KR102476901B1 - 대장암 세포 특이적 감염 뉴캐슬병 바이러스를 이용한 대장암 치료용 암용해성 바이러스 및 이를 이용한 대장암 치료용 조성물 - Google Patents

대장암 세포 특이적 감염 뉴캐슬병 바이러스를 이용한 대장암 치료용 암용해성 바이러스 및 이를 이용한 대장암 치료용 조성물 Download PDF

Info

Publication number
KR102476901B1
KR102476901B1 KR1020210103937A KR20210103937A KR102476901B1 KR 102476901 B1 KR102476901 B1 KR 102476901B1 KR 1020210103937 A KR1020210103937 A KR 1020210103937A KR 20210103937 A KR20210103937 A KR 20210103937A KR 102476901 B1 KR102476901 B1 KR 102476901B1
Authority
KR
South Korea
Prior art keywords
virus
cells
colorectal cancer
gene
domain
Prior art date
Application number
KR1020210103937A
Other languages
English (en)
Inventor
장현
정보경
안용희
Original Assignee
리벤텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 리벤텍 주식회사 filed Critical 리벤텍 주식회사
Priority to KR1020210103937A priority Critical patent/KR102476901B1/ko
Priority to PCT/KR2021/011745 priority patent/WO2023013808A1/ko
Priority to US17/606,931 priority patent/US11884931B2/en
Priority to PCT/KR2021/013148 priority patent/WO2023013812A1/ko
Application granted granted Critical
Publication of KR102476901B1 publication Critical patent/KR102476901B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • A61K35/768Oncolytic viruses not provided for in groups A61K35/761 - A61K35/766
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18111Avulavirus, e.g. Newcastle disease virus
    • C12N2760/18121Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18111Avulavirus, e.g. Newcastle disease virus
    • C12N2760/18132Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18111Avulavirus, e.g. Newcastle disease virus
    • C12N2760/18141Use of virus, viral particle or viral elements as a vector
    • C12N2760/18143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18111Avulavirus, e.g. Newcastle disease virus
    • C12N2760/18141Use of virus, viral particle or viral elements as a vector
    • C12N2760/18145Special targeting system for viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18111Avulavirus, e.g. Newcastle disease virus
    • C12N2760/18151Methods of production or purification of viral material
    • C12N2760/18152Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18111Avulavirus, e.g. Newcastle disease virus
    • C12N2760/18171Demonstrated in vivo effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/08RNA viruses
    • G01N2333/115Paramyxoviridae, e.g. parainfluenza virus
    • G01N2333/125Newcastle disease virus

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Epidemiology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Mycology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)

Abstract

본 발명은 대장암 세포 특이적 mutant sialic acid binding domain을 포함하는 M2-LVP-K1 바이러스 및 이를 포함한 대장암 치료용 조성물에 관한 것으로 본 발명의 mutant sialic acid binding domain은 directed evolution 기술을 이용하여 제작된 것으로 세포 결합 receptor 인 HN 단백질에 정상적인 sialic acid binding domain과 치환되어 제작된 재조합 뉴캐슬병 바이러스로서 HCT116 세포에 대한 특이적 감염성이 향상되게 하였다. 대장암 세포 특이적 감염성이 향상된 M2-LVP-K1 재조합 뉴캐슬병 바이러스는 HCT116 세포 사멸 효과가 기존의 정상적인 재조합 뉴캐슬병 바이러스에 비해 향상되었으며 in vivo 실험을 통해서 암조직 성장 억제 효과가 우수함을 확인하였다. 본 연구에서 제시된 Mutant 재조합 뉴캐슬병 바이러스는 대장암 세포 사멸 또는 대장암 조직 축소를 통해 임상 증상 감소, 부분 관해 또는 완전 관해를 유도할 수 있는 치료용 바이러스 제제에 관한 것이다.

