WO2023181657A1 - 光検出装置及び電子機器 - Google Patents
光検出装置及び電子機器 Download PDFInfo
- Publication number
- WO2023181657A1 WO2023181657A1 PCT/JP2023/003501 JP2023003501W WO2023181657A1 WO 2023181657 A1 WO2023181657 A1 WO 2023181657A1 JP 2023003501 W JP2023003501 W JP 2023003501W WO 2023181657 A1 WO2023181657 A1 WO 2023181657A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pixel
- photoelectric conversion
- section
- diffusion region
- transistor
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 183
- 238000009792 diffusion process Methods 0.000 claims abstract description 109
- 239000004065 semiconductor Substances 0.000 claims abstract description 98
- 238000001514 detection method Methods 0.000 claims abstract description 30
- 230000035945 sensitivity Effects 0.000 claims abstract description 26
- 239000011159 matrix material Substances 0.000 claims abstract description 13
- 230000003321 amplification Effects 0.000 claims description 47
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 47
- 239000003990 capacitor Substances 0.000 claims description 40
- 238000003860 storage Methods 0.000 claims description 39
- 229910052751 metal Inorganic materials 0.000 claims description 33
- 239000002184 metal Substances 0.000 claims description 33
- 230000003287 optical effect Effects 0.000 claims description 23
- 230000006870 function Effects 0.000 claims description 11
- 238000002955 isolation Methods 0.000 claims description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 9
- 229920005591 polysilicon Polymers 0.000 claims description 9
- 239000012212 insulator Substances 0.000 claims description 6
- 238000005468 ion implantation Methods 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 230000000149 penetrating effect Effects 0.000 claims description 4
- 238000007667 floating Methods 0.000 abstract description 7
- 239000010410 layer Substances 0.000 description 115
- 238000003384 imaging method Methods 0.000 description 51
- 238000012546 transfer Methods 0.000 description 49
- 238000012986 modification Methods 0.000 description 41
- 230000004048 modification Effects 0.000 description 41
- 238000012545 processing Methods 0.000 description 40
- 238000010586 diagram Methods 0.000 description 26
- 238000000034 method Methods 0.000 description 23
- 230000000694 effects Effects 0.000 description 18
- 239000000463 material Substances 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 238000000926 separation method Methods 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 11
- 230000000875 corresponding effect Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000013500 data storage Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 5
- 239000010949 copper Substances 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000002346 layers by function Substances 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/12—Image sensors
Definitions
- the present disclosure relates to a photodetection device and an electronic device equipped with the photodetection device.
- a difference occurs between the spectral and oblique incidence characteristics of a large pixel and the spectral and oblique incidence characteristics of a small pixel, causing coloration.
- the difference in characteristics becomes larger.
- the on-chip lens of a large pixel is thick, optical color mixing from the large pixel to the small pixel will increase with respect to light incident at a high angle due to the PKG structure, and the flare resistance of the small pixel will decrease.
- the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a photodetection device and an electronic device capable of reducing floating diffusion dark current in a configuration having a plurality of floating diffusion portions in the same pixel. With the goal. Another object of the present disclosure is to provide a photodetection device and electronic equipment that can reduce the difference in characteristics between large pixels and small pixels in a sub-pixel structure.
- One aspect of the present disclosure includes a first photoelectric conversion section that photoelectrically converts received light according to a first sensitivity, and a second photoelectric conversion section that photoelectrically converts received light according to a second sensitivity lower than the first sensitivity.
- a wiring layer having a readout circuit that outputs a signal, and each of the plurality of unit pixels includes a first diffusion region capable of accumulating charges photoelectrically converted by the first photoelectric conversion section in a plan view.
- Another aspect of the present disclosure includes a semiconductor layer in which a plurality of pixels each having a photoelectric conversion unit that photoelectrically converts received light is arranged in a matrix, and a semiconductor layer stacked on a surface opposite to a light incident surface of the semiconductor layer, a wiring layer having a readout circuit that outputs a pixel signal based on the charge output from the pixel, and each of the plurality of pixels has a diffusion region capable of accumulating the charge photoelectrically converted by the photoelectric conversion section.
- the readout circuit includes three or more pixel transistors, the three or more pixel transistors share the same source region, and the diffusion region is arranged in the source region shared by the three or more pixel transistors. It is a photodetecting device that is
- another aspect of the present disclosure includes a first photoelectric conversion unit that photoelectrically converts received light according to a first sensitivity, and a first photoelectric conversion unit that photoelectrically converts received light according to a second sensitivity lower than the first sensitivity.
- the readout circuit includes a common diffusion region that connects a diffusion region and a second diffusion region capable of accumulating charges photoelectrically converted by the second photoelectric conversion section, and the readout circuit includes a common diffusion region of the unit pixel.
- the electronic device is equipped with a photodetection device that outputs a pixel signal based on the electric charge.
- another aspect of the present disclosure includes a semiconductor layer in which a plurality of pixels each having a photoelectric conversion unit that photoelectrically converts received light is arranged in a matrix, and a semiconductor layer stacked on a surface opposite to a light incident surface of the semiconductor layer. and a wiring layer having a readout circuit that outputs a pixel signal based on the charge output from the pixel, each of the plurality of pixels has a diffusion layer capable of accumulating the charge photoelectrically converted by the photoelectric conversion section.
- the readout circuit comprises three or more pixel transistors, the three or more pixel transistors share the same source region, and the diffusion region is a source region shared by the three or more pixel transistors. It is an electronic device equipped with a photodetection device, which is placed in the
- FIG. 1 is a block diagram illustrating an example of a schematic configuration of a photodetection device according to a first embodiment of the present disclosure.
- FIG. 2 is a circuit diagram showing a configuration example of a pixel unit of the photodetection device according to the first embodiment of the present disclosure.
- FIG. 2 is a cross-sectional view for explaining an example of a planar layout of each element forming a unit pixel in the pixel array section of the photodetection device according to the first embodiment of the present disclosure.
- FIG. 4 is a partial vertical sectional view showing an example of a semiconductor structure in a schematic cross section taken along the line A-A' of the unit pixel shown in FIG. 3; FIG.
- FIG. 2 is a timing chart for explaining an example of a 4AD drive operation of a readout circuit of a photodetecting device according to a first embodiment of the present disclosure.
- FIG. FIG. 7 is a timing chart for explaining an example of a 3AD drive operation when the readout circuit of the photodetector according to the first embodiment of the present disclosure is not equipped with an EC.
- FIG. 2 is a timing chart for explaining an example of a 3AD drive operation when the EC of the readout circuit 20 of the photodetection device 1 according to the first embodiment of the present disclosure is installed.
- FIG. 2 is a circuit diagram showing a configuration example of a pixel unit of a photodetection device according to a first modification of the first embodiment of the present disclosure.
- FIG. 7 is a cross-sectional view illustrating an example of a planar layout of each element constituting a unit pixel in a pixel array section of a photodetector according to a first modification of the first embodiment of the disclosure.
- 10 is a partial vertical sectional view showing an example of a semiconductor structure in a schematic cross section taken along the line A-A' of the unit pixel shown in FIG. 9;
- FIG. 7 is a circuit diagram illustrating a configuration example of a pixel unit of a photodetecting device according to a second modification of the first embodiment of the present disclosure.
- FIG. 7 is a cross-sectional view for explaining an example of a planar layout of each element forming a unit pixel in a pixel array section of a photodetection device according to a second modification of the first embodiment of the present disclosure.
- 13 is a partial longitudinal sectional view showing an example of a semiconductor structure in a schematic cross section taken along the line A-A' of the unit pixel shown in FIG. 12.
- FIG. 2 is a circuit diagram illustrating a configuration example of a pixel unit of a photodetection device according to a second embodiment of the present disclosure.
- FIG. 7 is a cross-sectional view for explaining an example of a planar layout of each element forming a unit pixel in a pixel array section of a photodetection device according to a second embodiment of the present disclosure.
- FIG. 16 is a partial vertical sectional view showing an example of a semiconductor structure in a schematic cross section taken along the line A-A' of the unit pixel shown in FIG. 15;
- FIG. 7 is a timing chart for explaining an example of a 4AD drive operation of a readout circuit of a photodetection device according to a second embodiment of the present disclosure.
- FIG. FIG. 7 is a circuit diagram illustrating a configuration example of a pixel unit of a photodetection device according to a first modification of the second embodiment of the present disclosure.
- FIG. 7 is a cross-sectional view for explaining an example of a planar layout of each element forming a unit pixel in a pixel array section of a photodetection device according to a first modification of a second embodiment of the present disclosure.
- 20 is a partial vertical sectional view showing an example of a semiconductor structure in a schematic cross section taken along the line A-A' of the unit pixel shown in FIG. 19;
- FIG. 7 is a circuit diagram illustrating a configuration example of a pixel unit of a photodetecting device according to a second modification of the second embodiment of the present disclosure.
- FIG. 7 is a cross-sectional view for explaining an example of a planar layout of each element forming a unit pixel in a pixel array section of a photodetection device according to a second modification of the second embodiment of the present disclosure.
- 23 is a partial longitudinal sectional view showing an example of a semiconductor structure in a schematic cross section taken along the line A-A' of the unit pixel shown in FIG. 22;
- FIG. 7 is a partial vertical cross-sectional view showing an example of a semiconductor structure of a unit pixel of a photodetection device according to a third embodiment of the present disclosure.
- FIG. 7 is a partial vertical cross-sectional view showing a cross-sectional structure of an on-chip lens as a comparative example of the third embodiment.
- FIG. 7 is a cross-sectional view showing a process procedure of an on-chip lens manufacturing method in a comparative example of the third embodiment.
- FIG. 7 is a cross-sectional view showing a process procedure of an on-chip lens manufacturing method according to a third embodiment of the present disclosure.
- FIG. 7 is a partial vertical cross-sectional view showing an example of a semiconductor structure of a unit pixel of a photodetection device according to a fourth embodiment of the present disclosure.
- FIG. 7 is a partial vertical cross-sectional view showing an example of a semiconductor structure of a unit pixel of a photodetection device according to a fifth embodiment of the present disclosure.
- FIG. 7 is a partial vertical cross-sectional view showing an example of a semiconductor structure of a unit pixel of a photodetection device according to a sixth embodiment of the present disclosure.
- FIG. 7 is a partial vertical cross-sectional view showing an example of a semiconductor structure of a unit pixel of a photodetection device according to a seventh embodiment of the present disclosure.
- FIG. 1 is a block diagram illustrating a configuration example of an imaging device as an electronic device to which the present technology is applied.
- 1 is a block diagram illustrating a schematic configuration example of a vehicle control system, which is an example of a mobile body control system to which the technology according to the present disclosure can be applied.
- 34 is a diagram showing an example of the installation position of the imaging unit shown in FIG. 33.
- the "first conductivity type” is either P type or N type
- the "second conductivity type” means one of P type or N type, which is different from the “first conductivity type”.
- “+” and “-” appended to "N” and “P” refer to semiconductors with relatively high or low impurity density, respectively, compared to semiconductor regions without "+” and “-”. It means a territory. However, even if the semiconductor regions are marked with the same "N” and "N”, this does not mean that the impurity density of each semiconductor region is strictly the same.
- FIG. 1 is a block diagram illustrating an example of a schematic configuration of a photodetection device according to a first embodiment of the present disclosure.
- the photodetector 1 uses a photoelectric conversion element such as a photodiode constituting each pixel to convert the amount of charge corresponding to the intensity of light imaged onto the pixel into an electrical signal, and outputs this as image data. It is a semiconductor device configured as a CMOS image sensor, for example.
- the photodetector 1 may be configured integrally as a system-on-chip (SoC) such as a CMOS LSI, but the following components may also be configured as separate LSIs, for example. .
- SoC system-on-chip
- the photodetection device 1 includes, for example, a pixel array section 11, a vertical drive section 12, a column processing section 13, a horizontal drive section 14, a system control section 15, and a signal processing section 16. , and includes components such as a data storage section 17.
- the pixel array section 11 includes a group of photoelectric conversion elements such as photodiodes that constitute unit pixels 110 arranged in an array in the horizontal direction (row direction) and the vertical direction (column direction).
- the unit pixel 110 is composed of a large pixel 111 with a large area and a small pixel 112 with a small area.
- the pixel array section 11 converts the amount of charge corresponding to the intensity of the incident light imaged onto each unit pixel 110 into an electrical signal, and outputs it as a pixel signal.
- the pixel array section 11 may include, for example, effective pixels arranged in a region that can receive actual light and dummy pixels arranged outside the region and shielded by metal or the like. Note that optical system elements such as a micro-on-chip lens and a color filter for condensing incident light are formed on each unit pixel 110 of the pixel array section 11 (not shown).
- the vertical drive section 12 includes a shift register, an address decoder, etc.
- the vertical drive section 12 drives each unit pixel 110 of the pixel array section 11, for example, simultaneously or in row units by supplying drive signals and the like to each unit pixel 110 via a plurality of pixel drive lines 18.
- the column processing section 13 reads out pixel signals from each pixel via the vertical signal line (VSL) 19 for each pixel row (column) of the pixel array section 11, and performs noise removal processing, correlated double sampling (CDS) processing, and A/D (Analog-to-Digital) conversion processing.
- the pixel signals processed by the column processing section 13 are output to the signal processing section 16.
- the horizontal drive section 14 includes a shift register, an address decoder, etc.
- the horizontal drive unit 14 sequentially selects unit pixels 110 corresponding to the pixel columns of the column processing unit 13. By this selective scanning by the horizontal driving section 14, pixel signals subjected to signal processing for each unit pixel 110 in the column processing section 13 are sequentially output to the signal processing section 16.
- the system control unit 15 includes a timing generator and the like that generate various timing signals.
- the system control unit 15 controls the vertical drive unit 12, the column processing unit 13, and the horizontal drive unit 14 based on a timing signal generated by a timing generator (not shown), for example.
- the signal processing unit 16 performs signal processing such as arithmetic processing on the pixel signals supplied from the column processing unit 13 while temporarily storing data in the data storage unit 17 as necessary, and adds data to each pixel signal. Outputs an image signal based on the Further, the signal processing unit 16 performs signal processing according to the flag output from the column processing unit 13.
- the photodetection device 1 to which the present technology is applied is not limited to the configuration described above.
- the data storage section 17 is arranged after the column processing section 13, and the pixel signal output from the column processing section 13 is supplied to the signal processing section 16 via the data storage section 17. It may be configured as follows.
- the photodetecting device 1 may be configured such that the column processing section 13, data storage section 17, and signal processing section 16 connected in series process each pixel signal in parallel.
- FIG. 2 is a circuit diagram showing a configuration example of the pixel unit PU of the photodetecting device 1.
- One pixel unit PU includes a large pixel 111, a small pixel 112, and one readout circuit 20, as shown in FIG.
- one readout circuit 20 is shared by the large pixel 111 and the small pixel 112, and the output of the large pixel 111 and the output of the small pixel 112 are input to the shared readout circuit 20.
- the large pixel 111 includes a first photoelectric conversion section 111a and a transfer transistor 111b.
- the small pixel 112 includes a second photoelectric conversion section 112a.
- the readout circuit 20 includes a first switching transistor 201, a reset transistor 202, a second switching transistor 203, a charge storage section 204, an amplification transistor 205, and a selection transistor 206.
- each transistor in the pixel unit PU is an NMOS transistor, but is not limited to this.
- These drive signals are, for example, pulse signals that turn the NMOS transistor into a conductive (on) state at a high potential level and turn the NMOS transistor into a non-conductive (off) state at a low potential level.
- the first photoelectric conversion section 111a and the second photoelectric conversion section 112a are, for example, PN junction photodiodes. Each of the first photoelectric conversion unit 111a and the second photoelectric conversion unit 112a generates and accumulates charges according to the amount of received light.
- the area of the light receiving surface of the first photoelectric converter 111a is configured to be larger than the area of the light receiving surface of the second photoelectric converter 112a.
- the photoelectric conversion unit 112a is configured to support higher sensitivity than the photoelectric conversion unit 112a. By using such two types of photodiodes with different sensitivities, the photodetecting device 1 can widen the dynamic range of the output voltage level of the pixel signal.
- the pixel unit PU includes a first floating diffusion section (hereinafter referred to as a first FD section) 211 and a second floating diffusion section (hereinafter referred to as a second FD section) 212.
- the transfer transistor 111b is an NMOS transistor provided between the first photoelectric conversion section 111a and the first FD section 211.
- a drive signal TGL is applied to the gate electrode of the transfer transistor 111b. That is, when the drive signal TGL becomes a high potential level, the transfer transistor 111b becomes conductive, and the charges accumulated in the first photoelectric conversion section 111a are transferred to the first FD section 211 via the transfer transistor 111b. be done.
- the second switching transistor 203 is an NMOS transistor provided between the charge storage section 204 and the second FD section 212.
- a drive signal FCG is applied to the gate electrode of the second switching transistor 203.
- the drive signal FCG reaches a high potential level, the second switching transistor 203 becomes conductive, and the potential of the charge storage section 204 and the potential of the second FD section 212 are combined.
- the first switching transistor 201 is an NMOS transistor provided between the first FD section 211 and the second FD section 212.
- a drive signal FDG is applied to the gate electrode of the switching transistor 201.
- the drive signal FDG reaches a high potential level, the first switching transistor 201 becomes conductive, and the potential of the first FD section 211 and the potential of the second FD section 212 are combined.
- the reset transistor 202 is an NMOS transistor provided between the power supply voltage VDD and the second FD section 212.
- a drive signal RST is applied to the gate electrode of the reset transistor 202.
- drive signal RST reaches a high potential level, reset transistor 202 becomes conductive.
- the potential of the region where the first FD section 211 and the second FD section 212 are coupled, and the potential of the region where the charge storage section 204 and the second FD section 212 are coupled are determined according to the potential levels of the drive signals FCG and FDG.
- the potential of the region where the charge storage section 204, the first FD section 211, and the second FD section 212 are combined is reset to the level of the power supply voltage VDD.
- the charge storage section 204 consists of a polysilicon (CI) capacitor 204a.
- One electrode of the charge storage section 204 is connected to the power supply voltage VDD, and the other electrode is connected to the cathode electrode of the second photoelectric conversion section 112a and the drain electrode of the second switching transistor 203.
- the charge storage unit 204 stores charges photoelectrically converted by the second photoelectric conversion unit 112a.
- the first FD section 211 is a diffusion region that can hold a predetermined amount of charge.
- One electrode of the first FD section 211 is grounded, and the other electrode is connected to the drain electrode of the transfer transistor 111b, the drain electrode of the first switching transistor 201, and the gate electrode of the amplification transistor 205, respectively.
- the charges accumulated in the first FD section 211 are converted into a voltage signal and read out.
- the second FD section 212 is also a diffusion region that can hold a predetermined amount of charge.
- the charges accumulated in the second FD section 212 are overflow charges among the charges photoelectrically converted by the first photoelectric conversion section 111a.
- the second FD section 212 is composed of a wiring capacitance formed by a source diffusion region of the first switching transistor 201, a wiring connected to the source electrode of the first switching transistor 201, and a metal wiring pattern. The charges accumulated in the second FD section 212 are converted into a voltage signal and read out.
- the amplification transistor 205 is an NMOS transistor whose gate electrode is connected to the first FD section 211 and whose drain electrode is connected to the power supply voltage VDD.
- the amplification transistor 205 serves as an input section of a readout circuit for reading out the charges held in the first FD section 211 or the second FD section 212.
- the source electrode of the amplification transistor 205 is connected to the vertical signal line 19 via the selection transistor 206.
- the selection transistor 206 is an NMOS transistor provided between the source electrode of the amplification transistor 205 and the vertical signal line 19.
- a drive signal SEL is applied to the gate electrode of the selection transistor 206.
- the drive signal SEL becomes a high potential level
- the selection transistor 206 becomes conductive, and the unit pixel 110 becomes selected.
- the pixel signal output from the amplification transistor 205 is read out to the vertical signal line 19 via the selection transistor 206.
- FIG. 3 is a diagram for explaining an example of a planar layout of each element forming a unit pixel 110 in the pixel array section 11 of the photodetecting device 1 according to the first embodiment of the present disclosure.
- This figure shows a planar layout when viewed from the surface (front surface) opposite to the incident surface of the unit pixel 110 into which light enters.
- FIG. 4 is a partial vertical cross-sectional view showing an example of a semiconductor structure in a schematic cross section taken along the line A-A' of the unit pixel 110 shown in FIG.
- a plane parallel to the front surface of the unit pixel 110 is referred to as an XY plane
- a direction perpendicular to the XY plane is referred to as a Z direction or a depth direction.
- a first photoelectric conversion section 111a is formed approximately at the center of the unit pixel 110.
- the first photoelectric conversion section 111a is formed in an octagonal shape.
- a second photoelectric conversion section 112a is formed on the Y direction side of the first photoelectric conversion section 111a.
- a gate electrode 11b1 of a transfer transistor 111b is formed on the active region 301 approximately at the center of the first photoelectric conversion section 111a.
- the active region 301 is an ion implantation region, and extends in the Y direction from approximately the center of the first photoelectric conversion section 111a, and further extends to approximately the center of the second photoelectric conversion section 112a.
- a gate electrode 201a of the first switching transistor 201, a gate electrode 202a of the reset transistor 202, and a gate electrode 203a of the second switching transistor 203 are formed.
- the first switching transistor 201, the reset Transistor 202 and second switching transistor 203 are electrically connected over active region 301 .
- a sidewall 311 is formed on each sidewall of the gate electrode 201a of the first switching transistor 201, the gate electrode 202a of the reset transistor 202, and the gate electrode 203a of the second switching transistor 203.
- the sidewall 311 is made of an insulating film such as a silicon nitride film (SiN) or a silicon oxide film (SiO2), for example.
- a first photovoltaic transistor is provided between the gate electrode 201a of the first switching transistor 201, the gate electrode 202a of the reset transistor 202, and the gate electrode 203a of the second switching transistor 203.
- a common diffusion region 312 (indicated by dots in FIG. 3) is formed between the conversion section 111a and the second photoelectric conversion section 112a.
- the common diffusion region 312 is a diffusion region in which the first FD section 211 and the second FD section 212 are connected together.
- the common diffusion region 312 is formed in the active region 301 after the sidewalls 311 are formed on the gate electrode 201a of the first switching transistor 201, the gate electrode 202a of the reset transistor 202, and the gate electrode 203a of the second switching transistor 203, respectively. It is formed. Therefore, the area of the common diffusion region 312 can be minimized.
- a capacitor 204a of the charge storage section 204 is formed in the active region 302. Furthermore, the gate electrode 205a of the amplification transistor 205 and the gate electrode 206a of the selection transistor 206 are formed in the active region 303.
- the capacitor 204a of the charge storage section 204 is connected to the drain electrode of the second switching transistor 203 via a wiring layer to be described later.
- the gate electrode 205a of the amplification transistor 205 is connected to the drain electrode of the transfer transistor 111b and the drain electrode of the first switching transistor 201 via a wiring layer to be described later.
- the semiconductor structure 40 of the unit pixel 110 is generally configured to include, for example, a photoelectric conversion layer 41 as a semiconductor layer, a wiring layer 42, a color filter 43, and an on-chip lens 44.
- a semiconductor structure 40 includes, for example, integrally bonding a first silicon substrate including a photoelectric conversion layer 41 and a second silicon substrate including a wiring layer 42 and various logic circuits (not shown). It can be configured by
- the on-chip lens 44 efficiently condenses light that enters the photodetector 1 from the outside and focuses it on each large pixel 111 (i.e., the first photoelectric conversion unit 111a) and the small pixel 112 ( That is, it is an optical lens for forming an image on the second photoelectric conversion unit 112a).
- the on-chip lens 44 is typically arranged for each large pixel 111 and small pixel 112.
- the color filter 43 is an optical filter that selectively transmits light of a predetermined wavelength out of the light collected by the on-chip lens 44.
- four color filters 43 that selectively transmit wavelengths of red light, green light, blue light, and near-infrared light are used, but the present invention is not limited thereto.
- a color filter 43 corresponding to one of the colors (wavelengths) is arranged in each large pixel 111 and small pixel 112.
- the photoelectric conversion layer 41 is a functional layer in which a first photoelectric conversion section 111a, a second photoelectric conversion section 112a, a transfer transistor 111b, and the like are formed.
- the first photoelectric conversion section 111a and the second photoelectric conversion section 112a of the photoelectric conversion layer 41 generate an amount of charge according to the intensity of light incident through the on-chip lens 44 and the color filter 43, and Converts it into an electrical signal and outputs it as a pixel signal.
- a part of the light for example, near-infrared light, etc.
- the incident surface of the photoelectric conversion layer 41 may pass through the surface (i.e., the front surface) opposite to the incident surface (i.e., the back surface). .
- the photoelectric conversion layer 41 is manufactured on a silicon substrate by a semiconductor manufacturing process.
- the first photoelectric conversion section 111a, the second photoelectric conversion section 112a, and the transfer transistor 111b are electrically connected to predetermined metal wiring in the wiring layer 42.
- an inter-pixel separation section 45 that separates each large pixel 111 and each small pixel 112 may be formed in the photoelectric conversion layer 41 .
- the inter-pixel isolation section 45 has a trench structure formed by etching, for example.
- the inter-pixel separation unit 45 prevents light incident on the large pixel 111 from entering the adjacent small pixel 112, and also prevents light incident on the small pixel 112 from entering the adjacent large pixel 111.
- the photoelectric conversion layer 41 is provided with a contact 46 for grounding to GND (ground) on the front surface side.
- the wiring layer 42 is a metal layer for transmitting power and various drive signals to each large pixel 111 and small pixel 112 in the photoelectric conversion layer 41, and for transmitting pixel signals read from each large pixel 111 and small pixel 112. This is a layer on which a wiring pattern is formed.
- the wiring layer 42 may typically be configured by stacking a plurality of metal wiring pattern layers with an interlayer insulating film interposed therebetween. Furthermore, the laminated metal wiring patterns are electrically connected, for example, via vias, if necessary.
- the wiring layer 42 is made of metal such as aluminum (Al) or copper (Cu), for example.
- the interlayer insulating film is formed of silicon oxide or the like, for example.
- the wiring layer 42 includes the readout circuit 20 and may include the gate electrode 111b1 of the transfer transistor 111b. Further, the wiring layer 42 includes a polysilicon capacitor 204a of the charge storage section 204.
- FIG. 5 is a timing chart for explaining an example of the 4AD drive operation of the readout circuit 20 of the photodetection device 1 according to the first embodiment of the present disclosure, and specifically, the pixel signal from the unit pixel 110 is 3 is a timing chart showing an example of read processing.
- a timing chart of drive signals SEL, RST, FDG, TGL, and FCG and power supply FCVDD for the unit pixel 110 is shown. This process is performed, for example, in a predetermined scanning order after a predetermined time after the exposure process is performed for each unit pixel row of the pixel array section 11 or for each unit pixel row.
- a pixel signal SP1L based on the potential due to the coupling between the first FD section 211 and the second FD section 212 is output to the vertical signal line 19 via the amplification transistor 205 and the selection transistor 206. Ru. Note that the pixel signal SP1L is at the potential level in the initial state immediately after the start of reading.
- the drive signal FDG becomes a low potential level, and the first switching transistor 201 becomes non-conductive.
- the potential coupling between the first FD section 211 and the second FD section 212 is eliminated.
- a pixel signal SP1H based on the potential of the first FD section 211 is output to the vertical signal line 19 via the amplification transistor 205 and the selection transistor 206.
- the drive signal SEL becomes a low potential level, and the selection transistor 206 becomes non-conductive. As a result, reading out the pixel signal from the unit pixel 110 is temporarily stopped.
- the drive signal TGL becomes a high potential level, and the transfer transistor 111b becomes conductive. Thereby, the charge generated and accumulated in the first photoelectric conversion section 111a during the exposure period is transferred to the first FD section 211 via the transfer transistor 111b.
- the drive signal TGL becomes a low potential level, and the transfer transistor 111b becomes non-conductive.
- the transfer of charges from the first photoelectric conversion unit 111a to the first FD unit 211 is stopped, and preparations for reading out pixel signals based on the charges in the first FD unit 211 are completed.
- the drive signal SEL becomes a high potential level
- the selection transistor 206 becomes conductive.
- the pixel signal SP1H based on the potential of the first FD section 211 is output to the vertical signal line 19 via the amplification transistor 205 and the selection transistor 206.
- This pixel signal SP1H is generated by the first photoelectric conversion unit 111a during the exposure period and is based on the charges accumulated in the first FD unit 211. This is the phase pixel signal.
- the drive signal SEL becomes a low potential level and the selection transistor 206 becomes non-conductive, while the drive signal FDG becomes a high potential level and the first switching transistor 201 becomes conductive.
- the reading of pixel signals from the unit pixel 110 is temporarily stopped, while the potential of the first FD section 211 and the potential of the second FD section 212 are combined.
- the drive signal TGL becomes a high potential level, and the transfer transistor 111b becomes conductive.
- the charges that could not be transferred from the first photoelectric conversion section 111a are transferred to the region coupled to the first FD section 211 and the second FD section 212 via the transfer transistor 111b.
- the drive signal TGL becomes a low potential level
- the transfer transistor 111b becomes a low potential level. This stops the transfer of the remaining charges from the first photoelectric conversion section 111a to the region where the first FD section 211 and the second FD section 212 are combined.
- the drive signal SEL becomes a high potential level
- the selection transistor 206 becomes conductive.
- the pixel signal SP1L based on the potential due to the combination of the first FD section 211 and the second FD section 212 is output to the vertical signal line 19 via the amplification transistor 205 and the selection transistor 206. Ru.
- This pixel signal SP1L is a D-phase pixel signal relative to the P-phase pixel signal SP1L output at time T1.
- the D-phase pixel signal SP1 based on the potential due to the coupling between the first FD section 211 and the second FD section 212 is transmitted to the vertical signal line 19 via the amplification transistor 205 and the selection transistor 206. is output to.
- the drive signal SEL becomes a low potential level, and the selection transistor 206 becomes non-conductive.
- the drive signal RST becomes a high potential level, and the reset transistor 202 becomes conductive.
- the potential of the region where the first FD section 211 and the second FD section 212 are coupled is reset to the level of the power supply voltage VDD.
- the drive signal RST becomes a low potential level, and the reset transistor 202 becomes non-conductive.
- the drive signal SEL becomes a high potential level, and the selection transistor 206 becomes conductive.
- the pixel signal SP1 based on the potential resulting from the combination of the first FD section 211 and the second FD section 212 is output to the vertical signal line 19 via the amplification transistor 205 and the selection transistor 206. Ru.
- This pixel signal SP1 is a P-phase pixel signal relative to the D-phase pixel signal SP1 output at time T5.
- the drive signal FCG becomes a high potential level, and the second switching transistor 203 becomes conductive.
- the potential of the first FD section 211, the potential of the second FD section 212, and the potential of the charge storage section 204 are combined.
- the pixel signal SP2 based on the potential resulting from the combination of the first FD section 211, the second FD section 212, and the charge storage section 204 is converted into a vertical signal via the amplification transistor 205 and the selection transistor 206. It is output on line 19.
- This pixel signal SP2 is a D-phase pixel signal corresponding to bright light containing charges accumulated in the second photoelectric conversion section 112a.
- the drive signal SEL becomes a low potential level, and the selection transistor 206 becomes non-conductive.
- the drive signal RST becomes a high potential level, and the reset transistor 202 becomes conductive.
- the potential of the region where the first FD section 211, the second FD section 212, and the charge storage section 204 are coupled is reset to the level of the power supply voltage VDD.
- the drive signal RST becomes a low potential level, and the reset transistor 202 becomes non-conductive.
- the drive signal SEL becomes a high potential level, and the selection transistor 206 becomes conductive.
- the pixel signal SP2 based on the potential resulting from the combination of the first FD section 211, the second FD section 212, and the charge storage section 204 is converted into a vertical signal via the amplification transistor 205 and the selection transistor 206. It is output on line 19.
- This pixel signal SP2 is a P-phase pixel signal relative to the D-phase pixel signal SP2 output at time T7.
- FIG. 6 is a timing chart for explaining an example of the 3AD drive operation when the readout circuit 20 of the photodetector 1 according to the first embodiment of the present disclosure is not equipped with an EC (Extra Capacitor).
- 2 is a timing chart showing an example of a process for reading out pixel signals from the unit pixel 110.
- FIG. 6 is a timing chart for explaining an example of the 3AD drive operation when the readout circuit 20 of the photodetector 1 according to the first embodiment of the present disclosure is not equipped with an EC (Extra Capacitor).
- a pixel signal SP1L based on the potential resulting from the combination of the first FD section 211 and the second FD section 212 is output to the vertical signal line 19 via the amplification transistor 205 and the selection transistor 206. Note that the pixel signal SP1L is at the potential level in the initial state immediately after the start of reading.
- the drive signal FDG becomes a low potential level, and the first switching transistor 201 becomes non-conductive.
- the potential coupling between the first FD section 211 and the second FD section 212 is eliminated.
- a pixel signal SP1H based on the potential of the first FD section 211 is output to the vertical signal line 19 via the amplification transistor 205 and the selection transistor 206.
- the drive signal SEL becomes a low potential level, and the selection transistor 206 becomes non-conductive. As a result, reading out the pixel signal from the unit pixel 110 is temporarily stopped.
- the drive signal TGL becomes a high potential level, and the transfer transistor 111b becomes conductive. Thereby, the charge generated and accumulated in the first photoelectric conversion section 111a during the exposure period is transferred to the first FD section 211 via the transfer transistor 111b.
- the drive signal TGL becomes a low potential level, and the transfer transistor 111b becomes non-conductive.
- the transfer of charges from the first photoelectric conversion unit 111a to the first FD unit 211 is stopped, and preparations for reading out pixel signals based on the charges in the first FD unit 211 are completed.
- the drive signal SEL becomes a high potential level
- the selection transistor 206 becomes conductive.
- the pixel signal SP1H based on the potential of the first FD section 211 is output to the vertical signal line 19 via the amplification transistor 205 and the selection transistor 206.
- This pixel signal SP1H is generated by the first photoelectric conversion unit 111a during the exposure period, and is based on the charges accumulated in the first FD unit 211. This is the phase pixel signal.
- the drive signal SEL becomes a low potential level and the selection transistor 206 becomes non-conductive, while the drive signal FDG becomes a high potential level and the first switching transistor 201 becomes conductive.
- the reading of pixel signals from the unit pixel 110 is temporarily stopped, while the potential of the first FD section 211 and the potential of the second FD section 212 are combined.
- the drive signal TGL becomes a high potential level, and the transfer transistor 111b becomes conductive.
- the charges that could not be transferred from the first photoelectric conversion section 111a are transferred to the region coupled to the first FD section 211 and the second FD section 212 via the transfer transistor 111b.
- the drive signal TGL becomes a low potential level
- the transfer transistor 111b becomes a low potential level. This stops the transfer of the remaining charges from the first photoelectric conversion section 111a to the region where the first FD section 211 and the second FD section 212 are combined.
- the drive signal SEL becomes a high potential level
- the selection transistor 206 becomes conductive.
- the pixel signal SP1L based on the potential due to the combination of the first FD section 211 and the second FD section 212 is output to the vertical signal line 19 via the amplification transistor 205 and the selection transistor 206. Ru.
- This pixel signal SP1L is a D-phase pixel signal relative to the P-phase pixel signal SP1L output at time T1.
- the drive signal SEL becomes a low potential level, and the selection transistor 206 becomes non-conductive.
- the drive signal RST becomes a high potential level, and the reset transistor 202 becomes conductive.
- the potential of the region where the first FD section 211 and the second FD section 212 are coupled is reset to the level of the power supply voltage VDD.
- the drive signal RST becomes a low potential level, and the reset transistor 202 becomes non-conductive.
- the drive signal SEL becomes a high potential level, and the selection transistor 206 becomes conductive.
- the drive signal FCG becomes a high potential level, and the second switching transistor 203 becomes conductive.
- the potential of the first FD section 211, the potential of the second FD section 212, and the potential of the charge storage section 204 are combined.
- the pixel signal SP2 based on the potential resulting from the combination of the first FD section 211, the second FD section 212, and the charge storage section 204 is converted into a vertical signal via the amplification transistor 205 and the selection transistor 206. It is output on line 19.
- This pixel signal SP2 is a D-phase pixel signal corresponding to bright light containing charges accumulated in the second photoelectric conversion unit 112a.
- the drive signal SEL becomes a low potential level, and the selection transistor 206 becomes non-conductive.
- the drive signal RST becomes a high potential level, and the reset transistor 202 becomes conductive.
- the potential of the region where the first FD section 211, the second FD section 212, and the charge storage section 204 are coupled is reset to the level of the power supply voltage VDD.
- the drive signal RST becomes a low potential level, and the reset transistor 202 becomes non-conductive.
- the drive signal SEL becomes a high potential level, and the selection transistor 206 becomes conductive.
- the pixel signal SP2 based on the potential resulting from the combination of the first FD section 211, the second FD section 212, and the charge storage section 204 is converted into a vertical signal via the amplification transistor 205 and the selection transistor 206. It is output on line 19.
- This pixel signal SP2 is a P-phase pixel signal relative to the D-phase pixel signal SP2 output at time T7.
- FIG. 7 is a timing chart for explaining an example of the 3AD drive operation when the EC of the readout circuit 20 of the photodetector 1 according to the first embodiment of the present disclosure is installed.
- 5 is a timing chart illustrating an example of processing for reading out pixel signals from pixels 110.
- the first switching transistor 201 is in a conductive state during the exposure period. Thereby, during the exposure period, the region where the first FD section 211 and the second FD section 212 are combined functions as a storage node.
- a pixel signal SP1L based on the potential resulting from the combination of the first FD section 211 and the second FD section 212 is output to the vertical signal line 19 via the amplification transistor 205 and the selection transistor 206. Note that the pixel signal SP1L is at the potential level in the initial state immediately after the start of reading.
- the drive signal TGL becomes a high potential level, and the transfer transistor 111b becomes conductive.
- the charges that could not be transferred from the first photoelectric conversion section 111a are transferred to the region coupled to the first FD section 211 and the second FD section 212 via the transfer transistor 111b.
- the drive signal TGL becomes a low potential level
- the transfer transistor 111b becomes a low potential level. This stops the transfer of the remaining charges from the first photoelectric conversion section 111a to the region where the first FD section 211 and the second FD section 212 are combined.
- the drive signal SEL becomes a high potential level
- the selection transistor 206 becomes conductive.
- the pixel signal SP1H based on the potential due to the combination of the first FD section 211 and the second FD section 212 is output to the vertical signal line 19 via the amplification transistor 205 and the selection transistor 206. Ru.
- This pixel signal SP1H is a D-phase pixel signal with respect to the P-phase pixel signal SP1L output at time T1.
- the pixel signal SP1L based on the potential due to the combination of the first FD section 211 and the second FD section 212 is output to the vertical signal line 19 via the amplification transistor 205 and the selection transistor 206. Ru.
- the drive signal SEL becomes a low potential level, and the selection transistor 206 becomes non-conductive.
- the drive signal RST becomes a high potential level
- the reset transistor 202 becomes conductive.
- the potential of the region where the first FD section 211 and the second FD section 212 are coupled is reset to the level of the power supply voltage VDD.
- the drive signal RST becomes a low potential level, and the reset transistor 202 becomes non-conductive.
- the drive signal SEL becomes a high potential level, and the selection transistor 206 becomes conductive.
- the pixel signal SP1 based on the potential resulting from the combination of the first FD section 211 and the second FD section 212 is output to the vertical signal line 19 via the amplification transistor 205 and the selection transistor 206.
- the drive signal SEL becomes a low potential level, and the selection transistor 206 becomes non-conductive.
- the drive signal RST becomes a high potential level, and the reset transistor 202 becomes conductive.
- the potential of the region where the first FD section 211 and the second FD section 212 are coupled is reset to the level of the power supply voltage VDD.
- the drive signal RST becomes a low potential level, and the reset transistor 202 becomes non-conductive.
- the drive signal SEL becomes a high potential level, and the selection transistor 206 becomes conductive.
- the drive signal FCG becomes a high potential level, and the second switching transistor 203 becomes conductive.
- the potential of the first FD section 211, the potential of the second FD section 212, and the potential of the charge storage section 204 are combined.
- the pixel signal SP2 based on the potential resulting from the combination of the first FD section 211, the second FD section 212, and the charge storage section 204 is converted into a vertical signal via the amplification transistor 205 and the selection transistor 206. It is output on line 19.
- This pixel signal SP2 is a D-phase pixel signal corresponding to bright light containing charges accumulated in the second photoelectric conversion unit 112a.
- the drive signal SEL becomes a low potential level, and the selection transistor 206 becomes non-conductive.
- the drive signal RST becomes a high potential level, and the reset transistor 202 becomes conductive.
- the potential of the region where the first FD section 211, the second FD section 212, and the charge storage section 204 are coupled is reset to the level of the power supply voltage VDD.
- the drive signal RST becomes a low potential level, and the reset transistor 202 becomes non-conductive.
- the drive signal SEL becomes a high potential level, and the selection transistor 206 becomes conductive.
- the pixel signal SP2 based on the potential resulting from the combination of the first FD section 211, the second FD section 212, and the charge storage section 204 is converted into a vertical signal via the amplification transistor 205 and the selection transistor 206. It is output on line 19.
- This pixel signal SP2 is a P-phase pixel signal relative to the D-phase pixel signal SP2 output at time T7.
- the first FD section 211 and the second FD section 212 formed in the photoelectric conversion layer 41 are connected to form one common diffusion region 312 in plan view.
- the area of the common diffusion region 312 can be reduced compared to a layout in which the first FD section 211 and the second FD section 212 are coupled via the wiring layer 42. , it is possible to reduce the FD dark current.
- the number of diffusion regions can be reduced in the layout, it is advantageous for reducing the size of the unit pixel 110.
- the polysilicon capacitor 204a as the capacitor connected to the common diffusion region 312, the bias dependence of the capacitance value can be reduced.
- FIG. 8 is a circuit diagram showing a configuration example of a pixel unit PU of a photodetection device 1A according to a first modification of the first embodiment of the present disclosure.
- the charge storage section 204 includes an MIM (Metal Insulator Metal) capacitor 204b.
- FIG. 9 is a diagram for explaining an example of the planar layout of each element constituting the unit pixel 110A in the pixel array section 11 of the photodetecting device 1A according to the first modification of the first embodiment of the present disclosure. be.
- the same parts as those in FIG. 3 are given the same reference numerals and detailed explanations will be omitted.
- the MIM capacitor 204b is formed using the metal wiring pattern of the wiring layer 42, so the active region 302 is not required.
- FIG. 10 is a partial longitudinal cross-sectional view showing an example of a semiconductor structure in a schematic cross section taken along the line AA' of the unit pixel 110A shown in FIG.
- the MIM capacitor 204b is formed of the same material as the metal wiring pattern of the wiring layer 42.
- FIG. 11 is a circuit diagram showing a configuration example of a pixel unit PU of a photodetection device 1B according to a second modification of the first embodiment of the present disclosure.
- the charge storage section 204 includes a wiring capacitor 204c.
- FIG. 12 is a diagram for explaining an example of the planar layout of each element constituting the unit pixel 110B in the pixel array section 11 of the photodetection device 1B according to the second modification of the first embodiment of the present disclosure. be.
- the same parts as those in FIG. 3 are given the same reference numerals and detailed explanations will be omitted.
- the metal wiring pattern of the wiring layer 42 is used to form the wiring capacitance 204c, so the active region 302 is not required.
- FIG. 13 is a partial longitudinal cross-sectional view showing an example of a semiconductor structure in a schematic cross-section taken along the AA' cross-section of the unit pixel 110B shown in FIG. 12.
- the wiring capacitor 204c is formed of the same material as the metal wiring pattern of the wiring layer 42.
- FIG. 14 is a circuit diagram showing a configuration example of a pixel unit PU of a photodetection device 1C according to the second embodiment of the present disclosure.
- the same parts as those in FIG. 2 are given the same reference numerals and detailed explanations will be omitted.
- the second embodiment of the present disclosure differs from the first embodiment in that the small pixel 112 including the second photoelectric conversion unit 112a is deleted.
- FIG. 15 is a diagram for explaining an example of the planar layout of each element forming a unit pixel 110C in the pixel array section 11 of the photodetection device 1C according to the second embodiment of the present disclosure.
- a first photoelectric conversion section 111a is formed approximately at the center of the unit pixel 110.
- the first photoelectric conversion section 111a is formed in a rectangular shape.
- a gate electrode 11b1 of a transfer transistor 111b is formed on the active region 301 approximately at the center of the first photoelectric conversion section 111a.
- the active region 301 is an ion implantation region, and extends in the Y direction from approximately the center of the first photoelectric conversion section 111a.
- a gate electrode 201a of the first switching transistor 201, a gate electrode 202a of the reset transistor 202, and a gate electrode 203a of the second switching transistor 203 are formed. Therefore, when a drive signal is applied to each of the gate electrode 201a of the first switching transistor 201, the gate electrode 202a of the reset transistor 202, and the gate electrode 203a of the second switching transistor 203, the first switching transistor 201 , the reset transistor 202 , and the second switching transistor 203 are electrically connected on the active region 301 .
- a sidewall 311 is formed on each sidewall of the gate electrode 201a of the first switching transistor 201, the gate electrode 202a of the reset transistor 202, and the gate electrode 203a of the second switching transistor 203.
- the sidewall 311 is made of an insulating film such as a silicon nitride film (SiN) or a silicon oxide film (SiO2), for example.
- a common diffusion region 312 is provided between the gate electrode 201a of the first switching transistor 201, the gate electrode 202a of the reset transistor 202, and the gate electrode 203a of the second switching transistor 203. (indicated by dots in FIG. 15) is formed.
- the common diffusion region 312 is a diffusion region in which the first FD section 211 and the second FD section 212 are connected together.
- the common diffusion region 312 is formed in the active region 301 after the sidewalls 311 are formed on the gate electrode 201a of the first switching transistor 201, the gate electrode 202a of the reset transistor 202, and the gate electrode 203a of the second switching transistor 203, respectively. It is formed. Therefore, the area of the common diffusion region 312 can be minimized.
- a capacitor 204a of the charge storage section 204 is formed in the active region 302. Furthermore, the gate electrode 205a of the amplification transistor 205 and the gate electrode 206a of the selection transistor 206 are formed in the active region 303.
- the capacitor 204a of the charge storage section 204 is connected to the drain electrode of the second switching transistor 203 via a wiring layer to be described later.
- the gate electrode 205a of the amplification transistor 205 is connected to the drain electrode of the transfer transistor 111b and the drain electrode of the first switching transistor 201 via a wiring layer to be described later.
- FIG. 16 is a partial longitudinal cross-sectional view showing an example of a schematic cross-section of the semiconductor structure 40 taken along the line AA' of the unit pixel 110C shown in FIG. 15.
- the semiconductor structure 40 of the unit pixel 110 is generally configured to include, for example, a photoelectric conversion layer 41 as a semiconductor layer, a wiring layer 42, a color filter 43, and an on-chip lens 44.
- the on-chip lens 44 efficiently condenses light that enters the photodetector 1 from the outside and forms an image on each large pixel 111 (i.e., the first photoelectric conversion unit 111a) of the photoelectric conversion layer 41. This is an optical lens.
- On-chip lens 44 is typically arranged for each large pixel 111.
- the color filter 43 is an optical filter that selectively transmits light of a predetermined wavelength out of the light collected by the on-chip lens 44.
- four color filters 43 that selectively transmit wavelengths of red light, green light, blue light, and near-infrared light are used, but the present invention is not limited thereto.
- a color filter 43 corresponding to any color (wavelength) is arranged in each large pixel 111.
- the photoelectric conversion layer 41 is a functional layer in which the first photoelectric conversion section 111a, the transfer transistor 111b, etc. are formed.
- the first photoelectric conversion section 111a of the photoelectric conversion layer 41 generates an amount of charge according to the intensity of light incident through the on-chip lens 44 and color filter 43, converts this into an electric signal, and converts it into a pixel signal. Output as .
- a part of the light for example, near-infrared light, etc.
- the incident surface of the photoelectric conversion layer 41 may pass through the surface (i.e., the front surface) opposite to the incident surface (i.e., the back surface). .
- the photoelectric conversion layer 41 is manufactured on a silicon substrate by a semiconductor manufacturing process.
- the first photoelectric conversion unit 111a and the transfer transistor 111b are electrically connected to predetermined metal wiring in the wiring layer 42.
- an inter-pixel isolation section 45 that isolates each large pixel 111 may be formed in the photoelectric conversion layer 41 .
- the inter-pixel isolation section 45 has a trench structure formed by etching, for example.
- the inter-pixel separation section 45 prevents light incident on a large pixel 111 from entering an adjacent large pixel 111.
- the photoelectric conversion layer 41 is provided with a contact 46 for grounding to GND (ground) on the front surface side.
- the wiring layer 42 is a layer in which a metal wiring pattern is formed for transmitting power and various drive signals to each large pixel 111 in the photoelectric conversion layer 41 and for transmitting pixel signals read out from each large pixel 111.
- the wiring layer 42 may typically be configured by stacking a plurality of metal wiring pattern layers with an interlayer insulating film interposed therebetween. Furthermore, the laminated metal wiring patterns are electrically connected, for example, via vias, if necessary.
- the wiring layer 42 is made of metal such as aluminum (Al) or copper (Cu), for example.
- the interlayer insulating film is formed of silicon oxide or the like, for example.
- the wiring layer 42 includes the readout circuit 20 and may include the gate electrode 111b1 of the transfer transistor 111b. Further, the wiring layer 42 includes a polysilicon capacitor 204a of the charge storage section 204.
- FIG. 17 is a timing chart for explaining an example of the 4AD drive operation of the readout circuit 20 of the photodetection device 1C according to the second embodiment of the present disclosure.
- the pixel signal from the unit pixel 110 is 3 is a timing chart showing an example of read processing.
- a timing chart of drive signals SEL, RST, FDG, TGL, and FCG and power supply FCVDD for the unit pixel 110 is shown. This process is performed, for example, in a predetermined scanning order after a predetermined time after the exposure process is performed for each unit pixel row of the pixel array section 11 or for each unit pixel row.
- the drive signal SEL becomes a high potential level and the selection transistor 206 becomes conductive
- the drive signal FDG becomes a high potential level and the first switching transistor becomes conductive
- a pixel signal SP1L based on the potential due to the coupling between the first FD section 211 and the second FD section 212 is output to the vertical signal line 19 via the amplification transistor 205 and the selection transistor 206. Ru. Note that the pixel signal SP1L is at the potential level in the initial state immediately after the start of reading.
- the drive signal FDG becomes a low potential level, and the first switching transistor 201 becomes non-conductive.
- the potential coupling between the first FD section 211 and the second FD section 212 is eliminated.
- a pixel signal SP1H based on the potential of the first FD section 211 is output to the vertical signal line 19 via the amplification transistor 205 and the selection transistor 206.
- the drive signal SEL becomes a low potential level, and the selection transistor 206 becomes non-conductive. As a result, reading out the pixel signal from the unit pixel 110C is temporarily stopped.
- the drive signal TGL becomes a high potential level, and the transfer transistor 111b becomes conductive. Thereby, the charge generated and accumulated in the first photoelectric conversion section 111a during the exposure period is transferred to the first FD section 211 via the transfer transistor 111b.
- the drive signal TGL becomes a low potential level, and the transfer transistor 111b becomes non-conductive.
- the transfer of charges from the first photoelectric conversion unit 111a to the first FD unit 211 is stopped, and preparations for reading out pixel signals based on the charges in the first FD unit 211 are completed.
- the drive signal SEL becomes a high potential level
- the selection transistor 206 becomes conductive.
- the pixel signal SP1H based on the potential of the first FD section 211 is output to the vertical signal line 19 via the amplification transistor 205 and the selection transistor 206.
- This pixel signal SP1H is generated by the first photoelectric conversion unit 111a during the exposure period, and is based on the charges accumulated in the first FD unit 211. This is the phase pixel signal.
- the drive signal SEL becomes a low potential level and the selection transistor 206 becomes non-conductive, while the drive signal FDG becomes a high potential level and the first switching transistor 201 becomes conductive.
- the reading of pixel signals from the unit pixel 110 is temporarily stopped, while the potential of the first FD section 211 and the potential of the second FD section 212 are combined.
- the drive signal TGL becomes a high potential level, and the transfer transistor 111b becomes conductive.
- the charges that could not be transferred from the first photoelectric conversion section 111a are transferred to the region coupled to the first FD section 211 and the second FD section 212 via the transfer transistor 111b.
- the drive signal TGL becomes a low potential level
- the transfer transistor 111b becomes a low potential level. This stops the transfer of the remaining charges from the first photoelectric conversion section 111a to the region where the first FD section 211 and the second FD section 212 are combined.
- the drive signal SEL becomes a high potential level
- the selection transistor 206 becomes conductive.
- the pixel signal SP1L based on the potential due to the combination of the first FD section 211 and the second FD section 212 is output to the vertical signal line 19 via the amplification transistor 205 and the selection transistor 206. Ru.
- This pixel signal SP1L is a D-phase pixel signal relative to the P-phase pixel signal SP1L output at time T1.
- the pixel signal SP1EC based on the potential due to the combination of the first FD section 211 and the second FD section 212 is output to the vertical signal line 19 via the amplification transistor 205 and the selection transistor 206. Ru.
- This pixel signal SP1EC is a D-phase pixel signal with respect to a P-phase pixel signal SP1EC output at time T8, which will be described later.
- the drive signal SEL becomes a low potential level, and the selection transistor 206 becomes non-conductive.
- the drive signal FCG becomes a high potential level, and the second switching transistor 203 becomes conductive.
- the potential of the first FD section 211, the potential of the second FD section 212, and the potential of the charge storage section 204 are combined.
- the drive signal SEL becomes a high potential level, and the selection transistor 206 becomes conductive.
- the D-phase pixel signal SP1FC based on the potential resulting from the combination of the first FD section 211, the second FD section 212, and the charge storage section 204 is transmitted via the amplification transistor 205 and the selection transistor 206. , are output to the vertical signal line 19.
- the drive signal SEL becomes a low potential level, and the selection transistor 206 becomes non-conductive.
- the drive signal RST becomes a high potential level, and the reset transistor 202 becomes conductive.
- the potential of the region where the first FD section 211 and the second FD section 212 are coupled is reset to the level of the power supply voltage VDD.
- the drive signal RST becomes a low potential level, and the reset transistor 202 becomes non-conductive.
- the drive signal SEL becomes a high potential level, and the selection transistor 206 becomes conductive.
- the pixel signal SP1FC based on the potential resulting from the combination of the first FD section 211, the second FD section 212, and the charge storage section 204 is converted into a vertical signal via the amplification transistor 205 and the selection transistor 206. It is output on line 19.
- This pixel signal SP1FC is a P-phase pixel signal relative to the D-phase pixel signal SP1FC output at time T6.
- the drive signal SEL becomes a low potential level, and the selection transistor 206 becomes non-conductive.
- the drive signal FCG becomes a low potential level, and the second switching transistor 203 becomes non-conductive.
- the drive signal SEL becomes a high potential level, and the selection transistor 206 becomes conductive.
- the pixel signal SP1EC based on the potential due to the combination of the first FD section 211 and the second FD section 212 is output to the vertical signal line 19 via the amplification transistor 205 and the selection transistor 206. Ru.
- This pixel signal SP1EC is a P-phase pixel signal with respect to the D-phase pixel signal SP1EC output at time T5.
- the first FD section 211 and the second FD section 212 formed in the photoelectric conversion layer 41 are connected to each other.
- the area of the common diffusion region 312 is It is possible to reduce the FD dark current.
- FIG. 18 is a circuit diagram illustrating a configuration example of a pixel unit PU of a photodetection device 1D according to a first modification of the second embodiment of the present disclosure.
- the charge storage section 204 includes an MIM (Metal Insulator Metal) capacitor 204b.
- FIG. 19 is a diagram for explaining an example of the planar layout of each element constituting a unit pixel 110D in the pixel array section 11 of the photodetecting device 1D according to the first modification of the second embodiment of the present disclosure. be.
- the same parts as those in FIG. 15 are given the same reference numerals and detailed explanations will be omitted.
- the MIM capacitor 204b is formed using the metal wiring pattern of the wiring layer 42, so the active region 302 is not required.
- FIG. 20 is a partial vertical cross-sectional view showing an example of a semiconductor structure in a schematic cross section taken along the line AA' of the unit pixel 110D shown in FIG. 19.
- the MIM capacitor 204b is formed of the same material as the metal wiring pattern of the wiring layer 42.
- FIG. 21 is a circuit diagram showing a configuration example of a pixel unit PU of a photodetecting device 1B according to a second modification of the second embodiment of the present disclosure.
- the charge storage section 204 includes a wiring capacitor 204c.
- FIG. 22 is a diagram for explaining an example of the planar layout of each element forming a unit pixel 110E in the pixel array section 11 of the photodetecting device 1E according to the second modification of the second embodiment of the present disclosure. be.
- the same parts as those in FIG. 15 are given the same reference numerals and detailed explanations will be omitted.
- FIG. 23 is a partial longitudinal sectional view showing an example of a semiconductor structure in a schematic cross section taken along the AA' cross section of the unit pixel 110E shown in FIG. 22.
- the wiring capacitor 204c is formed of the same material as the metal wiring pattern of the wiring layer 42.
- FIG. 24 is a partial vertical cross-sectional view showing an example of the semiconductor structure of the unit pixel 110F of the photodetection device 1F according to the third embodiment of the present disclosure.
- the semiconductor structure 50 of the unit pixel 110F is generally configured to include, for example, a photoelectric conversion layer 51 as a semiconductor layer, a color filter 52, and an on-chip lens 53.
- Such a semiconductor structure 50 may be formed of a silicon substrate including a photoelectric conversion layer 51, for example.
- the on-chip lens 53 is composed of an on-chip lens 531 for the large pixel 111 and an on-chip lens 532 for the small pixel 112, and efficiently condenses light that enters the photodetector 1F from the outside. This is an optical lens for forming an image on each large pixel 111 (that is, the first photoelectric conversion section 111a) and the small pixel 112 (that is, the second photoelectric conversion section 112a) of the photoelectric conversion layer 51.
- the on-chip lens 53 is typically arranged for each large pixel 111 and small pixel 112.
- the color filter 52 is an optical filter that selectively transmits light of a predetermined wavelength out of the light collected by the on-chip lens 53.
- four color filters 43 that selectively transmit wavelengths of red light, green light, blue light, and near-infrared light are used, but the present invention is not limited thereto.
- a color filter 52 corresponding to one of the colors (wavelengths) is arranged in each large pixel 111 and small pixel 112. Furthermore, the color filter 52 is provided with an optical black area 54 .
- the photoelectric conversion layer 51 is a functional layer in which a first photoelectric conversion section 111a, a second photoelectric conversion section 112a, a transfer transistor 111b, and the like are formed.
- the first photoelectric conversion section 111a and the second photoelectric conversion section 112a of the photoelectric conversion layer 51 generate an amount of charge according to the intensity of light incident through the on-chip lens 53 and the color filter 52, and Converts it into an electrical signal and outputs it as a pixel signal.
- a part of the light for example, near-infrared light
- the incident surface of the photoelectric conversion layer 51 may pass through the surface (i.e., the front surface) opposite to the incident surface (i.e., the back surface). .
- the photoelectric conversion layer 51 is manufactured on a silicon substrate by a semiconductor manufacturing process.
- the first photoelectric conversion unit 111a, the second photoelectric conversion unit 112a, and the transfer transistor are electrically connected to predetermined metal wiring in a wiring layer (not shown).
- an inter-pixel separation section 55 that separates the unit pixels 110F may be formed in the photoelectric conversion layer 51.
- the inter-pixel isolation section 55 has a trench structure formed by, for example, an etching process.
- FIG. 25 is a partial vertical cross-sectional view showing the cross-sectional structure of an on-chip lens 900 as a comparative example of the third embodiment.
- a thick on-chip lens 901 is provided in the large pixel 111 in order to increase the sensitivity of the large pixel 111.
- the small pixel 112 is provided with an on-chip lens 902 that is thinner than the on-chip lens 901.
- a difference occurs between the spectral and oblique incidence characteristics of the large pixel 111 and the spectral and oblique incidence characteristics of the small pixel, causing coloration.
- the difference in characteristics becomes larger.
- the on-chip lens 901 of the large pixel 111 is thick, optical color mixture from the large pixel 111 to the small pixel 112 will increase with respect to light incident at a high angle due to the PKG structure, and the flare resistance of the small pixel 112 will decrease. .
- the lens thickness of the on-chip lens 531 of the large pixel 111 is reduced to a size such that the aspect ratio is equal to or less than the aspect ratio of the on-chip lens 532 of the small pixel 112.
- the aspect ratio between the radial direction of the on-chip lens 531 (direction indicated by arrow X or Y in FIG. 24) and the direction perpendicular to the radial direction is the same as that of the on-chip lens 532. Make it smaller than the aspect ratio.
- the spectral and oblique incidence characteristics of the second photoelectric conversion section 112a approach those of the first photoelectric conversion section 111a, and the difference becomes smaller. Further, optical color mixing of obliquely incident light from the on-chip lens 531 is reduced, and the flare resistance of the second photoelectric conversion section 112a is improved.
- the diameter of the on-chip lens 532 for the small pixel 112 is made larger than the aperture width 541 of the optical black region 54.
- FIG. 26 is a cross-sectional view showing a process procedure of a method for manufacturing an on-chip lens 900 in a comparative example of the third embodiment.
- a lens material 910 is applied (FIG. 26(a)), and an on-chip lens 902 for the small pixel 112 is formed by litho on the lens material 910 (FIG. 26(b)). UV irradiation is performed on (FIG. 26(c)). Subsequently, an on-chip lens 901 for the large pixel 111 is formed by litho on the lens material 910 (FIG. 26(d)), and the lens material 910 is shaved by dry processing (FIG. 26(e)).
- FIG. 27 is a cross-sectional view showing a process procedure of a method for manufacturing an on-chip lens 53 according to the third embodiment of the present disclosure.
- a lens material 533 is applied (FIG. 27(a)), and an on-chip lens 531 for a large pixel 111 and an on-chip lens 532 for a small pixel 112 are formed on the lens material 533 by a KrF process (FIG. 27(a)).
- FIG. 27(b) the lens material 533 is shaved by dry processing (FIG. 27(c)). This prevents the on-chip lens 531 for the large pixel 111 and the on-chip lens 532 for the small pixel 112 from being misaligned.
- the third embodiment by lowering the lens thickness of the on-chip lens 531 for the large pixel 111 and making it smaller than the aspect ratio of the on-chip lens 532 for the small pixel 112, the small pixel
- the spectral and oblique incidence characteristics of the second photoelectric conversion unit 112a of the large pixel 112 approach those of the first photoelectric conversion unit 111a of the large pixel 111, and the difference becomes small.
- optical color mixing from the on-chip lens 531 of the large pixel 111 of obliquely incident light is reduced, and the flare resistance of the second photoelectric conversion unit 112a is improved.
- the on-chip lens 532 for the small pixel 112 has the following characteristics: The diameter of the focused spot determined by the diffraction limit of light can be reduced.
- FIG. 28 is a partial vertical cross-sectional view showing an example of the semiconductor structure of the unit pixel 110G of the photodetector 1G according to the fourth embodiment of the present disclosure.
- the same parts as those in FIG. 24 are given the same reference numerals and detailed explanations will be omitted.
- an interpixel separation section 61 that separates each large pixel 111 and small pixel 112 may be formed in the photoelectric conversion layer 51.
- the inter-pixel isolation section 61 has a dug structure that does not penetrate the photoelectric conversion layer 51. That is, it is dug halfway in the depth direction (direction indicated by arrow Z in FIG. 28) from the light incident surface (back surface) of the photoelectric conversion layer 51.
- the inter-pixel separation section 61 prevents light incident on the large pixel 111 from entering the adjacent small pixel 112, and also prevents light incident on the small pixel 112 from entering the adjacent large pixel 111.
- FIG. 29 is a partial vertical cross-sectional view showing an example of the semiconductor structure of the unit pixel 110H of the photodetection device 1H according to the fifth embodiment of the present disclosure.
- an inter-pixel separation section 71 that separates each large pixel 111 and small pixel 112 may be formed in the photoelectric conversion layer 51.
- the inter-pixel isolation section 71 has a dug structure penetrating the photoelectric conversion layer 51. That is, it is dug from the light incident surface (back surface) of the photoelectric conversion layer 51 to the front surface.
- the inter-pixel separation section 71 prevents light incident on the large pixel 111 from entering the adjacent small pixel 112, and also prevents light incident on the small pixel 112 from entering the adjacent large pixel 111.
- FIG. 30 is a partial vertical cross-sectional view showing an example of the semiconductor structure of a unit pixel 110I of a photodetecting device 1I according to the sixth embodiment of the present disclosure.
- the color filter 52 is configured by alternately arranging a color filter 521 for the large pixel 111 and a color filter 522 for the small pixel 112.
- a low refraction wall portion 81 is provided between the color filter 521 for the large pixel 111 and the color filter 522 for the small pixel 112.
- the low refraction wall portion 81 has a lower refractive index than the color filter 521 for the large pixel 111 and the color filter 522 for the small pixel 112.
- the low refraction wall section 81 provided between the color filter 521 for the large pixel 111 and the color filter 522 for the small pixel 112 allows the large pixel to receive obliquely incident light. Since the light from the on-chip lens 531 for 111 can be reflected without being refracted, the flare resistance of the second photoelectric conversion section 112a of the small pixel 112 is improved.
- FIG. 31 is a partial vertical cross-sectional view showing an example of the semiconductor structure of a unit pixel 110J of a photodetection device 1J according to a seventh embodiment of the present disclosure.
- the same parts as those in FIG. 28 are given the same reference numerals and detailed explanations will be omitted.
- a moth-eye structure anti-reflection portion (RIG) 91 is formed on the light incident surface (back surface) of the photoelectric conversion layer 51.
- the anti-reflection section 91 prevents reflection of light incident on the first photoelectric conversion section 111a and the second photoelectric conversion section 112a.
- the anti-reflection portion 91 having the moth-eye structure can prevent reflection of incident light, thereby preventing light incident on the large pixel 111 from entering the small pixel 112. This improves the flare resistance of the second photoelectric conversion section 112a of the small pixel 112.
- the present technology is applicable to the first to seventh embodiments, the first modification and second modification of the first embodiment, and the first modification and second modification of the second embodiment.
- the discussion and drawings that form part of this disclosure should not be understood as limiting the present technology.
- the first to seventh embodiments, the first modified example and the second modified example of the first embodiment, and the first modified example and the second modified example of the second embodiment are disclosed respectively.
- the configurations can be combined as appropriate to the extent that no contradiction occurs. For example, configurations disclosed by a plurality of different embodiments may be combined, or configurations disclosed by a plurality of different modifications of the same embodiment may be combined.
- FIG. 32 is a block diagram showing a configuration example of an imaging device as an electronic device to which the present technology is applied.
- the imaging device 2201 shown in FIG. 32 includes an optical system 2202, a shutter device 2203, a solid-state image sensor 2204 as a photodetector, a control circuit 2205, a signal processing circuit 2206, a monitor 2207, and two memories 2208. Capable of capturing still images and moving images.
- the optical system 2202 includes one or more lenses, guides light (incident light) from a subject to the solid-state image sensor 2204, and forms an image on the light-receiving surface of the solid-state image sensor 2204.
- the shutter device 2203 is disposed between the optical system 2202 and the solid-state image sensor 2204, and controls the light irradiation period and the light shielding period to the solid-state image sensor 2204 under the control of the control circuit 2205.
- the solid-state image sensor 2204 is configured by a package containing the above-described solid-state image sensor.
- the solid-state image sensor 2204 accumulates signal charges for a certain period of time according to the light that is imaged on the light receiving surface via the optical system 2202 and the shutter device 2203.
- the signal charge accumulated in the solid-state image sensor 2204 is transferred according to a drive signal (timing signal) supplied from the control circuit 2205.
- the control circuit 2205 outputs a drive signal that controls the transfer operation of the solid-state image sensor 2204 and the shutter operation of the shutter device 2203, and drives the solid-state image sensor 2204 and the shutter device 2203.
- the signal processing circuit 2206 performs various signal processing on the signal charges output from the solid-state image sensor 2204.
- An image (image data) obtained by signal processing by the signal processing circuit 2206 is supplied to a monitor 2207 and displayed, or supplied to a memory 2208 and stored (recorded).
- the photodetecting devices 1, 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J are applied instead of the solid-state imaging device 2204 described above. becomes possible.
- the technology according to the present disclosure (this technology) can be applied to various products.
- the technology according to the present disclosure may be realized as a device mounted on any type of moving body such as a car, electric vehicle, hybrid electric vehicle, motorcycle, bicycle, personal mobility, airplane, drone, ship, robot, etc. It's okay.
- FIG. 33 is a block diagram illustrating a schematic configuration example of a vehicle control system, which is an example of a mobile body control system to which the technology according to the present disclosure can be applied.
- Vehicle control system 12000 includes a plurality of electronic control units connected via communication network 12001.
- the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050.
- a microcomputer 12051, an audio/image output section 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
- the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
- the drive system control unit 12010 includes a drive force generation device such as an internal combustion engine or a drive motor that generates drive force for the vehicle, a drive force transmission mechanism that transmits the drive force to wheels, and a drive force transmission mechanism that controls the steering angle of the vehicle. It functions as a control device for a steering mechanism to adjust and a braking device to generate braking force for the vehicle.
- the body system control unit 12020 controls the operations of various devices installed in the vehicle body according to various programs.
- the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a turn signal, or a fog lamp.
- radio waves transmitted from a portable device that replaces a key or signals from various switches may be input to the body control unit 12020.
- the body system control unit 12020 receives input of these radio waves or signals, and controls the door lock device, power window device, lamp, etc. of the vehicle.
- the external information detection unit 12030 detects information external to the vehicle in which the vehicle control system 12000 is mounted.
- an imaging section 12031 is connected to the outside-vehicle information detection unit 12030.
- the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
- the external information detection unit 12030 may perform object detection processing such as a person, car, obstacle, sign, or text on the road surface or distance detection processing based on the received image.
- the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
- the imaging unit 12031 can output the electrical signal as an image or as distance measurement information.
- the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
- the in-vehicle information detection unit 12040 detects in-vehicle information.
- a driver condition detection section 12041 that detects the condition of the driver is connected to the in-vehicle information detection unit 12040.
- the driver condition detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver condition detection unit 12041. It may be calculated or it may be determined whether the driver is falling asleep.
- the microcomputer 12051 calculates control target values for the driving force generation device, steering mechanism, or braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, Control commands can be output to 12010.
- the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions, including vehicle collision avoidance or impact mitigation, following distance based on vehicle distance, vehicle speed maintenance, vehicle collision warning, vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose of ADAS (Advanced Driver Assistance System) functions, including vehicle collision avoidance or impact mitigation, following distance based on vehicle distance, vehicle speed maintenance, vehicle collision warning, vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose of
- ADAS Advanced Driver Assistance System
- the microcomputer 12051 controls the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of autonomous driving, etc., which does not rely on operation.
- the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the outside information detection unit 12030.
- the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control for the purpose of preventing glare, such as switching from high beam to low beam. It can be carried out.
- the audio and image output unit 12052 transmits an output signal of at least one of audio and images to an output device that can visually or audibly notify information to the occupants of the vehicle or to the outside of the vehicle.
- an audio speaker 12061, a display section 12062, and an instrument panel 12063 are illustrated as output devices.
- the display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
- FIG. 34 is a diagram showing an example of the installation position of the imaging section 12031.
- vehicle 12100 includes imaging units 12101, 12102, 12103, 12104, and 12105 as imaging unit 12031.
- the imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as the front nose, side mirrors, rear bumper, back door, and the top of the windshield inside the vehicle 12100.
- An imaging unit 12101 provided in the front nose and an imaging unit 12105 provided above the windshield inside the vehicle mainly acquire images in front of the vehicle 12100.
- Imaging units 12102 and 12103 provided in the side mirrors mainly capture images of the sides of the vehicle 12100.
- An imaging unit 12104 provided in the rear bumper or back door mainly captures images of the rear of the vehicle 12100.
- the images of the front acquired by the imaging units 12101 and 12105 are mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
- FIG. 31 shows an example of the imaging range of the imaging units 12101 to 12104.
- An imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
- imaging ranges 12112 and 12113 indicate imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
- an imaging range 12114 shows the imaging range of the imaging unit 12101 provided on the front nose.
- the imaging range of the imaging unit 12104 provided in the rear bumper or back door is shown. For example, by overlapping the image data captured by the imaging units 12101 to 12104, an overhead image of the vehicle 12100 viewed from above can be obtained.
- At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
- at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of image sensors, or may be an image sensor having pixels for phase difference detection.
- the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100) based on the distance information obtained from the imaging units 12101 to 12104. In particular, by determining the three-dimensional object that is closest to the vehicle 12100 on its path and that is traveling at a predetermined speed (for example, 0 km/h or more) in approximately the same direction as the vehicle 12100, it is possible to extract the three-dimensional object as the preceding vehicle. can.
- a predetermined speed for example, 0 km/h or more
- the microcomputer 12051 can set an inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform cooperative control for the purpose of autonomous driving, etc., in which the vehicle travels autonomously without depending on the driver's operation.
- the microcomputer 12051 transfers three-dimensional object data to other three-dimensional objects such as two-wheeled vehicles, regular vehicles, large vehicles, pedestrians, and utility poles based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic obstacle avoidance. For example, the microcomputer 12051 identifies obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines a collision risk indicating the degree of risk of collision with each obstacle, and when the collision risk exceeds a set value and there is a possibility of a collision, the microcomputer 12051 transmits information via the audio speaker 12061 and the display unit 12062. By outputting a warning to the driver via the vehicle control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
- the microcomputer 12051 determines a collision risk indicating the degree of risk of collision with each obstacle, and when the collision risk exceed
- At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
- the microcomputer 12051 can recognize a pedestrian by determining whether the pedestrian is present in the images captured by the imaging units 12101 to 12104.
- pedestrian recognition involves, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and a pattern matching process is performed on a series of feature points indicating the outline of an object to determine whether it is a pedestrian or not.
- the audio image output unit 12052 creates a rectangular outline for emphasis on the recognized pedestrian.
- the display section 12062 is controlled so as to display the .
- the audio image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
- a first photoelectric conversion section that photoelectrically converts light received according to a first sensitivity
- a second photoelectric conversion section that photoelectrically converts light received according to a second sensitivity lower than the first sensitivity.
- a semiconductor layer in which a plurality of unit pixels are arranged in a matrix; a wiring layer laminated on a surface opposite to the light incident surface of the semiconductor layer and having a readout circuit that outputs a pixel signal based on the charge output from the unit pixel;
- the semiconductor layer is In a plan view, a first diffusion region capable of accumulating charges photoelectrically converted by the first photoelectric conversion unit, and a second diffusion region capable of accumulating charges photoelectrically converted by the second photoelectric conversion unit.
- the readout circuit is a photodetection device that outputs a pixel signal based on the charge from the common diffusion region.
- the readout circuit includes, as a pixel transistor, a reset transistor that resets the potential of the common diffusion region to a predetermined potential; an amplification transistor that generates, as the pixel signal, a voltage signal according to the level of charge accumulated in the common diffusion region; a selection transistor that controls output timing of the pixel signal from the amplification transistor; a first switching transistor for transferring charges generated by the first photoelectric conversion section to the common diffusion region; a second switching transistor for transferring the charge generated by the second photoelectric conversion section to the common diffusion region, (1) above, wherein the common diffusion region is arranged between the source region of the reset transistor, the source region of the first switching transistor, and the source region of the second switching transistor in plan view.
- the photodetection device described in (3) The photodetection device according to (1) above, wherein the capacitor connected to the common diffusion region is a polysilicon capacitor. (4) The photodetection device according to (1) above, wherein the capacitor connected to the common diffusion region is an MIM (Metal Insulator Metal) capacitor. (5) The photodetection device according to (1) above, wherein the capacitance connected to the common diffusion region is a wiring capacitance. (6) The photodetection device according to (1) above, wherein the common diffusion region functions as a storage node during the exposure period.
- MIM Metal Insulator Metal
- Each of the plurality of unit pixels is a first on-chip lens provided on the light incident surface side of the semiconductor layer and condensing external light onto the first photoelectric conversion section; a second on-chip lens provided on the light incident surface side of the semiconductor layer and condensing light from the outside onto the second photoelectric conversion section;
- the photodetection device according to (1) above wherein an aspect ratio between a radial direction of the first on-chip lens and a direction orthogonal to the radial direction is smaller than an aspect ratio of the second on-chip lens.
- the photodetection device according to (8) above, wherein the second on-chip lens has a diameter larger than an aperture width of an optical black region provided between the semiconductor layer and the second on-chip lens.
- the unit pixel includes a first pixel having the first photoelectric conversion section and a second pixel having the second photoelectric conversion section,
- the photodetection device according to (8) above, wherein the separation structure between the first pixel and the second pixel includes a dug structure that does not penetrate the semiconductor layer.
- the unit pixel includes a first pixel having the first photoelectric conversion section and a second pixel having the second photoelectric conversion section,
- a first color filter provided between the light incidence surface of the semiconductor layer and the first on-chip lens; a second color filter that is provided between the light incidence surface of the semiconductor layer and the second on-chip lens, and that corresponds to a wavelength of light different from that of the first color filter;
- the light according to (8) above, comprising a wall portion between the first color filter and the second color filter that has a lower refractive index than the first color filter and the second color filter.
- Detection device (13) The photodetection device according to (8) above, further comprising an anti-reflection portion having a moth-eye structure on the light incident surface of the semiconductor layer to prevent reflection of incident light.
- a semiconductor layer in which a plurality of pixels each having a photoelectric conversion unit that photoelectrically converts received light are arranged in a matrix; a wiring layer laminated on a surface opposite to the light incident surface of the semiconductor layer and having a readout circuit that outputs a pixel signal based on the charge output from the pixel;
- the semiconductor layer is comprising a diffusion region capable of accumulating charges photoelectrically converted by the photoelectric conversion unit,
- the readout circuit is comprising three or more pixel transistors, the three or more pixel transistors sharing the same source region, The light detection device, wherein the diffusion region is arranged in a source region shared by three or more pixel transistors.
- the readout circuit includes, as a pixel transistor, a reset transistor that resets the potential of the diffusion region to a predetermined potential; an amplification transistor that generates, as the pixel signal, a voltage signal according to the level of charge accumulated in the diffusion region; a selection transistor that controls output timing of the pixel signal from the amplification transistor; a switching transistor for transferring the charge generated by the photoelectric conversion section to the diffusion region,
- the photodetection device according to (14) above, wherein the capacitor connected to the diffusion region is a polysilicon capacitor.
- the capacitor connected to the diffusion region is a MIM (Metal Insulator Metal) capacitor.
- the capacitance connected to the diffusion region is a wiring capacitance.
- the diffusion region functions as an accumulation node during the exposure period.
- the photodetector according to (14), wherein the diffusion region is an ion implantation region after sidewall formation of a gate electrode of a pixel transistor included in the readout circuit.
- a first photoelectric conversion section that photoelectrically converts light received according to a first sensitivity
- a second photoelectric conversion section that photoelectrically converts light received according to a second sensitivity lower than the first sensitivity.
- a semiconductor layer in which a plurality of unit pixels are arranged in a matrix; a wiring layer laminated on a surface opposite to the light incident surface of the semiconductor layer and having a readout circuit that outputs a pixel signal based on the charge output from the unit pixel;
- the semiconductor layer is In a plan view, a first diffusion region capable of accumulating charges photoelectrically converted by the first photoelectric conversion unit, and a second diffusion region capable of accumulating charges photoelectrically converted by the second photoelectric conversion unit.
- the readout circuit includes a photodetection device that outputs a pixel signal based on the charge from the common diffusion region.
- Electronics. (22) a semiconductor layer in which a plurality of pixels each having a photoelectric conversion unit that photoelectrically converts received light are arranged in a matrix; a wiring layer laminated on a surface opposite to the light incident surface of the semiconductor layer and having a readout circuit that outputs a pixel signal based on the charge output from the pixel;
- the semiconductor layer is comprising a diffusion region capable of accumulating charges photoelectrically converted by the photoelectric conversion unit,
- the readout circuit is comprising three or more pixel transistors, the three or more pixel transistors sharing the same source region,
- the diffusion region includes a photodetection device disposed in a source region shared by three or more pixel transistors. Electronics.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
サブピクセル構造では、大画素の感度を上げるために、大画素に厚いオンチップレンズを備える。
さらに、大画素のオンチップレンズが厚いとPKG構造起因の高角度入射の光に対して、大画素から小画素への光学混色が大きくなり、小画素のフレア耐性が低下する。
また、本開示は、サブピクセル構造において、大画素と小画素との特性差異を小さくすることが可能な光検出装置及び電子機器を提供することを目的とする。
<光検出装置の全体構成>
図1は、本開示の第1の実施形態に係る光検出装置の概略的構成の一例を示すブロックダイアグラムである。光検出装置1は、各画素を構成するフォトダイオード等の光電変換素子を用いて、該画素上に結像した光の強弱に応じた電荷量を電気信号に変換し、これを画像データとして出力する半導体装置であり、例えばCMOSイメージセンサとして構成される。光検出装置1は、例えば、CMOS LSIのようなシステム・オン・チップ(SoC)として一体的に構成され得るが、例えば、以下に示すいくつかのコンポーネントが別体のLSIとして構成されても良い。
図2は、光検出装置1の画素ユニットPUの構成例を示す回路図である。
1つの画素ユニットPUは、図2に示されるように、大画素111と、小画素112と、1つの読み出し回路20とで構成されている。換言すれば、1つの読み出し回路20は、大画素111と、小画素112とで共有されており、大画素111の出力及び小画素112の出力が、共有される読み出し回路20に入力される。
図5は、本開示の第1の実施形態に係る光検出装置1の読み出し回路20の4AD駆動動作の一例を説明するためのタイミングチャートであり、具体的には、単位画素110からの画素信号の読み出し処理の一例を示すタイミングチャートである。同図では、単位画素110に対する駆動信号SEL、RST、FDG、TGL、及びFCG、電源FCVDDのタイミングチャートが示されている。該処理は、例えば、画素アレイ部11の単位画素行ごと、又は、複数の単位画素行ごとに、露光処理が行われてから所定の時間後に所定の走査順で行われる。
次に、時刻T3において、第1のFD部211の電位に基づく画素信号SP1Hが、増幅トランジスタ205及び選択トランジスタ206を介して、垂直信号線19に出力される。この画素信号SP1Hは、露光期間中に第1の光電変換部111aで生成され、第1のFD部211に蓄積された電荷に基づく、時刻T3で読み出されたP相の画素信号SP1Hに対するD相の画素信号である。
次に、時刻T4において、第1のFD部211と第2のFD部212との結合による電位に基づく画素信号SP1Lが、増幅トランジスタ205及び選択トランジスタ206を介して、垂直信号線19に出力される。この画素信号SP1Lは、時刻T1で出力されたP相の画素信号SP1Lに対するD相の画素信号である。
次に、駆動信号RSTが高電位レベルになり、リセットトランジスタ202が導通状態になる。これにより、第1のFD部211と第2のFD部212とが結合した領域の電位が、電源電圧VDDのレベルにリセットされる。
次に、駆動信号SELが高電位レベルになり、選択トランジスタ206が導通状態になる。
次に、駆動信号RSTが高電位レベルになり、リセットトランジスタ202が導通状態になる。これにより、第1のFD部211、第2のFD部212、及び電荷蓄積部204が結合した領域の電位が、電源電圧VDDのレベルにリセットされる。
次に、駆動信号SELが高電位レベルになり、選択トランジスタ206が導通状態になる。
次に、時刻T3において、第1のFD部211の電位に基づく画素信号SP1Hが、増幅トランジスタ205及び選択トランジスタ206を介して、垂直信号線19に出力される。この画素信号SP1Hは、露光期間中に第1の光電変換部111aで生成され、第1のFD部211に蓄積された電荷に基づく、時刻T2で読み出されたP相の画素信号SPH1に対するD相の画素信号である。
次に、時刻T4において、第1のFD部211と第2のFD部212との結合による電位に基づく画素信号SP1Lが、増幅トランジスタ205及び選択トランジスタ206を介して、垂直信号線19に出力される。この画素信号SP1Lは、時刻T1で出力されたP相の画素信号SP1Lに対するD相の画素信号である。
次に、駆動信号RSTが高電位レベルになり、リセットトランジスタ202が導通状態になる。これにより、第1のFD部211と第2のFD部212とが結合した領域の電位が、電源電圧VDDのレベルにリセットされる。
次に、駆動信号SELが高電位レベルになり、選択トランジスタ206が導通状態になる。
次に、駆動信号RSTが高電位レベルになり、リセットトランジスタ202が導通状態になる。これにより、第1のFD部211、第2のFD部212、及び電荷蓄積部204が結合した領域の電位が、電源電圧VDDのレベルにリセットされる。
次に、駆動信号SELが高電位レベルになり、選択トランジスタ206が導通状態になる。
次に、時刻T2において、第1のFD部211と第2のFD部212との結合による電位に基づく画素信号SP1Hが、増幅トランジスタ205及び選択トランジスタ206を介して、垂直信号線19に出力される。この画素信号SP1Hは、時刻T1で出力されたP相の画素信号SP1Lに対するD相の画素信号である。
次に、駆動信号SELが低電位レベルになり、選択トランジスタ206が非導通状態になる。
次に、駆動信号SELが高電位レベルになり、選択トランジスタ206が導通状態になる。
次に、駆動信号RSTが高電位レベルになり、リセットトランジスタ202が導通状態になる。これにより、第1のFD部211と第2のFD部212とが結合した領域の電位が、電源電圧VDDのレベルにリセットされる。
次に、駆動信号SELが高電位レベルになり、選択トランジスタ206が導通状態になる。
次に、駆動信号RSTが高電位レベルになり、リセットトランジスタ202が導通状態になる。これにより、第1のFD部211、第2のFD部212、及び電荷蓄積部204が結合した領域の電位が、電源電圧VDDのレベルにリセットされる。
次に、駆動信号SELが高電位レベルになり、選択トランジスタ206が導通状態になる。
以上のように第1の実施形態によれば、平面視において、光電変換層41に形成される第1のFD部211と、第2のFD部212とを繋いで1つの共通拡散領域312を活性領域301に形成することで、第1のFD部211と、第2のFD部212とを配線層42を介して結合するレイアウトに対して、共通拡散領域312の面積を小さくすることができ、FD暗電流を低減することが可能である。また、レイアウト上で拡散領域の数を減らすことができるので、単位画素110のサイズ縮小に有利である。
また、第1の実施形態によれば、共通拡散領域312に繋がる容量として、ポリシリコン容量204aを用いることで、容量値のバイアス依存性を小さくできる。
図8は、本開示の第1の実施形態の第1の変形例に係る光検出装置1Aの画素ユニットPUの構成例を示す回路図である。図8において、上記図2と同一部分には同一符号を付して詳細な説明を省略する。
第1の変形例では、電荷蓄積部204は、MIM(Metal Insulator Metal)容量204bからなる。
第1の変形例では、配線層42の金属配線パターンを利用してMIM容量204bを形成するため、活性領域302は不要となる。
MIM容量204bは、配線層42の金属配線パターンと同一の材料により形成される。
以上のように第1の実施形態の第1の変形例によれば、上記第1の実施形態と同様の作用効果が得られる。
図11は、本開示の第1の実施形態の第2の変形例に係る光検出装置1Bの画素ユニットPUの構成例を示す回路図である。図11において、上記図2と同一部分には同一符号を付して詳細な説明を省略する。
第2の変形例では、電荷蓄積部204は、配線容量204cからなる。
第2の変形例では、配線層42の金属配線パターンを利用して配線容量204cを形成するため、活性領域302は不要となる。
配線容量204cは、配線層42の金属配線パターンと同一の材料により形成される。
以上のように第1の実施形態の第2の変形例によれば、上記第1の実施形態と同様の作用効果が得られる。
図14は、本開示の第2の実施形態に係る光検出装置1Cの画素ユニットPUの構成例を示す回路図である。図14において、上記図2と同一部分には同一符号を付して詳細な説明を省略する。
本開示の第2の実施形態では、第2の光電変換部112aを含む小画素112を削除した点が上記第1の実施形態と異なる点である。
単位画素110の略中央部には第1の光電変換部111aが形成されている。本例では、第1の光電変換部111aは、四角形状に形成されている。第1の光電変換部111aの略中央部には、転送トランジスタ111bのゲート電極11b1が活性領域301上に形成される。
単位画素110の半導体構造40は、概略的には、例えば、半導体層としての光電変換層41と、配線層42と、カラーフィルタ43と、オンチップレンズ44とを含み構成される。
図17は、本開示の第2の実施形態に係る光検出装置1Cの読み出し回路20の4AD駆動動作の一例を説明するためのタイミングチャートであり、具体的には、単位画素110からの画素信号の読み出し処理の一例を示すタイミングチャートである。同図では、単位画素110に対する駆動信号SEL、RST、FDG、TGL、及びFCG、電源FCVDDのタイミングチャートが示されている。該処理は、例えば、画素アレイ部11の単位画素行ごと、又は、複数の単位画素行ごとに、露光処理が行われてから所定の時間後に所定の走査順で行われる。
次に、時刻T3において、第1のFD部211の電位に基づく画素信号SP1Hが、増幅トランジスタ205及び選択トランジスタ206を介して、垂直信号線19に出力される。この画素信号SP1Hは、露光期間中に第1の光電変換部111aで生成され、第1のFD部211に蓄積された電荷に基づく、時刻T2で読み出されたP相の画素信号SP1Hに対するD相の画素信号である。
次に、時刻T4において、第1のFD部211と第2のFD部212との結合による電位に基づく画素信号SP1Lが、増幅トランジスタ205及び選択トランジスタ206を介して、垂直信号線19に出力される。この画素信号SP1Lは、時刻T1で出力されたP相の画素信号SP1Lに対するD相の画素信号である。
次に、駆動信号FCGが高電位レベルになり、第2の切替トランジスタ203が導通状態になる。これにより、第1のFD部211の電位と、第2のFD部212の電位と、電荷蓄積部204の電位とが結合する。
次に、駆動信号RSTが高電位レベルになり、リセットトランジスタ202が導通状態になる。これにより、第1のFD部211と第2のFD部212とが結合した領域の電位が、電源電圧VDDのレベルにリセットされる。
次に、駆動信号SELが高電位レベルになり、選択トランジスタ206が導通状態になる。
次に、駆動信号FCGが低電位レベルになり、第2の切替トランジスタ203が非導通状態になる。これにより、第1のFD部211および第2のFD部212と電荷蓄積部204の電位の結合が解消される。
続いて、時刻T8において、第1のFD部211と第2のFD部212との結合による電位に基づく画素信号SP1ECが、増幅トランジスタ205及び選択トランジスタ206を介して、垂直信号線19に出力される。この画素信号SP1ECは、時刻T5で出力されたD相の画素信号SP1ECに対するP相の画素信号である。
以上のように第2の実施形態によれば、上記第1の実施形態と同様に、光電変換層41に形成される第1のFD部211と、第2のFD部212とを繋いで1つの共通拡散領域312を活性領域301に形成することで、第1のFD部211と、第2のFD部212とを配線層42を介して結合するレイアウトに対して、共通拡散領域312の面積を小さくすることができ、FD暗電流を低減することが可能である。
図18は、本開示の第2の実施形態の第1の変形例に係る光検出装置1Dの画素ユニットPUの構成例を示す回路図である。図18において、上記図14と同一部分には同一符号を付して詳細な説明を省略する。
第1の変形例では、電荷蓄積部204は、MIM(Metal Insulator Metal)容量204bからなる。
第1の変形例では、配線層42の金属配線パターンを利用してMIM容量204bを形成するため、活性領域302は不要となる。
MIM容量204bは、配線層42の金属配線パターンと同一の材料により形成される。
以上のように第2の実施形態の第1の変形例によれば、上記第2の実施形態と同様の作用効果が得られる。
図21は、本開示の第2の実施形態の第2の変形例に係る光検出装置1Bの画素ユニットPUの構成例を示す回路図である。図11において、上記図14と同一部分には同一符号を付して詳細な説明を省略する。
第2の変形例では、電荷蓄積部204は、配線容量204cからなる。
図22は、本開示の第2の実施形態の第2の変形例に係る光検出装置1Eの画素アレイ部11における単位画素110Eを構成する各素子の平面レイアウトの一例を説明するための図である。図22において、上記図15と同一部分には同一符号を付して詳細な説明を省略する。
また、図23は、図22に示した単位画素110EのA-A’断面における概略断面の半導体構造の一例を示す部分縦断面図である。図23において、上記図16と同一部分には同一符号を付して詳細な説明を省略する。
配線容量204cは、配線層42の金属配線パターンと同一の材料により形成される。
以上のように第2の実施形態の第2の変形例によれば、上記第2の実施形態と同様の作用効果が得られる。
図24は、本開示の第3の実施形態に係る光検出装置1Fの単位画素110Fの半導体構造の一例を示す部分縦断面図である。
単位画素110Fの半導体構造50は、概略的には、例えば、半導体層としての光電変換層51と、カラーフィルタ52と、オンチップレンズ53とを含み構成される。このような半導体構造50は、例えば、光電変換層51を含むシリコン基板により構成され得る。
図25は、第3の実施形態の比較例として、オンチップレンズ900の断面構造を示す部分縦断面図である。
第3の実施形態の比較例では、大画素111の感度を上げるために、大画素111に厚いオンチップレンズ901を設けている。そして、小画素112に、オンチップレンズ901よりも薄いオンチップレンズ902を設けている。
さらに、大画素111のオンチップレンズ901が厚いとPKG構造起因の高角度入射の光に対して、大画素111から小画素112への光学混色が大きくなり、小画素112のフレア耐性が低下する。
そこで、本開示の第3の実施形態では、大画素111のオンチップレンズ531のレンズ厚を下げて、小画素112のオンチップレンズ532のアスペクト比以下のアスペクト比になるようなサイズにする。つまり、オンチップレンズ531の径方向(図24中矢印XまたはYで示す方向)と、径方向と直交する方向(図24中矢印Zで示す方向)とのアスペクト比が、オンチップレンズ532のアスペクト比よりも小さくする。これにより、第2の光電変換部112aの分光、斜入射特性が第1の光電変換部111aの分光、斜入射特性に近づき、差異が小さくなる。また、斜入射光のオンチップレンズ531からの光学混色が低下し、第2の光電変換部112aのフレア耐性が向上する。
図26は、第3の実施形態の比較例におけるオンチップレンズ900の製造方法の工程手順を示す断面図である。
図27は、本開示の第3の実施形態におけるオンチップレンズ53の製造方法の工程手順を示す断面図である。
先ず、レンズ材533を塗布し(図27(a))、KrFプロセスによりレンズ材533に大画素111用のオンチップレンズ531と小画素112用のオンチップレンズ532とを一括リソ形成し(図27(b))、ドライ加工によりレンズ材533を削る(図27(c))。これにより、大画素111用のオンチップレンズ531と小画素112用のオンチップレンズ532とがずれることがなくなる。
以上のように第3の実施形態によれば、大画素111用のオンチップレンズ531のレンズ厚を下げて、小画素112用のオンチップレンズ532のアスペクト比よりも小さくすることにより、小画素112の第2の光電変換部112aの分光、斜入射特性が大画素111の第1の光電変換部111aの分光、斜入射特性に近づき、差異が小さくなる。また、斜入射光の大画素111のオンチップレンズ531からの光学混色が低下し、第2の光電変換部112aのフレア耐性が向上する。
図28は、本開示の第4の実施形態に係る光検出装置1Gの単位画素110Gの半導体構造の一例を示す部分縦断面図である。図28において、上記図24と同一部分には同一符号を付して詳細な説明を省略する。
以上のように第4の実施形態によれば、上記第3の実施形態と同様の作用効果が得られるとともに、大画素111と小画素112との間に非貫通の画素間分離部61を設けることにより、小画素112において、大画素111に入射した光が小画素112へ入り込むことを防止でき、第2の光電変換部112aのフレア耐性が向上する。
図29は、本開示の第5の実施形態に係る光検出装置1Hの単位画素110Hの半導体構造の一例を示す部分縦断面図である。図29において、上記図24と同一部分には同一符号を付して詳細な説明を省略する。
単位画素110Hの半導体構造50において、光電変換層51には、各大画素111、小画素112を分離する画素間分離部71が形成され得る。画素間分離部71は、光電変換層51を貫通した掘り込み構造からなる。つまり、光電変換層51の光入射面(裏面)からおもて面まで掘り込まれる。画素間分離部71は、大画素111に入射した光が隣接する小画素112へ入り込むことを防止し、また小画素112に入射した光が隣接する大画素111へ入り込むことを防止する。
以上のように第5の実施形態によれば、上記第4の実施形態と同様の作用効果が得られる。
図30は、本開示の第6の実施形態に係る光検出装置1Iの単位画素110Iの半導体構造の一例を示す部分縦断面図である。図30において、上記図28と同一部分には同一符号を付して詳細な説明を省略する。
単位画素110Iの半導体構造50において、カラーフィルタ52は、大画素111用のカラーフィルタ521と、小画素112用のカラーフィルタ522とを交互に配列して構成される。大画素111用のカラーフィルタ521と、小画素112用のカラーフィルタ522との間には、低屈折壁部81が設けられる。低屈折壁部81は、大画素111用のカラーフィルタ521、及び小画素112用のカラーフィルタ522よりも低い屈折率を有する。
以上のように第6の実施形態によれば、大画素111用のカラーフィルタ521と、小画素112用のカラーフィルタ522との間に設けられる低屈折壁部81により、斜入射光の大画素111用のオンチップレンズ531からの光を屈折させずに反射させることができるので、小画素112の第2の光電変換部112aのフレア耐性が向上する。
図31は、本開示の第7の実施形態に係る光検出装置1Jの単位画素110Jの半導体構造の一例を示す部分縦断面図である。図31において、上記図28と同一部分には同一符号を付して詳細な説明を省略する。
単位画素110Jの半導体構造50において、光電変換層51の光入射面(裏面)に、モスアイ構造の反射防止部(RIG)91を形成する。反射防止部91は、第1の光電変換部111a及び第2の光電変換部112aに入射される光の反射を防止する。
以上のように第7の実施形態によれば、モスアイ構造の反射防止部91により、入射された光の反射を防止でき、これにより大画素111に入射した光が小画素112へ入り込むことを防止でき、小画素112の第2の光電変換部112aのフレア耐性が向上する。
上記のように、本技術は第1から第7の実施形態、第1の実施形態の第1の変形例及び第2の変形例、第2の実施形態の第1の変形例及び第2の変形例によって記載したが、この開示の一部をなす論述及び図面は本技術を限定するものであると理解すべきではない。上記の第1から第7の実施形態が開示する技術内容の趣旨を理解すれば、当業者には様々な代替実施形態、実施例及び運用技術が本技術に含まれ得ることが明らかとなろう。また、第1から第7の実施形態、第1の実施形態の第1の変形例及び第2の変形例、第2の実施形態の第1の変形例及び第2の変形例がそれぞれ開示する構成を、矛盾の生じない範囲で適宜組み合わせることができる。例えば、複数の異なる実施形態がそれぞれ開示する構成を組み合わせてもよく、同一の実施形態の複数の異なる変形例がそれぞれ開示する構成を組み合わせてもよい。
上述した光検出装置は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの撮像装置、撮像機能を備えた携帯電話機、または、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。
図32は、本技術を適用した電子機器としての撮像装置の構成例を示すブロック図である。
シャッタ装置2203は、光学系2202および固体撮像素子2204の間に配置され、制御回路2205の制御に従って、固体撮像素子2204への光照射期間および遮光期間を制御する。
このように構成されている撮像装置2201においても、上述した固体撮像素子2204に代えて、光検出装置1,1A,1B,1C,1D,1E,1F,1G,1H,1I,1Jを適用することが可能となる。
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図33に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
図34では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
(1)
第1の感度に従って受光した光を光電変換する第1の光電変換部と、前記第1の感度よりも低い第2の感度に従って受光した光を光電変換する第2の光電変換部と、を有する単位画素が行列状に複数配置された半導体層と、
前記半導体層の光入射面とは反対側の面に積層され、前記単位画素から出力された電荷に基づく画素信号を出力する読み出し回路を有する配線層と、を備え、
前記半導体層は、
平面視において、前記第1の光電変換部により光電変換された電荷を蓄積可能な第1の拡散領域と、前記第2の光電変換部により光電変換された電荷を蓄積可能な第2の拡散領域と、を繋いだ共通拡散領域を備え、
前記読み出し回路は、前記共通拡散領域から前記電荷に基づく画素信号を出力する、光検出装置。
(2)
前記読み出し回路は、画素トランジスタとして、
前記共通拡散領域の電位を所定の電位にリセットするリセットトランジスタと、
前記画素信号として、前記共通拡散領域に蓄積された電荷のレベルに応じた電圧の信号を生成する増幅トランジスタと、
前記増幅トランジスタからの前記画素信号の出力タイミングを制御する選択トランジスタと、
前記第1の光電変換部により生成された電荷を前記共通拡散領域に転送するための第1の切替トランジスタと、
前記第2の光電変換部により生成された電荷を前記共通拡散領域に転送するための第2の切替トランジスタと、を備え、
前記共通拡散領域は、平面視において、前記リセットトランジスタのソース領域と、前記第1の切替トランジスタのソース領域と、前記第2の切替トランジスタのソース領域との間に配置される、上記(1)に記載の光検出装置。
(3)
前記共通拡散領域に繋がる容量は、ポリシリコン容量である、上記(1)に記載の光検出装置。
(4)
前記共通拡散領域に繋がる容量は、MIM(Metal Insulator Metal)容量である、上記(1)に記載の光検出装置。
(5)
前記共通拡散領域に繋がる容量は、配線容量である、上記(1)に記載の光検出装置。(6)
前記共通拡散領域は、露光期間中に蓄積ノードとして機能する、上記(1)に記載の光検出装置。
(7)
前記共通拡散領域は、前記読み出し回路に含まれる画素トランジスタのゲート電極のサイドウォール形成後のイオンインプラ領域である、上記(1)に記載の光検出装置。
(8)
複数の前記単位画素のそれぞれは、
前記半導体層の光入射面側に設けられ、外部からの光を前記第1の光電変換部に集光する第1のオンチップレンズと、
前記半導体層の光入射面側に設けられ、外部からの光を前記第2の光電変換部に集光する第2のオンチップレンズと、を備え、
前記第1のオンチップレンズの径方向と前記径方向と直交する方向とのアスペクト比が、前記第2のオンチップレンズのアスペクト比よりも小さい、上記(1)に記載の光検出装置。
(9)
前記第2のオンチップレンズの直径は、前記半導体層と前記第2のオンチップレンズとの間に設けられるオプティカルブラック領域の開口幅よりも大きい、上記(8)に記載の光検出装置。
(10)
前記単位画素は、前記第1の光電変換部を有する第1の画素と、前記第2の光電変換部を有する第2の画素と、を備え、
前記第1の画素と前記第2の画素との間の分離構造として、前記半導体層を非貫通の掘り込み構造を備える、上記(8)に記載の光検出装置。
(11)
前記単位画素は、前記第1の光電変換部を有する第1の画素と、前記第2の光電変換部
を有する第2の画素と、を備え、
前記第1の画素と前記第2の画素との間の分離構造として、前記半導体層を貫通の掘り込み構造を備える、上記(8)に記載の光検出装置。
(12)
前記半導体層の光入射面と、前記第1のオンチップレンズとの間に設けられる第1のカラーフィルタと、
前記半導体層の光入射面と、前記第2のオンチップレンズとの間に設けられ、前記第1のカラーフィルタとは異なる光の波長に対応する第2のカラーフィルタと、を備え、
前記第1のカラーフィルタと前記第2のカラーフィルタとの間に、前記第1のカラーフィルタ及び前記第2のカラーフィルタより低い屈折率を有する壁部を備える、上記(8)に記載の光検出装置。
(13)
さらに、前記半導体層の光入射面に、入射された光の反射を防止する、モスアイ構造の反射防止部を備える、上記(8)に記載の光検出装置。
(14)
受光した光を光電変換する光電変換部を有する画素が行列状に複数配置された半導体層と、
前記半導体層の光入射面とは反対側の面に積層され、前記画素から出力された電荷に基づく画素信号を出力する読み出し回路を有する配線層と、を備え、
前記半導体層は、
前記光電変換部により光電変換された電荷を蓄積可能な拡散領域を備え、
前記読み出し回路は、
3つ以上の画素トランジスタを備え、3つ以上の画素トランジスタが同一のソース領域を共有し、
前記拡散領域は、3つ以上の画素トランジスタで共有されるソース領域に配置される、光検出装置。
(15)
前記読み出し回路は、画素トランジスタとして、
前記拡散領域の電位を所定の電位にリセットするリセットトランジスタと、
前記画素信号として、前記拡散領域に蓄積された電荷のレベルに応じた電圧の信号を生成する増幅トランジスタと、
前記増幅トランジスタからの前記画素信号の出力タイミングを制御する選択トランジスタと、
前記光電変換部により生成された電荷を前記拡散領域に転送するための切替トランジスタと、を備え、
前記拡散領域は、平面視において、前記リセットトランジスタのソース領域と、前記切替トランジスタのソース領域と、他の画素トランジスタのソース領域との間に配置される、上記(14)に記載の光検出装置。
(16)
前記拡散領域に繋がる容量は、ポリシリコン容量である、上記(14)に記載の光検出装置。
(17)
前記拡散領域に繋がる容量は、MIM(Metal Insulator Metal)容量である、上記(14)に記載の光検出装置。
(18)
前記拡散領域に繋がる容量は、配線容量である、上記(14)に記載の光検出装置。
(19)
前記拡散領域は、露光期間中に蓄積ノードとして機能する、上記(14)に記載の光検出装置。
(20)
前記拡散領域は、前記読み出し回路に含まれる画素トランジスタのゲート電極のサイドウォール形成後のイオンインプラ領域である、上記(14)に記載の光検出装置。
(21)
第1の感度に従って受光した光を光電変換する第1の光電変換部と、前記第1の感度よりも低い第2の感度に従って受光した光を光電変換する第2の光電変換部と、を有する単位画素が行列状に複数配置された半導体層と、
前記半導体層の光入射面とは反対側の面に積層され、前記単位画素から出力された電荷に基づく画素信号を出力する読み出し回路を有する配線層と、を備え、
前記半導体層は、
平面視において、前記第1の光電変換部により光電変換された電荷を蓄積可能な第1の拡散領域と、前記第2の光電変換部により光電変換された電荷を蓄積可能な第2の拡散領域と、を繋いだ共通拡散領域を備え、
前記読み出し回路は、前記共通拡散領域から前記電荷に基づく画素信号を出力する、光検出装置を備えた、
電子機器。
(22)
受光した光を光電変換する光電変換部を有する画素が行列状に複数配置された半導体層と、
前記半導体層の光入射面とは反対側の面に積層され、前記画素から出力された電荷に基づく画素信号を出力する読み出し回路を有する配線層と、を備え、
前記半導体層は、
前記光電変換部により光電変換された電荷を蓄積可能な拡散領域を備え、
前記読み出し回路は、
3つ以上の画素トランジスタを備え、3つ以上の画素トランジスタが同一のソース領域を共有し、
前記拡散領域は、3つ以上の画素トランジスタで共有されるソース領域に配置される、光検出装置を備えた、
電子機器。
11 画素アレイ部
11b1 ゲート電極
12 垂直駆動部
13 カラム処理部
14 水平駆動部
15 システム制御部
16 信号処理部
17 データ格納部
18 画素駆動線
19 垂直信号線
20 読み出し回路
40,50 半導体構造
41,51 光電変換層
42 配線層
43,52 カラーフィルタ
44,53 オンチップレンズ
45 画素間分離部
46 コンタクト
54 オプティカルブラック領域
55,61,71 画素間分離部
81 低屈折壁部
91 反射防止部
110,110A,110B,110C,110D,110E,110F,110G,110H,110I,110J 単位画素
111 大画素
111a 第1の光電変換部
111b 転送トランジスタ
111b1 ゲート電極
112 小画素
112a 第2の光電変換部
201 第1の切替トランジスタ
201a ゲート電極
202 リセットトランジスタ
202a ゲート電極
203 第2の切替トランジスタ
203a ゲート電極
204 電荷蓄積部
204a ポリシリコン容量
204b MIM容量
204c 配線容量
205 増幅トランジスタ
205a ゲート電極
206 選択トランジスタ
206a ゲート電極
211 第1のFD部
212 第2のFD部
301,302,303 活性領域
311 サイドウォール
312 共通拡散領域
521,522 カラーフィルタ
531,532,900,901,902 オンチップレンズ
533 レンズ材
541 開口幅
910 レンズ材
2201 撮像装置
2202 光学系
2203 シャッタ装置
2204 固体撮像素子
2205 制御回路
2206 信号処理回路
2207 モニタ
2208 メモリ
12000 車両制御システム
12001 通信ネットワーク
12010 駆動系制御ユニット
12020 ボディ系制御ユニット
12030 車外情報検出ユニット
12031 撮像部
12040 車内情報検出ユニット
12041 運転者状態検出部
12050 統合制御ユニット
12051 マイクロコンピュータ
12052 音声画像出力部
12061 オーディオスピーカ
12062 表示部
12063 インストルメントパネル
12100 車両
12101~12105 撮像部
12111~12114 撮像範囲
Claims (22)
- 第1の感度に従って受光した光を光電変換する第1の光電変換部と、前記第1の感度よりも低い第2の感度に従って受光した光を光電変換する第2の光電変換部と、を有する単位画素が行列状に複数配置された半導体層と、
前記半導体層の光入射面とは反対側の面に積層され、前記単位画素から出力された電荷に基づく画素信号を出力する読み出し回路を有する配線層と、を備え、
前記半導体層は、
平面視において、前記第1の光電変換部により光電変換された電荷を蓄積可能な第1の拡散領域と、前記第2の光電変換部により光電変換された電荷を蓄積可能な第2の拡散領域と、を繋いだ共通拡散領域を備え、
前記読み出し回路は、前記共通拡散領域から前記電荷に基づく画素信号を出力する、光検出装置。 - 前記読み出し回路は、画素トランジスタとして、
前記共通拡散領域の電位を所定の電位にリセットするリセットトランジスタと、
前記画素信号として、前記共通拡散領域に蓄積された電荷のレベルに応じた電圧の信号を生成する増幅トランジスタと、
前記増幅トランジスタからの前記画素信号の出力タイミングを制御する選択トランジスタと、
前記第1の光電変換部により生成された電荷を前記共通拡散領域に転送するための第1の切替トランジスタと、
前記第2の光電変換部により生成された電荷を前記共通拡散領域に転送するための第2の切替トランジスタと、を備え、
前記共通拡散領域は、平面視において、前記リセットトランジスタのソース領域と、前記第1の切替トランジスタのソース領域と、前記第2の切替トランジスタのソース領域との間に配置される、請求項1に記載の光検出装置。 - 前記共通拡散領域に繋がる容量は、ポリシリコン容量である、請求項1に記載の光検出装置。
- 前記共通拡散領域に繋がる容量は、MIM(Metal Insulator Metal)容量である、請求項1に記載の光検出装置。
- 前記共通拡散領域に繋がる容量は、配線容量である、請求項1に記載の光検出装置。
- 前記共通拡散領域は、露光期間中に蓄積ノードとして機能する、請求項1に記載の光検出装置。
- 前記共通拡散領域は、前記読み出し回路に含まれる画素トランジスタのゲート電極のサイドウォール形成後のイオンインプラ領域である、請求項1に記載の光検出装置。
- 複数の前記単位画素のそれぞれは、
前記半導体層の光入射面側に設けられ、外部からの光を前記第1の光電変換部に集光する第1のオンチップレンズと、
前記半導体層の光入射面側に設けられ、外部からの光を前記第2の光電変換部に集光する第2のオンチップレンズと、を備え、
前記第1のオンチップレンズの径方向と前記径方向と直交する方向とのアスペクト比が、前記第2のオンチップレンズのアスペクト比よりも小さい、請求項1に記載の光検出装置。 - 前記第2のオンチップレンズの直径は、前記半導体層と前記第2のオンチップレンズとの間に設けられるオプティカルブラック領域の開口幅よりも大きい、請求項8に記載の光検出装置。
- 前記単位画素は、前記第1の光電変換部を有する第1の画素と、前記第2の光電変換部を有する第2の画素と、を備え、
前記第1の画素と前記第2の画素との間の分離構造として、前記半導体層を非貫通の掘り込み構造を備える、請求項8に記載の光検出装置。 - 前記単位画素は、前記第1の光電変換部を有する第1の画素と、前記第2の光電変換部を有する第2の画素と、を備え、
前記第1の画素と前記第2の画素との間の分離構造として、前記半導体層を貫通の掘り込み構造を備える、請求項8に記載の光検出装置。 - 前記半導体層の光入射面と、前記第1のオンチップレンズとの間に設けられる第1のカラーフィルタと、
前記半導体層の光入射面と、前記第2のオンチップレンズとの間に設けられ、前記第1のカラーフィルタとは異なる光の波長に対応する第2のカラーフィルタと、を備え、
前記第1のカラーフィルタと前記第2のカラーフィルタとの間に、前記第1のカラーフィルタ及び前記第2のカラーフィルタより低い屈折率を有する壁部を備える、請求項8に記載の光検出装置。 - さらに、前記半導体層の光入射面に、入射された光の反射を防止する、モスアイ構造の反射防止部を備える、請求項8に記載の光検出装置。
- 受光した光を光電変換する光電変換部を有する画素が行列状に複数配置された半導体層と、
前記半導体層の光入射面とは反対側の面に積層され、前記画素から出力された電荷に基づく画素信号を出力する読み出し回路を有する配線層と、を備え、
前記半導体層は、
前記光電変換部により光電変換された電荷を蓄積可能な拡散領域を備え、
前記読み出し回路は、
3つ以上の画素トランジスタを備え、3つ以上の画素トランジスタが同一のソース領域を共有し、
前記拡散領域は、3つ以上の画素トランジスタで共有されるソース領域に配置される、光検出装置。 - 前記読み出し回路は、画素トランジスタとして、
前記拡散領域の電位を所定の電位にリセットするリセットトランジスタと、
前記画素信号として、前記拡散領域に蓄積された電荷のレベルに応じた電圧の信号を生成する増幅トランジスタと、
前記増幅トランジスタからの前記画素信号の出力タイミングを制御する選択トランジスタと、
前記光電変換部により生成された電荷を前記拡散領域に転送するための切替トランジスタと、を備え、
前記拡散領域は、平面視において、前記リセットトランジスタのソース領域と、前記切替トランジスタのソース領域と、他の画素トランジスタのソース領域との間に配置される、請求項14に記載の光検出装置。 - 前記拡散領域に繋がる容量は、ポリシリコン容量である、請求項14に記載の光検出装置。
- 前記拡散領域に繋がる容量は、MIM(Metal Insulator Metal)容量である、請求項14に記載の光検出装置。
- 前記拡散領域に繋がる容量は、配線容量である、請求項14に記載の光検出装置。
- 前記拡散領域は、露光期間中に蓄積ノードとして機能する、請求項14に記載の光検出装置。
- 前記拡散領域は、前記読み出し回路に含まれる画素トランジスタのゲート電極のサイドウォール形成後のイオンインプラ領域である、請求項14に記載の光検出装置。
- 第1の感度に従って受光した光を光電変換する第1の光電変換部と、前記第1の感度よりも低い第2の感度に従って受光した光を光電変換する第2の光電変換部と、を有する単位画素が行列状に複数配置された半導体層と、
前記半導体層の光入射面とは反対側の面に積層され、前記単位画素から出力された電荷に基づく画素信号を出力する読み出し回路を有する配線層と、を備え、
前記半導体層は、
平面視において、前記第1の光電変換部により光電変換された電荷を蓄積可能な第1の拡散領域と、前記第2の光電変換部により光電変換された電荷を蓄積可能な第2の拡散領域と、を繋いだ共通拡散領域を備え、
前記読み出し回路は、前記共通拡散領域から前記電荷に基づく画素信号を出力する、光検出装置を備えた、
電子機器。 - 受光した光を光電変換する光電変換部を有する画素が行列状に複数配置された半導体層と、
前記半導体層の光入射面とは反対側の面に積層され、前記画素から出力された電荷に基づく画素信号を出力する読み出し回路を有する配線層と、を備え、
前記半導体層は、
前記光電変換部により光電変換された電荷を蓄積可能な拡散領域を備え、
前記読み出し回路は、
3つ以上の画素トランジスタを備え、3つ以上の画素トランジスタが同一のソース領域を共有し、
前記拡散領域は、3つ以上の画素トランジスタで共有されるソース領域に配置される、光検出装置を備えた、
電子機器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024509814A JPWO2023181657A1 (ja) | 2022-03-25 | 2023-02-03 | |
CN202380022402.9A CN118715617A (zh) | 2022-03-25 | 2023-02-03 | 光检测装置和电子设备 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-049930 | 2022-03-25 | ||
JP2022049930 | 2022-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023181657A1 true WO2023181657A1 (ja) | 2023-09-28 |
Family
ID=88101069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/003501 WO2023181657A1 (ja) | 2022-03-25 | 2023-02-03 | 光検出装置及び電子機器 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2023181657A1 (ja) |
CN (1) | CN118715617A (ja) |
WO (1) | WO2023181657A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008108916A (ja) * | 2006-10-25 | 2008-05-08 | Sony Corp | 固体撮像装置及び電子機器 |
WO2013176007A1 (ja) * | 2012-05-25 | 2013-11-28 | ソニー株式会社 | 撮像素子、駆動方法、および電子装置 |
WO2017138370A1 (ja) * | 2016-02-09 | 2017-08-17 | ソニー株式会社 | 固体撮像素子およびその製造方法、並びに電子機器 |
WO2017169754A1 (ja) * | 2016-03-29 | 2017-10-05 | ソニー株式会社 | 固体撮像装置、及び電子機器 |
JP2019134413A (ja) * | 2018-01-30 | 2019-08-08 | パナソニックIpマネジメント株式会社 | 撮像装置 |
WO2020045363A1 (ja) * | 2018-08-28 | 2020-03-05 | パナソニックIpマネジメント株式会社 | フォトセンサ、イメージセンサ及びフォトセンサの駆動方法 |
WO2020175195A1 (ja) * | 2019-02-25 | 2020-09-03 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像装置および電子機器 |
WO2022038908A1 (ja) * | 2020-08-19 | 2022-02-24 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像素子及び電子機器 |
-
2023
- 2023-02-03 WO PCT/JP2023/003501 patent/WO2023181657A1/ja active Application Filing
- 2023-02-03 JP JP2024509814A patent/JPWO2023181657A1/ja active Pending
- 2023-02-03 CN CN202380022402.9A patent/CN118715617A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008108916A (ja) * | 2006-10-25 | 2008-05-08 | Sony Corp | 固体撮像装置及び電子機器 |
WO2013176007A1 (ja) * | 2012-05-25 | 2013-11-28 | ソニー株式会社 | 撮像素子、駆動方法、および電子装置 |
WO2017138370A1 (ja) * | 2016-02-09 | 2017-08-17 | ソニー株式会社 | 固体撮像素子およびその製造方法、並びに電子機器 |
WO2017169754A1 (ja) * | 2016-03-29 | 2017-10-05 | ソニー株式会社 | 固体撮像装置、及び電子機器 |
JP2019134413A (ja) * | 2018-01-30 | 2019-08-08 | パナソニックIpマネジメント株式会社 | 撮像装置 |
WO2020045363A1 (ja) * | 2018-08-28 | 2020-03-05 | パナソニックIpマネジメント株式会社 | フォトセンサ、イメージセンサ及びフォトセンサの駆動方法 |
WO2020175195A1 (ja) * | 2019-02-25 | 2020-09-03 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像装置および電子機器 |
WO2022038908A1 (ja) * | 2020-08-19 | 2022-02-24 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像素子及び電子機器 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023181657A1 (ja) | 2023-09-28 |
CN118715617A (zh) | 2024-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7566886B2 (ja) | センサ及び電子装置 | |
EP4026169B1 (en) | Solid-state imaging device and imaging device with shared circuit elements | |
US11758300B2 (en) | Solid-state imaging device and imaging device with combined dynamic vision sensor and imaging functions | |
US12272711B2 (en) | Solid-state imaging device and imaging device | |
WO2023013554A1 (ja) | 光検出器及び電子機器 | |
JP7531272B2 (ja) | 撮像装置 | |
WO2023181657A1 (ja) | 光検出装置及び電子機器 | |
WO2020149181A1 (ja) | 撮像装置 | |
JP7654571B2 (ja) | 固体撮像装置およびその製造方法 | |
WO2023233873A1 (ja) | 光検出装置及び電子機器 | |
JP2024041483A (ja) | 光検出装置、光検出装置の製造方法、及び電子機器 | |
JP2023150251A (ja) | 光検出装置及び電子機器 | |
WO2023233872A1 (ja) | 光検出装置及び電子機器 | |
WO2023248388A1 (ja) | 光検出装置及び電子機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23774256 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024509814 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202380022402.9 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 23774256 Country of ref document: EP Kind code of ref document: A1 |