KR102564818B1 - 파워모듈 및 그 제조방법 - Google Patents
파워모듈 및 그 제조방법 Download PDFInfo
- Publication number
- KR102564818B1 KR102564818B1 KR1020210038829A KR20210038829A KR102564818B1 KR 102564818 B1 KR102564818 B1 KR 102564818B1 KR 1020210038829 A KR1020210038829 A KR 1020210038829A KR 20210038829 A KR20210038829 A KR 20210038829A KR 102564818 B1 KR102564818 B1 KR 102564818B1
- Authority
- KR
- South Korea
- Prior art keywords
- electrode layer
- lower electrode
- ceramic substrate
- base plate
- power module
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 106
- 239000000919 ceramic Substances 0.000 claims abstract description 99
- 238000005219 brazing Methods 0.000 claims description 63
- 239000000945 filler Substances 0.000 claims description 40
- 238000005530 etching Methods 0.000 claims description 14
- 230000008646 thermal stress Effects 0.000 claims description 7
- 239000011888 foil Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 230000017525 heat dissipation Effects 0.000 abstract description 11
- 238000000034 method Methods 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 141
- 239000010949 copper Substances 0.000 description 59
- 229910052802 copper Inorganic materials 0.000 description 38
- 229910016525 CuMo Inorganic materials 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 10
- 229910000962 AlSiC Inorganic materials 0.000 description 9
- 230000007547 defect Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 229910000679 solder Inorganic materials 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- 239000011148 porous material Substances 0.000 description 7
- 229910052709 silver Inorganic materials 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 229910017693 AgCuTi Inorganic materials 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/15—Ceramic or glass substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3735—Laminates or multilayers, e.g. direct bond copper ceramic substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/10—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
- H01L25/11—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/10—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
- H01L25/11—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
- H01L25/115—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73253—Bump and layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L24/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/73—Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
본 발명은 파워모듈 및 그 제조방법에 관한 것으로, 베이스 플레이트의 요입홈에 세라믹 기판의 하부 전극층을 삽입하여 베이스 플레이트 상에 세라믹 기판을 적층한 상태로 브레이징 접합하므로, 접합 신뢰성이 높아지고 휨을 방지할 수 있으며, 방열 효과가 높다.
Description
본 발명은 파워모듈 및 그 제조방법에 관한 것으로, 더욱 상세하게는 세라믹 기판과 베이스 플레이트의 접합 신뢰성을 향상시킬 수 있는 파워모듈 및 그 제조방법에 관한 것이다.
일반적으로 파워모듈에서 베이스 플레이트는 사각 플레이트 형상으로 형성되며 알루미늄 또는 구리 재질로 형성된다. 이러한 베이스 플레이트는 세라믹 기판의 하면에 접합되어 방열판으로 사용될 수 있다. 여기서, 베이스 플레이트는 방열에 유리하도록 세라믹 기판의 하면에 솔더링 접합될 수 있다.
그런데, 종래의 베이스 플레이트의 경우, 열팽창 계수가 17.8ppm/K 이상이므로 세라믹 기판과의 접합 공정 중에 열팽창의 차이로 인한 휨이 발생할 수 있다. 또한 높은 온도에서 솔더페이스트가 녹아 베이스 플레이트의 휨, 결함 등이 유발될 수 있다.
이에 대한 해결 방안으로 AlSiC 또는 이와 유사한 재료로 250℃ 이하의 온도에서 세라믹 기판과 베이스 플레이트를 접합한다. 종래의 베이스 플레이트와 세라믹 기판의 접합 구조에 의하면, 베이스 플레이트는 CuMo 또는 Ni-Au 재질로 이루어질 수 있고, 솔더프리폼(Solder Preform)을 매개로 세라믹 기판에 솔더링 접합된다. 이때, 솔더프리폼은 Sn, Ag, Cu를 포함하는 조성으로 이루어지는 SAC305를 사용하며, 솔더링 온도는 230~350℃이다.
그런데, 종래의 세라믹 기판과 베이스 플레이트의 접합 구조는 접합에 사용되는 솔더페이스트와 솔더프리폼, 진공접합설비 등의 공정으로 인해 공정 비용이 상승하며, 접합 신뢰성과 수율 문제 등을 야기하고 있는 실정이다.
본 발명의 목적은 세라믹 기판과 베이스 플레이트의 접합 시 문제가 되는 휨이나 기공 결함 등을 방지하여 접합 신뢰성을 향상시키고, 다양한 베이스 플레이트에 대한 고신뢰성 접합이 가능하며, 공정 단순화 및 공정비용 절감이 가능한 파워모듈 및 그 제조방법을 제공하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 실시예에 따른 파워모듈은, 세라믹 기판과, 세라믹 기판의 하부에 접합된 베이스 플레이트를 구비하고, 세라믹 기판은, 세라믹 기재와, 세라믹 기재의 상면에 형성된 상부 전극층과, 세라믹 기재의 하면에 형성되고, 복수의 영역으로 분리된 하부 전극층을 구비하며, 베이스 플레이트는 하부 전극층에 대응하는 복수의 요입홈이 형성되고, 요입홈에 하부 전극층이 삽입될 수 있다.
하부 전극층은 일부분이 두께 방향으로 식각되어 형성된 공간에 의해 복수의 영역으로 분리될 수 있다. 이러한 공간이 하부 전극층에 형성됨에 따라, 상부 전극층의 전체 부피를 하부 전극층의 전체 부피로 나눈 부피비는 0.9 내지 1.1 범위 내에 있도록 조절될 수 있다.
또한, 상부 전극층과 하부 전극층의 두께가 동일한 경우, 상부 전극층의 전체 면적을 하부 전극층의 전체 면적으로 나눈 면적비가 0.9 내지 1.1 범위 내에 있도록 공간이 형성될 수 있다.
브레이징 필러는 하부 전극층과 요입홈 사이에 배치되고, 세라믹 기판과 베이스 플레이트를 접합시킬 수 있다.