Description

대장암 세포 특이적 감염 뉴캐슬병 바이러스를 이용한 대장암 치료용 암용해성 바이러스 및 이를 이용한 대장암 치료용 조성물 {Oncolytic virus constructed by based on the colorectal cancer cells-specific infection Newcastle disease virus for colorectal cancer treatment and its composition}
본 발명은 대장암 치료를 위한 암용해성 바이러스(oncolytic virus) 개발 및 이를 이용한 치료 및 치료제에 관한 것으로, 더욱 상세하게는 대장암 세포 특이적 감염 뉴캐슬병 바이러스를 이용한 대장암 치료용 암용해성 바이러스 및 이를 이용한 대장암 치료용 조성물에 관한 것이다.
대장암은 모든 암 중에서 세 번째로 빈번하게 발생하는 질병이며, 전세계적으로 모든 암 중에서 가장 높은 사망률을 나타내는 질병이다. 한국을 포함한 아시아에서 발생빈도가 급격하게 증가하고 있으며, 2016년 한국 통계에 따르면 세 번째로 높은 사망률을 보인다. 대장암을 초기에 발견하였을 경우, 90%가 넘는 대상들의 수명은 5년 이상 증가하게 되지만, 초기에 대장암을 진단받는 환자는 오직 40% 뿐이다. 대장암의 조기 진단은 환자의 생명과 직접적으로 연관되어 있으며, 현재까지 도전적인 과제로 남아있다.
직장은 대장의 마지막 부분으로 길이가 15cm 정도인 파이프 모양의 관으로, 안쪽부터 점막층, 점막하층, 근육층, 장막층으로 나누어져 있다. 직장암은 대부분 장의 점막에서 발생하는 선암이며 이외에도 유암종, 림프종, 육종, 편평상피암. 전이성 암 등이 있는 것으로 열려져 있다. 결장에서 발생하는 암을 결장암이라 하는데 이 역시 조직학적으로 점막(mucosa)에서 시작되는 선암(adenocarcinoma)이 대부분이며, 드물게 신경내분비세포종양(neuroendocrine tumor), 림프종(lymphoma) 등에 의한 암이 발생하기도 한다. 일반적으로 결장암 역시 선암을 뜻한다. 대장암의 경우 선암으로 발전하기 전 대부분 용종(polyp)의 형태를 지니고 있기에, 대장내시경 등을 통해 이 용종의 유무를 발견하는 조기 진단이 매우 중요하다. 그러나 모든 용종이 암으로 발전되는 것은 아니고, 조직학적인 특징에 따라 악성종양의 잠재성을 구분하게 된다.
한편, 암용해성 바이러스(oncolytic virus) 치료는 암치료의 새로운 바이오의약품으로서 새로운 접근을 하고 있으며 실험과 임상 수준에서 상당한 발전을 이루고 있다. 최근에 바이러스 치료에 이용되는 oncolytic virus는 바이러스 자체가 oncolyitc 성질을 가지고 있는 것을 이용하는 방법과 암세포 특이적으로 작용하여 암세포 사멸 효과를 가지는 유전자를 삽입한 바이러스 또는 두 가지 방법 모두를 이용하고 있다.
그러나 암용해성 바이러스가 특정 암세포에 특이적으로 감염되어 암세포만을 사멸시키지 못해 다양한 암에 대한 암용해성 바이러스가 정맥을 통해 주사되었을 때 1차적으로 혈액으로 인한 희석 효과(Dilution effect)에 의해 암세포에 감염되어 작동하는 바이러스의 농도가 감소되는 문제점이 있다. 이러한 희석 효과에 의한 효능 감소를 대비하고자 매우 높은 농도의 암용해성 바이러스를 사용하고 있고 이로 인해 면역반응 유발 및 2차적인 부작용 및 효능의 감소 효과가 일어나고 있다.
본 발명에 사용되는 재조합 뉴캐슬병 바이러스 (Newcastle Disease Virus, NDV) 역시 대표적인 내재적 암용해성 바이러스로서 특이한 유전자 삽입 없이도 암세포에 감염되어 암세포의 apoptosis 유발, 암세포에 대한 면역반응 유발에 대한 다양한 기전을 가진다. 암세포 감염시 암세포 사멸을 유도하나 정상세포에도 감염되어 정상세포에서는 Interferon-α에 의한 NDV 제거 기능으로 인해 바이러스 복제 및 증식이 일어나지 못한다. 따라서 재조합 NDV 역시 암세포 특이적 감염성이 없는 암용해성 바이러스이다.
NDV는 세포 표면의 sialic acid에 HN 단백질의 결합에 의해 세포 감염이 시작된다. HN 단백질은 세포 표면의 sialic acid(glycoprotein)에 결합한 후 neuramidase에 의해 결합한 sialic acid를 절단하고 F 단백질에 의해 숙주세포의 세포막과 NDV 바이러스의 envelope 이 fusion 을 일으켜 NDV 바이러스의 RNA 게놈이 세포질 안으로 유입되는 과정을 통해 바이러스가 감염된다. HN 단백질의 sialic acid 결합은 globular head domain에 존재하는 4개의 sialic acid 결합 motif를 통해 세포 표면의 sialic acid 와 결합하게 된다. 각각의 motif 는 HN 단백질 아미노산 서열 156에서 174, 171에서 203, 515에서 527 그리고 547에서 556 서열로 나뉘어 있고 바이러스 envelope에 anchoring 된 상태에서 4개의 motif 가 공간적으로 sialic acid 와 결합하는 구조를 가지고 있다. NDV 바이러스가 감염될 수 있는 세포의 종류는 비교적 다양하며 이것은 HN 단백질의 sialic acid 결합이 아주 특이적이지 않다고 추정할 수 있다. NDV 암용해성 바이러스 치료제 개발에 필수적인 기술은 첫째 암세포 특이적인 감염성을 갖는 바이러스의 제작이고 두 번째 암세포 사멸을 유도하는 유전자를 가장 최적의 위치에 삽입하는 것이다.
따라서 본 발명에서는 Directed evolution 기술을 이용한 HN 단백질의 sialic acid 결합 부위인 globular head domain(이하 H domain) 돌연변이를 만들고 이러한 돌연변이 중 대장암 특정 세포에 대한 특이성을 갖는 재조합 NDV를 제작하여 암세포 특이적 감염이 가능한 바이러스를 개발하고자 하였다. 즉 H domain mutant NDV vector 기반 oncolytic 바이러스를 제조 및 이를 이용한 효능 평가를 통해 대장암 치료용 바이러스 제제를 개발하는 것이다.
본 발명의 목적은 NP, P, M, F, HN 및 L 단백질을 암호화하는 유전자를 포함하는 뉴캐슬병 바이러스(Newcastle Disease Virus, NDV) cDNA 및 서열번호 3 내지 7 중 어느 하나의 염기서열로 표시되는 돌연변이 H domain(globular head domain)을 코딩하는 유전자를 포함하는 대장암 표적 암용해 바이러스 제작용 재조합 벡터를 제공하는 데 있다.
또한, 본 발명의 다른 목적은 상기 암용해 바이러스 제작용 재조합 벡터를 포함하는 대장암 치료용 암용해성 바이러스를 제공하는 데 있다.
또한, 본 발명의 다른 목적은 상기 대장암 치료용 암용해성 바이러스를 유효성분으로 포함하는 대장암 예방 또는 치료용 약학적 조성물을 제공하는 데 있다.
또한, 본 발명의 다른 목적은 표적 암세포에 특이적으로 감염되는 H domain을 선별하는 방법을 제공하는 데 있다.
또한, 본 발명의 다른 목적은 대장암을 예방 또는 치료하는 방법을 제공하는 데 있다.
또한, 본 발명의 다른 목적은 대장암을 예방 또는 치료하기 위한 정보를 제공하는 방법을 제공하는 데 있다.
또한, 본 발명의 다른 목적은 동물에서의 대장암 예방 또는 치료 효과 평가 방법을 제공하는 데 있다.
또한, 본 발명의 다른 목적은 재조합 뉴캐슬병 바이러스 제조 방법을 제공하는 데 있다.
상기와 같은 목적을 달성하기 위해, 본 발명은 NP, P, M, F, HN 및 L 단백질을 암호화하는 유전자를 포함하는 뉴캐슬병 바이러스(Newcastle Disease Virus, NDV) cDNA 및 서열번호 3 내지 7 중 어느 하나의 염기서열로 표시되는 돌연변이 H domain(globular head domain)을 코딩하는 유전자를 포함하는 대장암 표적 암용해 바이러스 제작용 재조합 벡터를 제공한다.
또한, 본 발명은 상기 암용해 바이러스 제작용 재조합 벡터를 포함하는 대장암 치료용 암용해 바이러스를 제공한다.
또한, 본 발명은 상기 대장암 치료용 암용해 바이러스를 유효성분으로 포함하는 대장암 예방 또는 치료용 약학적 조성물을 제공하는 데 있다.
또한, 본 발명은 서열번호 8의 염기서열로 표시되는 뉴캐슬병 바이러스의 HN 단백질의 H domain을 코딩하는 유전자에 무작위로 돌연변이를 발생시켜 돌연변이 H domain을 제조하는 단계; 아비딘(avidin) 단백질과 상기 돌연변이 H domain을 융합시켜 돌연변이 H domain-아비딘 융합 단백질을 제조하는 단계; 표적 암세포에 상기 H domain-아비딘 융합 단백질을 처리하는 단계; 및 돌연변이 H domain-아비딘 융합 단백질의 발현 수준을 측정하는 단계;를 포함하는 표적 암세포에 특이적으로 감염되는 H domain을 선별하는 방법을 제공한다.
또한, 본 발명은 상기 조성물을 인간을 제외한 개체에 투여하는 단계;를 포함하는 대장암을 예방 또는 치료하는 방법을 제공한다.
또한, 본 발명은 상기 약학적 조성물을 개체에 투여하는 단계; 및 개체의 암세포 또는 암 조직의 변화를 측정하여 평가하는 단계;를 포함하는 대장암을 예방 또는 치료하기 위한 정보를 제공하는 방법을 제공한다.
또한, 본 발명은 상기 약학적 조성물을 인간을 제외한 동물에 투여하는 단계를 포함하는 동물에서의 대장암 예방 또는 치료 효과 평가 방법을 제공한다.
또한, 본 발명은 상기 재조합 뉴캐슬병 바이러스를 숙주 세포주에 접종하는 단계; 상기 숙주 세포주를 배양하는 단계; 및 상기 숙주 세포주의 배양물로부터 재조합 뉴캐슬병 바이러스를 수득하는 단계;를 포함하는 재조합 뉴캐슬병 바이러스 제조 방법을 제공한다.
본 발명은 뉴캐슬병 바이러스(Newcastle Disease Virus, NDV)를 이용하여 숙주 세포감염에 receptor 역할을 하는 HN 단백질의 sialic acid 결합 globular domain 유전자에 인위적인 돌연변이를 일으켜 대장암 세포 결합 능력 증가와 대장암세포 사멸 효과를 높였으며 이에 암세포 자살을 유도하는 유전자를 도입할 수 있는 트랜스진 카세트를 구조 유전자 사이에 삽입하여 암치료에 효능을 높일 수 있는 외래 유전자 삽입을 가능하게 하였다. 따라서 대장암 세포 특이적인 암용해성 바이러스를 개발하여 안전하고 효능이 뛰어난 대장암 치료제를 개발하였고, 이는 대장암으로 인한 환자의 치료와 대장암 악화를 억제하여 대장암 치료에 기여할 수 있다.
도 1은 본 발명의 NDV VG/GA strain을 cDNA로 합성하여 modified pBR322 벡터로의 삽입과정을 나타낸 도이다.
도 2는 암세포에 대한 결합력이 향상된 H domain 단백질 제작을 위한 Directed evolution 기술 적용을 도식화하여 나타낸 도이다.
도 3A는 Mutant H domain을 ELISA 방법으로 스크리닝하기 위해 EP-PCR을 이용하여 mutation이 발생한 H domain 유전자와 avidin 유전자를 linker peptide 유전자의 연결을 통하여 fusion 단백질로 제작하는 유전자 구성 모식도이고, 도 3B는 H domain-avidin 결합 단백을 이용하여 대장암 세포에 대한 결합능이 높은 단백을 ELISA의 방법으로 스크리닝한 결과를 나타낸 도이다.
도 4는 mutant H domain의 아미노산 서열 (S519G)을 치환한 H-domain mutation-avidin 단백질의 모식도, 웨스턴블롯, ion exchange chromatography를 이용한 정제, 다양한 암세포 및 대장 정상 세포의 표면단백질에 대한 ELISA 실험 결과를 나타낸 도이다.
도 5는 mutant H domain(S519G)-GFP fusion 단백질의 플라스미드 모식도, ion exchange chromatography를 이용한 정제, 다양한 암세포 및 대장 정상 세포의 표면 결합 분석 결과를 나타낸 도이다.
도 6은 대장암 표적 암용해 바이러스 제작용 벡터의 유전자 모식도, 재조합 뉴캐슬병 바이러스 제작 모식도 및 벡시니아 바이러스의 제거 확인을 위한 RT-PCR 산물을 나타낸 도이다.
도 7은 형질감염 후 회수한 M2-LVP-K1 바이러스의 HCT116 세포와 Vero76 세포에서의 증식력을 비교한 실험 결과를 나타낸 도이다.
도 8은 본 발명의 M2-LVP-K1 바이러스에 감염된 다양한 암세포 및 대장 정상세포에서의 세포 변성 효과(cytopathic effect, CPE) 및 음성대조군에 대한 상대적인 사멸률(%)을 나타낸 도이다.
도 9는 대장암 이종이식 마우스 모델에서의 종양 성장 억제를 나타낸 도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예로 본 발명을 상세히 설명하기로 한다. 다만, 하기 실시예는 본 발명에 대한 예시로 제시되는 것으로, 당업자에게 주지 저명한 기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 수 있고, 이에 의해 본 발명이 제한되지는 않는다. 본 발명은 후술하는 특허 청구범위의 기재 및 이로부터 해석되는 균등 범주 내에서 다양한 변형 및 응용이 가능하다.
또한, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 바람직한 실시 예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되는 '%'는 별도의 언급이 없는 경우, 고체/고체는(w/w) %, 고체/액체는(w/v) %, 그리고 액체/액체는(v/v) %이다.
이하, 본 발명에 대하여보다 상세하게 설명하도록 한다.
본 발명은 NP, P, M, F, HN 및 L 단백질을 암호화하는 유전자를 포함하는 뉴캐슬병 바이러스(Newcastle Disease Virus, NDV) cDNA 및 돌연변이 H domain(globular head domain)을 포함하는 대장암 표적 암용해 바이러스 제작용 재조합 벡터를 제공한다.
또한, 상기 재조합 벡터는 IGS 서열(Gene end(GE), Intergenic sequence(IG), Gene start(GS)) 및 Multiple cloning site(MCS)로 이루어진 외래 유전자 발현용 트랜스진 카세트(transgene cassette)를 더 포함할 수 있다.
또한, 상기 외래유전자는 대장암세포 사멸 효과를 향상시킬 수 있는 대장암 세포의 자살을 유도하는 것으로 알려진 외래 유전자라면 제한되지 않고 사용될 수 있다.
또한, 상기 트랜스진 카세트(transgene cassette)는 외래 유전자 삽입위치 N말단 앞쪽에 GE-IG-GS sequence 및 multi cloning site(MCS)로 구성되어 있으며, 다양한 제한효소(restriction enzyme) 서열과 함께 rule of six에 맞춰 NP 및 P 유전자 사이, P 및 M 유전자 사이, HN 및 L 유전자 사이에 삽입하여 제작할 수 있다. 바람직하게는 NP 및 P 유전자 사이, P 및 M 유전자 사이에 삽입하는 것일 수 있으며, 더 바람직하게는 NP 및 P 유전자 사이에 삽입되는 것일 수 있다.
상기 뉴캐슬병 바이러스는 각각의 유전자 사이에 IGS(GE-IG-GS) 서열이 존재하고 있으며 숙주세포 감염 초기 각각의 유전자는 전사과정을 거쳐 숙주세포의 소포체(endoplasmic reticulum, ER)으로 이동 단백질을 합성하게 된다. 이후 M protein 합성량이 일정 수준 이상으로 올라가게 되면 (+)sense RNA 게놈을 합성하고 이를 주형으로 하여 (-)sense RNA 게놈을 합성하게 된다. 완성된 바이러스 파티클은 세포 밖으로 배출되게 된다.
상기 뉴캐슬병 바이러스의 외부 유전자 도입 능력은 최대 6 kb 정도인 것으로 알려져 있으며 외래 유전자 도입은 주로 P과 M 유전자 사이 그리고 HN과 L 유전자 사이에 이루어져 왔다. 다만 6개의 유전자 사이에 외래유전자 도입이 모두 가능한 것으로 알려져 있으나 각각의 위치에 따라 mRNA 발현, 단백질 발현 그리고 심한 경우 바이러스 증식에도 영향이 있는 것으로 알려져 있으나 각각의 위치에 따라 정량적인 비교 시험은 이루어지지 않은 상태이다. 각각의 유전자 사이에는 GE-IG-GS 유전자가 있으며 특히 IG 유전자의 경우 NP-P, P-M, M-F 사이에는 1개 또는 2개의 뉴클레오티드를 가지고 있으며 F-HN 사이는 35개, HN-L 사이는 47개의 뉴클레오티드로 구성되어 있다. 바이러스 감염 후 (-)sense RNA 게놈은 NDV가 보유하고 있는 NP, P, 및 L 단백질에 의해 감염 초기 각 단백질의 mRNA를 합성하여 합성된 mRNA가 숙주 세포의 소포체로 이동하여 각 유전자의 단백질을 합성하게 된다. 이후 NP, P, L 단백과 M 단백의 상호작용에 의해 (+)sense RNA 게놈을 합성하고 이를 주형으로 많은 copy의 (-)sense RNA 게놈을 합성하고 숙주세포 밖으로 방출되게 된다. 최초 감염시 자가 단백질 생산을 위한 mRNA의 합성량은 N 말단, 즉 NP mRNA가 가장 많이 합성되고 이후 N 말단으로부터 멀어질수록 mRNA 합성은 줄어드는 것으로 알려져 있다.
뉴캐슬병 바이러스의 cDNA 구축에는 NDV (-)sense RNA 게놈을 reverse transcription polymerase chain reaction(RT-PCR)법을 통해 여러 조각의 double strand DNA로 만든 이후 각각의 조각을 다시 ligation 하여 전체 NDV의 cDNA clone을 만드는 방법이 사용되고 있다. 이 방법을 이용한 cDNA 작성은 reverse transcriptase의 특성상 point mutation이 일어날 가능성이 높아 cDNA를 다 작성한 이후에 sequencing을 통해 15 kb에 달하는 유전자 서열을 확인하고 하나 이상의 point mutation 이 발생하면 다시 NDV 게놈으로부터 cDNA를 만드는 과정을 반복해야 한다. cDNA 조각을 pBR322 벡터에 삽입하여 recombinant NDV를 구축한다.
본 발명의 일실시예에 따르면, 상기 대장암 표적 암용해 바이러스 제작용 벡터는 완벽하게 만들어진 recombinant NDV에 상기 외래유전자 발현용 트랜스진 카세트를 각 유전자 사이에 넣고 4조각의 DNA로 나누어 각각의 NDV 조각 유전자를 pBR322 plasmid DNA에 라이게이션(ligation) 후 TOP10 E.coli 에 형질전환(Transformation)하여 4종의 재조합 균주로 제작 보관한 후 새로운 유전자 도입 시 각 재조합 E. coli 균주로부터 유전자를 분리하고 본 유전자를 PCR을 이용하여 fragment를 획득한 후 overlap cloning 방법을 통해 제작하는 것일 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기와 같은 방법으로 제작된 벡터는 매번 재조합 뉴캐슬병 바이러스를 만드는 과정 중에 발생하는 point mutation 을 막아주며 MCS(multiple cloning site)를 통해 쉽게 외래 유전자를 NDV cDNA에 삽입할 수 있다는 특징이 있다.
또한, 본 발명의 재조합 벡터는 대장암 세포 특이적 감염 능력을 높인 돌연변이 유전자를 포함한다. 상기 돌연변이 유전자는 뉴캐슬병 바이러스 HN(hemagglutinin-neuraminidase) 유전자일 수 있고, 바람직하게는 HN 단백질의 H domain 유전자일 수 있다. 상기 돌연변이는 HN 단백질의 hemagglutinin 단백질 아미노산 서열에 해당하는 123~616 에 돌연변이가 일어난 것일 수 있으며, 더 바람직하게는 H domain 유전자에 해당하는 아미노산 서열 123~571에 돌연변이가 일어난 것일 수 있다.
본 발명에서 사용되는 용어 “H domain”은 뉴캐슬병 바이러스의 HN 단백질의 sialic acid 결합 부위로, 약 51 kDa 길이의 globular head domain을 말한다. HN 단백질은 세포 표면의 sialic acid(glycoprotein)에 결합한 후 neuramidase에 의해 결합한 sialic acid를 절단하고 F 단백질에 의해 숙주세포의 세포막과 NDV 바이러스의 envelope 이 fusion 을 일으켜 NDV 바이러스의 RNA 게놈이 세포질 안으로 유입되는 과정을 통해 바이러스가 감염된다.
또한, 상기 돌연변이 H domain은 서열번호 3 내지 7 중 어느 하나의 염기서열로 표시되는 것일 수 있다.
또한, 서열번호 3의 염기서열로 암호화된 돌연변이 H domain 단백질은 519번째 아미노산이 세린(Serine)에서 글리신(Glycine)으로 치환된 것일 수 있다.
또한, 서열번호 4의 염기서열로 암호화된 돌연변이 H domain 단백질은 267번째 아미노산이 프롤린(Proline)에서 글리신(Glycine)으로 치환된 것일 수 있다.
또한, 서열번호 5의 염기서열로 암호화된 돌연변이 H domain 단백질은 182번째 아미노산이 알라닌(Alanine)에서 아스파라트산(Aspartic acid)으로 치환된 것일 수 있다.
또한, 서열번호 6의 염기서열로 암호화된 돌연변이 H domain 단백질은 418번째 아미노산이 세린(Serine)에서 프롤린(Proline)으로 치환된 것일 수 있다.
또한, 서열번호 7의 염기서열로 암호화된 돌연변이 H domain 단백질은 319번째 아미노산이 글리신(Serine)에서 알라닌(Alanine)으로 치환되고, 325번째 아미노산이 프롤린(Proline)에서 아르기닌(Argnine)으로 치환되고, 392번째 아미노산이 프롤린(Proline)에서 히스티딘(Histidin)으로 치환된 것일 수 있다.
또한, 상기 대장암 표적 암용해 바이러스 제작용 벡터는 서열번호 1의 염기서열로 구성된 M2-LVP-K1 벡터일 수 있으며, 이와 기능적으로 동등한 물질을 포함한다. 상기 “기능적 동등한 물질”이란 뉴클레오티드의 치환 결손의 결과로 상기 서열번호 1로 표시되는 유전자 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상의 서열 상동성을 갖는 것으로서 서열번호 1로 표시되는 유전자 서열을 갖는 유전자와 실질적으로 동질의 생리활성을 나타내는 유전자 또는 유전자 조합을 말한다.
본 발명은 상기 암용해 바이러스 제작용 재조합 벡터를 포함하는 대장암 치료용 암용해 바이러스(oncolytic virus)를 제공한다.
본 발명의 암용해 바이러스는 상술한 암용해 바이러스 제작용 재조합 벡터를 포함하기 때문에, 상술한 본 발명의 암용해 바이러스 제작용 재조합 벡터와 중복된 내용은 중복된 내용의 기재에 의한 본 명세서의 과도한 복잡성을 피하기 위하여 그 기재를 생략한다.
본 발명의 대장암 표적 암용해 바이러스 제작용 벡터가 사용될 수 있는 바이러스로서는 렌티바이러스(Lentivirus), 레트로바이러스(Retrovirus), 벡시니아 바이러스(Vaccinia virus), 아데노바이러스(Adenovirus), 아데노 관련 바이러스(Adeno associated virus), 거대세포바이러스(Cytomegalovirus), 센다이 바이러스(Sendai virus), 폭스바이러스(Poxvirus), 뉴캐슬병 바이러스(Newcastle disease virus), 알파바이러스(Alphavirus) 등이 있을 수 있으며 이에 한정하는 것은 아니다. 외래 유전자 도입을 통해 단백질을 발현할 수 있고, 높은 안정성, 높은 발현 능력 및 높은 바이러스 역가 생산이 가능한 바이러스이면 제한되지 않고 사용할 수 있다. 바람직하게는 피막 바이러스(enveloped virus)로서 유전자 전달뿐만 아니라 바이러스 표면에 단백질 발현이 용이한 벡시니아 바이러스, 폭스바이러스(Poxvirus), 플라비바이러스(Flavivirus), 알파바이러스(alphavirus), 뉴캐슬병 바이러스(Newcastle disease virus, NDV)가 될 수 있다. 더욱 바람직하게는 인체 감염성이 없는 안전한 바이러스이며 높은 바이러스 역가 생산이 가능한 뉴캐슬병 바이러스(Newcastle disease virus, NDV)일 수 있고, 더더욱 바람직하게는 재조합 뉴캐슬병 바이러스(수탁번호 KCTC14630BP)일 수 있다.
본 발명에서 사용되는 용어 “뉴캐슬병 바이러스(Newcastle Disease Virus, NDV)”는 약 15kb 정도 (-)sense RNA 게놈을 가지고 있는 paramyxovirus에 속하며 인체감염성 없는 포유류에 안전한 바이러스로 알려져 있다. NDV 게놈 RNA는 30 base 정도의 extragenic leader 서열을 가지고 있으며 50 base 정도의 tail 서열을 가지고 있다. 양쪽 말단의 두 서열은 바이러스의 유전자의 전사(transcription)와 복제 replication) 그리고 새롭게 합성된 RNA 게놈을 바이러스 파티클 안에 봉입(encapsidation) 과정을 조절하는 것으로 알려져 있다. NDV 유전자 구성은 양쪽 말단 리더와 꼬리 유전자 사이에 NP, P, M, F, HN 및 L을 포함하는 6개의 유전자로 구성되어 있으며 각각의 유전자는 nucleoprotein(NP), phosphoprotein(P), matrix protein(M), fusion protein(F), hemagglutinin-neuraminidase protein(HN), large protein(L)을 암호화하고 있다.
상기 뉴캐슬병 바이러스는 닭에게 감염되어 신경증상 및 호흡기 증상 등을 일으키는 법정 전염병으로 닭에게는 매우 치명적인 바이러스로 이러한 병원성에 따라 강병원성(velogenic), 약병원성(mesogenic), 비병원성(lentogenic)으로 나뉘며, 모두 외래 유전자 전달 바이러스 벡터 제조에 모두 사용이 가능하나 바람직하게는 약병원성, 비병원성 바이러스가 사용될 수 있다. 더욱 바람직하게는 비병원성 바이러스주를 이용한 재조합 바이러스가 될 것이다.
본 발명에서 사용될 수 있는 뉴캐슬병 바이러스는 Clone30, B1, 73T, Lasota, HJU, MTH-68, Ulster, VG/GA 등 다양한 strain이 사용될 수 있으며 이에 한정하지 않고 새롭게 분리되는 뉴캐슬병 바이러스도 사용될 수 있으며, 바람직하게는 약 병원성 또는 비병원성 바이러스인 Lasota, HJU, MTN-68, Ulster, VG/GA strain, 더 바람직하게는 Ulster, VG/GA strain, 가장 바람직하게는 VG/GA strain 이 사용될 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 재조합 뉴캐슬병 바이러스(수탁번호 KCTC14630BP)는 서열번호 1의 염기서열로 표시되는 M2-LVP-K1 벡터가 도입된 것일 수 있으며, 기능적으로 동등한 물질을 포함한다. 상기 “기능적 동등한 물질”이란 뉴클레오티드의 치환 결손의 결과로 상기 서열번호 1로 표시되는 유전자 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상의 서열 상동성을 갖는 것으로서 서열번호 2로 표시되는 유전자 서열을 갖는 유전자와 실질적으로 동질의 생리활성을 나타내는 유전자 또는 유전자 조합을 말한다.
또한, 상기 대장암 치료용 암용해 바이러스는 돌연변이 H domain을 포함하여 대장암세포에 특이적으로 감염되는 것일 수 있다.
본 발명은 상기 대장암 치료용 암용해 바이러스를 유효성분으로 포함하는 대장암 예방 또는 치료용 약학적 조성물을 제공한다.
본 발명의 약학적 조성물은 상술한 암용해 바이러스 제작용 재조합 벡터를 포함하기 때문에, 상술한 본 발명의 암용해 바이러스 제작용 재조합 벡터와 중복된 내용은 중복된 내용의 기재에 의한 본 명세서의 과도한 복잡성을 피하기 위하여 그 기재를 생략한다.
본 발명에서 사용되는 용어 “암”은 세포 자체의 조절 기능에 문제가 생겨 정상적으로는 사멸해야 할 비정상 세포들이 과다 증식하여 주위 조직 및 장기에 침입하여 덩어리를 형성하고 기존의 구조를 파괴하거나 변형시키는 상태를 의미하며, 악성 종양과 동일한 의미로 사용된다.
본 발명에서, 사용된 용어 "예방"이란 발명의 조성물의 투여로 암을 억제시키거나 진행을 지연시키는 모든 행위를 의미한다.
본 발명에서 사용된 용어 "치료"란 본 발명의 조성물의 투여로 암이 호전 또는 이롭게 변경되는 모든 행위를 의미하며, 임상적 결과를 포함하는 유용한 결과 또는 바람직한 결과를 얻기 위한 시도를 의미한다. 유용한 또는 바람직한 임상적 결과는 검출 가능하거나 가능하지 않더라도, 하나 이상의 증상 또는 상태의 완화 또는 개선, 질병 범위의 축소, 질병 상태의 안정화, 질병 발생의 억제, 질병 확산의 억제, 질병 진행의 지연 또는 늦춤, 질병 발병의 지연 또는 늦춤, 질병 상태의 개선 또는 경감, 및 감퇴 (부분 또는 전체)를 포함할 수 있으며, 반드시 이에 한정되는 것은 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면, 대한의학협회 등에서 제시된 자료를 참조하여 본원의 조성물이 효과가 있는 질환의 정확한 기준을 알고, 개선, 향상 및 치료된 정도를 판단할 수 있을 것이다.
본 발명의 바이러스는 단독으로 투여되거나 화학요법, 방사선 요법 또는 다른 항-바이러스 치료법을 포함하는 다른 치료법과 혼합하여 투여될 수 있다. 예를 들어, 바이러스는 수술을 통한 일차 종양의 제거 이전 또는 이후에 투여되거나 방사선요법 또는 통상적인 화학요법 약물 등의 치료 이전, 동시 또는 이후에 투여될 수 있다. 상기 바이러스는 다양한 종양 세포 타입에 대해 특이성을 나타내는 다른 종양살상 바이러스와 함께, 또는 순차적 방법으로 투여될 수 있다. 암을 치료, 예방 또는 처리하는데 통상적으로 사용되어온 치료법은 외과수술, 화학요법, 방사선 요법, 호르몬 요법, 생물학적 요법 및 면역요법을 포함하되 이에 한정되지는 않는다.
본 발명의 약학적 조성물은 약학적으로 유효한 양으로 투여한다. 본 발명에서 사용되는 용어 "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분하며 부작용을 일으키지 않을 정도의 양을 의미하며, 유효용량 수준은 환자의 건강상태, 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 방법, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 배합 또는 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고, 종래의 치료제와 순차적으로 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여, 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.
본 발명에서 "개체"는 대장암을 예방 또는 치료를 목적으로 하는 개체이면 특별히 한정되지 않고, 인간을 포함하는 동물, 예를 들어 비-영장류 (예를 들면, 소, 돼지, 말, 고양이, 개, 래트 및 마우스) 및 영장류 (예를 들면, 원숭이, 예를 들어 사이노몰구스 (cynomolgous) 원숭이 및 침팬지)를 비롯한 포유동물을 나타낸다. 때에 따라서는 인간을 제외하는 개체일 수 있다.
또한, 본 발명의 조성물은 임상 투여 시에 경구 또는 비경구로 투여가 가능하며 일반적인 의약품 제제의 형태로 사용될 수 있다. 투여 형태는 경구, 점막(예를 들어, 비강, 설하, 질, 버칼, 또는 직장), 비경구적(예를 들어, 피하, 정맥, 볼루스 주입, 근육내 또는 동맥내), 국소(예를 들어, 눈), 경피(transdermal) 또는 피부통과(transcutaneous) 방식 일 수 있으며, 이에 한정되는 것은 아니다. 투여 형태의 예는 정제; 캐프릿(caplets); 부드러운 탄성 젤라틴 캅셀과 같은 캅셀제; 캐세트(cachets); 트로키; 로젠즈(lozenges); 분산제; 좌제; 파우더; 에어로솔(예를 들어, 비강 스프레이 또는 인홀러); 겔; 현탁제제(예를 들어, 수상 또는 비-수상 액상 현탁제제, 수중유형 유제, 또는 유중수형 액상 유제) 용액제 및 엘릭실제를 포함하는 환자에게 경구 또는 점막 투여하기에 알맞은 액상 투여 제형; 환자에게 주사 투여하기에 알맞은 액상 투여 제형; 국소 투여하기에 적당한 아이 드랍(eye drop) 또는 다른 안과 제제; 및 환자에게 주사 투여하기에 적당한 액상 투여 형태를 제공하기 위하여 재구성될 수 있는 멸균 고상제제(예를 들어, 결정형 또는 무정형 고체)를 포함하나 이에 한정되는 것은 아니다. 본 발명의 투여 형태의 종류, 모양, 및 타입은 일반적으로 그들의 사용에 따라 매우 다양하다. 예를 들어, 질환의 급성 치료를 위해 사용된 투여 형태는 동일한 질환의 만성 치료를 위해 사용되는 투여 형태보다 많은 양의 활성 성분을 포함할 수 있다. 또한, 비경구적 투여 형태는 동일 질환을 치료하기 위해 사용된 경구 투여 형태보다 더 적은 양의 활성 성분을 포함할 수 있다. 본 발명에 의해 포함되는 투여 형태 및 방식들은 매우 다양하며, 이는 본 발명이 속한 분야에 있어 통상의 지식을 가진 자에게 자명하다 (Remington's Pharmaceutical Sciences, 18th ed.,Mack Publishing, Easton PA (1990) 참조.)
또한, 약학적으로 허용 가능한 담체를 포함하는 조성물은 경구 또는 비경구의 여러 가지 제형일 수 있다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제될 수 있다. 상기 담체, 부형제 및 희석제로는 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로오스, 메틸 셀룰로오스, 미정질 셀룰로오스, 폴리비닐 피롤리돈, 생리식염수, 메틸히드록시벤조에이트, 프로필히드록시 벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유, 덱스트린, 칼슘카보네이트, 프로필렌글리콜 및 리퀴드 파라핀으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 한정되는 것은 아니며, 통상의 담체, 부형제 또는 희석제 모두 사용 가능하다. 상기 성분들은 상기 유효성분인 바이러스에 독립적으로 또는 조합하여 추가될 수 있다.
또한, 경구 투여를 위한 고형제제에는 정제환제, 산제, 과립제, 캡슐제 등이 포함될 수 있으며, 이러한 고형제제는 하나 이상의 화합물에 적어도 하나 이상의 부형제, 예를 들면, 전분, 탄산칼슘, 수크로오스 (sucrose) 또는 락토오스 (lactose), 젤라틴 등을 섞어 조제될 수 있다. 또한, 단순한 부형제 이외에 스테아린산 마그네슘, 탈크 등과 같은 윤활제들도 사용될 수 있다. 경구투여를 위한 액상제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다.
비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁용제, 유제, 동결건조제제, 좌제 등이 포함된다. 비수성용제, 현탁용제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔 (witepsol), 마크로골, 트윈 (tween) 61, 카카오지, 라우린지, 글리세롤, 젤라틴 등이 사용될 수 있다.
또한, 본 발명의 약학적 조성물은 정제, 환제, 산제, 과립제, 캡슐제, 현탁제, 내용액제, 유제, 시럽제, 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제 및 좌제로 이루어진 군으로부터 선택되는 어느 하나의 제형을 가질 수 있다. 좌제의 기제로는 위텝솔 (witepsol), 마크로골, 트윈 (tween) 61, 카카오지, 라우린지, 글리세롤, 젤라틴 등이 사용될 수 있다.
본 발명의 약학적 조성물은 목적하는 방법에 따라 경구 투여하거나 비경구 투여 (예를 들어, 정맥 내, 피하, 복강 내 또는 국소에 적용)할 수 있으며, 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설율 및 질환의 중증도 등에 따라 그 범위가 다양하다.
본 발명의 약학적 조성물은 대장암의 예방 또는 치료 효과를 위하여 단독으로, 또는 수술, 호르몬 치료, 약물 치료 및 생물학적 반응 조절제를 사용하는 방법들과 병용하여 사용할 수 있다.
