JP7523419B2 - 電力用半導体装置の製造方法 - Google Patents

電力用半導体装置の製造方法 Download PDF

Info

Publication number
JP7523419B2
JP7523419B2 JP2021163244A JP2021163244A JP7523419B2 JP 7523419 B2 JP7523419 B2 JP 7523419B2 JP 2021163244 A JP2021163244 A JP 2021163244A JP 2021163244 A JP2021163244 A JP 2021163244A JP 7523419 B2 JP7523419 B2 JP 7523419B2
Authority
JP
Japan
Prior art keywords
heat dissipation
adhesive sheet
insulating adhesive
additional
high heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021163244A
Other languages
English (en)
Other versions
JP2023054418A (ja
Inventor
朋久 山根
圭 山本
耕三 原田
昌樹 田屋
陽 田中
和弘 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2021163244A priority Critical patent/JP7523419B2/ja
Priority to US17/707,171 priority patent/US20230105637A1/en
Priority to CN202211184393.7A priority patent/CN115939061A/zh
Publication of JP2023054418A publication Critical patent/JP2023054418A/ja
Application granted granted Critical
Publication of JP7523419B2 publication Critical patent/JP7523419B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • H01L23/49551Cross section geometry characterised by bent parts
    • H01L23/49555Cross section geometry characterised by bent parts the bent parts being the outer leads

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本願は、電力用半導体装置製造方法に関するものである。
主に電力変換に用いられるパワーモジュールは、半導体素子が接合材により熱伝導性を有したヒートスプレッダなどに接合され、半導体素子とヒートスプレッダとが樹脂部材により封止されたものである。パワーモジュールは、近年、大容量化及び小型化が進められており、小型で冷却効率が良く、信頼性の高いパワーモジュールが求められている。半導体素子のサイズを大型化させずにパワーモジュールの大容量化を実現するためには、半導体素子に大電流を流すので、半導体素子が発する熱を効率よく外部に拡散させる必要がある。そのため、半導体素子とヒートシンクなどの冷却器との間に設ける放熱部材、絶縁部材、及び接合部材の低熱抵抗化が図られている。
放熱部材、絶縁部材、及び接合部材の熱抵抗を比較すると、放熱部材と接合部材は主に電流を流す役割を担う部材であることから、一般的に熱抵抗は小さい。一方、絶縁部材は、冷却器を付与したパワーモジュールにおいて、冷却器と半導体素子との間を絶縁して切り離す役割を有する。そのため、絶縁部材の熱抵抗は高くなる傾向がある。絶縁部材の低熱抵抗化を実現する部材について開示されている(例えば特許文献1参照)。
開示された絶縁部材の構成は、気孔が三次元的に連続している多孔性の窒化物系セラミックス焼結体中に、熱硬化性樹脂組成物が不完全硬化状態で含浸している窒化物系セラミックス樹脂複合体の基板である。特許文献1の実施例では、開示した構成により、絶縁破壊電圧は10.0kV、25℃における熱伝導率は100W/(m・K)であったと記載されている。これらの値は、冷却器と半導体素子との間を絶縁して切り離すと共に、冷却器と半導体素子との間を低熱抵抗化する絶縁部材に適用可能な値である。
従来の絶縁部材である絶縁樹脂層を有した半導体装置の構成が開示されている(例えば特許文献2参照)。絶縁樹脂層は、半導体素子を搭載したヒートスプレッダと銅板との間に設けられ、銅板に冷却器が熱的に接続されている。開示された絶縁樹脂層は、エポキシ樹脂などの熱硬化性樹脂の中に熱伝導性の高いセラミック粒子などの無機粉末充填材が含有された構成を有している。高熱伝導性の無機充填材としては、窒化アルミニウム、窒化ケイ素、窒化ホウ素、酸化アルミニウム(アルミナ)、酸化ケイ素(シリカ)、酸化マグネシウム、酸化亜鉛、酸化チタンなどのセラミック粒子が適していると記載されている。
国際公開第2019/111978号 特開2021-111765号公報
上記特許文献1においては、窒化物系セラミックス樹脂複合体の基板は、優れた絶縁破壊電圧と熱伝導率を有している。しかしながら、窒化物系セラミックス樹脂複合体の基板をパワーモジュールに適用した具体的な構成の開示はなく、開示した窒化物系セラミックス樹脂複合体を熱伝導性絶縁接着シートに加工して、金属板または金属回路基板等の被着体に熱伝導性絶縁接着シートを加熱圧着させることのみが開示されている。絶縁性が確保された2枚の金属回路基板を構成するためには、半硬化状態の樹脂を含浸させたセラミックス樹脂複合体の基板を金属回路基板ではさみ、加熱して圧着し、絶縁された2枚の金属回路基板を構成するものと推測される。このような製造方法を用いると、加熱して圧着する際、セラミックス樹脂複合体の基板の金属回路基板と当接されていない外周部が解放状態のままで当接した箇所が加圧されることになる。半硬化状態の樹脂は、解放されている外周部の方向に流動する。この時、セラミックス樹脂複合体の内部に発生する圧力に注目すると、セラミックス樹脂複合体の重心で内圧が最大となり、セラミックス樹脂複合体の解放されている側面では側面部分にかかる圧力がゼロとなる。セラミックス樹脂複合体の基板の内部にかかる圧力は外周部に近いほど小さくなるため、セラミックス樹脂複合体の基板の内部の特に外周部近傍に存在する空隙に樹脂を充填させることができないので、空隙が残った箇所において放電の経路が形成されてセラミックス樹脂複合体の絶縁信頼性が低下するという課題があった。
上記特許文献2においては、絶縁樹脂層は、加圧により空隙が残る箇所はないため、半導体素子を搭載したヒートスプレッダと銅板との間を絶縁することはできる。しかしながら、開示された構成の樹脂絶縁層が実現できる熱伝導率は高くても16W/(m・K)程度であるため、絶縁部材の低熱抵抗化が十分ではないという課題があった。また、樹脂部材による成形時に、熱硬化性樹脂とセラミック粒子との双方が周囲に流動するため、流れた樹脂により放電の経路が形成されて絶縁信頼性が低下するという課題があった。
そこで、本願は、絶縁信頼性の低下を抑制しつつ、高放熱化を実現したパワーモジュール、電力用半導体装置、及びこれらの製造方法を得ることを目的としている。
本願に開示される電力用半導体装置の製造方法は、熱伝導性を有する板状のヒートスプレッダと、ヒートスプレッダの一方の面に少なくとも熱的に接続された半導体素子と、一方の面が前記ヒートスプレッダの他方の面に熱的に接続される板状の高放熱絶縁接着シートと、一方の面が高放熱絶縁接着シートの他方の面に、外周端の位置が高放熱絶縁接着シートの外周端の位置と同等であるように熱的に接続され、他方の面が冷却器に熱的に接続される面である金属板と、複数の放熱フィンを有した冷却器とを用意する部材用意工程と、ヒートスプレッダ、半導体素子、高放熱絶縁接着シート、及び金属板を金型内に配置した状態で、金型内に硬化していない封止樹脂部材を加圧注入して、パワーモジュールを作製する封止樹脂部材注入工程と、冷却器を前記封止樹脂部材から露出した金属板の面に金属接合体を介して熱的に接続する冷却器接続工程とを備え、金属板は、封止樹脂部材注入工程の実行後において、金属板の他方の面が封止樹脂部材から露出し、高放熱絶縁接着シートは、セラミックス粒子が空隙を有し一体的に焼結された多孔性のセラミックス焼結体に樹脂が含浸された複合体であり、封止樹脂部材注入工程の実行前では、セラミックス焼結体は、樹脂が充填されていない空隙を有し、封止樹脂部材注入工程において、封止樹脂部材の注入圧力により、高放熱絶縁接着シートに圧力をかけ、樹脂が充填されていない空隙に前記樹脂を充填させ、冷却器接続工程では、冷却器は、金属板の外周端の位置よりも周囲に突出した部分を有する板状部、及び金属接合体とは反対側の冷却器の板状部の面に複数の冷却フィンを有し、板状部と複数の冷却フィンとは、一体的に形成された一体部材であり、板状部の金属接合体の側の面は、金属接合体を介して金属板の他方の面に熱的に接続され、パワーモジュールは、冷却器の前記突出した部分の端部よりも内側に設けられるように接続する。





本願に開示されるパワーモジュールによれば、板状のヒートスプレッダと、ヒートスプレッダの一方の面に少なくとも熱的に接続された半導体素子と、一方の面がヒートスプレッダの他方の面に熱的に接続された板状の高放熱絶縁接着シートと、一方の面が高放熱絶縁接着シートの他方の面に熱的に接続された金属板と、金属板の他方の面を露出させた状態で、これらの部材を封止した封止樹脂部材とを備え、高放熱絶縁接着シートは、セラミックス粒子が空隙を有し一体的に焼結された多孔性のセラミックス焼結体に樹脂が含浸された複合体であるため、セラミックス焼結体の空隙に放電の経路が形成されることがないので、パワーモジュールの絶縁信頼性の低下を抑制することができる。高放熱絶縁接着シートはセラミックス粒子が空隙を有し一体的に焼結された多孔性のセラミックス焼結体に樹脂が含浸された複合体であるため、パワーモジュールの高放熱化を実現することができる。
本願に開示されるパワーモジュールの製造方法によれば、板状のヒートスプレッダと、ヒートスプレッダの一方の面に少なくとも熱的に接続された半導体素子と、一方の面がヒートスプレッダの他方の面に熱的に接続される板状の高放熱絶縁接着シートと、一方の面が高放熱絶縁接着シートの他方の面に熱的に接続される金属板とを用意する部材用意工程と、ヒートスプレッダ、半導体素子、高放熱絶縁接着シート、及び金属板を金型内に配置した状態で、金型内に硬化していない封止樹脂部材を加圧注入する封止樹脂部材注入工程とを備え、高放熱絶縁接着シートは、セラミックス粒子が空隙を有し一体的に焼結された多孔性のセラミックス焼結体に樹脂が含浸された複合体であり、封止樹脂部材注入工程の実行前では、セラミックス焼結体は樹脂が充填されていない空隙を有し、封止樹脂部材注入工程において、封止樹脂部材の注入圧力により高放熱絶縁接着シートに圧力をかけ、樹脂が充填されていない空隙に樹脂を充填させるため、空隙に放電の経路が形成されることがないので、高放熱絶縁接着シートの端部を含む、高放熱絶縁接着シートの全体の絶縁信頼性を大きく向上させることができ、パワーモジュールの絶縁信頼性の低下を抑制することができる。
実施の形態1に係る電力用半導体装置の概略を示す斜視図である。 図1のA-A断面位置で切断した電力用半導体装置の概略を示す断面図である。 実施の形態1に係る別の電力用半導体装置の概略を示す断面図である。 実施の形態1に係る別の電力用半導体装置の概略を示す断面図である。 実施の形態1に係る電力用半導体装置の製造工程を示す図である。 実施の形態1に係る電力用半導体装置の製造工程におけるパワーモジュール中間体の側面図である。 実施の形態1に係る電力用半導体装置の製造工程におけるパワーモジュール中間体の側面図である。 実施の形態1に係る電力用半導体装置の製造工程を説明する図である。 実施の形態1に係る電力用半導体装置の製造工程におけるパワーモジュール中間体の斜視図である。 図9のB-B断面位置で切断したパワーモジュール中間体の概略を示す断面図である。 実施の形態2に係る電力用半導体装置の概略を示す断面図である。 図11のC-C断面位置で切断した電力用半導体装置の概略を示す断面図である。 実施の形態3に係る電力用半導体装置の概略を示す断面図である。 実施の形態4に係る電力用半導体装置の概略を示す斜視図である。 図14のD-D断面位置で切断した電力用半導体装置の概略を示す断面図である。 高放熱絶縁接着シートを用いた構成の比較例を示す図である。
以下、本願の実施の形態によるパワーモジュール、電力用半導体装置、及びこれらの製造方法を図に基づいて説明する。なお、各図において同一、または相当部材、部位については同一符号を付して説明する。
実施の形態1.
図1は実施の形態1に係る電力用半導体装置100の概略を示す斜視図、図2は図1のA-A断面位置で切断した電力用半導体装置100の概略を示す断面図、図3は実施の形態1に係る別の電力用半導体装置100の概略を示す断面図、図4は実施の形態1に係る別の電力用半導体装置100の概略を示す断面図、図5は電力用半導体装置100の製造工程を示す図である。電力用半導体装置100は電力制御用半導体素子などの半導体素子1が搭載されたパワーモジュール200を有し、電力変換を行う装置などに用いられる。本実施の形態で示す断面図において、各部材が上方向に有した面を一方の面とし、各部材が下方向に有した面を他方の面とする。
<電力用半導体装置100>
電力用半導体装置100は、パワーモジュール200と冷却器9とを備える。冷却器9は、図2に示すように、封止樹脂部材5から露出した金属板7の面に金属接合体8を介して熱的に接続される。冷却器9は、例えば、熱伝導性に優れたアルミ合金または銅材により作製される。冷却器9の材料は、軽量なため電力用半導体装置100の全体の重量の考慮が不要で、耐食性に優れるため腐食の影響を考慮しなくてよいアルミ合金が好ましい。具体的な材料としては、ダイカスト成形に適したADC12、または鍛造及び切削加工に適用でき、熱伝導率が高いA6063がより好適である。
冷却器9は、金属接合体8とは反対側の冷却器9の面に、平板状に形成された複数の放熱フィン9aを備える。放熱フィン9aは、パワーモジュール200の内部の半導体素子1で生じた熱をさらに効率的に外部に排熱するために設けられる。放熱フィン9aは、切削、ダイカスト成形、または鍛造などにより冷却器9に設けられる。冷却器9に付与する放熱構造は放熱フィン9aに限るものではなく、冷却器9に水、不凍液等の冷却液を通すための流路を形成しても構わない。
金属接合体8は、例えば半田である。金属接合体8は、半田に限るものではなく、高熱伝導材である焼結Agまたは焼結Cuであってもよく、超音波接合または溶接等の接合方法を選択しても構わない。なお、金属接合体8は、後述するパワーモジュール200の内部に用いる接合体4の材料とのバランスを考慮して選択する必要がある。例えば、接合体4と金属接合体8を共に半田とした場合、金属接合体8の半田が低融点で、双方の融点差は30℃以上、量産性を考慮すると40℃以上となるような材料を選定すべきである。金属接合体8が接合体4よりも高融点な半田の場合、金属接合体8による接続時に、パワーモジュール200の内部に用いる接合体4の部分が溶融して不具合が生じるおそれがある。接合体4が焼結Agまたは焼結Cuである場合、金属接合体8は半田でも、焼結Agまたは焼結Cuでも構わない。
このように電力用半導体装置100を構成することで、パワーモジュール200の内部の半導体素子1で生じた熱を冷却器9から効率的に外部に排熱することができる。また、冷却器9に放熱フィン9aを設けた場合、半導体素子1で生じた熱を冷却器9からさらに効率的に外部に排熱することができる。
<パワーモジュール200>
パワーモジュール200は、図2に示すように、熱伝導性を有する板状のヒートスプレッダ3と、ヒートスプレッダ3の一方の面に少なくとも熱的に接続された半導体素子1と、一方の面がヒートスプレッダ3の他方の面に熱的に接続された板状の高放熱絶縁接着シート6と、一方の面が高放熱絶縁接着シート6の他方の面に熱的に接続された金属板7と、金属板7の他方の面を露出させた状態で、半導体素子1とヒートスプレッダ3と高放熱絶縁接着シート6と金属板7とを封止した封止樹脂部材5とを備える。本実施の形態では、パワーモジュール200は、2つの半導体素子1a、1bを有するが、パワーモジュール200が備える半導体素子1の数はこれに限るものではない。また本実施の形態では、板状に形成された半導体素子1は双方の面に電極を有する。半導体素子1が双方の面に電極を有した場合、半導体素子1はヒートスプレッダ3の一方の面に熱的かつ電気的に接続される。半導体素子1が一方の面にのみ電極を有した場合、半導体素子1はヒートスプレッダ3の一方の面に熱的に接続される。
パワーモジュール200は、さらに半導体素子1の一方の面に電気的に接続された第1のリードフレーム2aと、ヒートスプレッダ3の一方の面に電気的に接続された第2のリードフレーム2bと、半導体素子1の一方の面に設けられた制御パッドに電気的に接続された第3のリードフレーム2c(図2において図示せず)を備える。封止樹脂部材5は、第1のリードフレーム2aの半導体素子1に接続された部分から離れる方向に延出した第1のリードフレーム2aの端部と、第2のリードフレーム2bのヒートスプレッダ3に接続された部分から離れる方向に延出した第2のリードフレーム2bの端部と、第3のリードフレーム2cの半導体素子1に接続された部分から離れる方向に延出した第3のリードフレーム2cの端部とを露出させて、第1のリードフレーム2aと第2のリードフレーム2bと第3のリードフレーム2cとを封止する。
半導体素子1a、1bのそれぞれは、接合体4aにより、ヒートスプレッダ3の一方の面に接続される。第1のリードフレーム2aと第2のリードフレーム2bには、主電流が通電される。第1のリードフレーム2aは、接合体4bにより、半導体素子1a、1bの一方の面に接続される。第2のリードフレーム2bは、接合体4cにより、ヒートスプレッダ3の一方の面に接続される。第3のリードフレーム2cには制御電流が通電される。第3のリードフレーム2cは、接合体4dにより、制御パッドに接続される。接合体4dと第3のリードフレーム2cとは、後述する製造方法を説明した図7に示す。
このようにパワーモジュール200を構成することで、半導体素子1a、1bが動作した際に発生する熱は、接合体4a、ヒートスプレッダ3、高放熱絶縁接着シート6、金属板7の順に伝わる。金属板7に伝わった熱は、金属接合体8を介して冷却器9に伝わり、冷却器9から外部に放熱される。
パワーモジュール200において、高放熱絶縁接着シート6とヒートスプレッダ3、及び高放熱絶縁接着シート6と金属板7とが当接していて、高放熱絶縁接着シート6とヒートスプレッダ3との間、及び高放熱絶縁接着シート6と金属板7との間には、高放熱絶縁接着シート6の構成物のみが介在している構成が望ましい。封止樹脂部材5によりパワーモジュール200の内部の構成材を封止する際、高放熱絶縁接着シート6とヒートスプレッダ3との間、及び高放熱絶縁接着シート6と金属板7との間に封止樹脂部材5が介在してしまうことがある。これらの間に封止樹脂部材5が介在した場合、封止樹脂部材5が介在した部分は、介在しない他の部分と比べて介在した封止樹脂部材5の分だけ厚くなる。そのため、封止樹脂部材5が介在した部分の放熱性が悪化する。高放熱絶縁接着シート6とヒートスプレッダ3、及び高放熱絶縁接着シート6と金属板7とを当接させた場合、高放熱絶縁接着シート6とヒートスプレッダ3との間、及び高放熱絶縁接着シート6と金属板7との間には高放熱絶縁接着シート6の構成物のみが介在しているので、パワーモジュール200の放熱性の低下を防止することできる。
後述する封止樹脂部材注入工程における金型保持時間、封止樹脂部材5の注入圧力などの調整により、高放熱絶縁接着シート6とヒートスプレッダ3、及び高放熱絶縁接着シート6と金属板7とを当接させる構成を作製することができる。なお、高放熱絶縁接着シート6の外周に近い部分など絶縁性にも放熱性にも影響が小さい部分では、高放熱絶縁接着シート6の構成物ではない封止樹脂部材5などが介在しても絶縁性及び放熱性の観点からは構わない。ただし、封止樹脂部材5などの介在した部材が、金属回路基板などで生じるクラックの起点になる可能性がある。そのため、高放熱絶縁接着シート6とヒートスプレッダ3、及び高放熱絶縁接着シート6と金属板7とが当接している構成が望ましい。
<パワーモジュール200の構成材>
パワーモジュール200の構成材のそれぞれについて説明する。構成材の材料は一例であり、記載した材料に限るものではない。半導体素子1a、1bは、例えばSiによって形成される。半導体素子1a、1bは、ワイドバンドギャップを有した半導体材料から形成しても構わない。ワイドバンドギャップ半導体は、SiC、GaN、GaO、ダイヤモンドからなる群から選択される材料により形成される。半導体素子1a、1bがワイドバンドギャップを有した半導体材料からなる場合、半導体素子1a、1bの損失を削減することができる。半導体素子1a、1bの損失が削減できるので、電力用半導体装置100の大容量化を容易に行うことができる。
第1のリードフレーム2a、第2のリードフレーム2b、第3のリードフレーム2cは、例えば、電気伝導度が高い銅、アルミニウム、銀、銅クラッド材から作製される。第1のリードフレーム2a及び第2のリードフレーム2bには大電流を通電する必要があるため、純銅(C1020)等の低い電気抵抗率を有した材料を選択することが好ましい。第1のリードフレーム2a、第2のリードフレーム2b、第3のリードフレーム2cは、例えば、一定の厚みを有した金属平板をプレス金型などにより打ち抜いた板金により作製される。
本実施の形態では、半導体素子1はヒートスプレッダ3の一方の面に熱的かつ電気的に接続されるため、ヒートスプレッダ3は上述したリードフレームと同様に、例えば、電気伝導度が高い銅、アルミニウム、銀、銅クラッド材から作製される。ヒートスプレッダ3はリードフレームと比べて面積が大きいため、用いた材料の電気抵抗率がパワーモジュール200の電気特性に与える影響は小さい。しかしながら、ヒートスプレッダ3はパワーモジュール200の中で大きな体積と質量を占めるため、ヒートスプレッダ3の線膨張係数は、高放熱絶縁接着シート6及び金属接合体8の耐熱サイクル性に大きな影響を与える。耐熱サイクル性とは、熱サイクル試験後におけるパワーモジュール200の絶縁性及び放熱性の劣化についての指標である。冷却器9の材料がA6063の場合、A6063の線膨張係数は21[ppm/K]~25[ppm/K]である。A6063の線膨張係数に近い材料を選ぶと、耐熱サイクル性は向上する。一方、放熱性の観点では、線膨張係数21[ppm/K]~25[ppm/K]を満足する材料よりも銅材を選ぶ方が高放熱化を実現しやすい。そのため、耐熱サイクル性と高放熱化のトレードオフの関係を考慮して、構成材を選択すると良い。
高放熱絶縁接着シート6は、セラミックス粒子が空隙を有し一体的に焼結された多孔性のセラミックス焼結体に樹脂が含浸された複合体である。セラミックス焼結体の空隙には、含浸された樹脂が充填されている。例えば、セラミックス焼結体における空隙の割合は10%以下ならよく、理想的には0%である。樹脂は、例えば、熱硬化性樹脂組成物である。高放熱絶縁接着シート6は、半硬化状態の樹脂をセラミックス焼結体に含浸させた状態において封止樹脂部材5により封止される。封止後、アフターキュアにより、高放熱絶縁接着シート6と封止樹脂部材5とを硬化させる。例えば、高放熱絶縁接着シート6の絶縁破壊電圧は10.0kV、25℃における熱伝導率は100W/(m・K)である。
金属板7は、例えば、ヒートスプレッダ3と同じ材料により作製される。金属板7とヒートスプレッダ3とを同じ材料にすることで、高放熱絶縁接着シート6が同じ材料で挟まれるため、耐熱サイクル性が向上する。金属接合体8でパワーモジュール200と冷却器9とを接続する時の熱により発生する高放熱絶縁接着シート6の当接部の応力は緩和され、電力用半導体装置100の使用時の熱サイクルに対する高放熱絶縁接着シート6の当接部の耐性が高くなる。理想的には、金属板7とヒートスプレッダ3とは同じ厚みであることが望ましい。金属板7の材料がヒートスプレッダ3と同じ無酸素銅であれば、0.3mm以上の厚みを有しても高放熱絶縁接着シート6に発生する応力は変化しないため、金属板7は0.3mm以上の厚みであることが好ましい。
封止樹脂部材5は、例えば、エポキシ樹脂などの熱硬化性樹脂の中に無機充填剤を含有させた材料である。封止樹脂部材5は封止後に発生する応力が大きくなるため、パワーモジュール200の構成材と封止樹脂部材5との間で剥離が発生しないように、構成材と線膨張係数が近い材料を封止樹脂部材5として選択するのが望ましい。具体的には、封止樹脂部材5は、パワーモジュール200の中で大きな体積と質量を占めるヒートスプレッダ3の線膨張係数に近い材料が望ましい。例えば、ヒートスプレッダ3が無酸素銅であれば、封止樹脂部材5は15[ppm/K]~19[ppm/K]であるのがよい。また、封止樹脂部材5のガラス転移温度Tgは、半導体素子1a、1bの最大定格温度以上であることが望ましく、例えば、175℃以上である。
接合体4a、4b、4cは、例えば半田である。接合体4a、4b、4cは、半田に限るものではなく、高熱伝導材である焼結Agまたは焼結Cuであっても構わない。同時に接続が可能であるという製造性の観点から、接合体4b、4cは同じ材料としてもよく、接合体4b、4cは超音波接合などの手法を用いて接合しても構わない。接合体4aは、半導体素子1a、1bで発生した熱を冷却器9に伝える放熱経路に含まれる。そのため、焼結Agまたは焼結Cuのような高熱伝導材を接合体4aとして選択することで、パワーモジュール200のさらなる大容量化を実現することができる。また、本願に示す電力用半導体装置100の構成は、後述する製造工程で説明するように高放熱絶縁接着シート6を設ける前に接合体4aにより半導体素子1とヒートスプレッダ3とを接続する構成である。そのため、接合体4aによる接続に対して温度及び加圧力などの制約条件を設けない点においても、電力用半導体装置100の大容量化に寄与している。接合体4dは、図7に示すように、例えばボンディングワイヤである。制御電流は、主電流で扱う電力と比べてごくわずかであるため、接合体4dにボンディングワイヤを用いることができる。接合体4dをボンディングワイヤとした場合、ボンディングワイヤは、例えば、アルミニウム、銅、金などの材質を選択することができる。
<比較例>
高放熱絶縁接着シート6を利用した比較例について、図16を用いて説明する。図16は、高放熱絶縁接着シート6を用いた構成の比較例を示す側面図である。比較例では、板状に形成された高放熱絶縁接着シート6の両面のそれぞれに板状の金属回路基板20が当接されている。絶縁性を確保した2枚の金属回路基板20を構成するためには、半硬化状態の樹脂を含浸させた高放熱絶縁接着シート6を金属回路基板20ではさみ、加熱して圧着し、絶縁された2枚の金属回路基板20が構成される。圧着の際、圧力は図の矢印の方向に加えられる。
このような製造方法で金属回路基板20を製造すると、加熱して圧着する際、高放熱絶縁接着シート6の金属回路基板20と当接されていない外周部が解放状態のままで当接した箇所が加圧されることになる。半硬化状態の樹脂は、解放されている外周部の方向に流動する。この時、高放熱絶縁接着シート6の内部に発生する圧力に注目すると、高放熱絶縁接着シート6の重心で内圧が最大となり、高放熱絶縁接着シート6の解放されている外周部では外周部にかかる圧力がゼロとなる。高放熱絶縁接着シート6の基板の内部にかかる圧力は外周部に近いほど小さくなるため、高放熱絶縁接着シート6の基板の内部の特に外周部の近傍に存在する空隙に樹脂を充填させることができない。そのため、空隙が残った箇所において放電の経路が形成されるので、2枚の金属回路基板20の絶縁信頼性は低下する。
<本願の高放熱絶縁接着シート6の絶縁信頼性>
加圧により空隙が残る箇所が存在する現象は、エポキシ樹脂などの熱硬化性樹脂の中に熱伝導性の高いセラミック粒子などの無機粉末充填材を含有させた従来の絶縁樹脂層よりも、高放熱絶縁接着シート6において顕著に現れると考えられる。高放熱絶縁接着シート6の内圧は、流体力学に基づき、流動する樹脂の粘度及び流動速度によって変化する。樹脂の粘度が高いほど内圧は高くなるため、樹脂の粘度が高いほど空隙が樹脂で満たされるので高放熱絶縁接着シート6の絶縁性は高くなる。ただし、高放熱絶縁接着シート6の外周部が解放されている場合、前述の通り外周部にかかる圧力がゼロになる。従来の絶縁樹脂層も高放熱絶縁接着シート6でも、加熱して圧着する際、加熱により樹脂は軟化して流動する。従来の絶縁樹脂層では、樹脂とセラミック粒子とが一体になって流動する。一方、高放熱絶縁接着シート6では、セラミックス焼結体と含浸された樹脂とが一体になって流動することはない。そのため、仮に従来の絶縁樹脂層と高放熱絶縁接着シート6とで同じ樹脂を用いた場合でも、従来の絶縁樹脂層と比べ、高放熱絶縁接着シート6において樹脂の流動量が大きく、見かけの粘度が低くなる。よって、高放熱絶縁接着シート6では、内圧を高めつつ接着させる構造が重要である。
本願では、高放熱絶縁接着シート6などを金型内に配置した状態で、金型内に硬化していない封止樹脂部材5を加圧注入する。封止樹脂部材5により高放熱絶縁接着シート6を含む各部材を封止する際、閉空間で高放熱絶縁接着シート6をヒートスプレッダ3と金属板7に熱的に接続することにより、パスカルの原理に基づいて、高放熱絶縁接着シート6の全体に静水圧的な加圧力が発生する。封止樹脂部材5を金型に注入する前では、セラミックス焼結体は樹脂が充填されていない空隙を有する。封止樹脂部材5の注入時に、封止樹脂部材5の注入圧力により、高放熱絶縁接着シート6に圧力がかかり、樹脂が充填されていない空隙に樹脂は充填される。
このようにパワーモジュール200を構成することで、高放熱絶縁接着シート6においてセラミックス焼結体の空隙には含浸された樹脂が充填されているため、空隙に放電の経路が形成されることがないので、パワーモジュール200の絶縁信頼性の低下を抑制することができる。高放熱絶縁接着シート6は、セラミックス粒子が空隙を有し一体的に焼結された多孔性のセラミックス焼結体に樹脂が含浸された複合体であるため、例えば、25℃における熱伝導率が100W/(m・K)を有しているので、パワーモジュール200の高放熱化を実現することができる。
<パワーモジュール200の電気的構成>
パワーモジュール200の電気的な接続構成について説明する。半導体素子1a、1bは、例えば、一方の面に能動面部と受動面部を有し、他方の面に能動面部を有する。これらの能動面部には、電力用半導体装置100の主電流が通電される。半導体素子1a、1bの一方の面の能動面部は、接合体4bにより第1のリードフレーム2aと接続され、パワーモジュール200の外部へ電力を入出力する。半導体素子1a、1bの他方の面の能動面部は、接合体4aによりヒートスプレッダ3と接続され、ヒートスプレッダ3に接続された第2のリードフレーム2bを介して、パワーモジュール200の外部へ電力を入出力する。半導体素子1a、1bがスイッチング素子の場合、表面部の受動面部に、半導体素子1a、1bの動作に関わる制御パッドが設けられる。また、半導体素子1a、1bの過熱保護及び電流保護を目的とした保護用の制御パッドが設けられる場合もある。これらの制御パッドは、接合体4dにより第3のリードフレーム2cと接続される。接合体4dと第3のリードフレーム2cとは、後述する製造方法を説明した図7に示す。
半導体素子1a、1bの種類とパワーモジュール200の電気的構成の例を、図2から図4を用いて説明する。図2では、半導体素子1aはスイッチング素子であり、半導体素子1bはダイオードである。スイッチング素子は、MOSFET(金属酸化膜型電界効果トランジスタ、Metal Oxide Semiconductor Field Effect Transistor)、IGBT(絶縁ゲート型バイポーラトランジスタ、Insulated Gate Bipolar Transistor)である。封止樹脂部材5から露出した第1のリードフレーム2aの端部に線対称に、同様の構成のパワーモジュール200をもう一つ配置して双方のリードフレームを接続した場合、2つのパワーモジュール200により、例えばインバータ動作が可能となる。このような構成におけるそれぞれのパワーモジュール200はアームと呼ばれ、一方のパワーモジュール200を上アームと称し、他方のパワーモジュール200を下アームと称する。アームでは、第2のリードフレーム2bから第1のリードフレーム2aに通電する場合を順方向通電と称し、スイッチング素子側のみ通電される。一方、第1のリードフレーム2aから第2のリードフレーム2bに通電する場合を還流通電と称し、ダイオードのみ通電される。
図3では、パワーモジュール200は半導体素子1aのみを有する。半導体素子1aは、ダイオードの機能を内包したスイッチング素子で、例えば、RC-IGBTまたはSiC-MOSFETである。この場合、順方向でも還流方向でも半導体素子1aに電流が流れる。図2に示したスイッチング素子とダイオードとを組み合わせた構成と比べると、順方向でも還流方向でも同じ素子で発熱が生じることから発熱量が大きくなるため、より高放熱な構造が必要になる。
図4では、上アームと下アームを一つのパワーモジュール200に一体化した構成を示す。半導体素子1a、1bの双方ともダイオードの機能を内包したスイッチング素子で、例えば、RC-IGBTまたはSiC-MOSFETである。半導体素子1a、1bはそれぞれ別のヒートスプレッダ3に接続され、2つのヒートスプレッダ3の間は第4のリードフレーム2dにより接続される。このように構成することで、電力用半導体装置100のサイズを小型化することができる。図4ではそれぞれ1素子のみが実装された例としたが、1つのヒートスプレッダ3に2つ以上のスイッチング素子が搭載された構成、または2つ以上のダイオードが搭載された構成でもよく、上下アームの複数が一体化された構成でも構わない。
電力用半導体装置100の動作時、パワーモジュール200と冷却器9と間に、最大で半導体素子1a、1bの素子耐圧と等しい電圧が発生する。冷却器9は、必ずベース(図示せず)に固定して設けられる。ベースの部分は人の手で触れられる部分であり、仮に電力用半導体装置100に絶縁破壊が発生した場合、ベースの部分に高電圧が生じることになる。電力用半導体装置100において、第1のリードフレーム2a及び第2のリードフレーム2bと冷却器9との間の絶縁性は、封止樹脂部材5の沿面放電耐性を考慮した空間絶縁距離で確保している。また、ヒートスプレッダ3と冷却器9との間の絶縁性は、高放熱絶縁接着シート6の固体絶縁耐圧で確保している。半導体素子1a、1bから発生した熱を冷却器9に放熱する際には、必ず高放熱絶縁接着シート6を介することになる。そのため、絶縁性を確保するために高放熱絶縁接着シート6の厚みを厚くすると、放熱性の低下につながる。絶縁性の確保と高放熱化にはトレードオフの関係があるので、双方の効果を鑑みた電力用半導体装置100の設計が必要になる。
<電力用半導体装置100の製造方法>
電力用半導体装置100の製造方法について、図5を用いて説明する。電力用半導体装置100の製造方法は、部材用意工程(S11)、封止樹脂部材注入工程(S12)、硬化工程(S13)、及び冷却器接続工程(S14)を備える。この4つの工程の中で、最初の3つの工程であるS11、S12、S13は、パワーモジュール200の製造方法である。
各工程の詳細を説明する。ここでは図2に示した構成の電力用半導体装置100の製造方法について説明する。部材用意工程は、熱伝導性を有する板状のヒートスプレッダ3と、ヒートスプレッダ3の一方の面に少なくとも熱的に接続された半導体素子1a、1bと、一方の面がヒートスプレッダ3の他方の面に熱的に接続される板状の高放熱絶縁接着シート6と、一方の面が高放熱絶縁接着シート6の他方の面に熱的に接続される金属板7とを用意する工程である。図2に示した電力用半導体装置100は、さらに第1のリードフレーム2a、第2のリードフレーム2b、及び第3のリードフレーム2cを有するため、これらについても本工程にて用意する。
部材用意工程には、複数の工程が含まれる。図6及び図7は、電力用半導体装置100の製造工程におけるパワーモジュール中間体170、180の側面図、図8は実施の形態1に係る電力用半導体装置100の製造工程を説明する図である。パワーモジュール中間体170、180は、パワーモジュール200の製造途中の構造体である。
部材用意工程における最初の工程において、図6に示すように、半導体素子1a、1bをヒートスプレッダ3の一方の面に接合体4aを用いて熱的かつ電気的に接続し、パワーモジュール中間体170が形成される。次の工程で、図7に示すように、第1のリードフレーム2aを半導体素子1a、1bの一方の面に接合体4bを用いて電気的に接続する。次に、第2のリードフレーム2bをヒートスプレッダ3の一方の面に接合体4cを用いて電気的に接続する。さらに、第3のリードフレーム2cを半導体素子1aの一方の面の制御パッドに接合体4dを用いて電気的に接続する。これらのリードフレームを接続することで、図7に示したパワーモジュール中間体180が形成される。接合体4b、4cによる第1のリードフレーム2a及び第2のリードフレーム2bの接続は同時に行っても構わないが、別工程であっても構わない。図7では、リードフレームのそれぞれは図の上方向に折り曲げられているが、後の工程において折り曲げても構わない。
次の工程で、図8に示すように、高放熱絶縁接着シート6の一方の面をヒートスプレッダ3の他方の面に熱的に接続し、金属板7の一方の面を高放熱絶縁接着シート6の他方の面に熱的に接続する。なお、次の封止樹脂部材注入工程においてパワーモジュール中間体180を金型に配置する際に、高放熱絶縁接着シート6とヒートスプレッダ3とを一体化しても構わない。また、図8では金属板7と高放熱絶縁接着シート6とが一体化されているが、次の封止樹脂部材注入工程においてこれらを金型に配置する際に、高放熱絶縁接着シート6と金属板7とを一体化しても構わない。
封止樹脂部材注入工程は、ヒートスプレッダ3、半導体素子1a、1b、高放熱絶縁接着シート6、金属板7、第1のリードフレーム2a、第2のリードフレーム2b、及び第3のリードフレーム2cを金型内に配置した状態で、金型内に硬化していない封止樹脂部材5を加圧注入する工程である。パワーモジュール中間体180、高放熱絶縁接着シート6、及び金属板7を一体化していない場合、金属板7、高放熱絶縁接着シート6、パワーモジュール中間体180の順に、金型内に配置する。金型は、予め一定の温度に保持されている。パワーモジュール中間体180、高放熱絶縁接着シート6、及び金属板7は、金型内に予め定めた時間保持される。予め定めた保持時間は、例えば、5秒以上である。予め定めた保持時間でこれらを保持した後に、封止樹脂部材5が一定の圧力で金型に注入される。封止樹脂部材注入工程は、トランスファーモールドでも、射出成形でも構わない。また、封止樹脂部材5の注入前に真空引きを行っても構わない。金属板7は、封止樹脂部材注入工程の実行後において、金属板7の他方の面が封止樹脂部材5から露出する。
封止樹脂部材5の注入が完了した時点から、パスカルの原理に基づき、高放熱絶縁接着シート6全体に静水圧的に内圧が発生する。発生する圧力は注入圧力である成形圧力と等しく、比較例のように側面が解放された状態で加圧する場合よりも高い内圧を高放熱絶縁接着シート6に発生させることができる。封止樹脂部材注入工程の実行前では、高放熱絶縁接着シート6のセラミックス焼結体は、樹脂が充填されていない空隙を有している。封止樹脂部材注入工程において、封止樹脂部材5の注入圧力により、高放熱絶縁接着シート6全体に圧力をかけ、樹脂が充填されていない空隙に樹脂を充填させる。例えば、セラミックス焼結体における空隙の割合は10%以下ならよく、理想的には0%である。樹脂が充填されていない空隙に樹脂が充填されるため、空隙に放電の経路が形成されることがないので、高放熱絶縁接着シート6の端部を含む、高放熱絶縁接着シート6の全体の絶縁信頼性を大きく向上させることができる。高放熱絶縁接着シート6の絶縁信頼性が向上するので、パワーモジュール200の絶縁信頼性の低下を抑制することができる。
封止樹脂部材注入工程における高放熱絶縁接着シート6の厚み変化率は、1%以上11%以下であることが望ましい。高放熱絶縁接着シート6の厚みが変化しない条件において封止樹脂部材注入工程を行った場合、ヒートスプレッダ3と高放熱絶縁接着シート6との間、及び高放熱絶縁接着シート6と金属板7との間における凹部、突起部、及び反りに対して、高放熱絶縁接着シート6のセラミックス焼結体が追従せず、樹脂である熱硬化性樹脂組成物のみのエリアができる可能性がある。封止樹脂部材注入工程における高放熱絶縁接着シート6の厚み変化率を1%以上11%以下とした場合、凹部、突起部、及び反りに対して高放熱絶縁接着シート6のセラミックス焼結体が追従するので、熱硬化性樹脂組成物のみのエリアを無くして電力用半導体装置100の放熱性を向上させることができる。高放熱絶縁接着シート6の厚み変化率は、例えば、封止樹脂部材注入工程における成形圧力、保持時間の最適化により調整することができる。
硬化工程は、封止樹脂部材5と高放熱絶縁接着シート6の樹脂とを予め定めた温度で同時に硬化させるアフターキュアの工程である。封止樹脂部材5と高放熱絶縁接着シート6の樹脂が熱硬化性樹脂である場合、硬化工程が必要である。アフターキュアの温度は、例えば、175℃である。図9は封止樹脂部材注入工程後のパワーモジュール中間体190の斜視図、図10は図9のB-B断面位置で切断したパワーモジュール中間体190の概略を示す断面図である。図10に示すように、第1のリードフレーム2a、第2のリードフレーム2b、及び第3のリードフレーム2c(図10において図示せず)の端部と、金属板7の他方の面とが封止樹脂部材5から露出した状態になる。なお、パワーモジュール中間体190において、リードフレームを切断するタイバーカット加工、及び端子曲げ加工を行っていない場合、封止樹脂部材注入工程と硬化工程との後に、タイバーカット加工と端子曲げ加工を行い、パワーモジュール200が形成される。
冷却器接続工程は、冷却器9を封止樹脂部材5から露出した金属板7の他方の面に金属接合体8を介して熱的に接続する工程である。冷却器接続工程を経て、図1に示した電力用半導体装置100が形成される。予め定めた温度に昇温して、金属接合体8を介してパワーモジュール200と冷却器9とは接続される。例えば金属接合体8が半田の場合、200℃以上に昇温して、パワーモジュール200と冷却器9とは接続される。金属接合体8は、冷却器接続工程の際に接合体4a、4b、4cが再溶融しない温度に昇温して用いる材料が選定される。金属接合体8を昇温した温度で、接合体4a、4b、4cが再溶融した場合、パワーモジュール200の絶縁信頼性が著しく低下する。
以上のように、実施の形態1によるパワーモジュール200において、板状のヒートスプレッダ3と、ヒートスプレッダ3の一方の面に少なくとも熱的に接続された半導体素子1a、1bと、一方の面がヒートスプレッダ3の他方の面に熱的に接続された板状の高放熱絶縁接着シート6と、一方の面が高放熱絶縁接着シート6の他方の面に熱的に接続された金属板7と、金属板7の他方の面を露出させた状態で、これらの部材を封止した封止樹脂部材5とを備え、高放熱絶縁接着シート6は、セラミックス粒子が空隙を有し一体的に焼結された多孔性のセラミックス焼結体に樹脂が含浸された複合体であるため、セラミックス焼結体の空隙に放電の経路が形成されることがないので、パワーモジュール200の絶縁信頼性の低下を抑制することができる。高放熱絶縁接着シート6はセラミックス粒子が空隙を有し一体的に焼結された多孔性のセラミックス焼結体に樹脂が含浸された複合体であるため、例えば、25℃における熱伝導率は100W/(m・K)を有しているので、パワーモジュール200の高放熱化を実現することができる。
高放熱絶縁接着シート6とヒートスプレッダ3、及び高放熱絶縁接着シート6と金属板7とが当接している場合、高放熱絶縁接着シート6とヒートスプレッダ3との間、及び高放熱絶縁接着シート6と金属板7との間には高放熱絶縁接着シート6の構成物のみが介在しているので、パワーモジュール200の放熱性の低下を防止することできる。また、半導体素子1a、1bがワイドバンドギャップを有した半導体材料からなる場合、半導体素子1a、1bの損失を削減することができる。半導体素子1a、1bの損失が削減できるので、電力用半導体装置100の大容量化を容易に行うことができる。
実施の形態1による電力用半導体装置100において、本願に開示されたパワーモジュール200と、封止樹脂部材5から露出した金属板7の面に金属接合体8を介して熱的に接続された冷却器9とを備えているため、パワーモジュール200の内部の半導体素子1a、1bで生じた熱を冷却器9から効率的に外部に排熱することができる。本願に開示されたパワーモジュール200をマザー工場で生産し、冷却器と接続する冷却器接続工程を他の工場で行うことができるため、電力用半導体装置100の生産性を向上させることができると共に、電力用半導体装置100の製造コストを低減することができる。
実施の形態1によるパワーモジュール200の製造方法において、板状のヒートスプレッダ3と、ヒートスプレッダ3の一方の面に少なくとも熱的に接続された半導体素子1a、1bと、一方の面がヒートスプレッダ3の他方の面に熱的に接続される板状の高放熱絶縁接着シート6と、一方の面が高放熱絶縁接着シート6の他方の面に熱的に接続される金属板7とを用意する部材用意工程と、ヒートスプレッダ3、半導体素子1a、1b、高放熱絶縁接着シート6、及び金属板7を金型内に配置した状態で、金型内に硬化していない封止樹脂部材5を加圧注入する封止樹脂部材注入工程とを備え、金属板7は、封止樹脂部材注入工程の実行後において、金属板7の他方の面が封止樹脂部材5から露出し、高放熱絶縁接着シート6は、セラミックス粒子が空隙を有し一体的に焼結された多孔性のセラミックス焼結体に樹脂が含浸された複合体であり、封止樹脂部材注入工程の実行前では、セラミックス焼結体は樹脂が充填されていない空隙を有し、封止樹脂部材注入工程において、封止樹脂部材5の注入圧力により、高放熱絶縁接着シート6に圧力をかけ、樹脂が充填されていない空隙に樹脂を充填させるため、空隙に放電の経路が形成されることがないので、高放熱絶縁接着シート6の端部を含む、高放熱絶縁接着シート6の全体の絶縁信頼性を大きく向上させることができる。高放熱絶縁接着シート6の絶縁信頼性が向上するので、パワーモジュール200及び電力用半導体装置100の絶縁信頼性の低下を抑制することができる。
封止樹脂部材注入工程における高放熱絶縁接着シート6の厚み変化率を1%以上11%以下とした場合、ヒートスプレッダ3と高放熱絶縁接着シート6との間、及び高放熱絶縁接着シート6と金属板7との間における凹部、突起部、及び反りに対して高放熱絶縁接着シート6のセラミックス焼結体が追従するので、樹脂である熱硬化性樹脂組成物のみのエリアを無くして電力用半導体装置100の放熱性を向上させることができる。実施の形態1による電力用半導体装置100の製造方法において、冷却器9を封止樹脂部材5から露出した金属板7の面に金属接合体8を介して熱的に接続する工程を備えたため、パワーモジュール200の内部の半導体素子1a、1bで生じた熱を冷却器9から効率的に外部に排熱することができる電力用半導体装置100を容易に製造することができる。
実施の形態2.
実施の形態2に係る電力用半導体装置100について説明する。図11は実施の形態2に係る電力用半導体装置100の概略を示す断面図で、図1のA-A断面位置と同等の位置で切断された図、図12は図11のC-C断面位置で切断した電力用半導体装置100の概略を示す断面図で、封止樹脂部材5を省略して示した図ある。実施の形態2に係る電力用半導体装置100は、高放熱絶縁接着シート6の大きさが実施の形態1とは異なる大きさに形成されている。
金属板7の一方の面に垂直な方向に見て、高放熱絶縁接着シート6の外周の部分は、金属板7の外周の部分よりも内側に設けられている。本実施の形態では、図12に示すように、高放熱絶縁接着シート6は横方向のそれぞれの端部において、金属板7よりもXだけ小さい。また、高放熱絶縁接着シート6は縦方向のそれぞれの端部において、金属板7よりもYだけ小さい。X、Yの大きさは0よりも大きく、任意の大きさで高放熱絶縁接着シート6は形成される。高放熱絶縁接着シート6の外周の部分において、高放熱絶縁接着シート6から樹脂がはみ出していたとしても、はみ出した樹脂を含む高放熱絶縁接着シート6の外周の部分が金属板7の外周の部分よりも内側に設けられているものとする。高放熱絶縁接着シート6からセラミックス焼結体がはみ出していても同様である。
高放熱絶縁接着シート6の外周の部分が金属板7からはみ出した場合、パワーモジュール200を封止する際の封止樹脂部材5の流動により、高放熱絶縁接着シート6に欠けが生じたり、高放熱絶縁接着シート6にクラックが生じることがある。高放熱絶縁接着シート6に欠けが生じた場合、欠けた高放熱絶縁接着シート6の破片が封止樹脂部材5の流動とともにパワーモジュール200の内部に残存し、半導体素子1等の他の部材に傷をつけて、パワーモジュール200の信頼性を低下させるおそれがあった。また、高放熱絶縁接着シート6にクラックが生じた場合、パワーモジュール200の絶縁信頼性を低下させるおそれがあった。なお、高放熱絶縁接着シート6の樹脂のみがはみ出している場合、高放熱絶縁接着シート6に欠けが生じた場合と同様に、樹脂に起因した異物の発生によりパワーモジュール200の信頼性を低下させるおそれがある。
以上のように、実施の形態2による電力用半導体装置100において、金属板7の一方の面に垂直な方向に見て、高放熱絶縁接着シート6の外周の部分が金属板7の外周の部分よりも内側に設けられているため、高放熱絶縁接着シート6の外周の端部が金属板7からはみ出すことがないので、パワーモジュール200を封止する際の封止樹脂部材5の流動により、高放熱絶縁接着シート6に欠けが生じるリスク、及び高放熱絶縁接着シート6にクラックが生じるリスクを抑制することができる。高放熱絶縁接着シート6に欠け及びクラックが生じるリスクが抑制されるので、パワーモジュール200及び電力用半導体装置100の信頼性を向上させることができる。
実施の形態3.
実施の形態3に係る電力用半導体装置100について説明する。図13は実施の形態3に係る電力用半導体装置100の概略を示す断面図で、図1のA-A断面位置と同等の位置で切断された図である。実施の形態3に係る電力用半導体装置100は、ヒートスプレッダ3の側面に段差3aが形成された構成になっている。
ヒートスプレッダ3の一方の面に垂直な方向に見て、ヒートスプレッダ3の高放熱絶縁接着シート6に接した面の外周の部分に、外周の部分からヒートスプレッダ3の内側の部分に向かって引っ込んだ少なくとも1つの段差3aが形成されている。本実施の形態では段差3aを1つ設けているが、段差3aの数は1つに限るものではなく、段差3aを2段以上設けても構わない。
電力用半導体装置100において、金属接合体8を介してパワーモジュール200と冷却器9とを接続する際、及び電力用半導体装置100の使用時における熱サイクルに起因して、高放熱絶縁接着シート6に発生する応力は、ヒートスプレッダ3の高放熱絶縁接着シート6に接した面の外周の部分において最も大きくなる。応力が大きくなる箇所において、高放熱絶縁接着シート6に欠けが生じるリスク、及び高放熱絶縁接着シート6にクラックが生じるリスクが高くなる。
以上のように、実施の形態3による電力用半導体装置100において、ヒートスプレッダ3の一方の面に垂直な方向に見て、ヒートスプレッダ3の高放熱絶縁接着シート6に接した面の外周の部分に、外周の部分からヒートスプレッダ3の内側の部分に向かって引っ込んだ少なくとも1つの段差3aが形成されているため、応力が大きくなる箇所においてヒートスプレッダ3と封止樹脂部材5との接する面積が増加するので、高放熱絶縁接着シート6に発生する応力を低下させることができる。高放熱絶縁接着シート6に発生する応力が低下するので、高放熱絶縁接着シート6の耐熱サイクル性が向上し、絶縁信頼性が高い電力用半導体装置100を得ることができる。
実施の形態4.
実施の形態4に係る電力用半導体装置101について説明する。図14は実施の形態4に係る電力用半導体装置101の概略を示す斜視図、図15は図14のD-D断面位置で切断した電力用半導体装置101の概略を示す断面図である。実施の形態4に係る電力用半導体装置101は、2つの冷却器9、9bを備えた構成になっている。
パワーモジュール201は、パワーモジュール200に加えて、ヒートスプレッダ3とは反対側の半導体素子1a、1bの面が熱的に接続された、熱伝導性を有する板状の追加のヒートスプレッダ3bと、半導体素子1a、1bとは反対側の追加のヒートスプレッダ3bの面が熱的に接続された、熱伝導性を有する板状の追加の高放熱絶縁接着シート6aと、追加のヒートスプレッダ3bとは反対側の追加の高放熱絶縁接着シート6aの面が熱的に接続された追加の金属板7aとを有する。封止樹脂部材5は、追加の高放熱絶縁接着シート6aとは反対側の追加の金属板7aの面を露出させた状態で、追加のヒートスプレッダ3bと追加の高放熱絶縁接着シート6aと追加の金属板7aとを封止する。
本実施の形態では、パワーモジュール201は、半導体素子1a、1bと追加のヒートスプレッダ3bとの間に、第1のリードフレーム2aと金属スペーサー10とを備える。第1のリードフレーム2aは、接合体4bにより、半導体素子1a、1bの一方の面に接続される。金属スペーサー10は、接合体4eにより、第1のリードフレーム2aに熱的に接続される。金属スペーサー10は、接合体4eにより、追加のヒートスプレッダ3bに熱的に接続される。金属スペーサー10は、例えば、第1のリードフレーム2aと同様に、銅、アルミニウム、銀、または銅クラッド材から作製される。接合体4eは、例えば、接合体4aと同様に、半田、焼結Ag、または焼結Cuである。
電力用半導体装置101は、パワーモジュール201と、冷却器9、9bとを備える。冷却器9bは、封止樹脂部材5から露出した追加の金属板7aの面に金属接合体8aを介して熱的に接続される。冷却器9bは、例えば、冷却器9と同様に、熱伝導性に優れたアルミ合金または銅材により作製される。金属接合体8aは、例えば、金属接合体8と同様に、半田、焼結Ag、または焼結Cuであるがこれらに限るものではない。
パワーモジュール201の製造方法について、実施の形態1で説明したパワーモジュール200の製造方法に追加する部分について説明する。部材用意工程では、さらに、ヒートスプレッダ3とは反対側の半導体素子1a、1bの面が熱的に接続される、熱伝導性を有する板状の追加のヒートスプレッダ3bと、半導体素子とは反対側の追加のヒートスプレッダ3bの面が熱的に接続される、熱伝導性を有する板状の追加の高放熱絶縁接着シート6aと、追加のヒートスプレッダ3bとは反対側の追加の高放熱絶縁接着シート6aの面が熱的に接続される追加の金属板7aとを用意する。図15に示したように、パワーモジュール201がさらに金属スペーサー10を備える場合、金属スペーサー10も用意する。
封止樹脂部材注入工程では、ヒートスプレッダ3、半導体素子1a、1b、高放熱絶縁接着シート6、金属板7、追加のヒートスプレッダ3b、追加の高放熱絶縁接着シート6a、及び追加の金属板7aを金型内に配置した状態で、金型内に硬化していない封止樹脂部材5を加圧注入する。追加の金属板7aは、封止樹脂部材注入工程の実行後において、追加の高放熱絶縁接着シート6aの面が熱的に接続された面とは反対側の面が封止樹脂部材5から露出している。封止樹脂部材5と、高放熱絶縁接着シート6及び追加の高放熱絶縁接着シート6aの樹脂とが熱硬化性樹脂である場合、さらに硬化工程を行う。
電力用半導体装置101の製造方法について説明する。冷却器接続工程において、冷却器9を封止樹脂部材5から露出した金属板7の面に金属接合体8を介して熱的に接続し、冷却器9bを封止樹脂部材5から露出した追加の金属板7aの面に金属接合体8aを介して熱的に接続する。冷却器9、9bは同時に接続してもよく、別々に接続しても構わない。このように製造することで、パワーモジュール200の内部の半導体素子1a、1bで生じた熱を冷却器9、9bから効率的に外部に排熱することができる電力用半導体装置101を容易に製造することができる。
以上のように、実施の形態4による電力用半導体装置101において、パワーモジュール201がヒートスプレッダ3とは反対側の半導体素子1a、1bの面が熱的に接続された、熱伝導性を有する板状の追加のヒートスプレッダ3bと、半導体素子1a、1bとは反対側の追加のヒートスプレッダ3bの面が熱的に接続された、熱伝導性を有する板状の追加の高放熱絶縁接着シート6aと、追加のヒートスプレッダ3bとは反対側の追加の高放熱絶縁接着シート6aの面が熱的に接続された追加の金属板7aとを有し、封止樹脂部材5が追加の高放熱絶縁接着シート6aとは反対側の追加の金属板7aの面を露出させた状態で、追加のヒートスプレッダ3bと追加の高放熱絶縁接着シート6aと追加の金属板7aとを封止したため、パワーモジュール200のさらなる高放熱化を実現することができる。パワーモジュール200のさらなる高放熱化が実現されるので、電力用半導体装置101をさらに大出力化、及び小型化することができる。
実施の形態4によるパワーモジュール201の製造方法において、部材用意工程では、さらに、ヒートスプレッダ3とは反対側の半導体素子1a、1bの面が熱的に接続される、熱伝導性を有する板状の追加のヒートスプレッダ3bと、半導体素子とは反対側の追加のヒートスプレッダ3bの面が熱的に接続される、熱伝導性を有する板状の追加の高放熱絶縁接着シート6aと、追加のヒートスプレッダ3bとは反対側の追加の高放熱絶縁接着シート6aの面が熱的に接続される追加の金属板7aとを用意し、ヒートスプレッダ3、半導体素子1a、1b、高放熱絶縁接着シート6、金属板7、追加のヒートスプレッダ3b、追加の高放熱絶縁接着シート6a、及び追加の金属板7aを金型内に配置した状態で、金型内に硬化していない封止樹脂部材5を加圧注入し、追加の金属板7aは、封止樹脂部材注入工程の実行後において、追加の高放熱絶縁接着シート6aの面が熱的に接続された面とは反対側の面が封止樹脂部材5から露出しているため、さらなる高放熱化が実現したパワーモジュール200を容易に製造することができる。
実施の形態4による電力用半導体装置101の製造方法において、冷却器9を封止樹脂部材5から露出した金属板7の面に金属接合体8を介して熱的に接続し、冷却器9bを封止樹脂部材5から露出した追加の金属板7aの面に金属接合体8aを介して熱的に接続する工程を備えたため、パワーモジュール200の内部の半導体素子1a、1bで生じた熱を冷却器9、9bから効率的に外部に排熱することができる電力用半導体装置101を容易に製造することができる。
また本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 半導体素子、2a 第1のリードフレーム、2b 第2のリードフレーム、2c 第3のリードフレーム、2d 第4のリードフレーム、3 ヒートスプレッダ、3a 段差、3b 追加のヒートスプレッダ、4 接合体、5 封止樹脂部材、6 高放熱絶縁接着シート、6a 追加の高放熱絶縁接着シート、7 金属板、7a 追加の金属板、8 金属接合体、8a 金属接合体、9 冷却器、9a 放熱フィン、9b 冷却器、10 金属スペーサー、20 金属回路基板、100 電力用半導体装置、101 電力用半導体装置、170 パワーモジュール中間体、180 パワーモジュール中間体、190 パワーモジュール中間体、200 パワーモジュール、201 パワーモジュール

Claims (3)

  1. 熱伝導性を有する板状のヒートスプレッダと、前記ヒートスプレッダの一方の面に少なくとも熱的に接続された半導体素子と、一方の面が前記ヒートスプレッダの他方の面に熱的に接続される板状の高放熱絶縁接着シートと、一方の面が前記高放熱絶縁接着シートの他方の面に、外周端の位置が前記高放熱絶縁接着シートの外周端の位置と同等であるように熱的に接続され、他方の面が冷却器に熱的に接続される面である金属板と、複数の放熱フィンを有した冷却器と、を用意する部材用意工程と、
    前記ヒートスプレッダ、前記半導体素子、前記高放熱絶縁接着シート、及び前記金属板を金型内に配置した状態で、前記金型内に硬化していない封止樹脂部材を加圧注入して、パワーモジュールを作製する封止樹脂部材注入工程と、
    前記冷却器を前記封止樹脂部材から露出した前記金属板の面に金属接合体を介して熱的に接続する冷却器接続工程と、を備え、
    前記金属板は、前記封止樹脂部材注入工程の実行後において、前記金属板の他方の面が前記封止樹脂部材から露出し、
    前記高放熱絶縁接着シートは、セラミックス粒子が空隙を有し一体的に焼結された多孔性のセラミックス焼結体に樹脂が含浸された複合体であり、前記封止樹脂部材注入工程の実行前では、前記セラミックス焼結体は、前記樹脂が充填されていない空隙を有し、前記封止樹脂部材注入工程において、前記封止樹脂部材の注入圧力により、前記高放熱絶縁接着シートに圧力をかけ、前記樹脂が充填されていない空隙に前記樹脂を充填させ、
    前記冷却器接続工程では、前記冷却器は、前記金属板の外周端の位置よりも周囲に突出した部分を有する板状部、及び前記金属接合体とは反対側の前記冷却器の前記板状部の面に前記複数の冷却フィンを有し、前記板状部と前記複数の冷却フィンとは、一体的に形成された一体部材であり、前記板状部の前記金属接合体の側の面は、前記金属接合体を介して前記金属板の他方の面に熱的に接続され、前記パワーモジュールは、前記冷却器の前記突出した部分の端部よりも内側に設けられるように接続する電力用半導体装置の製造方法。
  2. 前記部材用意工程では、さらに、前記ヒートスプレッダとは反対側の前記半導体素子の面が熱的に接続される、熱伝導性を有する板状の追加の前記ヒートスプレッダと、前記半導体素子とは反対側の追加の前記ヒートスプレッダの面が熱的に接続される、熱伝導性を有する板状の追加の前記高放熱絶縁接着シートと、追加の前記ヒートスプレッダとは反対側の追加の前記高放熱絶縁接着シートの面が熱的に接続される追加の前記金属板と、追加の複数の放熱フィンを有した追加の冷却器と、を用意し、
    前記封止樹脂部材注入工程では、前記ヒートスプレッダ、前記半導体素子、前記高放熱絶縁接着シート、前記金属板、追加の前記ヒートスプレッダ、追加の前記高放熱絶縁接着シート、及び追加の前記金属板を金型内に配置した状態で、前記金型内に硬化していない前記封止樹脂部材を加圧注入し、
    追加の前記金属板は、前記封止樹脂部材注入工程の実行後において、追加の前記高放熱絶縁接着シートの面が熱的に接続された面とは反対側の面が前記封止樹脂部材から露出し、
    前記冷却器接続工程では、前記追加の冷却器を前記封止樹脂部材から露出した前記追加の金属板の面に追加の金属接合体を介して熱的に接続し、
    前記冷却器接続工程では、前記追加の冷却器は、前記追加の金属板の外周端の位置よりも周囲に突出した部分を有する追加の板状部、及び前記追加の金属接合体とは反対側の前記追加の冷却器の前記追加の板状部の面に前記追加の複数の冷却フィンを有し、前記追加の板状部と前記追加の複数の冷却フィンとは、一体的に形成された一体部材であり、前記追加の板状部の前記追加の金属接合体の側の面は、前記追加の金属接合体を介して前記追加の金属板の他方の面に熱的に接続され、前記パワーモジュールは、前記追加の冷却器の前記突出した部分の端部よりも内側に設けられるように接続する請求項に記載の電力用半導体装置の製造方法。
  3. 前記封止樹脂部材注入工程における前記高放熱絶縁接着シートの厚み変化率が、1%以上11%以下である請求項またはに記載の電力用半導体装置の製造方法。
JP2021163244A 2021-10-04 2021-10-04 電力用半導体装置の製造方法 Active JP7523419B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021163244A JP7523419B2 (ja) 2021-10-04 2021-10-04 電力用半導体装置の製造方法
US17/707,171 US20230105637A1 (en) 2021-10-04 2022-03-29 Power module, power semiconductor device, and manufacturing methods therefor
CN202211184393.7A CN115939061A (zh) 2021-10-04 2022-09-27 功率模块、功率用半导体装置及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021163244A JP7523419B2 (ja) 2021-10-04 2021-10-04 電力用半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2023054418A JP2023054418A (ja) 2023-04-14
JP7523419B2 true JP7523419B2 (ja) 2024-07-26

Family

ID=85774541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021163244A Active JP7523419B2 (ja) 2021-10-04 2021-10-04 電力用半導体装置の製造方法

Country Status (3)

Country Link
US (1) US20230105637A1 (ja)
JP (1) JP7523419B2 (ja)
CN (1) CN115939061A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024199603A1 (en) 2023-03-28 2024-10-03 Kk Wind Solutions A/S An electrical conductor with integrated heat sink

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111978A1 (ja) 2017-12-05 2019-06-13 デンカ株式会社 窒化物系セラミックス樹脂複合体
JP2021111765A (ja) 2020-01-16 2021-08-02 三菱電機株式会社 半導体装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3601432B2 (ja) * 2000-10-04 2004-12-15 株式会社デンソー 半導体装置
JP4969738B2 (ja) * 2001-06-28 2012-07-04 株式会社東芝 セラミックス回路基板およびそれを用いた半導体モジュール
JP3740116B2 (ja) * 2002-11-11 2006-02-01 三菱電機株式会社 モールド樹脂封止型パワー半導体装置及びその製造方法
DE112009005537B3 (de) * 2008-04-09 2022-05-12 Fuji Electric Co., Ltd. Verfahren zum Herstellen einer Halbleitervorrichtung
JP5955251B2 (ja) * 2013-03-18 2016-07-20 三菱電機株式会社 パワー半導体モジュール
JP2019067949A (ja) * 2017-10-02 2019-04-25 トヨタ自動車株式会社 半導体装置
CN114008771A (zh) * 2019-07-02 2022-02-01 三菱电机株式会社 功率模块及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111978A1 (ja) 2017-12-05 2019-06-13 デンカ株式会社 窒化物系セラミックス樹脂複合体
JP2021111765A (ja) 2020-01-16 2021-08-02 三菱電機株式会社 半導体装置

Also Published As

Publication number Publication date
US20230105637A1 (en) 2023-04-06
CN115939061A (zh) 2023-04-07
JP2023054418A (ja) 2023-04-14

Similar Documents

Publication Publication Date Title
KR102585450B1 (ko) 브레이징된 전기 전도성 층을 포함하는 칩 캐리어를 구비한 몰딩된 패키지
JP5472498B2 (ja) パワーモジュールの製造方法
CN108735692B (zh) 半导体装置
US11862542B2 (en) Dual side cooling power module and manufacturing method of the same
WO2014122908A1 (ja) 半導体装置およびその製造方法
JP5895220B2 (ja) 半導体装置の製造方法
JP2011216564A (ja) パワーモジュール及びその製造方法
JP6308780B2 (ja) パワーモジュール
JP6877600B1 (ja) 半導体装置
WO2011040313A1 (ja) 半導体モジュールおよびその製造方法
JP6945418B2 (ja) 半導体装置および半導体装置の製造方法
JP5899952B2 (ja) 半導体モジュール
JP7523419B2 (ja) 電力用半導体装置の製造方法
US11735557B2 (en) Power module of double-faced cooling
JP2012209470A (ja) 半導体装置、半導体装置モジュール及び半導体装置の製造方法
CN114284226A (zh) 半导体装置、半导体装置的制造方法及电力变换装置
WO2023136264A1 (ja) 樹脂封止型半導体装置
KR102661089B1 (ko) 파워모듈용 세라믹 기판, 그 제조방법 및 이를 구비한 파워모듈
KR102564818B1 (ko) 파워모듈 및 그 제조방법
JP4277582B2 (ja) 半導体装置
JP2024013570A (ja) 半導体装置、半導体装置の製造方法および電力変換装置
KR20240115549A (ko) 반도체 패키지 및 이의 제조방법
JP3552623B2 (ja) 複合材料及びそれを用いた半導体装置用放熱板
KR20220141977A (ko) 파워모듈 및 그 제조방법
JP2023141693A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230628

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240716

R150 Certificate of patent or registration of utility model

Ref document number: 7523419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150