환 소자를 갖는 화소의 구조를 도시하는 단면도.
도 3은 광전변환 소자마다의 광의 입사각에 응한 출력 결과를 도시하는 도면.
도 4는 하나의 온 칩 렌즈의 직하에 2개의 광전변환 소자를 갖는 화소의 구조를 도시하는 도면.
도 5는 위상차 검출의 정밀도를 향상시키기 위한 화소의 구조를 도시하는 도면.
도 6은 일반적인 화소의 평면 레이아웃을 도시하는 도면.
도 7은 일반적인 화소의 구조를 도시하는 단면도.
도 8은 일반적인 화소의 실리콘층의 내부의 N형 포텐셜을 설명하는 도면.
도 9는 제1의 실시의 형태의 화소의 평면 레이아웃을 도시하는 도면.
도 10은 제1의 실시의 형태의 화소의 실리콘층의 내부의 N형 포텐셜을 설명하는 도면.
도 11은 제1의 실시의 형태의 화소의 구조를 도시하는 제1의 단면도.
도 12는 제1의 실시의 형태의 화소의 구조를 도시하는 제2의 단면도.
도 13은 제1의 실시의 형태의 화소의 구조를 도시하는 제3의 단면도.
도 14는 제1의 실시의 형태의 화소의 구조를 도시하는 3차원의 도면.
도 15는 제2의 실시의 형태의 화소의 구조를 도시하는 3차원의 도면.
도 16은 제3의 실시의 형태의 화소의 구조를 도시하는 3차원의 도면.
도 17은 제4의 실시의 형태의 화소의 구조를 도시하는 평면도.
도 18은 제4의 실시의 형태의 화소의 구조의 제1의 변형례를 도시하는 평면도.
도 19는 제4의 실시의 형태의 화소의 구조의 제2의 변형례를 도시하는 평면도.
도 20은 제4의 실시의 형태의 화소의 구조의 제3의 변형례를 도시하는 평면도.
도 21은 제4의 실시의 형태의 화소의 구조의 제4의 변형례를 도시하는 평면도.
도 22는 제5의 실시의 형태의 화소의 구조를 도시하는 평면도.
도 23은 입사광의 스폿의 지름과 돌기부의 길이와의 관계를 설명하는 도면.
도 24는 제6의 실시의 형태의 화소의 구조를 도시하는 평면도.
도 25는 제7의 실시의 형태의 화소의 구조를 도시하는 평면도.
도 26은 제7의 실시의 형태의 화소의 구조의 변형례를 도시하는 평면도.
도 27은 제8의 실시의 형태의 화소의 구조를 도시하는 평면도.
도 28은 제9의 실시의 형태의 화소의 평면 레이아웃을 도시하는 도면.
도 29는 제9의 실시의 형태의 화소의 실리콘층의 내부의 N형 포텐셜을 설명하는 도면.
도 30은 제9의 실시의 형태의 화소의 구조를 도시하는 단면도.
도 31은 제10의 실시의 형태의 화소의 구조의 제1의 예를 도시하는 단면도.
도 32는 제10의 실시의 형태의 화소의 구조의 제2의 예를 도시하는 단면도.
도 33은 제10의 실시의 형태의 화소의 구조의 제3의 예를 도시하는 단면도.
도 34는 제10의 실시의 형태의 화소의 구조의 제4의 예를 도시하는 단면도.
도 35는 제10의 실시의 형태의 화소의 구조의 제5의 예를 도시하는 단면도.
도 36은 제10의 실시의 형태의 화소의 구조의 제6의 예를 도시하는 단면도.
도 37은 제10의 실시의 형태의 화소의 구조의 제7의 예를 도시하는 단면도.
도 38은 제10의 실시의 형태의 화소의 구조의 제8의 예를 도시하는 단면도.
도 39는 제10의 실시의 형태의 화소의 구조의 제9의 예를 도시하는 단면도.
도 40은 제10의 실시의 형태의 화소의 구조의 제10의 예를 도시하는 단면도.
도 41은 제10의 실시의 형태의 화소의 구조의 제11의 예를 도시하는 단면도.
도 42는 제10의 실시의 형태의 화소의 전위 분포를 모식적으로 표현한 도면.
도 43은 제11의 실시의 형태의 화소의 구조의 제1의 예를 도시하는 단면도.
도 44는 제11의 실시의 형태의 화소의 구조의 제2의 예를 도시하는 단면도.
도 45는 제11의 실시의 형태의 화소의 구조의 제3의 예를 도시하는 단면도.
도 46은 제11의 실시의 형태의 화소의 구조의 제4의 예를 도시하는 평면도.
도 47은 제11의 실시의 형태의 화소의 구조의 제5의 예를 도시하는 평면도.
도 48은 제11의 실시의 형태의 화소의 구조의 제6의 예를 도시하는 단면도.
도 49는 제12의 실시의 형태의 화소의 구조의 제1의 예를 도시하는 단면도.
도 50은 광전변환 소자마다의 광의 입사각에 응한 출력 결과를 도시하는 도면.
도 51은 제12의 실시의 형태의 화소의 구조의 제2의 예를 도시하는 단면도.
도 52는 제12의 실시의 형태의 화소의 구조의 제3의 예를 도시하는 단면도.
도 53은 제12의 실시의 형태의 화소의 구조의 제4의 예를 도시하는 단면도.
도 54는 제12의 실시의 형태의 화소의 구조의 제5의 예를 도시하는 단면도.
도 55는 제12의 실시의 형태의 화소의 구조의 제6의 예를 도시하는 평면도.
도 56은 제12의 실시의 형태의 화소의 구조의 제7의 예를 도시하는 평면도.
도 57은 제13의 실시의 형태의 화소의 평면 레이아웃과 단면의 예를 도시하는 도면.
도 58은 일반적인 화소의 구조를 도시하는 단면도.
도 59는 제13의 실시의 형태의 화소의 구조의 제1의 예를 도시하는 단면도.
도 60은 제13의 실시의 형태의 화소의 구조의 제2의 예를 도시하는 단면도.
도 61은 제13의 실시의 형태의 화소의 구조의 제3의 예를 도시하는 단면도.
도 62는 각 실시의 형태의 화소의 회로 구성을 도시하는 도면.
도 63은 본 기술을 적용한 고체 촬상 장치를 갖는 전자 기기의 구성례를 도시하는 블록도.
도 64는 본 기술을 적용한 고체 촬상 장치의 사용례를 도시하는 도면.
도 65는 본 개시에 관한 기술을 적용할 수 있는 적층형의 고체 촬상 장치의 구성례의 개요를 도시하는 도면.
도 66은 적층형의 고체 촬상 장치의 제1의 구성례를 도시하는 단면도.
도 67은 적층형의 고체 촬상 장치의 제2의 구성례를 도시하는 단면도.
도 68은 적층형의 고체 촬상 장치의 제3의 구성례를 도시하는 단면도.
도 69는 본 개시에 관한 기술을 적용할 수 있는 적층형의 고체 촬상 장치의 다른 구성례를 도시하는 단면도.
도 70은 차량 제어 시스템의 개략적인 구성의 한 예를 도시하는 블록도.
도 71은 차외 정보 검출부 및 촬상부의 설치 위치의 한 예를 도시하는 설명도.
이하, 도면을 참조하면서 본 기술의 실시의 형태에 관해 설명한다. 또한, 설명은 이하의 순서로 행하는 것으로 한다.
1. 고체 촬상 장치의 구성
2. 전제가 되는 기술
3. 본 기술의 실시의 형태
(1) 제1의 실시의 형태 : 화소간 Si 분리에서의 돌기부를 마련한 구조(기본 구조)
(2) 제2의 실시의 형태 : 화소간 차광에서의 돌기부를 마련한 구조
(3) 제3의 실시의 형태 : 화소간 Si 분리와 화소간 차광에서의 돌기부를 마련한 구조
(4) 제4의 실시의 형태 : R, G, B화소마다 돌기부를 형성하는 구조
(5) 제5의 실시의 형태 : 돌기부의 길이를 조정한 구조
(6) 제6의 실시의 형태 : 화소마다 돌기부의 길이를 조정한 구조
(7) 제7의 실시의 형태 : 타원형 온 칩 렌즈를 이용한 구조
(8) 제8의 실시의 형태 : 단일 온 칩 렌즈에 복수 화소를 배치한 구조
(9) 제9의 실시의 형태 : 광의 입사측의 반대측의 면부터 물리 분리한 구조
(10) 제10의 실시의 형태 : PD의 중앙 부분과 기타의 부분에서 고정 전하량을 바꾼 구조
(11) 제11의 실시의 형태 : 동색(同色)의 PD의 중앙 부분을 저굴절의 영역으로 하고, 이색(異色)의 PD의 중앙 부분을 금속의 영역으로 한 구조
(12) 제12의 실시의 형태 : OCL을 복수종류의 굴절률이 다른 물질로 구성한 구조
(13) 제13의 실시의 형태 : 동색의 PD의 중앙 부분에 종형 트랜지스터를 형성하는 구조
4. 화소의 회로 구성
5. 변형례
6. 전자 기기의 구성
7. 고체 촬상 장치의 사용례
8. 본 개시에 관한 기술을 적용할 수 있는 적층형의 고체 촬상 장치의 구성례
9. 이동체에의 응용례
<1. 고체 촬상 장치의 구성>
(고체 촬상 장치의 구성례)
도 1은, 본 기술을 적용한 고체 촬상 장치의 한 실시의 형태의 구성례를 도시하는 도면이다.
도 1의 CMOS 이미지 센서(10)는, CMOS(Complementary Metal Oxide Semiconductor)를 이용한 고체 촬상 장치의 한 예이다. CMOS 이미지 센서(10)는, 광학 렌즈계(부도시)를 통하여 피사체로부터의 입사광(상광)을 취입하여 촬상면상에 결상된 입사광의 광량을 화소 단위로 전기 신호로 변환하여 화소 신호로서 출력한다.
도 1에서, CMOS 이미지 센서(10)는, 화소 어레이부(11), 수직 구동 회로(12), 칼럼 신호 처리 회로(13), 수평 구동 회로(14), 출력 회로(15), 제어 회로(16) 및 입출력 단자(17)를 포함하여 구성된다.
화소 어레이부(11)에는, 복수의 화소(100)가 2차원형상(행렬형상)으로 배열된다. 화소(100)는, 광전변환 소자로서의 포토 다이오드(PD : Photodiode)와, 복수의 화소 트랜지스터를 갖고서 구성된다. 예를 들면 화소 트랜지스터는, 전송 트랜지스터, 리셋 트랜지스터, 증폭 트랜지스터 및 선택 트랜지스터로 구성된다.
또한, 이하의 설명에서는, 화소 어레이부(11)에 배열된 화소로서, 화소(100) 외에 화소(200), 화소(300), 화소(400) 및 화소(500)에 대해서도 설명한다.
수직 구동 회로(12)는, 예를 들면 시프트 레지스터에 의해 구성되고, 소정의 화소 구동선(21)을 선택하여 선택된 화소 구동선(21)에 화소(100)를 구동하기 위한 펄스를 공급하고, 행 단위로 화소(100)를 구동한다. 즉, 수직 구동 회로(12)는, 화소 어레이부(11)의 각 화소(100)를 행 단위로 순차적으로 수직 방향으로 선택 주사하고, 각 화소(100)의 광전변환 소자에서 수광량에 응하여 생성된 신호 전하(전하)에 의거한 화소 신호를 수직 신호선(22)을 통하여 칼럼 신호 처리 회로(13)에 공급한다.
칼럼 신호 처리 회로(13)는, 화소(100)의 열마다 배치되어 있고, 1행분의 화소(100)로부터 출력되는 신호를 화소열마다 노이즈 제거 등의 신호 처리를 행한다. 예를 들면 칼럼 신호 처리 회로(13)는, 화소 고유의 고정 패턴 노이즈를 제거하기 위한 상관 이중 샘플링(CDS: Correlated Double Sampling) 및 AD(Analog Digital) 변환 등의 신호 처리를 행한다.
수평 구동 회로(14)는, 예를 들면 시프트 레지스터에 의해 구성되고, 수평 주사 펄스를 순차적으로 출력함에 의해 칼럼 신호 처리 회로(13)의 각각을 순번대로 선택하여 칼럼 신호 처리 회로(13)의 각각으로부터 화소 신호를 수평 신호선(23)에 출력시킨다.
출력 회로(15)는, 칼럼 신호 처리 회로(13)의 각각으로부터 수평 신호선(23)을 통하여 순차적으로 공급되는 신호에 대해 신호 처리를 행하여 출력한다. 또한, 출력 회로(15)는, 예를 들면 버퍼링만 하는 경우도 있고, 흑레벨 조정, 열 편차 보정, 각종 디지털 신호 처리 등이 행하여지는 경우도 있다.
제어 회로(16)는, CMOS 이미지 센서(10)의 각 부분의 동작을 제어한다.
또한, 제어 회로(16)는, 수직 동기 신호, 수평 동기 신호 및 마스터 클록 신호에 의거하여 수직 구동 회로(12), 칼럼 신호 처리 회로(13) 및 수평 구동 회로(14) 등의 동작의 기준이 되는 클록 신호나 제어 신호를 생성한다. 제어 회로(16)는, 생성한 클록 신호나 제어 신호를 수직 구동 회로(12), 칼럼 신호 처리 회로(13) 및 수평 구동 회로(14) 등에 출력한다.
입출력 단자(17)는, 외부와 신호의 교환을 행한다.
이상과 같이 구성되는, 도 1의 CMOS 이미지 센서(10)는, CDS 처리 및 AD 변환 처리를 행하는 칼럼 신호 처리 회로(13)가 화소열마다 배치된 칼럼 AD 방식이라고 불리는 CMOS 이미지 센서가 된다. 또한, 도 1의 CMOS 이미지 센서(10)는, 예를 들면 이면 조사형의 CMOS 이미지 센서로 할 수 있다.
<2. 전제가 되는 기술>
(화소의 구조)
도 2는, 하나의 온 칩 렌즈(711)의 직하에 2개의 광전변환 소자(713A, 713B)를 갖는 화소(700)의 구조를 도시하는 단면도이다. 또한, 화소(700)는, 온 칩 렌즈(711)와 광전변환 소자(713A, 713B) 외에 컬러 필터(712), 화소간 차광부(714), 화소간 분리부(715) 및 전송 게이트(151A, 151B)를 포함하여 구성된다.
도 2에서, 화소(700)는, 하나의 온 칩 렌즈(711)에 대해 광전변환 소자(713A)와 광전변환 소자(713B)의 2개의 광전변환 소자가 마련된 구조로 이루어진다. 또한, 이하의 설명에서는, 이와 같은 구조를 2PD 구조라고도 표기한다.
화소(700)에서, 온 칩 렌즈(711)에 의해 집광된 입사광(IL)은, 컬러 필터(712)를 통과하여 광전변환 소자(713A) 또는 광전변환 소자(713B)에서의 광전변환 영역에 조사된다.
도 2의 예에서는, 입사광(IL)이, 그 입사각(θi)에 응하여 광전변환 소자(713A)의 광전변환 영역에 집중적으로 조사되고 있다. 이때, 이상적으로는, 광전변환 소자(713A)의 출력을 100으로 하면 광전변환 소자(713B)의 출력은 0으로 되어 있어야 하지만, 실제로는, 광전변환 소자(713B)로부터도 일정량의 출력이 이루어진다.
도 3에는, 광전변환 소자(713)마다의 광의 입사각(θi)에 응한 출력 결과를 도시하고 있다. 도 3에서는, 광전변환 소자(713A)의 출력을 실선의 곡선(A)에 의해 도시하고, 광전변환 소자(713B)의 출력을 점선의 곡선(B)에 의해 도시하고 있다.
도 3에서, 광전변환 소자(713A)의 출력에 응한 곡선(A)과, 광전변환 소자(713B)의 출력에 응한 곡선(B)은, 입사각(θi)이 0도가 될 때, 즉, 광이 직상부터 입사된 때에 그 출력의 값이 일치하고 있다. 즉, 곡선(A)과 곡선(B)은, 입사각(θi)=0일 때의 출력을 대칭축으로 한 선대칭의 관계를 갖고 있다.
이와 같은 관계를 갖고 있기 때문에 예를 들면 도 2에 도시한 바와 같은 광전변환 소자(713A)의 광전변환 영역에 대해 입사광(IL)이 집중적으로 조사되고 있는 경우에 광전변환 소자(713A)의 출력뿐만 아니라, 광전변환 소자(713B)의 출력이 많아져 버리면 위상차 검출의 정밀도의 저하를 초래하게 된다. 예를 들면 도 3에서, 입사각(θa)에 주목하면 광전변환 소자(713A)로부터의 출력뿐만 아니라, 광전변환 소자(713B)로부터의 출력이 이루어지고 있다.
즉, 광전변환 소자(713A)와 광전변환 소자(713B)는, 위상차 검출을 위해 쌍이 되어 사용되지만, 일방의 광전변환 소자(713)(713A, 또는 713B)의 출력에 대해 타방의 광전변환 소자(713)(713B, 또는 713A)의 출력이 섞여 버리면 검출 정밀도의 저하에 이어지게 된다.
여기서, 일방의 광전변환 소자(713)의 출력에 대해 타방의 광전변환 소자(713)의 출력이 섞이지 않도록 하기 위한 구조로서, 실리콘(Si)층 내에 형성된 광전변환 소자(713A)와 광전변환 소자(713B) 사이에 물리적인 분리부를 형성하는 구조가 상정된다.
구체적으로는, 도 4에는, 도 2에 대응한 2PD 구조를 갖는 화소(700)를 도시하고 있고, 그 평면도나 X-X' 단면의 도면에 도시하는 바와 같이, 화소간 차광부(714)나 화소간 분리부(715)는 형성되어 있는데, 광전변환 소자(713A)와 광전변환 소자(713B) 사이에는, 물리적인 분리부는 형성되어 있지 않다.
그에 대해 도 5에는, 광전변환 소자 사이에 물리적인 분리부가 마련된 화소(800)를 도시하고 있다. 도 5의 화소(800)에서, 광전변환 소자(813A)와 광전변환 소자(813B) 사이에는, 실리콘층 내에 소자사이 분리부(816)가 형성되고, 광전변환 소자(813A)와 광전변환 소자(813B)가 물리적으로 분리되어 있다.
이와 같이, 2PD 구조를 갖는 화소(800)에서는, 소자사이 분리부(816)를 형성함으로써, 일방의 광전변환 소자(813)(813A, 또는 813B)의 출력에 대해 타방의 광전변환 소자(813)(813B, 또는 813A)의 출력이 섞이지 않도록 하여 위상차 검출의 정밀도를 향상시킬 수 있다.
그렇지만, 도 5에 도시한 화소(800)에서, 소자사이 분리부(816)를 형성한 경우에는, 특히, 포커스가 일치하고 있을 때에 소자사이 분리부(816)가 광전변환 소자(813A) 또는 광전변환 소자(813B)의 광전변환 영역에서의 광전변환의 장애가 되어, 감도가 저하될 우려가 있다. 또한, 소자사이 분리부(816)에서 광의 산란(도 5의 「SL」)이 발생함으로써, 분광 특성이 열화되고, 촬상 화상의 화질의 저하를 가져오는 것이 확인되어 있다.
<3. 본 기술의 실시의 형태>
다음에 본 기술을 적용한 화소(100)의 구조에 관해 설명하는데, 여기서는, 비교를 위해 도 6 내지 도 8을 참조하여 일반적인 화소(900)의 구조를 설명한 후에 도 9 내지 도 62를 참조하여 본 기술을 적용한 화소(100)의 구조에 관해 설명한다.
(일반적인 화소의 구조)
우선, 도 6 내지 도 8을 참조하면서, 일반적인 화소(900)의 구조를 설명한다. 도 6은, 일반적인 화소(900)의 평면 레이아웃을 도시하는 도면이다. 또한, 화소(900)는, 온 칩 렌즈(911), 컬러 필터(912), 광전변환 소자(913A, 913B), 화소간 차광부(914), 화소간 분리부(915) 및 전송 게이트(951A, 951B)를 포함하여 구성된다.
도 6에서는, 화소 어레이부에 2차원형상(행렬형상)으로 배열된 복수의 화소(900) 중, 일부의 영역에 배열 배치된 4행4열의 화소(900)를 대표하여 예시하고 있다. 또한, 도 6에서는, 화소 어레이부에 배열된 화소(900)의 i행j열을 화소(900-ij)로 표기하고 있다.
이 화소 어레이부에서는, 베이어 배열에 의해 복수의 화소(900)를 2차원형상으로 배열하고 있다. 여기서, 베이어 배열이란, 녹(G : Green)의 G화소가 체크무늬형상으로 배치되고, 나머지 부분에 적(R : Red)의 R화소와, 청(B : Blue)의 B화소가 일렬마다 교대로 배치된 배열 패턴이다.
또한, 이하의 설명에서는, 컬러 필터로서, 적(R)의 파장 성분을 투과하는 R컬러 필터가 마련되고, 당해 R컬러 필터를 투과한 광으로부터, R성분의 광에 대응한 전하를 얻는 화소를 R화소로 표기한다. 또한, 녹(G)의 파장 성분을 투과하는 G컬러 필터를 투과한 광으로부터, G성분의 광에 대응한 전하를 얻는 화소를 G화소로 표기한다. 또한, 청(B)의 파장 성분을 투과하는 B컬러 필터를 투과한 광으로부터, B성분의 광에 대응한 전하를 얻는 화소를 B화소로 표기한다.
화소 어레이부에서, 각 화소(900)는, 2PD 구조로 이루어지는 정방(正方) 단위의 화소로서, 정방 격자형상(정방형의 격자형상)으로 배치되는 화소간 분리부(915)에 의해 실리콘층 내에서 물리적으로 분리되어 있다. 또한, 도 6에는 도시되지 않지만, 이 화소 어레이부에서는, 화소간 차광부(914)가 화소간 분리부(915)와 마찬가지로, 정방 격자형상으로 배치되어 있다.
또한, 각 화소(900)는, 2PD 구조를 갖기 때문에 실리콘층 내에 광전변환 소자(913A)의 광전변환 영역과, 광전변환 소자(913B)의 광전변환 영역이 형성되어 있다. 이들의 광전변환 영역은, 도면 중의 열방향의 점선으로 도시하는 바와 같이, 실리콘층 내의 불순물에 의해 분리되어 있다.
여기서, 도 6에 도시한 평면도에서의 X-X' 단면인데, 도 7에 도시하는 바와 같은 단면도로 도시할 수 있다. 단, 여기서는, 도 6에 도시한 4행4열의 화소 배열에서, 좌상의 화소(900)가 화소(900-11)인 것으로 한다. 따라서 X-X' 단면의 대상이 되는 화소(900)는, G화소(900-41), B화소(900-42), G화소(900-43), B화소(900-44)의 4개이다.
도 7에서, G화소(900-41)는, 광전변환 소자(913A)와 광전변환 소자(913B)를 갖는 2PD 구조로 되어 있다. 광전변환 소자(913A)에서는, 온 칩 렌즈(911)에 의해 집광되고, G컬러 필터(912)를 투과한 광으로부터, G성분의 광에 대응한 전하가 생성된다. 또한, 광전변환 소자(913B)에서는, 광전변환 소자(913A)와 마찬가지로, G성분의 광에 대응한 전하가 생성된다.
G화소(900-43)에서는, G화소(900-41)와 마찬가지로, 광전변환 소자(913A)와 광전변환 소자(913B)에 의해 G성분에 대응한 전하가 생성된다. 또한, B화소(900-42), B화소(900-44)에서는, 광전변환 소자(913A)와 광전변환 소자(913B)에 의해 B성분에 대응한 전하가 생성된다.
이와 같이 하여 각 화소(900)에서, 광전변환 소자(913A)와 광전변환 소자(913B)에 의해 생성된 전하는, 전송 게이트(951A)와 전송 게이트(951B)를 통하여 판독되고, 위상차 검출의 정보로서 이용된다.
여기서, 도 8에는, 화소(900)의 광의 입사측의 면(광입사면)의 평면도로서, 실리콘층의 내부의 N형의 포텐셜을 도시하고 있다. 즉, 정방 격자형상으로 형성된 화소간 분리부(915)에 의해 물리적으로 분리되어 있는 화소(900)에서, 광전변환 소자(913A)의 광전변환 영역과, 광전변환 소자(913B)의 광전변환 영역은, N형의 영역으로서 형성되고, 그러한 광전변환 영역을 제외한 영역은, P형의 영역으로서 형성된다.
이와 같은 구조로 이루어지는 화소(900)에서는, 광전변환 영역을 제외한 P형의 영역에서는, 전하가 쌓이지 않기 때문에 P형의 영역에서 발생한 전하는, 광전변환 소자(913A)와 광전변환 소자(913B)의 어느 광전변환 영역측으로 이동하면 좋은지를 알지 못하는 상태가 되어 버린다. 또한, N형이 되는 광전변환 영역에서는, 그 단면을 고려한 경우에 전송 게이트(951)측으로 갈수록, 그 농도가 높아지기 때문에 광입사면측에서는, 농도가 낮게 되어 있다. 그때문에 광전변환 영역에서, N형의 농도가 낮은 광의 입사면측에서 발생한 전하는 인입하기 어려워진다.
즉, 도 8에서는, P형의 영역(A1, A2)에서의 광전변환 소자 사이의 분리성의 기여가 낮기 때문에 광전변환 소자(913A)와 광전변환 소자(913B) 사이를 분리하고 싶지만, 단지 광전변환 소자(913A)와 광전변환 소자(913B) 사이에 물리적인 분리부(도 5의 소자사이 분리부(816))를 마련한 경우에는 촬상 화상의 화질이 저하되어 버리는 것은 앞서 기술한 바와 같다.
그래서, 본 개시에 관한 기술(본 기술)에서는, P형의 영역(A1, A2)에 대해 화소간 분리부 또는 화소간 차광부로부터 돌기형상으로 나온 돌기부를 마련하여 P형의 영역에서 발생한 전하의 행선지를 나눔으로써, 촬상 화상의 열화를 억제하면서, 위상차 검출의 정밀도의 향상을 도모할 수 있도록 한다.
이하, 본 기술의 구체적인 내용에 관해 제1의 실시의 형태 내지 제13의 실시의 형태에 의해 설명하는데, 우선, 제1의 실시의 형태 내지 제9의 실시의 형태에서, 돌기부를 마련한 구조를 설명하고, 그 후에 제10의 실시의 형태 내지 제13의 실시의 형태로, 그 이외의 구조에 대해서도 설명한다.
(1) 제1의 실시의 형태
(화소의 평면 레이아웃)
도 9는, 제1의 실시의 형태의 화소(100)의 평면 레이아웃을 도시하는 도면이다.
도 9에서는, 화소 어레이부(11)에 2차원형상으로 배열되는 복수의 화소(100) 중, 일부의 영역에 배열되는 4행4열의 화소(100)를 대표하여 예시하고 있다. 화소 어레이부(11)에서는, 베이어 배열에 의해 복수의 화소(100)가 2차원형상으로 배열되어 있다. 화소(100)는, 2PD 구조로 이루어지기 때문에 화상 취득용의 화소와, 위상차 검출용의 화소의 양방의 용도에 이용할 수 있다.
또한, 도 9에서는, 화소 어레이부(11)에 배열된 화소(100)의 i행j열을 화소(100-ij)로 표기하고 있다. 또한, 이 표기에 관해서는, 후술하는 다른 실시의 형태에서도 마찬가지로 된다.
화소 어레이부(11)에서, 각 화소(100)는, 2PD 구조로 이루어지는 정방 단위의 화소로서, 정방 격자형상으로 배치된 화소간 분리부(115)에 의해 실리콘층(반도체층) 내에서 물리적으로 분리되어 있다.
단, 화소 어레이부(11)에 배열되는 화소(100) 중, G화소(100)에서는, 화소간 분리부(115)의 일부가 G화소(100)의 중심을 향하여 돌기형상으로 나오도록 형성되어 있다. 이하의 설명에서는, 이 돌기형상으로 나와 있는 부분을 돌기부(115P)로 표기한다.
예를 들면 도 9에 도시한 화소 어레이부(11)에서 4행4열의 화소 배열에서, 좌상의 화소(100)가 화소(100-11)라고 하면 G화소(100-12), G화소(100-14), G화소(100-21), G화소(100-23), G화소(100-32), G화소(100-34), G화소(100-41) 및 G화소(100-43)가 돌기부(115P)가 형성되는 대상의 G화소(100)가 된다.
즉, 이들의 G화소(100)에서는, 화소간 분리부(115)의 일부가 G화소(100)의 중심을 향하여 돌기형상으로 나와 돌기부(115P)가 형성되어 있다. 여기서, 도 10에 도시하는 바와 같이, 돌기부(115P)가 형성되어 있는 영역은, 상술한 도 8에서, 광전변환 소자사이의 분리성의 기여가 낮다고 여겨진 P형의 영역(A1, A2)에 대응하고 있다.
이 P형의 영역(A1, A2)에 대응한 2개소의 영역에 화소간 분리부(115)로부터 돌기형상으로 나온 돌기부(115P)가 각각 형성되도록 함으로써, P형의 영역에서 발생한 전하의 행선지가 나누어지기 때문에 감도의 저하나 혼색의 증가를 억제하면서, 위상차 검출의 정밀도 향상을 실현할 수 있다.
또한, G화소(100)는, 2PD 구조를 갖기 때문에 실리콘층에 광전변환 소자(113A)의 광전변환 영역과, 광전변환 소자(113B)의 광전변환 영역이 형성되어 있다. 이들의 광전변환 영역은, 도 9의 열방향의 점선으로 도시하는 바와 같이, 실리콘층 내의 불순물에 의해 분리되어 있다. 즉, 동분할을 담당하는 G화소(100)의 중심에는, 물리적인 분리부(도 5의 소자사이 분리부(816))는 형성하지 않고, 실리콘층의 내부의 불순물 분포에 의해 광전변환 영역이 분리되어 있다.
여기서, 도 9에 도시한 평면도에서의 X1-X1' 단면인데, 도 11에 도시하는 바와 같은 단면도로 도시할 수 있다. 단, 여기서도, 4행4열의 화소 배열에서, 좌상의 화소(100)가 화소(100-11)라고 하면 X1-X1' 단면의 대상이 되는 것은, G화소(100-41), B화소(100-42), G화소(100-43), B화소(100-44)의 4개이다.
도 11에서, G화소(100-41)는, 광전변환 소자(113A)와 광전변환 소자(113B)를 갖는 2PD 구조로 되어 있다. 광전변환 소자(113A)에서는, 온 칩 렌즈(111)에 의해 집광되고, G컬러 필터(112)를 투과한 광으로부터, G성분의 광에 대응한 전하가 생성된다. 또한, 광전변환 소자(113B)에서는, 광전변환 소자(113A)와 마찬가지로, G성분의 광에 대응한 전하가 생성된다.
G화소(100-43)에서는, G화소(100-41)와 마찬가지로, 광전변환 소자(113A)와 광전변환 소자(113B)에 의해 G성분에 대응한 전하가 생성된다. 또한, B화소(100-42), B화소(100-44)에서는, 광전변환 소자(113A)와 광전변환 소자(113B)에 의해 B성분에 대응한 전하가 생성된다.
이와 같이 하여 각 화소(100)에서, 광전변환 소자(113A)와 광전변환 소자(113B)에 의해 생성된 전하는, 전송 게이트(151A)와 전송 게이트(151B)를 통하여 판독되고, 위상차 검출의 정보로서 이용된다.
또한, 화소(100-41 내지 100-44)는, 2PD 구조로 이루어지는 정방 단위의 화소로서, 정방 격자형상으로 배치된 화소간 차광부(114)에 의해 이웃하는 화소 사이가 차광되어 있다. 화소간 차광부(114)는, 예를 들면 텅스텐(W)이나 알루미늄(Al)을 포함하는 금속 등의 물질에 의해 형성되고, 온 칩 렌즈(111)와, 광전변환 영역이 형성된 실리콘층 사이의 영역에 배치된다.
또한, 화소(100-41 내지 100-44)는, 정방 격자형상으로 배치된 화소간 분리부(115)에 의해 실리콘층 내에서 이웃하는 화소 사이가 물리적으로 분리되어 있다. 즉, 여기서는, 예를 들면 DTI(Deep Trench Isolation)기술을 이용하여 광전변환 영역이 형성된 실리콘층 내에 광의 입사측의 면(광입사면 예를 들면 이면측)부터, 정방 단위의 화소의 형상에 응하여 정방 격자형상으로 파들어가진 홈부(트렌치)에 대해 예를 들면 산화막이나 금속 등의 물질을 매입함으로써, 화소간 분리부(115)가 형성된다.
여기서, G화소(100-41)와 G화소(100-43)에는, 광전변환 소자(113A)와 광전변환 소자(113B) 사이에 돌기부(115P)가 형성되어 있다. 즉, 도 11에 도시한 G화소(100-41)와 G화소(100-43)에서는, 화소간 분리부(115)의 일부가 그 G화소(100)의 중심을 향하여 돌기형상으로 나옴으로 돌기부(115P)가 형성되어 있다.
또한, 도 9에 도시한 평면도에서의 X2-X2' 단면인데, 도 12에 도시하는 바와 같은 단면도로 도시할 수 있다. 단, 도 12에서는, 도 11과 마찬가지로, G화소(100-41), B화소(100-42), G화소(100-43), B화소(100-44)가 X2-X2' 단면의 대상이 된다.
여기서, X2-X2' 단면은, G화소(100)의 중심을 포함하는 단면이기 때문에 그 중심을 향하여 돌기형상으로 나온 돌기부(115P)는 포함되어 있지 않다. 즉, 도 12에 도시한 G화소(100-41)와 G화소(100-43)에서, 광전변환 소자(113A)와 광전변환 소자(113B) 사이에는, 돌기부(115P)가 형성되어 있지 않다.
또한, 도 9에 도시한 평면도에서의 Y-Y' 단면인데, 도 13에 도시하는 바와 같은 단면도로 도시할 수 있다. 단, 여기서도, 4행4열의 화소 배열에서, 좌상의 화소(100)가 화소(100-11)라고 하면 Y-Y' 단면의 대상이 되는 것은, G화소(100-12), B화소(100-22), G화소(100-32), B화소(100-42)의 4개이다.
도 13에서, G화소(100-12)와 G화소(100-32)에서는, 화소간 분리부(115)의 일부가 그 G화소(100)의 중심을 향하여 돌기형상으로 나옴으로 돌기부(115P)가 형성되어 있다. 단, 도 13에 도시한 돌기부(115P)에서는, 나와 있는 부분마다 그 깊이가 다르다(깊이가 균일하지 않다).
즉, 도 9에 도시한 평면도로 본 때에 돌기부(115P)는, 화소간 분리부(115)에 대해 T자형으로 형성되어 있다고 파악할 수 있는데, 도 13에 도시하는 바와 같이, 돌기부(115P)의 근원 부분은, 화소간 분리부(115)와 동등의 깊이가 되고, 돌기부(115P)의 선단으로 갈수록, 그 깊이가 서서히 얕게 되어 있다.
이상과 같이, G화소(100)에서는, 화소간 분리부(115)의 일부가 그 G화소(100)의 중심을 향하여 돌기형상으로 나옴으로 돌기부(115P)가 형성되어 있는데, 도 11 내지 도 13에 도시한 바와 같이, 그 단면의 벤자리(切り口)에 따라, 돌기부(115P)의 유무나, 그 형상(깊이) 등이 다르다.
환언하면 2PD 구조로 이루어지는 화소(100)에서, 화소간 분리부(115)의 돌기부(115P)가 형성되는 경우에 화소(100)의 중심을 포함하지 않는 제1의 단면(예를 들면 도 11의 단면)에서는, 2개의 광전변환 영역 사이에 돌기부(115P)의 단면이 포함되지만, 화소(100)의 중심을 포함하는 제2의 단면(예를 들면 도 12의 단면)에서는, 2개의 광전변환 영역 사이에 돌기부(115P)의 단면은 포함되어 있지 않다.
(제1의 실시의 형태의 화소의 구조)
도 14는, 제1의 실시의 형태의 화소(100)의 입체적인 구조를 도시하는 3차원의 도면이다.
도 14에서는, 화소 어레이부(11)에 2차원형상으로 배열되는 복수의 화소(100) 중, 임의의 화소(100)(예를 들면 돌기부(115P)가 형성된 G화소(100))를 도시하고 있다. 화소 어레이부(11)에서, 이웃하는 화소 사이에는, 정방 격자형상으로 화소간 차광부(114)와 화소간 분리부(115)가 형성되어 있다.
화소간 차광부(114)는, 텅스텐(W)이나 알루미늄(Al) 등의 금속에 의해 정방 격자형상으로 형성되고, 이웃하는 화소 사이를 차광하고 있다. 또한, 화소간 분리부(115)는, 실리콘층 내에 파들어가진 정방 격자형상의 홈부(트렌치)에 매입된 산화막이나 금속 등에 의해 형성되고, 이웃하는 화소 사이를 물리적으로 분리하고 있다.
제1의 실시의 형태에서는, 2PD 구조로 이루어지는 정방 단위의 화소(100)에 대해 정방 격자형상으로 형성된 화소간 차광부(114) 및 화소간 분리부(115) 중, 화소간 분리부(115)의 일부가 화소(100)의 중심을 향하여 돌기형상으로 나옴으로 돌기부(115P)를 형성하고 있다.
돌기부(115P)의 재료로서는, 화소간 분리부(115)와 동일한 재료라도 좋고, 다른 재료라도 좋다. 예를 들면 화소간 분리부(115)가 산화막에 의해 형성된 경우에는, 돌기부(115P)도 산화막에 의해 형성할 수 있다. 또한, 예를 들면 화소간 분리부(115)를 금속에 의해 형성한 경우에 돌기부(115P)가 산화막에 의해 형성되도록 하여도 좋다.
이와 같이, 화소(100)에서, 화소간 분리부(115)에 대해 2개소에 형성된 돌기부(115P)는, 실리콘층 내에서 분리성의 기여가 낮은 영역에 대해 형성되어 있고, 이와 같은 영역에 대해 돌기부(115P)를 형성함으로써, 감도의 저하나 혼색의 증가를 억제하면서, 위상차 검출의 정밀도 향상을 실현할 수 있다.
또한, 상세한 내용은, 도 22 및 도 23을 참조하여 후술하지만, 온 칩 렌즈(111)의 직하에서는, 돌기부(115P)에 의한 물리적인 분리(실리콘 분리)가 이루어지지 않도록 하기 위해 예를 들면 돌기부(115P)가 나와 있는 부분의 길이는, 온 칩 렌즈(111)에 의한 집광 스폿 지름에 응하여 결정할 수 있다.
이상, 제1의 실시의 형태에 관해 설명하였다.
(2) 제2의 실시의 형태
(제2의 실시의 형태의 화소의 구조)
도 15는, 제2의 실시의 형태의 화소(100)의 입체적인 구조를 도시하는 3차원의 도면이다.
도 15에서는, 상술한 도 14와 마찬가지로, 화소 어레이부(11)에 2차원형상으로 배열되는 복수의 화소(100) 중, 임의의 화소(100)가 도시되어 있다. 화소 어레이부(11)에서, 이웃하는 화소 사이에는, 정방 격자형상으로 화소간 차광부(114)와 화소간 분리부(115)가 형성되어 있다.
제2의 실시의 형태에서는, 2PD 구조로 이루어지는 정방 단위의 화소(100)에 대해 정방 격자형상으로 형성된 화소간 차광부(114) 및 화소간 분리부(115) 중, 화소간 차광부(114)의 일부가 화소(100)의 중심을 향하여 돌기형상으로 나옴으로 돌기부(114P)를 형성하고 있다.
또한, 돌기부(114P)의 재료로서는, 화소간 차광부(114)와 동일한 재료라도 좋고, 다른 재료라도 좋다.
이와 같이, 상술한 제1의 실시의 형태에서는, 화소간 분리부(115)에 대해 돌기부(115P)를 형성한 경우를 설명하였지만, 제2의 실시의 형태에서는, 화소간 차광부(114)에 대해 돌기부(114P)를 형성하고 있다.
즉, 화소(100)에서, 화소간 차광부(114)에 대해 2개소에 형성된 돌기부(114P)는, 실리콘층 내에서 분리성의 기여가 낮은 영역에 대해 형성되어 있고, 이와 같은 영역에 대해 돌기부(114P)를 형성함으로써, 감도의 저하나 혼색의 증가를 억제하면서, 위상차 검출의 정밀도 향상을 실현할 수 있다.
또한, 상세한 내용은, 도 22 및 도 23을 참조하여 후술하지만, 예를 들면 돌기부(114P)가 나와 있는 부분의 길이는, 온 칩 렌즈(111)에 의한 집광 스폿 지름에 응하여 결정할 수 있다.
이상, 제2의 실시의 형태에 관해 설명하였다.
(3) 제3의 실시의 형태
(제3의 실시의 형태의 화소의 구조)
도 16은, 제3의 실시의 형태의 화소(100)의 입체적인 구조를 도시하는 3차원의 도면이다.
도 16에서는, 상술한 도 14 및 도 15와 마찬가지로, 화소 어레이부(11)에 2차원형상으로 배열되는 복수의 화소(100) 중, 임의의 화소(100)가 도시되어 있다. 화소 어레이부(11)에서, 이웃하는 화소 사이에는, 정방 격자형상으로 화소간 차광부(114)와 화소간 분리부(115)가 형성되어 있다.
제3의 실시의 형태에서는, 2PD 구조로 이루어지는 정방 단위의 화소(100)에 대해 정방 격자형상으로 형성된 화소간 차광부(114) 및 화소간 분리부(115)의 쌍방의 일부가 화소(100)의 중심을 향하여 돌기형상으로 나옴으로 돌기부(114P) 및 돌기부(115P)를 형성하고 있다.
또한, 돌기부(114P)의 재료로서는, 화소간 차광부(114)와 동일한 재료라도 좋고, 다른 재료라도 좋다. 또한, 돌기부(115P)의 재료로서는, 화소간 분리부(115)와 동일한 재료라도 좋고, 다른 재료라도 좋다.
이와 같이, 상술한 제1의 실시의 형태에서는, 화소간 분리부(115)에 대해 돌기부(115P)를 형성한 경우를 설명하고, 상술한 제2의 실시의 형태에서는, 화소간 차광부(114)에 대해 돌기부(114P)를 형성한 경우를 설명하였지만, 제3의 실시의 형태에서는, 화소간 차광부(114)와 화소간 분리부(115)의 쌍방에 대해 돌기부(114P)와 돌기부(115P)가 각각 형성되어 있다.
즉, 화소(100)에서, 화소간 차광부(114)에 대해 2개소에 형성된 돌기부(114P)는, 실리콘층 내에서 분리성의 기여가 낮은 영역에 대해 형성되어 있다. 또한, 화소(100)에서, 화소간 분리부(115)에 대해 2개소에 형성된 돌기부(115P)는, 실리콘층 내에서 분리성의 기여가 낮은 영역에 대해 형성되어 있다. 이와 같은 영역에 대해 돌기부(114P)와 돌기부(115P)를 형성함으로써, 감도의 저하나 혼색의 증가를 억제하면서, 위상차 검출의 정밀도 향상을 실현할 수 있다.
또한, 상세한 내용은, 도 22 및 도 23을 참조하여 후술하지만, 예를 들면 돌기부(114P)와 돌기부(115P)가 나와 있는 부분의 길이는, 온 칩 렌즈(111)에 의한 집광 스폿 지름에 응하여 결정할 수 있다.
이상, 제3의 실시의 형태에 관해 설명하였다.
(4) 제4의 실시의 형태
(G화소에만 돌기부를 형성한 구조)
도 17은, 제4의 실시의 형태의 화소(100)의 구조를 도시하는 평면도이다.
도 17에서는, 화소 어레이부(11)에 2차원형상으로 배열되는 복수의 화소(100) 중, 일부의 영역에 배열되는 4행4열의 화소(100)를 대표하여 예시하고 있는데, 베이어 배열로 배치된 화소(100) 중, G화소(100)에만, 화소간 분리부(115)에 대해 돌기부(115P)가 형성되어 있다.
예를 들면 도 17에 도시한 4행4열의 화소 배열에서, 좌상의 화소(100)가 화소(100-11)라고 하면 G화소(100-12), G화소(100-14), G화소(100-21), G화소(100-23), G화소(100-32), G화소(100-34), G화소(100-41) 및 G화소(100-43)가 돌기부(115P)를 형성한 대상의 G화소(100)가 된다.
여기서, G화소(100)의 출력으로부터 얻어지는 정보와, R화소(100) 및 B화소(100)의 출력으로부터 얻어지는 정보를 비교한 경우에 G화소(100)의 출력으로부터 얻어지는 정보가 가장 많고, 예를 들면 위상차 검출의 정보를 취득할 때에 G화소(100)의 출력으로부터 얻어지는 정보가 지배적이라고 할 때에는, 도 17에 도시하고 있는 바와 같은, 돌기부(115P)를 G화소(100)에만 형성하는 구성을 채용할 수 있다.
또한, 도 17에 도시한 G화소(100)에만, 화소간 분리부(115)에 대해 돌기부(115P)를 형성한 구조는, 상술한 도 9에 도시한 구조와 마찬가지가 된다. 또한, 화소(100)에 대한, 도면 중의 열방향의 점선으로 도시하는 바와 같이, 광전변환 소자(113A)의 광전변환 영역과, 광전변환 소자(113B)의 광전변환 영역이란, 실리콘층 내의 불순물에 의해 분리되어 있다.
또한, 도 17에서는, 상술한 제1의 실시의 형태에 대응하여 화소간 분리부(115)에 대해 돌기부(115P)가 형성된 경우를 설명하였지만, 상술한 제2의 실시의 형태에 대응하여 G화소(100)에만, 화소간 차광부(114)에 대해 돌기부(114P)가 형성되도록 하여도 좋다. 또한, 상술한 제3의 실시의 형태에 대응하여 G화소(100)에만, 화소간 차광부(114) 및 화소간 분리부(115)의 쌍방에 대해 돌기부가 형성되도록 하여도 좋다.
(모든 화소에 돌기부를 형성한 구조)
도 18은, 제4의 실시의 형태의 화소(100)의 구조의 제1의 변형례를 도시하는 평면도이다.
도 18에서는, 화소 어레이부(11)에 베이어 배열로 배치된 복수의 화소(100) 중, 임의의 4행4열의 화소(100)를 예시하고 있는데, 모든 화소(100)에서, 화소간 분리부(115)에 대해 돌기부(115P)가 형성되어 있다.
예를 들면 도 18에 도시한 4행4열의 화소 배열에서, 좌상의 화소(100)가 화소(100-11)라고 하면 R화소(100)(100-11, 100-13, 100-31, 100-33)와, G화소(100)(100-12, 100-14, 100-21, 100-23, 100-32, 100-34, 100-41, 100-43)와, B화소(100)(100-22, 100-24, 100-42, 100-44)가 돌기부(115P)를 형성한 대상의 화소(100)가 된다.
여기서, R화소(100), G화소(100) 및 B화소(100)에서, 돌기부(115P)를 형성한 경우에는, 모든 화소(100)의 출력으로부터 위상차 검출의 정보를 얻을 수 있기 때문에 예를 들면 위상차 검출의 정보를 모든 화소(100)로부터 취득하고 싶은 때에는, 도 18에 도시하고 있는 바와 같은, 돌기부(115P)를 모든 화소(100)에 대해 형성하는 구성을 채용할 수 있다.
또한, 도 18에서는, 상술한 제1의 실시의 형태에 대응하여 화소간 분리부(115)에 대해 돌기부(115P)가 형성된 경우를 설명하였지만, 상술한 제2의 실시의 형태에 대응하여 모든 화소(100)에서, 화소간 차광부(114)에 대해 돌기부(114P)가 형성되도록 하여도 좋다. 또한, 상술한 제3의 실시의 형태에 대응하여 모든 화소(100)에서, 화소간 차광부(114) 및 화소간 분리부(115)의 쌍방에 대해 돌기부가 형성되도록 하여도 좋다.
(R화소에만 돌기부를 형성한 구조)
도 19는, 제4의 실시의 형태의 화소(100)의 구조의 제2의 변형례를 도시하는 평면도이다.
도 19에서는, 화소 어레이부(11)에 베이어 배열로 배치된 복수의 화소(100) 중, 임의의 4행4열의 화소(100)를 예시하고 있는데, R화소(100)에만, 화소간 분리부(115)에 대해 돌기부(115P)가 형성되어 있다.
예를 들면 도 19에 도시한 4행4열의 화소 배열에서, 좌상의 화소(100)가 화소(100-11)라고 하면 R화소(100-11), R화소(100-13), R화소(100-31) 및 R화소(100-33)가 돌기부(115P)를 형성한 대상의 R화소(100)가 된다.
또한, 도 19에서는, 상술한 제1의 실시의 형태에 대응하여 화소간 분리부(115)에 대해 돌기부(115P)가 형성된 경우를 설명하였지만, 상술한 제2의 실시의 형태에 대응하여 R화소(100)에만, 화소간 차광부(114)에 대해 돌기부(114P)가 형성되도록 하여도 좋다. 또한, 상술한 제3의 실시의 형태에 대응하여 R화소(100)에만, 화소간 차광부(114) 및 화소간 분리부(115)의 쌍방에 대해 돌기부가 형성되도록 하여도 좋다.
(B화소에만 돌기부를 형성하는 구조)
도 20은, 제4의 실시의 형태의 화소(100)의 구조의 제3의 변형례를 도시하는 평면도이다.
도 20에서는, 화소 어레이부(11)에 베이어 배열로 배치된 복수의 화소(100) 중, 임의의 4행4열의 화소(100)를 예시하고 있는데, B화소(100)에만, 화소간 분리부(115)에 대해 돌기부(115P)가 형성되어 있다.
예를 들면 도 20에 도시한 4행4열의 화소 배열에서, 좌상의 화소(100)가 화소(100-11)라고 하면 B화소(100-22), B화소(100-24), B화소(100-42) 및 B화소(100-44)가 돌기부(115P)를 형성한 대상의 B화소(100)가 된다.
또한, 도 20에서는, 상술한 제1의 실시의 형태에 대응하여 화소간 분리부(115)에 대해 돌기부(115P)가 형성된 경우를 설명하였지만, 상술한 제2의 실시의 형태에 대응하여 B화소(100)에만, 화소간 차광부(114)에 대해 돌기부(114P)가 형성되도록 하여도 좋다. 또한, 상술한 제3의 실시의 형태에 대응하여 B화소(100)에만, 화소간 차광부(114) 및 화소간 분리부(115)의 쌍방에 대해 돌기부가 형성되도록 하여도 좋다.
(G, B화소에만 돌기부를 형성한 구조)
도 21은, 제4의 실시의 형태의 화소(100)의 구조의 제4의 변형례를 도시하는 평면도이다.
도 21에서는, 화소 어레이부(11)에 베이어 배열로 배치된 복수의 화소(100) 중, 임의의 4행4열의 화소(100)를 예시하고 있는데, G화소(100)와 B화소(100)에만, 화소간 분리부(115)에 대해 돌기부(115P)가 형성되어 있다.
예를 들면 도 21에 도시한 4행4열의 화소 배열에서, 좌상의 화소(100)가 화소(100-11)라고 하면 G화소(100)(100-12, 100-14, 100-21, 100-23, 100-32, 100-34, 100-41, 100-43)와, B화소(100)(100-22, 100-24, 100-42, 100-44)가 돌기부(115P)를 형성한 대상의 화소(100)가 된다.
또한, 도 21에서는, 상술한 제1의 실시의 형태에 대응하여 화소간 분리부(115)에 대해 돌기부(115P)가 형성된 경우를 설명하였지만, 상술한 제2의 실시의 형태에 대응하여 G화소(100)와 B화소(100)에만, 화소간 차광부(114)에 대해 돌기부(114P)가 형성되도록 하여도 좋다. 또한, 상술한 제3의 실시의 형태에 대응하여 G화소(100)와 B화소(100)에만, 화소간 차광부(114) 및 화소간 분리부(115)의 쌍방에 대해 돌기부가 형성되도록 하여도 좋다.
또한, 여기서는, 돌기부(115P)를 형성한 화소(100)의 조합으로서, G화소(100)와 B화소(100)와의 조합을 예시하였지만, 예를 들면 R화소(100)와 G화소(100)를 조합시키거나, 또는, R화소(100)와 B화소(100)를 조합시키거나 하는 등, 돌기부(115P)를 형성하는 화소(100)의 조합의 패턴은, 임의이다.
이상, 제4의 실시의 형태에 관해 설명하였다.
(5) 제5의 실시의 형태
(돌기부의 길이의 결정)
도 22는, 제5의 실시의 형태의 화소(100)의 구조를 도시하는 평면도이다.
도 22에서, 화소(100)에서는, 정방 격자형상으로 배치된 화소간 분리부(115)의 일부가 당해 화소(100)의 중심을 향하여 돌기형상으로 나와 돌기부(115P)를 형성하고 있다. 이 돌기부(115P)에서의 나와 있는 부분의 길이(이하, 돌출길이라고도 한다)는, 임의의 길이가 되는데, 예를 들면 다음과 같이 결정할 수 있다.
즉, 예를 들면 온 칩 렌즈(111)의 광축 방향(적층 방향)의 높이를 변경하는 경우 등에 어떠한 이유로, 광전변환 소자(113A, 113B)가 형성된 실리콘(Si)층에서의 광입사면의 집광 스폿(S)의 지름이 커지면 광의 산란을 피하기 위해 돌기부(115P)의 돌출길이를 짧게 할 필요가 있다.
이와 같이, 돌기부(115P)의 돌출길이는, 온 칩 렌즈(111)의 집광 스폿(S)의 지름과 상관이 있기 때문에 돌기부(115P)의 돌출길이를 온 칩 렌즈(111)의 집광 스폿(S)의 지름에 응하여 결정할 수 있다.
예를 들면 본 기술의 발명자는, 상세한 시뮬레이션을 행함으로써, 돌기부(115P)의 돌출길이를 L1로 하고, 온 칩 렌즈(111)의 피치의 1변의 길이를 L2로 하였을 때에 L1은, L2의 1/7부터 1/4 정도의 길이로 하는 것이 알맞음을 발견하였다.
여기서, 도 23에는, 실리콘층의 광입사면에 대해 온 칩 렌즈(111)의 위치가 높은 경우의 구조를 도 23의 A의 단면도로 도시하고, 온 칩 렌즈(111)의 위치가 낮은 경우의 구조를 도 23의 B의 단면도로 도시하고 있다. 또한, 도 23의 단면도는, 도 9에 도시한 평면도에서의 Y-Y' 단면에 대응하고 있다.
도 23의 A에서는, 실리콘층의 광입사면에 대한 온 칩 렌즈(111)의 광축 방향의 높이를 HA로 하고, 입사광(ILA) 에 의한 광입사면의 집광 스폿을 SA로 나타내고 있다. 한편으로 도 23의 B에서는, 실리콘층의 광입사면에 대한 온 칩 렌즈(111)의 광축 방향의 높이를 HB로 하고, 입사광(ILB)에 의한 광입사면의 집광 스폿을 SB로 나타내고 있다.
도 23의 A와 도 23의 B에서, 온 칩 렌즈(111)의 높이를 비교하면 HA>HB의 관계가 된다. 그리고, 온 칩 렌즈(111)의 높이가 이와 같은 관계를 갖기 때문에 도 23의 A와 도 23의 B에서, 집광 스폿의 지름을 비교하면 SA<SB의 관계가 된다.
이와 같은 관계에 의거하여 도 23의 A에서는, 집광 스폿(SA)의 지름에 응하여 돌기부(115P)의 돌출길이(L1A)가 조정되고, 도 23의 B에서는, 집광 스폿(SB)의 지름에 응하여 돌기부(115P)의 돌출길이(L1B)가 조정된다. 단, 앞서 기술한 바와 같이, 집광 스폿의 지름이 클수록, 광의 산란을 피하기 위해 돌출길이를 짧게 할 필요가 있기 때문에 SA<SB의 관계에 응하여 L1A>L1B의 관계가 된다.
또한, 여기서는, 화소간 분리부(115)의 돌기부(115P)의 돌출길이를 온 칩 렌즈(111)의 집광 스폿(S)의 지름에 응하여 결정하는 방법을 설명하였지만, 화소간 차광부(114)의 돌기부(114P)의 나와 있는 부분의 길이(돌출길이)에 대해서도 마찬가지로, 온 칩 렌즈(111)의 집광 스폿(S)의 지름에 응하여 결정할 수 있다.
또한, 상술한 돌기부(115P)의 돌출길이의 결정 방법은 한 예이고, 온 칩 렌즈(111)의 집광 스폿(S)의 지름을 이용하는 방법 이외의 방법에 의해 돌기부(115P)의 돌출길이가 결정되도록 하여도 좋다.
이상, 제5의 실시의 형태에 관해 설명하였다.
(6) 제6의 실시의 형태
(화소마다 돌기부의 길이를 바꾼 구조)
도 24는, 제6의 실시의 형태의 화소(100)의 구조를 도시하는 평면도이다.
도 24에서는, 화소 어레이부(11)에 베이어 배열로 배치된 복수의 화소(100) 중, 임의의 4행4열의 화소(100)를 예시하고 있는데, 모든 화소(100)에서, 화소간 분리부(115)에 대해 돌기부(115P)가 형성되어 있다.
예를 들면 도 24에 도시한 4행4열의 화소 배열에서, 좌상의 화소(100)가 화소(100-11)라고 하면 R화소(100)(100-11, 100-13, 100-31, 100-33)와, G화소(100)(100-12, 100-14, 100-21, 100-23, 100-32, 100-34, 100-41, 100-43)와, B화소(100)(100-22, 100-24, 100-42, 100-44)가 돌기부(115P)를 형성한 대상의 화소(100)가 된다.
여기서, 도 24에서는, R화소(100), G화소(100), B화소(100)의 색 화소마다, 돌기부(115P)의 돌출길이의 길이가 다르다. 즉, 도 24에서는, G화소(100)에 형성된 돌기부(115P)의 돌출길이에 비하여 R화소(100)에 형성된 돌기부(115P)의 돌출길이는, 짧게 되어 있는 한편으로 B화소(100)에 형성된 돌기부(115P)의 돌출길이는, 길게 되어 있다.
즉, R화소(100)의 돌기부(115P)의 돌출길이를 L1R으로 하고, G화소(100)의 돌기부(115P)의 돌출길이를 L1G로 하고, B화소(100)의 돌기부(115P)의 돌출길이를 L1B로 하였을 때, L1B>L1G>L1R의 관계가 된다.
예를 들면 적(R)의 파장은, 녹(G)이나 청(B)의 파장과 비교하여 길기 때문에 R화소(100)에서는, G화소(100)나 B화소(100)에 비하여 광의 산란이 발생할 가능성이 높기 때문에 R화소(100)의 돌기부(115P)의 돌출길이를 G화소(100)나 B화소(100)의 돌출길이에 비하여 짧게 하는 등의 대응이 상정된다.
또한, 여기서는, 화소간 분리부(115)의 돌기부(115P)의 돌출길이를 화소(100)마다 바꾸는 경우를 설명하였지만, 화소간 차광부(114)의 돌기부(114P)의 나와 있는 부분의 길이(돌출길이)에 대해서도 마찬가지로, 화소(100)마다 바꾸도록 하여도 좋다.
또한, 상술한 설명에서는, R화소(100), G화소(100), B화소(100)의 전부에 관해 돌기부(115P)의 돌출길이를 바꾸는 경우를 설명하였지만, 예를 들면 G화소(100)와 B화소(100)의 돌기부(115P)의 돌출길이를 동일한 길이로 하고, R화소(100)의 돌기부(115P)의 돌출길이만을 짧게 하는 등, 돌기부(115P)의 돌출길이를 바꾸는 화소(100)의 조합은, 임의이다. 또한, 다른 색의 화소(100)뿐만 아니라, 동색의 화소(100)에서, 돌기부(115P)의 돌출길이를 바꾸도록 하여도 좋다.
이상, 제6의 실시의 형태에 관해 설명하였다.
(7) 제7의 실시의 형태
(행방향의 타원형 온 칩 렌즈를 이용한 구조)
도 25는, 제7의 실시의 형태의 화소(100)의 구조를 도시하는 평면도이다.
도 25에서는, 화소 어레이부(11)에 2차원형상으로 배열되는 복수의 화소(100) 중, 임의의 4행4열의 화소(100)를 예시하고 있다. 단, 도 25에 도시한 4행4열의 화소 배열에서, 각 화소(100)는, 하나의 광전변환 소자(113)를 갖는 구조로 이루어진다. 즉, 도 25에서, 각 화소(100)는, 2PD 구조가 아니라, 말하자면 1PD 구조로 되어 있다. 여기서는, 상술한 2PD 구조의 화소(100)와 구별하기 위해 1PD 구조의 화소(100)를 화소(100)(1PD)로 표기하는 것으로 한다.
여기서, 예를 들면 도 25에 도시한 4행4열의 화소 배열에서, 좌상의 화소(100)(1PD)가 화소(100-11)(1PD)라고 하면 동일행에 배치된 G화소(100-21)(1PD)와 G화소(100-22)(1PD)에 대해 타원형의 온 칩 렌즈(111E)가 형성되어 있다. 또한, 도시는 하지 않지만, G화소(100-21)(1PD)와 G화소(100-22)(1PD)를 제외한 다른 화소(100)(1PD)에서는, 하나의 온 칩 렌즈(111)에 대해 하나의 광전변환 소자(113)가 형성되어 있다.
즉, 동일행에 배치된 2화소(G화소(100-21)(1PD), 100-22(1PD))로 구성되는 화소에서는, 하나의 온 칩 렌즈(111E)에 대해 G화소(100-21)(1PD)의 광전변환 소자(113)와, G화소(100-22)(1PD)의 광전변환 소자(113)가 마련된 구조로 이루어진다. 그리고, 여기서는, 동일행에 배치된 G화소(100-21)(1PD)의 광전변환 소자(113)와, G화소(100-22)(1PD)의 광전변환 소자(113)의 각각의 출력을 이용함으로써, 위상차 검출이 행하여진다.
또한, 여기서는, 타원형의 온 칩 렌즈(111E)가 G화소(100-21)(1PD)와 G화소(100-22)(1PD)에 대해 행방향에 걸쳐진 구조로 이루어지는 경우에 있어서, 화소간 분리부(115)에 형성된 돌기부(115P)가 G화소(100-21)(1PD)와 G화소(100-22)(1PD) 사이에 형성되도록 하고 있다.
이 경우에서도, 화소간 분리부(115)의 일부가 G화소(100-21)(1PD)와 G화소(100-22)(1PD)로 이루어지는 영역의 중심을 향하여 돌기형상으로 나옴으로 돌기부(115P)가 2개소에 형성되어 있다. 또한, 돌기부(115P)의 돌출길이는, 예를 들면 타원형의 온 칩 렌즈(111E)의 집광 스폿의 지름에 응하여 결정할 수 있다.
(열방향의 타원형 온 칩 렌즈를 이용한 구조)
도 26은, 제7의 실시의 형태의 화소(100)의 구조의 변형례를 도시하는 평면도이다.
도 26에서는, 화소 어레이부(11)에 2차원형상으로 배열되는 복수의 화소(100) 중, 임의의 4행4열의 화소(100)를 예시하고 있다. 단, 도 26에 도시한 4행4열의 화소 배열의 화소(100)는, 상술한 도 25에 도시한 화소(100)와 마찬가지로, 1PD 구조로 이루어지고, 이 1PD 구조의 화소(100)를 화소(100)(1PD)로 표기하는 것으로 한다.
여기서, 예를 들면 도 26에 도시한 4행4열의 화소 배열에서, 동일렬에 배치된 G화소(100-12)(1PD)와 G화소(100-22)(1PD)에 대해 타원형의 온 칩 렌즈(111E)가 형성되어 있다. 또한, 도시는 하지 않지만, G화소(100-12)(1PD)와 G화소(100-22)(1PD)를 제외한 다른 화소(100)(1PD)에서는, 하나의 온 칩 렌즈(111)에 대해 하나의 광전변환 소자(113)가 형성되어 있다.
즉, 동일렬에 배치된 2화소(G화소(100-12)(1PD), 100-22(1PD))로 구성되는 화소에서는, 하나의 온 칩 렌즈(111E)에 대해 G화소(100-12)(1PD)의 광전변환 소자(113)와, G화소(100-22)(1PD)의 광전변환 소자(113)가 마련된 구조로 이루어진다. 그리고, 여기서는, 동일렬에 배치된 G화소(100-12)(1PD)의 광전변환 소자(113)와, G화소(100-22)(1PD)의 광전변환 소자(113)의 각각의 출력을 이용함으로써, 위상차 검출이 행하여진다.
또한, 여기서는, 타원형의 온 칩 렌즈(111E)가 G화소(100-12)(1PD)와 G화소(100-22)(1PD)에 대해 열방향에 걸쳐진 구조로 이루어지는 경우에 있어서, 화소간 분리부(115)에 형성된 돌기부(115P)가 G화소(100-12)(1PD)와 G화소(100-22)(1PD) 사이에 형성되도록 하고 있다.
이 경우에서도, 화소간 분리부(115)의 일부가 G화소(100-12)(1PD)와 G화소(100-22)(1PD)로 이루어지는 영역의 중심을 향하여 돌기형상으로 나옴으로 돌기부(115P)가 2개소에 형성되어 있다. 또한, 돌기부(115P)의 돌출길이는, 예를 들면 타원형의 온 칩 렌즈(111E)의 집광 스폿의 지름에 응하여 결정할 수 있다.
또한, 여기서는, 화소간 분리부(115)의 돌기부(115P)가 타원형의 온 칩 렌즈(111E)마다 배치된 동일행의 2개의 화소(100)(1PD)나, 동일렬의 2개의 화소(100)(1PD)에 대해 형성된 경우를 설명하였지만, 화소간 차광부(114)의 돌기부(114P)가 형성되도록 하여도 좋다.
또한, 상술한 설명에서는, 타원형의 온 칩 렌즈(111E)에 대해 2개의 G화소(100)(1PD)가 배치된 경우를 설명하였지만, G화소(100)(1PD)로 한하지 않고, R화소(100)(1PD)나 B화소(100)(1PD)가 타원형의 온 칩 렌즈(111E)에 대해 배치되도록 하여도 좋다.
이상, 제7의 실시의 형태에 관해 설명하였다.
(8) 제8의 실시의 형태
(단일 온 칩 렌즈에 복수 화소를 배치한 구조)
도 27은, 제8의 실시의 형태의 화소(100)의 구조를 도시하는 평면도이다.
도 27에서는, 화소 어레이부(11)에 2차원형상으로 배열되는 복수의 화소(100) 중, 임의의 4행4열의 화소(100)를 예시하고 있다. 단, 도 27에 도시한 4행4열의 화소 배열의 화소(100)는, 상술한 도 25 및 도 26에 도시한 화소(100)와 마찬가지로, 1PD 구조로 이루어지고, 이 1PD 구조의 화소(100)를 화소(100)(1PD)로 표기하는 것으로 한다.
여기서, 도 27에 도시한 4행4열의 화소 배열에서는, 동일색으로 이루어지는 4개의 화소(100)(1PD)마다, 원형의 온 칩 렌즈(111)가 형성되어 있다.
예를 들면 도 27에 도시한 4행4열의 화소 배열에서, 좌상의 화소(100)(1PD)가 화소(100-11)(1PD)라고 하면 R화소(100-11)(1PD), R화소(100-12)(1PD), R화소(100-21)(1PD) 및 R화소(100-22)(1PD)로 이루어지는 4개의 R화소(100)(1PD)(로 구성된 화소)에 대해 하나의 온 칩 렌즈(111-11)가 형성되어 있다.
또한, 원형의 온 칩 렌즈(111-11)가 4개의 R화소(100)(1PD)(100-11(1PD), 100-12(1PD), 100-21(1PD), 100-22(1PD))에 걸쳐진 구조로 이루어지는 경우에 있어서, 화소간 분리부(115)의 일부가 4개의 R화소(100)(1PD)로 이루어지는 영역의 중심을 향하여 돌기형상으로 나옴으로 돌기부(115P)가 4개소에 형성되어 있다.
도 27의 화소 배열에서는, G화소(100-13)(1PD), G화소(100-14)(1PD), G화소(100-23)(1PD) 및 G화소(100-24)(1PD)로 이루어지는 4개의 G화소(100)(1PD)(로 구성된 화소)에 대해 하나의 온 칩 렌즈(111-12)가 형성되어 있다. 또한, 원형의 온 칩 렌즈(111-12)가 4개의 G화소(100)(1PD)(100-13(1PD), 100-14(1PD), 100-23(1PD), 100-24(1PD))에 걸쳐진 구조로 이루어지는 경우에 있어서, 화소간 분리부(115)의 일부가 4개의 G화소(100)(1PD)로 이루어지는 영역의 중심을 향하여 돌기형상으로 나옴으로 돌기부(115P)가 4개소에 형성되어 있다.
또한, 도 27의 화소 배열에서는, G화소(100-31)(1PD), G화소(100-32)(1PD), G화소(100-41)(1PD) 및 G화소(100-42)(1PD)로 이루어지는 4개의 G화소(100)(1PD)(로 구성된 화소)에 대해 하나의 온 칩 렌즈(111-21)가 형성되어 있다. 또한, 원형의 온 칩 렌즈(111-21)가 4개의 G화소(100)(1PD)(100-31(1PD), 100-32(1PD), 100-41(1PD), 100-42(1PD))에 걸쳐진 구조로 이루어지는 경우에 있어서, 화소간 분리부(115)의 일부가 4개의 G화소(100)(1PD)로 이루어지는 영역의 중심을 향하여 돌기형상으로 나옴으로 돌기부(115P)가 4개소에 형성되어 있다.
또한, 도 27의 화소 배열에서는, B화소(100-33)(1PD), B화소(100-34)(1PD), B화소(100-43)(1PD) 및 B화소(100-44)(1PD)로 이루어지는 4개의 B화소(100)(1PD)(로 구성된 화소)에 대해 하나의 온 칩 렌즈(111-22)가 형성되어 있다. 또한, 원형의 온 칩 렌즈(111-22)가 4개의 B화소(100)(1PD)(100-33(1PD), 100-34(1PD), 100-43(1PD), 100-44(1PD))에 걸쳐진 구조로 이루어지는 경우에 있어서, 화소간 분리부(115)의 일부가 4개의 G화소(100)(1PD)로 이루어지는 영역의 중심을 향하여 돌기형상으로 나옴으로 돌기부(115P)가 4개소에 형성되어 있다.
이와 같이, 도 27의 화소 배열에서는, 하나의 온 칩 렌즈(111) 및 하나의 컬러 필터(112)를 마련한 화소(4개의 화소(100)(1PD)로 구성된 화소)에 대해 4개의 화소(100)(1PD)의 광전변환 소자(113)가 각각 마련된 구조로 된다. 그리고, 여기서는, 하나의 온 칩 렌즈(111) 및 하나의 컬러 필터(112)를 공유하고 있는 4개의 화소(100)(1PD)의 광전변환 소자(113)의 각각의 출력을 이용함으로써, 위상차 검출이 행하여진다. 여기서는, 하나의 온 칩 렌즈(111)에 대해 2행2열의 화소(100)(1PD)가 배치되어 있기 때문에 예를 들면 행방향과 열방향의 양방의 방향에서, 위상차 검출의 정보를 얻을 수 있다.
또한, 여기서는, 화소간 분리부(115)의 돌기부(115P)가 하나의 온 칩 렌즈(111)마다 배치된 2행2열의 화소(100)(1PD)에 대해 형성된 경우를 설명하였지만, 화소간 차광부(114)의 돌기부(114P)가 형성되도록 하여도 좋다.
이상, 제8의 실시의 형태에 관해 설명하였다.
(9) 제9의 실시의 형태
(화소의 평면 레이아웃)
도 28은, 제9의 실시의 형태의 화소(100)의 평면 레이아웃을 도시하는 도면이다.
도 28에서는, 화소 어레이부(11)에 베이어 배열에서 배열된 복수의 화소(100) 중, 임의의 4행4열의 화소(100)를 예시하고 있다. 단, 도 28에 도시한 4행4열의 화소 배열의 화소(100)는, 상술한 도 9 등에 도시한 화소(100)와 마찬가지로, 2PD 구조로 되어 있다.
또한, 도 28에서는, 상술한 도 9 등과 마찬가지로, 4행4열의 화소 배열의 화소(100) 중, G화소(100)에서는, 화소간 분리부(115)의 일부가 G화소(100)의 중심을 향하여 돌기형상으로 나와 돌기부(115P)가 형성되어 있다. 보다 구체적으로는, 도 29에 도시하는 바와 같이, 화소간 분리부(115)의 돌기부(115P)는, 상술한 도 8에서, 광전변환 소자사이의 분리성의 기여가 낮다고 여겨진 P형의 영역(A1, A2)에 대응한 영역에 형성되어 있다.
여기서, 도 28에 도시한 평면도에서의 X-X' 단면인데, 도 30에 도시하는 바와 같은 단면도로 도시할 수 있다. 단, 여기서는, 4행4열의 화소 배열에서, 좌상의 화소(100)가 화소(100-11)라고 하면 X-X' 단면의 대상이 되는 것은, G화소(100-41), B화소(100-42), G화소(100-43), B화소(100-44)의 4개이다.
도 30의 단면도는, 상술한 도 11의 단면도와 기본적으로 동일한 구조를 갖고 있지만, 화소간 분리부(115)의 가공의 방법(제조 과정)이 다르다.
즉, 상술한 도 11에서는, DTI 기술을 이용하여 광의 입사측의 면(광입사면)부터, 실리콘층에 대해 홈부(트렌치)를 파들어가서, 그 홈부에 산화막이나 금속 등의 물질을 매입함으로써, 화소간 분리부(115)가 형성되어 있다. 한편으로 도 30에서는, 광의 입사측의 반대측의 면(전송 게이트(151A, 151B)측의 면, 예를 들면 표면측)부터, 실리콘층에 대해 홈부(트렌치)를 파들어가서, 그 홈부에 산화막이나 금속 등의 물질을 매입함으로써, 화소간 분리부(115)가 형성되어 있다.
이상, 제9의 실시의 형태에 관해 설명하였다.
(10) 제10의 실시의 형태
그런데, CMOS 이미지 센서 등의 고체 촬상 장치에서는, 단일한 온 칩 렌즈의 직하의 2개의 광전변환 소자 사이의 소자사이 분리를 불순물을 임플란테이션법에 의해 주입하는 것(이하, 불순물 임플라라고 한다)에 의해 실현한 경우에 다음과 같은 문제가 생기는 것이 상정된다. 즉, 불순물 임플라에 의해 전계를 걸기 어려운 광입사면(예를 들면 이면측)의 실리콘 계면 근방이나, 소자사이 분리부의 전계가 약한 개소에서 발생한 전하(부전하, 즉, 전자(캐리어))가 소망하는 좌우의 광전변환 소자에 축적되지 않아, 위상차 검출의 정밀도가 저하되는 문제이다.
그래서, 제10의 실시의 형태에서는, CMOS 이미지 센서(10)(도 1)의 화소 어레이부(11)에 2차원형상으로 배열된 화소(200)로서, 좌우의 광전변환 소자의 중앙 부분과, 기타의 부분과의 실리콘 계면의 고정 전하량을 바꾸어, 중앙부로부터 좌우의 광전변환 소자로의 포텐셜 구배를 형성한 구조를 채용한다. 이와 같은 구조를 채용함으로써, 실리콘 계면의 근방에서 광전변환된 전하(전자)를 소망하는 좌우의 광전변환 소자에 축적하여 위상차의 검출 정밀도를 향상시킬 수 있다.
이하, 도 31 내지 도 42를 참조하면서, 제10의 실시의 형태의 화소의 구조에 관해 설명한다.
(구조의 제1의 예)
도 31은, 제10의 실시의 형태의 화소의 구조의 제1의 예를 도시하는 단면도이다.
도 31에서, 화소(200)는, 2PD 구조로 이루어지고, 온 칩 렌즈(211), 컬러 필터(212), 광전변환 소자(213A, 213B), 화소간 차광부(214) 및 화소간 분리부(215)를 포함하여 구성된다.
또한, 화소(200)에서, 온 칩 렌즈(211) 내지 화소간 분리부(215)는, 상술한 실시의 형태의 화소(100)(도 11 등)를 구성하는 온 칩 렌즈(111), 컬러 필터(112), 광전변환 소자(113A, 113B), 화소간 차광부(114) 및 화소간 분리부(115)에 각각 대응하고 있기 때문에 여기서는, 그 설명을 적절히 생략한다. 단, 도 31의 화소(200)에서, 화소간 분리부(215)는, 산화막에 의해 형성되어 있다.
화소(200)에서, 온 칩 렌즈(211)에 의해 집광된 입사광(IL)은, 컬러 필터(212)를 통과하여 광전변환 소자(213A) 또는 광전변환 소자(213B)에서의 광전변환 영역에 조사된다.
도 31의 A는, 입사광(ILA)의 집광 스폿이 좌우의 광전변환 소자(213A, 213B)의 중앙부로부터 좌측으로 어긋나 있는 경우, 즉, 위상차의 어긋남이 있는 경우를 도시하고 있다. 한편으로 도 31의 B는, 입사광(ILB)의 집광 스폿이 좌우의 광전변환 소자(213A, 213B)의 중앙부에 있는 경우, 즉, 위상차의 어긋남이 없는 경우를 도시하고 있다.
여기서, 실리콘층(반도체층)에서, 좌우의 광전변환 소자(213A, 213B)의 중앙 부분과, 기타의 부분에서는, 광의 입사측의 실리콘 계면의 고정 전하량이 다르다.
구체적으로는, 광의 입사측의 실리콘 계면에서, 중앙부의 영역인 중앙 영역(221)(제1의 영역)에서의 고정 전하량과, 당해 중앙부를 제외한 영역(중앙부의 좌우의 영역)인 좌우 영역(222)(제2의 영역)에서의 고정 전하량을 비교하면 중앙 영역(221)에서의 고정 전하량이, 좌우 영역(222)에서의 고정 전하량보다도 많게 되어 있다.
이와 같이, 광의 입사측의 실리콘 계면에서의 중앙 영역(221)과 좌우 영역(222)과의 고정 전하량을 바꾸어서, 좌우의 광전변환 소자(213A, 213B)의 중앙부로부터, 좌우의 광전변환 소자(213A, 213B)로의 포텐셜 구배를 형성함으로써, 실리콘 계면에서 광전변환된 전자를 소망하는 좌우의 광전변환 소자(213A, 213B)에 축적할 수 있다.
예를 들면 도 31의 A의 화소(200)에서는, 도면 중의 입사광(ILA)으로 도시한 바와 같은 위상차의 어긋남이 있는 경우에 있어서, 실리콘 계면의 근방에서 광전변환된 전자가 포텐셜 구배에 의해 소망하는 좌우의 광전변환 소자(213A, 213B)에 축적되어, 분리비가 향상되기 때문에 위상차의 검출 정밀도를 향상시킬 수 있다.
(구조의 제2의 예)
도 32는, 제10의 실시의 형태의 화소의 구조의 제2의 예를 도시하는 단면도이다.
도 32는, 도 31에 도시한 화소(200)의 단면 중, 광의 입사측의 실리콘 계면에서의 중앙 영역(221)과 좌우 영역(222)을 포함하는 영역을 확대하여 도시하고 있다. 이 확대도에 도시하는 바와 같이, 실리콘층(210)(의 계면층(220))상에 형성된 절연층(230)에서는, 산화막(231)과 산화막(233)에 대해 High-k막(232A)과 High-k막(232B)으로 이루어지는 층을 적층한 구조로 되어 있다.
High-k막은, 이산화실리콘(SiO2) 등의 절연막보다 비유전율이 높은 재료로 이루어지는 고유전율 절연막(고유전율막)이다.
여기서, 절연층(230)에서, High-k막(232A)은, 계면층(220)에서의 좌우 영역(222)에 대응하도록, 산화막(231)상에 형성된다. 또한, 절연층(230)에서, High-k막(232B)은, 계면층(220)에서의 중앙 영역(221)에 대응하도록, 산화막(231)상에 형성된다. 또한, 절연층(230)에서, High-k막(232A)과 High-k막(232B)으로 이루어지는 층의 상층은, 산화막(233)이 형성된다.
High-k막(232A)과 High-k막(232B)은, 다른 고유전율막이고, 예를 들면 산화알루미늄(Al2O3)이나 산화하프늄(HfO2) 등을 사용할 수 있다. 또한, 산화막(231)과 산화막(233)으로서는, 예를 들면 이산화실리콘(SiO2)을 사용할 수 있다.
이와 같이, 도 32의 화소(200)에서는, 절연층(230)으로서, 좌우의 광전변환 소자(213A, 213B)의 중앙부의 고정 전하량이 많은 중앙 영역(221)에 대응한 부분에 High-k막(232B)이 형성되고, 당해 중앙부를 제외한 고정 전하량이 적은 좌우 영역(222)에 대응한 부분에 High-k막(232A)이 형성되는 구조를 갖고 있다.
이와 같은 구조를 가짐으로써, 도 32의 화소(200)에서는, 도면 중의 입사광(IL)으로 도시한 바와 같은 위상차 어긋남이 있는 경우에 실리콘 계면의 근방에서 광전변환된 전자가 소망하는 좌우의 광전변환 소자(213A, 213B)에 축적되기 때문에 위상차의 검출 정밀도를 향상시킬 수 있다.
(구조의 제3의 예)
도 33은, 제10의 실시의 형태의 화소의 구조의 제3의 예를 도시하는 단면도이다.
도 33은, 상술한 도 32와 마찬가지로, 도 31에 도시한 화소(200)의 단면 중, 실리콘 계면의 중앙 영역(221)과 좌우 영역(222)을 포함하는 영역의 확대도를 도시하고 있는데, 상술한 도 32의 확대도에 비하여 절연층(230)의 단면의 구조가 다르다.
즉, 도 33의 절연층(230)에서는, 산화막(231)과 산화막(233) 사이에 형성되는 층이, High-k막(232A)만으로 이루어지는 하층과, High-k막(232A) 및 High-k막(232B)으로 이루어지는 상층을 적층한 구조로서, 오목형의 형상이 되는 High-k막(232A)의 홈의 부분에 High-k막(232B)을 매입한 구조로 되어 있다.
이와 같이, 도 33의 화소(200)에서는, 절연층(230)으로서, 좌우의 광전변환 소자(213A, 213B)의 중앙부의 고정 전하량이 많은 중앙 영역(221)에 대응하는 부분에 High-k막(232A, 232B)(A+B)이 형성되고, 당해 중앙부를 제외한 고정 전하량이 적은 좌우 영역(222)에 대응하는 부분에 High-k막(232A)(A)이 형성되는 구조를 갖고 있다.
환언하면 중앙 영역(221)에 대응한 부분의 High-k막과, 좌우 영역(222)에 대응한 부분의 High-k막의 적어도 일방의 막은, 2 이상의 다른 고유전율막이 적층되어 있다고 말할 수 있다.
이와 같은 구조를 가짐으로써, 도 33의 화소(200)에서는, 도면 중의 입사광(IL)으로 도시한 바와 같은 위상차 어긋남이 있는 경우에 실리콘 계면의 근방에서 광전변환된 전자가 소망하는 좌우의 광전변환 소자(213A, 213B)에 축적되기 때문에 위상차의 검출 정밀도를 향상시킬 수 있다.
(구조의 제4의 예)
도 34는, 제10의 실시의 형태의 화소의 구조의 제4의 예를 도시하는 단면도이다.
도 34는, 상술한 도 32 등과 마찬가지로, 도 31에 도시한 화소(200)의 단면 중, 실리콘 계면의 중앙 영역(221)과 좌우 영역(222)을 포함하는 영역의 확대도를 도시하고 있는데, 상술한 도 32 등의 확대도에 비하여 절연층(230)의 단면의 구조가 다르다.
즉, 도 34의 절연층(230)에서는, 산화막(231)과 산화막(233) 사이에 형성되는 층이, High-k막(232A)만으로 이루어지는 하층과, High-k막(232B) 및 High-k막(232C)으로 이루어지는 상층을 적층한 구조로 되어 있다. 여기서, High-k막(232C)은, High-k막(232A, 232B)과 다른 고유전율막이다.
이와 같이, 도 34의 화소(200)에서는, 절연층(230)으로서, 좌우의 광전변환 소자(213A, 213B)의 중앙부의 고정 전하량이 많은 중앙 영역(221)에 대응한 부분에 High-k막(232A, 232C)(A+C)이 형성되고, 당해 중앙부를 제외한 고정 전하량이 적은 좌우 영역(222)에 대응한 부분에 High-k막(232A, 232B)(A+B)이 형성되는 구조를 갖고 있다.
환언하면 중앙 영역(221)에 대응한 부분의 High-k막과, 좌우 영역(222)에 대응한 부분의 High-k막의 적어도 일방의 막은, 2 이상의 다른 고유전율막이 적층되어 있다고 말할 수 있다.
이와 같은 구조를 가짐으로써, 도 34의 화소(200)에서는, 도면 중의 입사광(IL)으로 도시한 바와 같은 위상차 어긋남이 있는 경우에 실리콘 계면의 근방에서 광전변환된 전자가 소망하는 좌우의 광전변환 소자(213A, 213B)에 축적되기 때문에 위상차의 검출 정밀도를 향상시킬 수 있다.
(구조의 제5의 예)
도 35는, 제10의 실시의 형태의 화소의 구조의 제5의 예를 도시하는 단면도이다.
도 35는, 상술한 도 32 등과 마찬가지로, 도 31에 도시한 화소(200)의 단면 중, 실리콘 계면의 중앙 영역(221)과 좌우 영역(222)을 포함하는 영역의 확대도를 도시하고 있는데, 상술한 도 32 등의 확대도에 비하여 절연층(230)의 단면의 구조가 다르다.
즉, 도 35의 절연층(230)에서는, 산화막(231)과 산화막(233) 사이에 형성되는 층이, High-k막(232A)만으로 이루어지는 제1의 층과, High-k막(232B) 및 High-k막(232C)으로 이루어지는 제2의 층과, High-k막(232D)을 일부에 포함하는 제3의 층을 적층한 구조로 되어 있다.
여기서, High-k막(232D)은, High-k막(232A 내지 232C)과 다른 고유전율막이다. 또한, 절연층(230)에서, 제3의 층에서의 High-k막(232D)을 제외한 부분은, 그 상층이 되는 산화막(233)의 일부를 포함하여 형성된다.
이와 같이, 도 35의 화소(200)에서는, 절연층(230)으로서, 좌우의 광전변환 소자(213A, 213B)의 중앙부의 고정 전하량이 많은 중앙 영역(221)에 대응한 부분에 High-k막(232A, 232C, 232D)(A+C+D)이 형성되고, 당해 중앙부를 제외한 고정 전하량이 적은 좌우 영역(222)에 대응한 부분에 High-k막(232A, 232B)(A+B)이 형성되는 구조를 갖고 있다.
환언하면 중앙 영역(221)에 대응한 부분의 High-k막과, 좌우 영역(222)에 대응한 부분의 High-k막의 적어도 일방의 막은, 2 이상의 다른 고유전율막이 적층되어 있다고 말할 수 있다. 또한, 중앙 영역(221)에 대응한 부분의 High-k막은, 좌우 영역(222)에 대응한 부분의 High-k막보다도, High-k막의 적층수가 많다고도 말할 수 있다.
이와 같은 구조를 가짐으로써, 도 35의 화소(200)에서는, 도면 중의 입사광(IL)으로 도시한 바와 같은 위상차 어긋남이 있는 경우에 실리콘 계면의 근방에서 광전변환된 전자가 소망하는 좌우의 광전변환 소자(213A, 213B)에 축적되기 때문에 위상차의 검출 정밀도를 향상시킬 수 있다.
(구조의 제6의 예)
도 36은, 제10의 실시의 형태의 화소의 구조의 제6의 예를 도시하는 단면도이다.
도 36은, 상술한 도 32 등과 마찬가지로, 도 31에 도시한 화소(200)의 단면 중, 실리콘 계면의 중앙 영역(221)과 좌우 영역(222)을 포함하는 영역의 확대도를 도시하고 있는데, 상술한 도 32 등의 확대도에 비하여 절연층(230)의 단면의 구조가 다르다.
즉, 도 36의 절연층(230)에서는, 산화막(231)과 산화막(233) 사이에 형성되는 층이, High-k막(232A)만으로 이루어지는 제1의 층과, High-k막(232B) 및 High-k막(232C)으로 이루어지는 제2의 층과, High-k막(232D) 및 High-k막(232E)으로 이루어지는 제3의 층을 적층한 구조로 되어 있다. 여기서, High-k막(232E)은, High-k막(232A 내지 232D)과 다른 고유전율막이다.
이와 같이, 도 36의 화소(200)에서는, 절연층(230)으로서, 좌우의 광전변환 소자(213A, 213B)의 중앙부의 고정 전하량이 많은 중앙 영역(221)에 대응하는 부분에 High-k막(232A, 232C, 232D)(A+C+D)이 형성되고, 당해 중앙부를 제외한 고정 전하량이 적은 좌우 영역(222)에 대응하는 부분에 High-k막(232A, 232B, 232E)(A+B+E)이 형성되는 구조를 갖고 있다.
환언하면 중앙 영역(221)에 대응한 부분의 High-k막과, 좌우 영역(222)에 대응한 부분의 High-k막의 적어도 일방의 막은, 2 이상의 다른 고유전율막이 적층되어 있다고 말할 수 있다. 또한, 중앙 영역(221)에 대응한 부분의 High-k막과, 좌우 영역(222)에 대응한 부분의 High-k막은, 동일한 적층수라고도 말할 수 있다.
이와 같은 구조를 가짐으로써, 도 36의 화소(200)에서는, 도면 중의 입사광(IL)으로 도시한 바와 같은 위상차 어긋남이 있는 경우에 실리콘 계면의 근방에서 광전변환된 전자가 소망하는 좌우의 광전변환 소자(213A, 213B)에 축적되기 때문에 위상차의 검출 정밀도를 향상시킬 수 있다.
(구조의 제7의 예)
도 37은, 제10의 실시의 형태의 화소의 구조의 제7의 예를 도시하는 단면도이다.
도 37은, 상술한 도 32 등과 마찬가지로, 도 31에 도시한 화소(200)의 단면 중, 실리콘 계면의 중앙 영역(221)과 좌우 영역(222)을 포함하는 영역의 확대도를 도시하고 있는데, 상술한 도 32 등의 확대도에 비하여 절연층(230)의 단면의 구조가 다르다.
즉, 도 37의 절연층(230)에서는, 산화막(231)과 산화막(233) 사이에 형성되는 층이, High-k막(232A)만으로 이루어지는 제1의 층과, High-k막(232A)을 일부에 포함하는 제2의 층을 적층한 구조로 되어 있다. 또한, 절연층(230)에서, 제2의 층에서의 High-k막(232A)을 제외한 부분은, 그 상층이 되는 산화막(233)의 일부를 포함하여 형성된다.
이와 같이, 도 37의 화소(200)에서는, 절연층(230)으로서, 좌우의 광전변환 소자(213A, 213B)의 중앙부의 고정 전하량이 많은 중앙 영역(221)에 대응하는 부분과, 당해 중앙부를 제외한 고정 전하량이 적은 좌우 영역(222)에 대응하는 부분에서, 다른 높이의 High-k막(232A)이 형성되는 구조를 갖고 있다.
환언하면 도 37의 절연층(230)에서, High-k막(232A)은, 중앙부의 중앙 영역(221)에 대응한 부분이, 중앙부를 제외한 좌우 영역(222)에 대응한 부분에 비하여 높게 되어, 볼록형상의 구조로 되어 있다고 말할 수 있다. 또한, 이와 같은 구조로부터, 도 37의 절연층(230)에서, 중앙 영역(221)에 대응한 부분과, 좌우 영역(222)에 대응한 부분은, 산화막(233)의 두께가 다르다고도 말할 수 있다.
이와 같은 구조를 가짐으로써, 도 37의 화소(200)에서는, 도면 중의 입사광(IL)으로 도시한 바와 같은 위상차 어긋남이 있는 경우에 실리콘 계면의 근방에서 광전변환된 전자가 소망하는 좌우의 광전변환 소자(213A, 213B)에 축적되기 때문에 위상차의 검출 정밀도를 향상시킬 수 있다.
(구조의 제8의 예)
도 38은, 제10의 실시의 형태의 화소의 구조의 제8의 예를 도시하는 단면도이다.
도 38은, 상술한 도 32 등과 마찬가지로, 도 31에 도시한 화소(200)의 단면 중, 실리콘 계면의 중앙 영역(221)과 좌우 영역(222)을 포함하는 영역의 확대도를 도시하고 있는데, 상술한 도 32 등의 확대도에 비하여 절연층(230)의 단면의 구조가 다르다.
즉, 도 38의 절연층(230)에서는, 산화막(231)과 산화막(233) 사이에 형성되는 층이, High-k막(232A)만으로 이루어지는 층을 형성하고 있는데, 그 층의 일부로서, 중앙부의 중앙 영역(221)에 대응한 부분이, 중앙부를 제외한 좌우 영역(222)에 대응한 부분에 대해 하측으로 돌출한 구조로 되어 있다.
이와 같이, 도 38의 화소(200)에서는, 절연층(230)으로서, 좌우의 광전변환 소자(213A, 213B)의 중앙부의 고정 전하량이 많은 중앙 영역(221)에 대응하는 부분과, 당해 중앙부를 제외한 고정 전하량이 적은 좌우 영역(222)에 대응하는 부분에서, 산화막(231)의 두께가 다른 구조를 갖고 있다.
이와 같은 구조를 가짐으로써, 도 38의 화소(200)에서는, 도면 중의 입사광(IL)으로 도시한 바와 같은 위상차 어긋남이 있는 경우에 실리콘 계면의 근방에서 광전변환된 전자가 소망하는 좌우의 광전변환 소자(213A, 213B)에 축적되기 때문에 위상차의 검출 정밀도를 향상시킬 수 있다.
(구조의 제9의 예)
도 39는, 제10의 실시의 형태의 화소의 구조의 제9의 예를 도시하는 단면도이다.
상술한 도 31 내지 도 38에서는, 화소간 분리부(215)가 산화막에 의해 형성된 경우를 나타냈지만, 화소간 분리부(215)의 재료로서는, 산화막으로 한하지 않고, 예를 들면 금속 등의 다른 재료를 사용할 수 있다. 도 39는, 화소(200)에서, 상술한 화소간 분리부(215) 대신에 금속을 매입함으로써, 화소간 분리부(215A)를 형성한 경우의 구조를 도시하고 있다.
여기서는, 예를 들면 DTI 기술을 이용하여 광전변환 영역이 형성된 실리콘층 내에 광입사면측부터, 정방 단위의 화소의 형상에 응하여 정방 격자형상으로 파들어가진 홈부(트렌치)에 대해 금속을 매입함으로써, 화소간 분리부(215A)가 형성된다. 여기서, 금속으로서는, 예를 들면 텅스텐(W)이나 알루미늄(Al), 은(Ag), 로듐(Rh) 등을 사용할 수 있다.
예를 들면 도 39의 A의 화소(200)에서는, 도면 중의 입사광(ILA)으로 도시한 바와 같은 위상차의 어긋남이 있는 경우에 있어서, 실리콘 계면의 근방에서 광전변환된 전자가 포텐셜 구배에 의해 소망하는 좌우의 광전변환 소자(213A, 213B)에 축적된 때에 화소간 분리부(215A)에 의해 실리콘층 내에서 이웃하는 화소 사이가 물리적으로 분리되어 있기 때문에 당해 전자가 이웃하는 화소에 유입되는 것을 방지할 수 있다. 또한, 도 39의 B에 도시하는 바와 같이, 위상차가 없는 경우에 대해서도 마찬가지로, 전자가 이웃하는 화소에 유입되는 것을 방지할 수 있다.
이와 같이, 도 39의 화소(200)에서는, 화소간 분리부(215A)를 형성하여 금속에 의한 이색 사이의 화소간 분리에 의해 벌크 내의 혼색을 억제하고, 분리비를 향상시킬 수 있다. 또한, 상술한 설명에서는, 화소간 분리부(215)(215A)의 재료로서, 산화막과 금속을 설명하였지만, 다른 물질을 사용하도록 하여도 좋다.
또한, 도 39의 화소(200)에서는, 화소간 분리부(215A)를 형성한데 즈음하여 광전변환 영역이 형성된 실리콘층(210) 내에 광입사면 측부터 홈부를 파들어가 금속을 매입하는 것이 되는데, 그때에 홈부의 측벽에 피닝막(부의 고정 전하막) 및 절연막을 마련할 수 있다. 여기서, 피닝막으로서는, 예를 들면 산화하프늄(HfO2)이나, 산화탄탈(Ta2O5) 등을 사용할 수 있다. 또한, 절연막으로서는, 예를 들면 이산화실리콘(SiO2) 등을 사용할 수 있다.
(구조의 제10의 예)
도 40은, 제10의 실시의 형태의 화소의 구조의 제10의 예를 도시하는 단면도이다.
상술한 도 31 내지 도 38, 또는 도 39에서는, 산화막으로 이루어지는 화소간 분리부(215), 또는 금속으로 이루어지는 화소간 분리부(215A)에 의해 이웃하는 화소 사이를 물리적으로 분리하는 구조를 나타냈지만, 실리콘층 내의 불순물에 의해 분리하도록 하여도 좋다.
도 40의 화소(200)는, 이웃하는 화소 사이에 물리적인 분리부(화소간 분리부)를 형성하지 않고, 실리콘층의 내부의 불순물 분포에 의해 이웃하는 화소 사이를 분리하는 구조를 갖고 있다. 여기서는, 도 40의 A에 입사광(ILA)에 의한 위상차 어긋남이 있는 경우를 도시하는 한편으로 도 40의 B에는, 입사광(ILB) 에 의한 위상차 어긋남이 없는 경우를 도시하고 있다.
(구조의 제11의 예)
도 41은, 제10의 실시의 형태의 화소의 구조의 제11의 예를 도시하는 단면도이다.
도 41은, 상술한 도 31과 마찬가지로, 화소(200)의 단면을 도시하고 있는데, 상술한 도 31의 단면과 비교하여 좌우의 광전변환 소자(213A, 213B)의 중앙부에 투명 전극(241)이 형성되어 있는 점이 다르다. 또한, 도 41의 A는, 입사광(ILA)에 의한 위상차 어긋남이 있는 경우를 도시하는 한편으로 도 41의 B에는, 입사광(ILB) 에 의한 위상차 어긋남이 없는 경우를 도시하고 있다.
도 41의 화소(200)에서는, 투명 전극(241)에 대해 부바이어스를 인가함으로써, 좌우의 광전변환 소자(213A, 213B)의 중앙부로부터, 좌우의 광전변환 소자(213A, 213B)로의 포텐셜 구배를 형성할 수 있다. 이에 의해 도 41의 화소(200)에서는, 실리콘 계면의 근방에서 광전변환된 전자를 소망하는 좌우의 광전변환 소자(213A, 213B)에 축적할 수 있다.
예를 들면 도 41의 A의 화소(200)에서는, 도면 중의 입사광(ILA)으로 도시한 바와 같은 위상차의 어긋남이 있는 경우에 있어서, 투명 전극(241)에 부바이어스를 인가하여 포텐셜 구배를 형성함으로써, 실리콘 계면의 근방에서 광전변환된 전자가 소망하는 좌우의 광전변환 소자(213A, 213B)에 축적되기 때문에 위상차의 검출 정밀도를 향상시킬 수 있다.
(전위 분포의 모식도)
도 42는, 제10의 실시의 형태의 화소의 전위 분포를 모식적으로 표현한 도면이다.
또한, 도 42에서는, 비교를 위해 도 42의 B에 본 기술을 적용한 화소(200)의 전위 분포를 도시한과 함께, 도 42의 A에 일반적인 화소(900)의 전위 분포를 도시하고 있다. 여기서는, 좌우의 광전변환 소자나 그 사이의 영역상에 그려진 선에 의해 전위 분포를 도시하고 있는데, 이들의 선이 조밀할수록, 전위 구배가 붙어 있는 것을 나타내고 있다.
도 42의 A의 화소(900)의 전위 분포로 도시하는 바와 같이, 일반적으로 실리콘층에서 광입사면(예를 들면 이면측)이나, 좌우의 광전변환 소자(913A, 913B)의 중앙부의 영역은, 전위 구배를 붙이기 어려운 것이다.
그에 대해 화소(200)에서는, 광입사면(예를 들면 이면측)의 실리콘 계면에서의 중앙 영역(221)과 좌우 영역(222)과의 고정 전하량을 바꿈으로써, 광입사면이나 중앙부의 영역에 전위 구배를 붙이기 쉽게 하여 좌우의 광전변환 소자(213A, 213B)의 중앙부부터, 좌우의 광전변환 소자(213A, 213B)로의 포텐셜 구배를 형성하고 있다.
또한, 도 42의 A에 도시한 전송 패스(PA)와, 도 42의 B에 도시한 전송 패스(PB)는, 화소(900)와 화소(200)의 전위 분포로부터 도출된 전송 경로를 각각 도시하고 있다. 여기서, 전자의 전송에 즈음하여서는, 전위와 확산의 효과가 있기 때문에 전송에 시간이 걸리면 그만큼 확산하여 버려, 전자를 소망하는 광전변환 소자(213)(213A 또는 213B)에 축적할 수가 없게 되는 것이 상정된다.
예를 들면 도 42의 A에서는, 전송 패스(PA)가 하방향의 패스와 좌경사 하방향의 패스와의 조합으로 되어 있어서, 전자의 전송에 시간이 걸려서 확산하여 버릴 우려가 있다. 한편으로 예를 들면 도 42의 B에서는, 전송 패스(PB)가 좌경사 하방향의 패스만으로 되어 있어서, 전자의 전송을 재빠르게 행할 수 있다.
즉, 도 42의 B의 화소(200)에서는, 광입사면의 실리콘 계면에서의 중앙 영역(221)과 좌우 영역(222)과의 고정 전하량을 바꿈으로써 전위 구배가 붙어 있기 때문에 말하자면 소자 경계의 횡방향(적층 방향과 수직한 방향)의 전계 어시스트에 의해 전송 패스(PB)가 실현되어, 보다 신속하게 전자의 전송을 행할 수가 있다. 그때문에 도 42의 B의 화소(200)에서는, 실리콘 계면의 근방에서 광전변환된 전자를 소망하는 광전변환 소자(213)(213A 또는 213B)에 축적하는 것이 가능해진다.
이상, 제10의 실시의 형태에 관해 설명하였다.
(11) 제11의 실시의 형태
상술한 바와 같이, CMOS 이미지 센서 등의 고체 촬상 장치에서는, 단일한 온 칩 렌즈의 직하에 복수의 광전변환 소자를 형성한 화소의 구조를 채용함으로써, 각 화소로부터 얻어지는 위상차 검출용의 신호에 의거하여 거리 정보를 얻을 수 있기 때문에 촬상과 거리측정을 동시에 행하는 것이 가능해진다. 또한, 당해 화소에서, 좌우의 광전변환 소자 사이는, 불순물 임플라에 의한 분리 구조를 이용할 수 있다.
이와 같은 구조를 채용함으로써, 촬상용의 신호와 위상차 검출용의 신호를 동시에 취득할 수 있는데, 하나의 온 칩 렌즈로부터 입사된 광을 광전변환할 때에 좌우의 광전변환 소자의 중심에 위치한 분리벽이 되는 부분에서, 광전변환의 대상이 되는 성분이 발생하는 일이 된다.
이 분리벽은, 임플라 분리로 형성되기 때문에 어느 정도의 폭을 갖고 있기 때문에 그 영역에서 광전변환된 전하(전자)는, 위상차로서 상정되는 측의 광전변환 소자와 반대측의 광전변환 소자에 흘리는 것이 불필요한 성분(혼색 성분)이 될 우려가 있다. 이 영향에 의해 분리비가 부족하여 위상차 검출의 정밀도가 저하되는 것으로 된다.
또한, 예를 들면 화소에서, 좌우의 광전변환 소자의 중심에 위치하는 분리벽을 임플라 분리가 아니라, 저굴절재 등을 사용한 분리 구조로 한 경우, 그 영역에 입사된 광이 굴절되어, 보다 각도가 붙은 광으로서, 인접하는 다른 화소의 광전변환 소자에 입사되기 쉬워져 버려, 이색(異色)의 광학 혼색이 생길 우려가 있다.
그래서, 제11의 실시의 형태에서는, CMOS 이미지 센서(10)(도 1)의 화소 어레이부(11)에 2차원형상으로 배열된 화소(300)로서, 동색(同色)의 광전변환 소자의 중앙 부분(동색사이 중앙부)에 저굴절의 매입 소자 분리 영역을 형성함과 함께, 이색의 광전변환 소자의 중앙 부분(이색사이 중앙부)에 금속의 매입 소자 분리 영역을 형성한 구조를 채용한다. 이와 같은 구조를 채용함으로써, 분리비를 향상시킴과 함께, 혼색을 방지할 수 있다.
이하, 도 43 내지 도 48을 참조하면서, 제11의 실시의 형태의 화소의 구조에 관해 설명한다.
(구조의 제1의 예)
도 43은, 제11의 실시의 형태의 화소의 구조의 제1의 예를 도시하는 단면도이다.
도 43에서, 화소(300)는, 2PD 구조로 이루어지고, 온 칩 렌즈(311), 컬러 필터(312), 광전변환 소자(313A, 313B), 화소간 차광부(314) 및 화소간 분리부(315)를 포함하여 구성된다.
또한, 화소(300)에서, 온 칩 렌즈(311) 내지 화소간 분리부(315)는, 상술한 실시의 형태의 화소(100)(도 11 등)를 구성하는 온 칩 렌즈(111), 컬러 필터(112), 광전변환 소자(113A, 113B), 화소간 차광부(114) 및 화소간 분리부(115)에 각각 대응하고 있기 때문에 여기서는, 그 설명을 적절히 생략한다.
또한, 설명의 사정상, 화소(300)마다의 색을 특히 구별한 필요가 있는 경우에는, R화소(300)를 「300(R)」로 표기하고, G화소(300)를 「300(G)」로 표기하는 것으로 한다.
화소(300)에서, 온 칩 렌즈(311)에 의해 집광된 입사광(IL)은, 컬러 필터(312)를 통과하여 광전변환 소자(313A) 또는 광전변환 소자(313B)에서의 광전변환 영역에 조사된다.
여기서, G화소(300)에서, 광전변환 소자(313A)와 광전변환 소자(313B) 사이의 동색사이 중앙부(321)에는, 광입사면측에 저굴절재(매입 소자)를 매입하여 소자 분리 영역으로서의 저굴절 영역(331)을 형성하고 있다. 이 저굴절재로서는, 예를 들면 산화막이나 유리 등의 저굴절재를 사용할 수 있다. 보다 구체적으로는, 저굴절재로서, 예를 들면 광전변환 영역을 형성한 실리콘층(310)(반도체층)에 대해 낮은 굴절률으로 이루어지는 재료를 사용할 수 있다.
저굴절 영역(331)의 단면 형상은, 테이퍼가 붙여져 있고, 광입사면에 근접함에 따라 폭이 넓어지는 삼각형상으로 되어 있다. 또한, 동색사이 중앙부(321)에서는, 광입사면부터 소정의 벌크 깊이(예를 들면 수 100㎚ 정도)로, 분리재로서의 저굴절재(매입 소자)가 없어지고, 그 하측의 영역은 불순물에 의해 분리되어 있다.
또한, G화소(300)와 R화소(300)가 좌우에 인접하고 있는 경우에 G화소(300)의 우측의 광전변환 소자(313B)와, R화소(300)의 좌측의 광전변환 소자(313A) 사이의 이색사이 중앙부(322)에는, 광입사면측부터, 화소(300)의 형상에 응하여 파들어가진 홈부(트렌치)에 금속을 매입하여 화소간 분리부(315)를 형성하고 있다. 여기서, 금속으로서는, 예를 들면 텅스텐(W)이나 알루미늄(Al), 은(Ag), 로듐(Rh) 등을 사용할 수 있다.
이와 같이, 도 43의 화소(300)에서는, 동색사이 중앙부(321)에 그 단면이 역삼각형상이 되는 저굴절 영역(331)을 형성한 구조를 갖고 있기 때문에 저굴절 영역(331)에 입사한 광은, 그 굴절면에 의해 진행 방향이 구부러지게 된다. 예를 들면 화소(300)에서, 저굴절 영역(331)에 입사한 광 중, 우경사 상방향부터 입사한 광은, 굴절면(331A)에 의해 굴절되어 좌측의 광전변환 소자(313A)에 입사하는 한편으로 좌경사 상방향부터 입사한 광은, 굴절면(331B)에 의해 굴절되어 광전변환 소자(313B)에 입사하게 된다(도 중의 화살표).
그때문에 온 칩 렌즈(311)에 의해 집광되는 광의 집광 스폿이, 좌우의 광전변환 소자(313A, 313B) 사이의 동색사이 중앙부(321)에 형성된 저굴절 영역(331)에 입사한 때, 그 입사광은, 어느 깊이까지 광전변환되지 않고 그대로 진행하고, 어느 깊이에 달하였을 때에 광전변환 소자(313A) 또는 광전변환 소자(313B)에 입사하여 광전변환되게 된다. 특히, 도 43의 화소(300)에서, 동색사이 중앙부(321)에서 광입사면의 중심에 입사한 광을 좌우의 광전변환 소자(313A, 313B)로 나누는 것이 가능해진다.
여기서, 동색사이 중앙부(321)에서, 분리벽을 임플라 분리에 의해 형성한 경우, 분리벽이 되는 영역에서 광전변환된 전자가 위상차로서 상정되는 측의 광전변환 소자와 반대측의 광전변환 소자에 흐르는 것에 기인하여 위상차 검출의 정밀도가 저하될 우려가 있는 것은 앞서 기술한 바와 같다.
그에 대해 도 43의 화소(300)에서는, 동색사이 중앙부(321)에 형성된 저굴절 영역(331)을 이용한 분리 구조를 가지며, 저굴절 영역(331)에 입사한 입사광(IL)이, 어느 깊이까지 광전 변화되지 않고 그대로 좌우의 광전변환 소자(313A, 313B)에 입사하기 때문에 그와 같은 사상(事象)을 회피할 수 있다. 그 결과로서, 도 43의 화소(300)에서는, 광학적, 또한 전기적으로 분리비를 향상시켜서, 위상차의 검출 정밀도를 향상시킬 수 있다.
한편으로 동색사이 중앙부(321)에서, 저굴절 영역(331)을 이용한 분리 구조로 한 경우에는, 그 저굴절 영역(331)에 입사된 광이 굴절되어, 보다 각도가 붙은 광으로서, 이색의 인접한 화소(300)의 광전변환 소자(313)에 입사할 우려가 있는 것은 앞서 기술한 바와 같다.
그에 대해 도 43의 화소(300)에서는, 동색사이 중앙부(321)에서 저굴절 영역(331)을 이용한 분리 구조를 마련함과 함께, 이색사이 중앙부(322)에서는, 금속으로 이루어지는 화소간 분리부(315)를 형성하고 있기 때문에 동색사이 중앙부(321)에 형성된 저굴절 영역(331)에 의해 굴절된 광이, 화소간 분리부(315)에 의해 반사된다. 그 결과로서, 도 43의 화소(300)에서는, 이색의 광학 혼색을 방지할 수 있다.
또한, 도 43의 화소(300)에서는, 광전변환 영역이 형성된 실리콘층(310) 내에 광입사면측부터, 홈부(트렌치)를 파들어가고 금속을 매입함으로써, 화소간 분리부(315)를 형성하지만, 홈부의 측벽에는, 피닝막(부의 고정 전하막) 및 절연막을 마련할 수 있다. 여기서, 피닝막으로서는, 예를 들면 산화하프늄(HfO2)이나, 산화탄탈(Ta2O5) 등을 사용할 수 있다. 또한, 절연막으로서는, 예를 들면 이산화실리콘(SiO2) 등을 사용할 수 있다.
(구조의 제2의 예)
도 44는, 제11의 실시의 형태의 화소의 구조의 제2의 예를 도시하는 단면도이다.
도 44의 화소(300)는, 도 43의 화소(300)에 비하여 동색사이 중앙부(321)의 단면의 형상이 다르다. 즉, 도 44의 화소(300)의 동색사이 중앙부(321)에서는, 테이퍼의 형상이 되는 저굴절 영역(331)의 분리 형상(단면의 형상)이, 광입사면부터 소정의 벌크 깊이(예를 들면 수 100㎚ 정도)에서, 일정한 폭으로 하측으로 늘어나 있고, 그 하측의 영역의 형상이, 장방형의 형상(세로로 길다란 형상)으로 되어 있다.
즉, 도 43의 화소(300)의 동색사이 중앙부(321)에서는, 저굴절 영역(331)의 하측의 영역에는, 분리재로서의 저굴절재를 형성하지 않고 불순물에 의해 분리하고 있지만, 도 44의 화소(300)의 동색사이 중앙부(321)에서는, 저굴절 영역(331)이 일정한 폭으로 하측으로 늘어남으로써, 그 하측의 장방형(세로로 길다란 형상)의 부분에 의해 광전변환 소자(313A)와 광전변환 소자(313B) 사이가 분리되어 있다.
이와 같이, 도 44의 화소(300)에서는, 저굴절 영역(331)에서의 삼각형상의 부분과 그 하측으로 늘어난 부분에 의해 말하자면 소자사이 분리부를 형성함으로써, 광전변환 소자(313A)와 광전변환 소자(313B)가 물리적으로 분리되어 있다. 이에 의해 도 44의 화소(300)에서는, 일방의 광전변환 소자(313)(313A, 또는 313B)의 출력에 대해 타방의 광전변환 소자(313)(313B, 또는 313A)의 출력이 섞이지 않도록 하여 위상차 검출의 정밀도를 향상시킬 수 있다.
(구조의 제3의 예)
도 45는, 제11의 실시의 형태의 화소의 구조의 제3의 예를 도시하는 단면도이다.
도 45의 화소(300)는, 도 43의 화소(300)에 비하여 동색사이 중앙부(321)의 단면의 형상이 다르다. 즉, 도 45의 화소(300)의 동색사이 중앙부(321)에서, 저굴절 영역(331)의 분리 형상(단면의 형상)은, 광입사면부터, 그 반대측의 면(트랜지스터 소자면측)까지 테이퍼가 붙여져 있고, 사다리꼴형상(상저보다도 하저의 쪽이 짧은 사다리꼴)의 형상으로 되어 있다.
이와 같이, 도 45의 화소(300)에서는, 저굴절 영역(331)에서 사다리꼴형상의 부분에 의해 말하자면 소자사이 분리부를 형성함으로써, 광전변환 소자(313A)와 광전변환 소자(313B)를 물리적으로 분리하고 있다. 이에 의해 도 45의 화소(300)에서는, 일방의 광전변환 소자(313)의 출력에 대해 타방의 광전변환 소자(313)의 출력이 섞이지 않도록 하여 위상차 검출의 정밀도를 향상시킬 수 있다.
(구조의 제4의 예)
도 46은, 제11의 실시의 형태의 화소의 구조의 제4의 예를 도시하는 평면도이다.
도 46에 도시한 평면도에서, X-X' 단면이, 도 43의 화소(300)의 단면도에 대응하고 있다. 즉, 도 46의 화소(300)에서, 저굴절 영역(331)을 포함하는 동색사이 중앙부(321)는, 광전변환 소자(313A)와 광전변환 소자(313B) 사이에 형성되고, 광입사면측에서 본 경우에 그 형상이, 장방형의 형상(세로로 길다란 형상)으로 되어 있다.
여기서, 도면 중의 점선은, 입사광(IL)을 도시하고 있고, 온 칩 렌즈(311)에 의해 집광된 광이, 저굴절 영역(331)에 입사한 때, 그 입사광은, 어느 깊이까지 광전변환되지 않고 그대로 진행하고, 어느 깊이에 달하였을 때에 광전변환 소자(313A) 또는 광전변환 소자(313B)에 입사하여 광전변환되게 된다.
또한, 여기서는, 도 46에 도시한 평면도가 도 43의 화소(300)의 단면도에 대응하고 있는 경우를 나타냈지만, 도 44의 화소(300), 또는 도 45의 화소(300)에 대해서도 마찬가지로, 동색사이 중앙부(321)(의 저굴절 영역(331))는, 광전변환 소자(313A)와 광전변환 소자(313B) 사이에 형성되어 있다.
(구조의 제5의 예)
도 47은, 제11의 실시의 형태의 화소의 구조의 제5의 예를 도시하는 평면도이다.
도 47에 도시한 평면도에서, X-X' 단면이, 도 43의 화소(300)의 단면도에 대응하고 있다. 즉, 도 47의 화소(300)에서, 저굴절 영역(331)을 포함하는 동색사이 중앙부(321)는, 광전변환 소자(313A)와, 광전변환 소자(313B)와, 광전변환 소자(313C)와, 광전변환 소자(313D)의 4개의 광전변환 소자(313)에 대해 형성되고, 광입사면측에서 본 경우에 그 형상이, 능형(菱形)의 형상으로 되어 있다.
여기서, 도면 중의 점선은, 입사광(IL)을 도시하고 있고, 온 칩 렌즈(311)에 의해 집광된 광이, 저굴절 영역(331)에 입사한 때, 그 입사광은, 어느 깊이까지 광전변환되지 않고 그대로 진행하고, 어느 깊이에 달하였을 때에 광전변환 소자(313A 내지 313D)의 어느 하나에 입사하여 광전변환되게 된다.
또한, 여기서는, 도 47에 도시한 평면도가 도 43의 화소(300)의 단면도에 대응하고 있는 경우를 나타냈지만, 도 44의 화소(300), 또는 도 45의 화소(300)에 대해서도 마찬가지로, 동색사이 중앙부(321)(의 저굴절 영역(331))를 4개의 광전변환 소자(313)에 대해 형성할 수 있다.
또한, 도 46 및 도 47에 도시한 동색사이 중앙부(321)(의 저굴절 영역(331))에 의한 분리 레이아웃은, 한 예이고, 2개의 광전변환 소자(313)에 대한 장방형의 형상이나, 4개의 광전변환 소자(313)에 대한 능형의 형상 이외의 다른 분리 레이아웃을 이용하도록 하여도 좋다.
(구조의 제6의 예)
도 48은, 제11의 실시의 형태의 화소의 구조의 제6의 예를 도시하는 단면도이다.
도 48의 화소(300)는, 도 44의 화소(300)에 비하여 이색사이 중앙부(322)의 단면의 형상이 다르다. 즉, 도 48의 화소(300)의 이색사이 중앙부(322)에서는, 금속으로 이루어지는 화소간 분리부(315)의 하측의 영역(깊이 방향의 영역)에 저굴절재로 이루어지는 저굴절 영역(341)이 형성되어 있다.
보다 구체적으로는, 광전변환 영역이 형성된 실리콘 내에 파들어가진 홈부(트렌치)에 대해 물질을 매입함으로써, 이색의 화소간를 분리하기 위한 분리부가 형성되는데, 도 48의 화소(300)에서는, 프런트 사이드 트렌치(Front Side Trench)로서 저굴절재를 매입함으로써, 저굴절 영역(341)이 형성되고, 백 사이드 트렌치(Back Side Trench)로서 금속을 매입함으로써, 화소간 분리부(315)가 형성된다.
그리고, 도 48의 화소(300)에서, 이색사이 중앙부(322)는, 화소간 분리부(315)와 저굴절 영역(341)을 조합시킨 구조에 의해 예를 들면 도 48에 도시한 G화소(300)의 우측의 광전변환 소자(313B)와 R화소(300)의 좌측의 광전변환 소자(313A) 사이 등, 이색의 화소간의 분리가 이루어지도록 하고 있다.
이상, 제11의 실시의 형태에 관해 설명하였다.
(12) 제12의 실시의 형태
상술한 바와 같이, 단일한 온 칩 렌즈의 직하에 복수의 광전변환 소자를 형성한 화소를 갖는 고체 촬상 장치에서는, 각 화소로부터 얻어지는 위상차 검출용의 신호에 의거하여 거리 정보를 얻을 수 있다.
그렇지만, 일반적인 화소의 구조에서는, 분리비와 혼색과의 트레이드 오프가 발생하고 있기 때문에 혼색을 억제하면서, 위상차 검출의 정밀도를 올리는 것이 곤란하게 되어 있다. 종래, 이와 같은 트레이드 오프를 해소하기 위해 단순하게 벌크만으로 위상차의 정보를 취득하거나, 고정밀한 검출일 때에는 온 칩 렌즈를 이용하지 않고 광도파로를 이용하여 분리비를 높이거나 하고 있지만, 혼색을 억제하면서, 보다 위상차 검출의 정밀도를 향상시키는 것이 요구되고 있다.
그래서, 제12의 실시의 형태에서는, CMOS 이미지 센서(10)(도 1)의 화소 어레이부(11)에 2차원형상으로 배열되는 화소(400)로서, 온 칩 렌즈를 복수종류의 굴절률이 다른 물질로 구성한 구조를 채용한다. 이와 같은 구조를 채용함으로써, 혼색을 억제하면서, 보다 위상차 검출의 정밀도를 향상시킬 수 있다. 여기서, 혼색에는, 단일한 온 칩 렌즈의 직하에 형성된 복수의 광전변환 소자 사이의 혼색도 포함하고 있는 것으로 한다.
이하, 도 49 내지 도 56을 참조하면서, 제12의 실시의 형태의 화소의 구조에 관해 설명한다.
(구조의 제1의 예)
도 49는, 제12의 실시의 형태의 화소의 구조의 제1의 예를 도시하는 단면도이다.
도 49에서, 화소(400)는, 2PD 구조로 이루어지고, 온 칩 렌즈(411), 컬러 필터(412), 광전변환 소자(413A, 413B), 화소간 차광부(414) 및 화소간 분리부(415)를 포함하여 구성된다.
또한, 화소(400)에서, 온 칩 렌즈(411) 내지 화소간 분리부(415)는, 상술한 실시의 형태의 화소(100)(도 11 등)를 구성하는 온 칩 렌즈(111), 컬러 필터(112), 광전변환 소자(113A, 113B), 화소간 차광부(114) 및 화소간 분리부(115)에 각각 대응하고 있기 때문에 여기서는, 그 설명을 적절히 생략한다.
또한, 설명의 사정상, 화소(400)마다의 색을 특히 구별한 필요가 있는 경우에는, R화소(400)를 「400(R)」, G화소(400)를 「400(G)」, B화소(400)를 「400(B)」로 각각 표기하는 것으로 한다.
화소(400)에서, 온 칩 렌즈(411)는, 굴절률이 다른 2종류의 물질로서, 부재(411A) 및 부재(411B)로 구성된다. 온 칩 렌즈(411)에서는, 부재(411B)가 V자형으로 파들어가진 형상을 가지며, 그 V자형의 부분에 부재(411A)의 일부(광입사면의 반대측의 부분)가 매입되어 있다.
즉, 부재(411A)(제1의 부재)는, 광이 입사되는 곡면과, 부재(411B)의 V자형의 부분에 대응하는 부분을 포함하고, 부재(411B)(제2의 부재)는, 광이 입사되는 곡면과 반대측의 면과, V자형의 형상으로 이루어지는 부분을 포함하고 있다. 또한, 여기서는, 부재(411A)와 부재(411B)의 접합부가 V자형의 형상으로 이루어지는 경우를 설명하지만, 접합부의 형상은, V자형 이외의 다른 형상이라도 좋다.
예를 들면 부재(411A)는, 부재(411B)보다도 굴절률이 높은 재료인 고굴절재(High-n재료)로 구성된다. 한편으로 예를 들면 부재(411B)는, 부재(411A)보다도 굴절률이 낮은 재료인 저굴절재(Low-n재료)로 구성된다. 또한, 온 칩 렌즈(411)의 광 입사측의 면에는, 반사 방지막(431)이 형성되어 있다.
화소(400)에서, 온 칩 렌즈(411)에 입사한 입사광(IL)은, 도 49의 화살표로 도시하는 바와 같이, 부재(411A)의 광입사면에서 굴절된 후에 부재(411A)와 부재(411B)와의 경계에서 굴절되어, 광전변환 소자(413A)의 광전변환 영역에 조사된다.
이와 같이, 도 49의 화소(400)에서는, 온 칩 렌즈(411)를 굴절률이 다른 부재(411A)와 부재(411B)로 구성하고, 광전변환 소자(413A, 413B)의 각각에 대해 입사한 광이 섞이는 일 없이(혼색하는 일 없이), 소망하는 좌우의 광전변환 소자(413A, 413B)에 축적하도록 하고 있다.
도 50은, 도 49의 화소(400)에서의 광전변환 소자(413)마다의 광의 입사각에 응한 출력 결과를 도시하고 있다.
또한, 도 50에서는, 비교를 위해 도 49의 화소(400)의 광전변환 소자(413A, 413B)(본 기술의 구조)의 출력 결과와 함께, 일반적인 화소(900)의 좌우의 광전변환 소자(913A, 913B)(종래의 구조)의 출력 결과도 도시하고 있다. 단, 화소(900)에서는, 온 칩 렌즈(911)의 구조가 화소(400)의 온 칩 렌즈(411)의 구조와 다르다. 즉, 화소(900)에서, 온 칩 렌즈(911)는, 굴절률이 다른 복수의 물질로 구성되지 않은 것으로 한다.
즉, 도 50에서는, 도 49의 화소(400)에 관해 좌측의 광전변환 소자(413A)의 출력을 실선의 곡선(A1)으로 도시하고, 우측의 광전변환 소자(413B)의 출력을 점선의 곡선(B1)으로 도시하고 있다. 또한, 일반적인 화소(900)에 관해 좌측의 광전변환 소자(913A)의 출력을 실선의 곡선(A2)으로 도시하고, 우측의 광전변환 소자(913B)의 출력을 점선의 곡선(B2)으로 도시하고 있다.
여기서, 좌측의 광전변환 소자(413A)의 출력에 응한 곡선(A1)과, 우측의 광전변환 소자(413B)의 출력에 응한 곡선(B1)은, 입사각(θi)이 0도가 될 때, 즉, 광이 직상부터 입사된 때에 그 출력의 값이 일치하고 있다. 즉, 곡선(A1)과 곡선(B1)은, 입사각(θi)=0일 때의 출력을 대칭축으로 한 선대칭의 관계를 갖고 있다.
마찬가지로, 좌측의 광전변환 소자(913A)의 출력에 응한 곡선(A2)과, 우측의 광전변환 소자(913B)의 출력에 응한 곡선(B2)은, 입사각(θi)=0일 때의 출력을 대칭축으로 한 선대칭의 관계로 되어 있다.
이때, 도 49의 화소(400)의 곡선(A1, B1)과, 일반적인 화소(900)의 곡선(A2, B2)을 비교하면 다음과 같은 관계를 갖고 있다.
즉, 입사각(θi)이 부(負)가 되는 경우로서, 곡선(A1)과 곡선(A2)에 주목한 경우, 광전변환 소자(413A)의 출력과, 광전변환 소자(913A)의 출력의 피크의 값은, 개략 동일하게 되지만, 광전변환 소자(413A)의 출력에 대해서는 광전변환 소자(413B)의 출력이 섞이는 한편으로 광전변환 소자(913A)의 출력에 대해서는 광전변환 소자(913B)의 출력이 섞이게 된다.
이때, 곡선(B1)과 곡선(B2)에 주목하면 광전변환 소자(413B)의 출력은, 광전변환 소자(913B)의 출력에 비하여 작기 때문에 광전변환 소자(413A)의 출력에 대해 섞인 광전변환 소자(413B)의 출력이 저감되어 있게 된다.
한편으로 입사각(θi)이 정이 되는 경우로서, 곡선(B1)과 곡선(B2)에 주목한 경우, 광전변환 소자(413B)의 출력과, 광전변환 소자(913B)의 출력의 피크의 값은, 개략 동일하게 되지만, 광전변환 소자(413B)의 출력에 대해서는 광전변환 소자(413A)의 출력이 섞이는 한편으로 광전변환 소자(913B)의 출력에 대해서는 광전변환 소자(913A)의 출력이 섞이고 있다.
이때, 곡선(A1)과 곡선(A2)에 주목하면 광전변환 소자(413A)의 출력은, 광전변환 소자(913A)의 출력에 비하여 작기 때문에 광전변환 소자(413B)의 출력에 대해 섞이는 광전변환 소자(413A)의 출력이 저감되어 있게 된다.
이와 같이, 도 49의 화소(400)에서는, 온 칩 렌즈(411)를 굴절률이 다른 부재(411A)와 부재(411B)로 구성함으로써, 일방의 광전변환 소자(413)(413A, 또는 413B)의 출력에 대해 타방의 광전변환 소자(413)(413B, 또는 413A)의 출력이 섞이지 않도록 하여 위상차 검출의 정밀도를 향상시킬 수 있다. 그 결과로서, CMOS 이미지 센서(10)를 탑재한 전자 기기에서는, 보다 고정밀한 오토 포커스를 실현할 수 있다.
(구조의 제2의 예)
도 51은, 제12의 실시의 형태의 화소의 구조의 제2의 예를 도시하는 단면도이다.
도 51의 화소(400)는, 도 49의 화소(400)에 비하여 좌우의 광전변환 소자(413A, 413B) 사이에 소자사이 분리부(416)가 형성됨과 함께, 온 칩 렌즈(411)의 단면의 형상이 다르다. 즉, 도 51의 화소(400)에서, 온 칩 렌즈(411)는, 부재(411A) 및 부재(411B)의 굴절률이 다른 2종류의 물질 외에 또 다른 물질로 이루어지는 부재(411C)를 포함하고 있다.
온 칩 렌즈(411)에서는, 부재(411B)가 광입사면측에 V자형으로 파들어가진 형상을 가지며, 그 V자형의 부분에 부재(411A)의 일부(광입사면의 반대측의 부분)가 매입되어 있다. 또한, 온 칩 렌즈(411)에서는, 부재(411B)가 광입사면의 반대측에도 V자형으로 파들어가진 형상을 가지며, 그 V자형의 부분에 부재(411C)(의 전부)가 매입되어 있다.
여기서는, 부재(411B)에 대해 부재(411A)와 부재(411C)를 V자형의 단면이 되도록 형성하는데 즈음하여 그들의 V자형의 정점이 접함과 함께, 부재(411C)의 V자형의 단면이, 부재(411A)의 V자형의 단면보다도 작아지는 형상이 되도록 하였지만, 도 51에 도시한 단면의 형상은 한 예이고, 다른 형상을 채용하여도 좋다.
또한, 온 칩 렌즈(411)에서, 부재(411A)를 고굴절재(High-n재료)로 구성하고, 부재(411B)를 저굴절재(Low-n재료)로 구성한 경우에 부재(411C)는, 실리콘층(410)에 형성한 소자사이 분리부(416)에 입사된 광의 양을 저감시키는 것이 가능한 굴절률의 재료로 구성할 수 있다. 이 경우에 있어서, 부재(411C)의 굴절률은, 부재(411A) 및 부재(411B)와 다른 굴절률로 할 수 있다. 또한, 부재(411C)의 굴절률은, 부재(411A)와 동일한 굴절률로 하여도 좋다.
이와 같이, 도 51의 화소(400)에서는, 좌우의 광전변환 소자(413A, 413B) 사이에 소자사이 분리부(416)를 마련한 경우에 온 칩 렌즈(411)를 부재(411A) 및 부재(411B) 외에 부재(411C)를 포함하는 구조로 함으로써, 소자사이 분리부(416)에의 광의 입사량을 저감할 수 있다.
(구조의 제3의 예)
도 52는, 제12의 실시의 형태의 화소의 구조의 제3의 예를 도시하는 단면도이다.
도 52의 화소(400)는, 도 51의 화소(400)에 비하여 소자사이 분리부(416)가 마련되고, 또한, 온 칩 렌즈(411)가 부재(411A) 내지 부재(411C)를 포함하여 구성되는 점에서 일치하고 있지만, 온 칩 렌즈(411)의 재료에 응하여 색마다, 그 광축 방향(적층 방향)의 높이가 최적화되어 있는 점이 다르다.
도 52에서는, 각 화소(400)에서, 부재(411A), 부재(411B), 부재(411C)의 굴절률을 n1, n2, n3로 표시하고 있다. 또한, G화소(400)에서, 온 칩 렌즈(411)는, 그 곡률 반경을 rG로 표시하고, 그 높이를 hG로 표시하고 있다. 마찬가지로, R화소(400)에서는, 온 칩 렌즈(411)의 곡률 반경과 높이를 rR, hR로 표시하고, B화소(400)에서는, 온 칩 렌즈(411)의 곡률 반경과 높이를 rB, hB로 표시하고 있다.
여기서, G화소(400)에서의 높이(hG)와, R화소(400)에서의 높이(hR)와, B화소(400)에서의 높이(hB)는, 온 칩 렌즈(411)의 재료, 즉, 부재(411A) 내지 부재(411C)의 굴절률(n1, n2, n3)에 맞추어서 색마다 최적화되어 있다.
예를 들면 온 칩 렌즈(411)의 색마다의 높이(hG, hR, hB)의 관계인데, 색수차를 고려에 넣으면 하기한 식(1)과 같은 관계로 할 수 있다.
hR>hG>hB … (1)
또한, 여기서는, 색마다 최적화하기 위한 파라미터로서, 온 칩 렌즈(411)의 높이(h)를 조정하는 경우에 관해 예시하였지만, 다른 파라미터가 사용되도록 하여도 좋다. 예를 들면 온 칩 렌즈(411)의 곡률 반경(r)을 조정하는 경우에는, 예를 들면 색수차를 고려하여 하기한 식(2)과 같은 관계로 할 수 있다.
rR>rG>rB … (2)
이와 같이, 도 52의 화소(400)에서는, 온 칩 렌즈(411)의 재료(복수종류의 부재의 굴절률)에 응하여 색마다 그 높이나 곡률 반경 등의 파라미터를 최적화함으로써, 예를 들면 각 색의 양자 효율이나 분리비를 향상시키거나, 또는, 혼색을 억제하거나 할 수 있다.
또한, 도 52에는, G화소(400)에서, 부재(411B)에서의 부재(411A)와의 경계면과 수평면이 이루는 각도를 θG로 표시하고 있다. 마찬가지로, R화소(400), B화소(400)에서는, 부재(411B)에서의 부재(411A)와의 경계면과 수평면이 이루는 각도를 θR, θB로 표시하고 있다. 예를 들면 이들의 각도(θG, θR, θB)를 상술한 온 칩 렌즈(411)의 높이(h)나 곡률 반경(r) 이외의 파라미터로서 이용하여 최적화되도록 하여도 좋다.
(구조의 제4의 예)
도 53은, 제12의 실시의 형태의 화소의 구조의 제4의 예를 도시하는 단면도이다.
도 53의 화소(400)는, 도 49의 화소(400)에 비하여 소자사이 분리부(416)가 마련됨과 함께, 온 칩 렌즈(411)에서 부재(411A)와 부재(411B) 사이에 제어부재(421)가 마련되는 점에서 다르다.
제어부재(421)는, 예를 들면 포토닉 결정으로 구성된다. 포토닉 결정은, 굴절률이 주기적으로 변화하는 나노 구조체이다. 온 칩 렌즈(411)에서는, 부재(411A)와 부재(411B) 사이에 제어부재(421)를 형성하여 광의 입사각도 의존을 제어 가능한 구조로 하고 있다.
즉, 화소(400)에서는, 포토닉 결정으로서의 제어부재(421)를 마련함으로써, 예를 들면 도면 중의 좌측의 방향부터의 입사광에 대해 좌측의 광전변환 소자(413A)에 광이 들어가지 않도록 전반사시키는 구조로 하거나, 또는, 도면 중의 우측의 방향에서의 입사광에 대해 우측의 광전변환 소자(413B)에 광이 들어가지 않도록 전반사시키는 구조로 하거나 할 수 있다. 즉, 화소(400)에서는, 포토닉 결정의 입사각도 의존을 효율 좋게 이용하여 보다 입사각도 의존성을 높이는 구조로 하고 있다.
이와 같이, 도 53의 화소(400)에서는, 온 칩 렌즈(411)에서 부재(411A)와 부재(411B) 사이에 포토닉 결정으로서의 제어부재(421)를 형성하여 광의 입사각도 의존을 제어 가능한 구조로 함으로써, 혼색을 억제하면서, 보다 위상차 검출의 정밀도를 향상시킬 수 있다.
(구조의 제5의 예)
도 54는, 제12의 실시의 형태의 화소의 구조의 제5의 예를 도시하는 단면도이다.
도 54의 화소(400)는, 도 53의 화소(400)에 비하여 각 색에 대응한 컬러 필터(412)가 제거되고, 분광의 기능을 제어부재(421)(421R, 421G, 421B)가 갖고 있는 점에서 다르다.
제어부재(421)(421R, 421G, 421B)는, 예를 들면 포토닉 결정으로 구성된다. 여기서, 포토닉 결정에서는, 특정한 파장의 광만이 주기 구조체와 공명하여 반사나 투과를 일으키기 때문에 이 특성을 이용하여 컬러 필터와 마찬가지로 분광의 기능을 갖게 할 수 있다.
즉, 도 54의 G화소(400)에서는, 부재(411A)와 부재(411B) 사이에 포토닉 결정으로서의 제어부재(421G)를 형성하는데 즈음하여 포토닉 결정 구조에 의해 녹색(G)의 파장 성분을 투과하는 필터로서 기능시키는 것을 가능하게 함으로써, G컬러 필터(412)를 마련하지 않는 구조로 하고 있다.
마찬가지로, 도 54의 R화소(400)에서는, 제어부재(421R)를 형성할 때에 포토닉 결정 구조에 의해 적색(R)의 파장 성분을 투과하는 필터로서 기능시킴으로써, R컬러 필터(412)를 마련하지 않는 구조로 하고 있다. 마찬가지로 또한, 도 54의 B화소(400)에서는, 포토닉 결정 구조에 의해 청색(B)의 파장 성분을 투과하는 필터로서 기능시킴으로써, B컬러 필터(412)를 마련하지 않는 구조로 하고 있다.
이와 같이, 도 54의 화소(400)에서는, 포토닉 결정으로서의 제어부재(421)를 마련할 때에 포토닉 결정 구조를 이용하여 각 색의 컬러 필터와 동등하게 기능시킴으로써, 포토닉 결정의 입사각도 의존을 효율 좋게 이용하여 보다 입사각도 의존성을 높이는 구조로 할 뿐만 아니라, 컬러 필터(412)를 마련하지 않는 구조로 할 수 있다.
(구조의 제6의 예)
도 55는, 제12의 실시의 형태의 화소의 구조의 제6의 예를 도시하는 평면도이다.
화소(400)는, 화소 어레이부(11)(도 1)에 2차원형상(행렬형상)으로 배열되는데, 화소 어레이부(11)(도 1)에 배열된 화소 중, 모든 화소를 화소(400)와 같은 구조로 하는 것은 물론, 그 일부의 화소를 화소(400)와 같은 구조로 하도록 하여도 좋다.
예를 들면 도 55에 도시하는 바와 같이, 화소 어레이부(11)에서, 부근의 동색의 화소(동색의 2×2의 4화소)에서 화소 회로를 공유한 공유 화소를 규칙적으로 배열한 배열 패턴을 채용한 경우에서도, 일부의 화소를 화소(400)와 같은 구조로 할 수 있다.
단, 도 55에 도시한 화소 배열에서, 각 화소(400)는, 하나의 광전변환 소자를 갖는 구조(1PD 구조)로 이루어진다. 여기서는, 상술한 2PD 구조의 화소(400)와 구별하기 위해 1PD 구조의 화소(400)를 화소(400)(1PD)로 표기하는 것으로 한다.
여기서, 예를 들면 도 55에 도시한 화소 배열에서, 동일행에 배치된 G화소(400-11)(1PD)와 G화소(400-12)(1PD)에 대해 타원형의 온 칩 렌즈(411E)가 형성되어 있다. 이 온 칩 렌즈(411E)는, 상술한 온 칩 렌즈(411)(도 49 등)와 마찬가지로, 굴절률이 다른 복수종류의 물질로 이루어지는 구조를 갖고 있다.
즉, 하나의 온 칩 렌즈(411E)에 대해 G화소(400-11)(1PD)의 하나의 광전변환 소자(413)(예를 들면 도 49의 광전변환 소자(413A)에 상당)와, G화소(400-12)(1PD)의 하나의 광전변환 소자(413)(예를 들면 도 49의 광전변환 소자(413B)에 상당)가 마련된 구조로 이루어진다. 그리고, 여기서는, 동일행에 배치된 G화소(400-11)(1PD)의 광전변환 소자(413)와, G화소(400-12)(1PD)의 광전변환 소자(413)의 각각의 출력을 이용하여 위상차 검출이 행하여진다.
마찬가지로 또한, 동일행에 배치된 G화소(400-21)(1PD)와 G화소(400-22)(1PD) 등에 대해서도, 타원형의 온 칩 렌즈(411E)가 형성되고, 그들의 G화소(400)(1PD)의 광전변환 소자(413)의 각각(예를 들면 도 49의 광전변환 소자(413A, 413B)에 상당)의 출력을 이용한 위상차 검출이 행하여진다.
또한, 예를 들면 동일렬에 배치된 G화소(400-33)(1PD)와 G화소(400-43)(1PD)나, G화소(400-34)(1PD)와 G화소(400-44)(1PD) 등과 같이, 열방향으로 타원형의 온 칩 렌즈(411E)가 형성되도록 하여도 좋다.
또한, 도 55에 도시한 화소 배열에서는, 타원형의 온 칩 렌즈(411E)에 대해 2개의 G화소(400)(1PD)가 배치된 경우를 설명하였지만, R화소(400)(1PD)나 B화소(400)(1PD)가 행방향 또는 열방향의 타원형의 온 칩 렌즈(411E)에 대해 배치되도록 하여도 좋다.
(구조의 제7의 예)
도 56은, 제12의 실시의 형태의 화소의 구조의 제7의 예를 도시하는 평면도이다.
도 56에 도시하는 바와 같이, 화소 어레이부(11)(도 1)에서, 베이어 배열을 채용한 경우에서도, 일부의 화소를 화소(400)와 같은 구조로 할 수 있다. 단, 도 56에 도시한 화소 배열에서도, 각 화소(400)는, 하나의 광전변환 소자를 갖는 구조(1PD 구조)로 이루어지고, 이 1PD 구조의 화소(400)를 화소(400)(1PD)로 표기하는 것으로 한다.
여기서, 예를 들면 도 56에 도시한 화소 배열에서, 동일렬에 배치된 G화소(400-22)(1PD)와 G화소(400-32)(1PD)에 대해 타원형의 온 칩 렌즈(411E)가 형성되어 있다. 이 온 칩 렌즈(411E)는, 상술한 온 칩 렌즈(411)(도 49 등)와 마찬가지로, 굴절률이 다른 복수종류의 물질로 이루어지는 구조를 갖고 있다.
즉, 하나의 온 칩 렌즈(411E)에 대해 G화소(400-22)(1PD)의 하나의 광전변환 소자(413)(예를 들면 도 49의 광전변환 소자(413A)에 상당)와, G화소(400-32)(1PD)의 하나의 광전변환 소자(413)(예를 들면 도 49의 광전변환 소자(413B)에 상당)가 마련된 구조로 이루어지고, 그들의 G화소(400)(1PD)의 광전변환 소자(413)의 각각의 출력을 이용한 위상차 검출이 행하여진다.
마찬가지로 또한, 동일렬에 배치된 G화소(400-27)(1PD)와 G화소(400-37)(1PD) 등에 대해서도, 타원형의 온 칩 렌즈(411E)가 형성되고, 그들의 G화소(400)의 광전변환 소자(413)의 각각(예를 들면 도 49의 광전변환 소자(413A, 413B)에 상당)의 출력을 이용한 위상차 검출이 행하여진다.
또한, 예를 들면 동일행에 배치된 G화소(400-71)(1PD)와 G화소(400-72)(1PD)나, G화소(400-66)(1PD)와 G화소(400-67)(1PD) 등과 같이, 행방향의 타원형의 온 칩 렌즈(411E)가 형성되도록 하여도 좋다.
또한, 도 56에 도시한 베이어 배열에서는, 타원형의 온 칩 렌즈(411E)에 대해 2개의 G화소(400)(1PD)가 배치된 경우를 설명하였지만, R화소(400)(1PD)나 B화소(400)(1PD)가 행방향 또는 열방향의 타원형의 온 칩 렌즈(411E)에 대해 배치되도록 하여도 좋다.
이상, 제12의 실시의 형태에 관해 설명하였다.
(13) 제13의 실시의 형태
도 57은, CMOS 이미지 센서의 화소 어레이부에 2차원형상으로 배열된 화소의 구조를 도시하고 있다.
도 57에서, 화소(900)는, 광전변환 소자(913A)와 광전변환 소자(913B)를 갖는 2PD 구조로 이루어진다. 광전변환 소자(913A, 913B)에서는, 온 칩 렌즈(911)에 의해 집광되고, 적(R), 녹(G), 또는 청색(B)의 각 색의 파장을 투과한 컬러 필터를 투과한 광으로부터, 각 색의 성분에 대응한 전하가 생성된다.
화소(900)에서, 광전변환 소자(913A)와 광전변환 소자(913B)에 의해 생성된 전하는, 전송 게이트를 통하여 판독되고, 위상차 검출의 정보로서 이용된다.
그런데, 화소(900)에서, 일방의 광전변환 소자(913)의 출력에 대해 타방의 광전변환 소자(913)의 출력이 섞이지 않도록 하기 위한 구조로서, 좌우의 광전변환 소자(913) 사이에 물리적인 분리부를 형성하는 구조를 채용할 수 있다.
도 58은, 좌우의 광전변환 소자 사이에 물리적인 분리부가 마련된 화소의 구조를 도시하고 있다.
도 58의 화소(900)에서는, 광전변환 소자(913A)와 광전변환 소자(913B) 사이에 소자사이 분리부(916)가 형성되고, 물리적으로 분리되어 있다. 이와 같이, 소자사이 분리부(916)를 형성함으로써, 일방의 광전변환 소자(913)의 출력에 대해 타방의 광전변환 소자(913)의 출력이 섞이지 않도록 하여 위상차 검출의 정밀도를 향상시킬 수 있다.
그렇지만, 화소(900)에서, 위상차의 특성을 개선하기 위해 광전변환 소자(913A)와 광전변환 소자(913B) 사이에 광입사면측(이면측)부터 DTI 기술을 이용하여 소자사이 분리부(916)를 형성한 경우, 집광 스폿이 가공면 직상에 위치하기 때문에 가공 계면부터의 광의 산란(도 58의 화살표(SL))이 발생함으로써, 분광 특성이 열화되고, 촬상 화상이 열화되어 버릴 우려가 있다.
그래서, 제13의 실시의 형태에서는, CMOS 이미지 센서(10)(도 1)의 화소 어레이부(11)에 2차원형상으로 배열된 화소(500)로서, 동색의 광전변환 소자의 중앙 부분(동색사이 중앙부)에 종형 트랜지스터를 형성하는 구조를 채용한다. 이와 같은 구조를 채용함으로써, 보다 효율적으로 입사광을 소망하는 좌우의 광전변환 소자에 광학 분리할 수 있다.
이하, 도 59 내지 도 61을 참조하면서, 제13의 실시의 형태의 화소의 구조에 관해 설명한다.
(구조의 제1의 예)
도 59는, 제13의 실시의 형태의 화소의 구조의 제1의 예를 도시하는 단면도이다.
도 59에서, 화소(500)는, 2PD 구조로 이루어지고, 온 칩 렌즈(511), 컬러 필터(512), 광전변환 소자(513A, 513B), 화소간 차광부(514) 및 화소간 분리부(515)를 포함하여 구성된다.
또한, 화소(500)에서, 온 칩 렌즈(511) 내지 화소간 분리부(515)는, 상술한 실시의 형태의 화소(100)(도 11 등)를 구성하는 온 칩 렌즈(111), 컬러 필터(112), 광전변환 소자(113A, 113B), 화소간 차광부(114) 및 화소간 분리부(115)에 각각 대응하고 있기 때문에 여기서는, 그 설명을 적절히 생략한다.
화소(500)에서, 온 칩 렌즈(511)에 의해 집광된 입사광(IL)은, 컬러 필터(512)를 투과하고, 광전변환 소자(513A) 또는 광전변환 소자(513B)에서의 광전변환 영역에 조사된다.
여기서, 화소(500)에서, 광전변환 소자(513A)와 광전변환 소자(513B) 사이의 동색사이 중앙부(521)에는, 광입사면의 반대측의 면부터, 실리콘층(510) 내로, 종형 트랜지스터(531)를 형성하고 있다. 즉, 여기서는, 광전변환 소자(513A, 513B)에 대해 각각 마련되는 전송 트랜지스터 외에 그들의 소자 사이에 종형 트랜지스터(531)가 마련되어 있다.
이와 같이, 동색사이 중앙부(521)에서, 광입사면(예를 들면 이면측)부터 소자사이 분리부를 형성하는 것이 아니고, 그 반대측의 면(예를 들면 표면측)부터 종형 트랜지스터(531)를 형성함으로써, 가공면 직상에 광을 집중시키는 일 없이, 좌우의 광전변환 소자(513A, 513B)에 대해 효율적인 광학 분리를 실현할 수 있다.
또한, 여기서는, 동색사이 중앙부(521)에 형성된 종형 트랜지스터(531)의 기능을 이용하도록 하여도 좋다. 즉, 종형 트랜지스터(531)에 대해 전압(예를 들면 정의 전압)을 인가함으로써, 광전변환 소자(513A)와 광전변환 소자(513B)(종형 트랜지스터(531)의 상부) 사이에 블루밍 패스(채널)를 생성하는 것이 가능해진다. 화소(500)에서는, 이 블루밍 패스를 통하여 좌우의 광전변환 소자(513A, 513B)에 축적된 전하를 교환할 수 있다.
여기서, 화소(500)는, 화상 취득용의 화소와, 위상차 검출용의 화소의 양방의 용도에 이용할 수 있기 때문에 오토 포커스시에는, 위상차 검출용의 화소로서 기능하는 한편으로 오토 포커스 종료 후의 촬상시에는, 화상 취득용의 화소로서 기능할 수 있다.
그리고, 화소(500)가 화상 취득용의 화소로서 기능할 때에 예를 들면 좌우의 광전변환 소자(513A, 513B) 중, 일방의 광전변환 소자(513)(513A 또는 513B)에 축적된 전하가 포화하게 된 때(좌우의 광전변환 소자(513A, 513B)에 의해 생성된 전하가 언밸런스한 때)에 블루밍 패스를 통하여 타방의 광전변환 소자(513)(513B 또는 513A)에 축적시킴으로써, 전하가 포화하는 것을 억제할 수 있다. 이에 의해 화소(500)에서는, 종형 트랜지스터(531)에 대한 전압의 제어에 의해 출력 리니어리티를 제어하는 것이 가능해진다.
또한, 화소(500)에서, 광전변환 소자(513A, 513B)와, 인접하는 화소의 광전변환 소자 사이의 이색사이 중앙부(522)에는, 광입사면부터, 실리콘층(510) 내에 금속 등의 화소간 분리부(515)가 형성되어 있다. 여기서, 금속으로서는, 예를 들면 텅스텐(W)이나 알루미늄(Al), 은(Ag), 로듐(Rh) 등을 사용할 수 있다.
또한, 도 59의 화소(500)에서는, 화소간 분리부(515)를 형성하는데 즈음하여 광전변환 영역이 형성된 실리콘층(510) 내에 광입사면측부터 홈부를 파들어가 금속을 매입하게 되는데, 그때에 홈부의 측벽에 피닝막(부의 고정 전하막) 및 절연막을 마련할 수 있다. 여기서, 피닝막으로서는, 예를 들면 산화하프늄(HfO2)이나, 산화탄탈(Ta2O5) 등을 사용할 수 있다. 또한, 절연막으로서는, 예를 들면 이산화실리콘(SiO2) 등을 사용할 수 있다.
이와 같이, 도 59의 화소(500)에서는, 광전변환 소자(513A)와 광전변환 소자(513B) 사이의 동색사이 중앙부(521)에 광입사면의 반대측의 면부터 종형 트랜지스터(531)를 형성하는 구조로 함으로써, 광전변환 소자(513A, 513B)의 수광면측에 가공면을 내지 않고서 홈부(트렌치)를 형성할 수 있기 때문에 높은 위상차 분리 특성을 얻을 수 있다.
(구조의 제2의 예)
도 60은, 제13의 실시의 형태의 화소의 구조의 제2의 예를 도시하는 단면도이다.
도 60의 화소(500)는, 도 59의 화소(500)에 비하여 이색사이 중앙부(522)에서, 화소간 분리부(515) 대신에 종형 트랜지스터(532)가 형성되어 있다.
즉, 도 60의 화소(500)에서는, 동색사이 중앙부(521)에 광입사면의 반대측의 면부터 종형 트랜지스터(531)를 형성함과 함께, 이색사이 중앙부(522)에도, 광입사면의 반대측의 면부터 종형 트랜지스터(532)를 형성하는 구조로 하고 있다.
이색사이 중앙부(522)에서, 광입사면부터 화소간 분리부를 형성하는 것이 아니고, 그 반대측의 면부터 종형 트랜지스터(532)를 형성함으로써, 화소간 분리부를 형성하는 구조보다는 뒤떨어지는 것이지만, 장파장광에 의한 혼색의 억제 효과를 유지할 수 있다.
또한, 여기서는, 이색사이 중앙부(522)에 형성된 종형 트랜지스터(532)의 기능을 이용하도록 하여도 좋다. 즉, 종형 트랜지스터(532)에 대해 전압(예를 들면 부의 전압)을 인가함으로써, 실리콘층(510) 내에 전하(부의 전하)를 발생시켜서 피닝을 강화할 수 있다. 그 결과로서 백점의 억제가 가능해진다. 또한, 여기서도, 동색사이 중앙부(521)에 형성된 종형 트랜지스터(531)에 대해 전압(예를 들면 정의 전압)을 인가함으로써, 좌우의 광전변환 소자(513A, 513B)의 출력 리니어리티를 제어하는 것이 가능해진다.
이와 같이, 도 60의 화소(500)에서는, 동색사이 중앙부(521)와 이색사이 중앙부(522)에 광입사면의 반대측의 면부터, 종형 트랜지스터(531)와 종형 트랜지스터(532)를 각각 형성한 구조로 함으로써, 높은 위상차 분리 특성을 얻음과 함께, 장파장광에 의한 혼색의 억제 효과를 유지하면서, 피닝의 강화나 출력 리니어리티의 제어를 실현할 수 있다.
(구조의 제3의 예)
도 61은, 제13의 실시의 형태의 화소의 구조의 제3의 예를 도시하는 단면도이다.
도 61의 화소(500)는, 도 59의 화소(500)에 비하여 동색사이 중앙부(521)뿐만 아니라, 이색사이 중앙부(522)에서도, 종형 트랜지스터(532)가 형성되어 있다.
즉, 도 61의 화소(500)에서는, 이색사이 중앙부(522)에 광입사면부터, 금속 등의 화소간 분리부(515)를 형성함과 함께, 그 반대측의 면부터 종형 트랜지스터(532)를 형성하는 구조로 하고 있다.
이와 같은 구조를 채용함으로써, 이색사이 중앙부(522)에 단지 화소간 분리부(541)만을 형성한 경우에 비하여 종형 트랜지스터(532)를 더욱 형성하고 있는 분만큼, 혼색의 억제 효과를 높일 수 있다.
또한, 여기서도, 이색사이 중앙부(522)에 형성된 종형 트랜지스터(532)의 기능을 이용하여 종형 트랜지스터(532)에 대해 전압(예를 들면 부의 전압)을 인가함으로써, 피닝을 강화할 수 있고, 백점의 억제가 가능해진다. 또한, 동색사이 중앙부(521)에 형성된 종형 트랜지스터(531)에 대해 전압(예를 들면 정의 전압)을 인가함으로써, 좌우의 광전변환 소자(513A, 513B)의 출력 리니어리티를 제어하는 것이 가능해진다.
이와 같이, 도 61의 화소(500)에서는, 이색사이 중앙부(522)에 광입사면부터, 화소간 분리부(515)를 형성함과 함께, 동색사이 중앙부(521)와 이색사이 중앙부(522)에 광입사면과 반대측의 면부터, 종형 트랜지스터(531)와 종형 트랜지스터(532)를 각각 형성한 구조로 함으로써, 높은 위상차 분리 특성을 얻음과 함께, 혼색의 억제 효과를 더욱 높이고, 나아가서는, 피닝의 강화나 출력 리니어리티의 제어를 실현할 수 있다.
이상, 제13의 실시의 형태에 관해 설명하였다.
<4. 화소의 회로 구성>
도 62는, 각 실시의 형태의 화소(100)의 회로 구성을 도시하는 도면이다.
도 62에서는, 도면 중의 상단과 하단에 각각 마련된 2개의 화소(100)에 의해 부유 확산 영역(FD : Floating Diffusion)이 공유되어 있다. 단, 각 화소(100)는, 광전변환 소자(113A)와 광전변환 소자(113B)를 갖는 2PD 구조로 이루어지고, 하나의 온 칩 렌즈(111) 및 하나의 컬러 필터(112)를 공유하고 있다. 또한, 전송 트랜지스터(151A, 151B)는, 상술한 전송 게이트(151A, 151B)에 대응하고 있다.
광전변환 소자(113A)로서의 포토 다이오드의 애노드는 접지되어 있고, 포토 다이오드의 캐소드는, 전송 트랜지스터(151A)의 소스에 접속되어 있다. 전송 트랜지스터(151A)의 드레인은, 각각 리셋 트랜지스터(152)의 소스 및 증폭 트랜지스터(153)의 게이트에 접속되어 있다.
광전변환 소자(113B)로서의 포토 다이오드의 애노드는 접지되어 있고, 포토 다이오드의 캐소드는, 전송 트랜지스터(151B)의 소스에 접속되어 있다. 전송 트랜지스터(151B)의 드레인은, 각각 리셋 트랜지스터(152)의 소스 및 증폭 트랜지스터(153)의 게이트에 접속되어 있다.
상단의 2개의 화소의 각각의 전송 트랜지스터(151A, 151B)의 드레인과, 리셋 트랜지스터(152)의 소스 및 증폭 트랜지스터(153)의 게이트와의 접속점이, 부유 확산 영역(FD)(161)을 구성하고 있다. 마찬가지로, 하단의 2개의 화소의 각각의 전송 트랜지스터(151A, 151B)의 드레인과, 리셋 트랜지스터(152)의 소스 및 증폭 트랜지스터(153)의 게이트와의 접속점이, 부유 확산 영역(FD)(161)을 구성하고 있다.
리셋 트랜지스터(152)의 드레인 및 증폭 트랜지스터(153)의 소스는, 전원에 접속되어 있다. 증폭 트랜지스터(153)의 드레인은, 선택 트랜지스터(154)의 소스에 접속되어 있고, 선택 트랜지스터(154)의 드레인은, 수직 신호선(22)에 접속되어 있다.
전송 트랜지스터(151A, 151B)의 게이트, 리셋 트랜지스터(152)의 게이트 및 선택 트랜지스터(154)의 게이트는, 화소 구동선(21)을 통하여 수직 구동 회로(12)(도 1)에 각각 접속되어 있고, 구동 신호로서의 펄스가 각각 공급된다.
다음에 도 62에 도시한 화소(100)의 기본 기능에 관해 설명한다.
리셋 트랜지스터(152)는, 그 게이트에 입력된 구동 신호(RST)에 따라, 부유 확산 영역(FD)(161)에 축적되어 있는 전하의 배출을 온/오프 한다.
광전변환 소자(113A)는, 입사광을 광전변환하고, 그 광량에 응한 전하를 생성하고, 축적한다. 전송 트랜지스터(151A)는, 그 게이트에 입력된 구동 신호(TRG)에 따라, 광전변환 소자(113A)로부터 부유 확산 영역(FD)(161)으로의 전하의 전송을 온/오프 한다.
광전변환 소자(113B)는, 입사광을 광전변환하여 그 광량에 응한 전하를 생성하고, 축적한다. 전송 트랜지스터(151B)는, 그 게이트에 입력된 구동 신호(TRG)에 따라, 광전변환 소자(113B)로부터 부유 확산 영역(FD)(161)으로의 전하의 전송을 온/오프 한다.
부유 확산 영역(FD)(161)은, 광전변환 소자(113A)로부터 전송 트랜지스터(151A)를 통하여 전송되어 오는 전하, 또는 광전변환 소자(113B)로부터 전송 트랜지스터(151B)를 통하여 전송되어 오는 전하를 축적하는 기능을 갖고 있다. 부유 확산 영역(FD)(161)의 전위는, 축적된 전하량에 응하여 변조된다.
증폭 트랜지스터(153)는, 그 게이트에 접속된 부유 확산 영역(FD)(161)의 전위 변동을 입력 신호로 하는 증폭기로서 동작하고, 그 출력 신호 전압은, 선택 트랜지스터(154)를 통하여 수직 신호선(22)에 출력된다.
선택 트랜지스터(154)는, 그 게이트에 입력되는 구동 신호(SEL)에 따라, 증폭 트랜지스터(153)로부터의 전압 신호의 수직 신호선(22)으로의 출력을 온/오프 한다.
이상과 같이, 2PD 구조로 이루어지는 화소(100)는, 수직 구동 회로(12)(도 1)로부터 공급된 구동 신호(TRG, RST, SEL)에 따라 구동된다.
또한, 도 62에서는, 제1의 실시의 형태 내지 제9의 실시의 형태의 화소(100)의 회로 구성에 관해 설명하였지만, 제10의 실시의 형태의 화소(200), 제11의 실시의 형태의 화소(300), 제12의 실시의 형태의 화소(400), 또는 제13의 실시의 형태의 화소(500)에 대해서도 같은 회로 구성을 채용할 수 있다.
<5. 변형례>
(실시의 형태의 조합의 예)
상술한 9개의 실시의 형태는, 각각이 단독의 실시의 형태로서 성립하는 것은 물론, 복수의 실시의 형태의 전부 또는 일부를 가능한 범위에서 조합시킨 형태를 채용하도록 하여도 좋다.
예를 들면 상술한 제7의 실시의 형태에 대해 제2의 실시의 형태를 조합시킴으로써, 행방향 또는 열방향의 타원형의 온 칩 렌즈(111E)에 대해 행방향 또는 열방향으로 복수의 화소(100)(1PD 구조의 화소(100))를 배치한 구성에서, 당해 복수의 화소(100)에서, 화소간 차광부(114)에 의해 돌기부(114P)가 형성되도록 할 수 있다.
또한, 예를 들면 상술한 제7의 실시의 형태에 대해 제3의 실시의 형태를 조합시킴으로써, 행방향 또는 열방향의 타원형의 온 칩 렌즈(111E)에 대해 행방향 또는 열방향으로 복수의 화소(100)(1PD 구조의 화소(100))를 배치한 구성에서, 당해 복수의 화소(100)에서, 화소간 분리부(115)에 의한 돌기부(115P)와 함께, 화소간 차광부(114)에 의해 돌기부(114P)가 형성되도록 할 수 있다.
예를 들면 상술한 제8의 실시의 형태에 대해 제2의 실시의 형태를 조합시킴으로써, 하나의 온 칩 렌즈(111)에 대해 2행2열의 화소(100)(1PD 구조의 화소(100))를 배치한 구성에서, 당해 2행2열의 화소(100)에서, 화소간 차광부(114)에 의해 돌기부(114P)가 형성되도록 할 수 있다.
또한, 예를 들면 상술한 제8의 실시의 형태에 대해 제3의 실시의 형태를 조합시킴으로써, 하나의 온 칩 렌즈(111)에 대해 2행2열의 화소(100)(1PD 구조의 화소(100))를 배치한 구성에서, 당해 2행2열의 화소(100)에서, 화소간 분리부(115)에 의한 돌기부(115P)와 함께, 화소간 차광부(114)에 의해 돌기부(114P)가 형성되도록 할 수 있다.
또한, 예를 들면 제10의 실시의 형태 내지 제13의 실시의 형태의 어느 하나에 대해 상술한 제1의 실시의 형태 내지 제9의 실시의 형태의 어느 하나를 조합시킴으로써, 예를 들면 화소(200)(화소(300), 화소(400), 또는 화소(500))에서, 화소간 분리부(215)(화소간 분리부(315), 화소간 분리부(415), 또는 화소간 분리부(515))에 의해 돌기부(215P)(돌기부(315P), 돌기부(415P), 또는 돌기부(515P))가 형성되도록 하여도 좋다.
이 경우에 있어서, 예를 들면 화소(200)(화소(300), 화소(400), 또는 화소(500))에서, 화소간 차광부(214)(화소간 차광부(314), 화소간 차광부(414), 또는 화소간 차광부(514))에 의해 돌기부(214P)(돌기부(314P), 돌기부(414P), 또는 돌기부(514P))가 형성되도록 하여도 좋다.
또한, 상술한 설명에서는, 화소(100)는, 하나의 온 칩 렌즈(111)에 대해 좌우의 광전변환 소자(113A, 113B)를 마련한 구조(2PD 구조)로 이루어진다고 하여 설명하였지만, 좌우의 광전변환 소자(113A, 113B)를 좌화소(100A), 우화소(100B)로서 파악하도록 하여도 좋다. 즉, 화소(100)는, 광전변환 소자(113A)를 갖는 좌화소(100A)와, 광전변환 소자(113B)를 갖는 우화소(100B)로 구성되는 화소부라고도 말할 수 있다.
마찬가지로 하여, 화소(200)(화소(300), 화소(400), 또는 화소(500))에 대해서도, 광전변환 소자(213A)(광전변환 소자(313A), 광전변환 소자(413A), 또는 광전변환 소자(513A))를 갖는 좌화소(200A)(좌화소(300A), 좌화소(400A), 또는 좌화소(500A))와, 광전변환 소자(213B)(광전변환 소자(313B), 광전변환 소자(413B), 또는 광전변환 소자(513B))를 갖는 우화소(200B)(우화소(300B), 우화소(400B), 또는 우화소(500B))로 구성된 화소부로 파악할 수 있다.
또한, 상술한 설명에서는, 화소(100)의 광전변환 소자(113A, 113B)로서, 포토 다이오드(PD)가 사용되는 경우를 설명하였지만, 예를 들면 광전변환막 등의 다른 부재(소자)가 사용되도록 하여도 좋다. 또한, 온 칩 렌즈(111)는, 초점 검출을 행하는 화소상의 렌즈이고, 마이크로 렌즈라고도 말할 수 있다. 이들에 대해서는, 화소(200), 화소(300), 화소(400), 또는 화소(500)에 대해서도 마찬가지이다.
또한, 상술한 설명에서는, 화소(100)에 대해 화소간 차광부(114) 및 화소간 분리부(115)가 정방 격자형상으로 형성된다고 하여 설명하였지만, 정방 격자형상으로 한하지 않고, 예를 들면 장방형을 포함하는 사각형 등의 다른 형상이라도 좋다. 또한 또한, 화소(100)에 대해서도 정방 단위로 한하지 않고, 다른 단위로 형성되도록 하여도 좋다. 이들에 대해서는, 화소(200), 화소(300), 화소(400), 또는 화소(500)에 대해서도 마찬가지이다.
또한, 상술한 설명에서는, 화소 어레이부(11)(도 1)에 2차원형상으로 배열된 화소(100)(화소(200), 화소(300), 화소(400), 또는 화소(500))로서, R화소, G화소 및 B화소를 나타냈지만, 예를 들면 백(W : White)에 대응한 W화소이나, 적외선(IR : infrared)에 대응한 IR화소 등, RGB화소 이외의 화소가 포함되도록 하여도 좋다. 또한, W화소는, 전파장 영역의 광을 투과시켜서 그 광에 대응한 전하를 얻는 화소이다. 또한, IR화소는, 적외선(IR)을 투과하고, 적외광의 파장대에 대해 감도를 갖는 화소이다.
(고체 촬상 장치의 다른 예)
또한, 상술한 실시의 형태에서는, 화소가 2차원형상으로 배열되어 이루어지는 CMOS 이미지 센서에 적용한 경우를 예로 들어 설명하였지만, 본 기술은 CMOS 이미지 센서에의 적용으로 한정되는 것이 아니다. 즉, 본 기술은, 예를 들면 CCD(Charge Coupled Device) 이미지 센서 등, 화소가 2차원 배열되어 이루어지는 X-Y 어드레스 방식의 고체 촬상 장치 전반에 대해 적용 가능하다.
또한, 본 기술은, 가시광의 입사광량의 분포를 검지하여 화상으로서 촬상하는 고체 촬상 장치에의 적용으로 한하지 않고, 적외선이나 X선, 또는 입자 등의 입사량의 분포를 화상으로서 촬상하는 고체 촬상 장치 전반에 대해 적용 가능하다. 또한, 상술한 실시의 형태에서는, 하나의 온 칩 렌즈(111)에 대해 2개의 광전변환 소자(113)가 형성된 2PD 구조의 화소(100)를 중심으로 설명하였지만, 본 기술은, 하나의 온 칩 렌즈(111)에 대해 복수의 광전변환 소자(113)가 형성된 화소(100)에 대해서도 마찬가지로 적용할 수 있다.
<6. 전자 기기의 구성>
도 63은, 본 기술을 적용한 고체 촬상 장치를 갖는 전자 기기의 구성례를 도시하는 블록도이다.
전자 기기(1000)는, 예를 들면 디지털 스틸 카메라나 비디오 카메라 등의 촬상 장치나, 스마트 폰이나 태블릿형 단말 등의 휴대 단말 장치 등의 전자 기기이다.
전자 기기(1000)는, 고체 촬상 장치(1001), DSP회로(1002), 프레임 메모리(1003), 표시부(1004), 기록부(1005), 조작부(1006) 및, 전원부(1007)로 구성된다. 또한, 전자 기기(1000)에서, DSP회로(1002), 프레임 메모리(1003), 표시부(1004), 기록부(1005), 조작부(1006) 및 전원부(1007)는, 버스 라인(1008)을 통하여 상호 접속되어 있다.
고체 촬상 장치(1001)는, 상술한 CMOS 이미지 센서(10)(도 1)에 대응하고 있고, 화소 어레이부(11)(도 1)에 2차원형상으로 배열된 화소(100)로서, 상술한 제1의 실시의 형태 내지 제9의 실시의 형태에 나타낸 화소(100)를 채용할 수 있다. 이에 의해 전자 기기(1000)에서는, 제1의 실시의 형태 내지 제9의 실시의 형태에 나타낸 화소(100)(상면 위상차 검출 화소)로부터 얻어지는 위상차 검출용의 신호에 의거하여 위상차를 검출하여 초점맞춤(合焦) 대상물에 대해 포커스를 맞추는 제어를 행할 수가 있다.
또한, 화소 어레이부(11)(도 1)에 2차원형상으로 배열되는 화소로서, 상술한 제10의 실시의 형태 내지 제13의 실시의 형태에 나타낸 화소(200), 화소(300), 화소(400), 또는 화소(500)를 배열하도록 하여도 좋다. 이 경우에서도, 전자 기기(1000)에서는, 화소(200), 화소(300), 화소(400), 또는 화소(500)로부터 얻어지는 위상차 검출용의 신호에 의거하여 위상차를 검출하고, 초점맞춤 대상물에 대해 포커스를 맞추는 제어를 행할 수가 있다.
또한, 화소(100)는, 하나의 온 칩 렌즈(111)에 대해 2개의 광전변환 소자(113A, 113B)를 마련한 구조(2PD 구조)로 이루어지기 때문에 광전변환 소자(113A, 113B)에 축적된 전하를 합산하여 생성되는 화소 신호(A+B 신호)를 화상 취득용의 신호로서 이용함과 함께, 광전변환 소자(113A)에 축적된 전하로부터 얻어지는 화소 신호(A 신호)와, 광전변환 소자(113B)에 축적된 전하로부터 얻어지는 화소 신호(B 신호)를 각각 독립적으로 판독하여 위상차 검출용의 신호로서 이용할 수 있다.
이와 같이, 화소(100)는, 2PD 구조를 가지며, 화상 취득용의 화소와, 위상차 검출용의 화소(상면 위상차 검출 화소)의 양방의 용도에 이용할 수 있다. 또한, 상세한 설명은 생략하지만, 화소(200), 화소(300), 화소(400) 및 화소(500)에 대해서도 마찬가지로, 2PD 구조를 가짐으로써, 화상 취득용의 화소와, 위상차 검출용의 화소의 양방의 용도에 이용할 수 있다.
DSP회로(1002)는, 고체 촬상 장치(1001)로부터 공급되는 신호를 처리하는 카메라 신호 처리 회로이다. DSP회로(1002)는, 고체 촬상 장치(1001)로부터의 신호를 처리하여 얻어지는 화상 데이터를 출력한다. 프레임 메모리(1003)는, DSP회로(1002)에 의해 처리된 화상 데이터를 프레임 단위로 일시적으로 유지한다.
표시부(1004)는, 예를 들면 액정 패널이나 유기 EL(Electro Luminescence) 패널 등의 패널형 표시 장치 이루어지고, 고체 촬상 장치(1001)에서 촬상된 동화 또는 정지화를 표시한다. 기록부(1005)는, 고체 촬상 장치(1001)에서 촬상된 동화 또는 정지화의 화상 데이터를 반도체 메모리나 하드 디스크 등의 기록 매체에 기록한다.
조작부(1006)는, 유저에 의한 조작에 따라, 전자 기기(1000)가 갖는 각종의 기능에 관한 조작 지령을 출력한다. 전원부(1007)는, DSP회로(1002), 프레임 메모리(1003), 표시부(1004), 기록부(1005) 및, 조작부(1006)의 동작 전원이 되는 각종의 전원을 이들 공급 대상에 대해 적절히 공급한다.
전자 기기(1000)는, 이상과 같이 구성된다. 본 기술은, 이상 설명한 바와 같이, 고체 촬상 장치(1001)에 적용된다. 구체적으로는, CMOS 이미지 센서(10)(도 1)는, 고체 촬상 장치(1001)에 적용할 수 있다. 고체 촬상 장치(1001)에 본 기술을 적용하여 화소(100)에서, 분리성 기여가 낮은 영역에 대해 화소간 차광부(114) 또는 화소간 분리부(115)에 의해 돌기부를 형성함으로써, 촬상 화상의 열화를 억제하면서, 위상차 검출의 정밀도의 향상을 도모할 수 있다.
<7. 고체 촬상 장치의 사용례>
도 64는, 본 기술을 적용한 고체 촬상 장치의 사용례를 도시하는 도면이다.
CMOS 이미지 센서(10)(도 1)는, 예를 들면 이하와 같이, 가시광이나, 적외광, 자외광, X선 등의 광을 센싱하는 다양한 케이스에 사용할 수 있다. 즉, 도 64에 도시하는 바와 같이, 감상용으로 제공되는 화상을 촬영하는 감상의 분야뿐만 아니라, 예를 들면 교통의 분야, 가전의 분야, 의료·헬스케어의 분야, 시큐리티의 분야, 미용의 분야, 스포츠의 분야, 또는, 농업의 분야 등에서 사용되는 장치라도, CMOS 이미지 센서(10)를 사용할 수 있다.
구체적으로는, 감상의 분야에서, 예를 들면 디지털 스틸 카메라나 스마트 폰, 카메라 기능 부착의 휴대 전화기 등의, 감상용으로 제공되는 화상을 촬영하기 위한 장치(예를 들면 도 63의 전자 기기(1000))에서, CMOS 이미지 센서(10)를 사용할 수 있다.
교통의 분야에서, 예를 들면 자동 정지 등의 안전운전이나, 운전자의 상태의 인식 등을 위해 자동차의 전방이나 후방, 주위, 차내 등을 촬영하는 차량탑재용 센서, 주행 차량이나 도로를 감시하는 감시 카메라, 차량 사이 등의 거리측정을 행하는 거리측정 센서 등의, 교통용으로 제공되는 장치에서, CMOS 이미지 센서(10)를 사용할 수 있다.
가전의 분야에서, 예를 들면 유저의 제스처를 촬영하고, 그 제스처에 따른 기기 조작을 행하기 위해 텔레비전 수상기나 냉장고, 에어 컨디셔너 등의 가전에 제공되는 장치에서, CMOS 이미지 센서(10)를 사용할 수 있다. 또한, 의료·헬스케어의 분야에서, 예를 들면 내시경이나, 적외광의 수광에 의한 혈관 촬영을 행하는 장치 등의, 의료나 헬스케어용으로 제공되는 장치에서, CMOS 이미지 센서(10)를 사용할 수 있다.
시큐리티의 분야에서, 예를 들면 방범 용도의 감시 카메라나, 인물 인증 용도의 카메라 등의, 시큐리티용으로 제공되는 장치에서, CMOS 이미지 센서(10)를 사용할 수 있다. 또한, 미용의 분야에서, 예를 들면 피부를 촬영하는 피부 측정기나, 두피를 촬영한 마이크로스코프 등의, 미용용으로 제공되는 장치에서, CMOS 이미지 센서(10)를 사용할 수 있다.
스포츠의 분야에서, 예를 들면 스포츠 용도 등 용의 액션 카메라나 웨어러블 카메라 등의, 스포츠용으로 제공되는 장치에서, CMOS 이미지 센서(10)를 사용할 수 있다. 또한, 농업의 분야에서, 예를 들면 밭이나 작물의 상태를 감시하기 위한 카메라 등의, 농업용으로 제공되는 장치에서, CMOS 이미지 센서(10)를 사용할 수 있다.
<8. 본 개시에 관한 기술을 적용할 수 있는 적층형의 고체 촬상 장치의 구성례>
도 65는, 본 개시에 관한 기술을 적용할 수 있는 적층형의 고체 촬상 장치의 구성례의 개요를 도시하는 도면이다.
도 65의 A는, 비적층형의 고체 촬상 장치의 개략 구성례를 도시하고 있다. 고체 촬상 장치(23010)는, 도 65의 A에 도시하는 바와 같이, 1장의 다이(반도체 기판(23011))를 갖는다. 이 다이(23011)에는, 화소가 어레이형상으로 배치된 화소 영역(23012)과, 화소의 구동 기타의 각종의 제어를 행하는 제어 회로(23013)와, 신호 처리하기 위한 로직 회로(23014)가 탑재되어 있다.
도 65의 B 및 C는, 적층형의 고체 촬상 장치의 개략 구성례를 도시하고 있다. 고체 촬상 장치(23020)는, 도 65의 B 및 C에 도시하는 바와 같이, 센서 다이(23021)와 로직 다이(23024)의 2장의 다이가 적층되고, 전기적으로 접속되어, 하나의 반도체 칩으로서 구성되어 있다.
도 65의 B에서는, 센서 다이(23021)에는, 화소 영역(23012)과 제어 회로(23013)가 탑재되고, 로직 다이(23024)에는, 신호 처리를 행하는 신호 처리 회로를 포함하는 로직 회로(23014)가 탑재되어 있다.
도 65의 C에서는, 센서 다이(23021)에는, 화소 영역(23012)이 탑재되고, 로직 다이(23024)에는, 제어 회로(23013) 및 로직 회로(23014)가 탑재되어 있다.
도 66은, 적층형의 고체 촬상 장치(23020)의 제1의 구성례를 도시하는 단면도이다.
센서 다이(23021)에는, 화소 영역(23012)이 되는 화소를 구성하는 PD(포토 다이오드)나, FD(플로팅 디퓨전), Tr(MOSFET) 및, 제어 회로(23013)가 되는 Tr 등이 형성된다. 또한, 센서 다이(23021)에는, 복수층, 본 예에서는 3층의 배선(23110)을 갖는 배선층(23101)이 형성된다. 또한, 제어 회로(23013)(가 되는 Tr)는, 센서 다이(23021)가 아니고, 로직 다이(23024)에 구성할 수 있다.
로직 다이(23024)에는, 로직 회로(23014)를 구성하는 Tr이 형성된다. 또한, 로직 다이(23024)에는, 복수층, 본 예에서는 3층의 배선(23170)을 갖는 배선층(23161)이 형성된다. 또한, 로직 다이(23024)에는, 내벽면에 절연막(23172)이 형성된 접속구멍(23171)이 형성되고, 접속구멍(23171) 내에는, 배선(23170) 등과 접속되는 접속 도체(23173)가 매입된다.
센서 다이(23021)와 로직 다이(23024)는, 서로의 배선층(23101 및 23161)이 마주 보도록 접합되고, 이에 의해 센서 다이(23021)와 로직 다이(23024)가 적층된 적층형의 고체 촬상 장치(23020)가 구성되어 있다. 센서 다이(23021)와 로직 다이(23024)가 접합되는 면에는, 보호막 등의 막(23191)이 형성되어 있다.
센서 다이(23021)에는, 센서 다이(23021)의 이면측(PD에 광이 입사하는 측)(상측)부터 센서 다이(23021)를 관통하여 로직 다이(23024)의 최상층의 배선(23170)에 달하는 접속구멍(23111)이 형성된다. 또한, 센서 다이(23021)에는, 접속구멍(23111)에 근접하여 센서 다이(23021)의 이면측부터 1층째의 배선(23110)에 달하는 접속구멍(23121)이 형성된다. 접속구멍(23111)의 내벽면에는, 절연막(23112)이 형성되고, 접속구멍(23121)의 내벽면에는, 절연막(23122)이 형성된다. 그리고, 접속구멍(23111 및 23121) 내에는, 접속 도체(23113 및 23123)이 각각 매입된다. 접속 도체(23113)와 접속 도체(23123)는, 센서 다이(23021)의 이면측에서 전기적으로 접속되고, 이에 의해 센서 다이(23021)와 로직 다이(23024)가 배선층(23101), 접속구멍(23121), 접속구멍(23111) 및, 배선층(23161)을 통하여 전기적으로 접속된다.
도 67은, 적층형의 고체 촬상 장치(23020)의 제2의 구성례를 도시하는 단면도이다.
고체 촬상 장치(23020)의 제2의 구성례에서는, 센서 다이(23021)에 형성하는 하나의 접속구멍(23211)에 의해 센서 다이(23021)(의 배선층(23101)(의 배선(23110)))과, 로직 다이(23024)(의 배선층(23161)(의 배선(23170)))이 전기적으로 접속된다.
즉, 도 67에서는, 접속구멍(23211)이, 센서 다이(23021)의 이면측부터 센서 다이(23021)를 관통하여 로직 다이(23024)의 최상층의 배선(23170)에 달하고, 또한, 센서 다이(23021)의 최상층의 배선(23110)에 달하도록 형성된다. 접속구멍(23211)의 내벽면에는, 절연막(23212)이 형성되고, 접속구멍(23211) 내에는, 접속 도체(23213)가 매입된다. 상술한 도 66에서는, 2개의 접속구멍(23111 및 23121)에 의해 센서 다이(23021)와 로직 다이(23024)가 전기적으로 접속되지만, 도 67에서는, 하나의 접속구멍(23211)에 의해 센서 다이(23021)와 로직 다이(23024)가 전기적으로 접속된다.
도 68은, 적층형의 고체 촬상 장치(23020)의 제3의 구성례를 도시하는 단면도이다.
도 68의 고체 촬상 장치(23020)는, 센서 다이(23021)와 로직 다이(23024)가 접합되는 면에 보호막 등의 막(23191)이 형성되지 않은 점에서, 센서 다이(23021)와 로직 다이(23024)가 접합되는 면에 보호막 등의 막(23191)이 형성되어 있는 도 66의 경우와 다르다.
도 68의 고체 촬상 장치(23020)는, 배선(23110 및 23170)이 직접 접촉하도록, 센서 다이(23021)와 로직 다이(23024)를 겹치고, 소요되는 가중을 걸으면서 가열하고, 배선(23110 및 23170)을 직접 접합함으로써 구성된다.
도 69는, 본 개시에 관한 기술을 적용할 수 있는 적층형의 고체 촬상 장치의 다른 구성례를 도시하는 단면도이다.
도 69에서는, 고체 촬상 장치(23401)는, 센서 다이(23411)와, 로직 다이(23412)와, 메모리 다이(23413)의 3장의 다이가 적층된 3층의 적층 구조로 되어 있다.
메모리 다이(23413)는, 예를 들면 로직 다이(23412)에서 행하여지는 신호 처리에서 일시적으로 필요해지는 데이터의 기억을 행하는 메모리 회로를 갖는다.
도 69에서는, 센서 다이(23411)의 아래에 로직 다이(23412) 및 메모리 다이(23413)가 그 순번으로 적층되어 있지만, 로직 다이(23412) 및 메모리 다이(23413)는, 역순, 즉, 메모리 다이(23413) 및 로직 다이(23412)의 순번으로 센서 다이(23411)의 아래에 적층할 수 있다.
또한, 도 69에서는, 센서 다이(23411)에는, 화소의 광전변환부가 되는 PD나, 화소 Tr의 소스/드레인 영역이 형성되어 있다.
PD의 주위에는 게이트 절연막을 통하여 게이트 전극이 형성되고, 게이트 전극과 쌍(對)의 소스/드레인 영역에 의해 화소 Tr(23421), 화소 Tr(23422)이 형성되어 있다.
PD에 인접하는 화소 Tr(23421)이 전송 Tr이고, 그 화소 Tr(23421)을 구성하는 쌍의 소스/드레인 영역의 일방이 FD로 되어 있다.
또한, 센서 다이(23411)에는, 층간 절연막이 형성되고, 층간 절연막에는, 접속구멍이 형성된다. 접속구멍에는, 화소 Tr(23421) 및, 화소 Tr(23422)에 접속하는 접속 도체(23431)가 형성되어 있다.
또한, 센서 다이(23411)에는, 각 접속 도체(23431)에 접속하는 복수층의 배선(23432)을 갖는 배선층(23433)이 형성되어 있다.
또한, 센서 다이(23411)의 배선층(23433)의 최하층에는, 외부 접속용의 전극이 되는 알루미늄 패드(23434)가 형성되어 있다. 즉, 센서 다이(23411)에서는, 배선(23432)보다도 로직 다이(23412)와의 접착면(23440)에 가까운 위치에 알루미늄 패드(23434)가 형성되어 있다. 알루미늄 패드(23434)는, 외부와의 신호의 입출력에 관한 배선의 일단으로서 이용된다.
또한, 센서 다이(23411)에는, 로직 다이(23412)와의 전기적 접속에 이용되는 콘택트(23441)가 형성되어 있다. 콘택트(23441)는, 로직 다이(23412)의 콘택트(23451)에 접속됨과 함께, 센서 다이(23411)의 알루미늄 패드(23442)에도 접속되어 있다.
그리고, 센서 다이(23411)에는, 센서 다이(23411)의 이면측(상측)부터 알루미늄 패드(23442)에 달하도록 패드구멍(23443)이 형성되어 있다.
본 개시에 관한 기술은, 이상과 같은 고체 촬상 장치에 적용할 수 있다.
<9. 이동체에의 응용례>
본 개시에 관한 기술(본 기술)은, 다양한 제품에 응용할 수 있다. 예를 들면 본 개시에 관한 기술은, 자동차, 전기 자동차, 하이브리드 전기 자동차, 자동 이륜차, 자전거, 퍼스널모빌리티, 비행기, 드론, 선박, 로봇 등의 어느 한 종류의 이동체에 탑재된 장치로서 실현되어도 좋다.
도 70은, 본 개시에 관한 기술이 적용될 수 있는 이동체 제어 시스템의 한 예인 차량 제어 시스템의 개략적인 구성례를 도시하는 블록도이다.
차량 제어 시스템(12000)은, 통신 네트워크(12001)를 통하여 접속된 복수의 전자 제어 유닛을 구비한다. 도 70에 도시한 예에서는, 차량 제어 시스템(12000)은, 구동계 제어 유닛(12010), 바디계 제어 유닛(12020), 차외 정보 검출 유닛(12030), 차내 정보 검출 유닛(12040) 및 통합 제어 유닛(12050)을 구비한다. 또한, 통합 제어 유닛(12050)의 기능 구성으로서, 마이크로 컴퓨터(12051), 음성 화상 출력부(12052) 및 차량탑재 네트워크 I/F(Interface)(12053)가 도시되어 있다.
구동계 제어 유닛(12010)은, 각종 프로그램에 따라 차량의 구동계에 관련되는 장치의 동작을 제어한다. 예를 들면 구동계 제어 유닛(12010)은, 내연 기관 또는 구동용 모터 등의 차량의 구동력을 발생시키기 위한 구동력 발생 장치, 구동력을 차륜에 전달하기 위한 구동력 전달 기구, 차량의 타각을 조절하는 스티어링 기구 및, 차량의 제동력을 발생시키는 제동 장치 등의 제어 장치로서 기능한다.
바디계 제어 유닛(12020)은, 각종 프로그램에 따라 차체에 장비된 각종 장치의 동작을 제어한다. 예를 들면 바디계 제어 유닛(12020)은, 키레스 엔트리 시스템, 스마트 키 시스템, 파워 윈도우 장치, 또는, 헤드 램프, 백 램프, 브레이크 램프, 윙커 또는 포그램프 등의 각종 램프의 제어 장치로서 기능한다. 이 경우, 바디계 제어 유닛(12020)에는, 키를 대체하는 휴대기로부터 발신되는 전파 또는 각종 스위치의 신호가 입력될 수 있다. 바디계 제어 유닛(12020)은, 이들의 전파 또는 신호의 입력을 접수하고, 차량의 도어 로크 장치, 파워 윈도우 장치, 램프 등을 제어한다.
차외 정보 검출 유닛(12030)은, 차량 제어 시스템(12000)을 탑재한 차량의 외부의 정보를 검출한다. 예를 들면 차외 정보 검출 유닛(12030)에는, 촬상부(12031)가 접속된다. 차외 정보 검출 유닛(12030)은, 촬상부(12031)에 차외의 화상을 촬상시킴과 함께, 촬상된 화상을 수신한다. 차외 정보 검출 유닛(12030)은, 수신한 화상에 의거하여 사람, 차, 장애물, 표지 또는 노면상의 문자 등의 물체 검출 처리 또는 거리 검출 처리를 행하여도 좋다.
촬상부(12031)는, 광을 수광하고, 그 광의 수광량에 응한 전기 신호를 출력하는 광센서이다. 촬상부(12031)는, 전기 신호를 화상으로서 출력할 수도 있고, 거리측정의 정보로서 출력할 수도 있다. 또한, 촬상부(12031)가 수광하는 광은, 가시광이라도 좋고, 적외선 등의 비가시광이라도 좋다.
차내 정보 검출 유닛(12040)은, 차내의 정보를 검출한다. 차내 정보 검출 유닛(12040)에는, 예를 들면 운전자의 상태를 검출한 운전자 상태 검출부(12041)가 접속된다. 운전자 상태 검출부(12041)는, 예를 들면 운전자를 촬상하는 카메라를 포함하고, 차내 정보 검출 유닛(12040)은, 운전자 상태 검출부(12041)로부터 입력되는 검출 정보에 의거하여 운전자의 피로 정도 또는 집중 정도를 산출하여도 좋고, 운전자가 앉아서 졸고 있지 않는지를 판별하여도 좋다.
마이크로 컴퓨터(12051)는, 차외 정보 검출 유닛(12030) 또는 차내 정보 검출 유닛(12040)에서 취득된 차내외의 정보에 의거하여 구동력 발생 장치, 스티어링 기구 또는 제동 장치의 제어 목표치를 연산하고, 구동계 제어 유닛(12010)에 대해 제어 지령을 출력할 수 있다. 예를 들면 마이크로 컴퓨터(12051)는, 차량의 충돌 회피 또는 충격 완화, 차간 거리에 의거한 추종 주행, 차속 유지 주행, 차량의 충돌 경고, 또는 차량의 레인 일탈 경고 등을 포함하는 ADAS(Advanced Driver Assistance System)의 기능 실현을 목적으로 한 협조 제어를 행할 수가 있다.
또한, 마이크로 컴퓨터(12051)는, 차외 정보 검출 유닛(12030) 또는 차내 정보 검출 유닛(12040)에서 취득된 차량의 주위의 정보에 의거하여 구동력 발생 장치, 스티어링 기구 또는 제동 장치 등을 제어함에 의해 운전자의 조작에 근거하지 않고 자율적으로 주행하는 자동 운전 등을 목적으로 한 협조 제어를 행할 수가 있다.
또한, 마이크로 컴퓨터(12051)는, 차외 정보 검출 유닛(12030)에서 취득된 차외의 정보에 의거하여 바디계 제어 유닛(12030)에 대해 제어 지령을 출력할 수 있다. 예를 들면 마이크로 컴퓨터(12051)는, 차외 정보 검출 유닛(12030)에서 검지한 선행차 또는 대향차의 위치에 응하여 헤드 램프를 제어하여 하이 빔을 로우 빔으로 전환하는 등의 방현(防眩)을 도모하는 것을 목적으로 한 협조 제어를 행할 수가 있다.
음성 화상 출력부(12052)는, 차량의 탑승자 또는 차외에 대해 시각적 또는 청각적으로 정보를 통지하는 것이 가능한 출력 장치에 음성 및 화상 중의 적어도 일방의 출력 신호를 송신한다. 도 70의 예에서는, 출력 장치로서, 오디오 스피커(12061), 표시부(12062) 및 인스트루먼트 패널(12063)이 예시되어 있다. 표시부(12062)는, 예를 들면 온 보드 디스플레이 및 헤드 업 디스플레이의 적어도 하나를 포함하고 있어도 좋다.
도 71은, 촬상부(12031)의 설치 위치의 예를 도시하는 도면이다.
도 71에서는, 촬상부(12031)로서, 촬상부(12101, 12102, 12103, 12104, 12105)를 갖는다.
촬상부(12101, 12102, 12103, 12104, 12105)는, 예를 들면 차량(12100)의 프런트 노우즈, 사이드 미러, 리어 범퍼, 백 도어 및 차실내의 프론트유리의 상부 등의 위치에 마련된다. 프런트 노우즈에 구비되는 촬상부(12101) 및 차실내의 프론트유리의 상부에 구비되는 촬상부(12105)는, 주로 차량(12100)의 전방의 화상을 취득한다. 사이드 미러에 구비되는 촬상부(12102, 12103)는, 주로 차량(12100)의 측방의 화상을 취득한다. 리어 범퍼 또는 백 도어에 구비되는 촬상부(12104)는, 주로 차량(12100)의 후방의 화상을 취득한다. 차실내의 프론트유리의 상부에 구비되는 촬상부(12105)는, 주로 선행 차량 또는, 보행자, 장애물, 신호기, 교통 표지 또는 차선 등의 검출에 사용된다.
또한, 도 71에는, 촬상부(12101 내지 12104)의 촬영 범위의 한 예가 도시되어 있다. 촬상 범위(12111)는, 프런트 노우즈에 마련된 촬상부(12101)의 촬상 범위를 나타내고, 촬상 범위(12112, 12113)은, 각각 사이드 미러에 마련된 촬상부(12102, 12103)의 촬상 범위를 나타내고, 촬상 범위(12114)는, 리어 범퍼 또는 백 도어에 마련된 촬상부(12104)의 촬상 범위를 나타낸다. 예를 들면 촬상부(12101 내지 12104)에서 촬상된 화상 데이터가 맞겹쳐짐에 의해 차량(12100)을 상방에서 본 부감(俯瞰) 화상을 얻을 수 있다.
촬상부(12101 내지 12104)의 적어도 하나는, 거리 정보를 취득하는 기능을 갖고 있어도 좋다. 예를 들면 촬상부(12101 내지 12104)의 적어도 하나는, 복수의 촬상 소자로 이루어지는 스테레오 카메라라도 좋고, 위상차 검출용의 화소를 갖는 촬상 소자라도 좋다.
예를 들면 마이크로 컴퓨터(12051)는, 촬상부(12101 내지 12104)로부터 얻어진 거리 정보를 기초로, 촬상 범위(12111 내지 12114) 내에서의 각 입체물까지의 거리와, 이 거리의 시간적 변화(차량(12100)에 대한 상대 속도)를 구함에 의해 특히 차량(12100)의 진행로상에 있는 가장 가까운 입체물로, 차량(12100)과 개략 같은 방향으로 소정의 속도(예를 들면 0㎞/h 이상)로 주행하는 입체물을 선행차로서 추출할 수 있다. 또한, 마이크로 컴퓨터(12051)는, 선행차와 내차와 사이에 미리 확보해야 할 차간 거리를 설정하고, 자동 브레이크 제어(추종 정지 제어도 포함한다)나 자동 가속 제어(추종 발진 제어도 포함한다) 등을 행할 수가 있다. 이와 같이 운전자의 조작에 근거하지 않고 자율적으로 주행하는 자동 운전 등을 목적으로 한 협조 제어를 행할 수가 있다.
예를 들면 마이크로 컴퓨터(12051)는, 촬상부(12101 내지 12104)로부터 얻어진 거리 정보를 기초로, 입체물에 관한 입체물 데이터를 2륜차, 보통 차량, 대형 차량, 보행자, 전신주 등 기타의 입체물로 분류하여 추출하고, 장애물의 자동 회피에 이용할 수 있다. 예를 들면 마이크로 컴퓨터(12051)는, 차량(12100)의 주변의 장애물을 차량(12100)의 드라이버가 시인 가능한 장애물과 시인 곤란한 장애물로 식별한다. 그리고, 마이크에서 컴퓨터(12051)는, 각 장애물과의 충돌의 위험도를 나타내는 충돌 리스크를 판단하고, 충돌 리스크가 설정치 이상으로 충돌 가능성이 있는 상황인 때에는, 오디오 스피커(12061)나 표시부(12062)를 통하여 드라이버에게 경보를 출력하는 것이나, 구동계 제어 유닛(12010)을 통하여 강제 감속이나 회피 조타를 행함으로써, 충돌 회피를 위한 운전 지원을 행할 수가 있다.
촬상부(12101 내지 12104)의 적어도 하나는, 적외선을 검출하는 적외선 카메라라도 좋다. 예를 들면 마이크로 컴퓨터(12051)는, 촬상부(12101 내지 12104)의 촬상 화상 중에 보행자가 존재하는지의 여부를 판정함으로써 보행자를 인식할 수 있다. 이러한 보행자의 인식은, 예를 들면 적외선 카메라로서의 촬상부(12101 내지 12104)의 촬상 화상에서의 특징점을 추출하는 순서와, 물체의 윤곽을 나타내는 일련의 특징점에 패턴 매칭 처리를 행하여 보행자인지의 여부를 판별하는 순서에 의해 행하여진다. 마이크로 컴퓨터(12051)가 촬상부(12101 내지 12104)의 촬상 화상 중에 보행자가 존재한다고 판정하고, 보행자를 인식하면 음성 화상 출력부(12052)는, 당해 인식된 보행자에게 강조를 위한 사각형 윤곽선을 중첩 표시하도록, 표시부(12062)를 제어한다. 또한, 음성 화상 출력부(12052)는, 보행자를 나타내는 아이콘 등을 소망하는 위치에 표시하도록 표시부(12062)를 제어하여도 좋다.
이상, 본 개시에 관한 기술이 적용될 수 있는 차량 제어 시스템의 한 예에 관해 설명하였다. 본 개시에 관한 기술은, 이상 설명한 구성 중, 촬상부(12031)에 적용될 수 있는다. 구체적으로는, 도 1의 CMOS 이미지 센서(10)는, 촬상부(12031)에 적용할 수 있다. 촬상부(12031)에 본 개시에 관한 기술을 적용함에 의해 촬상 화상의 열화를 억제하면서, 위상차 검출의 정밀도의 향상을 도모할 수 있기 때문에 예를 들면 보다 고품질의 촬상 화상을 취득하여 보다 정확하게 보행자 등의 장애물을 인식하는 것이 가능해진다.
또한, 본 기술의 실시의 형태는, 상술한 실시의 형태로 한정되는 것이 아니고, 본 기술의 요지를 일탈하지 않는 범위에서 여러가지의 변경이 가능하다.
또한, 본 기술은, 이하와 같은 구성을 취할 수 있다.
(1) 하나의 온 칩 렌즈에 대해 복수의 광전변환 소자를 형성한 화소를 포함하는 복수의 화소를 2차원형상으로 배열한 화소 어레이부를 구비하고,
상기 화소 사이에 형성되는 화소간 분리부 및 화소간 차광부의 적어도 일방은, 그 일부가 상기 화소의 중심을 향하여 돌기형상으로 나와 돌기부를 형성하고 있는 고체 촬상 장치.
(2) 상기 화소는, 정방 단위의 화소이고,
상기 돌기부는, 상기 정방 단위의 화소의 중심을 향하여 형성되는 상기 (1)에 기재된 고체 촬상 장치.
(3) 상기 화소간 분리부는, 상기 복수의 광전변환 소자가 형성되는 반도체층 내에 정방 격자형상으로 파들어가진 홈부에 매입된 물질에 의해 이웃하는 화소 사이를 물리적으로 분리하고,
상기 화소간 분리부의 일부가 상기 정방 단위의 화소의 중심을 향하여 돌기형상으로 나와 상기 돌기부를 형성하고 있는 상기 (2)에 기재된 고체 촬상 장치.
(4) 상기 화소간 차광부는, 상기 온 칩 렌즈와 상기 복수의 광전변환 소자가 형성되는 반도체층 사이의 영역에 정방 격자형상으로 형성된 물질에 의해 이웃하는 화소 사이를 차광하고,
상기 화소간 차광부의 일부가 상기 정방 단위의 화소의 중심을 향하여 돌기형상으로 나와 상기 돌기부를 형성하고 있는 상기 (2)에 기재된 고체 촬상 장치.
(5) 상기 화소간 분리부는, 상기 복수의 광전변환 소자가 형성되는 반도체층 내에 정방 격자형상으로 파들어가진 홈부에 매입된 물질에 의해 이웃하는 화소 사이를 물리적으로 분리하고,
상기 화소간 차광부는, 상기 온 칩 렌즈와 상기 복수의 광전변환 소자가 형성되는 반도체층 사이의 영역에 정방 격자형상으로 형성된 물질에 의해 이웃하는 화소 사이를 차광하고,
상기 화소간 분리부 및 상기 화소간 차광부의 쌍방의 일부가 상기 정방 단위의 화소의 중심을 향하여 돌기형상으로 나와 상기 돌기부를 형성하고 있는 상기 (2)에 기재된 고체 촬상 장치.
(6) 상기 정방 단위의 화소는, 상기 온 칩 렌즈의 직하에 배치되는, 적(R), 녹(G), 또는 청색(B)의 컬러 필터에 응하여 R화소, G화소, 또는 B화소로서 구성되고,
상기 화소 어레이부에 배열된 복수의 화소 중, 상기 R화소, 상기 G화소 및 상기 B화소의 적어도 하나의 화소에 대해 상기 돌기부가 형성되는 상기 (1) 내지 (5)의 어느 하나에 기재된 고체 촬상 장치.
(7) 상기 R화소만에 상기 G화소만에 또는 상기 B화소만에 상기 돌기부가 형성되는 상기 (6)에 기재된 고체 촬상 장치.
(8) 상기 R화소, 상기 G화소 및 상기 B화소의 모든 화소에 상기 돌기부가 형성되는 상기 (6)에 기재된 고체 촬상 장치.
(9) 상기 R화소, 상기 G화소 및 상기 B화소 중, 조합된 2개의 화소에 상기 돌기부가 형성되는 상기 (6)에 기재된 고체 촬상 장치.
(10) 상기 R화소, 상기 G화소 및 상기 B화소를 포함하는 화소마다, 상기 돌기부가 나와 있는 부분의 길이가 다른 상기 (6) 내지 (9)의 어느 하나에 기재된 고체 촬상 장치.
(11) 상기 돌기부가 나와 있는 부분의 길이는, 상기 온 칩 렌즈에 의한 집광 스폿 지름에 응하여 결정되는 상기 (2) 내지 (10)의 어느 하나에 기재된 고체 촬상 장치.
(12) 상기 돌기부가 나와 있는 부분의 길이는, 상기 온 칩 렌즈의 피치의 한 변의 1/7부터 1/4의 길이에 대응하고 있는 상기 (11)에 기재된 고체 촬상 장치.
(13) 광의 입사측의 면에 대한 상기 돌기부의 단면은, 돌기형상으로 나와 있는 부분마다 그 깊이가 다른 상기 (2) 내지 (12)의 어느 하나에 기재된 고체 촬상 장치.
(14) 상기 홈부는, 광의 입사측의 면인 제1의 면 또는 광의 입사측의 반대측의 면인 제2의 면부터 파들어가지는 상기 (3) 또는 (5)에 기재된 고체 촬상 장치.
(15) 상기 정방 단위의 화소에서, 반도체층 내에 형성된 상기 복수의 광전변환 소자 사이는, 불순물에 의해 분리되어 있는 상기 (2) 내지 (14)의 어느 하나에 기재된 고체 촬상 장치.
(16) 상기 복수의 광전변환 소자의 출력은, 위상차 검출에 사용되는 상기 (2) 내지 (15)의 어느 하나에 기재된 고체 촬상 장치.
(17) 하나의 광전변환 소자를 형성한 화소를 포함하는 복수의 화소를 2차원형상으로 배열한 화소 어레이부를 구비하고,
상기 화소 어레이부는, 하나의 온 칩 렌즈에 대해 배치된 복수의 화소를 포함하고,
상기 복수의 화소를 구성하는 화소 사이에 형성되는 화소간 분리부 및 화소간 차광부의 적어도 일방은, 그 일부가 상기 복수의 화소의 중심을 향하여 돌기형상으로 나와 돌기부를 형성하고 있는 고체 촬상 장치.
(18) 상기 온 칩 렌즈는, 행방향 또는 열방향으로 연속하는 2개의 화소에 걸쳐진 타원형의 형상으로 이루어지고,
상기 화소간 분리부 및 화소간 차광부의 적어도 일방은, 그 일부가 상기 2개의 화소 사이로 나와 상기 돌기부를 형성하고 있는 상기 (17)에 기재된 고체 촬상 장치.
(19) 상기 온 칩 렌즈는, 2행2열의 4개의 화소에 걸쳐진 원형의 형상으로 이루어지고,
상기 화소간 분리부 및 화소간 차광부의 적어도 일방은, 그 일부가 상기 4개의 화소의 중심을 향하여 나와 상기 돌기부를 형성하고 있는 상기 (17)에 기재된 고체 촬상 장치.
(20) 하나의 온 칩 렌즈에 대해 복수의 광전변환 소자를 형성한 화소를 포함하는 복수의 화소를 2차원형상으로 배열한 화소 어레이부를 가지며,
상기 화소 사이에 형성되는 화소간 분리부 및 화소간 차광부의 적어도 일방은, 그 일부가 상기 화소의 중심을 향하여 돌기형상으로 나와 돌기부를 형성하고 있는 고체 촬상 장치가 탑재된 전자 기기.
(21) 하나의 온 칩 렌즈에 대해 복수의 광전변환 소자를 형성한 화소를 포함하는 복수의 화소를 2차원형상으로 배열한 화소 어레이부를 구비하고,
상기 복수의 광전변환 소자를 형성한 반도체층에서의 광의 입사면측의 계면 또는 그 근방에서, 상기 복수의 광전변환 소자 사이의 제1의 영역과, 상기 제1의 영역을 제외한 제2의 영역은, 고정 전하량이 다른 고체 촬상 장치.
(22) 상기 제1의 영역에서의 고정 전하량은, 상기 제2의 영역에서의 고정
전하량보다도 많게 되는 상기 (21)에 기재된 고체 촬상 장치.
(23) 상기 반도체층상에 형성되는 절연층은, 산화막과 함께, 상기 제1의 영역에 대응한 부분의 제1의 막과, 상기 제2의 영역에 대응한 부분의 제2의 막을 포함하고,
상기 제1의 막 및 상기 제2의 막은, 다른 고유전율막에 의해 형성되는 상기 (21) 또는 (22)에 기재된 고체 촬상 장치.
(24) 상기 제1의 막 및 상기 제2의 막의 적어도 일방의 막은, 2 이상의 다른 고유전율막이 적층되어 있는 상기 (23)에 기재된 고체 촬상 장치.
(25) 상기 제1의 막은, 상기 제2의 막보다도 적층수가 많은 상기 (24)에 기재된 고체 촬상 장치.
(26) 상기 반도체층상에 형성되는 절연층은, 산화막 및 고유전율막을 포함하고,
상기 절연층에서, 상기 제1의 영역에 대응한 부분과, 상기 제2의 영역에 대응한 부분은, 상기 산화막의 두께가 다른 상기 (21) 또는 (22)에 기재된 고체 촬상 장치.
(27) 상기 화소는, 상기 온 칩 렌즈의 직하에 배치되는 컬러 필터에 응한 색의 화소로서 구성되는 상기 (21) 내지 (26)의 어느 하나에 기재된 고체 촬상 장치.
(28) 제1의 색에 응한 화소에 형성되는 제1의 광전변환 소자와, 상기 제1의 색과 다른 제2의 색에 응한 화소에 형성되는 제2의 광전변환 소자 사이는, 불순물에 의해 분리되는 상기 (27)에 기재된 고체 촬상 장치.
(29) 제1의 색에 응한 화소에 형성되는 제1의 광전변환 소자와, 상기 제1의 색과 다른 제2의 색에 응한 화소에 형성되는 제2의 광전변환 소자 사이는, 산화막 또는 금속을 포함하는 화소간 분리부에 의해 분리되는 상기 (27)에 기재된 고체 촬상 장치.
(30) 특정한 색에 응한 화소에 형성되는 상기 복수의 광전변환 소자 사이에 투명 전극을 형성하고 있는 상기 (27)에 기재된 고체 촬상 장치.
(31) 상기 화소는, R화소, G화소 및 B화소를 포함하는 상기 (27) 내지 (30)의 어느 하나에 기재된 고체 촬상 장치.
(32) 하나의 온 칩 렌즈에 대해 복수의 광전변환 소자를 형성한 화소를 포함하는 복수의 화소를 2차원형상으로 배열한 화소 어레이부를 구비하고,
상기 복수의 광전변환 소자를 형성한 반도체층에서의 광의 입사면측의 계면 또는 그 근방에서, 상기 복수의 광전변환 소자 사이의 제1의 영역과, 상기 제1의 영역을 제외한 제2의 영역은, 고정 전하량이 다른 고체 촬상 장치가 탑재된 전자 기기.
(33) 하나의 온 칩 렌즈에 대해 복수의 광전변환 소자를 형성한 화소를 포함하는 복수의 화소를 2차원형상으로 배열한 화소 어레이부를 구비하고,
특정한 색에 응한 화소에 형성되는 상기 복수의 광전변환 소자 사이에 저굴절재를 포함하는 제1의 매입 소자를 매입한 제1의 분리 영역을 형성하고,
제1의 색에 응한 화소에 형성되는 제1의 광전변환 소자와, 상기 제1의 색과 다른 제2의 색에 응한 화소에 형성되는 제2의 광전변환 소자 사이에 금속을 포함하는 제2의 매입 소자를 매입한 제2의 분리 영역을 형성하고 있는 고체 촬상 장치.
(34) 상기 제1의 분리 영역의 단면은, 광의 입사측의 면에 근접함에 따라 폭이 넓어지는 테이퍼 형상이 되는 상기 (33)에 기재된 고체 촬상 장치.
(35) 상기 제1의 분리 영역의 단면은, 삼각형상이 되는 상기 (34)에 기재된 고체 촬상 장치.
(36) 상기 제1의 분리 영역의 단면은, 광의 입사측의 면부터 소정의 깊이로 상기 제1의 매입 소자가 없어지고,
상기 제1의 분리 영역의 하측의 영역은, 불순물에 의해 분리되는 상기 (35)에 기재된 고체 촬상 장치.
(37) 상기 제1의 분리 영역의 단면은, 광의 입사측의 면부터 소정의 깊이까지는 삼각형상이 되고, 상기 소정의 깊이를 초과하면 장방형의 형상이 되는 상기 (34)에 기재된 고체 촬상 장치.
(38) 상기 제1의 분리 영역의 단면은, 광의 입사측의 면부터, 광의 입사측의 반대측의 면까지, 테이퍼가 붙은 사다리꼴형상의 형상이 되는 상기 (34)에 기재된 고체 촬상 장치.
(39) 상기 제1의 분리 영역의 평면은, 광의 입사측의 면에서 본 경우에 장방형의 형상이 되는 상기 (33) 내지 (38)의 어느 하나에 기재된 고체 촬상 장치.
(40) 상기 제1의 분리 영역의 평면은, 광의 입사측의 면에서 본 경우에 능형의 형상이 되는 상기 (33) 내지 (38)의 어느 하나에 기재된 고체 촬상 장치.
(41) 상기 제2의 매입 소자는, 저굴절재를 또한 포함하고,
상기 제2의 분리 영역의 단면은, 광의 입사측의 면부터 소정의 깊이까지 상기 금속이 매입됨과 함께, 광의 입사측의 반대측의 면부터 소정의 깊이까지 상기 저굴절재가 매입되는 상기 (33) 내지 (40)의 어느 하나에 기재된 고체 촬상 장치.
(42) 상기 제2의 분리 영역의 측벽에 고정 전하막을 형성하고 있는 상기 (33) 내지 (41)의 어느 하나에 기재된 고체 촬상 장치.
(43) 상기 화소는, 상기 온 칩 렌즈의 직하에 배치되는 컬러 필터에 응한 색의 화소로서 구성되는 상기 (33) 내지 (42)의 어느 하나에 기재된 고체 촬상 장치.
(44) 상기 화소는, R화소, G화소 및 B화소를 포함하는 상기 (43)에 기재된 고체 촬상 장치.
(45) 하나의 온 칩 렌즈에 대해 복수의 광전변환 소자를 형성한 화소를 포함하는 복수의 화소를 2차원형상으로 배열한 화소 어레이부를 구비하고,
특정한 색에 응한 화소에 형성되는 상기 복수의 광전변환 소자 사이에 저굴절재를 포함하는 제1의 매입 소자를 매입한 제1의 분리 영역을 형성하고,
제1의 색에 응한 화소에 형성되는 제1의 광전변환 소자와, 상기 제1의 색과 다른 제2의 색에 응한 화소에 형성되는 제2의 광전변환 소자 사이에 금속을 포함하는 제2의 매입 소자를 매입한 제2의 분리 영역을 형성하고 있는 고체 촬상 장치가 탑재된 전자 기기.
(46) 하나의 온 칩 렌즈에 대해 복수의 광전변환 소자를 형성한 화소를 포함하는 복수의 화소를 2차원형상으로 배열한 화소 어레이부를 구비하고,
상기 온 칩 렌즈는, 복수종류의 물질에 의해 형성되는 고체 촬상 장치.
(47) 상기 온 칩 렌즈는, 굴절률이 다른 2종류의 물질에 의해 형성되는 상기 (46)에 기재된 고체 촬상 장치.
(48) 상기 온 칩 렌즈는, 제1의 굴절률을 갖는 제1의 부재와, 상기 제1의 굴절률보다도 낮은 제2의 굴절률을 갖는 제2의 부재로 구성되고,
상기 제1의 부재는, 광이 입사되는 곡면과, 상기 제2의 부재의 V자형의 형상으로 이루어지는 부분에 대응한 부분을 포함하고,
상기 제2의 부재는, 광이 입사되는 곡면과 반대측의 면과, V자형의 형상으로 이루어지는 부분을 포함하는 상기 (47)에 기재된 고체 촬상 장치.
(49) 상기 온 칩 렌즈는, 굴절률이 다른 3종류의 물질에 의해 형성되는 상기 (46)에 기재된 고체 촬상 장치.
(50) 상기 온 칩 렌즈는, 제1의 굴절률을 갖는 제1의 부재와, 제2의 굴절률을 갖는 제2의 부재와, 제3의 굴절률을 갖는 제3의 부재로 구성되고,
상기 화소에 형성된 상기 복수의 광전변환 소자 사이는, 소자사이 분리부에 의해 물리적으로 분리되어 있고,
상기 제1의 부재는, 광이 입사되는 곡면과, 상기 제2의 부재의 V자형의 형상으로 이루어지는 부분에 대응한 부분을 포함하고,
상기 제2의 부재는, 광이 입사되는 곡면과 반대측의 면과, V자형의 형상으로 이루어지는 부분을 포함하고,
상기 제3의 부재는, 상기 소자사이 분리부에 대응한 영역에 형성되는 상기 (49)에 기재된 고체 촬상 장치.
(51) 상기 화소는, 특정한 색에 응한 화소로서 구성되고,
특정한 색마다, 상기 화소에서의 상기 온 칩 렌즈의 높이가 다른 상기 (49)에 기재된 고체 촬상 장치.
(52) 상기 화소는, R화소, G화소 및 B화소를 포함하고,
상기 R화소, 상기 G화소, 상기 B화소의 순서로, 상기 온 칩 렌즈의 높이가 낮게 되는 상기 (51)에 기재된 고체 촬상 장치.
(53) 상기 화소는, 특정한 색에 응한 화소로서 구성되고,
특정한 색마다, 상기 화소에서의 상기 온 칩 렌즈의 곡률 반경이 다른 상기 (49)에 기재된 고체 촬상 장치.
(54) 상기 화소는, R화소, G화소 및 B화소를 포함하고,
상기 R화소, 상기 G화소, 상기 B화소의 순서로, 상기 온 칩 렌즈의 곡률 반경이 작게 되는 상기 (53)에 기재된 고체 촬상 장치.
(55) 상기 화소는, 상기 온 칩 렌즈의 직하에 배치되는 컬러 필터에 응한 색의 화소로서 구성되는 상기 (46) 내지 (54)의 어느 하나에 기재된 고체 촬상 장치.
(56) 상기 온 칩 렌즈를 형성하는 부재에 대해 광의 입사각도 의존을 제어하는 제어부재를 형성하는 상기 (46)에 기재된 고체 촬상 장치.
(57) 상기 온 칩 렌즈는, 제1의 굴절률을 갖는 제1의 부재와, 상기 제1의 굴절률보다도 낮은 제2의 굴절률을 갖는 제2의 부재로 구성되고,
상기 제1의 부재는, 광이 입사되는 곡면과, 상기 제2의 부재의 V자형의 형상으로 이루어지는 부분에 대응한 부분을 포함하고,
상기 제2의 부재는, 광이 입사되는 곡면과 반대측의 면과, V자형의 형상으로 이루어지는 부분을 포함하고,
상기 제어부재는, 상기 제1의 부재와 상기 제2의 부재 사이에 형성되는 상기 (56)에 기재된 고체 촬상 장치.
(58) 상기 제어부재는, 포토닉 결정인 상기 (56) 또는 (57)에 기재된 고체 촬상 장치.
(59) 상기 화소는, 상기 제어부재에 의한 분광에 응한 색의 화소로서 구성되는 상기 (56) 내지 (58)의 어느 하나에 기재된 고체 촬상 장치.
(60) 상기 화소는, R화소, G화소 및 B화소를 포함하는 상기 (59)에 기재된 고체 촬상 장치.
(61) 하나의 온 칩 렌즈에 대해 복수의 광전변환 소자를 형성한 화소를 포함하는 복수의 화소를 2차원형상으로 배열한 화소 어레이부를 구비하고,
상기 온 칩 렌즈는, 복수종류의 물질에 의해 형성되는 고체 촬상 장치가 탑재된 전자 기기.
(62) 하나의 온 칩 렌즈에 대해 복수의 광전변환 소자를 형성한 화소를 포함하는 복수의 화소를 2차원형상으로 배열한 화소 어레이부를 구비하고,
특정한 색에 응한 화소에 형성되는 상기 복수의 광전변환 소자 사이에 광의 입사측의 반대측의 면에서, 제1의 종형 트랜지스터를 형성하고 있는 고체 촬상 장치.
(63) 상기 제1의 종형 트랜지스터에 전압을 인가하여 상기 복수의 광전변환 소자 사이에 블루밍 패스를 생성하는 상기 (62)에 기재된 고체 촬상 장치.
(64) 제1의 색에 응한 화소에 형성되는 제1의 광전변환 소자와, 상기 제1의 색과 다른 제2의 색에 응한 화소에 형성되는 제2의 광전변환 소자 사이에 광의 입사측의 반대측의 면부터, 제2의 종형 트랜지스터를 형성하고 있는 상기 (62) 또는 (63)에 기재된 고체 촬상 장치.
(65) 상기 제2의 종형 트랜지스터에 전압을 인가하여 전하를 발생시키는 상기 (64)에 기재된 고체 촬상 장치.
(66) 상기 제1의 광전변환 소자와 상기 제2의 광전변환 소자 사이에 광의 입사측의 면부터, 화소간 분리부를 형성하고 있는 상기 (64) 또는 (65)에 기재된 고체 촬상 장치.
(67) 상기 화소는, 상기 온 칩 렌즈의 직하에 배치되는 컬러 필터에 응한 색의 화소로서 구성되는 상기 (62) 내지 (66)의 어느 하나에 기재된 고체 촬상 장치.
(68) 상기 화소는, R화소, G화소 및 B화소를 포함하는 상기 (67)에 기재된 고체 촬상 장치.
(69) 하나의 온 칩 렌즈에 대해 복수의 광전변환 소자를 형성한 화소를 포함하는 복수의 화소를 2차원형상으로 배열한 화소 어레이부를 구비하고,
특정한 색에 응한 화소에 형성되는 상기 복수의 광전변환 소자 사이에 광의 입사측의 반대측의 면부터 제1의 종형 트랜지스터를 형성하고 있는 고체 촬상 장치가 탑재된 전자 기기.
10 : CMOS 이미지 센서 11 : 화소 어레이부
100, 100-ij : 화소 111, 111E : 온 칩 렌즈
112 : 컬러 필터 113A, 113B : 광전변환 소자
114 : 화소간 차광부 114P: 돌기부
115 : 화소간 분리부 115P: 돌기부
151A, 151B : 전송 게이트부 200 : 화소
210 : 실리콘층 211 : 온 칩 렌즈
212 : 컬러 필터 213A, 213B : 광전변환 소자
214 : 화소간 차광부 215 : 화소간 분리부
220 : 계면층 221 : 중앙 영역
222 : 좌우 영역 230 : 절연층
231 : 산화막 232A, 232B, 232C, 232D, 232E : High-k막
233 : 산화막 241 : 투명 전극
300 : 화소 310 : 실리콘층
311 : 온 칩 렌즈 312 : 컬러 필터
313A, 313B : 광전변환 소자 314 : 화소간 차광부
315 : 화소간 분리부 321 : 동색사이 중앙부
322 : 이색사이 중앙부 331 : 저굴절 영역
341 : 저굴절 영역 400 : 화소
410 : 실리콘층 411, 411E : 온 칩 렌즈
411A, 411B, 411C : 부재 412 : 컬러 필터
413A, 413B : 광전변환 소자 414 : 화소간 차광부
415 : 화소간 분리부 416 : 소자사이 분리부
421, 421R, 421G, 421B : 제어부재 500 : 화소
510 : 실리콘층 511 : 온 칩 렌즈
512 : 컬러 필터 513A, 513B : 광전변환 소자
514 : 화소간 차광부 515 : 화소간 분리부
521 : 동색사이 중앙부 522 : 이색사이 중앙부
531 : 종형 트랜지스터 532 : 종형 트랜지스터
1000 : 전자 기기 1001 : 고체 촬상 장치
12031 : 촬상부

Claims (20)

  1. 화소 어레이 유닛을 포함하고,
    상기 화소 어레이 유닛은,
    상기 화소 어레이 유닛 내에 2차원적으로 배열된 복수의 화소와,
    상기 복수의 화소의 각각의 화소 내에 하나의 온칩 렌즈에 대해 형성된 복수의 광전 변환 영역을 포함하고,
    상기 복수의 화소의 각각의 화소에 대해, 상기 복수의 화소 사이에 형성된 화소간 분리 유닛 및 상기 복수의 화소 사이에 형성된 화소간 차광 유닛 중 적어도 하나의 일부가, 대응하는 화소의 중심을 향하여 돌출 형상으로 돌출하여 돌출부를 형성하고,
    상기 복수의 화소의 각각의 화소에 대해, 불순물 영역이 제1 및 제2 광전 변환 영역 사이에 배치되는 것을 특징으로 하는 고체 촬상 장치.
  2. 제1항에 있어서,
    상기 복수의 화소의 각각은 정사각형 단위 화소이고,
    상기 돌출부는 상기 정사각형 단위 화소의 중심을 향하여 형성되는 것을 특징으로 하는 고체 촬상 장치.
  3. 제2항에 있어서,
    상기 화소간 분리 유닛은, 상기 복수의 광전 변환 영역이 형성되어 있는 반도체층 내에 정사각형 격자 형태로 형성된 트렌치에 매입된 재료로 형성되어, 인접한 화소를 물리적으로 분리하고,
    상기 화소간 분리 유닛의 일부는, 상기 정사각형 단위 화소의 중심을 향해 돌출 형상으로 돌출하여 상기 돌출부를 형성하는 것을 특징으로 하는 고체 촬상 장치.
  4. 제2항에 있어서,
    상기 화소간 차광 유닛은, 상기 온칩 렌즈와 상기 복수의 광전 변환 영역이 형성되어 있는 반도체층 사이의 영역에 정사각형 격자 형태로 형성된 재료로 형성되어, 인접한 화소 사이에서 광을 차광하고,
    상기 화소간 분리 유닛의 일부는, 상기 정사각형 단위 화소의 중심을 향해 돌출 형상으로 돌출하여 상기 돌출부를 형성하는 것을 특징으로 하는 고체 촬상 장치.
  5. 제2항에 있어서,
    상기 화소간 분리 유닛은, 상기 복수의 광전 변환 영역이 형성되어 있는 반도체층에 정사각형 격자 형태로 형성된 트렌치에 매입된 재료로 형성되어, 인접한 화소를 물리적으로 분리하고,
    상기 화소간 차광 유닛은, 상기 온칩 렌즈와 상기 복수의 광전 변환 영역이 형성되어 있는 반도체층 사이의 영역에 정사각형 격자 형태로 형성된 재료로 형성되어, 인접한 화소 사이에서 광을 차광하고,
    상기 화소간 분리 유닛의 일부와 상기 화소간 차광 유닛의 일부는 상기 정사각형 단위 화소의 중심을 향해 돌출 형상으로 돌출하여 상기 돌출부를 형성하는 것을 특징으로 하는 고체 촬상 장치.
  6. 제2항에 있어서,
    상기 정사각형 단위 화소는, 상기 온칩 렌즈 직하에 위치한 적색(R), 녹색(G) 또는 청색(B) 컬러 필터에 대응하는 R 화소, G 화소, 또는 B 화소를 형성하고,
    상기 돌출부는 상기 화소 어레이 유닛에 배열된 상기 복수의 화소 중 상기 R 화소, 상기 G 화소, 및 상기 B 화소 중 적어도 하나에 대해 형성되는 것을 특징으로 하는 고체 촬상 장치.
  7. 제6항에 있어서,
    상기 돌출부는 상기 R 화소, 상기 G 화소, 또는 상기 B 화소에 대해서만 형성되어 있는 것을 특징으로 하는 고체 촬상 장치.
  8. 제6항에 있어서,
    상기 돌출부는 상기 R 화소, 상기 G 화소, 및 B 화소 모두에 대해 형성되어 있는 것을 특징으로 하는 고체 촬상 장치.
  9. 제6항에 있어서,
    상기 돌출부는 상기 R 화소, 상기 G 화소, 및 상기 B 화소 중 2개의 화소의 조합에 대해 형성되어 있는 것을 특징으로 하는 고체 촬상 장치.
  10. 제6항에 있어서,
    상기 돌출부의 돌출 길이는 상기 R 화소, 상기 G 화소, 및 상기 B 화소마다 다른 것을 특징으로 하는 고체 촬상 장치.
  11. 제2항에 있어서,
    상기 돌출부의 돌출 길이는 상기 온칩 렌즈의 집광 스폿 지름에 의거하여 결정되는 것을 특징으로 하는 고체 촬상 장치.
  12. 제11항에 있어서,
    상기 돌출부의 상기 돌출 길이는 상기 온칩 렌즈의 피치 변의 길이의 7분의 1 내지 4분의 1에 대응하는 것을 특징으로 하는 고체 촬상 장치.
  13. 제2항에 있어서,
    광 입사면에 대한 상기 돌출부의 단면의 깊이는 돌출 형상을 갖는 각 돌출부마다 다른 것을 특징으로 하는 고체 촬상 장치.
  14. 제3항에 있어서,
    상기 트렌치는 광입사측 상의 면인 제1 면 또는 상기 광입사측과 반대측의 면인 제2 면으로 형성되어 있는 것을 특징으로 하는 고체 촬상 장치.
  15. 제2항에 있어서,
    상기 정사각형 단위 화소에서는, 반도체층에 형성된 상기 복수의 광전 변환 영역이 불순물에 의해 분리되어 있는 것을 특징으로 하는 고체 촬상 장치.
  16. 제2항에 있어서,
    상기 복수의 광전 변환 영역 각각의 출력은 위상차 검출에 사용되는 것을 특징으로 하는 고체 촬상 장치.
  17. 화소 어레이 유닛과,
    상기 화소 어레이 유닛 내에 2차원적으로 배열된 복수의 화소를 포함하고,
    제1 및 제2 광전 변환 장치가 상기 복수의 화소의 각각에 형성되어 있고,
    상기 화소 어레이 유닛은 하나의 온칩 렌즈에 대해 배열된 화소들을 포함하고,
    화소간 분리 유닛 및 상기 화소들 사이에 형성된 화소간 차광 유닛 중 적어도 하나의 일부가 상기 온칩 렌즈에 대해 배열된 상기 화소들의 중심을 향해 돌출하여, 돌출 형상으로 돌출부를 형성하고,
    상기 화소들 각각에서, 상기 돌출부는 상기 제1 광전 변환 장치와 상기 제2 광전 변환 장치의 적어도 일부 사이로 연장되고,
    상기 돌출부는 상기 화소들 각각의 중심에 형성되지 않으며,
    불순물 영역이 상기 화소들 각각의 상기 중심을 통해 상기 제1 및 제2 광전변환 장치 사이로 연장하는 것을 특징으로 하는 고체 촬상 장치.
  18. 제17항에 있어서,
    상기 온칩 렌즈는 행 방향 또는 열 방향으로 연속하는 2개의 화소를 덮는 타원형 형상을 가지며,
    상기 화소간 분리 유닛 및 상기 화소간 차광 유닛 중 적어도 하나의 일부는 상기 연속하는 2개의 화소 사이에 돌출하여 상기 돌출부를 형성하는 것을 특징으로 하는 고체 촬상 장치.
  19. 제17항에 있어서,
    상기 온칩 렌즈는 2행 2열의 4개의 화소를 덮는 원형 형상을 가지며,
    상기 화소간 분리 유닛 및 상기 화소간 차광 유닛 중 적어도 하나의 일부는 상기 4개의 화소의 중심을 향해 돌출하여, 상기 돌출부를 형성하는 것을 특징으로 하는 고체 촬상 장치.
  20. 복수의 화소가 내부에 2차원적으로 배열된 화소 어레이 유닛과,
    상기 복수의 화소의 각각의 화소에서 하나의 온칩 렌즈에 대해 형성된 복수의 광전 변환 장치를 포함하고,
    상기 복수의 화소 사이에 형성된 화소간 분리 유닛 및 상기 복수의 화소 사이에 형성된 화소간 차광 유닛 중 적어도 하나의 일부가, 대응하는 화소의 중심을 향하여 돌출 형상으로 돌출하여 돌출부를 형성하고,
    상기 복수의 화소의 각각에서, 상기 돌출부는 상기 복수의 광전 변환 장치의 적어도 일부 사이로 연장하고,
    상기 돌출부는 상기 복수의 화소의 각각의 중심에 형성되어 있지 않으며,
    불순물 영역이 상기 복수의 화소의 각각의 중심을 통해 상기 복수의 광전 변환 장치 사이로 연장하는 것을 특징으로 하는 전자 기기.
KR1020237015984A 2017-05-29 2018-05-28 고체 촬상 장치 및 전자 기기 KR102630866B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247002711A KR20240016450A (ko) 2017-05-29 2018-05-28 고체 촬상 장치 및 전자 기기

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017105715 2017-05-29
JPJP-P-2017-105715 2017-05-29
JPJP-P-2018-095949 2018-05-18
JP2018095949A JP7316764B2 (ja) 2017-05-29 2018-05-18 固体撮像装置、及び電子機器
KR1020197023182A KR102554501B1 (ko) 2017-05-29 2018-05-28 고체 촬상 장치 및 전자 기기
PCT/JP2018/020309 WO2018221443A1 (ja) 2017-05-29 2018-05-28 固体撮像装置、及び電子機器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020197023182A Division KR102554501B1 (ko) 2017-05-29 2018-05-28 고체 촬상 장치 및 전자 기기

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020247002711A Division KR20240016450A (ko) 2017-05-29 2018-05-28 고체 촬상 장치 및 전자 기기

Publications (2)

Publication Number Publication Date
KR20230069266A KR20230069266A (ko) 2023-05-18
KR102630866B1 true KR102630866B1 (ko) 2024-01-30

Family

ID=64456520

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020247002711A KR20240016450A (ko) 2017-05-29 2018-05-28 고체 촬상 장치 및 전자 기기
KR1020237015984A KR102630866B1 (ko) 2017-05-29 2018-05-28 고체 촬상 장치 및 전자 기기

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020247002711A KR20240016450A (ko) 2017-05-29 2018-05-28 고체 촬상 장치 및 전자 기기

Country Status (5)

Country Link
US (2) US20230238404A1 (ko)
JP (1) JP2023133370A (ko)
KR (2) KR20240016450A (ko)
CN (2) CN117577654A (ko)
WO (1) WO2018221443A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202040992A (zh) * 2019-02-25 2020-11-01 日商索尼半導體解決方案公司 固態攝像裝置及電子機器
US20240038799A1 (en) * 2020-07-29 2024-02-01 Sony Semiconductor Solutions Corporation Solid-state imaging device and electronic apparatus
JP2021103793A (ja) * 2021-03-31 2021-07-15 ソニーセミコンダクタソリューションズ株式会社 受光素子及び電子機器
WO2023153245A1 (ja) * 2022-02-08 2023-08-17 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
WO2023234069A1 (ja) * 2022-05-30 2023-12-07 ソニーセミコンダクタソリューションズ株式会社 撮像装置および電子機器
JP2024014424A (ja) * 2022-07-22 2024-02-01 ソニーセミコンダクタソリューションズ株式会社 撮像装置
JP2024039120A (ja) * 2022-09-09 2024-03-22 ソニーセミコンダクタソリューションズ株式会社 光検出装置および電子機器
JP2024041483A (ja) * 2022-09-14 2024-03-27 ソニーセミコンダクタソリューションズ株式会社 光検出装置、光検出装置の製造方法、及び電子機器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007158109A (ja) 2005-12-06 2007-06-21 Nikon Corp 焦点検出用信号の生成機能を有する固体撮像装置、および電子カメラ
KR102554501B1 (ko) * 2017-05-29 2023-07-12 소니 세미컨덕터 솔루션즈 가부시키가이샤 고체 촬상 장치 및 전자 기기

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500434B2 (ja) 2000-11-28 2010-07-14 キヤノン株式会社 撮像装置及び撮像システム、並びに撮像方法
JP5468133B2 (ja) * 2010-05-14 2014-04-09 パナソニック株式会社 固体撮像装置
JP5547260B2 (ja) * 2012-10-22 2014-07-09 株式会社東芝 固体撮像装置
KR102336665B1 (ko) * 2014-10-02 2021-12-07 삼성전자 주식회사 데드존을 줄이는 씨모스 이미지 센서
KR20170019542A (ko) * 2015-08-11 2017-02-22 삼성전자주식회사 자동 초점 이미지 센서
JP6738200B2 (ja) * 2016-05-26 2020-08-12 キヤノン株式会社 撮像装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007158109A (ja) 2005-12-06 2007-06-21 Nikon Corp 焦点検出用信号の生成機能を有する固体撮像装置、および電子カメラ
KR102554501B1 (ko) * 2017-05-29 2023-07-12 소니 세미컨덕터 솔루션즈 가부시키가이샤 고체 촬상 장치 및 전자 기기

Also Published As

Publication number Publication date
KR20240016450A (ko) 2024-02-06
US20230238404A1 (en) 2023-07-27
WO2018221443A1 (ja) 2018-12-06
US20240038791A1 (en) 2024-02-01
KR20230069266A (ko) 2023-05-18
CN116598325A (zh) 2023-08-15
JP2023133370A (ja) 2023-09-22
CN117577654A (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
KR102554501B1 (ko) 고체 촬상 장치 및 전자 기기
KR102630866B1 (ko) 고체 촬상 장치 및 전자 기기
US11101305B2 (en) Imaging element and electronic device
CN110546766B (zh) 光电转换器件和摄像器件
KR102663338B1 (ko) 촬상 소자 및 촬상 장치
JPWO2018008614A1 (ja) 撮像素子、撮像素子の製造方法、及び、電子機器
KR20200098490A (ko) 고체 촬상 장치 및 전자 기기
TWI822909B (zh) 固態攝像裝置及電子機器
KR102590054B1 (ko) 고체 촬상 장치 및 전자 기기
JP7487252B2 (ja) 受光素子
KR20240001263A (ko) 고체 촬상 장치 및 전자 기기
KR20220159374A (ko) 촬상 장치 및 전자 기기
KR20230017768A (ko) 촬상 소자 및 촬상 장치
JPWO2019078291A1 (ja) 撮像装置
US20220375975A1 (en) Imaging device
TWI837162B (zh) 固態攝像裝置及電子機器
US20240145507A1 (en) Imaging device
WO2023080197A1 (ja) 撮像素子、電子機器
WO2022270371A1 (ja) 固体撮像装置および電子機器
JP2024059430A (ja) 光検出装置
TW202333363A (zh) 固態攝像裝置及電子機器
KR20240070605A (ko) 고체 촬상 장치 및 전자 기기

Legal Events

Date Code Title Description
A107 Divisional application of patent
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
J202 Request for trial for correction [limitation]