본 발명에 따른 조성물은 약학적으로 유효한 양의 바이러스를 단독으로 포함하거나 하나 이상의 약학적으로 허용되는 담체, 부형제 또는 희석제를 포함할 수 있다. 상기에서 약학적으로 유효한 양이란 면역질환의 증상을 예방, 개선 및 치료하기에 충분한 양을 말한다.
바이러스의 유효량은 질병을 완화 (alleviate), 향상 (improve), 경감 (mitigate), 개선(ameliorate), 안정화, 질병의 확산 억제, 질병의 진행을 늦추거나 지연, 질병을 치유하기 위해 충분한 시간 동안 요구되는 용량이다.
예를 들어, 유효량은 암 세포의 수를 감소시키거나 파괴 또는 바이러스로 만성적으로 감염된 세포의 수를 감소 시키거나 파괴, 또는 이러한 세포의 성장 및/또는 증식을 억제시키는 효과를 달성하기에 충분한 양이 될 수 있다.
상기 유효량은 바이러스의 약동학적 특성, 투여 방법, 연령, 환자의 건강상태 및 체중, 질병 상태의 특성 및 범위, 치료 횟수 및 최근의 치료 형태와 같은 수많은 인자에 의해 달라질 수 있으며, 가령 바이러스의 병독성 및 역가에 따라서도 달라질 수 있다. 당업자라면 상기 인자에 기초하여 적정량을 조절할 수 있다. 바이러스는 처음에 환자의 임상적 반응에 의존해 필요에 따라 적정량으로 투여될 수 있다. 바이러스의 유효량은 경험적으로 결정할 수 있으며 안전하게 투여될 수 있는 바이러스의 최대량 및 바람직한 결과를 유발하는 바이러스의 최소량에 따라 결정할 수 있다.
바이러스를 전신에 투여할 때, 질병 부위에 바이러스를 주입함으로써 실현되는 것과 유사한 임상적 효과를 유발하기 위해, 상당히 높은 용량의 바이러스 투여가 요구될 수 있다. 그러나, 적당한 용량 레벨은 바람직한 결과를 실현할 수 있는 최소량이 되어야 한다.
투여되는 바이러스의 농도는 투여되어야 하는 바이러스의 병독성 및 표적이 되는 세포의 특징에 따라 달라질 것이다. 유효량의 바이러스는 최초 치료 요법의 효과에 따라 반복적으로 투여될 수 있다. 일반적으로 투여는 모든 반응을 모니터링하는 동안 주기적으로 투여된다. 당업자라면 투여 스케줄 및 선택된 경로에 따라 상기 표시된 것보다 낮거나 높은 용량이 투여될 수 있음을 용이하게 파악할 수 있다.
본 발명은 서열번호 8의 염기서열로 표시되는 뉴캐슬병 바이러스의 HN 단백질의 H domain을 코딩하는 유전자를 무작위로 돌연변이를 발생시켜 돌연변이 H domain을 제조하는 단계; 아비딘(avidin) 단백질과 상기 돌연변이 H domain을 융합시켜 돌연변이 H domain-아비딘 융합 단백질을 제조하는 단계; 표적 암세포에 상기 H domain-아비딘 융합 단백질을 처리하는 단계; 및 돌연변이 H domain-아비딘 융합 단백질의 발현 수준을 측정하는 단계;를 포함하는 표적 암세포에 특이적으로 감염되는 H domain을 선별하는 방법을 제공한다.
또한, 상기 돌연변이는 에러-유발 PCR(error-prone PCR), DNA 셔플링(DNA shuffling) 방법, 위치-지정 돌연변이(site-directed mutagenesis) 방법 등 당업계에 공지된 다양한 방법에 의해 제조될 수 있다.
본 발명의 일실시예에 있어서, 상기 돌연변이는 에러-유발 PCR(error-prone PCR, EP-PCR) 수행하여 무작위로 돌연변이를 만드는 것일 수 있다. EP-PCR 조건은 EP-PCR kit 제조사(Agilent Co.)의 protocol에 따라 수행하였으며 EP-PCR 수행 후 만들어진 유전자 fragment는 agarose electrophoresis 를 통해 동일 size의 fragment가 만들어진 것을 확인하였다.
상기 돌연변이 H domain-아비딘 융합 단백질은 검출가능한 표지 (detectable label)로 표지될 수 있다. 예를 들어, 상기 검출가능한 표지는, 화학적 표지 (예컨대, 바이오틴), 효소 표지 (예컨대, 호스래디쉬 퍼옥시다아제, 알칼라인 포스파타아제, 퍼옥시다아제, 루시퍼라아제, β-갈락토시다아제 및 β-글루코시다아제), 방사능 표지 (예컨대, C14, I125, P32 및 S35), 형광 표지 (예컨대, 쿠마린, 플루오레세인, FITC (fluoresein Isothiocyanate), 로다민 (rhodamine) 6G, 로다민 B, TAMRA (6-carboxy-tetramethylrhodamine), Cy-3, Cy-5, Texas Red, Alexa Fluor, DAPI (4,6-diamidino-2-phenylindole), HEX, TET, Dabsyl 및 FAM), 발광 표지, 화학발광 (chemiluminescent) 표지, FRET (fluorescence resonance energy transfer) 표지 또는 금속 표지 (예컨대, 금 및 은)이다. 검출가능한 표지가 표지된 MSH2 단백질 또는 후보물질을 이용하는 경우, MSH2 단백질과 후보물질 사이의 결합 발생 여부는 표지로부터 나오는 신호를 검출하여 분석할 수 있다. 예를 들어, 표지로서 알칼린 포스파타아제가 이용되는 경우에는, 브로모클로로인돌일 포스페이트 (BCIP), 니트로 블루 테트라졸리움 (NBT), 나프톨-AS-B1-포스페이트 (naphthol-AS-B1-phosphate) 및 ECF (enhanced chemifluorescence)와 같은 발색반응 기질을 이용하여 시그널을 검출한다. 표지로서 호스 래디쉬 퍼옥시다아제가 이용되는 경우에는 클로로나프톨, 아미노에틸카바졸, 디아미노 벤지딘, D-루시페린, 루시게닌 (비스-N-메틸아크리디늄 니트레이트), 레소루핀 벤질 에테르, 루미놀, 암플렉스 레드 시약 (10-아세틸-3,7-디하이드록시페녹사진), YR (p-phenylenediamine-HCl 및 pyrocatechol), TMB (tetramethylbenzidine), ABTS (2,2-Azine-di[3-ethylbenzthiazoline sulfonate]), o-페닐렌디아민 (OPD) 및 나프톨/파이로닌과 같은 기질을 이용하여 시그널을 검출한다.
또한, 상기 단백질의 발현 수준의 측정은 웨스턴 블롯, 엘라이자 (enzyme linked immunosorbent assay, ELISA), 방사선면역분석 (Radioimmunoassay, RIA), 방사 면역확산법 (radioimmunodiffusion), 오우크테로니 (Ouchterlony) 면역 확산법, 로케트 (rocket) 면역전기영동, 조직면역 염색, 면역침전 분석법 (Immunoprecipitation Assay), 보체 고정 분석법 (Complement Fixation Assay), 유세포분석 (Fluorescence Activated Cell Sorter, FACS), 단백질 칩 (protein chip)으로 이루어진 군에서 선택된 1종 이상의 방법으로 수행되는 것일 수 있으나, 이에 제한되지 않는다.
본 발명의 일실시예에 있어서, 상기 돌연변이 H domain-아비딘 융합 단백질은 ELISA 방법을 통해 암세포 표면 단백질에 대한 결합력의 차이를 통해 암세포 특이적 결합이 가능한 H domain mutant를 스크리닝할 수 있다. 구체적으로, 무작위로 돌연변이된 H domain 유전자를 avidin 단백질 유전자와 중간에 Link peptide 를 삽입하여 재조합 융합 단백질로 발현될 수 있도록 제작하여 H domain-linker-avidin(H-avidin) 유전자를 expression vector(pRSET-A vector)에 삽입하였다. 이후 heat shock 형질전환 방법을 이용하여 E. coli(BL21 strain) 에 형질전환 한 다음 Luria bertani agar plate(100 ug/ml ampicillin 함유) 에 E. coli 를 spreading 하여 37 ℃ incubator에서 overnight culture를 하였다. 배양 후 형성된 colony는 공지된 ELISA 방법을 통해 단백질 발현을 유도하였다. 세포 plasma 단백질을 ELISA plate에 coating한 후 H domain-avidin 단백질이 포함된 박테리아 파쇄 상층액을 반응시킨 후 biotin 에 HRP(horse radish peroxidase)가 결합된 시약을 반응시키고 substrate를 첨가하여 Optical density를 측정하여 가장 높은 값을 보여주는 well의 H domain mutant를 선발할 수 있다.
본 발명은 상기 조성물을 인간을 제외한 개체에 투여하는 단계;를 포함하는 대장암을 예방 또는 치료하는 방법을 제공하고, 상기 약학적 조성물을 개체에 투여하는 단계; 및 개체의 암세포 또는 암 조직의 변화를 측정하여 평가하는 단계;를 포함하는 대장암을 예방 또는 치료하기 위한 정보를 제공하는 방법을 제공한다.
본 발명의 방법은 상술한 약학적 조성물을 포함하기 때문에, 상술한 본 발명의 약학적 조성물과 중복된 내용은 중복된 내용의 기재에 의한 본 명세서의 과도한 복잡성을 피하기 위하여 그 기재를 생략한다.
본 발명의 약학적 조성물은 치료학적으로 유효한 양 또는 약학적으로 유효한 양으로 투여될 수 있다.
본 발명에서, 용어 "치료학적으로 유효한 양"은 대상 질환을 예방 또는 치료하는데 유효한 조성물의 약학적으로 허용가능한 염의 양을 의미하며, 본 발명의 조성물의 치료적으로 유효한 양은 여러 요소, 예를 들면 투여방법, 목적부위, 환자의 상태 등에 따라 달라질 수 있다. 따라서, 인체에 사용 시 투여량은 안전성 및 효율성을 함께 고려하여 적정량으로 결정되어야 한다. 동물실험을 통해 결정한 유효량으로부터 인간에 사용되는 양을 추정하는 것도 가능하다. 유효한 양의 결정시 고려할 이러한 사항은, 예를 들면 Hardman and Limbird, eds., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th ed. (2001), Pergamon Press; 및 E.W. Martin ed., Remington's Pharmaceutical Sciences, 18th ed. (1990), Mack Publishing Co.에 기술되어있다.
본 발명에서, 용어 "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분하며 부작용을 일으키지 않을 정도의 양을 의미하며, 유효용량 수준은 환자의 건강상태, 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 방법, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 배합 또는 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고, 종래의 치료제와 순차적으로 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여, 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.
본 발명은 상기 약학적 조성물을 인간을 제외한 동물에 투여하는 단계를 포함하는 동물에서의 대장암 예방 또는 치료 효과 평가 방법을 제공한다.
또한, 상기 방법은 인간을 제외한 동물의 암세포 또는 암 조직의 변화를 측정하여 평가하는 것일 수 있다.
또한, 상기 치료 효과는 대장암으로 인한 통상적으로 나타내는 임상적 징후의 감소 또는 부재, 보다 신속한 회복 시간 또는 보다 낮아진 지속시간 또는 대장암 세포의 혈액 또는 체액 또는 기관의 샘플에서 낮은 대장암 세포수의 차이나 대장암 조직의 감소, 대장암 세포의 사멸에 의해 입증된다.
또한, 치료제의 유효량은 치료 효과를 유도하여 사람에서 대장암에 의한 임상적 증상 감소 암세포의 감소 암 조직의 감소 등의 효과를 유도할 수 있는 양을 의미하며, 당업자라면 적절하게 선택할 수 있다. 예를 들면, 유효량은 재조합 바이러스 조성물을 포함하는 치료제의 경우 정제된 바이러스의 양은 105.0 TCID50/ml 에서1011.0 TCID50/ml 일수 있다. 더 바람직하게는 108.0 TCID50/ml 에서 109.0 TCID50/ml 이상일 수 있다.
본 발명은 상기 재조합 뉴캐슬병 바이러스(수탁번호 KCTC14630BP)를 숙주 세포주에 접종하는 단계; 상기 숙주 세포주를 배양하는 단계; 및 상기 숙주 세포주의 배양물로부터 재조합 뉴캐슬병 바이러스(수탁번호 KCTC14630BP)를 수득하는 단계;를 포함하는 재조합 뉴캐슬병 바이러스 제조 방법을 제공한다.
본 발명에 있어서, 상기 재조합 뉴캐슬병 바이러스(수탁번호 KCTC14630BP)는 통상의 바이러스 작출 방법을 통해 회수할 수 있다. 3종의 helper plasmid (NP, P, L), modified vaccina virus (MVA/T7)를 HEp-2 세포주에 주입하여 배양한 후 재조합 바이러스를 회수하는 절차는 통상적인 방법에 따라 실시하였다. 세포주에 주입방법은 lipofectamine 3,000을 이용한 transfection을 실시하였으며 세포주는 HEp-2 세포을 이용하였다. 3~4일 배양 후 재조합 바이러스를 회수하여 8에서 10일령 SPF 유정란 allantoic cavity에 접종하여 바이러스를 배양한 후 allantoic fluid를 회수하여 다시 같은 방법으로 유정란에 blind passage를 최소 2대 이상 배양하여 바이러스 역가를 높이는 작업을 수행하였다. 이후 allantoic fluid로부터 통상의 정제 방법을 통해 정제한 후 적절한 세포주로 선정된 Vero76 세포에서 배양하여 실험에 사용하였다.
바이러스의 정제는 재조합 바이러스 배양액을 harvest 후 원심분리하여 clarification을 진행한다. Clarification은 원심분리나 micro filtration 방법을 사용할 수 있다. 원심분리 조건은 10,000 g, 10 분, 4 ℃ 조건에서 실행하여 supernatant를 다음 정제 과정에 사용할 수 있다. Micro filtration의 경우 filter의 pore size는 1.0 ㎛ 에서 0.2 ㎛ 사이의 filter를 사용할 수 있으며 바람직하게는 0.45 ㎛ pore size filter를 사용할 수 있다. Filtration 방법은 dead end filtration이나 cross flow filtration 방법을 사용할 수 있으며 두 방법 모두 적용 가능하다. 재조합 바이러스 정제는 크로마토그래피나 ultrafiltration 방법을 통해 추출을 포함하여 공지된 방법을 통해 정제가 가능하다. 추가적인 바이러스 정제는 sucrose gradient media를 이용한 초고속 원심분리를 하여 바이러스를 침전 또는 분리하여 회수하고 회수된 바이러스는 TNE buffer에 재부유하여 다음 공정에 사용한다. 크로마토그래피를 이용한 정제 방법은 친화성(affinity), 이온 교환(ion exchange), 크기별 배제(size exclusion) 그리고 소수성(hydrophobic) 등의 결합력 차이를 통해 적절한 resin과 buffer의 조합을 통해 바이러스 정제가 가능하다. 바람직하게는 크기별 배제 크로마토그래피 방법이 적정할 것이다. 재조합 바이러스는 크기별 배제 크로마토그래피 방법을 이용하여 정제하였으며 샘플 loading 후 260 nm와 280 nm 의 흡광도(Absorption)를 측정하여 바이러스 함유 fraction을 선별하여 다음 공정에 사용하였다. 회수된 fraction은 sucrose gradient media를 이용한 초고속 원심분리를 하여 바이러스를 침전 또는 분리하여 회수하고 회수된 바이러스는 주사용 생리식염수에 재부유하여 실험에 사용하였다. 정제된 바이러스의 세포 감염력에 관한 실험은 다양한 MOI 조건에 따라 다양한 암세포 및 정상세포에 대한 감염력과 증식력에 대한 실험을 실시하였다. 이러한 실험에 이용될 수 있는 세포주는 현재까지 개발된 다양한 포유 동물세포주 및 암세포가 될 수 있으며 바람직하게는 암세포주일 것이다. 사용될 수 있는 암세포주는 T98G, HT-1197, RT-4, SW780, A673, Saos-2, SK-PN-DW, A172, Daoy, SW1108, HCC-38, BT-549, DU4475, SW1116, LS123, LoVo, COLO205, HT-29, SW480, SW620, Hela, SW626, PA-1, ME-180, THP-1, MOLT-4, C3A, SNU387, NCI-H1299, A549, NCI-H1770, NCI-H1882, CSA46, SU-DHL-2, Capan-2, HPAF-II, A375, SH-4, GCT, SNU-16, AGS 등이며 이외에도 신규 확립된 암세포주도 제한되지 않고 사용될 수 있다.
이하, 본 발명의 실시예를 첨부된 도면을 참고하여 보다 상세하게 설명하도록 한다. 그러나, 하기의 실시예는 본 발명의 내용을 구체화하기 위한 것일 뿐, 이에 의해 본 발명이 한정되는 것은 아닐 것이다.
<실시예 1> NDV VG/GA 주를 기본 backbone으로 한 재조합 NDV 바이러스(LVP-K1) 게놈 벡터 제조
NDV VG/GA는 약 15 kb 정도의 negative-sense 단일 가닥 RNA를 유전정보로 가지며 6개의 ORFs로 구성되어 있으며 바이러스의 구조를 이루는 단백질은 NP, P, M, F, HN 및 L 유전자를 코딩한다. Viral RNA 추출 키트(Qiagen)를 이용하여 RNA를 분리(isolation) 후, 각 유전자에 특이적인 5쌍의 프라이머를 제작하여 reverse transcription polymerase chain reaction(RT-PCR)을 수행하였다. 상기 유전자에 특이적인 5쌍의 프라이머는 표 1(본 발명의 cDNA 합성 후 pBR322 벡터로의 제한효소를 이용한 삽입과정 중 사용된 프라이머를 나타냄)에 나타내었다. RT-PCR은 42 ℃ 1시간, 94 ℃에서 5분간 반응한 후, 94 ℃ 1분, 60 ℃ 1분, 72 ℃ 1분의 반응을 총 30 사이클 실시한 후, 72 ℃에서 7분간 반응하였으며, 네 조각의 cDNA 절편 세트를 연속적으로 연결시키는 클로닝 전략은 도 1에 나타내었다.
도 1은 본 발명의 NDV VG/GA strain을 cDNA로 합성하여 modified pBR322 벡터로의 삽입과정을 나타낸다. RT-PCR로 생성된 6개의 cDNA 단편을 변형된 low-copy-number plasmid인 modified pBR322 벡터로 인식부위와 절단부위가 상이한 PacⅠ과 PmeⅠ제한효소를 위치시켜 클로닝을 수행하였다. Modified pBR322 벡터는 T7 RNA polymerase promoter의 통제하에 있으며, NDV 게놈 말단에서 RNA를 분할하는데 사용되는 hepatitis delta virus(HDV) antigenome ribozyme과 T7 terminator 유전자에 의해 종결되도록 위치시켜 바이러스의 encapsidation 및 packaging을 가능하게 하였다. 또한, NDV VG/GA strain의 완전한 게놈 서열을 포함시켜 정확하게 전사되도록 하였다.
벡터의 재구성 효율을 높이기 위해 바람직하게는 low-copy-number plasmid인 modified pBR322 벡터로 인식 부위와 절단 부위가 상이한 PacⅠ과 PmeⅠ제한효소를 위치시켜 클로닝을 수행하였다. Modified pBR322 벡터는 바람직하게는 T7 RNA polymerase promoter의 통제하에 있으며, NDV 게놈 말단에서 RNA를 분할하는데 사용되는 hepatitis delta virus(HDV) antigenome ribozyme과 T7 terminator 유전자에 의해 종결되도록 위치시켜 바이러스의 encapsidation 및 packaging을 가능하게 하였다. 또한, NDV VG/GA strain의 완전한 게놈 서열을 포함시켜 정확하게 전사되도록 하였다. 작출된 바이러스는 LVP-K1 바이러스로 명명하였다.
RNA-dependent RNA polymerase는 유전자 사이의 stop-start 메커니즘 IGS(GE-IG-GS)에 의해 순차적인 방식으로 전사를 시작한다. GS에서 전사의 재개시가 완전하지 않으므로 3' 말단에 위치한 mRNA의 전사 수준이 높다. 따라서 3' 말단 일수록 높은 mRNA 전사 수준을 보이며 5' 말단으로 갈수록 그 수준이 낮아진다. 그러므로 NP 유전자와 P 유전자 사이의 새로운 외부 유전자 삽입은 P 유전자와 M 유전자 및 HN 유전자와 L 유전자 사이에 비해 더 높은 수준의 mRNA 전사와 외부 단백 번역이 일어나므로 NP-P 사이의 유전자 삽입이 더 바람직하다고 할 수 있다.
Gene Direction Sequence (5`→3`) Restriction site
Fragment 1 (L2) Forward ACGCGTggtctcaggtttatatgcagggaa MluⅠ
Reverse TTAATTAAaccaaacaaagatttggtgaatg PacⅠ
Fragment 2 (L1) Forward ACTAGTtgagattctcaaggatgatggggt SpeⅠ
Reverse ACGCGTcgagtgcaagagactaatagtttt MluⅠ
Fragment 3 (F-HN) Forward GGCGCCattatcggtggtgtagctctcgg Kas I
Reverse ACTAGTaaagggacgattctgaattccccg SpeⅠ
Fragment 4 (P-M-F) Forward CCGCGGaaacagccaagagagaccgcagaa SacⅡ
Reverse GGCGCCaaccgggatccagaatcttctacccgt Kas I
Fragment 5 (NP-P) Forward GTTTAAACaccaaacagagaatccgtaagg PmeⅠ
Reverse CCGCGGctttgttgactcccctgttgttga SacⅡ
<실시예 2> H domain 및 아비딘 융합 단백 발현
2-1. 정제된 H domain mutation-avidin 단백질을 이용한 암세포 특이적 결합 확인 시험
바이러스 표면 HN 단백은 sialic-acid 수용체에 대한 바이러스 부착을 담당하는 중요한 항원이다. HN은 F 단백질과의 상호작용을 통해 막 융합을 촉진하여 바이러스 RNA가 세포로 들어가는 것에 중요한 역할을 한다. HN은 type II 동종 사량체 막단백질로, N-말단 막 횡단 domain과 선형 단백 영역과 C 말단의 globular head domain으로 구성된다. 선형 단백은 HN과 F 단백의 상호작용을 매개하고 융합 활성에 영향을 미친다. Globular head domain (H domain)은 HN 단백의 주요 기능 영역이며 “site I”과 “site II”로 알려진 수용체 결합 부위를 포함한다. site I은 sialic-acid 수용체 결합 및 뉴라미다제 활성과 관련이 있으며, site II는 융합과 관련 수용체 결합 및 융합과 관련이 있다. 즉 HN 단백의 sialic acid binding domain은 NDV 감염의 조직 친화도(tissue tropism)에 상당히 중요한 역할을 한다.
유도 진화는 단백질 공학에서 사용되는 자연 선택 과정을 모방하여 염기서열을 변화시키는 기술로 의도적으로 돌연변이를 유도하여 원하는 기능을 가진 단백을 선택하는 과정을 말한다. 즉 숙주세포의 sialic-acid 수용체에 대한 HN 단백의 globular head domain 유전자의 암세포 친화성 향상은 EP-PCR(Error prone PCR, GeneMorph Ⅱ Random Mutagenesis kit, Agilent Technologies)을 수행 후 Avidin 유전자과 함께 랜덤 포인트 돌연변이 HN-Avidin 유전자를 증폭 후, E. coli 발현 시스템을 이용하여 수용성 단백질의 여부를 확인하였다 (도 2 내지 도 4 참조).
도 2는 암세포에 대한 결합력이 향상된 H domain 단백질 제작을 위한 Directed evolution 기술 적용을 도식화한 것으로, H domain 유전자를 EP-PCR 기술을 이용해 다양한 mutant를 만들고 암세포 표면 단백질에 대한 친화도가 증가한 mutant를 스크리닝 하기 위한 방법을 간단히 나타낸 것이다.
도 3A는 Mutant H domain을 ELISA 방법으로 스크리닝하기 위해 EP-PCR을 이용하여 mutation이 발생한 H domain 유전자와 avidin 유전자를 linker peptide 유전자의 연결을 통하여 fusion 단백질로 제작하는 유전자 구성 모식도를 나타낸 것이고,
도 4B는 ELISA 스크리닝 방법을 통해 HCT116 암세포 표면단백질에 대한 가장 높은 O.D 값을 보여준 S519G mutant H domain 단백질의 발현을 나타낸 것이다.
H domain은 HN 단백질(UniProt Acc. No. P13850)의 아미노산 서열 123~571 번째 위치한 sialic acid binding domain이며, H domain 유전자와 avidin 유전자를 이용해 대장균에 대한 코돈 최적화된 유전자를 합성하였다. 정확하게 H domain 유전자는 linker 펩타이드 유전자와 H domain 유전자의 5 '에 위치한 Bam HI 제한효소 부위와 avidin 유전자의 3'끝에 위치한 Sbf1 제한효소 부위를 이용하여 avidin 유전자와 연결되었다. H domain 단백질과 avidin 단백질 사이에 linker peptide를 삽입하여 최대한 구조적 방해가 없도록 하였다. H domain 및 avdin 융합 단백질 유전자는 프라이머 세트(HN opti EP PCR F:5’-TGT GGT GCG CCA ATT CAT G-3’, HN opti avidin PCR R:5’-TTA CTC CTT CTG GGT GCG CAG-3’)를 사용하여 PCR을 이용하여 증폭하였다. H domain과 avdin 유전자 단편을 벡터에 도입하기 위해 T4 ligase를 밤새 4℃에서 배양하여 두 개의 DNA 단편의 접합(ligation)시켰다. 상기 방법으로 제작된 H domain-avidin 벡터(도 3A)를 형질전환 가능한 대장균 세포로 42℃에서 1분간 열충격(heat shock)을 가하여 도입하였다. 형질전환된 대장균을 암피실린이 함유된 배지(100ug/ml)에 37℃에서 밤새 배양시켰다. 형성된 콜로니를 LB 액체 접종하고 OD600 측정값이 0.4가 될 때 isopropyl b-D-1-thiogalactopyranoside (IPTG) 0.1 M을 추가하였다. IPTG 유도 후 시료를 27 ℃에서 6 시간 동안 배양하고 1 시간마다 채취하였다. 5 개의 샘플은 10 분 동안 9,000 g에서 원심분리 후 pellet을 획득하였다. E. coli pellet을 초음파 처리기로 균질화하고 PBS로 재부유 한 뒤 9,000 g에서 10 분 동안 원심분리하였다. 상층액(Sup)과 pellet을 분리 후 western blotting법을 이용하여 수용성 단백질 여부를 확인하였다(도 4B). Western blotting은 His-tag 단백질에 특이적 결합을 하는 His-tag-horseradish peroxidase conjugate 항체를 1/5,000으로 희석하여 사용하였다. 그러나 사용되는 His-tag-horseradish peroxidase conjugate 항체의 농도를 1/5,000를 한정하는 것은 아니다. 위 상층액은 대장암세포 특이적 단백을 스크리닝하는데 이용되었다.
삭제
삭제
삭제
삭제
삭제
삭제
삭제
<실시예 3> 대장암에 대한 결합력이 향상(tropism)된 H 유전자의 선별
대장암세포 친화성 향상은 HCT116 세포를 이용하여 일반적인 ELISA 방법으로 선별하였다. HCT-116 세포는 기본적인 세포배양법을 따라 배양하였다. 4 ℃에서 3,000g, 10분 동안 원심분리 후 ab65400 Plasma Membrane Protein Extraction Kit(Abcam.Co) 가 제공하는 buffer에 재부유하여 암세포 표면 단백질을 분리하였다. 단백질 분리는 제조사에서 제공하는 Protocol 에 따라 실시하였으며 분리된 상층액은 lowry 법으로 단백질 농도를 측정하였다. 암세포 lysates 단백질 농도를 50 ug/ml로 96 well 플레이트에 4 ℃에서 밤새 코팅 후 다음날 결합되지 않은 암세포를 제거하기 위해, 수세용액(Tris buffer(pH 8.0 tween 0.2 %))으로 수세하였다. 1% 소 혈청 알부민(Bovine serum albumin, BSA)으로 실온에서 1시간 blocking 하였다. 포인트 돌연변이 HN-Avidin 단백을 스크리닝하기 위하여 50 ug/ml 농도로 1시간 동안 37℃에서 반응시켰다. 이후 Biotin-Horseradish peroxidase(HRP) 1/1,000을 1시간 동안 37℃에서 반응시킨 후 수세 용액으로 3~6회 수세하였다. 플레이트에 테트라메틸 벤지딘(tetramethyl benzidine, TMB) 페록시다제 기질을 첨가하였다. 플레이트를 상온에서 10분 동안 반응시켰다. 색깔이 변하기 시작하면 450nm에서 흡광도를 측정하였다(도 3B),
도 3B는 H domain-avidin 결합 단백을 이용하여 대장암세포(HCT116)에 대한 결합능이 높은 단백질을 ELISA의 방법으로 총 50개의 plate를 스크리닝한 결과를 예시적으로 나타낸 것이다.
총 50개의 plate 중에서 O.D. 450 nm 에서 높은 OD값이 확인된 균주 5종의 유전자 염기서열 분석을 진행하였다.
서열 분석 결과, 5개의 Mutant H domain은 각각 서열번호 8의 H domain의 아미노산 서열519번 TCA(Serine)이 GGA(Glycine)으로 치환(서열번호 3, 도 3B의 plate No.7의 C3), 아미노산 서열 267번 CCC(Proline)이 GGC(Glycine)로, 486번 GGG(Glycine)가 GGA(Glycine)로 치환(서열번호 4, plate No. 13의 A6), 아미노산 서열 182번 GCT(Alanine)이 GAT(Aspartic acid)로, 566번 CTC(Leucine)가 CTT(Leucine)으로 치환(서열번호 5, plate No. 22의 H9), 아미노산 서열 418번 TCA(Serine)이 CCA(Proline)로, 528번 ACA(Threonine)가 ACT(Threonine)으로 치환(서열번호 6, plate No. 30의 E3), 아미노산 서열 319번 GGG(Glycine)이 GCG(Alanine)으로, 아미노산 서열 325번 CCC(Proline)이 CGC(Arginine)으로, 아미노산 서열 392번 CCC(Proline)이 CAC(Histidine)으로 치환(서열번호 7, plate No. 47의 F8)되는 돌연변이가 일어난 것으로 나타났다.
그 중 가장 높은 OD값이 확인된 균주의 Mutant H domain의 유전자 서열은 LVP-K1 벡터의 H domain에 해당하는 서열번호 8의 1555, 1556번째 염기서열이 TC에서 GG로 치환되었으며, 아미노산은 TCA(Serine)가 GGA(Glycine)로 변경 여부를 확인하였다 (도 4A). 도 4A는 mutant H domain의 아미노산 서열 (S519G)을 치환한 H-domain mutation-avidin 단백질의 모식도를 나타낸 것이다.
<실시예 4> 대장암에 대한 결합력이 향상(tropism)된 H domain-avidin 융합 단백 정제와 특징 규명
mutation H domain(서열번호 3)-avidin 융합 단백질과 암세포에 대한 결합력을 확인하기 위해 mutation H domain-avidin 단백질을 정제하였다. AKTA pure(GE healthcare) 장비와 양이온 교환 수지인 Hitrap SP FF 5 ml column을 사용하였다. 정제는 20 mM HEPES buffer(pH 6.5)와 1 M NaCl 이 포함된 20 mM HEPES buffer(pH 6.5)을 사용하였다.
Figure 112021091044566-pat00001
KTA pure에 연결된 column을 20 % Ethanol, 증류수, 20 mM HEPES buffer(pH 6.5) 순서로 washing 하고 정제할 단백질 샘플을 1 min/ml 의 유속으로 loading하였다. 280 nm에서 측정되는 peak를 확인하면서 peak 상승곡선일 때 resin flow를 받고 loading이 완료되면 20 mM HEPES buffer(pH 6.5)로 resin 안의 non binding protein을 washing 하였다. peak 가 안정화 되면 1 M NaCl 이 포함된 20 mM HEPES buffer(pH 6.5)을 사용하여 gradient Elution을 30 분 동안 1 min/ml 의 유속으로 1 ml fraction 으로 진행하였다. 280 nm에서 측정되는 peak 중심으로 fraction 을 이용하여 western blotting을 실시하여 정제 결과를 확인하였다(도 4C).
도 4C는 S519G mutant H domain 단백질을 ion exchange chromatography를 이용하여 정제한 결과를 나타낸 것이다.
위와 같은 방법으로 정제된 H-domain mutation-avidin 단백을 대장암세포(HCT116, SW620, HT29), 대장정상세포(CCD18-Co), 다른 암세포(A547;폐암, T98G;교모세포종) 및 정상세포(MRC-5;폐정상세포)에서 H-domain mutation-avidin 단백질의 결합력을 확인하였으며, 그 결과는 도 4D에 나타내었다.
도 4D는 S519G mutant H domain 단백질의 다양한 암세포(HCT116, HT29, SW620:대장암, T98G;교모세포종, A549;폐암) 및 대장 정상 세포(CCD-18Co)의 표면단백질에 대한 ELISA 실험 결과를 나타낸 것이다.
각각의 암세포주와 정상 세포주는 ATCC에서 추천하는 배지를 사용하여 세포배양을 진행하였다. 세포배양은 75T flask를 이용하여 37 ℃ CO2 incubator에서 2~3일간 배양을 진행하였으며 full monolayer 가 형성되면 세포를 harvest하여 ab65400 Plasma Membrane Protein Extraction Kit(Abcam.Co)가 제공하는 buffer로 재부유하여 회사가 제공하는 protocol에 따라 각각의 세포 표면 plasma 단백질을 분리하였다. 각각의 세포 plasma 단백질은 lowry 방법으로 단백질 정량을 수행하였으며 ELISA 실험을 위해 96 well plate에 단백질 농도를 50 ug/ml 되게 Tris buffer(pH 8.0)로 희석하여 준비하였다. 100 ul의 단백질을 분주하여 4 ℃에서 overnight 동안 incubation 한 후 용액을 제거한다. 용액을 제거한 후 200 ul의 0.1 % tween 20를 포함하는 Tris buffer를 각 well에 분주한 후 제거하는 과정을 3회에서 6회 정도 반복하여 plate를 수세 한다. 이후 100 ul의 1% bovine serum albumin을 포함하는 tris buffer(pH 8.0)를 ELISA plate well에 분주하여 상온에서 1시간 동안 blocking 과정을 수행한다. Blocking 용액을 제거한 후 정제된 H-domain mutation 단백질 용액을 50, 100, 200 ug/ml의 농도로 100 ul 씩되게 Tris buffer(pH 8.0)로 희석하여 각각의 well에 분주한 후 상온에서 1시간 동안 반응시킨 후 용액을 제거한다. 각각의 well에 200 ul의 0.1 % tween 20를 포함하는 tris buffer(pH 8.0)를 분주하고 제거하는 과정을 3회에서 6회 반복하여 well을 세척한다. 이후 1,000배 희석된 biotin labeling 된 horse radish peroxidase 단백질을 용액을 각각의 well에 100 ul 첨가하여 1시간 동안 4℃에서 반응시킨다. 이후 첨가해준 용액을 제거한 후 ELISA washing 용액으로 3회에서 6회 세척한 다음 3,3′,5,5′-Tetramethylbenzidine(TMB) 용액을 50 ul 첨가하여 발생을 진행한 후 50 ul stop solution(1.0 M H2SO4)을 첨가 반응을 중지시키고 O.D.450nm 를 측정하여 비교하였다.
그 결과, HCT116 50 ug/ml에서 가장 높은 OD값을 확인하였다. 폐암 및 폐정상세포에 가장 낮은 결합력을 보인 것을 확인하였다. 이러한 결과는 대장암세포에 특이적으로 결합력이 향상되었음을 뒷받침할 수 있다.