베이스 플레이트의 요입홈은, 하부 전극층 및 브레이징 필러의 두께를 합한 것과 같은 깊이로 형성될 수 있다.
본 실시예에 따른 파워모듈 제조방법은 세라믹 기재의 상하면에 상부 전극층 및 하부 전극층을 구비하고, 하부 전극층이 복수의 영역으로 분리된 세라믹 기판을 준비하는 단계와, 하부 전극층에 대응하는 요입홈이 형성된 베이스 플레이트를 준비하는 단계와, 요입홈에 하부 전극층을 삽입하는 단계와, 베이스 플레이트 상에 세라믹 기판을 적층한 상태로 접합하는 단계를 포함할 수 있다.
세라믹 기판을 준비하는 단계는, 하부 전극층의 일부분을 두께 방향으로 식각하여 복수의 영역으로 분리하는 공간을 형성하는 단계를 포함할 수 있다.
복수의 영역으로 분리하는 공간을 형성하는 단계는, 상부 전극층의 전체 부피를 하부 전극층의 전체 부피로 나눈 부피비가 0.9 내지 1.1이 되도록 공간을 형성할 수 있다.
또한, 복수의 영역으로 분리하는 공간을 형성하는 단계는, 상부 전극층과 하부 전극층의 두께가 동일하면, 상부 전극층의 전체 면적을 하부 전극층의 전체 면적으로 나눈 면적비가 0.9 내지 1.1이 되도록 공간을 형성할 수 있다.
베이스 플레이트를 준비하는 단계에서, 베이스 플레이트는 소둔 열처리되어 열응력이 제거될 수 있다.
베이스 플레이트를 준비하는 단계는, 요입홈에 브레이징 필러를 배치하는 단계를 포함할 수 있다.
베이스 플레이트를 준비하는 단계에서, 요입홈은 베이스 플레이트를 두께 방향으로 에칭하여 형성하고, 요입홈의 깊이는 하부 전극층 및 브레이징 필러의 두께를 합한 것과 같을 수 있다.
브레이징 필러를 배치하는 단계는, 페이스트 도포, 포일(foil) 부착, P-filler 중 어느 하나의 방법으로 5㎛ 이상 100㎛ 이하의 두께를 갖는 브레이징 필러를 요입홈에 배치할 수 있다.
베이스 플레이트 상에 세라믹 기판을 적층한 상태로 접합하는 단계는, 브레이징 필러를 용융시켜 브레이징하는 단계를 포함할 수 있다.
브레이징하는 단계는, 780~900℃에서 수행하며, 브레이징 중에 상부 중량 또는 가압을 실시할 수 있다.
본 발명은 요입홈에 하부 전극층을 삽입하여 베이스 플레이트 상에 세라믹 기판을 적층한 상태로 브레이징 접합하므로, 접합 신뢰성이 높아지고 휨을 방지할 수 있으며, 방열 효과가 높다.
또한, 본 발명은 하부 전극층과 요입홈이 크기에 맞게 끼워진 상태로 브레이징 접합시켜 절연겔 주입 시 기포가 발생하는 공간을 없앨 수 있고, 기공 결함을 방지할 수 있다.
또한, 본 발명은 하부 전극층의 일부분을 두께 방향으로 식각하여 공간을 형성함으로써 상부 전극층 및 하부 전극층의 부피비, 면적비를 특정 범위 내에 있도록 제어하여 부피 차이에 의해 발생되는 휨 현상을 억제할 수 있다.
또한, 본 발명은 베이스 플레이트를 열처리하여 열응력, 열변형 등을 사전에 제거한 후 브레이징 필러를 용융시켜 브레이징 접합하기 때문에 접합 신뢰성이 향상된다.
도 1은 본 발명의 실시예에 의한 파워모듈용 세라믹 기판과 베이스 플레이트의 접합 구조를 보인 분해 사시도이다.
도 2는 본 발명의 실시예에 의한 파워모듈용 세라믹 기판과 베이스 플레이트의 접합 구조를 보인 분해 단면도이다.
도 3은 본 발명의 실시예에 의한 세라믹 기판의 상면과 하면을 보인 도면이다.
도 4는 본 발명의 실시예에 의한 파워모듈용 세라믹 기판과 베이스 플레이트의 접합 구조를 보인 단면도이다.
도 5은 SiC 칩을 구비한 파워모듈의 예를 나타낸 단면도이다.
도 6은 GaN 칩을 구비한 파워모듈의 예를 나타낸 단면도이다.
도 7은 본 발명의 실시예에 따른 파워모듈 제조방법을 도시한 흐름도이다.
도 2는 본 발명의 실시예에 의한 파워모듈용 세라믹 기판과 베이스 플레이트의 접합 구조를 보인 분해 단면도이다.
도 3은 본 발명의 실시예에 의한 세라믹 기판의 상면과 하면을 보인 도면이다.
도 4는 본 발명의 실시예에 의한 파워모듈용 세라믹 기판과 베이스 플레이트의 접합 구조를 보인 단면도이다.
도 5은 SiC 칩을 구비한 파워모듈의 예를 나타낸 단면도이다.
도 6은 GaN 칩을 구비한 파워모듈의 예를 나타낸 단면도이다.
도 7은 본 발명의 실시예에 따른 파워모듈 제조방법을 도시한 흐름도이다.
이하 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명하기로 한다.
본 발명은 파워모듈에 포함되는 구성 중 세라믹 기판과 베이스 플레이트의 접합 구조에 특징이 있으므로, 이를 중심으로 설명하기로 한다.
도 1은 본 발명의 실시예에 의한 파워모듈용 세라믹 기판과 베이스 플레이트의 접합 구조를 보인 분해 사시도이고, 도 2는 본 발명의 실시예에 의한 파워모듈용 세라믹 기판과 베이스 플레이트의 접합 구조를 보인 분해 단면도이며, 도 3은 본 발명의 실시예에 의한 세라믹 기판의 상면과 하면을 보인 도면이고, 도 4는 본 발명의 실시예에 의한 파워모듈용 세라믹 기판과 베이스 플레이트의 접합 구조를 보인 단면도이다.
도 1 및 도 2에 도시된 바에 의하면, 본 발명의 실시예에 의한 파워모듈은 세라믹 기판(100) 및 세라믹 기판(100)의 하부에 접합된 베이스 플레이트(200)를 구비할 수 있다.
세라믹 기판(100)은 세라믹 기재(110)와 상기 세라믹 기재(110)의 상하면에 상하부 전극층(120,130)을 구비한 AMB(Active Metal Brazing) 기판일 수 있다. 실시예는 AMB 기판을 예로 들어 설명하나 DBC(Direct Bonding Copper) 기판, TPC(Thick Printing Copper) 기판, DBA 기판(Direct Brazed Aluminum)을 적용할 수도 있다. AMB 기판은 내구성 및 반도체 칩으로부터 발생하는 열의 방열 효율면에서 가장 적합하다.
세라믹 기판(100)의 세라믹 기재(110)는 알루미나(Al2O3), AlN, SiN, Si3N4 중 어느 하나인 것을 일 예로 할 수 있다.
도 3에 도시된 바에 의하면, 상부 전극층(120)은 세라믹 기재(110)의 상면(110a)에 전극 패턴으로 형성될 수 있다. 예컨대, 상부 전극층(120)은 금속박 형태로 구비되어 세라믹 기재(110)의 상면(110a)에 브레이징 접합되고, 이후에 에칭에 의해 반도체 칩을 실장하는 전극 패턴 및 구동소자를 실장하는 전극 패턴으로 형성될 수 있다. 상부 전극층(120)은 Cu, Cu합금, OFC, EPT Cu, Al 중 하나로 이루어지는 것을 일 예로 할 수 있다. OFC는 무산소동이다.
하부 전극층(130)은 세라믹 기재(110)의 하면(110b)에 형성되고, 복수의 영역(130a,130b,130c,130d)으로 분리될 수 있다. 예컨대, 하부 전극층(130)은 Cu, Cu합금, OFC, EPT Cu, Al 중 하나로 이루어진 금속박 형태로 구비되어 세라믹 기재(110)의 하면(110b)에 브레이징 접합되고, 이후에 일부분이 두께 방향으로 식각되어 형성된 공간(131)에 의해 복수의 영역(130a,130b,130c,130d)으로 분리될 수 있다.
하부 전극층(130)이 공간(131) 없이 베이스 플레이트(200)와의 접합 면적을 높이도록 평판으로 형성될 경우, 전극 패턴으로 형성된 상부 전극층(120)의 전체 부피와 비교했을 때 부피 차이가 커서 고온 환경에서 세라믹 기판(100)이 휘어지는 현상이 발생한다. 경험적 데이터에 의하면, 전극 패턴으로 형성된 상부 전극층(120)의 전체 부피를 평판 형태인 하부 전극층(130)의 전체 부피로 나눈 부피비는 약 0.76이며, 이때 휘어지는 정도는 0.4%를 초과하여 불량으로 폐기될 수밖에 없다. 이러한 불량 발생 비율은 전체 생산량에서 비교적 큰 비중을 차지하여 지속적인 생산 손실의 문제를 야기시키고 있다.
상기와 같은 문제를 해결하기 위하여, 본 발명은 공간(131)을 통해 상부 전극층(120) 및 하부 전극층(130)의 부피비 및 면적비를 특정 범위 내에 있도록 제어하여 부피 차이에 의해 발생되는 휨 현상을 억제할 수 있다.
세라믹 기판(100)의 상부 전극층(120)은 반도체 칩이 실장되는 전극 패턴으로 형성되기 때문에 그 형태나 두께, 길이 등이 고정되어 설계되는 경우가 많다. 따라서, 본 발명은 하부 전극층(130)의 일부분을 두께 방향으로 식각하여 공간(131)을 형성하고, 이를 통해 하부 전극층(130)을 복수의 영역(130a,130b,130c,130d)으로 분리하여 하부 전극층(130)의 전체 부피 및 면적을 조절할 수 있다. 즉, 하부 전극층(130)에 공간(131)이 형성되어 하부 전극층(130)의 전체 부피 및 면적이 감소하면, 상부 전극층(120)와 하부 전극층(130)의 부피비 및 면적비가 0.9 내지 1.1 범위 내에 있도록 조절될 수 있다.
구체적으로, 세라믹 기판(100)은 상부 전극층(120)의 전체 부피를 하부 전극층(130)의 전체 부피로 나눈 부피비가 0.9 내지 1.1 범위 내에 있도록 설계되는 것이 바람직하고, 휨을 최소화하기 위해 부피비는 1.0에 가깝도록 설계되는 것이 더 바람직하다.
전체 부피는 전체 면적과 두께의 곱으로 계산되기 때문에, 상하부 전극층(120,130)의 두께가 다를 경우 두께에 따른 면적을 조절하여 부피비가 0.9 내지 1.1 범위 내에 있도록 할 수 있다.
일예로, 상부 전극층(120)과 하부 전극층(130)의 두께는 0.3T 또는 0.5T로 동일할 수 있다. 이와 같이, 상부 전극층(120)과 하부 전극층(130)의 두께가 동일한 경우 상부 전극층(120)의 전체 면적을 상기 하부 전극층(130)의 전체 면적으로 나눈 면적비가 0.9 내지 1.1 범위 내에 있도록 설계되는 것이 바람직하고, 휨을 최소화하기 위해 면적비는 1.0에 가깝도록 설계되는 것이 더 바람직하다. 즉, 두께가 동일한 경우, 면적비가 0.9 내지 1.1 범위 내에 있도록 설계되면, 부피비도 0.9 내지 1.1 범위 내로 조절될 수 있다.
한편, 하부 전극층(130)은 공간(131)에 의해 다양한 형태로 분리될 수 있다. 예컨대, 도 3과 같이 하부 전극층(130)은 십자 형태로 식각된 공간(131)에 의해 단면이 사각형이고 서로 면적이 동일한 4개의 영역(130a,130b,130c,130d)으로 분리될 수 있다. 이외에도 하부 전극층(130)은 식각되어 형성된 공간에 의해 삼각형 등의 다양한 형태를 가진 복수의 영역으로 분리될 수 있다.
도 4에 도시된 바에 의하면, 베이스 플레이트(200)는 세라믹 기판(100)의 하부에 접합되고, 세라믹 기판(100)에 실장된 반도체 칩에서 발생하는 열을 방열하기 위해 사용될 수 있다. 베이스 플레이트(200)는 소정의 두께를 가지는 사각 플레이트 형상으로 형성될 수 있다. 또한, 베이스 플레이트(200)는 열팽창 계수와 접합 면적 또는 부피를 사전에 계산하여 도출한 휨 변화량을 바탕으로 휨이 최소화되는 형태로 설계될 수 있다.
베이스 플레이트(200)는 방열 효율을 높일 수 있는 소재로 형성된다. 일 예로, 베이스 플레이트(200)는 Cu, Al, Ni-Au, AlSiC, CuMo, CuW, Cu/CuMo/Cu, Cu/Mo/Cu 및 Cu/W/Cu 중 적어도 하나 또는 이들의 복합소재로 이루어질 수 있다. Cu, Al, AlSiC, CuMo, CuW, Cu/CuMo/Cu, Cu/Mo/Cu 및 Cu/W/Cu의 소재는 열전도도가 우수하고, AlSiC, CuMo, CuW, Cu/CuMo/Cu, Cu/Mo/Cu 및 Cu/W/Cu의 소재는 저열팽창 계수를 가져 세라믹 기판(100)과 접합 시 휨 발생을 최소화할 수 있다.
베이스 플레이트(200)는 Cu/CuMo/Cu의 3층 접합 금속시트 구조로 형성되거나 AlSiC로 형성되는 경우, 세라믹 기판(100)과의 접합에서 우수한 접합 특성을 가질 수 있으며, 열팽창 계수는 6.8~12ppm/K, 열전도도는 220~280W/m.K인 열특성을 가질 수 있다.
베이스 플레이트(200)는 상면에 하방으로 요입된 요입홈(210)이 형성될 수 있다. 요입홈(210)은 복수의 영역(130a,130b,130c,130d)으로 분리된 하부 전극층(130)에 대응하는 형태 및 개수로 형성될 수 있다. 실시예에서 요입홈(210)은 하부 전극층(130)에 대응하여 단면이 사각형이고 서로 면적이 동일한 4개의 홈으로 형성될 수 있다.
요입홈(210)은 세라믹 기판(100)과 베이스 플레이트(200)를 접합시키는 브레이징 필러(300)가 배치될 수 있다. 여기서, 요입홈(210)은 하부 전극층(130) 및 브레이징 필러(300)의 두께를 합한 것과 같은 깊이로 형성될 수 있다. 즉, 브레이징 필러(300)와 하부 전극층(130)이 요입홈(210)에 크기에 맞게 수용될 수 있기 때문에 하부 전극층(130)과 베이스 플레이트(200) 사이에 공간이 생기지 않아 기포 발생을 방지할 수 있다. 일예로, 하부 전극층(130)의 두께가 0.5T이고, 브레이징 필러(300)의 두께가 0.03T일 경우, 요입홈(210)의 깊이는 0.53T일 수 있다.
이러한 브레이징 필러(300)는 세라믹 기판(100)과 베이스 플레이트(200) 간의 접합 특성을 확보하기 위한 것이다. 세라믹 기판(100)과 베이스 플레이트(200)를 솔더링 접합할 경우, 고온에서 휨 발생으로 인해 공극이 발생하여 접합 신뢰성이 낮아진다.
반면, 본 발명은 하부 전극층(130)과 요입홈(210) 사이에 브레이징 필러(300)가 배치되고, 요입홈(210)에 하부 전극층(130)이 삽입되어 하부 전극층(130)의 네 면이 모두 요입홈(210)의 내면에 접하는 상태로 브레이징 접합되기 때문에 접촉 면적이 증가하여 접합력이 더 우수하다. 따라서, 세라믹 기판(100)의 휨이 베이스 플레이트(200)에 의해 억제될 수 있고, 방열 효과가 높다.
또한, 하부 전극층(130)이 요입홈(210)에 삽입되므로 세라믹 기판(100)과 베이스 플레이트(200)의 상호 얼라인(align)을 정확히 일치시키기가 용이하고, 브레이징 시 고온 환경에서 서로 위치가 틀어지는 문제가 발생하지 않아 접합 정밀도를 향상시킬 수 있다는 장점이 있다.
브레이징 필러(300)는 Ag, Cu, AgCu 및 AgCuTi 중 적어도 하나를 포함하는 재료로 이루어질 수 있다. 여기서, Ag와 Cu는 열전도도가 높아 접합력을 높이는 역할과 동시에 세라믹 기판(100)과 베이스 플레이트(200) 간의 열 전달을 용이하게 하여 방열 효율을 높일 수 있다. 또한, Ti는 젖음성이 좋아 Ag와 Cu가 요입홈(210)의 내면에 용이하게 부착되게 할 수 있다.
브레이징 필러(300)는 다층 구조의 박막으로 형성될 수도 있다. 다층 구조의 박막은 부족한 성능을 보완하여 접합력을 높이기 위한 것이다. 일예로, 브레이징 필러(300)는 Ag층과 Ag층 상에 형성된 Cu층을 포함하는 2층 구조로 이루어질 수 있다. 또는 브레이징 필러(300)는 Ti층과 Ti층 상에 형성된 Ag층과 Ag층 상에 형성된 Cu층을 포함하는 3층 구조로 이루어질 수 있다. 이러한 브레이징 필러(300)는 세라믹 기판(100)과 베이스 플레이트(200)의 브레이징 접합에 사용된 이후에 다층 구조의 경계가 모호해질 수 있다.
도 5은 SiC 칩을 구비한 파워모듈의 예를 나타낸 단면도이고, 도 6은 GaN 칩을 구비한 파워모듈의 예를 나타낸 단면도이다.
도 5 및 도 6에 도시된 바에 의하면, 파워모듈은 세라믹 기판(100)의 상부 전극층(120)에 반도체 칩(C)이 실장될 수 있다. 반도체 칩(C)은 도 5 및 도 6에 도시된 SiC 칩, GaN 칩 이외에도 Si 칩, MOSFET(Metal Oxide Semiconductor Field Effect Transistor), IGBT(Insulated Gate Bipolar Transistor), JFET(Junction Field Effect Transistor), HEMT(High Electric Mobility Transistor) 중 어느 하나가 구비될 수 있다.
도 5에 도시된 바에 의하면, SiC 칩(C)의 하부는 솔더층(s)을 매개로 세라믹 기판(100)의 상부 전극층(120)에 접합되고, SiC 칩(C)의 상부는 본딩 와이어(w)에 의해 외부와 전기적으로 연결될 수 있다.
도 6에 도시된 바에 의하면, GaN 칩(C)의 하부는 솔더층(s)을 매개로 하부 세라믹 기판(100)의 상부 전극층(120)에 접합되고, GaN 칩(C)의 상부는 본딩층(b)에 의해 플립칩 형태로 상부 세라믹 기판(400)에 접합될 수 있다. 상부 세라믹 기판(400)은 세라믹 기재(410)의 상면에 상부 전극층(420)을 구비하고, 세라믹 기재(410)의 하면에 하부 전극층(430)을 구비한 것으로, GaN 칩(C)의 상부는 하부 전극층(430)의 하면에 플립칩 형태로 접합될 수 있다.
도 5 및 도 6에 도시된 바와 같이, 파워모듈은 반도체 칩(C)이 실장되므로 반도체 칩의 보호, 진동의 완화 및 절연의 목적으로 하우징(h)의 내부 공간에 실리콘, 에폭시 등의 절연겔 재료가 주입될 수 있다. 이때, 세라믹 기판(100)의 하부 전극층(130)과 베이스 플레이트(200) 사이에 공간이 있을 경우 기포가 발생하여 기공 결함이 발생한다. 따라서, 본 발명은 하부 전극층(130)과 요입홈(210)이 크기에 맞게 끼워진 상태로 브레이징 접합시켜 기포가 발생하는 공간이 없앨 수 있고, 이를 통해 기공 결함을 방지할 수 있다. 아울러, 하부 전극층(130)이 요입홈(210)에 삽입되기 때문에 전체 모듈의 두께를 줄일 수 있다는 장점도 있다.
도 7은 본 발명의 실시예에 따른 파워모듈 제조방법을 도시한 흐름도이다.
본 발명의 실시예에 따른 파워모듈 제조방법은 도 7에 도시된 바와 같이, 세라믹 기재(110)의 상하면에 상부 전극층(120) 및 하부 전극층(130)을 구비하고, 하부 전극층(130)이 복수의 영역(130a,130b,130c,130d)으로 분리된 세라믹 기판(100)을 준비하는 단계(S10)와, 하부 전극층(130)에 대응하는 요입홈(210)이 형성된 베이스 플레이트(200)를 준비하는 단계(S20)와, 요입홈(210)에 하부 전극층(130)을 삽입하는 단계(S30)와, 베이스 플레이트(200) 상에 세라믹 기판(100)을 적층한 상태로 접합하는 단계(S40)를 포함할 수 있다.
세라믹 기판(100)을 준비하는 단계(S10)에서, 세라믹 기판(100)은 세라믹 기재(110)의 상하면에 상하부 전극층(120,130)을 구비한 AMB(Active Metal Brazing) 기판일 수 있다.
세라믹 기판(100)을 준비하는 단계(S10)는, 하부 전극층(130)의 일부분을 두께 방향으로 식각하여 복수의 영역으로 분리하는 공간(131)을 형성하는 단계를 포함할 수 있다. 공간(131)이 하부 전극층(130)에 형성됨으로써, 하부 전극층(130)은 복수의 영역(130a,130b,130c,130d)으로 분리될 수 있다.
복수의 영역으로 분리하는 공간(131)을 형성하는 단계는, 상부 전극층(120)의 전체 부피를 상기 하부 전극층(130)의 전체 부피로 나눈 부피비가 0.9 내지 1.1이 되도록 공간(131)을 형성할 수 있다.
또한, 복수의 영역으로 분리하는 공간(131)을 형성하는 단계는, 상부 전극층(120)과 상기 하부 전극층(130)의 두께가 동일하면, 상부 전극층(120)의 전체 면적을 하부 전극층(130)의 전체 면적으로 나눈 면적비가 0.9 내지 1.1이 되도록 공간(131)을 형성할 수 있다.
이와 같이, 본 발명은 하부 전극층(130)의 일부분을 두께 방향으로 식각하여 공간(131)을 형성함으로써 하부 전극층(130)의 전체 부피 및 면적을 조절하고, 이를 통해 상부 전극층(120)와 하부 전극층(130)의 부피비, 면적비가 0.9 내지 1.1 범위 내에 있도록 조절할 수 있다. 상부 전극층(120)은 반도체 칩이 실장되는 전극 패턴으로 형성되기 때문에, 하부 전극층(130)이 평판으로 형성되어 부피 차이가 클 경우 고온 환경에서 세라믹 기판(100)이 휘어지는 현상이 발생한다. 따라서, 본 발명은 하부 전극층(130)의 일부분을 두께 방향으로 식각하여 형성한 공간(131)을 통해 상부 전극층(120) 및 하부 전극층(130)의 부피비, 면적비를 특정 범위 내에 있도록 제어하여 부피 차이에 의해 발생되는 휨 현상을 억제할 수 있다.
베이스 플레이트(200)를 준비하는 단계(S20)에서, 베이스 플레이트(200)는 하부 전극층(130)에 대응하는 요입홈(210)이 형성될 수 있다. 베이스 플레이트(200)는 Cu, Al, Ni-Au, AlSiC, CuMo, CuW, Cu/CuMo/Cu, Cu/Mo/Cu, Cu/W/Cu 중 적어도 하나 또는 이들의 복합소재로 이루어지는 플레이트를 준비한다. 바람직하게는 베이스 플레이트(200)는 AlSiC, CuMo, CuW, Cu/CuMo/Cu, Cu/Mo/Cu, Cu/W/Cu 중 적어도 하나 또는 이들의 복합소재로 이루어지는 플레이트를 준비한다. AlSiC, CuMo, CuW, Cu/CuMo/Cu, Cu/Mo/Cu, Cu/W/Cu 재질은 Cu와 Al에 비해 낮은 열팽창 계수를 가져 고온에서 열팽창 계수의 차이로 인해 발생하는 휨 현상을 최소화할 수 있다.
베이스 플레이트(200)의 두께는 1.0mm~3.0mm 범위일 수 있다. 바람직하게는 베이스 플레이트(200)의 두께는 2.0mm 이상인 것이 방열에 유리하고 휨 발생이 최소화될 수 있다.
또한, 베이스 플레이트(200)를 준비하는 단계(S20)에서, 베이스 플레이트(200)는 소둔 열처리되어 열응력이 제거될 수 있다. 이러한 소둔 열처리는 베이스 플레이트(200)의 열 응력을 사전에 제거하기 위한 것으로, 전기로나 가스로에서 600~750℃의 온도로 실시될 수 있다. 이와 같이 베이스 플레이트(200)에 부여된 열 응력이 사전에 제거되면, 세라믹 기판(100)과 베이스 플레이트(200)을 브레이징 접합하는 과정에서 열팽창과 열수축에 의해 생성되는 열응력이 완화되어 접합 신뢰성을 향상시킬 수 있다. 또한, 접합 부위가 손상되지 않기 때문에 열 전달 효과가 우수해져 방열 특성을 향상시킬 수 있다.
베이스 플레이트(200)를 준비하는 단계(S20)는, 요입홈(210)에 브레이징 필러(300)를 배치하는 단계를 포함할 수 있다. 브레이징 필러(300)는 세라믹 기판(100)과 베이스 플레이트(200)를 접합하기 위한 것으로, 브레이징 필러(300)가 요입홈(210)에 배치된 후, 하부 전극층(130)이 요입홈(210)에 삽입될 수 있다.
베이스 플레이트(200)를 준비하는 단계(S20)에서, 요입홈(210)은 베이스 플레이트(200)를 두께 방향으로 에칭하여 형성할 수 있다. 이때, 요입홈(210)은 하부 전극층(130) 및 브레이징 필러(300)의 두께를 합한 것과 같은 깊이로 형성될 수 있다. 즉, 요입홈(210)은 브레이징 필러(300)와 하부 전극층(130)이 크기에 맞게 수용되도록 형성될 수 있다.
브레이징 필러(300)를 배치하는 단계는, 페이스트 도포, 포일(foil) 부착, P-filler 중 어느 하나의 방법으로 5㎛ 이상 100㎛ 이하의 두께를 갖는 브레이징 필러(300)를 요입홈(210)에 배치할 수 있다. 브레이징 필러(300)는 Ag, Cu, AgCu 및 AgCuTi 중 적어도 하나를 포함하는 재료로 이루어질 수 있다.
베이스 플레이트(200) 상에 세라믹 기판(100)을 적층한 상태로 접합하는 단계(S40)는 브레이징 필러(300)를 용융시켜 브레이징하는 단계를 포함할 수 있다.
브레이징하는 단계는 450℃ 이상, 바람직하게는 780~900℃에서 수행하고, 브레이징 중에 접합력을 높이기 위해 상부 중량 또는 가압을 실시할 수 있다.
일 예로, 브레이징하는 단계는, 브레이징 필러(300)를 배치한 요입홈(210)에 하부 전극층(130)을 삽입하여 베이스 플레이트(200) 상에 세라믹 기판(100)을 적층한 적층체를 준비하고, 상기 적층체를 브레이징로(미도시) 내의 상부 가압지그와 하부 가압지그 사이에 배치하여 가열 중에 적층체의 상하면을 가압할 수 있다.
또는, 상기 적층체를 브레이징로 내에 배치하고 적층체의 상면에 중량체를 배치하여 상부에서 가압할 수도 있다. 브레이징 접합하는 단계에서 상부 중량 또는 가압을 실시하는 것은 보이드(Void)가 없는 접합을 위한 것이다.
브레이징 접합은 솔더프리폼의 사용처럼 진공접합설비 등을 요구하지 않으므로 공정단순화가 가능하고, 상부 중량 또는 가압을 실시함으로써 기공 결함이 방지되며 접합강도가 높아지므로 높은 접합 신뢰성을 갖는다.
브레이징하는 단계를 거치면, 베이스 플레이트(200)는 세라믹 기판(100)과 일체화될 수 있다.
전술한 실시예는 베이스 플레이트(200)가 단층 구조로 이루어진다. 그러나 베이스 플레이트(200)는 저열팽창 계수(Low CTE)를 가지도록 다층 구조로 이루어질 수도 있다. 일예로, 베이스 플레이트(200))는 열팽창 계수가 상대적으로 낮은 CuMo 재질 금속시트의 상면과 하면에, 열팽창 계수는 상대적으로 높으나 열전도도가 높은 Cu 재질 금속시트가 형성된 3층 금속시트 구조로 구비될 수 있다. 이러한 베이스 플레이트(200)는 Cu 재질 금속시트의 휨을 CuMo 재질 금속시트가 흡수할 수 있고, 이로 인해 고온에서 열팽창 계수의 차이로 발생하는 휨 현상을 줄일 수 있다.
이와 같이, 베이스 플레이트(200)가 Cu/CuMo/Cu의 3층 접합 금속시트 구조로 형성되거나 AlSiC로 형성되는 경우, 세라믹 기판(100)과의 접합에서 우수한 접합 특성을 가질 수 있으며, 열팽창 계수는 6.8~12ppm/K, 열전도도는 220~280W/m.K인 열특성을 가질 수 있다.
상술한 본 발명은 베이스 플레이트(200)의 요입홈(210)에 세라믹 기판(100)의 하부 전극층(130)을 삽입하여 베이스 플레이트(200) 상에 세라믹 기판(100)을 적층한 상태로 브레이징 접합하므로, 접합 신뢰성이 높아지고 휨을 방지할 수 있으며, 방열 효과가 높다.
특히, 브레이징 접합은 종래의 솔더프리폼의 사용처럼 진공접합설비 등을 요구하지 않으므로 공정단순화가 가능하고, 상부 중량 또는 가압을 실시함으로써 기공 결함이 방지되며 접합강도가 높아지므로 접합 신뢰성을 높일 수 있다.
또한, 하부 전극층(130)과 요입홈(210)이 크기에 맞게 끼워진 상태로 브레이징 접합시켜 절연겔 주입 시 기포가 발생하는 공간을 없앨 수 있고, 기공 결함을 방지할 수 있다.
아울러, 하부 전극층의 일부분을 두께 방향으로 식각하여 형성하여 공간(131)을 형성함으로써, 상부 전극층(120) 및 하부 전극층(130)의 부피비, 면적비를 특정 범위 내에 있도록 제어하여 부피 차이에 의해 발생되는 휨 현상을 억제할 수 있다.
상술한 세라믹 기판의 베이스 플레이트의 접합 구조는 파워모듈에 적용되는 것을 예로 들어 설명하였으나, 고신뢰성 접합이 요구되는 다양한 접합 구조에 적용 가능하다.
본 발명은 도면과 명세서에 최적의 실시예가 개시되었다. 여기서, 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 발명은 기술분야의 통상의 지식을 가진 자라면, 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 권리범위는 첨부된 청구범위의 기술적 사상에 의해 정해져야 할 것이다.
100: 세라믹 기판 110: 세라믹 기재
120: 상부 전극층 130: 하부 전극층
131: 공간 200: 베이스 플레이트
210: 요입홈 300: 브레이징 필러
400: 상부 세라믹 기판 410: 세라믹 기재
420: 상부 전극층 430:하부 전극층
120: 상부 전극층 130: 하부 전극층
131: 공간 200: 베이스 플레이트
210: 요입홈 300: 브레이징 필러
400: 상부 세라믹 기판 410: 세라믹 기재
420: 상부 전극층 430:하부 전극층
Claims (16)
- 세라믹 기판; 및
상기 세라믹 기판의 하부에 접합된 베이스 플레이트를 구비하고,
상기 세라믹 기판은,
세라믹 기재;
상기 세라믹 기재의 상면에 형성된 상부 전극층; 및
상기 세라믹 기재의 하면에 형성되고, 복수의 영역으로 분리된 하부 전극층을 구비하며,
상기 베이스 플레이트는 상기 하부 전극층에 대응하는 복수의 요입홈이 형성되고, 상기 요입홈에 상기 하부 전극층이 삽입된 파워모듈. - 제1항에 있어서,
상기 하부 전극층은 일부분이 두께 방향으로 식각되어 형성된 공간에 의해 복수의 영역으로 분리되는 파워모듈. - 제1항에 있어서,
상기 상부 전극층의 전체 부피를 상기 하부 전극층의 전체 부피로 나눈 부피비는 0.9 내지 1.1인 파워모듈. - 제1항에 있어서,
상기 상부 전극층과 상기 하부 전극층의 두께는 동일하고,
상기 상부 전극층의 전체 면적을 상기 하부 전극층의 전체 면적으로 나눈 면적비는 0.9 내지 1.1인 파워모듈. - 제1항에 있어서,
상기 하부 전극층과 상기 요입홈 사이에 배치되고, 상기 세라믹 기판과 상기 베이스 플레이트를 접합시키는 브레이징 필러를 구비하는 파워모듈. - 제5항에 있어서,
상기 요입홈은,
상기 하부 전극층 및 상기 브레이징 필러의 두께를 합한 것과 같은 깊이로 형성된 파워모듈. - 세라믹 기재의 상하면에 상부 전극층 및 하부 전극층을 구비하고, 상기 하부 전극층이 복수의 영역으로 분리된 세라믹 기판을 준비하는 단계;
상기 하부 전극층에 대응하는 요입홈이 형성된 베이스 플레이트를 준비하는 단계;
상기 요입홈에 상기 하부 전극층을 삽입하는 단계; 및
상기 베이스 플레이트 상에 상기 세라믹 기판을 적층한 상태로 접합하는 단계;
를 포함하는 파워모듈 제조방법. - 제7항에 있어서,
상기 세라믹 기판을 준비하는 단계는,
상기 하부 전극층의 일부분을 두께 방향으로 식각하여 복수의 영역으로 분리하는 공간을 형성하는 단계를 포함하는 파워모듈 제조방법. - 제8항에 있어서,
상기 복수의 영역으로 분리하는 공간을 형성하는 단계는,
상기 상부 전극층의 전체 부피를 상기 하부 전극층의 전체 부피로 나눈 부피비가 0.9 내지 1.1이 되도록 공간을 형성하는 파워모듈 제조방법. - 제8항에 있어서,
상기 복수의 영역으로 분리하는 공간을 형성하는 단계는,
상기 상부 전극층과 상기 하부 전극층의 두께가 동일하면, 상기 상부 전극층의 전체 면적을 상기 하부 전극층의 전체 면적으로 나눈 면적비가 0.9 내지 1.1이 되도록 공간을 형성하는 파워모듈 제조방법. - 제7항에 있어서,
상기 베이스 플레이트를 준비하는 단계에서,
상기 베이스 플레이트는 소둔 열처리되어 열응력이 제거된 파워모듈 제조방법. - 제7항에 있어서,
상기 베이스 플레이트를 준비하는 단계는,
상기 요입홈에 브레이징 필러를 배치하는 단계를 포함하는 파워모듈 제조방법. - 제12항에 있어서,
상기 베이스 플레이트를 준비하는 단계에서,
상기 요입홈은 상기 베이스 플레이트를 두께 방향으로 에칭하여 형성하고, 상기 요입홈의 깊이는 상기 하부 전극층 및 상기 브레이징 필러의 두께를 합한 것과 같은 파워모듈 제조방법. - 제12항에 있어서,
상기 브레이징 필러를 배치하는 단계는,
페이스트 도포, 포일(foil) 부착, P-filler 중 어느 하나의 방법으로 5㎛ 이상 100㎛ 이하의 두께를 갖는 브레이징 필러를 상기 요입홈에 배치하는 파워모듈 제조방법. - 제12항에 있어서,
상기 베이스 플레이트 상에 상기 세라믹 기판을 적층한 상태로 접합하는 단계는,
상기 브레이징 필러를 용융시켜 브레이징하는 단계를 포함하는 파워모듈 제조방법. - 제15항에 있어서,
상기 브레이징하는 단계는,
780~900℃에서 수행하며, 브레이징 중에 상부 중량 또는 가압을 실시하는 파워모듈 제조방법.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210038829A KR102564818B1 (ko) | 2021-03-25 | 2021-03-25 | 파워모듈 및 그 제조방법 |
PCT/KR2022/003794 WO2022203288A1 (ko) | 2021-03-25 | 2022-03-18 | 파워모듈 및 그 제조방법 |
US18/283,713 US20240178099A1 (en) | 2021-03-25 | 2022-03-18 | Power module and method for producing same |
CN202280022939.0A CN117043931A (zh) | 2021-03-25 | 2022-03-18 | 电源模块及其制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210038829A KR102564818B1 (ko) | 2021-03-25 | 2021-03-25 | 파워모듈 및 그 제조방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220133559A KR20220133559A (ko) | 2022-10-05 |
KR102564818B1 true KR102564818B1 (ko) | 2023-08-08 |
Family
ID=83397632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210038829A KR102564818B1 (ko) | 2021-03-25 | 2021-03-25 | 파워모듈 및 그 제조방법 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240178099A1 (ko) |
KR (1) | KR102564818B1 (ko) |
CN (1) | CN117043931A (ko) |
WO (1) | WO2022203288A1 (ko) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010212620A (ja) | 2009-03-12 | 2010-09-24 | Toshiba Corp | パワーモジュール |
JP2013197432A (ja) | 2012-03-22 | 2013-09-30 | Mitsubishi Electric Corp | 電力用半導体装置モジュール |
JP2019125730A (ja) | 2018-01-18 | 2019-07-25 | 三菱電機株式会社 | 半導体装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150053522A (ko) * | 2013-11-08 | 2015-05-18 | 삼성전기주식회사 | 파워 모듈 |
KR20150002505U (ko) * | 2013-12-18 | 2015-06-26 | 엘에스산전 주식회사 | 전력용 반도체 모듈 및 이의 제조 방법 |
-
2021
- 2021-03-25 KR KR1020210038829A patent/KR102564818B1/ko active IP Right Grant
-
2022
- 2022-03-18 WO PCT/KR2022/003794 patent/WO2022203288A1/ko active Application Filing
- 2022-03-18 US US18/283,713 patent/US20240178099A1/en active Pending
- 2022-03-18 CN CN202280022939.0A patent/CN117043931A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010212620A (ja) | 2009-03-12 | 2010-09-24 | Toshiba Corp | パワーモジュール |
JP2013197432A (ja) | 2012-03-22 | 2013-09-30 | Mitsubishi Electric Corp | 電力用半導体装置モジュール |
JP2019125730A (ja) | 2018-01-18 | 2019-07-25 | 三菱電機株式会社 | 半導体装置 |
Also Published As
Publication number | Publication date |
---|---|
US20240178099A1 (en) | 2024-05-30 |
WO2022203288A1 (ko) | 2022-09-29 |
CN117043931A (zh) | 2023-11-10 |
KR20220133559A (ko) | 2022-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4635564B2 (ja) | 半導体装置 | |
EP1901350A1 (en) | Heat dissipation device and power module | |
JP6435945B2 (ja) | ヒートシンク付きパワーモジュール用基板 | |
KR20170026557A (ko) | 파워 모듈용 기판 유닛 및 파워 모듈 | |
JP6601512B2 (ja) | ヒートシンク付きパワーモジュール用基板及びパワーモジュール | |
JPWO2007037306A1 (ja) | ヒートシンクモジュール及びその製造方法 | |
JP2013093631A (ja) | パワーモジュールの製造方法 | |
JP2011216564A (ja) | パワーモジュール及びその製造方法 | |
WO2016158020A1 (ja) | 半導体モジュール | |
JP2006100640A (ja) | セラミックス回路基板及びこれを用いたパワー半導体モジュール | |
JP6183166B2 (ja) | ヒートシンク付パワーモジュール用基板及びその製造方法 | |
US20240321676A1 (en) | Method of manufacturing power semiconductor module, and power semiconductor module manufactured thereby | |
KR102564818B1 (ko) | 파워모듈 및 그 제조방법 | |
JP7523419B2 (ja) | 電力用半導体装置の製造方法 | |
JP4992302B2 (ja) | パワー半導体モジュール | |
KR102588851B1 (ko) | 파워모듈 및 그 제조방법 | |
JP7424145B2 (ja) | 絶縁回路基板 | |
KR102661089B1 (ko) | 파워모듈용 세라믹 기판, 그 제조방법 및 이를 구비한 파워모듈 | |
KR20230126876A (ko) | 세라믹 기판 유닛 및 그 제조방법 | |
KR20230095907A (ko) | 파워모듈 및 그 제조방법 | |
KR20230101766A (ko) | 파워모듈 및 그 제조방법 | |
KR20230126878A (ko) | 세라믹 기판 유닛 및 그 제조방법 | |
JP6608728B2 (ja) | 回路基板および電子装置 | |
JP2023132550A (ja) | 絶縁回路基板 | |
KR20220135685A (ko) | 파워모듈의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |