JP2024041483A - 光検出装置、光検出装置の製造方法、及び電子機器 - Google Patents

光検出装置、光検出装置の製造方法、及び電子機器 Download PDF

Info

Publication number
JP2024041483A
JP2024041483A JP2022146323A JP2022146323A JP2024041483A JP 2024041483 A JP2024041483 A JP 2024041483A JP 2022146323 A JP2022146323 A JP 2022146323A JP 2022146323 A JP2022146323 A JP 2022146323A JP 2024041483 A JP2024041483 A JP 2024041483A
Authority
JP
Japan
Prior art keywords
pixel
pixel group
region
separation section
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022146323A
Other languages
English (en)
Inventor
欣典 小玉
Yoshinori Kodama
孝好 本多
Takayoshi Honda
俊徳 井上
Toshinori Inoue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Priority to JP2022146323A priority Critical patent/JP2024041483A/ja
Priority to PCT/JP2023/027645 priority patent/WO2024057739A1/ja
Publication of JP2024041483A publication Critical patent/JP2024041483A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】複数の画素ごとにオンチップレンズを形成する画素構造において、画素間分離部の工程数を少なくし、光の散乱を少なくし得る光検出装置を提供する。【解決手段】光検出装置は、半導体基板と、画素分離部と、オンチップレンズとを備える。画素分離部は、半導体基板に設けられ、隣接する画素の間を分離する。オンチップレンズは、半導体基板の光入射面側で、2以上の複数の画素で構成される画素群ごとに配置され、外部からの光を画素群に集光する。画素分離部は、画素群のうち隣接する画素間に配置され、半導体基板の厚さ方向に延伸する第1の掘り込み領域と、オンチップレンズによる光の集光位置に第1の掘り込み領域とは異なる第2の掘り込み領域とを有する画素群内分離部を備える。画素群内分離部は、平面視において、第2の掘り込み領域の幅を第1の掘り込み領域の幅より細く形成する。【選択図】図4

Description

本開示に係る技術(本技術)は、光検出装置、光検出装置の製造方法、及び光検出装置を備える電子機器に関する。
従来、デジタルスチルカメラやデジタルビデオカメラなどの撮像機能を備えた電子機器においては、光検出装置として、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの固体撮像素子が使用されている。光検出装置は、光電変換を行うフォトダイオード(光電変換素子)とトランジスタとが組み合わされた画素を有しており、平面的に配置された複数の画素から出力される画素信号に基づいて画像が構築される。
ところで、画素に強い光が入射された場合、その画素のフォトダイオードに蓄積されている電荷が飽和してあふれ出し、隣接画素に漏れ込む、混色と呼ばれる現象が発生することがある。画素間を貫通トレンチにより分離する固体撮像装置が考えられているが、全ての画素間に貫通トレンチを形成するため、画素ごとにグランド電位を供給するウェルコンタクトを形成する必要がある。そこで、画素間にまたがってトランジスタ等の素子を配置する箇所に非貫通トレンチを形成する固体撮像装置が提案されている(例えば、特許文献1)。
特開2019-145544号公報
しかしながら、上記特許文献1に記載の固体撮像装置では、貫通トレンチと非貫通トレンチとを別加工するため、工程数が増加する。また、貫通トレンチと非貫通トレンチとの接続部において、合わせズレにより2重加工やトレンチ分断が生じる。
さらに、複数画素にまたがって1つのオンチップレンズを共有する構造の場合、オンチップレンズ中央の非貫通トレンチにより光の散乱が発生する。
本開示はこのような事情に鑑みてなされたもので、複数の画素ごとにオンチップレンズを形成する画素構造において、画素分離部の工程数を少なくし、光の散乱を少なくし得る光検出装置、光検出装置の製造方法、及び電子機器を提供することを目的とする。
本開示の一態様は、外部から入射した光に応じて電気信号を生成可能な複数の画素が行列状に配置された半導体基板と、前記半導体基板に設けられ、隣接する前記画素の間を分離する画素分離部と、前記半導体基板の光入射面側で、2以上の複数の画素で構成される画素群ごとに配置され、外部からの前記光を前記画素群に集光するオンチップレンズと、を備え、前記画素分離部は、前記画素群のうち隣接する画素間に配置され、前記半導体基板の厚さ方向に延伸する第1の掘り込み領域と、前記オンチップレンズによる光の集光位置に前記第1の掘り込み領域とは異なる第2の掘り込み領域とを有する画素群内分離部を備え、前記画素群内分離部は、平面視において、前記第2の掘り込み領域の幅を前記第1の掘り込み領域の幅より細く形成する、光検出装置である。
本開示の他の態様は、外部から入射した光に応じて電気信号を生成可能な複数の画素が行列状に配置された半導体基板と、前記半導体基板に設けられ、隣接する前記画素の間を分離する画素分離部と、前記半導体層の光入射面側で、2以上の同色の複数の画素で構成される画素群ごとに配置され、外部からの前記光を前記画素群に集光するオンチップレンズと、を備え、前記画素分離部は、前記画素群のうち隣接する画素間に配置され、前記オンチップレンズによる光の集光位置の少なくとも一部に開口部を有する画素群内分離部を備え、前記オンチップレンズは、瞳補正位置に応じて、前記画素群の中心から所定の方向にずらして配置され、前記画素群内分離部は、瞳補正位置に応じて、前記開口部の形成位置をずらされる、光検出装置である。
本開示の他の態様は、外部から入射した光に応じて電気信号を生成可能な複数の画素が行列状に配置された半導体基板と、前記半導体基板に設けられ、隣接する前記画素の間を分離する画素分離部と、前記半導体基板の光入射面側で、2以上の同色の複数の画素で構成される画素群ごとに配置され、外部からの前記光を前記画素群に集光するオンチップレンズと、を備える光検出装置の製造方法であって、前記画素群のうち隣接する画素間に、前記半導体基板の厚さ方向に延伸する第1の掘り込み領域と、前記オンチップレンズによる光の集光位置に、前記第1の掘り込み領域とは異なる第2の掘り込み領域とを有する画素群内分離部を形成する第1の工程を備え、前記第1の工程は、平面視において、前記第2の掘り込み領域の幅を前記第1の掘り込み領域の幅より細く形成する、光検出装置の製造方法である。
本開示の第1の実施形態に係る光検出装置の概略的構成の一例を示すブロック図である。 図1に示した画素の回路構成図である。 本開示の第1の実施形態に係る光検出装置の半導体構造の一例を示す部分縦断面図である。 本開示の第1の実施形態に係る画素レイアウトの構成例、及び画素レイアウトに対するオンチップレンズの配置例を示す平面図である。 図4に示した画素群のB1-B1’断面における概略断面の半導体構造の一例を示す部分縦断面図である。 本開示の第2の実施形態に係る画素レイアウトの構成例、及び画素レイアウトに対するオンチップレンズの配置例を示す平面図である。 図6に示した画素群のB2-B2’断面における概略断面の半導体構造の一例を示す部分縦断面図である。 第2の実施形態に係る貫通領域を具体的に示す断面図である。 本開示の第3の実施形態に係る画素レイアウトの構成例、及び画素レイアウトに対するオンチップレンズの配置例を示す平面図である。 本開示の第4の実施形態に係る画素レイアウトの構成例、及び画素レイアウトに対するオンチップレンズの配置例を示す平面図である。 第5の実施形態における光検出装置の裏面側から見た平面図及びC1-C1’線で切断した光検出装置の半導体構造の一例を示す部分断面図である(その1)。 第5の実施形態における光検出装置の裏面側から見た平面図及びC1-C1’線で切断した光検出装置の半導体構造の一例を示す部分断面図である(その2)。 第5の実施形態における光検出装置の裏面側から見た平面図及びC1-C1’線で切断した光検出装置の半導体構造の一例を示す部分断面図である(その3)。 第6の実施形態における光検出装置の裏面側から見た平面図及びD1-D1’線で切断した光検出装置の半導体構造の一例を示す部分断面図である(その1)。 第6の実施形態における光検出装置の裏面側から見た平面図及びD1-D1’線で切断した光検出装置の半導体構造の一例を示す部分断面図である(その2)。 第6の実施形態における光検出装置の裏面側から見た平面図及びD1-D1’線で切断した光検出装置の半導体構造の一例を示す部分断面図である(その3)。 本開示の第7の実施形態に係る光検出装置の画素レイアウトの構成例を示す平面図である。 第7の実施形態の比較例に係る光検出装置の画素レイアウトの構成例を示す平面図である。 本開示の第8の実施形態に係る光検出装置の画素レイアウトの構成例を示す平面図である。 第7の実施形態における光検出装置の裏面側から見た平面図及びG1-G1’線で切断した光検出装置の半導体構造の一例を示す部分断面図である(その1)。 第7の実施形態における光検出装置の裏面側から見た平面図及びG1-G1’線で切断した光検出装置の半導体構造の一例を示す部分断面図である(その2)。 第7の実施形態における光検出装置の裏面側から見た平面図及びG1-G1’線で切断した光検出装置の半導体構造の一例を示す部分断面図である(その3)。 本開示の第10の実施形態に係る画素レイアウトの構成例、及び画素レイアウトに対するオンチップレンズの配置例を示す平面図である。 図17中のH1-H1’線で切断した光検出装置の半導体構造の一例を示す部分断面図である。 本開示の第11の実施形態に係る画素レイアウトの構成例、及び画素レイアウトに対するオンチップレンズの配置例を示す断面図である。 第12の実施形態における光検出装置の半導体構造の一例を示す部分断面図である(その1)。 第12の実施形態における光検出装置の半導体構造の一例を示す部分断面図である(その2)。 第12の実施形態における光検出装置の半導体構造の一例を示す部分断面図である(その3)。 第12の実施形態における光検出装置の半導体構造の一例を示す部分断面図である(その4)。 本技術を適用した電子機器としての撮像装置の構成例を示すブロック図である。 本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 図22に示した撮像部の設置位置の例を示す図である。
以下において、図面を参照して本開示の実施形態を説明する。以下の説明で参照する図面の記載において、同一又は類似の部分には同一又は類似の符号を付し、重複する説明を省略する。但し、図面は模式的なものであり、厚みと平面寸法との関係、各装置や各部材の厚みの比率等は現実のものと異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判定すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
本明細書において、「第1導電型」はp型又はn型の一方であり、「第2導電型」はp型又はn型のうちの「第1導電型」とは異なる一方を意味する。また、「n」や「p」に付す「+」や「-」は、「+」及び「-」が付記されていない半導体領域に比して、それぞれ相対的に不純物密度が高い又は低い半導体領域であることを意味する。但し、同じ「n」と「n」とが付された半導体領域であっても、それぞれの半導体領域の不純物密度が厳密に同じであることを意味するものではない。
また、以下の説明における上下等の方向の定義は、単に説明の便宜上の定義であって、本開示の技術的思想を限定するものではない。例えば、対象を90°回転して観察すれば上下は左右に変換して読まれ、180°回転して観察すれば上下は反転して読まれることは勿論である。
なお、本明細書中に記載される効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
<第1の実施形態>
(光検出装置の全体構成)
図1は、本開示の第1の実施形態に係る光検出装置の概略的構成の一例を示すブロック図である。光検出装置1は、各画素を構成するフォトダイオード等の光電変換素子を用いて、該画素上に結像した光の強弱に応じた電荷量を電気信号に変換し、これを画像データとして出力する半導体装置であり、例えばCMOSイメージセンサとして構成される。光検出装置1は、例えば、CMOS LSIのようなシステム・オン・チップ(SoC)として一体的に構成され得るが、例えば、以下に示すいくつかのコンポーネントが別体のLSIとして構成されても良い。
同図に示すように、光検出装置1は、例えば、画素アレイ部11と、垂直駆動部12と、カラム処理部13と、水平駆動部14と、システム制御部15と、信号処理部16と、データ格納部17といったコンポーネントを含み構成される。
画素アレイ部11は、水平方向(行方向)及び垂直方向(列方向)にアレイ配列された画素110を構成するフォトダイオード等の光電変換素子群を含み構成される。画素アレイ部11は、各画素110上に結像した入射光の強さに応じた電荷量を電気信号に変換し、画素信号として出力する。画素アレイ部11は、例えば、実際の光を受光可能な領域に配置された有効画素と該領域の外側に配置されメタル等により遮蔽されたダミー画素とを含み得る。なお、画素アレイ部11の各画素110上には入射光を集光するマイクロオンチップレンズやカラーフィルタといった光学系素子が形成される(図示せず)。アレイ状に配列された画素110による領域は、撮像する対象空間に対応するいわゆる「像高」を構成する。
垂直駆動部12は、シフトレジスタやアドレスデコーダ等を含み構成される。垂直駆動部12は、複数の画素駆動線18を介して各画素110に駆動信号等を供給することにより、画素アレイ部11の各画素110を例えば同時に又は行単位等で駆動する。
カラム処理部13は、画素アレイ部11の画素列(カラム)ごとに垂直信号線(VSL)19を介して各画素から画素信号を読み出して、ノイズ除去処理、相関二重サンプリング(CDS)処理、及びA/D(Analog-to-Digital)変換処理等を行う。カラム処理部13により処理された画素信号は、信号処理部16に出力される。
水平駆動部14は、シフトレジスタやアドレスデコーダ等を含み構成される。水平駆動部14は、カラム処理部13の画素列に対応する画素110を順番に選択する。この水平駆動部14による選択走査により、カラム処理部13において画素110ごとに信号処理された画素信号が順番に信号処理部16に出力される。
システム制御部15は、各種のタイミング信号を生成するタイミングジェネレータ等を含み構成される。システム制御部15は、例えば図示しないタイミングジェネレータにより生成されたタイミング信号に基づいて、垂直駆動部12、カラム処理部13、及び水平駆動部14の駆動制御を行なう。
信号処理部16は、必要に応じてデータ格納部17にデータを一時的に格納しながら、カラム処理部13から供給された画素信号に対して演算処理等の信号処理を行ない、各画素信号に基づく画像信号を出力する。また、信号処理部16は、カラム処理部13から出力されるフラグに従って、信号処理を行う。
なお、本技術が適用される光検出装置1は、上述したような構成に限られるものではない。例えば、光検出装置1は、データ格納部17がカラム処理部13の後段に配置され、カラム処理部13から出力される画素信号を、データ格納部17を経由して信号処理部16に供給するように構成されても良い。或いは、光検出装置1は、縦続的に接続されたカラム処理部13とデータ格納部17と信号処理部16とが各画素信号を並列的に処理するように構成されても良い。
(画素の回路構成)
図2は、画素110の回路構成図である。
図2に示すように、複数の画素110の各々は、光電変換領域21及び画素回路(読出し回路)22を備えている。光電変換領域21は、光電変換部23と、転送トランジスタTRと、電荷保持領域(フローティングディフュージョン:Floating Diffusion)FDとを備えている。画素回路22は、光電変換領域21の電荷保持領域FDと電気的に接続されている。この第1実施形態では、一例として1つの画素110に1つの画素回路22を割り与えた回路構成としているが、これに限定されるものではなく、1つの画素回路22を複数の画素110で共有する回路構成としてもよい。例えば、水平方向及び垂直方向の各々の方向に2つずつ配置された2×2配置の4つの画素110(1つの画素ブロック)で1つの画素回路22を共有する回路構成としてもよい。
光電変換部23は、例えばpn接合型のフォトダイオード(PD)で構成され、受光量に応じた信号電荷を生成する。光電変換部23は、カソード側が転送トランジスタTRのソース領域と電気的に接続され、アノード側が基準電位線(例えばグランド)と電気的に接続されている。
転送トランジスタTRは、光電変換部23で光電変換された信号電荷を電荷保持領域FDに転送する。転送トランジスタTRのソース領域は光電変換部23のカソード側と電気的に接続され、転送トランジスタTRのドレイン領域は電荷保持領域FDと電気的に接続されている。そして、転送トランジスタTRのゲート電極は、画素駆動線18(図1参照)のうちの転送トランジスタ駆動線と電気的に接続されている。
電荷保持領域FDは、光電変換部23から転送トランジスタTRを介して転送された信号電荷を一時的に保持(蓄積)する。
画素回路22は、電荷保持領域FDに保持された信号電荷を読み出し、読み出した信号電荷を画素信号に変換して出力する。換言すれば、画素回路22は、光電変換素子PDで光電変換された信号電荷を、この信号電荷に基づく画素信号に変換して出力する。画素回路22は、これに限定されないが、画素トランジスタとして、例えば、増幅トランジスタAMPと、選択トランジスタSELと、リセットトランジスタRSTと、切替トランジスタFDGと、を備えている。これらの画素トランジスタ(AMP,SEL,RST,FDG)、及び上述の転送トランジスタTRの各々は、電界効果トランジスタとして、例えば、MOSFETで構成されている。また、これらのトランジスタとしては、MISFETでも構わない。
画素回路22に含まれる画素トランジスタのうち、選択トランジスタSEL、リセットトランジスタRST、及び切替トランジスタFDGの各々は、スイッチング素子として機能し、増幅トランジスタAMPは、増幅素子として機能する。
なお、選択トランジスタSEL及び切替トランジスタFDGは、必要に応じて省略してもよい。
増幅トランジスタAMPは、ソース領域が選択トランジスタSELのドレイン領域と電気的に接続され、ドレイン領域が電源線Vdd及びリセットトランジスタRSTのドレイン領域と電気的に接続されている。そして、増幅トランジスタAMPのゲート電極は、電荷保持領域FD及び切替トランジスタFDGのソース領域と電気的に接続されている。
選択トランジスタSELは、ソース領域が垂直信号線19(VSL)と電気的に接続され、ドレイン領域が増幅トランジスタAMPのソース領域と電気的に接続されている。そして、選択トランジスタSELのゲート電極は、画素駆動線18(図1参照)のうちの選択トランジスタ駆動線と電気的に接続されている。
リセットトランジスタRSTは、ソース領域が切替トランジスタFDGのドレイン領域と電気的に接続され、ドレイン領域が電源線Vdd及び増幅トランジスタAMPのドレイン領域と電気的に接続されている。そして、リセットトランジスタRSTのゲート電極は、画素駆動線18(図1参照)のうちのリセットトランジスタ駆動線と電気的に接続されている。
切替トランジスタFDGは、ソース領域が電荷保持領域FD及び増幅トランジスタAMPのゲート電極と電気的に接続され、ドレイン領域が電源線Vdd及び増幅トランジスタAMPのドレイン領域と電気的に接続されている。そして、切替トランジスタFDGのゲート電極は、画素駆動線18(図1参照)のうちの切替トランジスタ駆動線と電気的に接続されている。
なお、選択トランジスタSELを省略する場合は、増幅トランジスタAMPのソース領域が垂直信号線19(VSL)と電気的に接続される。また、切替トランジスタFDGを省略する場合は、リセットトランジスタRSTのソース領域が増幅トランジスタAMPのゲート電極及び電荷保持領域FDと電気的に接続される。
転送トランジスタTRは、転送トランジスタTRがオン状態となると、光電変換部23で生成された信号電荷を電荷保持領域FDに転送する。
リセットトランジスタRSTは、リセットトランジスタRSTがオン状態となると、電荷保持領域FDの電位(信号電荷)を電源線Vddの電位にリセットする。選択トランジスタSELは、画素回路22からの画素信号の出力タイミングを制御する。
増幅トランジスタAMPは、画素信号として、電荷保持領域FDに保持された信号電荷のレベルに応じた電圧の信号を生成する。増幅トランジスタAMPは、ソースフォロア型のアンプを構成しており、光電変換部23で生成された信号電荷のレベルに応じた電圧の画素信号を出力するものである。増幅トランジスタAMPは、選択トランジスタSELがオン状態となると、電荷保持領域FDの電位を増幅して、その電位に応じた電圧を、垂直信号線19(VSL)を介してカラム信号処理回路5に出力する。
切替トランジスタFDGは、電荷保持領域FDによる電荷保持を制御すると共に、増幅トランジスタAMPで増幅される電位に応じた電圧の増倍率を調整する。
(光検出装置の半導体構造)
図3は、本開示の第1の実施形態に係る光検出装置1の半導体構造の一例を示す部分縦断面図である。同図に示すように、半導体構造30は、概略的には、例えば、配線層31と、半導体層32と、平坦化膜33と、カラーフィルタ34と、オンチップレンズ35とを含み構成される。このような半導体構造30は、例えば、配線層31及び各種のロジック回路(図示せず)を含む第1シリコン基板と、半導体層32を含む第2シリコン基板とを一体的に接合することにより構成され得る。
オンチップレンズ35は、外部から光検出装置1に入射する光を、効率的に集光して半導体層32の対応する複数の画素110に結像するための光学レンズである。本例では、オンチップレンズ35は、平面視で水平方向(列方向)及び垂直方向(行方向)に2画素110ずつ並べられた4画素110ごとに、1つずつ配置されている。なお、オンチップレンズ35は、例えば、酸化シリコン、窒化シリコン、酸窒化シリコン、有機SOG、ポリイミド系樹脂、又はフッ素系樹脂等から形成される。
カラーフィルタ34は、オンチップレンズ35により集光された光のうち、所定の波長の光を選択的に透過する光学フィルタである。本例では、赤色光、緑色光、青色光、及び近赤外光の波長をそれぞれ選択的に透過する4つのカラーフィルタ24が用いられるが、これに限られない。各画素110には、いずれかの色(波長)に対応するカラーフィルタ34が配置される。
半導体層32は、各画素110を構成するフォトダイオード等の光電変換部23を含む画素回路群が形成された機能層である。半導体層32の各光電変換部23は、オンチップレンズ35及びカラーフィルタ34を介して入射した光の強さに応じた電荷量を生成し、これを電気信号に変換し、画素信号として出力する。
光電変換部23は、n型領域231と、p型領域232とにより形成される。半導体層32は、半導体製造プロセスによりシリコン基板に作製される。光電変換部23及び各種の電子素子は、配線層31における所定の金属配線に電気的に接続される。
また、半導体層32には、各画素110同士を分離する画素分離部37が形成され得る。画素分離部37は、例えばエッチング処理により形成されたトレンチ構造からなる。画素分離部37は、画素110に入射した光が隣接する画素110へ入り込むことを防止する。画素分離部37には、絶縁膜371が埋め込まれる。また、画素分離部37の内壁面には、負の固定電荷を発生する固定電荷膜372が成膜される。固定電荷膜372としては、シリコン等の基板上に堆積することにより固定電荷を発生させてピニングを強化させることが可能な材料を用いることが好ましく、負の電荷を有する高屈折率材料膜または高誘電体膜を用いることができる。これにより、暗電流の発生が抑制される。
配線層31は、半導体層32における各画素110へ電力及び各種の駆動信号を伝達し、また、各画素110から読み出される画素信号を伝達するための金属配線パターン311が形成された層である。配線層31は、典型的には、複数の金属配線パターン311の層が層間絶縁膜を挟み積層されて構成され得る。また、積層された金属配線パターン311は、必要に応じて例えばビアにより電気的に接続される。
半導体層32の裏面側(光入射面側)には、遮光壁38が設けられる。遮光壁38は、光電変換部23を開口するように格子状に形成されている。すなわち、遮光壁38は、画素分離部37に対応する位置に形成されている。遮光壁38を構成する材料としては、光を遮光する材料であればよく、例えば、タングステン(W)、アルミニウム(Al)又は銅(Cu)を用いることができる。
(画素レイアウトの構成例)
図4は、本開示の第1の実施形態に係る画素レイアウトの構成例、及び画素レイアウトに対するオンチップレンズ35の配置例を示す平面図である。図5は、図4に示した画素群のB1-B1’断面における概略断面の半導体構造の一例を示す部分縦断面図である。
図4に示すように、光検出装置1は、例えば、緑色の光を透過するカラーフィルタ34で覆われた画素群110Gを有する。画素群110Gは、画素110が平面視で水平方向及び垂直方向に2画素ずつ並べられた4画素を有する。なお、画素群110Gは、例えば、赤色の光を透過するカラーフィルタ34で覆われてもよいし、青色の光を透過するカラーフィルタ34で覆われてもよいし、異なる色の光を透過するカラーフィルタ34で覆われてもよい。
図4に示すように、オンチップレンズ35は、平面視で水平方向及び垂直方向に2画素ずつ並べられた4つの画素110ごとに、1つずつ配置されている。画素レイアウトの構成例では、画素110間がそれぞれ、トレンチアイソレーション構造を有する画素分離部37で分離されている。例えば、画素分離部37は、平面視で幅a1を有する貫通領域37aと、幅a1より狭い幅b1を有する非貫通領域37bとを有する。
本開示の第1の実施形態の比較例として、以前は、貫通領域37aと非貫通領域37bとを別加工するため、工程数が増加していた。また、貫通領域37aと非貫通領域37bとの接続部において、合わせズレにより2重加工や画素分離部37の分断が生じていた。
そこで、本開示の第1の実施形態では、画素分離部37の非貫通領域37bの幅を、貫通領域37aの幅より細く形成することで、非貫通領域37bの深さをセルフアライン的に浅く形成できることにより、貫通領域37aと非貫通領域37bとを同時に加工でき、工程数を削減できる。また、貫通領域37aと非貫通領域37bとのつなぎ目が連続的になり、2重加工や画素分離部37の切断の問題が無い。さらに、オンチップレンズ35による光の集光位置において、非貫通領域37bによる光の散乱が少ない。
また、本開示の第1の実施形態では、図5に示すように、非貫通領域37bの光入射面とは反対側の領域に、電荷保持領域FDを配置することができるので、半導体層32の光入射面とは反対側のシリコン領域を有効活用できる。
<第1の実施形態による作用効果>
以上のように第1の実施形態によれば、画素分離部37の非貫通領域37bの幅を、貫通領域37aの幅より細く形成することで、非貫通領域37bの深さをセルフアライン的に浅く形成できることにより、貫通領域37aと非貫通領域37bとを同時に加工でき、工程数を削減できる。また、貫通領域37aと非貫通領域37bとのつなぎ目が連続的になり、2重加工や画素分離部37の切断の問題が無い。さらに、オンチップレンズ35による光の集光位置において、非貫通領域37bによる光の散乱が少ない。
<第2の実施形態>
(画素レイアウトの構成例)
図6は、本開示の第2の実施形態に係る画素レイアウトの構成例、及び画素レイアウトに対するオンチップレンズ35の配置例を示す平面図である。図7は、図6に示した画素群のB2-B2’断面における概略断面の半導体構造の一例を示す部分縦断面図である。なお、図6及び図7において、上記図4及び上記図5と同一部分には同一符号を付して詳細な説明を省略する。
光検出装置1Aにおいて、オンチップレンズ35は、平面視で水平方向及び垂直方向に2画素ずつ並べられた4つの画素110ごとに、1つずつ配置されている。画素レイアウトの構成例では、画素110間がそれぞれ、トレンチアイソレーション構造を有する画素分離部37Aで分離されている。例えば、画素分離部37Aは、平面視で貫通領域37a1と、貫通領域37a1より幅が狭い非貫通領域37bとを有する。
貫通領域37a1には、図8に示すように、絶縁膜373と、遮光膜374とが埋め込まれる。非貫通領域37bには、絶縁膜371が埋め込まれる。遮光膜374には、例えば、アルミニウム(Al)や、タングステン(W)等が使用される。また、絶縁膜371,373には、酸化シリコン(SiO)、酸化チタン(TiO)、酸化ハフニウム(HfO)等が使用される。酸化シリコン(SiO)の屈折率は1.45であり、酸化チタン(TiO)の屈折率は2.5であり、酸化ハフニウム(HfO)の屈折率は2.1である。シリコン(Si)の屈折率は3.5である。すなわち、シリコン(Si)の屈折率に近いほどケラレ(散乱)が少ない。
<第2の実施形態による作用効果>
以上のように第2の実施形態によれば、貫通領域37a1を例えば金属を使用した遮光膜374で閉塞し、非貫通領域37bを金属以外の例えば酸化シリコンを用いた絶縁膜371で閉塞することにより、オンチップレンズ35による光の集光位置における光の散乱を少なくでき、かつ貫通領域37a1の遮光性や反射を確保できる。
<第3の実施形態>
図9は、本開示の第3の実施形態に係る画素レイアウトの構成例、及び画素レイアウトに対するオンチップレンズ35の配置例を示す平面図である。図9において、上記図4と同一部分には、同一符号を付して詳細な説明を省略する。
画素レイアウトの構成例では、画素110間がそれぞれ、トレンチアイソレーション構造を有する画素分離部37Bで分離されている。図9において、オンチップレンズ35は、光検出装置1Bの像高が高い位置での光を有効に利用するため、いわゆる瞳補正に従って配置される。すなわち、図9(c)に示すように、中央(像高ゼロ)に位置する画素110に対応するオンチップレンズ35は、その光軸と画素110の中心とが略一致するように配置される。貫通領域37aと非貫通領域37bとの境目37c1,37c2、37c3、37c4は、それぞれ電荷保持領域FDから等距離に位置する。
高い像高ほど、オンチップレンズ35は画素110の中心からずらされて配置される。すなわち、図9(a)に示すように、オンチップレンズ35が中央から上側(図9中矢印Y1で示す方向)にずらされた場合、境目37c2,37c4は、図9(c)の状態より上側(図9中矢印Y1で示す方向)にずらされる。
図9(b)に示すように、オンチップレンズ35が中央から右上側(図9中矢印X1で示す方向及び矢印Y1で示す方向)にずらされた場合、境目37c1,37c3は、図9(c)の状態より右側(図9中矢印X1で示す方向)にずらされ、境目37c2,37c4は、図9(c)の状態より上側(図9中矢印Y1で示す方向)にずらされる。
図9(d)に示すように、オンチップレンズ35が中央から右側(図9中矢印X1で示す方向)にずらされた場合、境目37c1,37c3は、図9(c)の状態より右側(図9中矢印X1で示す方向)にずらされる。
<第3の実施形態による作用効果>
以上のように第3の実施形態によれば、瞳補正位置に応じて、オンチップレンズ35を画素群110Gの中心からずらし、貫通領域37aと非貫通領域37bとの境目37c1,37c2、37c3、37c4の位置をずらすことにより、光の散乱を少なくできる。
<第4の実施形態>
図10は、本開示の第4の実施形態に係る画素レイアウトの構成例、及び画素レイアウトに対するオンチップレンズ35の配置例を示す平面図である。図10において、上記図6と同一部分には、同一符号を付して詳細な説明を省略する。
光検出装置1Cにおいて、画素110間がそれぞれ、トレンチアイソレーション構造を有する画素分離部37Cで分離されている。例えば、画素分離部37Aは、平面視で貫通領域37a1と、貫通領域37a1より幅が狭い非貫通領域37bとを有する。貫通領域37a1には、絶縁膜373と、遮光膜374とが埋め込まれる。
図10(c)に示すように、中央(像高ゼロ)に位置する画素110に対応するオンチップレンズ35は、その光軸と画素110の中心とが略一致するように配置される。貫通領域37a1と非貫通領域37bとの境目37c1,37c2、37c3、37c4は、それぞれ電荷保持領域FDから等距離に位置する。
高い像高ほど、オンチップレンズ35は画素110の中心からずらされて配置される。すなわち、図10(a)に示すように、オンチップレンズ35が中央から上側(図10中矢印Y1で示す方向)にずらされた場合、境目37c2,37c4は、図10(c)の状態より上側(図10中矢印Y1で示す方向)にずらされる。
図10(b)に示すように、オンチップレンズ35が中央から右上側(図10中矢印X1で示す方向及び矢印Y1で示す方向)にずらされた場合、境目37c1,37c3は、図10(c)の状態より右側(図10中矢印X1で示す方向)にずらされ、境目37c2,37c4は、図10(c)の状態より上側(図10中矢印Y1で示す方向)にずらされる。
図10(d)に示すように、オンチップレンズ35が中央から右側(図10中矢印X1で示す方向)にずらされた場合、境目37c1,37c3は、図10(c)の状態より右側(図10中矢印X1で示す方向)にずらされる。
<第4の実施形態による作用効果>
以上のように第4の実施形態によれば、瞳補正によるオンチップレンズ35の光検出装置1C内でのズレに対して、光が絶縁膜373及び遮光膜374で反射される成分を減少でき、光学特性(感度)の向上に寄与できる。
<第5の実施形態>
本開示の第5の実施形態では、先の第1の実施形態に係る光検出装置1の製造方法の基本工程について説明する。
図11A(1)乃至図11C(1)は、第5の実施形態における光検出装置1の裏面側から見た平面図である。図11A(2)乃至図11C(2)は、C1-C1’線で切断した光検出装置1の半導体構造の一例を示す部分断面図である。C1-C1’線は、平面視で、画素分離部37の貫通領域37a及び非貫通領域37bを通る仮想線である。
先ず、シリコン基板41を用意し、シリコン基板41の裏面側にレジスト膜42を成膜し、リソグラフィ工程によりレジスト膜42上に、貫通領域37aを形成する場合に、レジストスペース線幅421を太くし、非貫通領域37bを形成する場合に、レジストスペース線幅422を細くするようにパターニングする(図11A)。
次に、レジストスペース線幅421,422をドライエッチングにより開口し、開口部43を形成する(図11B)。開口部43において、レジストスペース線幅421は深く掘れ、レジストスペース線幅422は浅くなる。
次に、レジスト膜42を除去し、開口部43に絶縁膜371を埋め込むことにより、画素分離部37の貫通領域37a及び非貫通領域37bを形成する(図11C)。以後、シリコン基板41の裏面側に、オンチップレンズ35及びカラーフィルタ34を形成する。
<第5の実施形態による作用効果>
以上のように第5の実施形態によれば、画素分離部37の非貫通領域37bの幅を、貫通領域37aの幅より細く形成することで、非貫通領域37bの深さをセルフアライン的に浅く形成できることにより、貫通領域37aと非貫通領域37bとを同時に加工でき、工程数を削減できる。
<第6の実施形態>
本開示の第6の実施形態では、先の第2の実施形態に係る光検出装置1Aの製造方法の基本工程について説明する。
図12A(1)乃至図12C(1)は、第6の実施形態における光検出装置1Aの裏面側から見た平面図である。図12A(2)乃至図12C(2)は、D1-D1’線で切断した光検出装置1Aの半導体構造の一例を示す部分断面図である。D1-D1’線は、平面視で、画素分離部37Aの貫通領域37a1及び非貫通領域37bを通る仮想線である。なお、図12A乃至図12Cにおいて、上記図11A乃至図11Cと同一部分には同一符号を付して詳細な説明を省略する。
先ず、シリコン基板41を用意し、シリコン基板41の裏面側にレジスト膜42を成膜し、リソグラフィ工程によりレジスト膜42上に、貫通領域37a1を形成する場合に、レジストスペース線幅を太くし、非貫通領域37bを形成する場合に、レジストスペース線幅を細くするようにパターニングし、レジストスペース線幅をドライエッチングにより開口し、開口部43を形成する(図12A)。
次に、レジスト膜42を除去し、開口部43に絶縁膜371を埋め込むことにより、画素分離部37Aの非貫通領域37bを形成する(図12B)。また、貫通領域37a1の側壁には、絶縁膜373が埋め込まれ、中央が空洞である。
次に、開口部43のトレンチ中央に遮光膜374を埋め込むことにより、画素分離部37Aの貫通領域37a1を形成する(図12C)。以後、シリコン基板41の裏面側に、オンチップレンズ35及びカラーフィルタ34を形成する。
<第6の実施形態による作用効果>
以上のように第6の実施形態によれば、先の第5の実施形態と同様に、貫通領域37a1と非貫通領域37bとを同時に加工でき、工程数を削減できる。
<第7の実施形態>
図13は、本開示の第7の実施形態に係る光検出装置1Dの画素レイアウトの構成例を示す平面図である。図13において、上記図4と同一部分には同一符号を付して詳細な説明を省略する。図13(2)は、E1-E1’線で切断した光検出装置1Dの半導体構造の一例を示す部分断面図である。
図13(1)に示すように、光検出装置1Dは、4つの画素群110G1,110G2,110G3,110G4を有する。画素群110G1,110G2,110G3,110G4は、平面視で水平方向及び垂直方向に2画素110ずつ並べられた4画素110を有する。
画素群110G1,110G2,110G3,110G4は、トレンチアイソレーション構造を有する画素分離部37Dで分離されている。例えば、画素分離部37Dは、平面視で貫通領域37dと、貫通領域37dより幅が狭い非貫通領域37eとを有する。
<第7の実施形態の比較例>
図14は、第7の実施形態の比較例に係る光検出装置B1の画素レイアウトの構成例を示す平面図である。図14において、上記図13と同一部分には同一符号を付して詳細な説明を省略する。図14(2)は、E2-E2’線で切断した光検出装置B1の半導体構造の一例を示す部分断面図である。
光検出装置B1において、画素群110G1,110G2,110G3,110G4は、それぞれグランド(GND)電位を供給するための1つのウェルコンタクト39を有する。ところで、光検出装置B1では、画素トランジスタへのコンタクト配線の配線構造が複雑化することになる。
<第7の実施形態による実現手段>
そこで、本開示の第7の実施形態では、対角線上に対向する画素群110G1,110G2,110G3,110G4それぞれのウェルコンタクト39を、1つのウェルコンタクト51に集中して非貫通領域37eに配置するようにしている。
<第7の実施形態による作用効果>
以上のように第7の実施形態によれば、対角線上に対向する画素群110G1,110G2,110G3,110G4それぞれのウェルコンタクト39を1つのウェルコンタクト51にして画素分離部37Dの非貫通領域37eに配置することにより、画素トランジスタへのコンタクト配線本数を減らすことができ、配線ピッチの緩和が可能となる。
<第8の実施形態>
図15は、本開示の第8の実施形態に係る光検出装置1Eの画素レイアウトの構成例を示す平面図である。図15において、上記図13と同一部分には同一符号を付して詳細な説明を省略する。図15(2)は、F1-F1’線で切断した光検出装置1Eの半導体構造の一例を示す部分断面図である。
図15(1)に示すように、光検出装置1Eは、4つの画素群110G1,110G2,110G3,110G4を有する。画素群110G1,110G2,110G3,110G4は、平面視で水平方向及び垂直方向に2画素110ずつ並べられた4画素110を有する。
画素群110G1,110G2,110G3,110G4は、トレンチアイソレーション構造を有する画素分離部37Eで分離されている。例えば、画素分離部37Eは、平面視において、行方向(図15中矢印X1-X2で示す方向)に延伸される貫通領域37dxと、列方向(図15中矢印Y1-Y2で示す方向)に延伸される貫通領域37dyとが交差する非貫通領域37fを有する。非貫通領域37fは、平面視において、貫通領域37dの幅より細く形成される。
<第8の実施形態による作用効果>
以上のように第8の実施形態によれば、画素分離部37Eにおいて、非貫通領域37fを対称配置することにより、各画素110の集光効率を調整できる。
さらに、第8の実施形態において、行方向(図15中矢印X1-X2で示す方向)に延伸される貫通領域37dxと、列方向(図15中矢印Y1-Y2で示す方向)に延伸される貫通領域37ayとが交差する箇所と、行方向(図15中矢印X1-X2で示す方向)に延伸される貫通領域37axと、列方向(図15中矢印Y1-Y2で示す方向)に延伸される貫通領域37dyとが交差する箇所に、非貫通領域を形成するようにしてもよい。このようにすれば、各画素110の集光効率をさらに調整できる。
<第9の実施形態>
本開示の第9の実施形態では、先の第7の実施形態に係る光検出装置1Eの製造方法の基本工程について説明する。
図16A(1)乃至図16C(1)は、第7の実施形態における光検出装置1Eの裏面側から見た平面図である。図16A(2)乃至図16C(2)は、G1-G1’線で切断した光検出装置1Eの半導体構造の一例を示す部分断面図である。G1-G1’線は、平面視で、画素分離部37Dの貫通領域37d及び非貫通領域37eを通る仮想線である。
先ず、シリコン基板61を用意し、シリコン基板61の裏面側にレジスト膜62を成膜し、リソグラフィ工程によりレジスト膜62上に、貫通領域37dを形成する場合に、レジストスペース線幅621を太くし、非貫通領域37eを形成する場合に、レジストスペース線幅622を細くするようにパターニングする(図16A)。
次に、レジストスペース線幅621,622をドライエッチングにより開口し、開口部63を形成する(図16B)。開口部63において、レジストスペース線幅621は深く掘れ、レジストスペース線幅622は浅くなる。
次に、レジスト膜62を除去し、開口部63に絶縁膜371を埋め込むことにより、画素分離部37Dの貫通領域37d及び非貫通領域37eを形成する(図16C)。以後、シリコン基板61の裏面側に、オンチップレンズ35及びカラーフィルタ34を形成する。
<第9の実施形態による作用効果>
以上のように第9の実施形態によれば、画素分離部37Dの非貫通領域37eの幅を、貫通領域37dの幅より細く形成することで、非貫通領域37eの深さをセルフアライン的に浅く形成できることにより、貫通領域37dと非貫通領域37eとを同時に加工でき、工程数を削減できる。
<第10の実施形態>
図17は、本開示の第10の実施形態に係る画素レイアウトの構成例、及び画素レイアウトに対するオンチップレンズ35の配置例を示す平面図である。図17において、上記図4と同一部分には、同一符号を付して詳細な説明を省略する。
図18は、図17中のH1-H1’線で切断した光検出装置1Fの半導体構造の一例を示す部分断面図である。図18において、上記図3と同一部分には同一符号を付して詳細な説明を省略する。
光検出装置1Fにおいて、画素110間がそれぞれ、トレンチアイソレーション構造を有する画素分離部37Fで分離されている。画素分離部37Fは、電荷保持領域FD付近に開口部37hを有する。
図17において、オンチップレンズ35は、光検出装置1Fの像高が高い位置での光を有効に利用するため、いわゆる瞳補正に従って配置される。すなわち、図17(c)に示すように、中央(像高ゼロ)に位置する画素群110Gに対応するオンチップレンズ35は、その光軸と画素群110Gの中心とが略一致するように配置される。貫通領域37g1,37g2,37g3,37g4は、それぞれ電荷保持領域FDに対し等距離に延伸している。
高い像高ほど、オンチップレンズ35は画素群110Gの中心からずらされて配置される。すなわち、図17(a)に示すように、オンチップレンズ35が中央から下側(図17中矢印Y2で示す方向)にずらされた場合、貫通領域37g4は、図17(c)の状態より下側(図17中矢印Y2で示す方向)に延伸され、貫通領域37g2は、図17(c)の状態より下側(図17中矢印Y2で示す方向)に縮められる。
図17(b)及び図18(b)に示すように、オンチップレンズ35が中央から右端上端(図17中矢印X2で示す方向及び矢印Y2で示す方向)にずらされた場合、貫通領域37g4は、図17(c)の状態より下側(図17中矢印Y2で示す方向)に延伸され、貫通領域37g2は、図17(c)の状態より下側(図17中矢印Y2で示す方向)に縮められる。また、貫通領域37g3は、図17(c)の状態より左側(図17中矢印X2で示す方向)に延伸され、貫通領域37g1は、図17(c)の状態より左側(図17中矢印X2で示す方向)に縮められる。
図17(d)及び図18(d)に示すように、オンチップレンズ35が中央から左側(図17中矢印X2で示す方向)にずらされた場合、貫通領域37g3は、図17(c)の状態より左側(図17中矢印X2で示す方向)に延伸され、貫通領域37g1は、図17(c)の状態より左側(図17中矢印X2で示す方向)に縮められる。
<第10の実施形態による作用効果>
以上のように第10の実施形態によれば、高い像高ほど、オンチップレンズ35の位置は、主光線の出射の向きに合わせてずらして配置され、さらに画素分離部37Fの開口部37hの形成位置もずらされるので、高い像高において、斜めに入射する主光線の利用が可能になり、さらにオンチップレンズ35における集光位置に非貫通トレンチがなくなり、光学特性の向上に寄与できる。また、工程数を削減することができる。
また、第10の実施形態によれば、瞳補正によるオンチップレンズ35の光検出装置1F(チップ)内でのずれに対して、光が遮光壁38及び埋め込み膜で反射または散乱される成分を減少でき、光学特性の向上に寄与できる。
<第11の実施形態>
図19は、本開示の第11の実施形態に係る画素レイアウトの構成例、及び画素レイアウトに対するオンチップレンズ35の配置例を示す断面図である。図19において、上記図18と同一部分には、同一符号を付して詳細な説明を省略する。
図19(c)に示すように、中央(像高ゼロ)に位置する画素群110Gに対応するオンチップレンズ35は、その光軸と画素群110Gの中心とが略一致するように配置される。貫通領域37g1,37g3は、それぞれ電荷保持領域FDに対し等距離に延伸している。
図19(a)に示すように、オンチップレンズ35が中央から下側(図17中矢印Y2で示す方向)にずらされた場合、貫通領域37g4は、図19(c)の状態より下側(図17中矢印Y2で示す方向)に延伸され、貫通領域37g2は、図19(c)の状態より下側(図17中矢印Y2で示す方向)に縮められる。
図19(b)に示すように、オンチップレンズ35が中央から右端上端(図17中矢印X2で示す方向及び矢印Y2で示す方向)にずらされた場合、貫通領域37g3は、図19(c)の状態より左側(図19中矢印X2で示す方向)に延伸され、貫通領域37g1は、図19(c)の状態より左側(図19中矢印X2で示す方向)に縮められる。さらに、電荷保持領域FDの形成位置も、図19(c)の状態より左側(図19中矢印X2で示す方向)にずらされる。
図19(d)に示すように、オンチップレンズ35が中央から左側(図19中矢印X2で示す方向)にずらされた場合、貫通領域37g3は、図19(c)の状態より左側(図19中矢印X2で示す方向)に延伸され、貫通領域37g1は、図19(c)の状態より左側(図19中矢印X2で示す方向)に縮められる。さらに、電荷保持領域FDの形成位置も、図19(c)の状態より左側(図19中矢印X2で示す方向)にずらされる。
<第11の実施形態による作用効果>
以上のように第11の実施形態によれば、電荷保持領域FDの形成位置も瞳補正位置に応じてずらすことにより、画素分離部37Fからの強電界の影響を緩和できる。
<第12の実施形態>
本開示の第12の実施形態では、先の第10の実施形態に係る光検出装置1Fの製造方法の基本工程について説明する。
図20A乃至図20Dは、第12の実施形態における光検出装置1Fの半導体構造の一例を示す部分断面図である。図20A乃至図20Dにおいて、上記図3及び上記図18と同一部分には同一符号を付して詳細な説明を省略する。
表面に配線層31を接合した半導体層32を用意し、半導体層32を裏面側からSTI部71までを貫通加工する(図20A)。なお、変形例として、表面工程からの加工及び平坦化も可能である。
次に、貫通した開口部72に、例えば酸化シリコン(SiO)といった絶縁膜73を埋め込んで画素分離部37Fを形成し、画素分離部37Fの内壁面に、負の固定電荷を発生する固定電荷膜372を成膜する(図20B)。
次に、画素分離部37Fの裏面側に遮光壁38を形成し、さらにカラーフィルタ34を形成する(図20C)。遮光壁38としては、高反射の金属膜や低屈折率材料の膜が可能である。しかる後に、カラーフィルタ34の裏面側にオンチップレンズ35を形成する(図20D)。
<その他の実施形態>
上記のように、本技術は第1から第12の実施形態によって記載したが、この開示の一部をなす論述及び図面は本技術を限定するものであると理解すべきではない。上記の第1から第12の実施形態が開示する技術内容の趣旨を理解すれば、当業者には様々な代替実施形態、実施例及び運用技術が本技術に含まれ得ることが明らかとなろう。また、第1から第12の実施形態がそれぞれ開示する構成を、矛盾の生じない範囲で適宜組み合わせることができる。例えば、複数の異なる実施形態がそれぞれ開示する構成を組み合わせてもよく、同一の実施形態の複数の異なる変形例がそれぞれ開示する構成を組み合わせてもよい。
<電子機器への応用例>
上述した光検出装置は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの撮像装置、撮像機能を備えた携帯電話機、または、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。
図21は、本技術を適用した電子機器としての撮像装置の構成例を示すブロック図である。
図21に示される撮像装置2201は、光学系2202、シャッタ装置2203、光検出装置としての固体撮像素子2204、制御回路2205、信号処理回路2206、モニタ2207、および2メモリ2208を備えて構成され、静止画像および動画像を撮像可能である。
光学系2202は、1枚または複数枚のレンズを有して構成され、被写体からの光(入射光)を固体撮像素子2204に導き、固体撮像素子2204の受光面に結像させる。
シャッタ装置2203は、光学系2202および固体撮像素子2204の間に配置され、制御回路2205の制御に従って、固体撮像素子2204への光照射期間および遮光期間を制御する。
固体撮像素子2204は、上述した固体撮像素子を含むパッケージにより構成される。固体撮像素子2204は、光学系2202およびシャッタ装置2203を介して受光面に結像される光に応じて、一定期間、信号電荷を蓄積する。固体撮像素子2204に蓄積された信号電荷は、制御回路2205から供給される駆動信号(タイミング信号)に従って転送される。
制御回路2205は、固体撮像素子2204の転送動作、および、シャッタ装置2203のシャッタ動作を制御する駆動信号を出力して、固体撮像素子2204およびシャッタ装置2203を駆動する。
信号処理回路2206は、固体撮像素子2204から出力された信号電荷に対して各種の信号処理を施す。信号処理回路2206が信号処理を施すことにより得られた画像(画像データ)は、モニタ2207に供給されて表示されたり、メモリ2208に供給されて記憶(記録)されたりする。
このように構成されている撮像装置2201においても、上述した固体撮像素子2204に代えて、光検出装置1を適用することが可能となる。
<移動体への応用例>
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
図22は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図22に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図22の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
図23は、撮像部12031の設置位置の例を示す図である。
図23では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
なお、図23には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
なお、本開示は以下のような構成も取ることができる。
(1)
外部から入射した光に応じて電気信号を生成可能な複数の画素が行列状に配置された半導体基板と、
前記半導体基板に設けられ、隣接する前記画素の間を分離する画素分離部と、
前記半導体基板の光入射面側で、2以上の複数の画素で構成される画素群ごとに配置され、外部からの前記光を前記画素群に集光するオンチップレンズと、を備え、
前記画素分離部は、
前記画素群のうち隣接する画素間に配置され、前記半導体基板の厚さ方向に延伸する第1の掘り込み領域と、前記オンチップレンズによる光の集光位置に前記第1の掘り込み領域とは異なる第2の掘り込み領域とを有する画素群内分離部を備え、
前記画素群内分離部は、平面視において、前記第2の掘り込み領域の幅を前記第1の掘り込み領域の幅より細く形成する、光検出装置。
(2)
前記半導体基板は、前記第2の掘り込み領域の光入射面とは反対側の領域に、素子を配置する、上記(1)に記載の光検出装置。
(3)
前記オンチップレンズは、瞳補正位置に応じて、前記画素群の中心から所定の方向にずらして配置され、
前記画素群内分離部は、前記瞳補正位置に応じて、前記第1の掘り込み領域と前記第2の掘り込み領域との境目の位置をずらす、上記(1)に記載の光検出装置。
(4)
前記画素群内分離部は、前記第1の掘り込み領域を第1の膜で閉塞し、前記第2の掘り込み領域を第1の膜とは異なる第2の膜で閉塞する、上記(1)に記載の光検出装置。
(5)
前記第1の膜は、金属膜であり、
前記第2の膜は、金属膜以外の膜である、上記(4)に記載の光検出装置。
(6)
複数の画素群のそれぞれは、グランド電位を供給するための1つのウェルコンタクトを有し、
前記画素分離部は、隣接する画素群間に配置され、前記半導体基板の厚さ方向に延伸する第3の掘り込み領域を有する画素群間分離部を備え、
前記画素群間分離部は、前記複数の画素群のうち対角線上に対向する画素群それぞれのウェルコンタクトを集中して配置する第4の掘り込み領域を有し、平面視において、前記第4の掘り込み領域の幅を、前記第3の掘り込み領域の幅よりも細く形成する、上記(1)に記載の光検出装置。
(7)
前記画素群間分離部は、行方向に延伸される前記第3の掘り込み領域と列方向に延伸される前記第3の掘り込み領域とが交差する第5の掘り込み領域を有し、平面視において、前記第5の掘り込み領域の幅を、前記第3の掘り込み領域の幅よりも細く形成する、上記(6)に記載の光検出装置。
(8)
前記画素群間分離部は、前記画素群内分離部と交差する第6の掘り込み領域を有し、平面視において、前記第6の掘り込み領域の幅を、前記第3の掘り込み領域の幅よりも細く形成する、上記(6)に記載の光検出装置。
(9)
外部から入射した光に応じて電気信号を生成可能な複数の画素が行列状に配置された半導体基板と、
前記半導体基板に設けられ、隣接する前記画素の間を分離する画素分離部と、
前記半導体基板の光入射面側で、2以上の複数の画素で構成される画素群ごとに配置され、外部からの前記光を前記画素群に集光するオンチップレンズと、を備える光検出装置の製造方法であって、
前記画素群のうち隣接する画素間に、前記半導体基板の厚さ方向に延伸する第1の掘り込み領域と、前記オンチップレンズによる光の集光位置に、前記第1の掘り込み領域とは異なる第2の掘り込み領域とを有する画素群内分離部を形成する第1の工程を備え、
前記第1の工程は、平面視において、前記第2の掘り込み領域の幅を前記第1の掘り込み領域の幅より細く形成する、光検出装置の製造方法。
(10)
前記第2の掘り込み領域を第1の膜で閉塞する第2の工程と、
前記第1の掘り込み領域を前記第1の膜とは異なる第2の膜で閉塞する第3の工程と、をさらに備える、上記(9)に記載の光検出装置の製造方法。
(11)
前記第2の膜は、金属膜であり、
前記第1の膜は、金属膜以外の膜である、上記(10)に記載の光検出装置の製造方法。
(12)
外部から入射した光に応じて電気信号を生成可能な複数の画素が行列状に配置された半導体基板と、
前記半導体基板に設けられ、隣接する前記画素の間を分離する画素分離部と、
前記半導体基板の光入射面側で、2以上の複数の画素で構成される画素群ごとに配置され、外部からの前記光を前記画素群に集光するオンチップレンズと、を備え、
前記画素分離部は、
隣接する同色の画素間に配置され、前記オンチップレンズによる光の集光位置の少なくとも一部に開口部を有する画素群内分離部を備え、
前記オンチップレンズは、瞳補正位置に応じて、前記画素群の中心から所定の方向にずらして配置され、
前記画素群内分離部は、瞳補正位置に応じて、前記開口部の形成位置をずらされる、光検出装置。
(13)
前記画素群内分離部は、前記瞳補正位置に応じて、前記画素群内分離部の行方向または列方向への延伸距離を変更する、上記(12)に記載の光検出装置。
(14)
前記半導体基板に形成され、前記画素により生成された電荷を蓄積する電荷蓄積部をさらに備え、
前記電荷蓄積部は、前記瞳補正位置に応じて、形成位置をずらされる、上記(12)に記載の光検出装置。
(15)
外部から入射した光に応じて電気信号を生成可能な複数の画素が行列状に配置された半導体基板と、
前記半導体基板に設けられ、隣接する前記画素の間を分離する画素分離部と、
前記半導体基板の光入射面側で、2以上の複数の画素で構成される画素群ごとに配置され、外部からの前記光を前記画素群に集光するオンチップレンズと、を備え、
前記画素分離部は、
前記画素群のうち隣接する画素間に配置され、前記半導体基板の厚さ方向に延伸する第1の掘り込み領域と、前記オンチップレンズによる光の集光位置に前記第1の掘り込み領域とは異なる第2の掘り込み領域とを有する画素群内分離部を備え、
前記画素群内分離部は、平面視において、前記第2の掘り込み領域の幅を前記第1の掘り込み領域の幅より細く形成する、光検出装置を備えた、電子機器。
(16)
外部から入射した光に応じて電気信号を生成可能な複数の画素が行列状に配置された半導体基板と、
前記半導体基板に設けられ、隣接する前記画素の間を分離する画素分離部と、
前記半導体基板の光入射面側で、2以上の複数の画素で構成される画素群ごとに配置され、外部からの前記光を前記画素群に集光するオンチップレンズと、を備え、
前記画素分離部は、
前記画素群のうち隣接する画素間に配置され、前記オンチップレンズによる光の集光位置の少なくとも一部に開口部を有する画素群内分離部を備え、
前記オンチップレンズは、瞳補正位置に応じて、前記画素群の中心から所定の方向にずらして配置され、
前記画素群内分離部は、瞳補正位置に応じて、前記開口部の形成位置をずらされる、光検出装置を備えた、電子機器。
1,1A,1B,1C,1D,1E,1F 光検出装置
5 カラム信号処理回路
11 画素アレイ部
12 垂直駆動部
13 カラム処理部
14 水平駆動部
15 システム制御部
16 信号処理部
17 データ格納部
18 画素駆動線
19 垂直信号線
21 光電変換領域
22 画素回路(読出し回路)
23 光電変換部
24 カラーフィルタ
30 半導体構造
31 配線層
32 半導体層
33 平坦化膜
34 カラーフィルタ
35 オンチップレンズ
37,37A,37B,37C,37D,37E,37F 画素分離部
37a,37a1,37ax,37ay,37d,37dx、37dy,37g1,37g2,37g3,37g4 貫通領域
37b,37e,37f 非貫通領域
37c1,37c2,37c3,37c4 境目
37h 開口部
38 遮光壁
39 ウェルコンタクト
41,61 シリコン基板
42,62 レジスト膜
43,63 開口部
51 ウェルコンタクト
71,72 STI部
73 絶縁膜
110 画素
110G,110G1,110G2,110G3,110G4 画素群
231 n型領域
232 p型領域
311 金属配線パターン
371 絶縁膜
372 固定電荷膜
373 絶縁膜
374 遮光膜
421,422,621,622 レジストスペース線幅
2201 撮像装置
2202 光学系
2203 シャッタ装置
2204 固体撮像素子
2205 制御回路
2206 信号処理回路
2207 モニタ
2208 メモリ
12000 車両制御システム
12001 通信ネットワーク
12010 駆動系制御ユニット
12020 ボディ系制御ユニット
12030 車外情報検出ユニット
12031 撮像部
12040 車内情報検出ユニット
12041 運転者状態検出部
12050 統合制御ユニット
12051 マイクロコンピュータ
12052 音声画像出力部
12061 オーディオスピーカ
12062 表示部
12063 インストルメントパネル
12100 車両
12101~12105 撮像部
12111~12114 撮像範囲

Claims (16)

  1. 外部から入射した光に応じて電気信号を生成可能な複数の画素が行列状に配置された半導体基板と、
    前記半導体基板に設けられ、隣接する前記画素の間を分離する画素分離部と、
    前記半導体基板の光入射面側で、2以上の複数の画素で構成される画素群ごとに配置され、外部からの前記光を前記画素群に集光するオンチップレンズと、を備え、
    前記画素分離部は、
    前記画素群のうち隣接する画素間に配置され、前記半導体基板の厚さ方向に延伸する第1の掘り込み領域と、前記オンチップレンズによる光の集光位置に前記第1の掘り込み領域とは異なる第2の掘り込み領域とを有する画素群内分離部を備え、
    前記画素群内分離部は、平面視において、前記第2の掘り込み領域の幅を前記第1の掘り込み領域の幅より細く形成する、光検出装置。
  2. 前記半導体基板は、前記第2の掘り込み領域の光入射面とは反対側の領域に、素子を配置する、請求項1に記載の光検出装置。
  3. 前記オンチップレンズは、瞳補正位置に応じて、前記画素群の中心から所定の方向にずらして配置され、
    前記画素群内分離部は、前記瞳補正位置に応じて、前記第1の掘り込み領域と前記第2の掘り込み領域との境目の位置をずらす、請求項1に記載の光検出装置。
  4. 前記画素群内分離部は、前記第1の掘り込み領域を第1の膜で閉塞し、前記第2の掘り込み領域を第1の膜とは異なる第2の膜で閉塞する、請求項1に記載の光検出装置。
  5. 前記第1の膜は、金属膜であり、
    前記第2の膜は、金属膜以外の膜である、請求項4に記載の光検出装置。
  6. 複数の画素群のそれぞれは、グランド電位を供給するための1つのウェルコンタクトを有し、
    前記画素分離部は、隣接する画素群間に配置され、前記半導体基板の厚さ方向に延伸する第3の掘り込み領域を有する画素群間分離部を備え、
    前記画素群間分離部は、前記複数の画素群のうち対角線上に対向する画素群それぞれのウェルコンタクトを集中して配置する第4の掘り込み領域を有し、平面視において、前記第4の掘り込み領域の幅を、前記第3の掘り込み領域の幅よりも細く形成する、請求項1に記載の光検出装置。
  7. 前記画素群間分離部は、行方向に延伸される前記第3の掘り込み領域と列方向に延伸される前記第3の掘り込み領域とが交差する第5の掘り込み領域を有し、平面視において、前記第5の掘り込み領域の幅を、前記第3の掘り込み領域の幅よりも細く形成する、請求項6に記載の光検出装置。
  8. 前記画素群間分離部は、前記画素群内分離部と交差する第6の掘り込み領域を有し、平面視において、前記第6の掘り込み領域の幅を、前記第3の掘り込み領域の幅よりも細く形成する、請求項6に記載の光検出装置。
  9. 外部から入射した光に応じて電気信号を生成可能な複数の画素が行列状に配置された半導体基板と、
    前記半導体基板に設けられ、隣接する前記画素の間を分離する画素分離部と、
    前記半導体基板の光入射面側で、2以上の複数の画素で構成される画素群ごとに配置され、外部からの前記光を前記画素群に集光するオンチップレンズと、を備える光検出装置の製造方法であって、
    前記画素群のうち隣接する画素間に、前記半導体基板の厚さ方向に延伸する第1の掘り込み領域と、前記オンチップレンズによる光の集光位置に、前記第1の掘り込み領域とは異なる第2の掘り込み領域とを有する画素群内分離部を形成する第1の工程を備え、
    前記第1の工程は、平面視において、前記第2の掘り込み領域の幅を前記第1の掘り込み領域の幅より細く形成する、光検出装置の製造方法。
  10. 前記第2の掘り込み領域を第1の膜で閉塞する第2の工程と、
    前記第1の掘り込み領域を前記第1の膜とは異なる第2の膜で閉塞する第3の工程と、をさらに備える、請求項9に記載の光検出装置の製造方法。
  11. 前記第2の膜は、金属膜であり、
    前記第1の膜は、金属膜以外の膜である、請求項10に記載の光検出装置の製造方法。
  12. 外部から入射した光に応じて電気信号を生成可能な複数の画素が行列状に配置された半導体基板と、
    前記半導体基板に設けられ、隣接する前記画素の間を分離する画素分離部と、
    前記半導体基板の光入射面側で、2以上の複数の画素で構成される画素群ごとに配置され、外部からの前記光を前記画素群に集光するオンチップレンズと、を備え、
    前記画素分離部は、
    隣接する画素間に配置され、前記オンチップレンズによる光の集光位置の少なくとも一部に開口部を有する画素群内分離部を備え、
    前記オンチップレンズは、瞳補正位置に応じて、前記画素群の中心から所定の方向にずらして配置され、
    前記画素群内分離部は、瞳補正位置に応じて、前記開口部の形成位置をずらされる、光検出装置。
  13. 前記画素群内分離部は、前記瞳補正位置に応じて、前記画素群内分離部の行方向または列方向への延伸距離を変更する、請求項12に記載の光検出装置。
  14. 前記半導体基板に形成され、前記画素により生成された電荷を蓄積する電荷蓄積部をさらに備え、
    前記電荷蓄積部は、前記瞳補正位置に応じて、形成位置をずらされる、請求項12に記載の光検出装置。
  15. 外部から入射した光に応じて電気信号を生成可能な複数の画素が行列状に配置された半導体基板と、
    前記半導体基板に設けられ、隣接する前記画素の間を分離する画素分離部と、
    前記半導体基板の光入射面側で、2以上の複数の画素で構成される画素群ごとに配置され、外部からの前記光を前記画素群に集光するオンチップレンズと、を備え、
    前記画素分離部は、
    前記画素群のうち隣接する画素間に配置され、前記半導体基板の厚さ方向に延伸する第1の掘り込み領域と、前記オンチップレンズによる光の集光位置に前記第1の掘り込み領域とは異なる第2の掘り込み領域とを有する画素群内分離部を備え、
    前記画素群内分離部は、平面視において、前記第2の掘り込み領域の幅を前記第1の掘り込み領域の幅より細く形成する、光検出装置を備えた、電子機器。
  16. 外部から入射した光に応じて電気信号を生成可能な複数の画素が行列状に配置された半導体基板と、
    前記半導体基板に設けられ、隣接する前記画素の間を分離する画素分離部と、
    前記半導体基板の光入射面側で、2以上の複数の画素で構成される画素群ごとに配置され、外部からの前記光を前記画素群に集光するオンチップレンズと、を備え、
    前記画素分離部は、
    前記画素群のうち隣接する画素間に配置され、前記オンチップレンズによる光の集光位置の少なくとも一部に開口部を有する画素群内分離部を備え、
    前記オンチップレンズは、瞳補正位置に応じて、前記画素群の中心から所定の方向にずらして配置され、
    前記画素群内分離部は、瞳補正位置に応じて、前記開口部の形成位置をずらされる、光検出装置を備えた、電子機器。
JP2022146323A 2022-09-14 2022-09-14 光検出装置、光検出装置の製造方法、及び電子機器 Pending JP2024041483A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022146323A JP2024041483A (ja) 2022-09-14 2022-09-14 光検出装置、光検出装置の製造方法、及び電子機器
PCT/JP2023/027645 WO2024057739A1 (ja) 2022-09-14 2023-07-27 光検出装置、光検出装置の製造方法、及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022146323A JP2024041483A (ja) 2022-09-14 2022-09-14 光検出装置、光検出装置の製造方法、及び電子機器

Publications (1)

Publication Number Publication Date
JP2024041483A true JP2024041483A (ja) 2024-03-27

Family

ID=90274709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022146323A Pending JP2024041483A (ja) 2022-09-14 2022-09-14 光検出装置、光検出装置の製造方法、及び電子機器

Country Status (2)

Country Link
JP (1) JP2024041483A (ja)
WO (1) WO2024057739A1 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6738200B2 (ja) * 2016-05-26 2020-08-12 キヤノン株式会社 撮像装置
KR102630866B1 (ko) * 2017-05-29 2024-01-30 소니 세미컨덕터 솔루션즈 가부시키가이샤 고체 촬상 장치 및 전자 기기
US10998365B2 (en) * 2019-01-30 2021-05-04 Samsung Electronics Co., Ltd. Image sensor
JPWO2020262643A1 (ja) * 2019-06-26 2020-12-30
TW202207484A (zh) * 2020-03-27 2022-02-16 日商索尼半導體解決方案公司 攝像裝置及電子機器
WO2021193254A1 (ja) * 2020-03-27 2021-09-30 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
KR20220045482A (ko) * 2020-10-05 2022-04-12 삼성전자주식회사 이미지 센서

Also Published As

Publication number Publication date
WO2024057739A1 (ja) 2024-03-21

Similar Documents

Publication Publication Date Title
CN109314123B (zh) 成像元件、成像元件的制造方法以及电子设备
US20210320140A1 (en) Solid-state imaging device and imaging device
US20230013149A1 (en) Solid-state image pickup device and electronic apparatus
WO2019078291A1 (ja) 撮像装置
TW202137528A (zh) 固體攝像裝置及其製造方法
WO2024057739A1 (ja) 光検出装置、光検出装置の製造方法、及び電子機器
KR20230023655A (ko) 촬상 소자, 전자 기기
US11757053B2 (en) Package substrate having a sacrificial region for heat sink attachment
KR20230110257A (ko) 고체 촬상 장치 및 그 제조 방법
WO2023233873A1 (ja) 光検出装置及び電子機器
WO2023181657A1 (ja) 光検出装置及び電子機器
WO2023248388A1 (ja) 光検出装置及び電子機器
WO2023233872A1 (ja) 光検出装置及び電子機器
US20210375976A1 (en) Imaging device and electronic apparatus
CN114008783A (zh) 摄像装置
WO2023189130A1 (ja) 光検出装置及び電子機器
WO2023171147A1 (ja) 半導体装置、光検出装置、及び電子機器
WO2024057724A1 (ja) 撮像装置、及び電子機器
WO2024127854A1 (ja) 撮像素子、撮像素子の製造方法、電子機器
US12003878B2 (en) Imaging device
WO2023188977A1 (ja) 光検出装置及び電子機器
WO2023090053A1 (ja) 光検出装置及び電子機器
TW202416726A (zh) 光檢測裝置及電子機器
US20220415952A1 (en) Imaging devices and imaging apparatuses, and methods for the same
WO2021145257A1 (ja) 撮像装置及び電子機器