<실시예 5> H domain mutation-GFP 단백질의 암세포 표면 결합과 특이성에 대한 실험
다양한 암세포를 이용한 H-domain mutation-GFP 단백질의 HCT116 특이적 결합을 확인하기 위한 실험은 HCT116 세포주 외에도 다양한 암세포와 정상 세포에 대한 비교 시험을 진행하였다. 암세포는 HCT116, T98G, A549 세포를 사용하였으며 정상 세포는 CCD-18Co, 세포를 사용하였다.
H domain mutant 가 암세포 표면에 결합하는지 그리고 결합에 있어 특정 암세포에 대한 특이적 결합 또는 결합력의 상승(affinity increase)과 같은 변화가 있는지 관찰하기 위해 H domain 과 Green Fluorescence Protein(GFP)을 linker peptide 로 연결하여 E. coli 발현 시스템을 통해 발현 정제하였다. H domain 유전자는 앞의 실험을 통해 선택된 mutant H domain 유전자를 사용했으며 GFP 유전자는 Enhanced Green Fluorescent Protein (EGFP)유전자를 사용하여 E. coli 발현에 적합하도록 codon optimize를 통해 유전자를 제작하였다. 제작된 유전자는 E. coli 발현 vector plasmid pET15b에 유전자를 삽입하여 발현 vector(도 5A)를 제작하였다. 제작된 발현 vector를 통상적인 E. coli heat shock 형질전환 법으로 형질 전환된 E. coli 를 선별하기 위한 selection media culture(LB agar m edia, 10 ug/ml of ampicillin)를 통해 colony를 형성한 E. coli 를 picking 하여 liquid media(LB media, 10 ug/ml of ampicillin)에서 배양하여 glycerol 20 %로 혼합하여 -70 ℃ 동결하였다. pET15b plasmid vector로 형질 전환된 E. coli 를 LB broth 배지(10 ug/ml of ampicillin)에 접종하여 O.D. 600 nm의 값이 0.4가 될 때까지 배양 후 IPTG 0.1 M 을 배지에 첨가하여 단백질 합성을 유도하였다. 이후 배양 온도를 37 ℃에서 28℃로 낮추어 불용성 단백질 생성을 저해하고자 하였다. H domain mutation-GFP 단백질 생산을 위한 배양 조건에서 IPTG induction 시기(박테리아 배양 O.D.), IPTG 의 농도 그리고 IPTG 첨가 후 온도의 설정은 위의 조건에 한정되지 않고 단백질 발현을 위한 최적의 조건에 따라 달리할 수 있다. 단백질 발현이 종결된 E. coli 를 harvest 하여 원심분리(6,000 g, 10 min 4℃) 한다. 침전된 균체를 PBS buffer에 재부유하여 초음파 분쇄기를 이용 세포를 파쇄한다. 파쇄된 세포 용액을 원심분리(8,000 g, 10 min, 4 ℃) 한다 원심분리 후 상등액에 암모늄설페이트(Ammonium sulfate)를 30~70 % 까지 농도별로 처리하여 침전되는 단백질과 상층액을 분리하여 H domain mutation-GFP 단백질 최다 함유 농도와 분획을 SDS-PAGE와 western bloting 실험을 통해 결정하였다. 그 결과는 도 5B, C에 나타내었다.
도 5B는 mutant H domain(S519G)-GFP fusion 단백질의 ion exchange chromatography를 이용하여 정제한 결과를 나타낸 chromatogram과 western blotting 을 실시하여 확인한 결과이고, 도 5C는 다양한 암세포에 대한 mutant H domain(S519G)-GFP fusion 단백질의 다양한 암세포(HCT116:대장암, T98G;교모세포종, A549;폐암) 및 대장 정상 세포(CCD-18Co)의 표면 결합을 형광현미경을 이용하여 확인한 결과를 나타낸 것이다.
그 결과 현미경으로 각각의 well을 관찰한 결과 HCT116 세포에 대한 형광이 가장 많은 수를 보여주었다. 다른 세포 중에 대한 H domain mutation-GFP 단백질 특이하게 많은 형광을 보여주는 것은 관찰되지 않았다. 이러한 결과는 mutant H domain이 HCT116 세포의 표면단백질에 결합력이 증가했으며 또한 결합 가능한 표면단백질의 범위가 넓어졌다는 것을 예상할 수 있다.
<실시예 6> 암세포 특이성이 증가된 HN 단백질이 변형된 NDV(M2-LVP-K1)의 작출
LVP-K1 벡터를 XbaⅠ과 SpeⅠ 제한효소를 이용하여 189 bp ~ 1,688 bp 까지 1,499 bp의 insert 유전자를 획득하여 pBR322 벡터로 삽입하였다. 이후 Mutation H domain 유전자는 프라이머 (Forward 5‘ -GGT GAG TGG AAG CAG CAC CAA G-’3, Reverse 5‘-CGG GTT ATG CGA CTG CGG G-’3)를 이용하여 PCR product를 획득하여 정제하였다. T4 kinase(NEB)를 제조사의 권장 사항에 따라 처리한 후 T4 ligase를 이용하여 16 ℃에서 반응시켜 LVP-K1 벡터의 1,499 bp의 insert 유전자가 삽입된 pBR322 벡터에 Mutation H domain 유전자(서열번호 3)를 도입하고, E. coli 로 형질전환하여 LB agar(100 ug/ml ampicillin)을 이용하여 콜로니를 획득하였다. 획득한 콜로니는 plasmid preparation을 통해 얻은 뒤 전체 염기서열 분석을 진행하여 TCA가 GGA로 변경 여부를 확인하였다. 상기와 같은 과정을 통해 LVP-K1 벡터의 HN 유전자 519번 아미노산 서열에 해당하는 Serine이 Glycine으로 치환된 M2-LVP-K1 벡터를 획득하였다(도 6A). 본 벡터의 NP와 P 유전자 사이, 그리고 P와 M 유전자 사이, M와 F 유전자 사이, F와 HN 유전자 사이, 그리고 HN과 L 유전자 사이에 트랜스진 카세트(transgene cassette)를 삽입할 수 있다. 트랜스진 카세트는 IGS 서열(Gene end(GE), Intergenic sequence(IG), Gene start(GS)) 및 DNA 제한효소 서열을 가지고 있는 MCS(multicloning site) 염기서열로 구성되어 있다.
NDV 전사효소 복합체의 개별적인 클론(NP, P, L)을 pBR322 벡터로 클로닝 하여 helper plasmid로 이용하였다(pBR322-NP, pBR322-P, pBR322-L). 전날 6-well 플레이트에 5×105 cells/well로 HEp-2 세포를 준비 후 변형된 벡시니아 바이러스 (MVA-T7)를 1 MOI로 감염시켰다. 상기 세포주에 T7 promoter에 의해 단백질이 발현되는 pBR322-NP, pBR322-P, pBR322-L Helper plasmid와 M2-LVP-K1 벡터를 각각 2.5 μg, 1.5 μg, 0.5 μg, 및 5 μg을 lipofectamine 3000(Invitrogen)과 적정비율로 혼합하여 형질전환 하였다. 이후 3일에서 4일간 37 ℃, 5% CO2 조건에서 배양 후 HEp-2 세포 상층액을 수확하였다. 이후 9~11일령의 SPF 발육란의 allantoic cavity로 접종하였으며, 접종 4일 후 요막강액을 채취하였다. 백시니아 바이러스 제거를 위해 PBS를 이용하여 10-3으로 희석된 요막강액을 각각 9~11일령의 SPF 발육란의 allantoic cavity로 접종 뒤 4일 후 요막강액을 채취하여 바이러스 확인 실험을 실시하였다(도 6B 참조).
바이러스 확인 실험은 요막강액을 Viral RNA extraction kit(Qiagen)을 이용하여 분리(isolation) 후, 추출한 RNA 5 ul, 하기 표 3의 프라이머를 Forward 및 Reverse 각각 1 μl를 이용하여 ONE-STEP RT-PCR로 42 ℃에서 1시간, 94 ℃에서 5분간 반응한 후, 94 ℃에서 1분, 60 ℃에서 1분, 72 ℃에서 1분의 반응을 총 35 사이클 실시한 후, 72 ℃에서 7분간 수행하여 확인하였다. 그 결과는 도 6C에 나타내었다.
도 6C는 회수된 LVP-K1 및 M2-LVP-K1 바이러스를 SPF egg를 이용하여 백시니아 바이러스의 제거 및 NDV 바이러스의 유전자를 검출하여 RT-PCR을 이용하여 확인한 전기영동 결과이다.
그 결과, 백시니아 바이러스가 제거되고, 뉴캐슬병 바이러스 및 재조합 뉴캐슬병 바이러스 LVP-K1 바이러스와 M2-LVP-K1 바이러스를 확인하였다.
Gene Direction Sequence (5`→3`) Size (bp)
NDV check Forward CCACAATTCCAAGATAACCGGAG 327
Reverse GCTGCCACAATCAGATGCCTTTG
Vaccinia virus check Forward ATGACGATGAAAATGATGGTACATA 1,059
Reverse CTCCAATACTACTGTAGTTGTAAGG
<실시예 7> M2-LVP-K1 재조합 바이러스의 병원성 시험
실시예 1 및 실시예 6에 따라 recovery 된 재조합 LVP-K1과 M2-LVP-K1 바이러스를 미리 준비된 Vero76 cell culture(175 T-flask, Nunc.) monolyer에 접종하여 병원성 실험에 사용될 바이러스를 준비하였다. 접종 전 LVP-K1(106.7TCID 50/ml)과 M2-LVP-K1(106.5TCID 50/ml) 바이러스의 역가를 측정하여 MOI 0.1 되게 접종하였다. 175 T flask에 full monolayer 로 자란 Vero76 세포의 세포수는 2~3 × 107.0으로 두 개의 flask에 각각을 0.13 ml과 0.17 ml을 DMEM 배지 3 ml에 희석하여 접종하였다. 바이러스 접종 후 37 ℃, CO2 incubator에서 rocker를 이용하여 조심스럽게 흔들어 배지를 flask에 넣어 바이러스 감작액을 세척하였다. 감작액 세척은 3번을 실시하였다. 이후 DMEM 배지(10 % FBS 함유) 50 ml을 첨가하여 2일간 배양하여 CPE가 관찰되면 배양액 전체를 -20 ℃ 냉동고에 freezing and thawing을 2회 이상 실시하여 harvest 하였다. harvest 후 배양액을 원심분리(4 ℃, 3,000 g, 10 min) 하여 cell debris를 제거하였다. 이후 상등액은 virus titration을 위해 샘플을 채취한 후 -80 ℃에 동결하여 실험을 위해 준비해 두었다. 바이러스는 TCID50 측정법으로 바이러스 Titer를 측정하여 병원성 시험에 사용하였다. 바이러스 측정은 미리 준비된 2~5×105 cells/ml로 Vero76 세포를 96-well plate에 분주한 후 2~3일간 배양하여 monolayer가 형성된 후 배양된 바이러스를 원액부터 10진 희석하여 100 ul를 접종하여 다시 3일간 관찰하여 최종 CPE가 발생한 well까지를 확인하여 바이러스 역가를 측정하였다. 바이러스 역가는 Reed and muench법에 따라 바이러스 역가를 계산하였다. LVP-K1 바이러스 titer는 106.7 TCID50/ml이었으며 M2-LVP-K1 바이러스 Titer는 106.3 TCID50/ml 이였다.
MDT(median death time) 측정은 통상적으로 알려진 방법에 따라 측정하였다. 대조군으로 같은 농도의 LVP-K1 바이러스도 측정 하였다. 두 바이러스의 titer는 조정하여 106.3TCID50/ml으로 동일한 titer로 사용하였다. 바이러스 원액을 10진 희석하여 각 희석액 0.2 ml 을 5개의 SPF 종란(9일령 내지 11일령)의 요막강내로 접종한 다음 37℃ 종란 배양기(Ari 50), 에서 5일간 배양하였다. 종란의 폐사 유뮤는 종란의 혈관 모양을 관찰하여 결정하였으며 폐사가 일어난 종란의 요막강액을 채취하여 바로 HA 가를 측정하였다. HA가 측정은 미리 준비된 닭 1% 적혈구를 이용하여 U자 모양의 96 well plate에 미이 준비된 25 ul의 요막강액을 동량의 PBS로 2진 희석하여 준비한 다음 1% 닭 적혈구 용액 25 ul 를 첨가하여 HA가를 측정하여 바이러스에 의한 계란 폐사를 확인하였다. 배양 24시간 이내에 종란이 폐사한 경우에는 세균 오염으로 간주하였다. MDT 실험 결과는 표 3에 나타내었다.
표 3에 나타낸 바와 같이, 평가 결과 M2-LVP-K1 바이러스 원액의 종란 폐사는 모두 90시간 이상으로 측정되었으며 폐사 시간은 120시간에서 170시간까지 다양하게 나타났다. 평균 폐사 시간은 144시간으로 약병원성을 유지하는 것으로 확인되었으며 한편 대조군으로 사용된 LVP-K1 바이러스의 평균 폐사 시간은 140시간으로 알려져 있는 VG/GA strain의 140시간과 같은 결과를 보여주었다. 10배 희석액과 100배 희석액에서는 종란 폐사가 관찰되지 않았다. 따라서 MDT시험을 통해 M2-LVP-K1 바이러스의 병원성 변화는 확인할 수 없었다.
Figure 112021091044566-pat00002
※대조군은 동량의 PBS를 접종하여 종란 폐사가 없었음을 확인하였다.
이어서, M2-LVP-K1 바이러스의 병원성에 대한 변화를 확인하기 위해 대뇌병변지수(ICPI, Intracerebral pathogenicity index) 측정을 실시하였다. 표 4는 LVP-K1과 M2-LVP-K1 재조합 바이러스의 대뇌병변지수 관찰 Score를 나타낸 것이다.
M2-LVP-K1 바이러스(106.3TCID50/ml, HA titer 26 이상)와 동일한 titier의 LVP-K1 바이러스를 대조군으로 하여 1일령 SPF 닭의 뇌 내로 접종하였다. SPF 1일령 병아리(company name)는 각각 10마리씩 따로 사육하며 실험을 진행하였다. SPF 병아리 1수당 0.05 ml씩 뇌 내로 접종하여 8일간 관찰하면서 병원성을 측정하였다. 병원성 측정에있어 병증의 주요한 기준은 바이러스 접종 후 활동성 저하와 병아리가 눈을 감고 조는 현상을 주로 관찰하였다. 병원성과 폐사는 8일간 하루 2회 이상 관찰하며 측정하였다. 본 발명의 M2-LVP-K1의 ICPI 지수는 0.34으로 약 병원성으로 나타났으며 대조군의 LVP-K1 바이러스의 ICPI 지수 역시 0.36으로 H domain mutant domain이 병원성에 변화를 일으키지는 않은 것으로 확인되었다.
Figure 112021091044566-pat00003
※대조군은 동량의 PBS를 접종하여 8일간 모두 병변 없이 생존하였음을 확인하였다.
이와 같이 MDT assay와 ICPI assay를 통해 확인한 결과 mutant H domain을 가지는 M2-LVP-K1 바이러스는 병원성을 회복할 만한 변이가 아니며 이러한 변이가 병원성과는 무관하나 특정 암세포 표면의 당단백질에 대한특이도 증가 또는 결합력 증가 그리고 또는 결합할 수 있는 당단백질의 spectrum의 확대로 인한 결과로 해석할 수 있다.
<실시예 8> 재조합 뉴캐슬병 바이러스의 정제
전날 Vero76 세포를 3×105 cells/ml로 배양 후 다음날 재조합 바이러스 0.05 MOI로 접종하여 2일 후에 가장 높은 역가의 바이러스 상층액을 얻었다. 이후, 바이러스 상층액은 부유물을 제거하기 위해 4 ℃에서 5,000 g, 10분간 원심분리하고 상층액을 수거하였다. 수거된 상층액은 size exclusion chromatography column HiScreen™ Capto™ Core 400을 이용하여 바이러스 fraction을 받아 정제하였다. chromatography 방법은 sample 25 ml을 loading 하여 150mM NaCl이 포함된 20 mM Tris-HCl(pH 7.5) buffer 를 flow rate 1.6 ml/min으로 흘려주면서 260 nm 와 280 nm 의 absorption을 측정하여 fraction 을 분리하였다. 각 fraction volumn은 1.0 ml 이며 바이러스를 함유한 fraction 은 fraction 번호 2번에서 10번으로 총 9.0 ml을 분리하였다. Size exclusion chromatography 공정은 3회 실시하여 바이러스를 확보하였다. 재조합 바이러스 농축을 위해 32,000 rpm 4 ℃에서 3 시간동안 초원심분리를 진행하였으며, 상층액을 제거 후 TNE buffer(10 mM Tris-HCl, 20 mM NaCl, 1 mM EDTA)로 재부유하였다. 농축된 바이러스는 10~50% sucrose linear gradient 법을 이용해 32,000 rpm 4 ℃에서 2시간 동안 초원심분리를 진행하였다. 원심분리 후 원심 tube의 white band 부분을 따로 분리하여 재조합 바이러스를 수득하였다. 마지막으로 수득한 재조합 바이러스를 32,000 rpm 4 ℃에서 2시간 초원심분리를 한번 더 진행하여 수크로스(sucrose)를 제거하여 재조합 뉴캐슬병 바이러스 LVP-K1 및 M2-LVP-K1을 정제하였다.
<실시예 9> Vero76 세포 및 HCT116 세포를 이용한 재조합 바이러스의 성장동역학(kinetics) 확인
M2-LVP-K1 바이러스를 HCT116 대장암 세포와 Vero76 세포에서 적응시킨 바이러스를 각각 HCT116 세포 및 Vero76 세포에서 역가 측정을 하였다. Vero76 세포는 다음과 같이 배양하였다. 세포배양용 penicillin-streptomycin(Gibco, USA)과 10% FBS를 포함하는 Dulbecco's Minimum essential medium(DMEM, Gibco, USA) 배지를 이용하여 배양하였으며 175T Flask 플라스크를 이용하여 배양하였다. 세포가 70~80% 이상 monolayer를 형성하여 자라게 되면 subculture를 진행하여 유지한다. Vero76 세포의 split ratio는 1:8까지 가능하며 seeding density는 1×104 cells/ml이다.
HCT116 세포의 배양은 다음과 같다. HCT116 세포는 세포배양용 penicillin-streptomycin(Gibco, USA)과 10% FBS를 포함하는 Roswell Park Memorial Institute 1640 Medium(RPMI1640, Gibco, USA) 배지를 이용하여, 37 °C 배양기(5%, CO2)에서 175T flask를 이용하여 배양하였다. 세포가 플라스크에 70~80% monolayer를 형성하여 자라게 되면 1:4에서 1:6으로 subculture를 통해 세포를 유지한다. Seeding density는 2~4 × 104 cells/ml 정도로 한다.
준비한 Vero76 세포와 HCT116 세포를 이용하여 LVP-K1 바이러스와 M2-LVP-K1 바이러스의 증식에 대한 비교 실험을 실시하기 위해서 75T flask에서 70~80% 이상 monolayer 를 형성된 Vero76 세포와 HCT116 세포의 배양액을 제거하였다. 이후, 혈청이 포함되지 않은 DMEM 배지를 10 ml을 플라스크에 넣고 조심해서 흔들어 세포를 세척하였다. 이런 과정을 2~3회 반복하고 난 후 LVP-K1 바이러스와 M2-LVP-K1 바이러스(0.1 MOI)를 플라스크에 넣고 37 ℃ incubator에서 10분 간격으로 흔들어 주며 1시간 동안 바이러스를 감작시킨다. 이후 바이러스 액을 제거하고 혈청이 없는 DMEM 배지 10 ml을 플라스크에 넣어 남아 있는 바이러스액을 제거한 후 다시 5% FBS가 첨가된 DMEM 배지를 20 ml 씩 넣어주고 48시간째에 바이러스를 채취하여 TCID50 측정 방법으로 바이러스 역가를 측정하였다.
일반적인 TCID50 측정 방법에는 Vero76 세포를 이용하여 진행하였으나 본 연구에서는 Vero76 세포뿐만 아니라 대장암 세포 특이 결합을 비교하기 위해 HCT116 세포에서도 확인하였다. Vero76 세포에 배양된 LVP-K1은 양성대조군으로 이용하였으며, Vero76 세포에서 104.7 TCID50/ml, HCT116 세포에서 103.7 TCID50/ml로 Vero76 세포에서 더 높은 역가를 확인하였다. Vero76 세포에서 배양된 M2-LVP-K1 바이러스는 Vero76 세포에서 103.7 TCID50/ml, HCT116 세포에서 104.1 TCID50/ml로 HCT116 세포에서 더 높은 역가를 확인하였다. HCT116 세포에서 배양된 M2-LVP-K1 바이러스는 Vero76 세포에서 104.9 TCID50/ml, HCT116 세포에서 105.5 TCID50/ml로 HCT116 세포에서 더 높은 역가를 확인하였다. 특히 HCT116 세포에서 배양된 M2-LVP-K1 바이러스를 HCT116 세포를 이용하여 역가 측정을 진행한 경우에서 가장 높은 역가를 확인하였다(도 7). 본 결과는 M2-LVP-K1 바이러스가 대장암세포에 더 결합력이 높다는 근거를 뒷받침 할 수 있다.
<실시예 10> LVP-K1과 M2-LVP-K1 바이러스의 다양한 암세포와 비교하여 대장암 세포에서의 특이적 세포 사멸
LVP-K1과 M2-LVP-K1 바이러스 감염으로 인한 암세포의 사멸 효과를 확인하기 위해 Cytopathic effect (CPE)를 확인 및 MTT assay 실험을 실시하였다. Cytopathic effect (CPE) 확인을 위한 세포는 대장암(HCT116), 대장정상세포(CCD-18Co), 폐암(A549), 교모세포종(T98G)을 이용하였다. MTT assay를 위한 세포는 대장암(HCT116), 폐암(A549), 교모세포종(T98G)을 이용하였다.
바이러스의 Cytopathic effect (CPE)를 확인하기 위하여 일반적인 세포배양 방법에 따라 전날 배양된 세포를 이용하여 LVP-K1 및 M2-LVP-K1 바이러스를 0.1 MOI로 감작 후 3, 6, 9, 및 12시간에 현미경 관찰을 하였다. 가장 빠른 속도로 CPE가 확인된 세포는 M2-LVP-K1 바이러스를 감작한 HCT116 대장암 세포였으며 6시간째에 확인되었다. 반면 LVP-K1 바이러스는 12시간까지도 CPE가 확인되지 않았다.
MTT assay 는 통상적인 방법에 따라 실시하였으며 자세한 실험과정을 기술한다. 96-well plate에 1개의 well당 1×104개의 HCT116 세포를 24시간 동안 세포배양용 penicillin, streptomycin (Gibco, USA)과 10% FBS를 포함하는 Roswell Park Memorial Institute 1640 Medium(RPMI1640, Gibco, USA) 배지를 이용하여, 37 °C 배양기(5% CO2)에서 배양하고 LVP-K1 바이러스와 M2-LVP-K 바이러스를 MOI가 0.1, 1, 및 10이 되도록 감염시킨다. 결과의 신뢰성을 위해서, 같은 조건의 well을 4개씩 준비하여 진행하였다. 감염 후, 37 °C 배양기(5% CO2)에서 배양하고 감염 후 72시간 이후에 각각의 well 에 20μl의 MTT 용액(CellTiter 96® AQueous One solution Cell Proliferation Assay, Bio-Rad, USA)를 첨가하고 1시간 동안)에서 배양기(5% CO2)에서 배양한다. iMark Microplate Reader(Bio-Rad, USA)를 이용하여 450nm의 파장을 가지는 빛의 흡광도를 측정하여 세포 사멸도를 측정한다. 이후 음성대조군에 대한 상대적인 사멸률(%)을 확인하였다. 그 결과는 도 8 나타내었다.
도 8A-D는 본 발명의 M2-LVP-K1 감염된 대장암세포(HCT116) 및 대장정상세포(CCD-18Co)를 포함한 다양한 암세포(T98G;교모세포종, A549;폐암)에서의 세포 변성 효과(cytopathic effect, CPE)를 현미경을 통해 관찰한 결과이고, 도 8E는 대장암세포(HCT116) 및 다양한 암세포(T98G;교모세포종, A549;폐암)에서 바이러스를 0.1, 1, 및 10 MOI 되도록 감염 후 4일째 음성대조군에 대한 상대적인 사멸률(%)을 확인한 결과이다. *은 P value 0.05 이하, **은 P value 0.01 이하, ***은 P value 0.001 이하를 나타낸다.
도 8에서 보는 것과 같이 M2-LVP-K1 유전자를 삽입한 바이러스가 LVP-K1 바이러스보다 암세포사멸 효과가 더 빨리 나타났다. 이러한 HCT116 대장암세포에 대한 사멸 효과는 M2-LVP-K1 바이러스에서 더 뚜렷하게 확인할 수 있다.
특히 도 8E에 나타낸 것과 같이, 이러한 암세포 사멸 효과의 차이는 세포에 접종된 바이러스 농도가 낮을수록 차이를 보이는데 이는 재조합 NDV 바이러스인 LVP-K1 바이러스 역시 본래 oncolytic effect를 가지고 있어 높은 농도에서는 차이를 보이지 않으나 MOI 1 이하에서 sialic acid 또는 HCT 116 세포 표면에 발현된 당단백질에 대한 결합력이 높아진 M2-LVP-K1 바이러스가 암세포의 자살(apoptosis) 효과를 높여 세포 사멸에 영향을 준 것으로 판단된다.
<실시예 11> 대장암 이종이식 누드 마우스를 이용한 바이러스의 종양 내 접종 시 암세포 증식 억제 효과 확인
Xenograft model을 이용하여 LVP-K1 및 M2-LVP-K1 바이러스의 암조직 성장 억제 효과를 측정하였다. 배양된 HCT116 세포 1 × 107 cells/ml을 RPMI 배지에 풀어 100 ul를 동량의 Matrigel(Corning)과 혼합하여 마우스 좌측 둔부에 접종하여 HCT116 이종이식 모델을 확립하였다. 사용된 마우스는 SPF female BALB/c 누드 마우스 14~19g 정도의 12마리를 SLC(Japan)로부터 구입하여 무작위로 그룹당 4마리씩 구분하여 실험하였다. 각 실험 그룹은 LVP-K1 바이러스, M2-LVP-K1 바이러스 및 PBS를 암조직에 직접 주사한 그룹으로 나뉘었다. 접종한 바이러스의 농도는 108 TCID50/ml 이며 100 ul 씩 접종하여 처리군 및 대조군 사이의 종양 성장률을 비교하였다. 바이러스 접종은 암조직 사이즈가 HCT116 세포 접종 후 5일째 평균 100~200 mm3 도달했을 때부터 3일 간격으로 3회 접종하였다. 바이러스 접종 후 14일간 동안은 매일 암조직 변화를 관찰하였으며 바이러스 접종 후 27일에 마지막으로 암조직의 변화를 관찰하였다. 암조직의 크기는 1/2 × (가장 작은 직경)2 × (가장 큰 직경) 공식을 통해 계산하였다.
도 9A, 도 9B 및 도 9C를 통해 바이러스 처리군은 200 mm3 이하로 대조군 2,000 mm3 과 약 10배의 차이가 확인되어 종양이 관해되었음을 확인하였다. 또한, LVP-K1 바이러스는 M2-LVP-K1 바이러스보다 종양 용해 효과가 낮음을 확인하였다. 이러한 결과는 M2-LVP-K1 바이러스의 대장암 세포 특이적 결합력 향상이 세포 사멸에 영향을 준 것으로 보인다.
M2-LVP-K1 바이러스 접종군에서 가장 빠르고 효과적으로 암조직이 축소되는 것을 관찰할 수 있었다. 또한, 도9C와 같이 병리학적 조직 양상은 M2-LVP-K1 군에서는 높은 수준의 lymphocyte infiltration이 관찰되었고, tumor cell은 적은 수준으로 관찰되었다. LVP-K1군의 경우에는 중등도 수준의 lymphocyte infiltration이 관찰되었으며, cell density는 높은 편으로 M2-LVP-K1 바이러스와의 차이를 보였다. 이와 같은 소견으로 보아 M2-LVP-K1군의 암세포사멸 효과가 매우 높은 것으로 생각되며, LVP-K1 군의 경우에는 M2-LVP-K1 바이러스에 비해 암세포 사멸효과가 높지 않은 것으로 보인다.
포유류에서 면역반응을 일으키지 않고 항체도 생성되지 않는 NDV 바이러스를 이용한 새로운 대장암 치료용 암용해 바이러스를 제작하여 대장암에 대한 암세포 증식 억제 효과를 확인하였다. NDV 바이러스는 정상 세포에서 감염 즉시 innate immunity에 의해 암세포에 도달하지 못하고 사라지는 NDV 바이러스가 많고 또 정맥주사로 인한 희석 효과로 인해 기존에 사용해 오던 단순 재조합 바이러스가 아닌 암세포 증식 억제 효과, 세포자살 유도, 면역반응 유도등 다양한 유전자를 삽입하여 암세포에서 단백질로 발현되어 효능을 증가시키는 재조합 NDV 바이러스의 개발은 매우 중요한 과제이며 앞으로 추가적인 연구를 통해 더 많은 발전이 있어야 할 것이다. 본 발명은 NDV 바이러스가 대장암세포에 oncolytic 기능을 어느 정도 가지고 있으며 또한, 대장암에 대한 결합력이 상승한 NDV 재조합 바이러스를 제작하고 이에 대한 효과가 향상되었음을 증명한 것이다.
이상에서 살펴본 바와 같이, 본 발명의 구체적인 실시예를 상세하게 설명되었으나, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 구성요소를 추가, 변경, 삭제 등을 통하여, 퇴보적인 다른 발명이나 본 발명 사상의 범위 내에 포함되는 다른 실시예를 용이하게 제안할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상술한 상세한 설명보다는 후술하는 특허청구의 범위에 의하여 나타내어지며, 특허청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
한국생명공학연구원 생물자원센터(KCTC) KCTC14630BP 20210630
<110> LIBENTECH Co.,LTD. <120> Oncolytic virus constructed by based on the colorectal cancer cells-specific infection Newcastle disease virus for colorectal cancer treatment and its composition <130> PN2107-360 <160> 8 <170> KoPatentIn 3.0 <210> 1 <211> 19054 <212> DNA <213> Artificial Sequence <220> <223> M2-LVP-K1 <400> 1 accaaacaga gaatccgtaa ggtacgatag aaggcgaagg agcaatcgaa gtcgtacggg 60 tagaaggtgt gaatctcgag tgcgagcccg aagctcaaac tcgagagagc cttctgccaa 120 aatgtcttct gtattcgatg agtacgagca gctcctcgcg gctcagactc gccccaatgg 180 agctcatggc ggaggagaga aggggagcac cttaaaggta gaagtcccgg tattcactct 240 caacagtgat gacccagaag atagatggaa ctttgcagtg ttttgtcttc ggattgctgt 300 tagcgaggat gccaacaaac cacttaggca aggtgctctc atatctctct tatgttccca 360 ctctcaagtg atgaggaacc atgttgccct tgcggggaaa cagaatgagg ccacactggc 420 tgttcttgag atcgatggtt ttaccaacgg cgtgccccag ttcaacaaca ggagtggagt 480 gtctgaagag agagcacaga gatttatgat gatagcaggg tctctccctc gggcatgcag 540 caacggtacc ccgttcgtca cagctggggt tgaagatgat gcaccagaag acattactga 600 taccctggag aggatcctct ctatccaggc tcaagtatgg gtcacggtgg caaaggccat 660 gactgcatat gagacagcag atgagtcaga aacaagaaga atcaataagt acatgcagca 720 aggcagggtc cagaagaagt acatcctcca ccccgtatgc aggagcgcaa tccaactcac 780 aatcagacag tctctggcgg tccgcatctt tttggttagc gagcttaaga gaggccgcaa 840 cacggcaggt gggacctcca cctattacaa cttggtgggg gatgtagact catacatcag 900 gaacactggg ctaactgcat tcttcctgac acttaaatat ggaattaaca ccaagacatc 960 agcccttgca cttagcagcc tctcaggcga tatccagaaa atgaagcagc tcatgcgctt 1020 gtatcggatg aaaggagata atgcgccgta catgacattg ctcggtgaca gtgaccagat 1080 gagctttgca cctgccgagt atgcacaact ttactccttt gccatgggta tggcatcagt 1140 cctagataaa ggaactagca aataccaatt tgccagggac tttatgagca catcattctg 1200 gagacttgga gtagagtacg ctcaggctca aggaagtagc atcaatgagg atatggccgc 1260 cgagctaaag ctaaccccag cagcaaggag aggcctggca gctgctgccc aaagagtgtc 1320 tgaggagacc agcagcatgg acatgcccac ccaacaagcc ggggtcctca ctggactcag 1380 cgacggaggc tcccaagccc cccaaggtgc actgaacaga tcacaagggc aaccggacac 1440 cggggatggg gagacccaat ttctggatct gatgagagcg gtggcaaata gcatgagaga 1500 agcgccaaac tctgcgcagg gcacccctca accggggcct cccccaaccc ctgggccctc 1560 tcaagacaat gacaccgact gggggtactg accgacagca cccagtttgc ttctatgagg 1620 tcatcccaat tcctctgccc acaccccacc cctcaatccg caatcccgca tggccaaacc 1680 cacaaacgaa cccccctgtc tccctcctct cccccagccc cacaacccca cctgcccagg 1740 gcaacatagg tacaatgcga cccactaata atcaatacag ggccaaagaa attagaaaaa 1800 agtacgggta gaagggagac attcagagat cagggcgagt cacccgggtc tctgctctcc 1860 cttctaccta gtggattagg atggagatgg ccacctttac agatgcggag atcgacgagc 1920 tatttgagac cagtggaact gtcattgaca gcataattac ggcccaggga aaaccagtag 1980 agactgttgg aaggagtgca atcccacaag gcaaaactaa ggctttgagc gcagcatggg 2040 agaagcatgg gagcatccag tcaccagcca gccaagacac ccctgatcga caggacagat 2100 cagataaaca actgtccaca cccgagcaag cgagtccaaa cgacagcccc ccagccacat 2160 ccactgacca gcctcccact caggctgcag atgaggccgg cgatacacag ctcaagaccg 2220 gagcaagcaa ctctctgctg tcgatgcttg ataaactcag caataagtca tctaatgcta 2280 aaaagggccc agggtcgagc cctcaagaaa ggcatcatca acgtctgact caacaacagg 2340 ggagtcaaca aagccgcgga aacagccaag agagaccgca gaaccaggcc aaggccatcc 2400 ctggaaacca ggtcacagac gcgaacacag catatcatgg acaatgggag gagtcacaac 2460 tatcagctgg tgcaacccat catgctctcc gatcagagca gagccaagac aatactcctg 2520 cacctgtgga tcatgtccag ctacctgtcg actttgtgca ggcgatgatg tctatgatgg 2580 aggcgatatc acagagggta agtaaagttg actatcagct ggaccttgtc ttgaaacaga 2640 catcttctat ccccatgatg cggtctgaaa tccagcagct gaaaacgtct gttgcggtca 2700 tggaagccaa tttgggcatg atgaagatcc tggaccctgg ttgtgccaac gtttcatctc 2760 taagtgatct acgggcagtt gcccgatccc acccggtttt aatttctggc cccggagacc 2820 catctcctta tgtgacccaa gggggcgaaa tggcactcaa taaactttcg caaccggtgc 2880 aacacccctc tgaattgatt aaacccgcca cggcaagcgg gcctgatata ggagtggaga 2940 aagacactgt ccgtgcattg atcatgtcac gccctatgca tccgagctct tcagctaggc 3000 tcttgagcaa actggacgca gccggatcga ttgaggaaat cagaaaaatc aagcgccttg 3060 cactgaatgg ctaatcacca ccgcaacccg cagcagatcc ctgtccaccc agcaccacac 3120 ggtatctgca ccaagctcct ctctgcaaac ccaaggtcca acaccccgag cgacaaccct 3180 gtcctgcttc ctctgcccca ctaaatgatc gcgcagctgc aatcaattca gctatattaa 3240 ggattaagaa aaaatacggg tagaatcgga gtgccccgat tgtgccaaga tggactcatc 3300 taggacaatc gggctgtact ttgattctac ccttccttct agcaacctgc tagcattccc 3360 gatagtccta caagacacag gggacgggaa gaagcaaatc gccccgcaat acaggatcca 3420 gcgtcttgac tcgtggacag acagcaaaga agactcggta ttcatcacca cctatggatt 3480 catctttcag gttgggaatg aagaagccac tgtcggcatg atcaatgata atcccaagcg 3540 cgagttactt tccactgcca tgctatgcct agggagtgta ccaaatgtcg gagatcttgt 3600 tgagctggca agggcctgcc tcactatggt ggtaacatgc aagaagagtg caactaacac 3660 cgagagaatg gtcttctcag tagtgcaggc accccaggtg ctgcaaagct gtagggttgt 3720 ggcaaacaaa tactcgtcgg tgaatgcagt caagcacgtg aaagcaccag agaagattcc 3780 tgggagcgga accctagagt acaaagtgaa ctttgtctct ctgaccgtgg tgccaagaaa 3840 ggacgtctac aagataccaa ctgcagcact taaggtctct ggctcaagtc tgtacaatct 3900 tgcgctcaat gtcactattg atgtggaggt agacccgaag agcccgttgg tcaaatccct 3960 ttccaagtcc gacagtgggt actatgctaa tctcttctta catattgggc ttatgtccac 4020 tgtagataag aaggggaaga aagtgacatt tgacaagctg gaaaggaaga taaggagact 4080 tgatctatct gtagggctta gtgacgtgct cggaccttcc gtgcttgtaa aggcgagagg 4140 tgcacggact aagctgctgg cacctttctt ctctagcagt gggacagcct gctatcccat 4200 agcaaatgcc tctcctcagg tggccaagat actctggagc caaaccgcgt acctgcggag 4260 tgtaaaagtc attatccaag cgggcaccca gcgtgctgtc gcagtgaccg ccgaccacga 4320 ggttacctct actaagctgg agaaggggca taccattgcc aaatacaatc ccttcaagaa 4380 ataggctgca tctctgagat tgcactccgc ccatcttccc ggatcaccat gacactaaat 4440 aatgatctgt cttgattact tatagttagt tcgcctgtct atcaaattag aaaaaacacg 4500 ggtagaagat tctggatccc ggttggcgcc ttcaaggtgc aagatgggct ccagatcttc 4560 taccaggatc ccagtacctc ttatgctgac cgtccgagtc atgttggcac tgagttgcgt 4620 ctgtccgacc agcgcccttg atggcaggcc tcttgcagct gcagggattg tggtaacagg 4680 agacaaagca gtcaacatat acacctcatc tcagacaggg tcaatcataa tcaagttact 4740 cccaaatatg cccaaggata aagaggcgtg tgcaaaagcc ccgttggagg catacaacag 4800 gacattgact actttgctca ccccccttgg tgattctatc cgtaggatac aagagtctgt 4860 gaccacgtcc ggaggaggga gacaggggcg ccttataggc gccattatcg gtggtgtagc 4920 tctcggggtt gcaaccgctg cacagataac agcagcctcg gctctgatac aagccaatca 4980 aaatgctgcc aacatactcc ggctaaaaga gagcattgct gcaaccaatg aggctgtgca 5040 cgaggtcact aatggattat cacaactagc agtggcagtt gggaagatgc agcaatttgt 5100 taatgaccag tttaataaaa cagctcagga attggactgt ataaaaatta cacagcaggt 5160 tggtgtagaa ctcaacctgt acctaactga attgactaca gtattcgggc cacaaatcac 5220 ttcccctgcc ttaactcagc tgactatcca ggcgctttac aatctagctg gtgggaatat 5280 ggattacttg ttgactaagt taggtgtggg gaacaaccaa ctcagctcat taattagtag 5340 tggcctgatc accggcaacc ctattctgta cgactcacag actcaactct tgggtataca 5400 ggtaacccta ccctcagtcg ggaacctaaa taatatgcgt gccacctacc tggaaacctt 5460 gtctgtaagt acaaccaaag gatttgcctc agcacttgtc ccaaaagtag tgacacaggt 5520 cggttccgtg atagaagagc ttgacacctc gtactgtata gagaccgatt tggatctata 5580 ttgtacaaga atagtgacat tccctatgtc tcctggtatt tattcctgtt tgagtggcaa 5640 tacatctgct tgcatgtact caaagactga aggcgcactc actacgccgt atatgaccct 5700 caaaggctca gttattgcta actgtaagat gacaacatgt agatgtgcag accccccggg 5760 tatcatatcg caaaattatg gagaagctgt gtctctaata gataggcaat catgcaatat 5820 cttatcctta gacgggataa ctttgaggct cagtggggaa tttgatgcaa cttatcaaaa 5880 gaatatctca atacaagatt ctcaagtaat agtgacaggc aatcttgata tctcgactga 5940 gcttgggaat gtcaacaact cgataagtaa tgctttggat aagttagagg aaagcaacag 6000 caaactagat aaggtcaatg tcaaactgac cagcacatcc gctcttatta cctatatcgt 6060 tttaactgtc atatctcttg tatgtggtat acttagcctg gttctagcat gctacctgat 6120 gtacaagcaa aaggcgcaac agaagacctt gttgtggctt gggaataata ccctagacca 6180 gatgagggcc actacaaaaa tgtgaatgcg gatgagaggc agaaacatcc ccaatagcag 6240 tttgtgtgta aagtctgaca gcctgttaat tagaagaatt aagaaaaaac taccggatgt 6300 agatgaccaa agggcgatat acgggtagaa cggtcgggga ggccgtccct caatcgggag 6360 ccgggcctca caacatccgt tctaccgcat caccaatagc agttttcagt catggaccgc 6420 gcagttagcc aagttgcgct agagaatgat gaaagagagg caaagaatac atggcgcttg 6480 gtattccgga tcgcaatcct actctcaacg gtggtgacct tagccatctc tgcagccgcc 6540 cttgcatata gcatggaggc cagcacacct agcgatcttg taggcatacc gactgcgatc 6600 tctagagcag aggaaaagat tacatctgca ctcggttcca atcaagatgt agtagatagg 6660 atatataagc aggtggccct cgaatctcca ctggcattgc taaacaccga atctacaatt 6720 atgaacgcaa taacgtctct ctcttatcga atcaatgggg ccgcaaatag cagcggatgt 6780 ggagcaccca ttcatgatcc agattatatt ggaggaatag gtaaagaact tattgtagat 6840 gatgctagcg acgtcacatc atactatccc tctgcgttcc aagaacacct gaactttatc 6900 ccggcgccta ctacaggatc aggttgcact cggataccct catttgacat gagcgctacc 6960 cactactgtt atactcacaa tgtgatatta tctggctgca gagatcactc gcactcacat 7020 caatatttag cacttggtgt gcttcggaca tctgcaacag ggagggtatt cttttccact 7080 ctgcgttcca tcaatctgga tgacacccaa aatcggaagt cttgcagtgt gagtgcaacc 7140 cccttgggtt gtgatatgct gtgctctaaa gtcacagaga ctgaagaaga ggattataac 7200 tcagctatcc ccacgtcgat ggtacatgga aggttagggt tcgacggcca ataccacgag 7260 aaggacctag atgtcacaac actattcgag gactgggtgg caaactaccc aggagtaggg 7320 ggcgggtctt ttattgacaa ccgcgtatgg ttcccagttt acggagggct aaaacccaat 7380 tcgcccagtg acaccgcaca agaagggaaa tatgtaatat acaagcgata caatgacaca 7440 tgtccagatg agcaagatta tcagattcaa atggctaagt cttcatataa gcctgggcgg 7500 tttggaggga aacgcgtaca gcaggccatc ttatctatca aagtgtcaac atccttgggc 7560 gaggacccgg tactgactgt accgcccaac acagtaacac tcatgggggc cgaaggcaga 7620 gttctcacag tagggacatc tcatttcctt tatcagcgag ggtcatcata cttctcccct 7680 gccctactat atcctatgat agtcagcaac aaaacagcca ctcttcatag tccttataca 7740 ttcaatgcct tcactcgacc aggtagtgtc ccttgccagg cttcagcaag atgccctaac 7800 tcatgtgtta ccggagtcta tactgatcca tatcccttgg tcttctatag gaaccacacc 7860 ttgcgagggg tattcgggac gatgcttgat gataaacaag caagactcaa ccctgtatct 7920 gcagtatttg acagcatatc ccgcagtcgc ataacccggg tgagtggaag cagcaccaag 7980 gcagcataca caacatcaac atgttttaaa gttgtaaaga ccaataaaac ctattgtctc 8040 agcattgccg aaatatccaa taccctcttc ggggaattca gaatcgtccc tttactagtt 8100 gagattctca aggatgatgg ggttagagaa gccaggtcta gccggttgag tcaactgcga 8160 gagggttgga aagatgacat tgtatcacct atcttttgcg acgccaagaa tcaaactgaa 8220 taccggcgcg agctcgagtc ctacgctgcc agttggccat aatcagctag tgctaatgtg 8280 attagattaa gtcttgtcgg tagtcacttg attaagaaaa aatgtgggtg gtagcgggat 8340 ataaggcaaa acaactcaag gaggatagca cgggtaggac atggcgagct ccggtcccga 8400 gagggcggag catcagatta tcctaccaga gtcacacctg tcttcaccat tagtcaagca 8460 caaactactc tattactgga aattaactgg gctaccactc cctgacgagt gtgacttcga 8520 ccacctcatt ctcagccgac aatggaagaa aatacttgaa tcggcctccc ctgacactga 8580 gagaatgata aaacttggaa gggcagtgca ccagactctc aaccacaatt ccaagataac 8640 cggagtactc catcccaggt gtttagaaga attggctagt attgaggttc ctgactcaac 8700 caacaagttt cggaagatcg agaagaaaat ccaaattcac aacacaaggt atggagaact 8760 gttcacaaga ctgtgcacgc atgtagagaa gaaattgttg ggatcatctt ggtctaataa 8820 tgtcccccgg tcagaagagt tcaacagcat ccgtacagat ccggcattct ggtttcactc 8880 aaaatggtcc acaactaagt ttgcatggct ccatataaaa cagattcaaa ggcatctgat 8940 tgtggcagca agaacaaggt ccgcagccaa caaattggtg acgctgaccc ataaggtagg 9000 ccaagtcttt gttactcctg agcttgtcat tgtgacacat acagatgaga acaagttcac 9060 gtgtcttacc caggaacttg tgttgatgta tgcagatatg atggagggca gagatatggt 9120 caacataata tcatccacgg cggcacatct caggagccta tcagagaaaa ttgatgacat 9180 tctgcggtta gtagatgccc tggcaaaaga tctgggtaat caagtctacg atgttgtagc 9240 actcatggag ggatttgcat acggcgccgt ccagctgctt gagccgtcag gtacattcgc 9300 aggggatttc ttcgcattca acctgcagga gctcaaagac actttgatcg gcctccttcc 9360 taaggatata gcagaatctg tgactcacgc aatagccact gtattctctg gcttagaaca 9420 aaatcaagcg gctgagatgc tgtgcctgtt gcgtctatgg ggccacccat tacttgagtc 9480 ccgtattgcg gcaaaagcag taaggagcca aatgtgcgca ccaaaaatgg tagactttga 9540 tatgatcctc caggtattgt ctttctttaa aggaacaatc atcaacggat acagaaagaa 9600 gaatgcaggt gtttggccac gtgtcaaagt agatacgata tacgggaagg tcattgggca 9660 gctacacgct gattcagcgg agatttcaca cgatatcatg ttgagagagt acaagagttt 9720 atctgcgctt gaattcgagc catgtataga atacgaccct atcaccaatc tgagcatgtt 9780 tctaaaagac aaggcgatcg cacacccgaa agacaactgg ctcgccgcgt ttaggcgaaa 9840 ccttctctct gaggaccaga agaaacatgt aaaggaggca acctctacta accgtctctt 9900 gatagagttc ttagagtcaa atgattttga tccatataag gagatggaat atctgacgac 9960 ccttgagtac ctaagagatg acaatgtggc agtatcatac tcgctcaagg agaaggaagt 10020 gaaggttaat gggcggattt ttgctaagct aacaaagaaa ttaaggaact gtcaagtgat 10080 ggcggaaggg atcttagctg accagattgc acctttcttt caagggaatg gggtcattca 10140 ggatagcata tctttaacca agagtatgct agcgatgagt caattgtctt tcaacagcaa 10200 taagaaacgt atcactgact gcaaagaaag agtagcctca aaccgcaatc acgatcaaaa 10260 gagcaagaat cgtcggagag ttgccacttt tataacgact gacctgcaaa agtactgtct 10320 taattggaga tatcagacaa tcaaactgtt cgctcatgcc atcaatcagc tgatgggctt 10380 acctcacttc ttcgaatgga ttcatctaag actaatggat actacgatgt ttgtaggaga 10440 ccctttcaat cccccaagtg acccaactga ctgtgatctc tcaagagtcc caaatgatga 10500 catatatatt gtcagtgcta gagggggtat tgagggatta tgtcagaagc tatggacaat 10560 gatctcaatt gctgcaatcc aacttgctgc agcaagatca cattgtcgcg tcgcctgtat 10620 ggtacagggt gacaatcaag taatagctgt aacgagagag gtaaggtcag atgactcccc 10680 ggaaatggtg ttaacacaat tgcatcaagc cagtgataat ttcttcaagg aattgattca 10740 tgttaatcat ttgattggcc ataatttgaa ggatcgtgaa acaatcagat cagacacatt 10800 cttcatatac agcaaacgaa tattcaaaga tggagcaata ctcagtcaag tcctcaaaaa 10860 ttcatctaaa ttagtgctaa tatcaggcga ccttagtgaa aacaccgtaa tgtcctgtgc 10920 caacattgca tctactatag cacggctgtg cgagaacggg cttccaaagg atttctgtta 10980 ttacttaaac tacctgatga gttgcgtgca gacatacttt gattctgagt tttccatcac 11040 taacagctcg caccccgatt ctaaccagtc gtggattgaa gacatctctt ttgtgcactc 11100 atatgtcctg acccctgccc agctaggggg actgagcaac ctccaatact caaggctcta 11160 cacgaggaac atcggtgacc cgggaactac tgcttttgca gagatcaagc gattagaagc 11220 agtggggtta ctaagtccta gtattatgac taacatctta actaggccgc ctggaaatgg 11280 agattgggcc agtctgtgta acgaccctta ctctttcaat tttgagactg tcgcgagtcc 11340 aaatattgtc cttaagaaac atacacaaag agtcctattt gaaacttgtt caaatccctt 11400 attatctggc gtgcatacag aggataatga ggcagaagag aaggcgttgg ctgaattttt 11460 actcaatcaa gaagtaattc atccacgtgt cgcacatgct atcatggaag caagctctat 11520 aggtaggagg aagcagattc aagggcttgt tgacacaaca aacaccgtaa tcaagattgc 11580 attgactagg aggccacttg gcatcaagag gctgatgcgg atagttaact actcgagcat 11640 gcatgcaatg ctgtttagag acgatgtttt ctcatctaac aggtctaacc accccttagt 11700 ttcctctaat atgtgttctc tgacgctagc agactatgca cggaatagaa gctggtcacc 11760 attgacgggg ggtagaaaga tactgggtgt atctaatcct gatactatag aacttgtaga 11820 gggtgagatc cttagcgtca gcggaggatg cacaagatgt gacagcggag atgaacaatt 11880 cacttggttc catcttccga gcaatataga actgaccgat gacaccagca agaatcctcc 11940 gatgagagtg ccgtacctcg ggtcaaagac tcaagagagg agggccgcct cgcttgcgaa 12000 aatagctcat atgtcaccac atgtgaaagc tgctctaagg gcatcatccg tgttgatctg 12060 ggcttatgga gacaacgaag taaattggac tgctgctctt aaaattgcaa gatctcggtg 12120 caatataaac tcagagtatc ttcgactatt gtccccctta cccacagctg ggaatctcca 12180 acatagactg gatgacggca taactcagat gacattcacc cctgcatctc tctacagggt 12240 gtcaccttat attcacatat ccaatgattc tcaaaggtta ttcacggaag aaggagtcaa 12300 agagggaaat gtagtttatc agcaaatcat gctcttgggt ttatctctaa tcgaatcact 12360 cttcccgatg acgacaacca ggacatacga tgagatcaca ttgcacctcc acagtaaatt 12420 tagctgctgt atcagggaag caccggttgc agttcctttc gagttactcg ggatggcacc 12480 agaactaagg acagtgacct caaataagtt tatgtatgat cctagtcctg tatcggaggg 12540 tgactttgcg agacttgact tagctatctt taagagttat gagcttaatc tagaatcata 12600 tcccacaata gagctaatga acattctttc aatatccagc gggaagttaa tcggccagtc 12660 tgtggtttct tatgatgaag atacctccat aaagaatgac gccataatag tgtatgacaa 12720 cacccggaat tggatcagcg aagctcagaa ttcagatgtg gtccgcctat tcgagtatgc 12780 agcacttgaa gtgcttctcg actgttctta tcagctctac tatctgagag taagaggcct 12840 agacaatatc gtgttgtata tgagtgactt atataagaat atgccaggaa ttctactttc 12900 caacattgca gctacaatat ctcatcccat cattcattca agattgcatg cagtaggcct 12960 ggtcaatcac gacgggtcac accaacttgc agacacagat ttcatcgaaa tgtctgcaaa 13020 actattagtc tcttgcactc gacgcgtggt ctcaggttta tatgcaggga ataagtatga 13080 tctgctgttc ccgtctgtct tagatgataa cctgagtgag aagatgcttc agctgatatc 13140 tcggttatgc tgcctgtata cggtgctctt tgctacaaca agagagatcc cgaaaataag 13200 aggcttatct gcagaagaga agtgttcagt acttactgag tacctactgt cagatgctgt 13260 gaaaccatta cttagttctg agcaagtgag ctctatcatg tctcctaaca tagttacgtt 13320 cccagctaat ctatattaca tgtctcggaa gagccttaat ttgattaggg aaagagagga 13380 cagggacact atcttggcat tgttgttccc ccaagagcca ctacttgagt tccccttagt 13440 acaagatatt ggcgctcgag tgaaagatcc attcacccga caacctgcgg cgtttttaca 13500 agaattagat ttgagcgctc cagcaaggta tgacgcattt acacttagtc aggttcattc 13560 tgaacacaca tcaccaaatc cggaggacga ctacttagta cgatacctgt tcagaggaat 13620 agggaccgcg tcctcctctt ggtataaggc atctcacctt ctttctgtac ctgaggtcag 13680 atgtgcaagg cacgggaatt ccttatactt ggcagaagga agcggagcca ttatgagtct 13740 tctcgaactg catgtgccgc atgagactat ctattacaat acgctcttct caaacgagat 13800 gaacccccca cagcggcatt tcggaccgac cccaacacag tttctgaatt cagttgttta 13860 taggaatcta caggcggagg taccatgtaa ggatggattt gtccaggagt tccgtccatt 13920 atggagagag aatacagaag aaagcgatct gacctcagat aaagcagtgg gttacatcac 13980 atctgcagtg ccctaccggt ctgtatcatt gctgcactgt gacattgaga ttcctccagg 14040 atccaatcaa agcttactgg atcaactggc taccaatctg tctctgattg ccatgcattc 14100 tgtaagggag ggcggggtcg tgatcatcaa agtgttgtat gcaatgggat attacttcca 14160 tctactcatg aacttgttca ctccgtgttc tacgaaagga tatattctct ctaatggcta 14220 tgcatgtaga ggggatatgg agtgttacct ggtatttgtc atgggctatc gaggtgggcc 14280 tacatttgta catgaggtag tgaggatggc aaaaactcta gtgcagcggc acggtacact 14340 tttgtccaaa tcagatgaga tcacactgac taggttattt acctcacagc ggcagcgtgt 14400 aacagacatc ctatccagtc ctttaccgag actaataaag ttcttgagaa agaatatcga 14460 tactgcgcta attgaagccg ggggacaacc cgtccgtcca ttctgtgcag agagcttggt 14520 gaggacacta gcggacacaa ctcagatgac ccagatcatc gctagtcaca ttgacacagt 14580 cattcgatct gtgatctaca tggaggctga gggtgatctc gccgacacag tgttcttatt 14640 taccccctac aatctctcta cagacggtaa aaagagaaca tcacttaaac agtgcacaag 14700 gcagatctta gaggtcacaa tattgggtct tagagttgaa aatctcaata aagtaggtga 14760 tgtagtcagt ctagtactta aaggtatgat ttctctggag gacctgatcc ctctaagaac 14820 atacttgaag cgtagtacct gccctaagta tttgaagtct gttctaggta ttactaaact 14880 caaagaaatg tttacagaca cctctttatt atacttgact cgtgctcaac aaaaattcta 14940 catgaaaact ataggcaacg cagtcaaggg atactacagt aactgtgact cttaaagata 15000 atcacatatt aataggctcc ttttctagtt aactgagccc ttgttgattt aatgatacta 15060 tattagaaaa aagttgcact ccgatccttt aggactcgtg ttcgaattca aataattgtc 15120 ttagaaaaaa gttgcgcgta attgttcttg aatgtagtcc tgtcattcac caaatctttg 15180 tttggtcggc atggcatctc cacctcctcg cggtccgacc tgggcatccg aaggaggacg 15240 cacgtccact cggatggcta agggagtagc ataacccctt ggggcctcta aacgggtctt 15300 gaggggtttt ttgggcgcgc cgtcgaccga tgcccttgag agccttcaac ccagtcagct 15360 ccttccggtg ggcgcggggc atgactatcg tcgccgcact tatgactgtc ttctttatca 15420 tgcaactcgt aggacaggtg ccggcagcgc tctgggtcat tttcggcgag gaccgctttc 15480 gctggagcgc gacgatgatc ggcctgtcgc ttgcggtatt cggaatcttg cacgccctcg 15540 ctcaagcctt cgtcactggt cccgccacca aacgtttcgg cgagaagcag gccattatcg 15600 ccggcatggc ggccgacgcg ctgggctacg tcttgctggc gttcgcgacg cgaggctgga 15660 tggccttccc cattatgatt cttctcgctt ccggcggcat cgggatgccc gcgttgcagg 15720 ccatgctgtc caggcaggta gatgacgacc atcagggaca gcttcaagga tcgctcgcgg 15780 ctcttaccag cctaacttcg atcactggac cgctgatcgt cacggcgatt tatgccgcct 15840 cggcgagcac atggaacggg ttggcatgga ttgtaggcgc cgccctatac cttgtctgcc 15900 tccccgcgtt gcgtcgcggt gcatggagcc gggccacctc gacctgaatg gaagccggcg 15960 gcacctcgct aacggattca ccactccaag aattggagcc aatcaattct tgcggagaac 16020 tgtgaatgcg caaaccaacc cttggcagaa catatccatc gcgtccgcca tctccagcag 16080 ccgcacgcgg cgcatctcgg gcagcgttgg gtcctggcca cgggtgcgca tgatcgtgct 16140 cctgtcgttg aggacccggc taggctggcg gggttgcctt actggttagc agaatgaatc 16200 accgatacgc gagcgaacgt gaagcgactg ctgctgcaaa acgtctgcga cctgagcaac 16260 aacatgaatg gtcttcggtt tccgtgtttc gtaaagtctg gaaacgcgga agtcagcgcc 16320 ctgcaccatt atgttccgga tctgcatcgc aggatgctgc tggctaccct gtggaacacc 16380 tacatctgta ttaacgaagc gctggcattg accctgagtg atttttctct ggtcccgccg 16440 catccatacc gccagttgtt taccctcaca acgttccagt aaccgggcat gttcatcatc 16500 agtaacccgt atcgtgagca tcctctctcg tttcatcggt atcattaccc ccatgaacag 16560 aaatccccct tacacggagg catcagtgac caaacaggaa aaaaccgccc ttaacatggc 16620 ccgctttatc agaagccaga cattaacgct tctggagaaa ctcaacgagc tggacgcgga 16680 tgaacaggca gacatctgtg aatcgcttca cgaccacgct gatgagcttt accgcagctg 16740 cctcgcgcgt ttcggtgatg acggtgaaaa cctctgacac atgcagctcc cggagacggt 16800 cacagcttgt ctgtaagcgg atgccgggag cagacaagcc cgtcagggcg cgtcagcggg 16860 tgttggcggg tgtcggggcg cagccatgac ccagtcacgt agcgatagcg gagtgtatac 16920 tggcttaact atgcggcatc agagcagatt gtactgagag tgcaccatat gcggtgtgaa 16980 ataccgcaca gatgcgtaag gagaaaatac cgcatcaggc gctcttccgc ttcctcgctc 17040 actgactcgc tgcgctcggt cgttcggctg cggcgagcgg tatcagctca ctcaaaggcg 17100 gtaatacggt tatccacaga atcaggggat aacgcaggaa agaacatgtg agcaaaaggc 17160 cagcaaaagg ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca taggctccgc 17220 ccccctgacg agcatcacaa aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga 17280 ctataaagat accaggcgtt tccccctgga agctccctcg tgcgctctcc tgttccgacc 17340 ctgccgctta ccggatacct gtccgccttt ctcccttcgg gaagcgtggc gctttctcat 17400 agctcacgct gtaggtatct cagttcggtg taggtcgttc gctccaagct gggctgtgtg 17460 cacgaacccc ccgttcagcc cgaccgctgc gccttatccg gtaactatcg tcttgagtcc 17520 aacccggtaa gacacgactt atcgccactg gcagcagcca ctggtaacag gattagcaga 17580 gcgaggtatg taggcggtgc tacagagttc ttgaagtggt ggcctaacta cggctacact 17640 agaaggacag tatttggtat ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt 17700 ggtagctctt gatccggcaa acaaaccacc gctggtagcg gtggtttttt tgtttgcaag 17760 cagcagatta cgcgcagaaa aaaaggatct caagaagatc ctttgatctt ttctacgggg 17820 tctgacgctc agtggaacga aaactcacgt taagggattt tggtcatgag attatcaaaa 17880 aggatcttca cctagatcct tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata 17940 tatgagtaaa cttggtctga cagttaccaa tgcttaatca gtgaggcacc tatctcagcg 18000 atctgtctat ttcgttcatc catagttgcc tgactccccg tcgtgtagat aactacgata 18060 cgggagggct taccatctgg ccccagtgct gcaatgatac cgcgagaccc acgctcaccg 18120 gctccagatt tatcagcaat aaaccagcca gccggaaggg ccgagcgcag aagtggtcct 18180 gcaactttat ccgcctccat ccagtctatt aattgttgcc gggaagctag agtaagtagt 18240 tcgccagtta atagtttgcg caacgttgtt gccattgctg caggcatcgt ggtgtcacgc 18300 tcgtcgtttg gtatggcttc attcagctcc ggttcccaac gatcaaggcg agttacatga 18360 tcccccatgt tgtgcaaaaa agcggttagc tccttcggtc ctccgatcgt tgtcagaagt 18420 aagttggccg cagtgttatc actcatggtt atggcagcac tgcataattc tcttactgtc 18480 atgccatccg taagatgctt ttctgtgact ggtgagtact caaccaagtc attctgagaa 18540 tagtgtatgc ggcgaccgag ttgctcttgc ccggcgtcaa cacgggataa taccgcgcca 18600 catagcagaa ctttaaaagt gctcatcatt ggaaaacgtt cttcggggcg aaaactctca 18660 aggatcttac cgctgttgag atccagttcg atgtaaccca ctcgtgcacc caactgatct 18720 tcagcatctt ttactttcac cagcgtttct gggtgagcaa aaacaggaag gcaaaatgcc 18780 gcaaaaaagg gaataagggc gacacggaaa tgttgaatac tcatactctt cctttttcaa 18840 tattattgaa gcatttatca gggttattgt ctcatgagcg gatacatatt tgaatgtatt 18900 tagaaaaata aacaaatagg ggttccgcgc acatttcccc gaaaagtgcc acctgacgtc 18960 taagaaacca ttattatcat gacattaacc tataaaaata ggcgtatcac gaggcccttt 19020 cgtcttcaag aattctaata cgactcacta tagg 19054 <210> 2 <211> 449 <212> PRT <213> Artificial Sequence <220> <223> H domain of M2-LVP-K1 <400> 2 Cys Gly Ala Pro Val His Asp Pro Asp Tyr Ile Gly Gly Ile Gly Lys 1 5 10 15 Glu Leu Ile Val Asp Asp Ile Ser Asp Val Thr Ser Phe Tyr Pro Ser 20 25 30 Ala Tyr Gln Glu His Leu Asn Phe Ile Pro Ala Pro Thr Thr Gly Ser 35 40 45 Gly Cys Thr Arg Ile Pro Ser Phe Asp Met Ser Thr Thr His Tyr Cys 50 55 60 Tyr Thr His Asn Val Ile Leu Ser Gly Cys Arg Asp His Ser His Ser 65 70 75 80 Tyr Gln Tyr Leu Ala Leu Gly Val Leu Arg Thr Ser Ala Thr Gly Arg 85 90 95 Val Phe Phe Ser Thr Leu Arg Ser Val Asn Leu Asp Asp Thr Gln Asn 100 105 110 Arg Lys Ser Cys Ser Val Ser Ala Thr Pro Leu Gly Cys Asp Met Leu 115 120 125 Cys Ser Lys Val Thr Gly Thr Glu Glu Glu Asp Tyr Lys Ser Val Ala 130 135 140 Pro Thr Ser Met Val His Gly Arg Leu Gly Phe Asp Gly Gln Tyr His 145 150 155 160 Glu Lys Asp Leu Asp Thr Thr Val Leu Phe Lys Asp Trp Val Ala Asn 165 170 175 Tyr Pro Gly Ala Gly Gly Gly Ser Phe Ile Asp Asp Arg Val Trp Phe 180 185 190 Pro Val Tyr Gly Gly Leu Lys Pro Asn Ser Pro Ser Asp Thr Ala Gln 195 200 205 Glu Gly Lys Tyr Val Ile Tyr Lys Arg His Asn Asn Thr Cys Pro Asp 210 215 220 Glu Gln Asp Tyr Gln Ile Arg Met Ala Lys Ser Ser Tyr Lys Pro Gly 225 230 235 240 Arg Phe Gly Gly Lys Arg Val Gln Gln Ala Ile Leu Ser Ile Lys Val 245 250 255 Ser Thr Ser Leu Gly Lys Asp Pro Val Leu Thr Ile Pro Pro Asn Thr 260 265 270 Ile Thr Leu Met Gly Ala Glu Gly Arg Ile Leu Thr Val Gly Thr Ser 275 280 285 His Phe Leu Tyr Gln Arg Gly Ser Ser Tyr Phe Ser Pro Ala Leu Leu 290 295 300 Tyr Pro Met Thr Val Asn Asn Lys Thr Ala Thr Leu His Ser Pro Tyr 305 310 315 320 Thr Phe Asn Ala Phe Thr Arg Pro Gly Ser Val Pro Cys Gln Ala Ser 325 330 335 Ala Arg Cys Pro Asn Ser Cys Ile Thr Gly Val Tyr Thr Asp Pro Tyr 340 345 350 Pro Leu Ile Phe His Arg Asn His Thr Leu Arg Gly Val Phe Gly Thr 355 360 365 Met Leu Asp Asp Glu Gln Ala Arg Leu Asn Pro Val Ser Ala Val Phe 370 375 380 Asp Asn Ile Ser Arg Ser Arg Val Thr Arg Val Ser Gly Ser Ser Thr 385 390 395 400 Lys Ala Ala Tyr Thr Thr Ser Thr Cys Phe Lys Val Val Glu Thr Asn 405 410 415 Lys Ala Tyr Cys Leu Ser Ile Ala Glu Ile Ser Asn Thr Leu Phe Gly 420 425 430 Glu Phe Arg Ile Val Pro Leu Leu Val Glu Ile Leu Lys Asp Asp Arg 435 440 445 Val <210> 3 <211> 1347 <212> DNA <213> Artificial Sequence <220> <223> Mutant H domain plate No.7 C3 <400> 3 tgtggagcac ccattcatga tccagattat attggaggaa taggtaaaga acttattgta 60 gatgatgcta gcgacgtcac atcatactat ccctctgcgt tccaagaaca cctgaacttt 120 atcccggcgc ctactacagg atcaggttgc actcggatac cctcatttga catgagcgct 180 acccactact gttatactca caatgtgata ttatctggct gcagagatca ctcgcactca 240 catcaatatt tagcacttgg tgtgcttcgg acatctgcaa cagggagggt attcttttcc 300 actctgcgtt ccatcaatct ggatgacacc caaaatcgga agtcttgcag tgtgagtgca 360 acccccttgg gttgtgatat gctgtgctct aaagtcacag agactgaaga agaggattat 420 aactcagcta tccccacgtc gatggtacat ggaaggttag ggttcgacgg ccaataccac 480 gagaaggacc tagatgtcac aacactattc gaggactggg tggcaaacta cccaggagta 540 gggggcgggt cttttattga caaccgcgta tggttcccag tttacggagg gctaaaaccc 600 aattcgccca gtgacaccgc acaagaaggg aaatatgtaa tatacaagcg atacaatgac 660 acatgtccag atgagcaaga ttatcagatt caaatggcta agtcttcata taagcctggg 720 cggtttggag ggaaacgcgt acagcaggcc atcttatcta tcaaagtgtc aacatccttg 780 ggcgaggacc cggtactgac tgtaccgccc aacacagtaa cactcatggg ggccgaaggc 840 agagttctca cagtagggac atctcatttc ctttatcagc gagggtcatc atacttctcc 900 cctgccctac tatatcctat gatagtcagc aacaaaacag ccactcttca tagtccttat 960 acattcaatg ccttcactcg accaggtagt gtcccttgcc aggcttcagc aagatgccct 1020 aactcatgtg ttaccggagt ctatactgat ccatatccct tggtcttcta taggaaccac 1080 accttgcgag gggtattcgg gacgatgctt gatgataaac aagcaagact caaccctgta 1140 tctgcagtat ttgacagcat atcccgcagt cgcataaccc gggtgagtgg aagcagcacc 1200 aaggcagcat acacaacatc aacatgtttt aaagttgtaa agaccaataa aacctattgt 1260 ctcagcattg ccgaaatatc caataccctc ttcggggaat tcagaatcgt ccctttacta 1320 gttgagattc tcaaggatga tggggtt 1347 <210> 4 <211> 1347 <212> DNA <213> Artificial Sequence <220> <223> Mutant H domain plate No.13 A6 <400> 4 tgtggagcac ccattcatga tccagattat attggaggaa taggtaaaga acttattgta 60 gatgatgcta gcgacgtcac atcatactat ccctctgcgt tccaagaaca cctgaacttt 120 atcccggcgc ctactacagg atcaggttgc actcggatac cctcatttga catgagcgct 180 acccactact gttatactca caatgtgata ttatctggct gcagagatca ctcgcactca 240 catcaatatt tagcacttgg tgtgcttcgg acatctgcaa cagggagggt attcttttcc 300 actctgcgtt ccatcaatct ggatgacacc caaaatcgga agtcttgcag tgtgagtgca 360 acccccttgg gttgtgatat gctgtgctct aaagtcacag agactgaaga agaggattat 420 aactcagcta tcggcacgtc gatggtacat ggaaggttag ggttcgacgg ccaataccac 480 gagaaggacc tagatgtcac aacactattc gaggactggg tggcaaacta cccaggagta 540 gggggcgggt cttttattga caaccgcgta tggttcccag tttacggagg gctaaaaccc 600 aattcgccca gtgacaccgc acaagaaggg aaatatgtaa tatacaagcg atacaatgac 660 acatgtccag atgagcaaga ttatcagatt caaatggcta agtcttcata taagcctggg 720 cggtttggag ggaaacgcgt acagcaggcc atcttatcta tcaaagtgtc aacatccttg 780 ggcgaggacc cggtactgac tgtaccgccc aacacagtaa cactcatggg ggccgaaggc 840 agagttctca cagtagggac atctcatttc ctttatcagc gagggtcatc atacttctcc 900 cctgccctac tatatcctat gatagtcagc aacaaaacag ccactcttca tagtccttat 960 acattcaatg ccttcactcg accaggtagt gtcccttgcc aggcttcagc aagatgccct 1020 aactcatgtg ttaccggagt ctatactgat ccatatccct tggtcttcta taggaaccac 1080 accttgcgag gagtattcgg gacgatgctt gatgataaac aagcaagact caaccctgta 1140 tctgcagtat ttgacagcat atcccgcagt cgcataaccc gggtgagttc aagcagcacc 1200 aaggcagcat acacaacatc aacatgtttt aaagttgtaa agaccaataa aacctattgt 1260 ctcagcattg ccgaaatatc caataccctc ttcggggaat tcagaatcgt ccctttacta 1320 gttgagattc tcaaggatga tggggtt 1347 <210> 5 <211> 1347 <212> DNA <213> Artificial Sequence <220> <223> Muntant H domain plate No.22 H9 <400> 5 tgtggagcac ccattcatga tccagattat attggaggaa taggtaaaga acttattgta 60 gatgatgcta gcgacgtcac atcatactat ccctctgcgt tccaagaaca cctgaacttt 120 atcccggcgc ctactacagg atcaggttgc actcggatac cctcatttga catgagcgat 180 acccactact gttatactca caatgtgata ttatctggct gcagagatca ctcgcactca 240 catcaatatt tagcacttgg tgtgcttcgg acatctgcaa cagggagggt attcttttcc 300 actctgcgtt ccatcaatct ggatgacacc caaaatcgga agtcttgcag tgtgagtgca 360 acccccttgg gttgtgatat gctgtgctct aaagtcacag agactgaaga agaggattat 420 aactcagcta tccccacgtc gatggtacat ggaaggttag ggttcgacgg ccaataccac 480 gagaaggacc tagatgtcac aacactattc gaggactggg tggcaaacta cccaggagta 540 gggggcgggt cttttattga caaccgcgta tggttcccag tttacggagg gctaaaaccc 600 aattcgccca gtgacaccgc acaagaaggg aaatatgtaa tatacaagcg atacaatgac 660 acatgtccag atgagcaaga ttatcagatt caaatggcta agtcttcata taagcctggg 720 cggtttggag ggaaacgcgt acagcaggcc atcttatcta tcaaagtgtc aacatccttg 780 ggcgaggacc cggtactgac tgtaccgccc aacacagtaa cactcatggg ggccgaaggc 840 agagttctca cagtagggac atctcatttc ctttatcagc gagggtcatc atacttctcc 900 cctgccctac tatatcctat gatagtcagc aacaaaacag ccactcttca tagtccttat 960 acattcaatg ccttcactcg accaggtagt gtcccttgcc aggcttcagc aagatgccct 1020 aactcatgtg ttaccggagt ctatactgat ccatatccct tggtcttcta taggaaccac 1080 accttgcgag gggtattcgg gacgatgctt gatgataaac aagcaagact caaccctgta 1140 tctgcagtat ttgacagcat atcccgcagt cgcataaccc gggtgagttc aagcagcacc 1200 aaggcagcat acacaacatc aacatgtttt aaagttgtaa agaccaataa aacctattgt 1260 ctcagcattg ccgaaatatc caataccctc ttcggggaat tcagaatcgt ccctttacta 1320 gttgagattc ttaaggatga tggggtt 1347 <210> 6 <211> 1347 <212> DNA <213> Artificial Sequence <220> <223> Muntant H domain plate No.30 E3 <400> 6 tgtggagcac ccattcatga tccagattat attggaggaa taggtaaaga acttattgta 60 gatgatgcta gcgacgtcac atcatactat ccctctgcgt tccaagaaca cctgaacttt 120 atcccggcgc ctactacagg atcaggttgc actcggatac cctcatttga catgagcgct 180 acccactact gttatactca caatgtgata ttatctggct gcagagatca ctcgcactca 240 catcaatatt tagcacttgg tgtgcttcgg acatctgcaa cagggagggt attcttttcc 300 actctgcgtt ccatcaatct ggatgacacc caaaatcgga agtcttgcag tgtgagtgca 360 acccccttgg gttgtgatat gctgtgctct aaagtcacag agactgaaga agaggattat 420 aactcagcta tccccacgtc gatggtacat ggaaggttag ggttcgacgg ccaataccac 480 gagaaggacc tagatgtcac aacactattc gaggactggg tggcaaacta cccaggagta 540 gggggcgggt cttttattga caaccgcgta tggttcccag tttacggagg gctaaaaccc 600 aattcgccca gtgacaccgc acaagaaggg aaatatgtaa tatacaagcg atacaatgac 660 acatgtccag atgagcaaga ttatcagatt caaatggcta agtcttcata taagcctggg 720 cggtttggag ggaaacgcgt acagcaggcc atcttatcta tcaaagtgtc aacatccttg 780 ggcgaggacc cggtactgac tgtaccgccc aacacagtaa cactcatggg ggccgaaggc 840 agagttctca cagtagggac atctcatttc ctttatcagc gagggccatc atacttctcc 900 cctgccctac tatatcctat gatagtcagc aacaaaacag ccactcttca tagtccttat 960 acattcaatg ccttcactcg accaggtagt gtcccttgcc aggcttcagc aagatgccct 1020 aactcatgtg ttaccggagt ctatactgat ccatatccct tggtcttcta taggaaccac 1080 accttgcgag gggtattcgg gacgatgctt gatgataaac aagcaagact caaccctgta 1140 tctgcagtat ttgacagcat atcccgcagt cgcataaccc gggtgagttc aagcagcacc 1200 aaggcagcat acacaacttc aacatgtttt aaagttgtaa agaccaataa aacctattgt 1260 ctcagcattg ccgaaatatc caataccctc ttcggggaat tcagaatcgt ccctttacta 1320 gttgagattc tcaaggatga tggggtt 1347 <210> 7 <211> 1347 <212> DNA <213> Artificial Sequence <220> <223> Mutant H domain plate No.47 F8 <400> 7 tgtggagcac ccattcatga tccagattat attggaggaa taggtaaaga acttattgta 60 gatgatgcta gcgacgtcac atcatactat ccctctgcgt tccaagaaca cctgaacttt 120 atcccggcgc ctactacagg atcaggttgc actcggatac cctcatttga catgagcgct 180 acccactact gttatactca caatgtgata ttatctggct gcagagatca ctcgcactca 240 catcaatatt tagcacttgg tgtgcttcgg acatctgcaa cagggagggt attcttttcc 300 actctgcgtt ccatcaatct ggatgacacc caaaatcgga agtcttgcag tgtgagtgca 360 acccccttgg gttgtgatat gctgtgctct aaagtcacag agactgaaga agaggattat 420 aactcagcta tccccacgtc gatggtacat ggaaggttag ggttcgacgg ccaataccac 480 gagaaggacc tagatgtcac aacactattc gaggactggg tggcaaacta cccaggagta 540 gggggcgggt cttttattga caaccgcgta tggttcccag tttacggagc gctaaaaccc 600 aattcgcgca gtgacaccgc acaagaaggg aaatatgtaa tatacaagcg atacaatgac 660 acatgtccag atgagcaaga ttatcagatt caaatggcta agtcttcata taagcctggg 720 cggtttggag ggaaacgcgt acagcaggcc atcttatcta tcaaagtgtc aacatccttg 780 ggcgaggacc cggtactgac tgtaccgcac aacacagtaa cactcatggg ggccgaaggc 840 agagttctca cagtagggac atctcatttc ctttatcagc gagggtcatc atacttctcc 900 cctgccctac tatatcctat gatagtcagc aacaaaacag ccactcttca tagtccttat 960 acattcaatg ccttcactcg accaggtagt gtcccttgcc aggcttcagc aagatgccct 1020 aactcatgtg ttaccggagt ctatactgat ccatatccct tggtcttcta taggaaccac 1080 accttgcgag gggtattcgg gacgatgctt gatgataaac aagcaagact caaccctgta 1140 tctgcagtat ttgacagcat atcccgcagt cgcataaccc gggtgagttc aagcagcacc 1200 aaggcagcat acacaacatc aacatgtttt aaagttgtaa agaccaataa aacctattgt 1260 ctcagcattg ccgaaatatc caataccctc ttcggggaat tcagaatcgt ccctttacta 1320 gttgagattc tcaaggatga tggggtt 1347 <210> 8 <211> 1347 <212> DNA <213> Newcastle disease virus <220> <221> gene <222> (1)..(1347) <223> H domain of hemagglutinin-neuraminidase <400> 8 tgtggagcac ccattcatga tccagattat attggaggaa taggtaaaga acttattgta 60 gatgatgcta gcgacgtcac atcatactat ccctctgcgt tccaagaaca cctgaacttt 120 atcccggcgc ctactacagg atcaggttgc actcggatac cctcatttga catgagcgct 180 acccactact gttatactca caatgtgata ttatctggct gcagagatca ctcgcactca 240 catcaatatt tagcacttgg tgtgcttcgg acatctgcaa cagggagggt attcttttcc 300 actctgcgtt ccatcaatct ggatgacacc caaaatcgga agtcttgcag tgtgagtgca 360 acccccttgg gttgtgatat gctgtgctct aaagtcacag agactgaaga agaggattat 420 aactcagcta tccccacgtc gatggtacat ggaaggttag ggttcgacgg ccaataccac 480 gagaaggacc tagatgtcac aacactattc gaggactggg tggcaaacta cccaggagta 540 gggggcgggt cttttattga caaccgcgta tggttcccag tttacggagg gctaaaaccc 600 aattcgccca gtgacaccgc acaagaaggg aaatatgtaa tatacaagcg atacaatgac 660 acatgtccag atgagcaaga ttatcagatt caaatggcta agtcttcata taagcctggg 720 cggtttggag ggaaacgcgt acagcaggcc atcttatcta tcaaagtgtc aacatccttg 780 ggcgaggacc cggtactgac tgtaccgccc aacacagtaa cactcatggg ggccgaaggc 840 agagttctca cagtagggac atctcatttc ctttatcagc gagggtcatc atacttctcc 900 cctgccctac tatatcctat gatagtcagc aacaaaacag ccactcttca tagtccttat 960 acattcaatg ccttcactcg accaggtagt gtcccttgcc aggcttcagc aagatgccct 1020 aactcatgtg ttaccggagt ctatactgat ccatatccct tggtcttcta taggaaccac 1080 accttgcgag gggtattcgg gacgatgctt gatgataaac aagcaagact caaccctgta 1140 tctgcagtat ttgacagcat atcccgcagt cgcataaccc gggtgagttc aagcagcacc 1200 aaggcagcat acacaacatc aacatgtttt aaagttgtaa agaccaataa aacctattgt 1260 ctcagcattg ccgaaatatc caataccctc ttcggggaat tcagaatcgt ccctttacta 1320 gttgagattc tcaaggatga tggggtt 1347

Claims (19)

  1. 서열번호 1의 염기서열로 표시되는 재조합 벡터로서,
    상기 벡터는 대장암 표적 암용해 바이러스 제작용도인 것인, 재조합 벡터.
  2. 제1항에 있어서,
    상기 재조합 벡터는 IGS 서열(Gene end(GE), Intergenic sequence(IG), Gene start(GS)) 및 Multiple cloning site(MCS)로 이루어진 트랜스진 카세트(transgene cassette)가 NP 유전자와 P 유전자 사이에 삽입되는 것을 특징으로 하는, 재조합 벡터.
  3. 삭제
  4. 제1항에 있어서,
    상기 재조합 벡터는 519번째 아미노산이 세린(Serine)에서 글리신(Glycine)으로 치환된 돌연변이 H domain을 포함하고,
    상기 돌연변이 H domain은 서열번호 3의 염기서열로 이루어진 것을 특징으로 하는, 재조합 벡터.
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 제1항의 재조합 벡터를 포함하는, 대장암 치료용 암용해 바이러스(oncolytic virus)에서,
    상기 암용해 바이러스는 재조합 뉴캐슬병 바이러스(수탁번호 KCTC14630BP)인 것을 특징으로 하는, 암용해 바이러스.
  11. 제10항에 있어서,
    상기 암용해 바이러스는 대장암세포에 특이적으로 감염되는 것을 특징으로 하는, 대장암 치료용 암용해 바이러스(oncolytic virus).
  12. 삭제
  13. 제10항의 재조합 뉴캐슬병 바이러스(수탁번호 KCTC14630BP)를 유효성분으로 포함하는, 대장암 예방 또는 치료용 약학적 조성물.
  14. 삭제
  15. 제13항의 조성물을 인간을 제외한 개체에 투여하는 단계;를 포함하는, 대장암을 예방 또는 치료하는 방법.
  16. 제13항의 조성물을 개체에 투여하는 단계; 및
    개체의 암세포 또는 암 조직의 변화를 측정하여 평가하는 단계;를 포함하는 대장암을 예방 또는 치료하기 위한 정보를 제공하는 방법.
  17. 제13항의 조성물을 인간을 제외한 동물에 투여하는 단계;를 포함하는, 동물에서의 대장암 예방 또는 치료 효과 평가 방법.
  18. 제17항에 있어서,
    상기 방법은 인간을 제외한 동물의 암세포 또는 암 조직의 변화를 측정하여 평가하는 것인, 동물에서의 대장암 예방 또는 치료 효과 평가 방법.
  19. 삭제
KR1020210103937A 2021-08-06 2021-08-06 대장암 세포 특이적 감염 뉴캐슬병 바이러스를 이용한 대장암 치료용 암용해성 바이러스 및 이를 이용한 대장암 치료용 조성물 KR102476901B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020210103937A KR102476901B1 (ko) 2021-08-06 2021-08-06 대장암 세포 특이적 감염 뉴캐슬병 바이러스를 이용한 대장암 치료용 암용해성 바이러스 및 이를 이용한 대장암 치료용 조성물
PCT/KR2021/011745 WO2023013808A1 (ko) 2021-08-06 2021-09-01 대장암 세포 특이적 감염 뉴캐슬병 바이러스를 이용한 대장암 치료용 암용해성 바이러스 및 이를 이용한 대장암 치료용 조성물
US17/606,931 US11884931B2 (en) 2021-08-06 2021-09-27 Oncolytic virus for colorectal cancer treatment using colorectal cancer cell-specific infectious newcastle disease virus and composition for colorectal cancer treatment using same
PCT/KR2021/013148 WO2023013812A1 (ko) 2021-08-06 2021-09-27 대장암 세포 특이적 감염 뉴캐슬병 바이러스를 이용한 대장암 치료용 암용해성 바이러스 및 이를 이용한 대장암 치료용 조성물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210103937A KR102476901B1 (ko) 2021-08-06 2021-08-06 대장암 세포 특이적 감염 뉴캐슬병 바이러스를 이용한 대장암 치료용 암용해성 바이러스 및 이를 이용한 대장암 치료용 조성물

Publications (1)

Publication Number Publication Date
KR102476901B1 true KR102476901B1 (ko) 2022-12-14

Family

ID=84438412

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210103937A KR102476901B1 (ko) 2021-08-06 2021-08-06 대장암 세포 특이적 감염 뉴캐슬병 바이러스를 이용한 대장암 치료용 암용해성 바이러스 및 이를 이용한 대장암 치료용 조성물

Country Status (3)

Country Link
US (1) US11884931B2 (ko)
KR (1) KR102476901B1 (ko)
WO (2) WO2023013808A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019197275A1 (en) * 2018-04-09 2019-10-17 Rapo Yerapeh B.H. Ltd Increased activity of oncolytic newcastle disease virus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100862049B1 (ko) * 2007-08-27 2008-10-09 주식회사 고려비엔피 약독화된 재조합 뉴캐슬병 바이러스
CN111172120A (zh) * 2013-03-14 2020-05-19 西奈山伊坎医学院 新城疫病毒及其用途
JOP20190256A1 (ar) * 2017-05-12 2019-10-28 Icahn School Med Mount Sinai فيروسات داء نيوكاسل واستخداماتها

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019197275A1 (en) * 2018-04-09 2019-10-17 Rapo Yerapeh B.H. Ltd Increased activity of oncolytic newcastle disease virus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Journal of Virology, 2017, Volume 91, Issue 16, e00770-17.* *
PLoS ONE, 2011, Volume 6, Issue 12, e28414.* *

Also Published As

Publication number Publication date
WO2023013808A1 (ko) 2023-02-09
WO2023013812A1 (ko) 2023-02-09
US20230121063A1 (en) 2023-04-20
US11884931B2 (en) 2024-01-30

Similar Documents

Publication Publication Date Title
KR102013135B1 (ko) 조류 병원체의 항원을 발현하는 재조합 칠면조 헤르페스바이러스 3 (mdv 혈청형 2) 벡터 및 그의 용도
CN107119021A (zh) Pd‑1敲除cd19car‑t细胞的制备
CN109789199A (zh) 鸭肠炎病毒及其用途
KR20200100126A (ko) 알파바이러스 레플리콘 입자
JP6210998B2 (ja) ベクターワクチンおよび生ワクチンの併用による感染症の予防方法
CN109694875B (zh) 抗CII嵌合抗原受体编码基因、慢病毒质粒、Treg免疫细胞及其应用
CN112813038A (zh) 一株表达asfv结构囊膜蛋白的prrs病毒及其构建方法与应用
KR102476901B1 (ko) 대장암 세포 특이적 감염 뉴캐슬병 바이러스를 이용한 대장암 치료용 암용해성 바이러스 및 이를 이용한 대장암 치료용 조성물
CN106755103B (zh) 溶瘤腺病毒,用于制备该腺病毒的载体及其应用
DK2948157T3 (en) APPLICATION OF A RE-MODIFIED INFECTIOUS MEASURED VIRUS WITH IMPROVED PROAPOPTOTIC PROPERTIES (MV DELTAC VIRUS) FOR CANCER THERAPY
WO1996009399A2 (en) Chimeric adenovirus for gene delivery
CN113755442B (zh) 一种用于药物活性测定的细胞株及其制备方法与应用
KR102292657B1 (ko) 암 상살 능력이 향상된 면역세포
US20030099670A1 (en) Influenza viruses with enhanced transcriptional and replicational capacities
CN111235118B (zh) 一种人3型腺病毒复制缺陷型重组病毒、构建方法及应用
KR20210084596A (ko) 이종 스파이크 단백질을 갖는 h52 ibv 백신
CN107233574B (zh) Crebzf在治疗、预防和诊断代谢性疾病中的应用
CN110452893A (zh) 一种高保真CRISPR/AsCpf1突变体的构建及其应用
CN114836391A (zh) 一种重组t4噬菌体及其在制备流感病毒鼻内递送vlp疫苗中的应用
CN110272917A (zh) 一套快速准确的三质粒溶瘤腺病毒重组包装系统Ad5MixPlus及其应用
CN115364096B (zh) 一种改善Wolfram综合征中胰岛β细胞凋亡情况的药物
KR20130123244A (ko) HSP27 발현을 억제하는 shRNA
KR102624832B1 (ko) 근육 특이적 퍼옥시좀 증식체 활성화 수용체 델타(PPARδ) 과발현 형질전환 개 생산
CN102649961B (zh) 一种乙肝病毒核心抗原的核酸适配体序列及用途
CN114939109A (zh) 一种用于体内产生car-m的脂质纳米颗粒及其制备方法和应用

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant