KR102569456B1 - 유체 캐비테이션 연마재 표면 마감을 위한 방법 및 장치 - Google Patents

유체 캐비테이션 연마재 표면 마감을 위한 방법 및 장치 Download PDF

Info

Publication number
KR102569456B1
KR102569456B1 KR1020180102760A KR20180102760A KR102569456B1 KR 102569456 B1 KR102569456 B1 KR 102569456B1 KR 1020180102760 A KR1020180102760 A KR 1020180102760A KR 20180102760 A KR20180102760 A KR 20180102760A KR 102569456 B1 KR102569456 B1 KR 102569456B1
Authority
KR
South Korea
Prior art keywords
material removal
removal method
fluid
abrasive
cavitation bubbles
Prior art date
Application number
KR1020180102760A
Other languages
English (en)
Other versions
KR20190024828A (ko
Inventor
다니엘 고든 샌더스
Original Assignee
더 보잉 컴파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 더 보잉 컴파니 filed Critical 더 보잉 컴파니
Publication of KR20190024828A publication Critical patent/KR20190024828A/ko
Application granted granted Critical
Publication of KR102569456B1 publication Critical patent/KR102569456B1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/08Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/14Arrangements for controlling delivery; Arrangements for controlling the spray area for supplying a selected one of a plurality of liquids or other fluent materials or several in selected proportions to a spray apparatus, e.g. to a single spray outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/10Spray pistols; Apparatus for discharge producing a swirling discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/1463Arrangements for supplying particulate material the means for supplying particulate material comprising a gas inlet for pressurising or avoiding depressurisation of a powder container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • B05B7/149Spray pistols or apparatus for discharging particulate material with separate inlets for a particulate material and a liquid to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • B08B3/026Cleaning by making use of hand-held spray guns; Fluid preparations therefor
    • B08B3/028Spray guns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/06Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for producing matt surfaces, e.g. on plastic materials, on glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0007Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a liquid carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0092Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed by mechanical means, e.g. by screw conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Cleaning In General (AREA)

Abstract

가공물의 표면으로부터 재료를 제거하는 방법은 복수의 캐비테이션 기포들의 형성을 가능하게 하는 유량 및 압력으로 유체의 흐름을 가공물 쪽으로 배출하는 단계, 및 연마용 매질을 삽입하는 단계를 포함한다. 이 방법은 캐비테이션 기포들로 연마용 매질을 여기시키고, 캐비테이션 기포들과 연마용 매질, 그리고 가공물의 표면 사이의 상호 작용에 의해 가공물로부터 재료를을 제거하는 단계를 포함한다.

Description

유체 캐비테이션 연마재 표면 마감을 위한 방법 및 장치{METHOD AND APPARATUS FOR FLUID CAVITATION ABRASIVE SURFACE FINISHING}
본 개시내용은 표면 마감에 관한 것이다. 보다 구체적으로, 개시된 실시예들은 캐비테이팅(cavitate)된 유체에 의한 절삭(subtractive) 재료 마감, 세정 및 피닝(peening)을 위한 시스템들 및 방법들에 관한 것이다.
집속 에너지 용착(directed energy deposition) 및 분말 베드 용융(powder bed melting)과 같은 적층 제조 방법들은 이전의 방법들로 제조하기에 실용적이지 않거나 실현 가능하지 않은 복잡한 형상들 및 피처들을 갖는 새로운 컴포넌트들의 효율적인 제조를 가능하게 했다. 그러나 적층 제조로 만들어진 제품들에 대한 결과적인 표면 마감은 종래의 제조 방법들로 생산된 부품들보다 더 거칠다. 전자 빔 분말 베드 용융은 일반적인 구조용 항공기 컴포넌트들에 필요한 매끈한 마무리의 10배보다 높은 1,000μM 이상의 표면 거칠기 평균(Ra: roughness average)을 생성할 수 있다. 기계 가공은 복잡한 적층 제조 컴포넌트들에 대해서는 엄청난 비용이 소요되거나 가능하지 않으며, 그릿 블라스팅(grit blasting), 화학 밀링(chemical milling) 및 숏 피닝(shot peening)과 같은 표면 마감 방법들은 표면 거칠기를 충분히 개선하지 못한다.
캐비테이션 피닝은 표면을 기계적으로 처리하는 유망한 새로운 방법이다. 유속의 증가로 인해 발생하는 기체상(gas phase)으로의 전이에 의해 유체 내에 캐비테이션 기포들이 형성되고, 이들은 이후에 유속이 감소함에 따라 붕괴된다. 캐비테이션 기포가 붕괴되면, 일부 예들에서는 1,500m/s의 속도를 가질 수 있는 마이크로 제트(micro-jet)가 발생된다. Soyama US6855208 B1에 개시된 바와 같이, 물에 고속 워터 제트를 주입하거나 캐비테이팅 제트(cavitating jet)를 주입하는 것은 캐비테이션 무리(cloud)를 발생시킨다. 캐비테이션 기포들은 와류 내에서 움직이며, 결과적인 마이크로 제트들의 다방향 충격들은 숏 피닝보다 표면을 더 단단하게 만든다. 그러나 캐비테이션 피닝이 세정하고 피로 강도를 향상시키기는 하지만, 많은 애플리케이션들에 대해 표면 거칠기가 충분히 개선되지는 않는다.
가공물의 표면으로부터 재료를 제거하는 방법이 개시된다. 이 방법은 복수의 캐비테이션 기포들의 형성을 가능하게 하는 유량 및 압력으로 유체의 흐름을 가공물 쪽으로 배출한 다음, 기포들 내에 또는 기포들 주위에 연마용 매질을 삽입하는 단계를 포함한다. 이 방법은 캐비테이션 기포들과 연마용 매질의 혼합물을 형성한 다음, 혼합물을 가공물의 표면 쪽으로 향하게 하는 단계를 포함할 수 있다. 이 방법은 캐비테이션 기포들로 연마용 매질을 여기시키고, 캐비테이션 기포들과 연마용 매질, 그리고 가공물의 표면 사이의 상호 작용에 의해 가공물로부터 재료를 제거하는 단계를 포함한다.
가공물로부터 재료를 제거하기 위한 장치가 또한 개시된다. 이 장치는 유체 흐름 디바이스 및 연마용 매질 분배 디바이스를 포함한다. 유체 흐름 디바이스는 노즐을 통해 유체를 펌핑하여 복수의 캐비테이션 기포들을 발생시키도록 구성된다. 연마용 매질 분배 디바이스는 연마용 매질을 캐비테이션 기포들에 전달하도록 구성된다.
본 개시내용은 가공물로부터 재료를 제거하기 위한 방법 및 장치를 제공한다. 일부 실시예들에서, 이 방법은 복수의 캐비테이션 기포들을 형성하는 단계, 및 연마용 매질을 기포들에 삽입하는 단계를 포함할 수 있다. 일부 실시예들에서, 이 방법은 캐비테이션 기포들과 연마용 매질의 혼합물을 형성하는 단계를 포함할 수 있다. 일부 실시예들에서, 이 장치는 유체 흐름 디바이스 및 연마용 매질 분배 디바이스를 포함할 수 있다. 특징들, 기능들 및 이점들은 본 개시내용의 다양한 실시예들에서는 독립적으로 달성될 수 있거나 또 다른 실시예들에서는 결합될 수 있는데, 이들의 추가 세부사항들은 다음 설명 및 도면들과 관련하여 확인될 수 있다.
도 1a는 기계 가공 프로세스에 의해 생성된 제트 엔진 나셀(jet engine nacelle) 압축 패드의 등각도이다.
도 1b는 적층 제조 프로세스에 의해 생성된 제트 엔진 나셀 압축 패드의 등각도이다.
도 2는 유체 캐비테이션 연마재 표면 마감 장치의 일례의 블록도이다.
도 3은 연마용 매질 공급원의 일례의 개략적인 예시이다.
도 4는 도 2에 도시된 타입의 장치에 의한 연마재 캐비테이션 무리의 발생의 개략적인 예시이다.
도 5는 도 4의 연마재 캐비테이션 무리에서 표면 마감을 겪는 가공물의 개략적인 예시이다.
도 6은 유체 캐비테이션 연마재 표면 마감 장치의 다른 예의 블록도이다.
도 7은 도 6에 도시된 타입의 장치에 의한 마감을 겪는 표면의 개략적인 예시이다.
도 8a - 도 8d는 가공물의 표면으로부터 표면 거칠기를 제거하는데 사용되는 서로 다른 크기들의 연마용 매질의 개략적인 도면들이다.
도 9는 재료 제거 방법을 예시하는 흐름도이다.
개요
유체 흐름 디바이스 및 연마용 매질을 갖는 표면 마감 방법 및 장치의 다양한 실시예들이 하기에서 설명되고 연관된 도면들에 예시된다. 달리 명시되지 않는 한, 표면 마감 장치 및/또는 이 장치의 다양한 컴포넌트들은 본 명세서에서 설명, 예시 및/또는 통합되는 구조, 컴포넌트들, 기능 및/또는 변형들 중 적어도 하나를 포함할 수 있지만 이것이 요구되는 것은 아니다. 더욱이, 본 교시들과 관련하여 본 명세서에서 설명, 예시 및/또는 통합된 구조들, 컴포넌트들, 기능들 및/또는 변형들은 다른 표면 마감 장치들에 포함될 수 있지만 이것이 요구되는 것은 아니다. 다양한 실시예들의 다음 설명은 본질적으로 단지 예시일 뿐이며, 본 개시내용, 그 적용 또는 용도들을 결코 제한하는 것으로 의도되지 않는다. 추가로, 하기에서 설명되는 바와 같이, 실시예들에 의해 제공되는 이점들은 본질적으로 예시이며, 모든 실시예들이 동일한 이점들 또는 동일한 정도의 이점들을 제공하는 것은 아니다.
도 1a는 티타늄 블록을 기계 가공함으로써 제조된 제트 엔진 나셀 압축 패드(2)를 도시한다. 패드에 대한 원재료는 무게가 약 15 파운드이지만, 도시된 완성된 컴포넌트는 무게가 단지 1.5 파운드에 불과할 수 있다. 대조적으로, 도 1b는 적층 제조에 의해 생산된 동일한 제트 엔진 나셀에 대한 압축 패드(4)를 도시한다. 모든 원재료가 이 설계에 사용될 수 있으며, 설계 유연성은 보다 구조적으로 효율적인 구성을 가능하게 할 수 있다.
그러나 만들어진 바와 같이, 도 1b에 도시된 압축 패드는 엔진의 구조 부품으로서 사용하기에는 적합하지 않다. 적층 제조 프로세스는 1,000μM 이상의 표면 거칠기 평균(Ra)을 발생시킨다. 압축 패드는 기계 가공에 엄청난 비용이 소요되거나 심지어 기계 가공이 불가능할 수 있는 그러한 복잡도로 설계되었다는 점이 주목되어야 한다.
적층 제조가 제공하는 제조 효율 및 설계 자유도의 향상은 비용을 줄이고 새로운 기술들을 가능하게 하기 위해 다양한 분야들에 걸쳐 매우 바람직하다. 표면 거칠기는 그러한 기술들의 채택에 대한 주요 장애물인데, 이는 유체 캐비테이션 연마재 표면 마감에 의해 극복될 수 있다.
예들, 컴포넌트들 및 대안들
다음 섹션들은 가공물로부터 재료를 제거하기 위한 예시적인 장치들뿐만 아니라, 관련 시스템들 및/또는 방법들의 선택된 양상들을 설명한다. 이러한 섹션들의 예들은 예시를 위해 의도된 것이며, 본 개시내용의 전체 범위를 한정하는 것으로 해석되지 않아야 한다. 각각의 섹션은 하나 또는 그보다 많은 별개의 발명들, 그리고/또는 맥락 또는 관련 정보, 기능 및/또는 구조를 포함할 수 있다.
예 1:
도 2는 일반적으로 10으로 표시된 유체 캐비테이션 연마재 표면 마감을 위한 예시적인 장치의 블록도이다. 고압 펌프(12)는 도관(16)을 따라 가압수(14)를 공급한다. 분기 도관(18)은 제어 밸브(20)에 의해 조절된다. 제어 밸브의 이러한 배치는 도관(16)을 따라 노즐(22)에 공급되는 물의 압력 및 유량의 정밀한 제어를 가능하게 한다.
노즐(22)은 물(26)로 채워진 가압 탱크(24) 내에 배치된다. 탱크(24)의 뚜껑(28)은 탱크로부터 집수 용기(30)로의 범람을 가능하게 하도록 개방될 수 있다. 뚜껑은 스프링에 의해 탱크(24)에 결합될 수 있거나, 탱크 내의 압력을 유지하기 위해 추로 압박될 수 있다. 물은 또한 제어 밸브(34)에 의해 조절되는 도관(32)을 따라 탱크(24)로부터 배출된다.
고압수(14)가 탱크(24)에 잠긴 가공물(36) 쪽으로 향하게 된 캐비테이팅 제트로서 노즐(22)에 의해 탱크(24)의 물(26)에 주입된다. 캐비테이팅 제트와 물(26) 사이의 상호 작용은 복수의 캐비테이션 기포들을 포함하는, 소용돌이치는 캐비테이션 무리(38)를 형성한다. 가공물(36)은 캐비테이션 무리(38)가 가공물의 일부 또는 전부를 둘러싸도록 배치될 수 있으며, 붕괴되는 캐비테이션 기포들이 가공물의 표면에 충돌한다. 캐비테이션 기포의 붕괴 충격력은 부분적으로는, 주입된 물(14)의 압력, 탱크(24) 내의 물(26)의 압력, 두 압력들 사이의 비율, 및 탱크(24)의 물(26)과 물(14)의 온도에 의해 결정된다. 고압수(14)는 제곱인치당 50 내지 10,000 파운드, 또는 임의의 유효 압력일 수 있다. 바람직하게는, 물(14)은 탱크(24)의 물(26)이 대기압에 있을 때 제곱인치당 대략 4,000 파운드에 있을 수 있다.
이러한 파라미터들을 최적화하기 위해, 압력 및 온도 센서가 탱크(24)에 또는 도관들(16, 18 또는 32) 중 어느 하나에 포함될 수 있다. 고압 펌프(12) 및 온도 제어 시스템뿐만 아니라 제어 밸브들(20, 34) 및 뚜껑(28)도 전자 제어기 또는 다른 그러한 컴포넌트에 연결되어, 장치(10) 전체에 걸쳐 압력 및 온도 조건의 정밀하고 조율된 제어를 가능하게 할 수 있다.
도시된 예에서, 캐비테이팅된 유체는 물이다. 그러나 임의의 원하는 유체가 사용될 수 있다. 사용된 유체의 점도와 같은 성질들은 캐비테이션 기포들의 붕괴력에 영향을 줄 수 있으며, 유체는 충격을 개선하거나 원하는 충격 수준에 필요한 압력을 감소시키도록 선택될 수 있다. 임의의 효과적인 유체 흐름 디바이스가 노즐(22)을 통해 가압 유체를 펌핑하는 데 사용될 수 있다.
도 2에 도시된 바와 같이, 연마용 매질(40)이 노즐(22)과 가공물(36) 사이의 캐비테이션 무리(38)에 삽입된다. 연마용 매질은 호퍼(hopper) 또는 연마용 매질 공급원(44)으로부터 도관(42)에 의해 공급된다. 공급원(44)의 일례가 도 3에 보다 상세히 도시된다. 공급원은 다수의 호퍼들(48)을 갖는 밀폐된 구획(46)을 포함하는데, 각각의 호퍼는 서로 다른 타입의 연마용 매질 또는 연마 재료를 수용한다. 도시된 예에서, 구획(46)은 그릿 크기가 감소하는 6개의 연마용 매질들을 갖는 6개의 호퍼들을 포함한다. 공급원(44)은 임의의 원하는 타입들의 매질들 또는 임의의 원하는 수의 타입들의 매질들을 포함할 수 있다. 매질들은 임의의 그릿 크기, 바람직하게는 약 16 내지 1200 ANSI 그릿 크기의 범위 이내일 수 있다.
각각의 호퍼(48)는 원하는 매질을 도관(42)에 삽입하기 위해 개방될 수 있는 호퍼 도어(50)를 포함한다. 도어(50)는 수동으로 제어될 수 있거나, 장치(10)의 다른 컴포넌트들과 통합된 전자 제어기에 의해 작동될 수 있다. 서로 다른 매질들의 전달 사이에서 전이할 수 있는 다른 간단한 전환 메커니즘들이 존재하며, 임의의 효과적인 메커니즘이 사용될 수 있다.
공기 호스(52)가 공급원(44)에 연결되어, 밀폐된 구획(46)을 가압한다. 이로써 연마용 매질(40)이 보다 자유롭고 쉽게 흐를 수 있고, 도관(42) 내로 그리고 도관(42)을 따라 가압될 수 있다. 일부 예들에서는, 밀폐된 구획(46)을 가압하기 위해 물 또는 다른 유체가 공기 대신에 사용될 수 있다. 다른 예들에서는, 연마용 매질(40)이 도관(42)을 통해 이동하는 것을 유도하기 위해 밀대(push-rod)와 같은 메커니즘이 사용될 수 있다. 연마용 매질은 느슨할 수 있거나 페이스트, 또는 현탁액의 형태일 수 있다.
도관(42)은 또한 도 4에 도시된 바와 같이, 캐비테이션 무리(38)에 매질이 삽입되기 전에 매질에 회전 또는 소용돌이 운동을 유도하기 위한 코르크 스크류(corkscrew) 구조(54)를 포함한다. 일부 예들에서는, 연마용 매질(40)이 무리에 삽입되고 있는 동안 도관(42)이 캐비테이션 무리(38)에 대해 회전되거나 아니면 달리 움직이게 될 수 있다.
가이드 파이프(58)에 배치된 노즐 캡(56)을 포함하는 노즐(22)이 도 4에 보다 상세히 도시된다. 캐비테이터(60)가 스페이서(64)만큼 노즐 플레이트(62)로부터 이격되고, 노즐(22)을 통한 고압수(14)의 흐름을 변화시키도록 노즐 캡(56) 내에 위치된다. 물(14)의 유량의 변화 및 탱크 물(26)과의 상호 작용이 캐비테이션 무리(38)를 야기할 수 있다. 무리를 포함하는 복수의 캐비테이션 기포들은 와류 또는 토네이도와 같은 형상으로 소용돌이칠 수 있다.
연마용 매질 공급원(44)으로부터의 도관(42)은 연마용 매질(40)의 복수의 입자들(66)을 캐비테이션 무리(38)에 삽입한다. 연마용 매질(40)은 캐비테이션 무리로부터 속도, 운동량 및 운동 에너지를 얻고 캐비테이션 기포들과 혼합할 수 있다. 도시된 예에서, 연마용 매질(40)은 도관(42)의 말단부에 외부로 발산하는 표면들의 적어도 일부를 갖는 광각 노즐(68)에 의해 삽입된다. 도 3에 도시된 바와 같이, 연마용 매질(40)은 캐비테이션 무리(38)와의 혼합을 가능하게 하도록 코르크 스크류(54)에 의해 회전된다. 광각 노즐(68)은 가이드 파이프(58)의 단부 부근에 배치되어 연마용 매질(40)로 캐비테이션 무리(38)의 가능한 최대 부분을 포화시킨다.
다른 예들에서, 연마용 매질(40)은 무리 주위에 분포된 위치들에 배치된 다수의 도관들에 의해 캐비테이션 무리(38)에 공급될 수 있다. 도 4에서, 노즐(68)은 가이드 파이프(58)에 의해 한정된 축에 대해 예각으로 배향된 것으로 도시된다. 다른 예들에서, 노즐(68)은 축에 수직으로 또는 경사각으로 배향될 수 있다. 임의의 타입의 노즐이 도관(42)에 사용될 수 있다. 공급원(44)은 또한, 장치(10)에 사용되는 연마용 매질을 위한 임의의 적절한 전달 시스템 또는 분배 디바이스를 포함할 수 있다.
도시된 예에서, 연마용 매질(40)은 캐비테이션 무리(38)의 에지에서, 소용돌이치는 캐비테이션 기포들에 삽입된다. 다른 예들에서, 연마용 매질(40)은 캐비테이션 무리(38)의 중심 부근에, 또는 캐비테이션 무리(38) 바로 외측의 탱크(24)의 물(26)로, 또는 연마용 매질과 캐비테이션 기포들의 효과적인 혼합을 촉진하는 임의의 지점에 삽입될 수 있다.
도 5는 캐비테이션 기포들과 연마용 매질(40)의 소용돌이치는 혼합물 내에서 스테이지(70)에 의해 지지되는 가공물(36)을 도시한다. 도 5에 도시되지 않은 노즐(22)은 스테이지(70) 쪽으로 향하게 될 수 있다. 혼합물의 기포들이 붕괴될 때, 매질의 입자들(66)이 여기되고 활성화될 수 있다. 기포들을 붕괴시킴으로써 생성된 마이크로 제트들은 입자들(66)의 운동을 집합적으로 가속화할 수 있다. 기포들과 매질의 혼합물이 가공물(36)의 거친 표면(72)과 접촉할 때, 입자들(66)이 표면에 충돌하여 재료를 제거할 수 있다. 즉, 연마용 매질(40)은 캐비테이션 무리의 높은 힘들에 의해 거친 표면(72)을 매끄럽게 하도록 작용하게 될 수 있다. 캐비테이션 무리(38)의 소용돌이 및 다방향 운동은 연마용 매질(40)을 타이트한 모서리들, 틈들 및 표면(72)의 내부 피처들뿐만 아니라 노출된 상부 영역들과 접촉시킬 수 있다.
캐비테이션 기포들이 가공물(36)의 표면(72)과 직접 상호 작용할 때, 통상적인 캐비테이션 피닝이 또한 발생할 수 있다. 표면(72)이 이로써 피닝되어, 잔류 응력 및 피로 강도를 개선하고, 세척되어 도장 또는 사용이 준비될 수 있다.
예 2:
도 6은 일반적으로 110으로 표시된 유체 캐비테이션 연마재 표면 마감을 위한 다른 예시적인 장치의 블록도이다. 앞서 설명한 장치(10)와 유사한 컴포넌트들은 대응하는 참조 번호들로 표기된다. 도시된 바와 같이, 고압 펌프(112)는 도관(116)을 따라 가압수(114)를 노즐(122)에 공급한다. 분기 도관(118)은 제어 밸브(120)에 의해 조절된다.
노즐(122)은 공기 환경에 배치되는 가공물(136) 쪽으로 향하게 되어 있다. 노즐은 2개의 물 스트림들, 고압 내부 캐비테이션 제트 및 저압 외부 제트를 전달한다. 이로써, 동축류(co-flow) 노즐로 지칭될 수 있는 노즐(22)에 의해 캐비테이션 무리(138)가 발생될 수 있다.
연마용 매질(140)이 노즐(122)과 가공물(136) 사이의 캐비테이션 무리(138)에 삽입된다. 연마용 매질은 공급원(144)으로부터 도관(142)에 의해 공급된다. 도 7은 캐비테이션 기포들과 연마용 매질(140)의 결과적인 혼합물을 보다 상세하게 예시한다.
도 7에 도시된 바와 같이, 동축류 노즐(122)은 내부 캐비테이팅 제트(176)를 발생시키기 위한 내부 노즐(174) 및 저압 외부 제트(180)를 발생시키기 위한 외부 노즐(178)을 포함한다. 내부 노즐(174)은 고압수(114)의 흐름을 변화시키고 캐비테이션 무리(138)를 발생시키도록 캐비테이터(160), 스페이서(164) 및 노즐 플레이트(162)를 포함하는 한편, 외부 노즐(178)은 외부 제트(180)에 대한 물(114)의 압력을 낮추기에 적합한 기하학적 구조를 갖는다. 즉, 내부 노즐(174)은 캐비테이팅 제트(176)에 대한 내부 채널을 한정하며, 외부 채널은 내부 노즐(174)과 외부 노즐(178) 사이에 한정된 외부 제트(180)에 대한 것이다. 일부 예들에서, 동축류 노즐(122)에는 도 6에 도시된 바와 같이 펌프(112)로부터의 고압수(114) 외에도, 저압수가 개별적으로 공급될 수 있다.
도 7을 다시 참조하면, 캐비테이션 제트(176) 및 외부 제트(180)가 동축류 노즐(122)을 떠날 때, 외부 제트가 캐비테이팅 제트 및 결과적인 캐비테이션 무리(138)를 실질적으로 둘러싸는 물 또는 유체 환경의 셸을 형성한다. 연마용 매질(140)이 광각 노즐(168)에 의해 삽입되며, 무리에 의해 활성화된다. 가공물(136)의 거친 표면(172)의 일부는 연마용 매질(140) 및 캐비테이션 무리(138)에 의해 마무리되고 피닝될 수 있다.
일부 예들에서, 장치(110)는 고정되거나 정지된 상태로 사용되도록 구성될 수 있다. 가공물(136)은 캐비테이션 무리(138)에 완전히 둘러싸일 수 있다. 대안으로, 가공물(136)은 표면 마감이 완료될 때 캐비테이션 무리(138)에 표면(172)의 새로운 부분들을 가져오도록 이동 스테이지에 의해 지지될 수 있다. 다른 예들에서, 장치(110)는 지팡이 또는 다른 이동 가능한 구조에 통합되어, 조작자가 원하는 대로 노즐(122)을 지향시키게 할 수 있다.
일부 예들에서, 장치(110)는 스폿 처리 또는 수리 작업의 마무리에 적절할 수 있다. 이 장치는 작업 현장으로의 운반을 위해 구성될 수 있거나, 다양한 외부 시스템들로부터 가압수를 받기 위한 어댑터 또는 커넥터를 포함할 수 있거나, 아니면 휴대용으로 만들어질 수 있다. 다른 예들에서, 장치(110)는 가공물들을 유체 탱크에 잠기게 하는 것에 엄청난 비용이 소요될 대규모 프로젝트들에서 사용하기에 적합할 수 있다.
예 3:
도 8a - 도 8d는 다단계 유체 캐비테이션 연마재 표면 마감 프로세스를 거치는 표면(210)을 예시한다. 도 8a에서, 캐비테이션 무리에 의해 활성화되는 제1 연마용 매질(212)이 표면(210)의 돌출 피크들(214)과 상호 작용하여, 표면으로부터 재료를 제거하고 피크들을 낮춘다.
도 8b는 어느 정도 매끄럽게 된 표면(210)과 상호 작용하는 제2 연마용 매질(216)을 도시한다. 제2 매질(216)은 제1 매질(212)보다 더 작은 그릿 크기를 가져, 활성화된 매질이 표면(210)을 더 매끄럽게 하고 돌출 피크들(214)을 줄일 수 있게 한다. 마찬가지로, 도 8c에 도시된 바와 같이, 제3 연마용 매질(218)은 추가 재료를 제거하고 표면(210)을 더 매끄럽게 한다. 마지막으로, 도 8d에 도시된 바와 같이, 표면(210)은 원하는 수준의 평활도로 마무리되었다. 임의의 수의 서로 다른 매질들이 임의의 수의 단계들에서 이러한 다단계 프로세스에 사용될 수 있다.
연마용 매질들(212, 216, 218)은 임의의 그릿 크기의 임의의 유효 재료의 입자들을 포함할 수 있거나, 재료들의 혼합물을 포함할 수 있다. 예를 들어, 매질은 금속, 유리, 세라믹, 실리카 옥사이드, 알루미늄 옥사이드, 부석(pumice), 견과의 껍질들, 옥수수의 속대 또는 플라스틱 연마 입자들을 포함할 수 있다. 각각의 매질은 바람직하게는 약 16 내지 1200 ANSI 그릿 크기의 범위 내의 입자들을 포함할 수 있다.
앞서 논의되고 도 3에 도시된 바와 같이, 연마용 매질 공급원(44)은 다수의 연마용 매질을 전달하도록 구성될 수 있다. 매질들 간의 전이는 조작자에 의해 제어될 수 있거나, 정기적이거나, 센서에 의해 작동되거나, 아니면 자동 다단계 유체 캐비테이션 연마재 표면 마감 프로세스의 일부로서 트리거될 수 있다.
매질들의 가장 효과적인 조합은 마감될 특정 표면의 재료 및 거칠기에 기초하여 공급원(44)에서 이용 가능한 복수의 재료들로부터 선택될 수 있다. 대안으로, 공급원(44)에는 처리시 특정 표면에 대한 적절한 매질이 비축될 수 있다. 예를 들어 Ra 100μM의 금속 표면은 100 및 500 그릿 크기들의 유리 연마재로 마무리될 수 있는 한편, Ra 1,000μM의 플라스틱 표면은 10 그릿 크기의 견과 껍질 연마재들, 그리고 그 다음에는 50 및 100의 그릿 크기들의 비석 연마재들로 마무리될 수 있다.
동작/사용 방식
도 9는 표면 마감을 위한, 일반적으로 300으로 표시된 방법의 다수의 단계들을 설명한다. 방법(300)은 도 1 - 도 8을 참조하여 설명된 장치들, 노즐들 또는 프로세스들 중 임의의 것과 함께 사용될 수 있다. 방법(300)의 다양한 단계들이 아래에서 설명되고 도 9에 도시되지만, 단계들이 반드시 모두 수행될 필요는 없으며, 어떤 경우들에는 도시된 순서와는 다른 순서로 수행될 수 있고, 어떤 경우들에는 동시에 수행될 수 있다.
방법(300)의 제1 단계(302)는 유체 환경에서 유체의 흐름을 가공물 쪽으로 배출하는 단계를 포함한다. 유체는 복수의 캐비테이션 기포들을 형성하는 것을 포함하는 단계(304)를 가능하게 하는 압력 및 유량으로 배출될 수 있다. 유체는 캐비테이션 기포들의 무리를 발생시키는 방식으로 압력 및 유량을 변경하도록 구성된 노즐로부터 배출될 수 있다.
유체는 바람직하게는 제곱인치당 50 내지 10,000 파운드의 높은 압력으로 배출될 수 있다. 배출된 유체 및 유체 환경 중 어느 하나 또는 둘 다는 물일 수 있다.
유체 환경은 탱크에 함유된 유체의 본체일 수 있으며, 또한 압력 하에 있을 수 있다. 이러한 경우, 가공물은 탱크에 잠길 수 있다. 대안으로, 유체의 흐름을 배출하는 것은 제1 압력에서 제1 유체 스트림을 그리고 더 낮은 제2 압력에서 제2 유체 스트림을 펌핑하는 것을 더 포함할 수 있다. 제1 유체 스트림은 제2 유체 스트림에 의해 함유될 수 있으며, 이는 유체 환경을 형성할 수 있다.
유체의 흐름을 가공물 쪽으로 배출하는 것은 캐비테이션 기포들의 발생된 무리로 가공물을 둘러싸는 것을 포함할 수 있거나, 가공물의 표면의 일부로 흐름을 유도하는 것을 포함할 수 있다. 가공물은 스테이지에 의해 지지될 수 있고, 노즐은 스테이지 또는 가공물 쪽으로 향하게 될 수 있다.
방법(300)의 단계(306)는 복수의 캐비테이션 기포들에 연마용 매질을 삽입하는 단계를 포함한다. 연마용 매질을 삽입하는 것은 캐비테이션 기포들과 연마용 매질의 혼합물을 형성할 수 있으며, 이는 가공물 쪽으로 향하게 된다.
연마용 매질은 공급원으로부터 이어지는 도관을 통해 보내질 수 있고, 도관 내의 코르크 스크류 구조를 통해 이동할 수 있다. 그런 다음, 매질은 도관의 말단부에서 광각 노즐을 통해 분산될 수 있으며, 노즐은 캐비테이션 기포들 쪽으로 향하게 된다. 도관은 연마용 매질이 삽입될 때 회전하거나 달리 움직일 수 있다. 연마용 매질 공급원은 가압되어 도관을 통한 연마용 매질의 이동을 유도할 수 있다. 일부 예들에서, 연마용 매질은 연마용 매질 공급원으로부터 또는 다수의 공급원들로부터의 다수의 도관들을 통해 보내질 수 있다.
연마용 매질은 금속, 유리, 세라믹, 실리카 옥사이드, 알루미늄 옥사이드, 부석, 견과의 껍질들, 옥수수의 속대 및 플라스틱 연마재들 중 하나 이상으로 된 입자들을 포함할 수 있다. 바람직하게는, 포함된 입자는 약 16 내지 1200 ANSI 그릿 크기의 치수 범위 이내일 수 있다. 임의의 효과적인 연마용 매질, 매질들의 조합, 또는 매질들이나 입자들의 혼합물이 사용될 수 있다. 일부 예들에서, 연마용 매질을 삽입하는 단계(306)는 그릿 크기들이 감소하는 일련의 연마용 매질들에 대해 반복될 수 있다.
단계(308)는 캐비테이션 기포들로 연마용 매질을 여기시키는 단계를 포함한다. 캐비테이션 기포들에 의해 형성된 캐비테이션 무리는 속도, 운동량 및 운동 에너지를 연마용 매질에 전달하는 소용돌이, 와류 운동을 가질 수 있다. 캐비테이션 기포들은 또한 붕괴될 수 있는데, 이는 충돌시 가공물의 표면으로부터 재료를 제거할 높은 속도 및 충분한 운동 에너지를 달성하도록 연마용 매질의 운동을 집합적으로 가속화할 수 있으며, 이로써 가공물로부터 재료를 제거하는 단계를 포함하는 방법(300)의 단계(310)를 가능하게 할 수 있다.
캐비테이션 무리와 기포가 연마용 매질에 소용돌이 및 다방향 운동을 가하기 때문에, 가공물의 타이트한 모서리들, 틈들 및 내부 피처들로부터 재료가 제거될 수 있다. 캐비테이션 기포들은 가공물의 표면의 캐비테이션 피닝 및 세정을 추가로 수행할 수 있다.
추가 예들
이 섹션은 일련의 단락들로서 제한 없이 제시된 예들의 추가 양상들 및 특징들을 설명하는데, 일련의 단락들의 일부 또는 전부는 명확성 및 효율성을 위해 영숫자로 표기될 수 있다. 이러한 단락들 각각은 하나 또는 그보다 많은 다른 단락들 그리고/또는 이 출원의 다른 곳으로부터의 개시내용과 임의의 적절한 방식으로 결합될 수 있다. 아래의 단락들 중 일부는 적절한 결합들 중 일부 결합들의 예들을 제한 없이 제공하면서 다른 단락들을 명시적으로 참조하고 추가로 제한한다.
A. 재료 제거 방법은:
복수의 캐비테이션 기포들의 형성을 가능하게 하는 유량 및 압력으로 유체의 흐름을 가공물 쪽으로 배출하는 단계,
복수의 캐비테이션 기포들에 연마용 매질을 삽입하는 단계,
캐비테이션 기포들로 연마용 매질을 여기시키는 단계, 및 연마용 매질을 갖는 캐비테이션 기포들과 가공물의 표면 사이의 상호 작용에 기초하여 가공물로부터 재료를 제거하는 단계를 포함한다.
A1. A의 방법에서, 이 방법은 유체 환경에서 실행된다.
A2. A1의 방법에서, 유체 환경은 탱크에 함유된 유체의 본체이다.
A3. A1의 방법에서, 배출하는 단계는 제1 압력 레벨로 제1 유체 스트림을 펌핑하는 단계를 포함하고, 유체 환경은 제2 압력 레벨의, 제1 스트림을 둘러싸는 제2 유체 스트림을 포함하며, 제2 압력 레벨은 제1 압력 레벨보다 더 낮다.
A4. A의 방법에서, 유체는 물을 포함한다.
A5. A의 방법에서, 삽입하는 단계는 연마용 매질을 공급원으로부터 복수의 캐비테이션 기포들로 보내는 단계를 포함한다.
A6. A의 방법에서, 연마용 매질은 (a) 금속, (b) 유리, (c) 세라믹, (d) 실리카 옥사이드, (e) 알루미늄 옥사이드, (f) 부석, (g) 견과의 껍질들, (h) 옥수수의 속대 및 (i) 플라스틱 연마재들 중 하나 이상을 포함하는 입자들을 포함한다.
A7. A의 방법에서, 연마용 매질은 약 16 내지 1200 ANSI 그릿 크기의 치수 범위 내의 입자들을 포함한다.
A8. A의 방법은:
연마용 매질의 공급원으로부터 복수의 캐비테이션 기포들로 이어지는 도관을 통해 연마용 매질을 보내는 단계를 더 포함한다.
A9. A8의 방법은:
삽입하는 단계 동안 도관을 회전시키거나 도관의 움직임을 다르게 작동시키는 단계를 더 포함한다.
A10. A9의 방법은:
도관 내의 코르크 스크류 구조를 통해 연마용 매질을 이동시키는 단계를 더 포함한다.
A11. A8의 방법은:
도관의 말단부에서 광각 노즐을 통해 연마용 매질을 분산시키는 단계를 더 포함한다.
A12. A의 방법은:
복수의 도관들을 통해 연마용 매질을 복수의 캐비테이션 기포들로 보내는 단계를 더 포함한다.
A13. A의 방법에서, 배출하는 단계는 제곱인치당 50 내지 10,000 파운드 범위의 압력으로 수행된다.
B. 재료 제거 방법은:
캐비테이션 기포들과 연마용 매질의 혼합물을 형성하는 단계, 및
혼합물을 표면 쪽으로 향하게 함으로써 가공물 상의 표면으로부터 재료를 제거하는 단계를 포함한다.
B1. B의 방법은:
가공물로 향하게 된 노즐을 통해 고압으로 유체를 배출하는 단계, 및
배출하는 단계에 의해 발생된 캐비테이션 기포들에 연마용 매질을 삽입하는 단계를 포함한다.
B2. B1의 방법에서, 삽입하는 단계는 캐비테이션 기포들 쪽으로 향하게 된 광각 노즐을 통해 연마용 매질을 분산시키는 단계를 포함한다.
C. 가공물로부터 재료를 제거하기 위한 장치는:
노즐을 통해 유체를 펌핑하여, 가공물 쪽으로 향하게 된 복수의 캐비테이션 기포들을 발생시키도록 구성된 유체 흐름 디바이스, 및
유체 흐름 디바이스에 의해 발생된 캐비테이션 기포들에 연마용 매질을 전달하도록 구성된 연마용 매질 분배 디바이스를 포함한다.
C1. C의 장치는:
유체의 본체를 수용하기 위한 탱크, 및
유체의 본체 내에 가공물을 지지하기 위한 스테이지를 더 포함하며, 유체 흐름 디바이스는 스테이지 쪽으로 향하게 된다.
C2. C의 장치에서, 유체 흐름 디바이스는, 복수의 캐비테이션 기포들을 발생시키기에 충분한 제1 압력 레벨로 제1 유체 스트림을 공급하도록 구성된 내부 채널, 및 제2 압력 레벨로 제2 유체 스트림을 공급하도록 구성된 외부 채널을 갖는 노즐을 포함하며, 제2 압력 레벨은 제1 압력 레벨보다 더 낮고, 제2 유체 스트림은 제1 유체 스트림을 실질적으로 둘러싼다.
이점들, 특징들, 이익들
본 명세서에서 설명한 표면 마감을 위한 방법들 및 장치들의 서로 다른 실시예들은 마감 재료 표면들에 대한 공지된 해결책들에 비해 여러 가지 이점들을 제공한다. 예를 들어, 본 명세서에서 설명한 방법의 예시적인 실시예들은 복잡하고 불규칙적인 형상의 표면들의 마감을 가능하게 한다. 추가로, 그리고 다른 이익들 중에서도, 본 명세서에서 설명한 방법의 예시적인 실시예들은 표면이 하나의 프로세스로 매끄럽게 되고, 세정되며, 피닝될 수 있게 한다. 어떠한 공지된 시스템이나 디바이스도 이러한 기능들을, 특히 이러한 넓은 범위의 표면 형상들 및 재료들에 대해 수행할 수 없다. 따라서 본 명세서에서 설명한 실시예들은 적층 제조에 의해 생산된 마감 부품들을 마무리하는 데 특히 유용하다. 그러나 본 명세서에서 설명한 모든 실시예들이 동일한 이점들 또는 동일한 정도의 이점을 제공하는 것은 아니다.
결론
위에서 제시된 개시내용은 독립적인 유용성을 갖는 다수의 개별 발명들을 포괄할 수 있다. 이러한 발명들 각각은 각자의 바람직한 형태(들)로 개시되었지만, 본 명세서에서 개시되고 예시된 그 특정 실시예들은, 많은 변형들이 가능하기 때문에 제한적인 의미로 고려되어서는 안 된다. 이 개시내용 내에서 섹션 제목들이 사용되는 경우에, 이러한 제목들은 조직적인 목적들만을 위한 것이며, 어떠한 청구된 발명의 특징을 구성하는 것도 아니다. 본 발명(들)의 청구 대상은 본 명세서에 개시된 다양한 엘리먼트들, 특징들, 기능들 및/또는 특성들의 모든 신규한 그리고 명백하지 않은 결합들 및 하위 결합들을 포함한다. 다음의 청구항들은 특히 신규한 그리고 명백하지 않은 것으로 여겨지는 특정 결합들 및 하위 결합들을 지적한다. 특징들, 기능들, 엘리먼트들 및/또는 특성들의 다른 결합들 및 하위 결합들로 구현된 발명(들)은 이러한 또는 관련 출원으로부터의 우선권을 주장하는 출원들에서 청구될 수 있다. 이러한 청구항들은, 서로 다른 발명에 관한 것이든 아니면 동일한 발명에 관한 것이든, 그리고 원래의 청구항들에 대해 범위가 더 넓든, 더 좁든, 동일하든 아니면 상이하든, 본 개시내용의 발명(들)의 청구 대상 내에 포함되는 것으로 또한 간주된다.

Claims (15)

  1. 재료 제거 방법으로서,
    노즐의 하류 및 외부로 복수의 캐비테이션(cavitation) 기포들의 형성을 가능하게 하는 유량 및 압력으로 유체의 흐름을 상기 노즐로부터 가공물 쪽으로 배출하는 단계,
    상기 노즐의 하류에서 연마용 매질을 상기 복수의 캐비테이션 기포들에 삽입하는 단계,
    상기 캐비테이션 기포들로 상기 연마용 매질을 여기시키는 단계, 및
    상기 연마용 매질을 갖는 상기 캐비테이션 기포들과 상기 가공물의 표면 사이의 상호 작용에 기초하여 상기 가공물로부터 재료를 제거하는 단계를 포함하는,
    재료 제거 방법.
  2. 제1 항에 있어서,
    상기 방법은 유체 환경에서 실행되는,
    재료 제거 방법.
  3. 제2 항에 있어서,
    상기 유체 환경은 탱크에 보유된 유체의 본체인,
    재료 제거 방법.
  4. 제1 항에 있어서,
    상기 배출하는 단계는 제1 유체 스트림을 제1 압력 레벨로 배출하고, 상기 제1 유체 스트림을 둘러싸는 제2 유체 스트림을 제2 압력 레벨로 배출하는 단계를 포함하며,
    상기 제2 압력 레벨은 상기 제1 압력 레벨보다 더 낮은,
    재료 제거 방법.
  5. 제1 항 내지 제4 항 중 어느 한 항에 있어서,
    상기 유체는 물을 포함하는,
    재료 제거 방법.
  6. 제1 항 내지 제4 항 중 어느 한 항에 있어서,
    상기 삽입하는 단계는 연마용 매질을 공급원으로부터 상기 복수의 캐비테이션 기포들로 보내는 단계를 포함하는,
    재료 제거 방법.
  7. 제1 항 내지 제4 항 중 어느 한 항에 있어서,
    상기 연마용 매질은 (a) 금속, (b) 유리, (c) 세라믹, (d) 실리카 옥사이드, (e) 알루미늄 옥사이드, (f) 부석(pumice), (g) 견과의 껍질들, (h) 옥수수의 속대 및 (i) 플라스틱 연마재들 중 하나 이상을 포함하는 입자들을 포함하는,
    재료 제거 방법.
  8. 제1 항 내지 제4 항 중 어느 한 항에 있어서,
    상기 연마용 매질은 16 내지 1200 ANSI 그릿 크기의 치수 범위 내의 입자들을 포함하는,
    재료 제거 방법.
  9. 제1 항 내지 제4 항 중 어느 한 항에 있어서,
    상기 연마용 매질의 공급원으로부터 상기 복수의 캐비테이션 기포들로 이어지는 도관을 통해 상기 연마용 매질을 보내는 단계를 더 포함하는,
    재료 제거 방법.
  10. 제9 항에 있어서,
    상기 삽입하는 단계 동안 상기 도관을 회전시키는 단계를 더 포함하는,
    재료 제거 방법.
  11. 제10 항에 있어서,
    상기 도관 내의 코르크 스크류 구조를 통해 상기 연마용 매질을 이동시키는 단계를 더 포함하는,
    재료 제거 방법.
  12. 제9 항에 있어서,
    상기 도관의 말단부에서 광각 노즐을 통해 상기 연마용 매질을 분산시키는 단계를 더 포함하는,
    재료 제거 방법.
  13. 제1 항 내지 제4 항 중 어느 한 항에 있어서,
    복수의 도관들을 통해 상기 연마용 매질을 상기 복수의 캐비테이션 기포들로 보내는 단계를 더 포함하는,
    재료 제거 방법.
  14. 제1 항 내지 제4 항 중 어느 한 항에 있어서,
    상기 배출하는 단계는 제곱인치당 50 내지 10,000 파운드 범위의 압력으로 수행되는,
    재료 제거 방법.
  15. 제1 항 내지 제4 항 중 어느 한 항의 방법을 수행하도록 동작 가능한,
    가공물로부터 재료를 제거하기 위한 장치.
KR1020180102760A 2017-08-31 2018-08-30 유체 캐비테이션 연마재 표면 마감을 위한 방법 및 장치 KR102569456B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/693,401 2017-08-31
US15/693,401 US10836012B2 (en) 2017-08-31 2017-08-31 Method and apparatus for fluid cavitation abrasive surface finishing

Publications (2)

Publication Number Publication Date
KR20190024828A KR20190024828A (ko) 2019-03-08
KR102569456B1 true KR102569456B1 (ko) 2023-08-21

Family

ID=63350473

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180102760A KR102569456B1 (ko) 2017-08-31 2018-08-30 유체 캐비테이션 연마재 표면 마감을 위한 방법 및 장치

Country Status (7)

Country Link
US (1) US10836012B2 (ko)
EP (1) EP3450104B1 (ko)
JP (1) JP7251938B2 (ko)
KR (1) KR102569456B1 (ko)
CN (1) CN109719631B (ko)
CA (1) CA3010954C (ko)
RU (1) RU2018125395A (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11679454B2 (en) 2017-08-31 2023-06-20 The Boeing Company Portable cavitation peening method and apparatus
GB2573012A (en) * 2018-04-20 2019-10-23 Zeeko Innovations Ltd Fluid jet processing
US11633835B2 (en) 2018-12-14 2023-04-25 The Boeing Company Systems for managing abrasive media in cavitated fluid
US11465259B2 (en) * 2019-02-13 2022-10-11 The Boeing Company System and method for fluid cavitation processing a part
GB201905215D0 (en) * 2019-04-12 2019-05-29 Rolls Royce Plc A method and apparatus for finishing a surface of a component
CN111843843A (zh) * 2020-06-16 2020-10-30 江苏大学 一种混合颗粒溶液超声均匀空化喷丸的方法
CN111843853B (zh) * 2020-07-31 2021-08-03 山东大学 基于水力空化射流的内表面精加工强化系统
JP7222958B2 (ja) * 2020-09-02 2023-02-15 株式会社スギノマシン 研磨ピーニング装置および研磨ピーニング方法
DE102021101996A1 (de) 2021-01-28 2022-07-28 Dyemansion Gmbh Verfahren zur Nachbearbeitung von additiv gefertigten Bauteilen durch Strahlverfahren mit Kunststoffstrahlmitteln
CN114734365B (zh) * 2022-06-13 2022-09-09 中国航发上海商用航空发动机制造有限责任公司 微细内流道的表面光整方法、微细内流道工件及光整介质
GB2621042A (en) * 2022-06-30 2024-01-31 Univ Jiangsu Reciprocating abrasive flow polishing apparatus and method based on cavitation effect
CN115284160B (zh) * 2022-06-30 2024-05-10 江苏大学 一种基于空化效应的往复式磨料流抛光装置及方法
US20240001509A1 (en) * 2022-07-01 2024-01-04 The Boeing Company Damage tolerant cavitation nozzle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050139697A1 (en) * 2003-03-25 2005-06-30 Alexander Pivovarov Cleaning of submerged surfaces by discharge of pressurized cavitating fluids

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807632A (en) 1971-08-26 1974-04-30 Hydronautics System for eroding solids with a cavitating fluid jet
CA1128582A (en) 1980-04-10 1982-07-27 Geoffrey W. Vickers Cavitation nozzle assembly
JPH03288581A (ja) 1990-04-03 1991-12-18 Yoshihide Shibano スプレー式超音波洗浄装置
JP3162104B2 (ja) 1991-06-10 2001-04-25 株式会社日立製作所 金属材料の残留応力改善方法
JP4240972B2 (ja) 1999-01-13 2009-03-18 独立行政法人科学技術振興機構 金属部品等の表面改質および洗浄方法およびその装置
JP2000263337A (ja) 1999-01-13 2000-09-26 Japan Science & Technology Corp 金属部品等の表面改質および洗浄方法およびその装置
JP3803734B2 (ja) 1999-01-26 2006-08-02 株式会社日立製作所 ウオータージェットピーニング装置
US6280302B1 (en) 1999-03-24 2001-08-28 Flow International Corporation Method and apparatus for fluid jet formation
CA2383082A1 (en) 1999-09-01 2001-03-08 Siemens Aktiengesellschaft Method and device for the surface threatment of a component
JP4169239B2 (ja) 2000-10-05 2008-10-22 株式会社スギノマシン 液中表面加工装置および加工方法
JP2003062492A (ja) 2001-08-23 2003-03-04 Japan Science & Technology Corp 機械部品等の表面処理および洗浄方法ならびにそれらの装置
US7494073B2 (en) * 2003-03-25 2009-02-24 Alexander Pivovarov Cleaning of submerged surfaces by discharge of pressurized cavitating fluids
US20050017090A1 (en) * 2003-03-25 2005-01-27 Pivovarov Alexander R. Cleaning of submerged surfaces by discharge of pressurized cavitating fluids
US6993948B2 (en) 2003-06-13 2006-02-07 General Electric Company Methods for altering residual stresses using mechanically induced liquid cavitation
JP4581910B2 (ja) 2005-08-19 2010-11-17 株式会社デンソー 孔表面加工処理方法
JP2007090491A (ja) 2005-09-29 2007-04-12 Toshiba Corp ウォータジェットピーニング装置およびウォータジェットピーニング方法
JP4302097B2 (ja) 2005-12-06 2009-07-22 三菱重工業株式会社 除染装置及び除染方法
US20120118562A1 (en) * 2006-11-13 2012-05-17 Mcafee Wesley Mark System, apparatus and method for abrasive jet fluid cutting
WO2009031517A1 (ja) 2007-09-03 2009-03-12 National University Corporation Okayama University 表面処理方法及びその装置
US8448880B2 (en) 2007-09-18 2013-05-28 Flow International Corporation Apparatus and process for formation of laterally directed fluid jets
JP5578318B2 (ja) 2010-05-26 2014-08-27 国立大学法人東北大学 キャビテーション発生装置
CN101886160B (zh) * 2010-07-06 2011-09-14 中国矿业大学 乳化液射流金属表面改性方法
US9062354B2 (en) * 2011-02-24 2015-06-23 General Electric Company Surface treatment system, a surface treatment process and a system treated component
RU2592338C2 (ru) 2011-05-16 2016-07-20 Ниппон Стил Энд Сумикин Инджиниринг Ко., Лтд. Устройство для очистки прокатного валка стана и способ очистки
US9050642B2 (en) 2011-09-27 2015-06-09 Ormond, Llc Method and apparatus for surface enhancement
JP5876701B2 (ja) 2011-10-07 2016-03-02 Jfe条鋼株式会社 ボルト刻印工具の強化方法及びボルト刻印工具
WO2013142851A1 (en) * 2012-03-23 2013-09-26 Wesley Mark Mcafee System, apparatus and method for abrasive jet fluid cutting
JP6125261B2 (ja) 2013-02-12 2017-05-10 三菱重工業株式会社 ウォータジェットピーニング圧縮残留応力試験方法
JP6169957B2 (ja) 2013-11-29 2017-07-26 三菱重工業株式会社 ウォータジェットピーニングの事前評価方法、この方法を実行するためのプログラム、この方法を実行する装置、及びウォータジェットピーニングの施工方法
US9200341B1 (en) * 2014-07-18 2015-12-01 The Boeing Company Systems and methods of cavitation peening a workpiece
DK3259100T3 (da) 2015-02-18 2021-01-11 Ant Applied New Tech Ag Vand-abrasiv-skæreanlæg
JP6246761B2 (ja) 2015-06-02 2017-12-13 Jfeスチール株式会社 機械構造用鋼部材の製造方法
CN106392863B (zh) * 2016-10-20 2019-03-26 浙江工业大学 一种基于结构空化效应的高效流体光整加工方法及装置
US10233511B1 (en) 2017-08-31 2019-03-19 The Boeing Company Portable cavitation peening method and apparatus
GB201805763D0 (en) * 2018-04-06 2018-05-23 Rolls Royce Plc A method and apparatus for finishing an internal channel of a component
CN108789165B (zh) * 2018-06-25 2020-02-07 南京航空航天大学 一种超声辅助磨料射流去毛刺加工装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050139697A1 (en) * 2003-03-25 2005-06-30 Alexander Pivovarov Cleaning of submerged surfaces by discharge of pressurized cavitating fluids

Also Published As

Publication number Publication date
US10836012B2 (en) 2020-11-17
EP3450104A1 (en) 2019-03-06
CA3010954C (en) 2022-09-20
JP7251938B2 (ja) 2023-04-04
US20190061103A1 (en) 2019-02-28
CN109719631A (zh) 2019-05-07
KR20190024828A (ko) 2019-03-08
EP3450104B1 (en) 2022-01-26
JP2019072834A (ja) 2019-05-16
CN109719631B (zh) 2022-04-12
RU2018125395A (ru) 2020-01-13
CA3010954A1 (en) 2019-02-28
RU2018125395A3 (ko) 2021-10-28

Similar Documents

Publication Publication Date Title
KR102569456B1 (ko) 유체 캐비테이션 연마재 표면 마감을 위한 방법 및 장치
ES2409161T3 (es) Dispositivo y procedimiento para la limpieza, activación o pre-tratamiento de piezas de trabajo mediante chorros de nieve carbónica
JP5957466B2 (ja) 少なくとも1つの加工部品を処理するための方法及び装置
WO2015059941A1 (ja) ブラスト加工方法及びブラスト加工装置
US20120238186A1 (en) Support material removing method
UA71545C2 (uk) Спосіб одержання потоку частинок і пристрій для його здійснення (варіанти)
US20130025635A1 (en) Installation Providing a Treatment Jet for Cleaning and/or Degreasing Manufactured Parts
CN102013389A (zh) 基板处理设备和基板处理方法
JP2009166166A (ja) バレル研磨装置およびバレル研磨方法
US10518385B2 (en) Apparatus and process for surface treating interior of a workpiece
CN112975581B (zh) 一种射流强化抛光一体化装置及工艺
JP2022093324A (ja) 内装面のキャビテーション研磨仕上げのためのシステム及び方法
JP2019081211A (ja) 表面処理装置及び表面処理方法
KR101964065B1 (ko) 연마 장치 및 그 방법
EP3787837B1 (en) Fluid jet processing
KR101779691B1 (ko) 화학액 미스트 분사장치가 구비된 입자유동베드 가공장치
CN109789531B (zh) 金属制立体结构物的表面处理方法
KR101890111B1 (ko) 초음파 세정 장치 및 이를 포함하는 세정 시스템
KR20200131976A (ko) 측면 입자 유동 베드 가공 시스템
CN106319429A (zh) 一种制作纳米钻石薄涂层膜的工件台
KR20200029177A (ko) 입자유동 베드 가공 장치
CN115741486B (zh) 超声辅助纳米磨粒水射流沟槽热管内表面复合抛光装置及方法
JP2004017241A (ja) ピーニング処理装置
US20110223842A1 (en) Sandblasting device
KR20180017946A (ko) 액화탄산가스를 이용한 직분사 세척장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant