KR102618410B1 - 반도체 나노결정 입자 및 이를 포함하는 소자 - Google Patents

반도체 나노결정 입자 및 이를 포함하는 소자 Download PDF

Info

Publication number
KR102618410B1
KR102618410B1 KR1020180053707A KR20180053707A KR102618410B1 KR 102618410 B1 KR102618410 B1 KR 102618410B1 KR 1020180053707 A KR1020180053707 A KR 1020180053707A KR 20180053707 A KR20180053707 A KR 20180053707A KR 102618410 B1 KR102618410 B1 KR 102618410B1
Authority
KR
South Korea
Prior art keywords
semiconductor nanocrystal
less
nanocrystal particles
selenium
zinc
Prior art date
Application number
KR1020180053707A
Other languages
English (en)
Other versions
KR20180124765A (ko
Inventor
이정희
장은주
강현아
김태형
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of KR20180124765A publication Critical patent/KR20180124765A/ko
Application granted granted Critical
Publication of KR102618410B1 publication Critical patent/KR102618410B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/18Selenium or tellurium only, apart from doping materials or other impurities
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01034Selenium [Se]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01052Tellurium [Te]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/824Group II-VI nonoxide compounds, e.g. CdxMnyTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • Y10S977/892Liquid phase deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • Y10S977/95Electromagnetic energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Composite Materials (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

아연(Zn), 텔루리움(Te), 및 셀레늄(Se)을 포함하는 반도체 나노결정 입자, 그 제조 방법, 및 이를 포함하는 전자 소자에 대한 것이다. 상기 반도체 나노결정 입자에서, 상기 텔루리움의 함량은 상기 셀레늄의 함량보다 작고, 상기 입자는, 아연, 텔루리움, 및 셀레늄을 포함하는 제1 반도체 물질을 포함하는 코어 및 상기 코어의 적어도 일부 위에 배치되고 상기 제1 반도체 물질과 다른 조성을 가지는 제2 반도체 물질을 포함하는 쉘을 포함하고, 상기 반도체 나노결정 입자는, 470 nm 이하의 파장에서 최대 피크 발광 (maximum peak emission)을 포함하는 청색광을 방출한다.

Description

반도체 나노결정 입자 및 이를 포함하는 소자{SEMICONDUCTOR NANOCRYSTAL PARTICLES AND DEVICES INCLUDING THE SAME}
반도체 나노결정 입자 및 이를 포함하는 소자에 관한 것이다.
나노 입자는 벌크물질과 달리 물질의 고유 특성이라 알려져 있는 물리적 특성(에너지 밴드갭, 녹는점 등)을 입자 크기에 따라 조절할 수 있다. 예를 들어, 양자점(quantum dot)이라고도 불리우는 반도체 나노 결정 입자는 수 나노 크기의 결정성 재료이며, 크기가 매우 작기 때문에 단위 부피당 표면적이 넓고, 양자 구속(quantum confinement) 효과를 나타내므로 동일 조성의 벌크 물질의 특성과 다른 물성을 나타낼 수 있다. 양자점은 여기원(excitation source)으로부터 광을 흡수하여 에너지 여기 상태로 되고, 그의 에너지 밴드갭에 상응하는 에너지를 방출하게 된다.
양자점 합성 방법은, 금속 유기 화학 증착(MOCVD), 분자 빔 에피택시(MBE) 등의 기상 증착법 및 유기 용매에 전구체 물질을 넣어 결정을 성장시키는 화학적 습식법이 있다. 화학적 습식법에서는, 결정 성장 시 리간드/배위 용매 등의 유기 화합물이 나노결정 표면을 배위하여 결정 성장을 조절한다.
양자점의 발광 물성의 향상을 위해 코어쉘 구조가 제안되어 있으나 바람직한 물성을 가지는 코어쉘 양자점들의 대다수가 카드뮴 기반의 재료이다. 따라서, 소망하는 발광 물성을 나타낼 수 있는 무카드뮴의 반도체 나노결정 입자의 개발이 요구된다.
일 구현예는 향상된 효율로 청색광을 방출할 수 있는 무카드뮴 반도체 나노결정 입자에 관한 것이다.
다른 구현예는, 전술한 반도체 나노결정 입자의 제조 방법에 대한 것이다.
또 다른 구현예는 전술한 반도체 나노결정 입자를 포함하는 전자 소자에 대한 것이다.
일 구현예에서, 반도체 나노결정 입자는, 아연(Zn), 텔루리움(Te), 및 셀레늄(Se)을 포함하되.
상기 텔루리움의 함량은 상기 셀레늄의 함량보다 작고 (Te의 함량을 a라 하고, Se 함량을 b라 하였을 때, a < b),
상기 입자는, 아연, 텔루리움, 및 셀레늄을 포함하는 제1 반도체 물질을 포함하는 코어 및 상기 코어의 적어도 일부 위에 배치되고 상기 제1 반도체 물질과 다른 조성을 가지는 제2 반도체 물질을 포함하는 쉘을 포함하고,
상기 반도체 나노결정 입자는, 470 nm 이하의 파장에서 최대 피크 발광 (maximum peak emission)을 포함하는 청색광을 방출한다.
상기 반도체 나노결정 입자는, (예컨대, 유도 결합 플라즈마 원자 방출 분광분석 (ICP-AES)에 의해 측정하였을 때) 상기 셀레늄에 대한 상기 텔루리움의 몰 비가 0.05 미만일 수 있다.
상기 셀레늄에 대한 상기 텔루리움의 몰 비는 0.024 미만일 수 있다.
상기 반도체 나노결정 입자에서, 상기 아연의 함량은 상기 셀레늄의 함량보다 클 수 있다.
상기 반도체 나노결정 입자는, (예컨대, 유도 결합 플라즈마 원자 방출 분광분석에 의해 확인하였을 때) 상기 아연에 대한 상기 텔루리움 몰 비가 0.03 이하일 수 있다.
상기 반도체 나노결정 입자는, 상기 텔루리움의 함량이 그의 총 중량을 기준으로 1 중량% 이하일 수 있다.
상기 제1 반도체 물질은 ZnTexSe1-x (여기서, x는 0 보다 크고 0.05 이하임) 를 포함할 수 있다.
상기 코어의 크기는 2 nm 이상일 수 있다.
상기 코어의 크기는 6 nm 이하일 수 있다.
상기 제2 반도체 물질은, 아연, 셀레늄, 및 황을 포함할 수 있다.
상기 쉘은, 복수개의 층을 포함할 수 있고, 상기 복수개의 층들에서 인접하는 층들은 서로 다른 반도체 물질을 포함할 수 있다.
상기 쉘은, 상기 코어 바로 위에 배치되는 제1층 및 최외각층을 포함할 수 있고, 상기 제1층은 ZnSeS를 포함할 수 있으며, 상기 최외각층은 ZnS를 포함할 수 있다.
상기 반도체 나노결정 입자는 430 nm 내지 470 nm 의 파장에서 최대 피크 발광을 가지는 청색광을 방출할 수 있다.
상기 최대 피크 발광은 50 nm 이하의 반치폭을 가질 수 있다.
상기 반도체 나노결정은, 60% 이상의 양자 효율 (quantum efficiency)을 가질 수 있다.
상기 반도체 나노결정 입자는, 3 nm 이상의 크기를 가질 수 있다.
상기 반도체 나노결정 입자는, 50 nm 이하의 크기를 가질 수 있다.
상기 반도체 나노결정 입자는 카드뮴을 포함하지 않을 수 있다.
상기 반도체 나노결정 입자는 멀티 포드(multipod) 형상을 가질 수 있다.
다른 구현예에서, 상기 반도체 나노결정 입자의 제조 방법은
아연 전구체 및 유기 리간드를 포함하는 아연 전구체 용액을 준비하는 단계;
셀레늄 전구체 및 텔루리움 전구체를 준비하는 단계;
상기 아연 전구체 용액을 제1 반응 온도로 가열하고, 상기 셀레늄 전구체 및 상기 텔루리움 전구체를 선택에 따라 유기 리간드와 함께 부가하여 아연, 셀레늄, 및 텔루리움을 포함하는 제1 반도체 나노결정 코어를 형성하는 단계;
금속을 함유하는 제1 쉘 전구체 및 유기 리간드를 함유하는 제1 쉘 전구체 용액을 준비하는 단계;
비금속 원소를 함유하는 제2 쉘 전구체를 준비하는 단계; 및
상기 제1 쉘 전구체 용액을 제2 반응온도로 가열하고 상기 제1 반도체 나노결정 코어 및 상기 제2 쉘 전구체를 부가하여 상기 제1 반도체 나노결정 코어 상에 제2 반도체 나노결정의 쉘을 형성하는 단계를 포함할 수 있다.
상기 방법은, 상기 제1 반도체 나노결정 코어를 분리하고 유기 용매에 분산시켜 코어 용액을 준비하는 단계를 포함할 수 있다.
상기 아연 전구체는, Zn 금속 분말, 알킬화 Zn 화합물, Zn 알콕시드, Zn 카르복실레이트, Zn 니트레이트, Zn 퍼콜레이트, Zn 설페이트, Zn 아세틸아세토네이트, Zn 할로겐화물, Zn 시안화물, Zn 히드록시드, 또는 이들의 조합을 포함할 수 있다.
상기 셀레늄 전구체는, 셀렌-트리옥틸포스핀(Se-TOP), 셀렌-트리부틸포스핀(Se-TBP), 셀렌-트리페닐포스핀(Se-TPP), 셀렌-다이페닐포스핀(Se-DPP), 또는 이들의 조합을 포함할 수 있다.
상기 텔루리움 전구체는 텔루르-트리옥틸포스핀(Te-TOP), 텔루르-트리부틸포스핀(Te-TBP), 텔루르-트리페닐포스핀(Te-TPP), 또는 이들의 조합을 포함할 수 있다.
상기 셀레늄 전구체의 함량은 상기 텔루리움 전구체 1몰에 대하여 20몰 이상일 수 있다.
상기 셀레늄 전구체의 함량은 상기 텔루리움 전구체 1몰에 대하여 60몰 이하일 수 있다.
상기 제1 쉘 전구체는, 아연을 포함하고, 상기 제2 쉘 전구체는, 셀레늄, 황, 또는 이들의 조합을 포함할 수 있다.
상기 유기 리간드는, RCOOH, RNH2, R2NH, R3N, RSH, RH2PO, R2HPO, R3PO, RH2P, R2HP, R3P, ROH, RCOOR, RPO(OH)2, RHPOOH, R2POOH (여기서, R 은 동일하거나 상이하고각각 독립적으로 C1 내지 C24의 치환 또는 비치환의 지방족 탄화수소, 또는 C6 내지 C20의 치환 또는 비치환의 방향족 탄화수소, 또는 이들의 조합을 포함), 또는 이들의 조합을 포함할 수 있다.
다른 구현예에서, 전자 소자는 전술한 반도체 나노결정 입자를 포함한다.
상기 전자 소자는, 표시 장치, 발광 다이오드(LED), 퀀텀닷 발광다이오드 (QLED), 유기발광 다이오드(OLED), 센서(Sensor), 이미징 센서, 또는 태양전지 전자 소자일 수 있다.
청색광을 방출할 수 있는 무카드뮴 반도체 나노결정 입자를 제공할 수 있다. 제조된 반도체 나노결정 입자는, 다양한 디스플레이소자 및 생물학적 레이블링 (바이오센서, 바이오 이미징), 포토디텍터, 태양전지, 하이브리드 컴포지트 등에 응용될 수 있다.
도 1은, 비제한적인 일구현예에 따른 반도체 나노결정의 모식적 단면도이다.
도 2는 비제한적인 일구현예에 따른 QD LED 소자의 모식적 단면도를 나타낸 것이다.
도 3은 비제한적인 일구현예에 따른 QD LED 소자의 모식적 단면도를 나타낸 것이다.
도 4는 비제한적인 일구현예에 따른 QD LED 소자의 모식적 단면도를 나타낸 것이다.
도 5는 실시예에서 제조된 ZnTeSe 코어들의 UV-vis 흡수 스펙트럼을 나타낸 것이다.
도 6은, 실시예에서 제조된 ZnTeSe 코어들의 PL 스펙트럼을 나타낸 것이다.
도 7은, 실시예에서 제조된 ZnTeSe 코어들의 투과 전자 현미경(TEM) 이미지를 나타낸 것이다.
도 8은, 실시예에서 제조된 ZnTeSe 코어들의 HRTEM 이미지를 나타낸 것이다.
도 9는 실시예에서 제조된 ZnTeSe 코어의 X선 회절 스펙트럼을 나타낸 것이다.
도 10은 실시예 3에서 제조 중의 반도체 나노결정(코어, A 단계, B단계, 제조된 코어쉘)의 UV-vis 흡수 스펙트럼을 함께 나타낸 것이다.
도 11은, 실시예 3에서 제조 중의 반도체 나노결정 (코어, A 단계, B단계, 제조된 코어쉘)의 PL 스펙트럼을 함께 나타낸 것이다.
도 12는, 실시예 3에서 제조되는 반도체 나노결정의 투과전자 현미경 이미지를 나타낸 것이다.
도 13은 실시예 3에서 제조되는 반도체 나노결정의 TEM-EDX (원소 맵핑) 분석 결과를 나타낸 것이다.
이후 설명하는 기술의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 구현예들을 참조하면 명확해질 것이다. 그러나 구현되는 형태는 이하에서 개시되는 구현예들에 한정되는 것이 아니라 할 수 있다. 다른 정의가 없다면 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 해당 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다. 명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다.
층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다.
이하에서 별도의 정의가 없는 한, "치환" 이란, 화합물 또는 해당 잔기가, 수소 대신, C1 내지 C30의 알킬기, C2 내지 C30의 알케닐기, C2 내지 C30의 알키닐기, C6 내지 C30의 아릴기, C7 내지 C30의 알킬아릴기, C1 내지 C30의 알콕시기, C1 내지 C30의 헤테로알킬기, C3 내지 C30의 헤테로알킬아릴기, C3 내지 C30의 사이클로알킬기, C3 내지 C15의 사이클로알케닐기, C6 내지 C30의 사이클로알키닐기, C2 내지 C30의 헤테로사이클로알킬기, 할로겐(-F, -Cl, -Br 또는 -I), 히드록시기(-OH), 니트로기(-NO2), 시아노기(-CN), 아미노기(-NRR' 여기서 R과 R'은 서로 독립적으로 수소 또는 C1 내지 C6 알킬기임), 아지도기(-N3), 아미디노기(-C(=NH)NH2)), 히드라지노기(-NHNH2), 히드라조노기(=N(NH2)), 알데히드기(-C(=O)H), 카르바모일기(carbamoyl group, -C(O)NH2), 티올기(-SH), 에스테르기(-C(=O)OR, 여기서 R은 C1 내지 C6 알킬기 또는 C6 내지 C12 아릴기임), 카르복실기(-COOH) 또는 그것의 염(-C(=O)OM, 여기서 M은 유기 또는 무기 양이온임), 술폰산기(-SO3H) 또는 그것의 염(-SO3M, 여기서 M은 유기 또는 무기 양이온임), 인산기(-PO3H2) 또는 그것의 염(-PO3MH 또는 -PO3M2, 여기서 M은 유기 또는 무기 양이온임) 및 이들의 조합에서 선택된 치환기로 치환된 것을 의미한다.
여기서 지방족이라 함은, 포화 또는 불포화의 선형 또는 측쇄형 탄화수소기를 말한다. 지방족은, 예컨대, 알킬기, 알케닐기, 또는 알키닐기일 수 있다.
여기서 방향족이라 함은, 비편재화된 파이 전자를 가지는 적어도 하나의 불포화 고리기를 포함하는 유기 화합물 또는 기를 말한다. 상기 용어는, 방향족 화합물 및/또는 헤테로방항족 화합물을 포함할 수 있다.
여기서 탄화수소기라 함은, 탄소와 수소를 포함하는 기 (예컨대, 알킬, 알케닐, 알키닐, 또는 아릴기 등)을 말한다. 탄화수소기는, 알칸, 알켄, 알킨, 또는 아렌으로부터 1개 이상의 수소원자의 제거에 의해 형성되는 1가 이상의 기일 수 있다. 탄화 수소기에서 하나 이상의 메틸렌은 옥사이드 잔기, 카르보닐 잔기, 에스테르 잔기, -NH-, 또는 이들의 조합으로 대체될 수 있다.
여기서 알킬이라 함은, 선형 또는 측쇄형의 포화 1가 탄화수소기 (메틸, 에틸 헥실 등) 이다.
여기서 알케닐이라 함은, 1개 이상의 탄소-탄소 이중 결합을 가지는 선형 또는 측쇄형의 1가의 탄화수소기를 말한다.
여기서 알키닐이라 함은, 1개 이상의 탄소-탄소 3중결합을 가지는 선형 또는 측쇄형의 1가의 탄화수소기를 말한다.
여기서, 아릴이라 함은, 방향족기로부터 하나 이상의 수소가 제거됨에 의해 형성되는 기 (예컨대, 페닐 또는 나프틸기)를 말한다.
여기서 헤테로라 함은, N, O, S, Si, P, 또는 이들의 조합일 수 있는 1 이상 (예컨대, 1 내지 3개) 의 헤테로원자를 포함하는 것을 말한다.
여기서 족이라 함은 주기율표 상의 족(group)을 말한다.
반도체 나노결정 입자 (이하, 양자점이라고도 함)는 여기원으로부터 광을 흡수하여 그 에너지 밴드갭에 해당하는 광을 방출할 수 있다. 양자점의 에너지 밴드갭은 나노 결정의 크기 및 조성에 따라 변화할 수 있다. 예컨대, 양자점은 크기가 증가할수록 좁은 에너지 밴드갭을 가질 수 있으며 발광 파장이 증가할 수 있다. 반도체 나노결정은 디스플레이 소자, 에너지 소자 또는 생체 발광 소자 등 다양한 분야에서 발광 소재로서 주목을 받고 있다.
실제 응용 가능한 수준의 발광 물성을 가지는 대다수의 양자점들은 카드뮴(Cd)에 기초한다. 카드뮴은, 심각한 환경/보건 문제를 제기하며 다수개의 국가들에서의 유해물질 제한 지침(RoHS) 상 규제 대상 원소이다. 따라서 향상된 발광 특성을 가지는 무카드뮴 양자점 개발이 필요하다. 한편, QLED 표시 소자에서의 응용을 위해 비교적 좁은 반치폭을 가지고 순수 청색 (예컨대, PL 피크 455 nm 정도)의 발광을 할 수 있는 양자점이 필요하다. 예컨대, 차세대 색표준인 BT2020을 기준으로 (예컨대, 90% 이상의) 비교적 높은 색재현율을 가지는 표시 소자를 위해서는 청색 발광 재료가 필요하다. 그러나, 응용 가능한 수준의 발광 물성과 전술한 PL 피크를 나타낼 수 있는 무카드뮴 양자점은 아직 보고되어 있지 않다.
일구현예에 따른 반도체 나노결정 입자는, 후술하는 바의 구조와 조성을 가지며, 청색광을 방출하면서 카드뮴을 포함하지 않을 수 있다.
상기 반도체 나노결정 입자는, 아연(Zn), 텔루리움(Te), 및 셀레늄(Se)을 포함한다. 상기 반도체 나노결정 입자에서. 상기 텔루리움의 함량은 상기 셀레늄의 함량보다 작다. 상기 입자는, 아연, 텔루리움, 및 셀레늄을 포함하는 제1 반도체 물질을 포함하는 코어 및 상기 코어의 적어도 일부 위에 배치되고 상기 제1 반도체 물질과 다른 조성을 가지는 제2 반도체 물질을 포함하는 쉘을 포함하는 코어쉘 구조를 가질 수 있다. 상기 반도체 나노결정 입자는, 470 nm 이하의 파장에서 최대 피크 발광을 포함하는 청색광을 방출한다.
상기 코어의 상기 제1 반도체 물질은 소량의 텔루리움(Te)을 포함하는 ZnSe 기반의 물질일 수 있다. 상기 코어는, 큐빅 (징크 블렌드) 결정 구조일 수 있다. 상기 코어는 ZnTexSe1-x (여기서, x는 0 보다 크고 0.05 이하임) 를 포함할 수 있다. 상기 코어에서 셀레늄 함량에 대한 텔루리움 함량의 비율을 증가시킴에 의해 반도체 나노결정 입자의 최대 발광 피크의 파장이 증가할 수 있다. 상기 코어에서, 상기 텔루리움의 함량은 셀레늄 1몰에 대하여, 0.001 몰 이상, 0.005 몰 이상, 0.006 몰 이상, 0.007 몰 이상, 0.008 몰 이상, 0.009 몰 이상, 0.01 몰 이상, 또는 0.02 몰 이상일 수 있다. 상기 코어에서, 상기 텔루리움의 함량은 셀레늄 1 몰에 대하여, 0.053 몰 이하, 예를 들어, 0.05몰 이하 0.049 몰 이하, 0.048 몰 이하, 0.047 몰 이하, 0.046 몰 이하, 0.045 몰 이하, 0.044 몰 이하, 0.043 몰 이하, 0.042 몰 이하, 0.041 몰 이하, 또는 0.04 몰 이하일 수 있다. 특정 이론에 의해 구속되려 함은 아니지만, Zn, Se, 및 Te의 분포 면에서 상기 코어는 다양한 형태를 가질 수 있다. 상기 코어에서 ZnSe 결정 구조 내에 Te 가 분산되어 있을 수 있다.
상기 코어의 (평균) 크기는 2 nm 이상, 3 nm 이상, 또는 4 nm 이상일 수 있다. 상기 코어의 (평균) 크기는 6 nm 이하, 예컨대, 5 nm 이하일 수 있다.
상기 제2 반도체 물질은, II족-VI족 화합물, III족-V족 화합물, IV족- VI족 화합물, IV족 원소 또는 화합물, I족-III-VI족 화합물, I-II-IV-VI 족 화합물, 또는 이들의 조합을 포함할 수 있다. 상기 II-VI족 화합물은 CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS 및 이들의 혼합물로 이루어진 군에서 선택되는 이원소 화합물; CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS 및 이들의 혼합물로 이루어진 군에서 선택되는 삼원소 화합물; 및 HgZnTeS, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe 및 이들의 혼합물로 이루어진 군에서 선택되는 사원소 화합물로 이루어진 군에서 선택될 수 있다. 상기 III-V족 화합물은 GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb 및 이들의 혼합물로 이루어진 군에서 선택되는 이원소 화합물; GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, 및 이들의 혼합물로 이루어진 군에서 선택되는 삼원소 화합물; 및 GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb 및 이들의 혼합물로 이루어진 군에서 선택되는 사원소 화합물로 이루어진 군에서 선택될 수 있다. 상기 IV-VI족 화합물은 SnS, SnSe, SnTe, PbS, PbSe, PbTe 및 이들의 혼합물로 이루어진 군에서 선택되는 이원소 화합물; SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe 및 이들의 혼합물로 이루어진 군에서 선택되는 삼원소 화합물; 및 SnPbSSe, SnPbSeTe, SnPbSTe 및 이들의 혼합물로 이루어진 군에서 선택되는 사원소 화합물로 이루어진 군에서 선택될 수 있다. 상기 I족-III족-VI족 화합물의 예는, CuInSe2, CuInS2, CuInGaSe, 및 CuInGaS를 포함하나 이에 제한되지 않는다. 상기 I족-II족-IV족-VI 족 화합물의 예는 CuZnSnSe, 및 CuZnSnS를 포함하나 이에 제한되지 않는다. 상기 IV족 원소 또는 화합물은 Si, Ge 및 이들의 혼합물로 이루어진 군에서 선택되는 단원소 화합물; 및 SiC, SiGe 및 이들의 혼합물로 이루어진 군에서 선택되는 이원소 화합물로 이루어진 군에서 선택될 수 있다. 상기 III족-V족 화합물은 II족 금속을 더 포함할 수 있다 (e.g., InZnP 등)
상기 쉘은, 복수개의 층을 포함하는 다층쉘일 수 있다. 상기 복수개의 층들에서 인접하는 층들은 조성이 상이한 반도체 물질을 포함할 수 있다. 상기 쉘은 반경 방향으로 변화하는 조성을 가지는 그래디언트 얼로이일수 있다.
상기 쉘의 두께는, 0.5 nm 이상, 1 nm 이상, 2 nm 이상, 3 nm 이상, 4 nm 이상, 또는 5 nm 이상일 수 있다. 상기 쉘의 두께는 10 nm 이하, 9 nm 이하, 8 nm 이하, 7 nm 이하, 6 nm 이하, 5 nm 이하, 또는 4 nm 이하일 수 있다.
쉘 두께는 코어 크기 및 반도체 나노결정 크기로부터 계산할 (또는 정할) 수 있다.
일구현예에서, 제2 반도체 물질은, 아연(Zn), 셀레늄(Se), 및 황(S)을 포함할 수 있다. 상기 쉘은 (2층, 3층, 또는 4층 그 이상의) 다층쉘 일 수 있다. 상기 다층쉘은, 상기 코어 바로 위에 배치되는 제1층 및 최외각층을 포함할 수 있고, 상기 제1층은 ZnSeS를 포함할 수 있으며, 상기 최외각층은 ZnS를 포함할 수 있다. 상기 쉘은 그래디언트 얼로이일 수 있으며, 황의 함량은 코어에서 멀어질수록 높아지는 농도 구배를 가질 수 있다.
상기 반도체 나노결정 입자는, (예컨대, 유도 결합 플라즈마 원자 방출 분광분석 (ICP-AES)에 의해 측정되는) 상기 셀레늄 몰 함량에 대한 상기 텔루리움의 몰 함량의 비가 0.05 이하, 0.049 이하, 0.048 이하, 0.047 이하, 0.045 이하, 0.044 이하, 0.043 이하, 0.042 이하, 0.041 이하, 0.04 이하, 0.039 이하, 0.035 이하, 0.03 이하, 0.029 이하, 0.025 이하, 0.024 이하, 0.024 미만, 0.023 이하, 0.022 이하, 0.021 이하, 0.02 이하, 0.019 이하, 0.018 이하, 0.017 이하, 0.016 이하, 0.015 이하, 0.014 이하, 0.013 이하, 0.012 이하, 0.011 이하, 또는 0.01 이하일 수 있다. 상기 셀레늄 에 대한 상기 텔루리움의 몰 비는 0.001 이상, 0.002 이상, 0.003 이상, 0.004 이상, 0.005 이상, 0.006 이상, 또는 0.007 이상일 수 있다. 상기 셀레늄에 대한 상기 텔루리움의 몰 비는 0.004 내지 0.025 일 수 있다. 상기 셀레늄에 대한 상기 텔루리움의 몰 비는 0.004 내지 0.023 일 수 있다.
상기 반도체 나노결정 입자에서, 상기 아연의 함량은 상기 셀레늄의 함량보다 클 수 있다. 상기 반도체 나노결정 입자에서, 상기 아연의 함량은 상기 텔루리움의 함량보다 클 수 있다. 상기 반도체 나노결정 입자의 ICP-AES 분석에 의해 확인하였을 때, 아연(Zn)의 함량은 셀레늄(Se)의 함량보다 크고, 셀레늄의 함량은 텔루리움 함량보다 클 수 있다.
예를 들어, ICP-AES 분석에서, Zn 에 대한 Se 의 몰 비는 1 미만, 예컨대, 0.95 이하, 0.90 이하, 0.85 이하, 또는 0.8 이하일 수 있다.
예를 들어, ICP-AES 분석에서, Zn 에 대한 Te 의 몰 비는 0.03 이하, 예컨대, 0.027 이하, 0.025 이하, 0.02 이하, 0.019 이하, 0.018 이하, 0.017, 0.016 이하, 0.015 이하, 0.014 이하, 0.013 이하, 0.012 이하, 0.011 이하, 0.010 이하, 0.009 이하, 0.008 이하, 0.007 이하, 0.006 이하, 또는 0.005 이하일 수 있다. Zn 에 대한 Te 의 몰 비는 0.001 이상, 0.002 이상, 또는 0.003 이상일 수 있다.
일구현예에 따른 반도체 나노결정 입자에서, 텔루리움의 함량은 반도체 나노결정 입자의 총 중량을 기준으로 1 중량% 이하일 수 있다. 상기 반도체 나노결정 입자는 카드뮴을 포함하지 않을 수 있다.
상기 반도체 나노결정 입자에서 Zn 에 대한 황의 몰 비는 0.1 이상, 예컨대 0.15 이상 또는 0.2 이상일 수 있다. 상기 반도체 나노결정 입자에서 Zn 에 대한 황의 몰 비는 0.5 이하, 예컨대 0.45 이하일 수 있다. 상기 반도체 나노결정 입자에서 아연에 대한 Se + S 의 몰 비는 0.3 이상, 0.4 이상, 또는 0.5 이상일 수 있다. 상기 반도체 나노결정 입자에서 아연에 대한 Se + S 의 몰 비는 1 이하, 예컨대 1 미만 또는 0.9 이하일 수 있다.
상기 반도체 나노결정은 임의의 형상을 가질 수 있다. 상기 반도체 나노결정은, 구형, 다각형, 멀티포드, 또는 이들의 조합을 포함할 수 있다. 일구현예에서, 상기 반도체 나노결정 입자는 멀티포드 형상을 포함할 수 있다. 상기 멀티 포드는, 2개 이상 (예컨대, 3개 이상 또는 4개 이상의) 브랜치부와 이들 사이에 밸리부를 가질 수 있다.
상기 반도체 나노결정의 크기는, 3 nm 이상, 예컨대, 4nm 이상, 5 nm 이상, 또는 6 nm 이상일 수 있다. 상기 반도체 나노결정의 크기는, 50 nm 이하, 예를 들어, 45 nm 이하, 40 nm 이하, 35 nm 이하, 30 nm 이하, 25 nm 이하, 24 nm 이하, 23 nm 이하, 22 nm 이하, 21 nm 이하, 20 nm 이하, 19 nm 이하, 18 nm 이하, 17 nm 이하, 또는 16 nm 이하일 수 있다. 여기서, 반도체 나노결정의 크기는 직경일 수 있다. 입자가 다각형 또는 멀티포드 형상인 경우, 입자의 크기는, 입자를 가로지르는 직선의 최장 길이일 수 있다. 코어 또는 반도체 나노결정 크기는, 예컨대, 투과 전자 현미경 분석에 의해 정할 수 있으나 이에 제한되지 않는다.
일구현예에 따른 반도체 나노결정 입자는, 430 nm 이상 (예컨대, 440 nm 이상, 445 nm 이상, 또는 450 nm 이상) 및 470 nm 이하 (예컨대, 470 nm 미만, 465 이하, 또는 460 mn 이하)의 파장에서 최대 피크 발광을 가지는 청색광을 방출할 수 있다. 상기 청색광은 450 nm 내지 460 nm 의 최대 발광 피크 파장을 가질 수 있다. 상기 최대 피크 발광은 50 nm 이하, 예컨대, 49nm 이하, 48 nm 이하, 47 nm 이하, 46 nm 이하, 45nm 이하, 44 nm 이하, 43 nm 이하, 42 nm 이하, 41 nm 이하, 40 nm 이하, 39 nm 이하, 38 nm 이하, 37 nm 이하, 36 nm 이하, 35 nm 이하, 34 nm 이하, 33 nm 이하, 32 nm 이하, 31 nm 이하, 30 nm 이하, 29 nm 이하, 또는 28 nm 이하의 반치폭(FWHM)을 가질 수 있다.
상기 반도체 나노결정은, 60% 이상, 예컨대, 61% 이상, 62% 이상, 63% 이상, 64% 이상, 65% 이상, 66% 이상, 67% 이상, 68% 이상, 또는 69% 이상의 양자 효율 (quantum efficiency)을 가질 수 있다. 상기 반도체 나노결정은 80% 이상, 90% 이상, 95% 이상, 99% 이상, 또는 100%의 양자 효율을 나타낼 수 있다.
CdSe/CdS 등 카드뮴 기반의 코어쉘 반도체 나노결정은, 나노결정 표면의 패시베이션에 의해 높은 발광 물성과 광산화에 대한 안정성을 나타낼 수 있다. 이들 나노결정의 표면은 넓은 밴드갭을 가지는 무기쉘에 의해 캡핑된다. 이러한 무기쉘은 나노결정의 표면을 패시베이션하여 나노 결정 내부에서 형성된 캐리어에 대한 트랩을 형성하는 댕글링 본드 또는 배위 부위를 효과적으로 대폭 제거하며, 따라서 광발생 캐리어들이 코어 내부에 confine 되어 비교적 높은 발광효율을 나타낼 수 있다. 그러나 이러한 코어쉘 타입의 반도체 나노결정은 대체로 470 내지 630 nm 의 최대 발광 파장 (즉, 중심 발광 파장)을 가지며, 470 nm 미만의 최대 발광 파장을 가지기 어렵다. 반도체 나노결정 입자들 (의 최대 발광 파장은 나노결정의 크기 증가에 따라 증가하므로, 470 nm 미만의 최대 발광 파장을 위해서는 매우 작은 크기(예컨대, 1.6 nm 미만)의 코어 반도체 나노결정이 필요한데 이러한 크기의 코어 를 좁은 크기 분포를 가지고 제조하는 것은 매우 어렵기 때문이다. 코어 상에 쉘 형성 시 대부분의 반도체 나노결정의 최대 발광 피크 파장은 증가한다 (즉, red-shift 한다). 따라서, 청색 발광의 코어쉘 반도체 나노결정의 제조는 쉽지 않다.
일구현예에 따른 반도체 나노결정은, 비교적 큰 코어 크기 (예컨대, 2 nm 이상)를 가지는 경우에도 470 nm 미만, 예컨대, 465 nm 이하의 최대 발광 피크 파장을 비교적 높은 양자 효율 및 비교적 좁은 반치폭을 가지고 나타낼 수 있다.
다른 구현예에서, 일구현예에 따른 상기 반도체 나노결정 입자를 제조하는 방법은,
아연 전구체 및 유기 리간드를 포함하는 아연 전구체 용액을 준비하는 단계;
셀레늄 전구체 및 텔루리움 전구체를 얻는 단계;
상기 아연 전구체 용액을 제1 반응 온도로 가열하고, 상기 셀레늄 전구체 및 상기 텔루리움 전구체를 선택에 따라 유기 리간드와 함께 부가하여 아연, 셀레늄, 및 텔루리움을 포함하는 제1 반도체 나노결정 코어를 형성하는 단계;
금속을 함유하는 제1 쉘 전구체 및 유기 리간드를 함유하는 제1 쉘 전구체 용액을 준비하는 단계;
비금속 원소를 함유하는 제2 쉘 전구체를 얻는 단계; 및
상기 제1 쉘 전구체 용액을 제2 반응온도로 가열하고 상기 제1 반도체 나노결정 코어 및 상기 제2 쉘 전구체를 부가하여 상기 제1 반도체 나노결정 코어 상에 제2 반도체 나노결정의 쉘을 형성하는 단계를 포함할 수 있다. 상기 방법은, 형성된 제1 반도체 나노결정 코어를 분리하고 유기 용매에 분산시켜 코어 용액을 준비하는 단계를 더 포함할 수 있다.
상기 아연 전구체는, Zn 금속 분말, ZnO, 알킬화 Zn 화합물 (예컨대, 디메틸아연, 디에틸아연 등 C2 내지 C30의 알킬(예컨대 디알킬)아연), Zn 알콕시드(예컨대, 아연에톡시드), Zn 카르복실레이트 (예컨대, 아연 아세테이트 또는 아연 지방족 카르복실레이트, 예컨대 아연 올리에이트 등 아연 장쇄 지방족 카르복실레이트), Zn 니트레이트, Zn 퍼콜레이트, Zn 설페이트, Zn 아세틸아세토네이트, Zn 할로겐화물 (예컨대, 염화아연등), Zn 시안화물, Zn 히드록시드, 또는 이들의 조합을 포함할 수 있다. 상기 아연 전구체 용액은, 유기 용매 내에 2종 이상의 유기 리간드를 포함할 수 있다. 상기 2종 이상의 유기 리간드는 지방산 및 아민 화합물을 포함할 수 있다. 아연 전구체 용액에서 아연 전구체의 농도 및 유기 리간드의 농도는 특별히 제한되지 않으며 적절히 선택할 수 있다.
상기 셀레늄 전구체는, 셀렌-트리옥틸포스핀(Se-TOP), 셀렌-트리부틸포스핀(Se-TBP), 셀렌-트리페닐포스핀(Se-TPP), 셀렌-다이페닐포스핀 (Se-DPP), 또는 이들의 조합을 포함할 수 있으나 이에 제한되지 않는다. 상기 텔루리움 전구체는 텔루르-트리부틸포스핀(Te-TBP), 텔루르-트리페닐포스핀(Te-TPP), 텔루르-다이페닐포스핀 (Te-DPP), 또는 이들의 조합을 포함할 수 있으나 이에 제한되지 않는다.
상기 코어의 형성을 위해, 상기 셀레늄 전구체의 함량은 상기 텔루리움 전구체 1몰에 대하여 20몰 이상, 예컨대, 25몰 이상, 26몰 이상, 27몰 이상, 28몰 이상, 29몰 이상, 30몰 이상, 31몰 이상, 32몰 이상, 33몰 이상, 34몰 이상, 35몰 이상, 36몰 이상, 37몰 이상, 38몰 이상, 39몰 이상, 또는 40몰 이상일 수 있다. 상기 셀레늄 전구체의 함량은 상기 텔루리움 전구체 1몰에 대하여 60몰 이하, 59몰 이하, 58몰 이하, 57몰 이하, 56몰 이하, 또는 55몰 이하일 수 있다. 이러한 함량에서 위에서 설명한 조성의 코어를 형성할 수 있다.
제1 반응 온도는 280도씨 이상, 예컨대, 290도씨 이상일 수 있다. 코어 형성을 위한 반응 시간은 특별히 제한되지 않으며 적절히 선택할 수 있다. 예를 들어, 반응시간은 5분 이상, 10분 이상, 15분 이상, 20분 이상, 25분 이상, 30분 이상, 35분 이상, 40분 이상, 45분 이상, 또는 50분 이상일 수 있으나 이에 제한되지 않는다. 예를 들어, 반응시간은 2시간 이하, 110분 이하, 100분 이하, 90분 이하, 80분 이하, 70분 이하, 또는 60분 이하일 수 있으나 이에 제한되지 않는다. 반응 시간을 조절하여 코어의 크기를 조절할 수 있다.
이하, 쉘 전구체에 대한 내용은 ZnSeS 쉘에 대하여 상세히 설명하지만, 이에 제한되지 않으며 쉘 조성에 따라 적절한 쉘 전구체를 선택할 수 있다.
일구현예에서, 상기 제1 쉘 전구체는, 아연을 포함할 수 있다. 아연 함유 제1 쉘 전구체는, 아연분말, 알킬화 아연 (예컨대, C2 내지 C30의 알킬 (예컨대, 디알킬아연)), 아연 알콕시드, 아연 카르복실레이트 (또는 아연 지방족 카르복실레이트, 예컨대 아연 올리에이트 등 아연 장쇄 지방족 카르복실레이트), 아연 니트레이트, 아연 퍼콜레이트, 아연 설페이트, 아연 아세틸아세토네이트, 아연 할로겐화물, 아연 시안화물, 아연 히드록시드, ZnO, 아연 퍼옥사이드 또는 이들의 조합일 수 있으나 이에 제한되지 않는다. 상기 제1 쉘 전구체의 예는, 디메틸아연(dimethyl zinc), 디에틸아연(diethyl zinc), 아연아세테이트(zinc acetate), 아연아세틸아세토네이트(zinc acetylacetonate), 아연아이오다이드(zinc iodide), 아연브로마이드(zinc bromide), 아연클로라이드(zinc chloride), 아연플루오라이드(zinc fluoride), 아연카보네이트(zinccarbonate), 아연시아나이드(zinc cyanide), 아연나이트레이트(zinc nitrate), 아연옥사이드(zinc oxide), 아연퍼옥사이드(zinc peroxide), 아연퍼클로레이트(zinc perchlorate), 아연설페이트(zinc sulfate), 및 이들의 조합을 포함할 수 있다.
상기 제2 쉘 전구체는, 셀레늄, 황, 또는 이들의 조합을 포함할 수 있다. 상기 제2 쉘 전구체 중에서 황 함유 전구체는, 헥산 싸이올, 옥탄 싸이올, 데칸 싸이올, 도데칸 싸이올, 헥사데칸 싸이올, 머캡토 프로필 실란, 설퍼-트리옥틸포스핀(S-TOP), 설퍼-트리부틸포스핀(S-TBP), 설퍼-트리페닐포스핀(S-TPP), 설퍼-트리옥틸아민(S-TOA), 비스트리메틸실릴 설퍼(bistrimethylsilyl sulfur), 황화 암모늄, 황화 나트륨, 또는 이들의 조합을 포함할 수 있다.
상기 제2 쉘 전구체 중에서 셀레늄 함유 전구체는, 셀렌-트리옥틸포스핀(Se-TOP), 셀렌-트리부틸포스핀(Se-TBP), 셀렌-트리페닐포스핀(Se-TPP), 셀렌-다이페닐포스핀 (Se-DPP), 또는 이들의 조합을 포함할 수 있으나 이에 제한되지 않는다.
일구현예에서, 코어 합성 후 쉘 성장 시, 쉘 조성이 (예컨대, 반경 방향으로) 변화하도록 (또는 바뀌도록) 쉘 전구체 함유 용액을 반응계 내에 수회에 걸쳐 (예컨대, 단계적으로) 투입할 수 있다. 비제한적인 예를 들어, 3원소 (ABC) 화합물의 쉘을 형성하는 경우, (A원소 전구체 (예컨대, Zn 등 금속 원소), B 원소 전구체 (e.g., 황 등 제1 비금속 원소), C 원소 전구체 (e.g., Se 등 제2 비금속 원소) 용액 등) 전구체의 투입 순서, 함량, 및 반응시간을 조절할 수 있다. 예컨대, A 원소 전구체 용액 내에 코어를 넣고, B원소 전구체 용액을 넣고 소정의 시간 동안 반응을 진행한다. 이어서, 상기 반응계에 C 원소 전구체 용액 및 B원소 전구체 용액 중 하나 이상을 혼합물의 형태로 혹은 각가 개별적으로 투입하여 반응을 진행한다. 이 때, C원소 전구체 용액 및 B원소 전구체 용액의 투입 시간 및 반응계 내의 이들 전구체들 간의 비율을 조절할 수 있다.
C원소 전구체 용액 및 B원소 전구체 용액의 투입 시간/반응 시간 및 반응계 내의 이들 전구체들 간의 비율을 조절하여, 적절한 시점에서 코어와 쉘 계면의 격자 부정합을 조절할 수 있다. 또한 반응 온도 및 C 원소 전구체 종류를 변경하여 표면에서의 성장 에너지를 조절할 수 있다.
상기 유기 용매는, 헥사데실아민 등의 C6 내지 C22의 1차아민, 다이옥틸아민 등의 C6 내지 C22의 2차아민, 트리옥틸아민 등의 C6 내지 C40의 3차아민, 피리딘 등의 질소함유 헤테로고리 화합물, 옥타데센 등의 C6 내지 C40의 올레핀, 헥사데칸, 옥타데칸, 스쿠알렌(squalane) 등의 C6 내지 C40의 지방족 탄화수소, 페닐도데칸, 페닐테트라데칸, 페닐 헥사데칸 등 C6 내지 C30의 알킬기로 치환된 방향족 탄화수소, 적어도 하나 (예컨대, 1개, 2개, 또는 3개)의 C6 내지 C22의 알킬기로 치환된 1차, 2차, 또는 3차 포스핀 (예컨대, 트리옥틸포스핀), (예컨대, 1개, 2개, 또는 3개)의 C6 내지 C22의 알킬기로 치환된 포스핀옥사이드(e.g. 트리옥틸포스핀옥사이드), 페닐 에테르, 벤질 에테르 등 C12 내지 C22의 방향족 에테르, 또는 이들의 조합을 포함할 수 있다.
상기 유기 리간드는 제조된 나노 결정의 표면을 배위하며, 나노 결정이 용액 상에 잘 분산되어 있도록 할 뿐 아니라 발광 및 전기적 특성에 영향을 줄 수 있다. 상기 유기 리간드는, RCOOH, RNH2, R2NH, R3N, RSH, RH2PO, R2HPO, R3PO, RH2P, R2HP, R3P, ROH, RCOOR, RPO(OH)2, RHPOOH, R2POOH (여기서, R은 동일하거나 상이하고, 각각 독립적으로 C1 내지 C24의 치환 또는 비치환의 지방족 탄화수소, 또는 C6 내지 C20의 치환 또는 비치환의 방향족 탄화수소, 또는 이들의 조합을 포함), 또는 이들의 조합을 포함할 수 있다. 상기 리간드는 단독으로 또는 2 이상의 화합물의 혼합물로 사용될 수 있다.
상기 유기 리간드 화합물의 구체적인 예로서는, 메탄 티올, 에탄 티올, 프로판 티올, 부탄 티올, 펜탄 티올, 헥산 티올, 옥탄 티올, 도데칸 티올, 헥사데칸 티올, 옥타데칸 티올, 벤질 티올; 메탄 아민, 에탄 아민, 프로판 아민, 부탄 아민, 펜탄 아민, 헥산 아민, 옥탄 아민, 도데칸 아민, 헥사데실 아민, 올레일 아민, 옥타데실 아민, 디메틸 아민, 디에틸 아민, 디프로필 아민; 메탄산, 에탄산, 프로판산, 부탄산, 펜탄산, 헥산산, 헵탄산, 옥탄산, 도데칸산, 헥사데칸산, 옥타데칸산, 올레인산, 벤조산, 팔미트산(palmitic acid), 스테아르산(stearic acid); 메틸 포스핀, 에틸 포스핀, 프로필 포스핀, 부틸 포스핀, 펜틸 포스핀, 트리부틸포스핀, 트리옥틸포스핀 등의 포스핀; 메틸 포스핀 옥사이드, 에틸 포스핀 옥사이드, 프로필 포스핀 옥사이드, 부틸 포스핀 옥사이드, 트리옥틸포스핀 옥사이드 등의 포스핀 화합물 또는 그의 옥사이드 화합물; 다이 페닐 포스핀, 트리 페닐 포스핀 화합물 또는 그의 옥사이드 화합물; 포스폰산(phosphonic acid) 등을 들 수 있으나, 이에 제한되는 것은 아니다. 상기 유기 리간드 화합물은, 단독으로 또는 2종 이상의 혼합물로 사용할 수 있다. 일구현예에서, 상기 유기 리간드 화합물은 RCOOH 와 아민 (e.g., RNH2, R2NH, 및/또는 R3N)의 조합일 수 있다.
쉘 형성을 위한 반응 온도, 시간 등의 반응 조건은 특별히 제한되지 않으며, 적절히 선택할 수 있다. 비제한적인 일 실시예에서, 진공 하에 용매 및 선택에 따라 리간드 화합물을 소정의 온도 (예컨대, 100도씨 이상)로 가열 (또는 진공처리)하고, 불활성 기체 분위기로 바꾸어 다시 소정의 온도 (예컨대, 100 도씨 이상)으로 가열한다. 이어서, 코어를 투입하고, 쉘 전구체들을 순차적으로 또는 동시에 투입하고, 소정의 반응온도로 가열하여 반응을 수행한다. 쉘 전구체들은 상이한 비율의 혼합물을 반응시간 동안 순차적으로 투입할 수 있다.
반응 종료 후, 반응 생성물에 비용매(nonsolvent)를 부가하면 상기 리간드 화합물이 배위된 나노 결정입자들이 분리될 수 있다. 비용매는, 코어 형성 및/또는 쉘 형성 반응에 사용된 상기 용매와 혼화되지만 제조된 나노 결정을 분산시킬 수 없는 극성 용매일 수 있다. 비용매는, 반응에 사용한 용매에 따라 결정할 수 있으며, 예컨대, 아세톤, 에탄올, 부탄올, 이소프로판올, 에탄다이올, 물, 테트라히드로퓨란(THF), 디메틸술폭시드(DMSO), 디에틸에테르(diethylether), 포름 알데하이드, 아세트 알데하이드, 에틸렌 글라이콜, 상기 나열된 용매들과 유사한 용해도 파라미터(solubility parameter)를 갖는 용매, 또는 이들의 조합을 포함할 수 있다. 분리는, 원심 분리, 침전, 크로마토 그래피, 또는 증류를 이용할 수 있다. 분리된 나노 결정은 필요에 따라 세정 용매에 부가되어 세정될 수 있다. 세정 용매는 특별히 제한되지 않으며, 상기 리간드와 유사한 용해도 파라미터를 갖는 용매를 사용할 수 있으며, 그 예로는 헥산, 헵탄, 옥탄, 클로로포름, 톨루엔, 벤젠 등을 들 수 있다.
다른 구현예에서, 전자 소자는 전술한 반도체 나노결정 입자를 포함한다. 상기 소자는, 표시 소자, 발광 다이오드(LED), 유기발광 다이오드(OLED), 퀀텀닷 LED, 센서(sensor), 태양전지, 이미징 센서, 또는 액정표시장치를 포함하나 이에 제한되지 않는다.
일구현예에서, 상기 전자 소자는 광발광 소자 (예컨대, 양자점 시트, 양자점 레일 등 조명 장치, 액정 표시 장치 등) 또는 전계 발광소자 (예컨대, QD LED) 일 수 있다.
비제한적인 다른 구현예에서, 상기 전자 소자는 양자점 시트를 포함할 수 있으며, 전술한 반도체 나노결정 입자는 양자점 시트 내에 (예컨대, 반도체 나노결정-폴리머 복합체의 형태로) 포함될 수 있다.
비제한적 일구현예에서 상기 전자 소자는 전계 발광소자일 수 있다. 상기 전자 소자는, 서로 마주보는 애노드(1)와 캐소드(5) 및 상기 애노드와 상기 캐소드 사이에 위치하고 복수개의 양자점을 포함하는 양자점 발광층(3)을 포함할 수 있고 상기 복수개의 양자점은 전술한 청색 발광 반도체 나노결정 입자를 포함할 수 있다 (참조: 도 2).
상기 캐소드는 (예컨대, 비교적 낮은 일함수를 가지는) 전자 주입 도체를 포함할 수 있다. 상기 애노드는 (예컨대, 비교적 높은 일함수를 가지는) 정공 주입 도체를 포함할 수 있다. 전자/정공 주입 도체는, (알루미늄, 마그네슘, 텅스텐, 니켈, 코발트, 백금, 팔라듐, 칼슘, LiF, 등의) 금속 기반의 재료 (e.g., 금속, 금속 화합물, 합금, 이들의 조합), 갈륨인듐 산화물, 인듐주석 산화물 등의 금속 산화물, 또는 폴리에틸렌디옥시티오펜 등 (예컨대, 비교적 높은 일함수의) 전도성 폴리머 등을 포함할 수 있으나 이에 제한되지 않는다.
캐소드와 애노드 중 적어도 하나는 투광 전극 또는 투명 전극일 수 있다. 일구현예에서, 애노드 및 캐소드는 모두 투광전극일 수 있다. 상기 전극은 패턴화될 수 있다.
상기 투광 전극은 예컨대 인듐 주석 산화물(indium tin oxide, ITO) 또는 인듐 아연 산화물(indium zinc oxide, IZO), 갈륨인듐 주석 산화물, 아연인듐주석 산화물, 티타늄 질화물, 폴리아닐린, LiF/Mg:Ag 등와 같은 투명 도전체, 또는 얇은 두께의 단일층 또는 복수층의 금속 박막으로 만들어질 수 있으나 이에 제한되지 않는다. 캐소드와 애노드 중 하나가 불투광 전극인 경우 예컨대 알루미늄(Al), 리튬알루미늄(Li:Al) 합금, 마그네슘-은 합금(Mg;Ag), 리튬플루오라이드-알루미늄 (LiF:Al) 과 같은 불투명 도전체로 만들어질 수 있다.
투광전극은 (예컨대, 절연성의) 투명 기판 상에 배치될 수 있다. 기판은 단단하거나 유연할 수 있다. 상기 기판은 플라스틱, 유리, 또는 금속일 수 있다.
애노드 및 캐소드의 두께는 특별히 한정되지 않으며, 소자 효율을 고려하여 적절히 선택할 수 있다. 예를 들어, 애노드 (또는 캐소드)의 두께는, 5nm 이상, 예컨대, 50 nm 이상 일 수 있으나 이에 제한되지 않는다. 예를 들어, 애노드 (또는 캐소드)의 두께는 100㎛ 이하, 예컨대, 10 um 이하, 또는 1 um 이하, 900 nm 이하, 500 nm 이하, 또는 100 nm 이하일 수 있으나 이에 제한되지 않는다.
상기 양자점 발광층은 복수개의 양자점을 포함한다. 상기 복수개의 양자점은 전술한 구현예들에 따른 청색 발광 반도체 나노결정 입자를 포함한다. 상기 양자점 발광층은 청색 발광 반도체 나노결정 입자들의 모노레이어를 포함할 수 있다.
상기 발광층은 양자점을 용매에 분산시킨 분산액을 스핀 코팅, 잉크젯 또는 스프레이 코팅 등의 방법으로 도포한 후 건조하여 형성할 수 있다. 상기 발광층은 약 5 nm 이상, 약 10 nm 이상, 약 15 nm 이상, 약 20 nm 이상, 또는 25 nm 이상 및 100 nm 이하, 예를 들어 약 90 nm 이하, 80 nm 이하, 70 nm 이하, 약 60 nm 이하, 약 50 nm 이하, 약 40 nm 이하, 또는 약 30 nm 이하의 두께로 형성될 수 있다.
상기 전자 소자는, 상기 애노드와 상기 캐소드 사이에 전하 (정공 또는 전자) 보조층을 포함할 수 있다. 예를 들어, 상기 전자 소자는, 상기 애노드와 상기 양자점 발광층 사이에 및/또는 상기 캐소드와 상기 양자점 발광층 사이에 정공 보조층(2) 또는 전자 보조층(4)을 포함할 수 있다. (참조: 도 2)
도면에서는 정공/전자 보조층이 단일층으로 형성된 것을 도시하였으나, 이에 한정되지 않으며 2층 이상이 적층된 복수층으로 형성될 수도 있다.
상기 정공 보조층은, 예를 들어, 정공의 주입을 용이하게 하는 정공 주입층(HIL), 정공의 수송을 용이하게 하는 정공 수송층(HTL), 전자의 이동을 저지하는 전자 차단층(EBL) 또는 이들의 조합을 포함할 수 있다.
예를 들어, 정공 수송층과 애노드 사이에 정공 주입층이 배치될 수 있다. 예컨대, 전자 차단층은 발광층과 정공 수송(주입)층 사이에 배치될 수 있으나 이에 제한되지 않는다. 각 층의 두께는 적절히 선택할 수 있다. 예컨대, 각층의 두께는 1 nm 이상, 5 nm 이상, 10 nm 이상, 15 nm 이상, 20 nm 이상, 또는 25 nm 이상 및 500 nm 이하, 400 nm 이하, 300 nm 이하, 200 nm 이하, 100 nm 이하, 90 nm 이하, 80 nm 이하, 70 nm 이하, 60 nm 이하 또는 50 nm 이하 일 수 있으나 이에 제한되지 않는다. 정공 주입층은 PEDOT:PSS 와 같이 용액 공정 (예컨대 스핀 코팅 등)에 의해 형성될 수 있는 유기층일 수 있다. 정공 수송층도 용액 공정 (예컨대 스핀 코팅 등)에 의해 형성될 수 있는 유기층일 수 있다.
상기 전자 보조층은, 예를 들어, 전자의 주입을 용이하게 하는 전자 주입층(EIL), 전자의 수송을 용이하게 하는 전자 수송층(ETL), 정공의 이동을 저지하는 정공 차단층 (HBL) 또는 이들의 조합을 포함할 수 있다. 예를 들어, 전자 수송층과 캐소드 사이에 전자 주입층이 배치될 수 있다. 예컨대 정공 차단층은 발광층과 전자 수송(주입)층 사이에 배치될 수 있으나 이에 제한되지 않는다. 각 층의 두께는 적절히 선택할 수 있다. 예컨대, 각층의 두께는 1 nm 이상, 5 nm 이상, 10 nm 이상, 15 nm 이상, 20 nm 이상, 또는 25 nm 이상 및 500 nm 이하, 400 nm 이하, 300 nm 이하, 200 nm 이하, 100 nm 이하, 90 nm 이하, 80 nm 이하, 70 nm 이하, 60 nm 이하 또는 50 nm 이하일 수 있으나 이에 제한되지 않는다. 전자 주입층은 증착에 의해 형성되는 유기층일 수 있다. 전자 수송층은 무기 산화물 또는 그의 (나노입자 또는 미립자)를 포함하거나 혹은 증착에 의해 형성되는 유기층일 수 있다.
상기 양자점 발광층은 정공 주입 (또는 수송)층 또는 전자 주입(수송)층 내에 또는 상기 정공 주입 (또는 수송)층 또는 전자 주입(수송)층 상에 배치될 수 있다. 상기 양자점 발광층은 정공 보조층과 전자 보조층 사이에 별도의 층으로 배치될 수도 있다.
전하 보조층, 전자 차단층, 및 정공 차단층은 예컨대 유기물, 무기물 또는 유무기물을 포함할 수 있다. 상기 유기물은 정공 또는 전자관련 물성을 가지는 유기 화합물일 수 있다. 상기 무기물은 예컨대 몰리브덴 산화물, 텅스텐 산화물, 아연 산화물, 니켈 산화물과 같은 금속 산화물일 수 있으나 이에 제한되지 않는다.
상기 정공 수송층(HTL) 및/또는 정공 주입층은 예컨대 폴리(3,4-에틸렌디옥시티오펜):폴리(스티렌술포네이트)(poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS), 폴리(9,9-디옥틸-플루오렌-코-N-(4-부틸페닐)-디페닐아민) (Poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenylamine), TFB), 폴리아릴아민, 폴리(N-비닐카바졸)(poly(N-vinylcarbazole, PVK), 폴리아닐린(polyaniline), 폴리피롤(polypyrrole), N,N,N',N'-테트라키스(4-메톡시페닐)-벤지딘(N,N,N',N'-tetrakis(4-methoxyphenyl)-benzidine, TPD), 4,4'-비스[N-(1-나프틸)-N-페닐-아미노]비페닐(4-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl, α-NPD), m-MTDATA (4,4',4"-Tris[phenyl(m-tolyl)amino]triphenylamine), 4,4',4"-트리스(N-카바졸릴)-트리페닐아민(4,4',4"-tris(N-carbazolyl)-triphenylamine, TCTA), 1,1-비스[(디-4-토일아미노)페닐시클로헥산 (TAPC), p형 금속 산화물 (예를 들어, NiO, WO3, MoO3 등), 그래핀옥사이드 등 탄소 기반의 재료, 및 이들의 조합에서 선택되는 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 전자 차단층(EBL)은 예컨대 폴리(3,4-에틸렌디옥시티오펜):폴리(스티렌술포네이트)(poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS), 폴리(9,9-디옥틸-플루오렌-코-N-(4-부틸페닐)-디페닐아민) (Poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenylamine), TFB) 폴리아릴아민, 폴리(N-비닐카바졸)(poly(N-vinylcarbazole), 폴리아닐린(polyaniline), 폴리피롤(polypyrrole), N,N,N',N'-테트라키스(4-메톡시페닐)-벤지딘(N,N,N',N'-tetrakis(4-methoxyphenyl)-benzidine, TPD), 4-비스[N-(1-나프틸)-N-페닐-아미노]비페닐(4-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl, α-NPD), m-MTDATA, 4,4',4"-트리스(N-카바졸릴)-트리페닐아민(4,4',4"-tris(N-carbazolyl)-triphenylamine, TCTA) 및 이들의 조합에서 선택되는 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 전자 수송층(ETL) 및/또는 전자 주입층은 예컨대 1,4,5,8-나프탈렌-테트라카르복실릭 디안하이드라이드(1,4,5,8-naphthalene-tetracarboxylic dianhydride, NTCDA), 바소쿠프로인(bathocuproine, BCP), 트리스[3-(3-피리딜)-메시틸]보레인(3TPYMB), LiF, Alq3, Gaq3, Inq3, Znq2, Zn(BTZ)2, BeBq2, ET204(8-(4-(4,6-di(naphthalen-2-yl)-1,3,5-triazin-2-yl)phenyl)quinolone), 8-hydroxyquinolinato lithium (Liq), n형 금속 산화물 (예를 들어, ZnO, HfO2 등) 및 이들의 조합에서 선택되는 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 정공 차단층(HBL)은 예컨대 1,4,5,8-나프탈렌-테트라카르복실릭 디안하이드라이드(1,4,5,8-naphthalene-tetracarboxylic dianhydride, NTCDA), 바소쿠프로인(BCP), 트리스[3-(3-피리딜)-메시틸]보레인(3TPYMB), LiF, Alq3, Gaq3, Inq3, Znq2, Zn(BTZ)2, BeBq2 및 이들의 조합에서 선택되는 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다. 여기서, q 는 8-hydroxyquinoline, BTZ 는 2-(2-hydroxyphenyl)benzothiazolate, Bq 는 10-hydroxybenzo[h]quinolone 를 나타낸다.
일구현예에 따른 소자에서, 투명기판 (100) 위에 배치된 애노드 (10)는 금속 산화물 기반의 투명 전극 (예컨대, ITO 전극)을 포함할 수 있고, 상기 애노드와 마주보는 캐소드 (50)는 소정의 (비교적 낮은) 일함수의 금속 (Mg, Al 등)을 포함할 수 있다. 예를 들어, TFB 및/또는 PVK를 포함한 정공 수송층 (20)으로서, 그리고/혹은 PEDOT:PSS 및/또는 p형 금속 산화물 등을 포함한 정공 주입층 (20)으로서 상기 투명 전극 (10) 과 발광층 (30) 사이에 배치될 수 있다. 양자점 발광층 (30)과 캐소드 (50) 사이에는 전자 보조층 (예컨대, 전자 수송층 (40)) 이 배치될 수 있다. (참조: 도 3)
다른 구현예의 소자는 인버티드(inverted) 구조를 가진다. 여기에서는 투명기판 (100) 위에 배치된 캐소드 (50)가 금속 산화물 기반의 투명 전극 (예컨대, ITO) 을 포함할 수 있고, 상기 캐소드와 마주보는 애노드 (10)는 소정의 (예컨대,비교적 높은 일함수의 금속 (Au, Ag 등)을 포함할 수 있다. 예를 들어, n형 금속 산화물 (ZnO) 등이 전자 보조층 (예컨대, 전자 수송층) (40)으로서 상기 투명 전극 (50)과 발광층(30) 사이에 배치될 수 있다. 금속 애노드 (10) 와 양자점 발광층 (30) 사이에는 정공 보조층 (예컨대, TFB 및/또는 PVK를 포함한 정공 수송층 그리고/혹은 MoO3 또는 다른 p 형 금속 산화물을 포함한 정공 주입층) (20)이 배치될 수 있다. (참조: 도 4)
이하에서는 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로써 발명의 범위가 제한되어서는 아니된다.
[실시예]
분석 방법
[1] 광발광 (Photoluminescence) 분석
Hitachi F-7000 스펙트로미터를 이용하여 조사 파장 372 nm 에서 제조된 나노 결정의 광발광(photoluminescence: PL) 스펙트럼을 얻는다.
[2] UV 분광 분석
Hitachi U-3310 스펙트로미터를 사용하여 UV 분광 분석을 수행하고 UV-Visible 흡수 스펙트럼을 얻는다.
[3] TEM 분석
(1) UT F30 Tecnai electron microscope를 사용하여 제조된 나노결정의 투과전자 현미경 사진을 얻는다.
(2) UT F30 Tecnai electron microscope 를 사용하여 TEM-EDX 분석 (원소 맵핑)을 수행한다.
[4] ICP 분석
Shimadzu ICPS-8100를 사용하여 유도결합 플라즈마 원자 발광 분광분석(ICP-AES)을 수행한다.
[5] HRTEM 분석
TEM-Titan G2 를 사용하여 HRTEM 분석을 수행한다.
[6] X선회절 분석
Philips XPert PRO 기기를 사용하여 power 3kW로, XRD 분석을 수행하여 반도체 나노결정의 결정 구조를 확인한다.
합성은 특별히 언급하지 않는 한 불활성 기체 분위기 (질소 flowing 조건 하) 에서 수행한다.
실시예 1: ZnTeSe 코어의 제조 I
셀레늄 및 텔루리움을 트리옥틸포스핀 (TOP)에 분산시켜 2M 의 Se/TOP stock solution 및 0.1 M 의 Te/TOP stock solution 을 얻는다.
아연 아세테이트(zinc acetate) 0.125 mmol을 팔미트산 (palmitic acid) 0.25 mmol 및 헥사데실아민 0.25 mmol 과 함께 트리옥틸아민 10mL를 반응기에 넣고 진공 하에 120도씨로 가열한다. 1시간 후 반응기 내 분위기를 질소로 전환한다.
300도씨로 가열한 후 위에서 준비한 Se/TOP stock solution 및 Te/TOP stock solution을 Te/Se 비율을 1/25 으로 신속히 주입한다. 10분, 30분, 또는 60분 후, 상온으로 신속하게 식힌 반응 용액에 아세톤을 넣고 원심 분리하여 얻은 침전을 톨루엔에 분산시킨다. 얻어진 반도체 나노 결정 입자의 UV-vis 분광 분석 및 광발광 분광 분석을 수행하고 그 결과를 도 5 및 도 6에 나타낸다. 그 결과, 얻어진 반도체 나노결정은 제1 흡수 최대 파장 400 nm 내지 430 nm 의 범위이고, 최대 피크 발광 파장은 430 nm 내지 460 nm 임을 확인한다. 제조된 반도체 나노결정의 양자효율은 대략 30-40 % 정도임을 확인한다.
반응 시간이 60 분인 반도체 나노결정 입자의 투과 전자 현미경 이미지를 도 7에 나타낸다. 반응시간이 60분인 반도체 나노결정 입자의 HRTEM 이미지를 도 8에 나타낸다. 상기 투과 전자 현미경 분석결과로부터, 대체로 구형/다각형 입자들이 형성되었음을 확인한다. 반응시간이 60분인 반도체 나노결정 입자에 대하여 X선 회절 분석을 수행하고 그 결과를 도 9에 나타낸다. 도 9의 결과로부터, 제조된 코어가 ZnSe Cubic 결정 구조를 가짐을 확인한다.
실시예 2-1 내지 2-5 : ZnTeSe 코어의 제조 II
셀레늄 및 텔루리움 간의 비율을 표 1에서와 같이 하는 것을 제외하고는 실시예 1과 동일한 방식으로 (반응시간은 30-60분) 코어를 제조한다.
제조된 코어들의 최대 발광 피크 파장, 반치폭, 및 제조된 반도체 나노결정에서 (ICP에 의해 확인되는) 텔루리움의 중량비를 표 1에 정리한다.
반응계의 Te/Se 비율 최대 발광 피크 파장 (nm) 반치폭(nm) Te 함량 (중량%)
실시예 2-1 0 422 24 0
실시예 2-2 1/50 431 48 1.78
실시예 2-3 1/30 441 57 2.82
실시예 2-4 1/25 445 57 3.34
실시예 2-5 1/8 478 67 7.5
실시예 3 : ZnTeSe 코어/ZnSeS 그래디언트 조성의 쉘의 코어쉘 반도체 나노결
 Zinc acetate 1.8mmoL (0.336g), oleic acid 3.6mmol (1.134g), 및 trioctylamine 10mL를 플라스크에 넣고 120℃에서 10분간 진공처리한다. 질소(N2)로 상기 플라스크 내를 치환한 후 180℃로 승온한다. 여기에, 실시예 1에서 제조된 ZnTeSe 코어 (반응 시간 60분)를 10초 내에 넣고, 이어서 Se/TOP 0.04 mmol을 천천히 주입한 다음 280℃로 승온한다. 그 후 S/TOP 0.01mmol를 넣고 320℃로 승온하여 10분 반응한다. 연속하여, Se/TOP 0.02mmol 및 S/TOP 0.04 mmol 혼합용액을 천천히 주입하고 다시 20분 반응한다 (이하, A 단계로 칭할 수 있음). 이 후 Se과 S의 혼합비율을 바꾸어 주입하고 20분 반응시키는 단계를 반복하는데, 이 때 사용하는 Se 및 S의 혼합용액은 Se/TOP 0.01mmol + S/TOP 0.05mmol의 혼합용액, Se/TOP 0.005mmol + S/TOP 0.1mmol의 혼합용액(이하, B 단계로 칭할 수 있음), S/TOP 0.5mmol 용액이며, 이들을 순서대로 사용한다.
상기 반응이 모두 끝난 후 반응기를 냉각하고, 제조된 나노결정을 ethanol로 원심 분리하여 toluene에 분산시킨다.
제조 중 (코어, 상기 A 단계, 상기 B 단계) 또는 제조된 나노결정 (코어쉘)에 대하여 UV-vis 분광분석, 광발광 분석, 투과 전자 현미경 분석을 수행하고 그 결과를 도 10, 도 11, 및 도 12에 나타낸다.
광발광 분석 결과로부터, 제조된 반도체 나노결정 입자가 최대 발광 피크 449 nm (반치폭 28 nm) 및 70% 의 양자 효율을 나타낼 수 있음을 확인한다.쉘이 부가됨에 의해 최대 발광 피크가 장파장쪽으로 이동하고, 반치폭이 감소하고, 양자 효율이 증가됨을 확인한다.
제조된 반도체 나노결정 입자는 멀티 포드 형상을 가짐을 확인한다.
제조된 반도체 나노결정 입자들은 10 nm 내지 20 nm 의 범위의 입경을 가짐을 확인한다.
ZnTeSe 코어 및 ZnTeSe (코어)/ZnSeS/ZnS(쉘) 의 유도 결합 플라즈마 원자 발광 분광분석을 수행하고 그 결과(Zn 에 대한 몰 비)를 하기 표 2 에 정리한다.
S Zn Se Te (Se+S)/Zn
ZnTeSe 코어 0 1 0.792 0.018 0.792
ZnTeSe(코어)/ZnSeS/ZnS 0.390 1 0.472 0.004 0.862
제조된 반도체 나노결정 입자에 대하여 TEM-EDX 분석 (원소 맵핑)을 수행하고 그 결과를 도 13에 나타낸다. 도 13으로부터 입자의 외층에 S 가 포함된 쉘이 형성되었음을 확인한다.
비교예 1 :
실시예 2-5에서 합성한 코어 (Te/Se 전구체 비율 = 1/8) 를 사용하는 것을 제외하고는, 실시예 3과 동일한 방법으로 ZnTeSe (코어)/ZnSeS/ZnS (쉘) 입자를 제조한다. ICP 를 수행한 결과 셀레늄에 대한 텔루리움의 몰 비는 0.024 인 것을 확인한다.
제조된 입자의 광발광 분석을 수행한다. 그 결과, PL 파장은 487 nm, 반치폭 44 nm, 및 효율 37% 임을 확인한다.
이상에서 실시예들에 대하여 상세하게 설명하였지만 권리 범위는 이에 한정되는 것은 아니고 다음의 청구 범위에서 정의하고 있는 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.

Claims (26)

  1. 아연, 텔루리움, 및 셀레늄을 포함하는 반도체 나노결정 입자로서,
    상기 텔루리움의 함량은 상기 셀레늄의 함량보다 작고, 상기 반도체 나노결정 입자에서 상기 셀레늄에 대한 상기 텔루리움의 몰 비는 0.02 미만이고,
    상기 입자는, 제1 반도체 물질을 포함하는 코어 및 상기 코어의 적어도 일부 위에 배치되고 상기 제1 반도체 물질과 다른 조성을 가지는 제2 반도체 물질을 포함하는 쉘을 가지고,
    상기 반도체 나노결정 입자는, 445 nm 초과 및 470 nm 이하의 파장에서 최대 피크 발광 (maximum peak emission)을 포함하는 청색광을 방출하도록 구성되고,
    상기 반도체 나노결정 입자는 카드뮴을 포함하지 않는
    반도체 나노결정 입자.
  2. 제1항에 있어서,
    상기 반도체 나노결정 입자에서,
    상기 셀레늄에 대한 상기 텔루리움의 몰 비는 0.015 이하인 반도체 나노결정 입자.
  3. 제1항에 있어서,
    상기 반도체 나노결정 입자에서,
    상기 아연에 대한 상기 텔루리움의 몰 비는 0.03 이하인 반도체 나노결정 입자.
  4. 제1항에 있어서,
    상기 반도체 나노결정 입자는 황을 더 포함하고,
    상기 아연의 함량은 상기 셀레늄의 함량보다 크고,
    상기 반도체 나노결정 입자에서, 아연에 대한 황의 몰비는 0.1 이상이고,
    상기 반도체 나노결정 입자에서, 아연에 대한 S+Se 의 몰비는 0.3 이상 및 0.9 이하인
    반도체 나노결정 입자.
  5. 제1항 또는 제4항에 있어서,
    상기 아연에 대한 상기 텔루리움의 몰 비는 0.012 이하인 반도체 나노결정 입자.
  6. 제1항에 있어서,
    상기 텔루리움의 함량은 상기 반도체 나노결정 입자의 총 중량을 기준으로 1 중량% 이하인 반도체 나노결정 입자.
  7. 제1항에 있어서,
    상기 제1 반도체 물질은 ZnTexSe1-x (여기서, x는 0 보다 크고 0.05 이하임) 를 포함하는 반도체 나노결정 입자.
  8. 제1항에 있어서,
    상기 코어의 크기는 2 nm 이상이고 6 nm 이하인 반도체 나노결정 입자.
  9. 제1항에 있어서,
    상기 제2 반도체 물질은, 아연, 셀레늄, 및 황을 포함하는 반도체 나노결정 입자.
  10. 제1항에 있어서,
    상기 쉘은, 2개 이상의 층을 포함하고, 인접하는 층들은 서로 다른 반도체 물질을 포함하는 반도체 나노결정 입자.
  11. 제10항에 있어서,
    상기 쉘은, 상기 코어 바로 위에 배치되는 제1층 및 최외각층을 포함하고, 상기 제1층은 ZnSeS를 포함하고, 상기 최외각층은 ZnS를 포함하는 반도체 나노결정 입자.
  12. 제1항에 있어서,
    상기 반도체 나노결정 입자는 450 nm 내지 470 nm 의 파장에서 최대 피크 발광을 가지는 청색광을 방출하도록 구성되는 반도체 나노결정 입자.
  13. 제1항에 있어서,
    상기 최대 피크 발광은 50 nm 이하의 반치폭을 가지고,
    상기 반도체 나노결정입자는 60% 이상의 양자효율을 나타내는 반도체 나노결정 입자.
  14. 제1항에 있어서,
    상기 반도체 나노결정 입자는 80% 이상의 양자효율을 나타내는
    반도체 나노결정 입자.
  15. 제1항에 있어서,
    상기 반도체 나노결정 입자는
    반치폭이 45 nm 이하이고, 양자효율이 69% 이상인 반도체 나노결정 입자.
  16. 제1항에 있어서,
    상기 반도체 나노결정 입자는 멀티 포드(multipod) 형상을 가지는 반도체 나노결정 입자.
  17. 제1항의 반도체 나노결정입자의 제조 방법으로서,
    아연 전구체 및 유기 리간드를 포함하는 아연 전구체 용액을 준비하는 단계;
    셀레늄 전구체 및 텔루리움 전구체를 얻는 단계;
    상기 아연 전구체 용액을 제1 반응 온도로 가열하고, 상기 셀레늄 전구체 및 상기 텔루리움 전구체를 유기 리간드와 함께 부가하여 아연, 셀레늄, 및 텔루리움을 포함하는 제1 반도체 나노결정 코어를 형성하는 단계;
    금속을 함유하는 제1 쉘 전구체 및 유기 리간드를 함유하는 제1 쉘 전구체 용액을 준비하는 단계;
    비금속 원소를 함유하는 제2 쉘 전구체를 얻는 단계; 및
    상기 제1 쉘 전구체 용액을 제2 반응온도로 가열하고 상기 제1 반도체 나노결정 코어 및 상기 제2 쉘 전구체를 부가하여 상기 제1 반도체 나노결정 코어 상에 제2 반도체 나노결정의 쉘을 형성하는 단계를 포함하는 방법.
  18. 제17항에 있어서,
    상기 아연 전구체는, Zn 금속 분말, ZnO, 알킬화 Zn 화합물, Zn 알콕시드, Zn 카르복실레이트, Zn 니트레이트, Zn 퍼콜레이트, Zn 설페이트, Zn 아세틸아세토네이트, Zn 할로겐화물, Zn 시안화물, Zn 히드록시드, 또는 이들의 조합을 포함하고,
    상기 셀레늄 전구체는, 셀렌-트리옥틸포스핀(Se-TOP), 셀렌-트리부틸포스핀(Se-TBP), 셀렌-트리페닐포스핀(Se-TPP), 셀렌-다이페닐포스핀(Se-DPP), 또는 이들의 조합을 포함하고,
    상기 텔루리움 전구체는 텔루르-트리부틸포스핀(Te-TBP), 텔루르-트리페닐포스핀(Te-TPP), 텔루르-다이페닐포스핀(Te-DPP), 또는 이들의 조합을 포함하는 방법.
  19. 제17항에 있어서,
    상기 셀레늄 전구체의 함량은 상기 텔루리움 전구체 1몰에 대하여 20몰 이상 내지 60몰 이하인 방법.
  20. 제17항에 있어서,
    상기 제1 쉘 전구체는, 아연을 포함하고, 상기 제2 쉘 전구체는, 셀레늄, 황, 또는 이들의 조합을 포함하는 방법.
  21. 제17항에 있어서,
    상기 유기 리간드는, RCOOH, RNH2, R2NH, R3N, RSH, RH2PO, R2HPO, R3PO, RH2P, R2HP, R3P, ROH, RCOOR, RPO(OH)2, R2POOH (여기서, R은 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C24의 지방족탄화수소, 또는 C6 내지 C20의 방향족 탄화수소, 또는 이들의 조합이되, 적어도 하나의 R은 수소가 아님), 또는 이들의 조합을 포함하는 방법.
  22. 제1항의 반도체 나노결정 입자를 포함하는 전자 소자.
  23. 아연, 텔루리움, 황, 및 셀레늄을 포함하는 반도체 나노결정 입자로서,
    상기 반도체 나노결정 입자는 카드뮴을 포함하지 않고,
    상기 반도체 나노결정 입자는, 청색광을 방출하도록 구성되고,
    상기 청색광의 최대 발광 피크 파장은, 449 nm 이상의 범위에 존재하고,
    상기 반도체 나노결정 입자의 최대 발광 피크의 반치폭은 40 nm 이하이고,
    상기 반도체 나노결정 입자의 양자효율은 80% 이상이고,
    상기 반도체 나노결정 입자의 크기는 10 nm 이상 및 50 nm 이하인 반도체 나노결정 입자.
  24. 제23항에 있어서,
    상기 반도체 나노결정 입자의 최대 발광 피크 파장은 450 nm 보다 큰 반도체 나노결정 입자.
  25. 제23항에 있어서,
    상기 반도체 나노결정 입자의 최대 발광 피크 파장은 460 nm 내지 470 nm 의 범위에 존재하는 반도체 나노결정 입자.
  26. 제23항의 반도체 나노결정 입자를 포함하는 전자소자.
KR1020180053707A 2017-05-11 2018-05-10 반도체 나노결정 입자 및 이를 포함하는 소자 KR102618410B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170058474 2017-05-11
KR1020170058474 2017-05-11

Publications (2)

Publication Number Publication Date
KR20180124765A KR20180124765A (ko) 2018-11-21
KR102618410B1 true KR102618410B1 (ko) 2023-12-27

Family

ID=62152392

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180053707A KR102618410B1 (ko) 2017-05-11 2018-05-10 반도체 나노결정 입자 및 이를 포함하는 소자

Country Status (4)

Country Link
US (3) US11319487B2 (ko)
EP (1) EP3401380B1 (ko)
KR (1) KR102618410B1 (ko)
CN (1) CN108865109B (ko)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3401380B1 (en) * 2017-05-11 2020-12-23 Samsung Electronics Co., Ltd. Semiconductor nanocrystal particles and devices including the same
KR102375620B1 (ko) * 2017-10-16 2022-03-16 엘지디스플레이 주식회사 발광다이오드 및 이를 포함하는 발광장치
KR102395049B1 (ko) * 2017-10-25 2022-05-04 삼성전자주식회사 반도체 나노결정 입자 및 그의 제조 방법과 이를 포함하는 소자
CN110246987A (zh) * 2018-03-09 2019-09-17 三星电子株式会社 量子点、其制造方法、电致发光器件和显示设备
KR20190106825A (ko) 2018-03-09 2019-09-18 삼성전자주식회사 반도체 나노결정 입자 및 그의 제조 방법과 이를 포함하는 소자
US10954440B2 (en) 2018-03-09 2021-03-23 Samsung Electronics Co., Ltd. Quantum dots and devices including the same
CN113039256A (zh) * 2018-05-30 2021-06-25 C·伊彭 发蓝光ZnSe1-xTex合金纳米晶体的合成方法
CN111218284B (zh) * 2018-11-23 2023-05-23 纳晶科技股份有限公司 一种核壳量子点及其制备方法、电子器件
CN109666477B (zh) * 2018-11-30 2022-09-06 纳晶科技股份有限公司 一种核壳量子点及其制备方法、电子器件
CN111378451A (zh) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 一种量子点的制备方法
KR102652436B1 (ko) * 2019-04-18 2024-03-27 삼성전자주식회사 ZnTeSe 기반의 양자점
KR20200122717A (ko) 2019-04-18 2020-10-28 삼성전자주식회사 리튬 함유 무카드뮴 양자점, 그 제조 방법, 및 이를 포함하는 전자 소자
KR20200122719A (ko) * 2019-04-18 2020-10-28 삼성전자주식회사 코어쉘 양자점, 그 제조 방법, 및 이를 포함하는 전자 소자
KR102673641B1 (ko) * 2019-04-19 2024-06-07 삼성전자주식회사 반도체 나노결정 입자 및 이를 포함하는 소자
WO2021007494A1 (en) * 2019-07-11 2021-01-14 Nanosys, Inc. Blue-emitting nanocrystals with cubic shape and fluoride passivation
WO2021030432A1 (en) * 2019-08-12 2021-02-18 Nanosys, Inc. SYNTHESIS OF BLUE-EMITTING ZnSe1-xTex ALLOY NANOCRYSTALS WITH LOW FULL WIDTH AT HALF-MAXIMUM
US11499098B2 (en) * 2019-08-29 2022-11-15 Samsung Electronics Co., Ltd. Quantum dots and device including the same
EP3809480A1 (en) * 2019-10-17 2021-04-21 Samsung Electronics Co., Ltd. Core shell quantum dot, production method thereof, and electronic device including the same
KR20210045948A (ko) 2019-10-17 2021-04-27 삼성전자주식회사 코어쉘 양자점, 그 제조 방법, 및 이를 포함하는 전자 소자
KR20210060706A (ko) 2019-11-18 2021-05-27 삼성디스플레이 주식회사 양자점, 이를 포함하는 조성물 또는 복합체, 패턴화된 막, 및 이를 포함하는 표시 소자
CN111081904A (zh) * 2019-12-02 2020-04-28 武汉华星光电半导体显示技术有限公司 氧化石墨烯薄膜的制备方法、oled器件及制备方法
US11702593B2 (en) 2020-02-28 2023-07-18 Samsung Electronics Co., Ltd. Quantum dots, and electronic devices and electronic equipments including same
CN111509142B (zh) * 2020-03-18 2022-01-18 纳晶科技股份有限公司 核壳量子点、量子点发光二极管、量子点组合物、显示器件
KR20210135758A (ko) * 2020-05-06 2021-11-16 삼성전자주식회사 코어쉘 양자점, 그 제조 방법, 및 이를 포함하는 전자 소자
US11905447B2 (en) * 2020-10-16 2024-02-20 Samsung Electronics Co., Ltd. Quantum dot, production method thereof, and electronic device including the same
KR102618858B1 (ko) * 2020-12-08 2023-12-28 단국대학교 천안캠퍼스 산학협력단 나노결정체 제조방법, 나노결정체 제조용 조성물, 및 이에 의해 제조된 나노결정체
CN114624803A (zh) 2020-12-09 2022-06-14 三星电子株式会社 滤色器和包括该滤色器的显示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140339497A1 (en) * 2011-06-20 2014-11-20 Crystalplex Corporation Stabilized nanocrystals
WO2015056749A1 (ja) 2013-10-17 2015-04-23 株式会社村田製作所 ナノ粒子材料、及び発光デバイス

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE512115T1 (de) 2003-01-22 2011-06-15 Univ Arkansas Monodisperse nanokristalle mit kern/schale und anderen komplexen strukturen sowie herstellungsverfahren dafür
US7981667B2 (en) 2003-05-07 2011-07-19 Indiana University Research And Technology Corporation Alloyed semiconductor quantum dots and concentration-gradient alloyed quantum dots, series comprising the same and methods related thereto
WO2005067485A2 (en) 2003-12-12 2005-07-28 Quantum Dot Corporation Preparation of stable, bright luminescent nanoparticles having compositionally engineered properties
US8845927B2 (en) 2006-06-02 2014-09-30 Qd Vision, Inc. Functionalized nanoparticles and method
WO2008063658A2 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Semiconductor nanocrystals and compositions and devices including same
WO2008063652A1 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Blue emitting semiconductor nanocrystals and compositions and devices including same
EP2344417B1 (en) 2008-10-03 2017-01-04 Life Technologies Corporation Nanocrystals with functional ligands
KR101699540B1 (ko) 2009-07-08 2017-01-25 삼성전자주식회사 반도체 나노 결정 및 그 제조 방법
US20110175054A1 (en) 2010-01-15 2011-07-21 Xiaofan Ren Device containing large-sized emitting colloidal nanocrystals
WO2011100023A1 (en) 2010-02-10 2011-08-18 Qd Vision, Inc. Semiconductor nanocrystals and methods of preparation
WO2013028253A1 (en) 2011-08-19 2013-02-28 Qd Vision, Inc. Semiconductor nanocrystals and methods
KR101517094B1 (ko) * 2013-06-07 2015-06-05 삼성전자 주식회사 나노 결정 합성 방법
EP2853578B1 (en) 2013-09-26 2017-08-30 Samsung Electronics Co., Ltd Nanocrystal particles and processes for synthesizing the same
KR101525524B1 (ko) 2013-09-26 2015-06-03 삼성전자주식회사 나노 결정 입자 및 그의 합성 방법
US11746290B2 (en) 2013-09-26 2023-09-05 Samsung Electronics Co., Ltd. Nanocrystal particles and processes for synthesizing the same
US20160225958A1 (en) 2015-01-29 2016-08-04 Stanley Electric Co., Ltd. Quantum dot ensemble and manufacturing method thereof
KR102514116B1 (ko) * 2015-09-24 2023-03-23 삼성전자주식회사 반도체 나노결정 입자 및 이를 포함하는 소자
KR102415248B1 (ko) 2015-12-29 2022-06-30 삼성디스플레이 주식회사 양자점 및 이를 이용한 발광 소자
EP3401380B1 (en) * 2017-05-11 2020-12-23 Samsung Electronics Co., Ltd. Semiconductor nanocrystal particles and devices including the same
KR102395049B1 (ko) * 2017-10-25 2022-05-04 삼성전자주식회사 반도체 나노결정 입자 및 그의 제조 방법과 이를 포함하는 소자
KR102588630B1 (ko) * 2017-11-20 2023-10-11 삼성전자주식회사 반도체 나노결정 입자 및 이를 포함하는 소자
KR20190106825A (ko) * 2018-03-09 2019-09-18 삼성전자주식회사 반도체 나노결정 입자 및 그의 제조 방법과 이를 포함하는 소자

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140339497A1 (en) * 2011-06-20 2014-11-20 Crystalplex Corporation Stabilized nanocrystals
WO2015056749A1 (ja) 2013-10-17 2015-04-23 株式会社村田製作所 ナノ粒子材料、及び発光デバイス

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K G Sonawane et al. "A case study: Te in ZnSe and Mn-doped ZnSe quantum dots". Nanotechnology 22. 27 June 2011, pp. 1-7*
LI C et al. "Synthesis of Cd-free water-soluble ZnSe1-xTex nanocrystals with high luminescence in the blue region". Journal of colloid and interface science. 15 May 2008, vol. 321, pp. 468-476*

Also Published As

Publication number Publication date
US20180327665A1 (en) 2018-11-15
US20230392074A1 (en) 2023-12-07
US11767472B2 (en) 2023-09-26
CN108865109A (zh) 2018-11-23
EP3401380A1 (en) 2018-11-14
KR20180124765A (ko) 2018-11-21
EP3401380B1 (en) 2020-12-23
US20220220379A1 (en) 2022-07-14
CN108865109B (zh) 2023-12-12
US11319487B2 (en) 2022-05-03

Similar Documents

Publication Publication Date Title
KR102618410B1 (ko) 반도체 나노결정 입자 및 이를 포함하는 소자
KR102532625B1 (ko) 양자점을 포함하는 발광 소자와 표시 장치
US11718786B2 (en) Quantum dots and quantum dot solutions
US11063231B2 (en) Light emitting device and display device including the same
EP3613826B1 (en) Light emitting device and display device including the same
KR102673642B1 (ko) 반도체 나노결정-리간드 복합체 및 상기 복합체를 포함하는 소자
US10371969B2 (en) Electronic device
US11744096B2 (en) Light emitting device and display device including 1HE same
KR20190106819A (ko) 양자점 및 이를 포함하는 발광 소자
KR20210027210A (ko) 발광 소자와 이를 포함한 표시 장치
KR20200099930A (ko) 전계 발광 소자와 이를 포함한 표시 장치
US11133468B2 (en) Semiconductor nanocrystal-ligand composite and device including composite
KR102673641B1 (ko) 반도체 나노결정 입자 및 이를 포함하는 소자
US20240099045A1 (en) Electroluminescent device, method of manufacturing the same, and display device including the same
KR20240108306A (ko) 전계발광소자와 그 제조방법, 및 이를 포함하는 표시장치
KR20240108305A (ko) 전계발광소자와 그 제조방법, 및 이를 포함하는 표시장치
KR20220058477A (ko) 발광 소자, 그 제조방법, 및 이를 포함한 표시 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant