KR102393822B1 - 신호 처리 장치, 신호 처리 방법 및 기록 매체 - Google Patents

신호 처리 장치, 신호 처리 방법 및 기록 매체 Download PDF

Info

Publication number
KR102393822B1
KR102393822B1 KR1020150121149A KR20150121149A KR102393822B1 KR 102393822 B1 KR102393822 B1 KR 102393822B1 KR 1020150121149 A KR1020150121149 A KR 1020150121149A KR 20150121149 A KR20150121149 A KR 20150121149A KR 102393822 B1 KR102393822 B1 KR 102393822B1
Authority
KR
South Korea
Prior art keywords
modulation
signal
modulation symbol
transmission
coding rate
Prior art date
Application number
KR1020150121149A
Other languages
English (en)
Other versions
KR20160025487A (ko
Inventor
마사아키 후지이
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of KR20160025487A publication Critical patent/KR20160025487A/ko
Application granted granted Critical
Publication of KR102393822B1 publication Critical patent/KR102393822B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • H04L1/0034Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter where the transmitter decides based on inferences, e.g. use of implicit signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B1/1036Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal with automatic suppression of narrow band noise or interference, e.g. by using tuneable notch filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Radio Transmission System (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 LTE와 같은 4G 통신 시스템 이후 보다 높은 데이터 전송률을 지원하기 제공될 5G 또는 pre-5G 통신 시스템에 관련된 것이다. 본 발명의 일 실시예에 따른 신호 처리 장치는, 복수의 전송로의 추정 결과에 기초하는 전송로 정보와 상기 무선수신 장치로부터 통지되는 잡음전력에 기초하여, 수신 신호의 제1 신호 대 간섭 잡음비를 추정하는 추정부, 상기 제1 신호 대 간섭 잡음비를 기초로 결정된 제1 변조 차수 및 제1 부호화율에 기초하여 취득되는 상기 정보 비트를, 상기 제1 변조 차수에 기초하여 변조함으로써 제1 변조 심볼을 생성하는 신호 처리부 및 상기 복수의 전송로 각각에 대해서 생성된 상기 제1 변조 심볼에 기초하여 섭동벡터를 탐색하고, 상기 제1 변조 심볼에 대해서 상기 섭동벡터를 부가하는 섭동부가 처리부를 포함할 수 있다.

Description

신호 처리 장치, 신호 처리 방법 및 기록 매체{Signal processing apparatus, method for signal processing and computer readable medium}
본 발명은 신호 처리 장치, 신호 처리 방법 및 기록 매체에 관한 것이다.
4G (4th-Generation) 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G (5th-Generation) 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리고 있다.
높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파 (mmWave) 대역 (예를 들어, 60기가 (60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로 손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍 (beamforming), 거대 배열 다중 입출력 (massive multi-input multi-output: massive MIMO), 전차원 다중입출력 (Full Dimensional MIMO: FD-MIMO), 어레이 안테나 (array antenna), 아날로그 빔형성 (analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다.
또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다.
이 밖에도, 5G 시스템에서는 진보된 코딩 변조 (Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC (Filter Bank Multi Carrier), NOMA (non orthogonal multiple access), 및 SCMA (sparse code multiple access) 등이 개발되고 있다.
최근, 이동 통신 방식에 있어서 전송 속도 혹은 스루풋(throughput)을 향상시키기 위한 연구나 기술개발이 활발히 진행되고 있다. 이동 통신 방식에 있어서 전송 속도 혹은 스루풋을 향상시키기 위한 기술로서, 송신 장치측과 수신 장치측의 양측에 복수의 안테나를 구비하여 복수의 전송로를 통해서 정보를 송수신하는(다시 말하면, 복수의 스트림을 동시에 송수신하는) MIMO(Multiple-Input and Multiple-Output) 전송 방식이 있다. 또한, 송신 장치(예를 들어, 기지국 장치)에 대해서 동시 접속되는 복수의 사용자 단말을 가상적으로 대규모 어레이 안테나로 간주하는 것으로, 송신 장치로부터 각 사용자 단말로 송신되는 송신 신호(정보)를 공간 다중화(Spatial Multiplexing) 시키는 멀티유저 MIMO(MU-MIMO)전송 방식이라고 불리는 기술도 있다.
MIMO전송 방식을 적용한 통신 시스템에서는, 서로 다른 전송로를 통해서 송신된 신호간의 간섭(즉, 다른 스트림간의 간섭)을 억제하기 위해서, 송신 신호에 대해서 미리 "프리코딩"이라고 불리는 처리가 되어 있는 경우가 있다. 상기와 같은 종래 기술에 관한 설명은, 예를 들어, "Christian B. Peel, et al. : "A Vector-Perturbation Technique for Near-Capacity Multiantenna Multiuser Communication - Part I: Channel Inversion and Regularization" IEEE TRANSACTIONS ON COMMUNICATIONS vol. 53, no. 1, january 2005, pages 195-202 또는 Bertrand M. Hochwald, et al.: "A Vector-Perturbation Technique for Near-Capacity Multiantenna Multiuser Communication - Part II: Perturbation "IEEE TRANSACTIONS ON COMMUNICATIONS vol. 53, no. 3, March 2005, pages 537-544를 참조할 수 있다.
송신 신호에 대해서 수행되는 프리코딩처리의 일예로서, 제로포싱(ZF:Zero Forcing) 빔 포밍이나 MMSE(Minimum mean square error) 빔 포밍등의 선형 프리 코딩(precoding)을 들 수 있다. 그러나, 선형 프리 코딩은, 서로 다른 스트림간(즉, 다른 전송로를 통해서 송신된 신호간)에서 채널 상관이 높을 경우에는 신호의 송신에 필요한 전력이 증대하는 경우가 있어, 미리 정한 송신 전력으로 정규화하면 이득이 감소하기 때문에 신호 품질이 열화하는 경우가 있다.
그 때문에, 최근에는, 송신 장치측에서 송신 신호에 대해서 비선형 처리를 하는 것으로, 신호의 송신에 필요한 전력을 저감하는 비선형 프리코딩이라고 불리는 기술을 이용한, MIMO통신 방식이 주목받고 있다. 이러한 비선형 프리코딩을 이용한 MIMO통신 방식에서는, 송신 장치측과 수신 장치측간의 전송로의 상태에 따라서, 송신 장치측에서, 송신 대상이 되는 정보가 변조된 송신 변조 심볼에 섭동(perturbation)벡터를 부가함으로써 소요 송신 전력을 저감하고 있다.
한편, 비선형 프리코딩 기술을 이용하는 경우에는, 송신 신호의 전력을 정규화하기 위한 계수(coefficient)가 송신 심볼에 의존하므로, 비선형 프리코딩에 기초하는 이득을 미리 추정하는 것이 곤란하다. 다시 말하면, 부호화 및 변조 매핑이 종료한 후에 섭동벡터가 탐색되므로, 섭동벡터의 부가에 따르는 이득의 개선량을 변조 차수나 부호화율(coding rate)의 선택에 반영하는 것이 곤란하다. 즉, 종래의 비선형 프리코딩 기술을 이용한 방법에서는, 섭동벡터의 부가에 따르는 이득의 개선량을 예상해서 변조 차수나 부호화 율을 선택하는 것으로, 스루풋을 보다 향상시키는 것이 곤란하다는 문제점이 있다.
본 발명은 상기와 같은 종래 기술의 문제를 해결하기 위하여 안출된 것으로, 본 발명의 다앙한 실시예들에 따르면, 섭동벡터의 부가에 의해 소요 송신 전력을 저감하고, 스루풋을 보다 향상시키는 것이 가능한 신호 처리 장치, 신호 처리 방법 및 프로그램이 제공된다.
본 발명의 다양한 실시예들에 따른 신호 처리 장치는, 상기 복수의 전송로의 추정 결과에 기초하는 전송로 정보와 상기 무선수신 장치로부터 통지되는 잡음전력에 기초하여, 수신 신호의 제1 신호 대 간섭 잡음비를 추정하는 추정부와, 상기 제1 신호 대 간섭 잡음비를 기초로 결정된 제1 변조 차수(modulation order) 및 제1 부호화율에 기초하여 취득되는 상기 정보 비트를 상기 제1 변조 차수에 기초하여 변조함으로써 제1 변조 심볼을 생성하는 신호 처리부와, 상기 복수의 전송로 각각에 대해서 생성된 상기 제1 변조 심볼에 기초하여 섭동벡터를 탐색하고, 상기 제1 변조 심볼에 대해서 상기 섭동벡터를 부가하는 섭동부가 처리부를 구비하고, 상기 추정부는, 상기 전송로 정보와 상기 섭동벡터가 부가된 상기 제1 변조 심볼에 기초하여 제2 신호 대 간섭 잡음비를 추정하고, 상기 신호 처리부는, 상기 제2 신호 대 간섭 잡음비를 기초로 결정된 제2 부호화율에 기초하여 상기 정보 비트를 부호화함으로써 상기 오류 정정 부호를 산출하고, 상기 오류 정정 부호를, 상기 제2 신호 대 간섭 잡음비를 기초로 결정된 제2 변조 차수에 기초하여 변조함으로써 제2 변조 심볼을 생성하고, 상기 섭동부가 처리부는, 상기 복수의 전송로 각각에 대해서 생성된 상기 제2 변조 심볼에 기초하여 상기 섭동벡터를 탐색하고, 상기 제2 변조 심볼에 대해서 상기 섭동벡터를 부가할 수 있고, 상기 신호 처리 장치는, 복수의 안테나로부터, 복수의 전송로를 통하여, 적어도 하나의 무선수신 장치로, 정보 비트 및 오류 정정 부호를 포함하는 송신 신호를 공간 다중화하여 송신할 수 있다.
상기 신호 처리부는, 상기 제2 변조 차수와 상기 제1 변조 차수가 다른 경우에는, 상기 제2 변조 차수에 기초하여, 상기 정보 비트를 변조하는 것으로 제1 변조 심볼을 다시 생성할 수 있다.
상기 신호 처리부는, 상기 제2 변조 차수와 상기 제1 변조 차수가 같고, 상기 제2 부호화율이 상기 제1 부호화율 보다도 높을 경우에는, 상기 정보 비트를 연장하고, 상기 연장에 따라 새롭게 추가된 정보 비트를 상기 제1 변조 차수에 기초하여 변조함으로써 생성되는 변조 심볼을, 상기 제1 변조 심볼에 부가하여 새로운 제1 변조 심볼을 생성하고, 연장된 상기 정보 비트를 상기 제2 부호화율에 기초하여 부호화함으로써 상기 오류 정정 부호를 산출할 수 있다.
상기 전송로 정보는, 상기 복수의 전송로의 추정 결과를 나타내는 채널 행렬에 기초하여 산출된 프리코딩 행렬일 수 있다.
상기 섭동부가 처리부는, 상기 제1 변조 심볼 및 상기 제2 변조 심볼 각각에 대해서, 프리코딩 후의 송신 전력이 감소되도록 상기 섭동벡터를 탐색할 수 있다.
상기 제1 변조 차수 및 상기 제1 부호화율은, 미리 설정된 복수의 변조 및 부호화율 세트(MCS: Modulation and Coding Set) 중, 상기 제1 신호 대 간섭 잡음비를 기초로 선택된 상기 변조 및 부호화율 세트에 기초하여 결정되고, 상기 제2 변조 차수 및 상기 제2 부호화율은, 상기 복수의 변조 및 부호화율 세트 중, 상기 제2 신호 대 간섭 잡음비를 기초로 선택된 상기 미리 설정된 변조 및 부호화율 세트에 기초하여 결정될 수 있다.
상기 제1 변조 차수 및 상기 제1 부호화율은, 상기 복수의 변조 및 부호화율 세트중의, 상기 제1 신호 대 간섭 잡음비가, 상기 변조 및 부호화율 세트마다 요구되는 신호 대 잡음비 이하가 되는 상기 변조 및 부호화율 세트 중, 전송 레이트가 최대가 되는 상기 변조 및 부호화율 세트에 기초하여 결정되고, 상기 제2 변조 차수 및 상기 제2 부호화율은, 상기 복수의 변조 및 부호화율 세트중의, 상기 제2 신호 대 간섭 잡음비가, 상기 변조 및 부호화율 세트마다 요구되는 신호 대 잡음비 이하가 되는 상기 변조 및 부호화율 세트 중, 전송 레이트가 최대가 되는 상기 변조 및 부호화율 세트에 기초하여 결정될 수 있다.
상기 섭동벡터가 각각 부가된 상기 제1 변조 심볼 및 상기 제2 변조 심볼에 기초하여 획득되는 변조 심볼 벡터에 대해서, 상기 전송로 정보를 승산하고, 상기 변조 심볼 벡터에 기초하여 산출되는 정규화 계수에 기초하여 정규화를 하는 것으로, 상기 송신 신호를 생성하는 프리코딩부를 구비할 수 있다.
본 발명의 다양한 실시예들에 따른 신호 처리 장치는, 상기 복수의 안테나로부터 상기 복수의 전송로를 통하여, 상기 송신 신호를 상기 무선수신 장치로 송신하는 송신부를 더 포함할 수 있다.
상기 신호 처리 장치는, 상기 복수의 안테나를 더 포함할 수 있다.
또한, 상기 과제를 해결하기 위해서, 본 발명의 다른 관점에 따르면, 무선 전송 장치에 의하여 수행되는 신호 처리 방법에 있어서, 상기 복수의 전송로의 추정 결과에 기초하는 전송로 정보와 상기 무선 수신 장치로부터 통지되는 잡음전력에 기초하여, 수신 신호의 제1 신호 대 간섭 잡음비를 추정하는 동작과, 상기 제1 신호 대 간섭 잡음비를 기초로 결정된 제1 변조 차수 및 제1 부호화율에 기초하여 취득되는 상기 정보 비트를 상기 제1 변조 차수에 기초하여 변조함으로써 제1 변조 심볼을 생성하는 동작과, 상기 복수의 전송로 각각에 대해서 생성된 상기 제1 변조 심볼에 기초하여 섭동벡터를 탐색하고, 상기 제1 변조 심볼에 대해서 상기 섭동벡터를 부가하는 동작과, 상기 전송로 정보와 상기 섭동벡터가 부가된 상기 제1 변조 심볼에 기초하여 제2 신호 대 간섭 잡음비를 추정하는 동작과, 상기 제2 신호 대 간섭 잡음비를 기초로 결정된 제2 부호화율에 기초하여 상기 정보 비트를 부호화함으로써 상기 오류 정정 부호를 산출하고, 상기 오류 정정 부호를, 상기 제2 신호 대 간섭 잡음비를 기초로 결정된 제2 변조 차수에 기초하여 변조함으로써 제2 변조 심볼을 생성하는 동작과, 상기 복수의 전송로 각각에 대해서 생성된 상기 제2 변조 심볼에 기초하여 상기 섭동벡터를 탐색하고, 상기 제2 변조 심볼에 대해서 상기 섭동벡터를 부가하는 동작을 포함하고, 상기 무선 전송 장치는, 복수의 안테나로부터, 복수의 전송로를 통하여, 적어도 하나의 무선수신 장치로, 정보 비트 및 오류 정정 부호를 포함하는 송신 신호를 공간다중화하여 송신하는 신호 처리 방법이 제공된다.
본 발명의 다양한 실시예들에 따른 신호 처리 방법은, 상기 제2 변조 차수와 상기 제1 변조 차수가 다른 경우에는, 상기 제2 변조 차수에 기초하여, 상기 정보 비트를 변조하는 것으로 제1 변조 심볼을 다시 생성하는 동작을 더 포함할 수 있다.
본 발명의 다양한 실시예들에 따른 신호 처리 방법은, 상기 제2 변조 차수와 상기 제1 변조 차수가 같고, 상기 제2 부호화율이 상기 제1 부호화율보다 높은 경우에는, 상기 정보 비트를 연장하고, 상기 연장에 따라 새롭게 추가된 정보 비트를 상기 제1 변조 차수에 기초하여 변조함으로써 생성되는 변조 심볼을, 상기 제1 변조 심볼에 부가하여 새로운 제1 변조 심볼을 생성하고, 연장된 상기 정보 비트를 상기 제2 부호화율에 기초하여 부호화함으로써 상기 오류 정정 부호를 산출하는 동작을 더 포함할 수 있다.
상기 전송로 정보는, 상기 복수의 전송로의 추정 결과를 나타내는 채널 행렬에 기초하여 산출된 프리코딩 행렬일 수 있다.
상기 제1 변조 심볼 및 상기 제2 변조 심볼 각각에 대해서, 프리코딩 후의 송신 전력이 감소되도록 상기 섭동벡터가 탐색될 수 있다.
상기 제1 변조 차수 및 상기 제1 부호화율은, 미리 설정된 복수의 변조 및 부호화율 세트(MCS:Modulation and Coding Set) 중, 상기 제1 신호 대 간섭 잡음비를 기초로 선택된 상기 변조 및 부호화율 세트에 기초하여 결정되고, 상기 제2 변조 차수 및 상기 제2 부호화율은, 상기 복수의 변조 및 부호화율 세트 중, 상기 제2 신호 대 간섭 잡음비를 기초로 선택된 상기 변조 및 부호화율 세트에 기초하여 결정될 수 있다.
상기 제1 변조 차수 및 상기 제1 부호화율은, 상기 복수의 변조 및 부호화율 세트중의 상기 제1 신호 대 간섭 잡음비가 상기 변조 및 부호화율 세트마다 요구되는 신호 대 잡음비 이하가 되는 상기 변조 및 부호화율 세트 중, 전송 레이트가 최대가 되는 상기 변조 및 부호화율 세트에 기초하여 결정될 수 있다. 상기 제2 변조 차수 및 상기 제2 부호화율은, 상기 복수의 변조 및 부호화율 세트중의 상기 제2 신호 대 간섭 잡음비가 상기 변조 및 부호화율 세트마다 요구되는 신호 대 잡음비 이하가 되는 상기 변조 및 부호화율 세트 중, 전송 레이트가 최대가 되는 상기 변조 및 부호화율 세트에 기초하여 결정될 수 있다.
본 발명의 다양한 실시예들에 따른 신호 처리 방법은, 상기 섭동벡터가 각각 부가된 상기 제1 변조 심볼 및 상기 제2 변조 심볼에 기초하여 획득되는 변조 심볼 벡터에 대해서, 상기 전송로 정보를 승산하고(다른 말로, 곱하고), 상기 변조 심볼 벡터에 기초하여 산출되는 정규화 계수에 기초하여 정규화를 하는 것으로써 상기 송신 신호를 생성하는 동작을 더 포함할 수 있다.
본 발명의 다양한 실시예들에 따른 신호 처리 방법은, 상기 복수의 안테나로부터 상기 복수의 전송로를 통하여, 상기 송신 신호를 상기 무선수신 장치에 송신하는 동작을 더 포함할 수 있다.
또한, 상기 과제를 해결하기 위해서, 본 발명의 다른 관점에 따르면, 프로세서에 의하여 적어도 하나의 동작을 수행하도록 설정된 명령들(instructions)이 저장된 컴퓨터 판독 가능한(computer readable) 기록 매체에 있어서, 상기 적어도 하나의 동작은, 복수의 전송로의 추정 결과에 기초하는 전송로 정보와 하나 이상의 무선 수신 장치들로부터 통지되는 잡음전력에 기초하여, 수신 신호의 제1 신호 대 간섭 잡음비를 추정하는 동작과, 상기 제1 신호 대 간섭 잡음비를 기초로 결정된 제1 변조 차수 및 제1 부호화율에 기초하여 취득되는 상기 정보 비트를, 상기 제1 변조 차수에 기초하여 변조함으로써 제1 변조 심볼을 생성하는 동작과, 상기 복수의 전송로 각각에 대해서 생성된 상기 제1 변조 심볼에 기초하여 섭동벡터를 탐색하고, 상기 제1 변조 심볼에 대해서 상기 섭동벡터를 부가하는 동작과, 상기 전송로 정보와 상기 섭동벡터가 부가된 상기 제1 변조 심볼에 기초하여 제2 신호 대 간섭 잡음비를 추정하는 동작과, 상기 제2 신호 대 간섭 잡음비를 기초로 결정된 제2 부호화율에 기초하여 상기 정보 비트를 부호화함으로써 상기 오류 정정 부호를 산출하고, 오류 정정 부호를 상기 제2 신호 대 간섭 잡음비를 기초로 결정된 제2 변조 차수에 기초하여 변조함으로써 제2 변조 심볼을 생성하는 동작과, 상기 복수의 전송로 각각에 대해서 생성된 상기 제2 변조 심볼에 기초하여 상기 섭동벡터를 탐색하고, 상기 제2 변조 심볼에 대해서 상기 섭동벡터를 부가하는 동작을 포함하는 기록 매체가 제공된다.
상기와 같은 본 발명에 의하면, 섭동벡터의 부가에 의해 소요 송신 전력을 저감하고, 또한, 스루풋을 보다 향상시킬 수 있는 효과가 있다.
도 1은, 본 발명의 다양한 실시예들에 관한 통신 시스템의 개략적인 시스템 구성을 설명하기 위한 예시 도면이다.
도 2는, 비교예 1에 관한 무선송신 장치의 기능 구성의 일 예를 나타낸 도면이다.
도 3은, 비교예 2에 관한 무선송신 장치의 기능 구성의 일 예를 나타낸 도면이다.
도 4 내지 도 6은, 섭동벡터의 탐색 및 부가에 관한 처리에 대해서 설명하기 위한 예시 도면이다.
도 7은, 본 발명의 다양한 실시예들에 따른 무선송신 장치를 설명하기 위한 예시 도면이다.
도 8은, 본 발명의 다양한 실시예들에 따른 MCS를 설명하기 위한 예시 도면이다.
도 9는, 본 발명의 다양한 실시예들에 따른 무선송신 장치에 의하여 수행되는 기능/기능들 또는 동작/동작들을 설명하기 위한 예시 도면이다.
이하, 본 발명의 다양한 실시예가 첨부된 도면을 참조하여 기재된다. 그러나, 이는 본 발명에 기재된 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 실시예의 다양한 변경(modifications), 균등물(equivalents), 및/또는 대체물(alternatives)을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다.
본 발명에서, "가진다," "가질 수 있다," "포함한다," 또는 "포함할 수 있다" 등의 표현은 상기 특징(예: 수치, 기능, 동작, 또는 부품 등의 구성요소)의 존재를 가리키며, 추가적인 특징의 존재를 배제하지 않는다.
본 발명에서, "A 또는 B," "A 또는/및 B 중 적어도 하나," 또는 "A 또는/및 B 중 하나 또는 그 이상"등의 표현은 함께 나열된 항목들의 모든 가능한 조합을 포함할 수 있다. 예를 들면, "A 또는 B," "A 및 B 중 적어도 하나," 또는 "A 또는 B 중 적어도 하나"는, (1) 적어도 하나의 A를 포함, (2) 적어도 하나의 B를 포함, 또는 (3) 적어도 하나의 A 및 적어도 하나의 B 모두를 포함하는 경우를 모두 지칭할 수 있다.
본 발명에서 사용된 "제 1," "제 2," "첫째," 또는 "둘째,"등의 표현들은 다양한 구성요소들을, 순서 및/또는 중요도에 상관없이 수식할 수 있고, 한 구성요소를 다른 구성요소와 구분하기 위해 사용될 뿐 상기 구성요소들을 한정하지 않는다. 예를 들면, 제 1 사용자 기기와 제 2 사용자 기기는, 순서 또는 중요도와 무관하게, 서로 다른 사용자 기기를 나타낼 수 있다. 예를 들면, 본 발명에 기재된 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제 2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 바꾸어 명명될 수 있다.
어떤 구성요소(예: 제 1 구성요소)가 다른 구성요소(예: 제 2 구성요소)에 "(기능적으로 또는 통신적으로) 연결되어((operatively or communicatively) coupled with/to)" 있다거나 "접속되어(connected to)" 있다고 언급된 때에는, 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로 연결되거나, 다른 구성요소(예: 제 3 구성요소)를 통하여 연결될 수 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소(예: 제 1 구성요소)가 다른 구성요소(예: 제 2 구성요소)에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 상기 어떤 구성요소와 상기 다른 구성요소 사이에 다른 구성요소(예: 제 3 구성요소)가 존재하지 않는 것으로 이해될 수 있다.
본 발명에서 사용된 표현 "~하도록 구성된(또는 설정된)(configured to)"은 상황에 따라, 예를 들면, "~에 적합한(suitable for)," "~하는 능력을 가지는(having the capacity to)," "~하도록 설계된(designed to)," "~하도록 변경된(adapted to)," "~하도록 만들어진(made to)," 또는 "~를 할 수 있는(capable of)"과 바꾸어 사용될 수 있다. 용어 "~하도록 구성된(또는 설정된)"은 하드웨어적으로 "특별히 설계된(specifically designed to)" 것만을 반드시 의미하지 않을 수 있다. 대신, 어떤 상황에서는, "~하도록 구성된 장치"라는 표현은, 그 장치가 다른 장치 또는 부품들과 함께 "~할 수 있는" 것을 의미할 수 있다. 예를 들면, 문구 "A, B, 및 C를 수행하도록 구성된(또는 설정된) 프로세서"는 상기 동작을 수행하기 위한 전용 프로세서(예: 임베디드 프로세서), 또는 메모리 장치에 저장된 하나 이상의 소프트웨어 프로그램들을 실행함으로써, 상기 동작들을 수행할 수 있는 범용 프로세서(generic-purpose processor)(예: CPU 또는 application processor)를 의미할 수 있다.
본 발명에서 사용된 용어들은 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 다른 실시예의 범위를 한정하려는 의도가 아닐 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 용어들은 본 발명에 기재된 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가질 수 있다. 본 발명에 사용된 용어들 중 일반적인 사전에 정의된 용어들은, 관련 기술의 문맥상 가지는 의미와 동일 또는 유사한 의미로 해석될 수 있으며, 본 발명에서 명백하게 정의되지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. 경우에 따라서, 본 발명에서 정의된 용어일지라도 본 발명의 실시예들을 배제하도록 해석될 수 없다.
도 1은, 본 발명의 다양한 실시예들에 관한 통신 시스템의 개략적인 시스템 구성을 설명하기 위한 예시 도면이다.
도 1을 참조하면, 본 발명의 다양한 실시예들에 관한 통신 시스템(1)은 무선송신 장치(10)와 송신 안테나 세트 Tx와 수신 안테나 세트 Rx와 무선수신 장치(30)를 포함할 수 있다. 상기 송신 안테나 세트 Tx는 복수의 송신 안테나 Tx1∼TxM을 포함할 수 있다. 또한, 수신 안테나 세트 Rx는 복수의 수신 안테나 Rx1∼RxN을 포함할 수 있다.
상기 통신 시스템(1)은 적어도 하나의 송신 안테나 Tx1∼TxM과 적어도 하나의 수신 안테나 Rx1∼RxN 사이에서 무선신호를 송수신하는, 예를 들어, MIMO전송 방식의 무선통신 시스템일 수 있다. 또한, 본 발명의 다양한 실시예들에 따른 통신 시스템(1)은 무선송신 장치(10)에 대해서 적어도 하나의 무선수신 장치(30)가 동시 접속되는, 예를 들어, MU-MIMO전송 방식의 무선통신 시스템으로서 구성될 수 있다.
또한, 본 발명의 다양한 실시예들에 따른 통신 시스템(1)에서는, 무선송신 장치(10)는 서로 다른 전송로를 통해서 송신된 신호간의 간섭(즉, 다른 스트림간의 간섭)을 억제하기 위해서, 송신 신호에 대해서 미리 프리코딩 이라고 불리는 처리를 할 수 있다.
송신 신호에 대해서 수행되는 프리코딩 처리의 일예로서는, 선형 프리코딩 이라고 불리는 기술이나 비선형 프리코딩 이라고 불리는 기술이 이용될 수 있다.
본 발명의 다양한 실시예들에 따른 통신 시스템(1)에 관한 설명을 위하여, 이하에, 비교예로서, 선형 프리코딩 기술이나 비선형 프리코딩 기술을 이용하는 것으로, 송신 신호에 대해서 프리코딩 처리를 하는 무선송신 장치의 일 예에 대해서 설명한다.
(비교예 1)
우선, 비교예 1로서, 도 2를 참조하여, 선형 프리코딩 기술을 이용하는 것으로, 송신 신호에 대해서 프리코딩 처리를 하는 무선송신 장치의 일 예에 대해서 설명한다. 도 2는, 비교예 1에 관한 무선송신 장치의 기능 구성의 일 예를 나타낸 도면이다. 또한, 이후에서는, 비교예 1에 관한 무선송신 장치와 본 발명의 다양한 실시예들에 관한 무선송신 장치 10을 구별하는 경우에는, 비교예 1에 관한 무선송신 장치를 「무선송신 장치10a」라고 기재하는 경우가 있을 수 있다.
도 2에 도시된 바와 같이, 비교예 1에 관한 무선송신 장치(10a)는, 채널 부호화부(81)와 매핑부(82)와 프리코딩행렬 산출부(83)와 수신 SINR 추정부(84)와 MCS선택부(85)와 프리코딩부(86)를 포함할 수 있다. 도 2에 도시된 무선송신 장치(10a)는, M개 송신 안테나 Tx1∼TxM으로부터 M 계통(path, 또는 type)의 신호를 송신할 수 있다. 그 때문에, 도 2에 도시된 바와 같이, 무선송신 장치(10a)에는, M계통의 신호 각각을 처리하기 위해서, 채널 부호화부(81)와 매핑부(82)와 수신 SINR 추정부(84)와 MCS 선택부(85)가, 계통마다 구비될 수 있다. 또한, 송신 안테나 세트 Tx는, 무선송신 장치(10a)에 내장되어 있어도 되고, 무선송신 장치(10a)의 외부에 구비되어 있어도 된다.
프리코딩 행렬 산출부(83)는 송신 안테나 세트 Tx와 수신 안테나 세트 Rx 사이에서 형성되는 전송로마다의 전달 함수를 성분으로 하는 채널 행렬 H의 추정 결과를 획득할 수 있다.
예를 들어, 무선송신 장치(10)로부터 송신된 M계통(M≥2)의 신호를, N개(N≥2)의 수신 안테나를 이용하여 수신하는 경우에는, 송신 안테나 세트 Tx와 수신 안테나 세트 Rx 사이에는 M×N의 전송로가 존재할 수 있다. 본 발명의 일 실시예에 따르면, j번째의 송신 안테나 Txj로부터 송신되어 i번째의 수신 안테나 Rxi에서 수신되는 경우의 전달 함수를 hij라고 하면, 이것을 제(i, j)성분으로 하는 N행 M열의 행렬이, 채널 행렬 H이다. 채널 행렬 H는 이하에 나타내는 (수학식 1)로 표현될 수 있다.
Figure 112015083424573-pat00001
채널 행렬 H는 무선수신 장치(30)측에서 수신 신호에 기초하여 추정될 수 있고, 무선송신 장치(10)측에서 무선수신 장치(30)로부터 피드백되는 제어 정보에 기초하여 추정될 수도 있다.
프리코딩행렬 산출부(83)는 이상과 같이 해서 취득한 채널 행렬 H의 역행렬을, 프리코딩행렬 W로서 산출할 수 있다(즉, W=H-1). 그리고, 프리코딩행렬 산출부(83)는, 산출한 프리코딩 행렬 W를 각각 수신 SINR 추정부(84)와 프리코딩부 (86)로 출력할 수 있다.
수신 SINR 추정부(84)는, 프리코딩행렬 산출부(83)로부터 프리코딩행렬 W를 획득할 수 있다. 또한, 수신 SINR 추정부(84)는 추정된 채널 행렬 H와 무선수신 장치(30)로부터 피드백된 잡음전력 σ²을 획득할 수 있다. 수신 SINR 추정부(84)는, 취득한 프리코딩 행렬 W와 채널 행렬 H와 잡음전력 σ²에 기초하여, 무선수신 장치(30)에서 수신되는 수신 신호의 신호 대 간섭 잡음비(SINR:Signal-to-Interference plus Noise power Ratio)을 추정할 수 있다. 수신 SINR 추정부(84)에 의한, 수신 신호의 신호 대 간섭 잡음비의 추정에 관한 처리의 원리에 대해서 이하에 설명한다.
예를 들어, 송신 데이터가 변조된 변조 심볼 벡터를 s, 송신 전력을 P, 프리코딩 행렬을 W=H-1이라고 하면, 송신 신호 벡터 z는 이하에 나타내는 수학식 2 로 표현될 수 있다.
Figure 112015083424573-pat00002
또한, 수학식 2에서의
Figure 112015083424573-pat00003
는 평균 송신 전력을 일정하게 하기 위한 정규화 계수(본 명세서에서, 「평균 송신 전력 정규화 계수」라고 언급될 수 있다)이며, 이하에 나타내는 수학식 3으로 표현될 수 있다.
Figure 112015083424573-pat00004
본 발명의 일 실시예에 따르면, 상술한 수학식 3에 대해서, 이하에 수학식 4로 나타낸 바와 같이 설정하면, 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00005
는 이하에 나타내는 수학식 5로 표현될 수 있다.
Figure 112015083424573-pat00006
Figure 112015083424573-pat00007
또한, 상술한 수학식 5의 우변에서, 하첨부 문자 F가 첨부된 놈(norm)은, 프로베니우스(Frobenius) 놈을 나타내고 있다. 즉, 수학식 5의 우변은, 프리코딩 행렬 W의 프로베니우스 놈의 2승을 나타내고 있다.
본 발명의 일 실시예에 따르면, 전력 σ²를 가지는 잡음 벡터를 n이라고 하면, 수신 신호 벡터 r는 이하에 수학식 6으로 나타낸 바와 같이 가정될 수 있다.
Figure 112015083424573-pat00008
또한, 프리코딩 행렬 W는 채널 행렬 H의 역행렬이므로, 상기에 나타낸 수학식 6과 수학식 2에 기초하여, 수신 신호 벡터 r는 이하에 나타내는 수학식 7로 표현된다고 가정될 수 있다.
Figure 112015083424573-pat00009
따라서, 수신 SINR 추정부(84)는 송신 전력 P와 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00010
와 잡음전력 σ²에 의해, 수신 신호의 신호 대 간섭 잡음비ρ(dB)를 이하에 나타내는 수학식 8에 기초하여 추정할 수 있다.
Figure 112015083424573-pat00011
그리고, 수신 SINR 추정부(84)는 추정한 수신 신호의 신호 대 간섭 잡음비ρ을 MCS선택부(85)로 출력할 수 있다.
MCS 선택부(85)는, 수신 신호의 신호 대 간섭 잡음비ρ의 추정 결과를, 수신 SINR 추정부(84)로부터 획득할 수 할 수 있다. 그리고, MCS선택부 (85)는, 미리 설정된 복수의 MCS(Modulation and Coding Set)과 취득한 신호 대 간섭 잡음비ρ의 추정 결과를 비교하여, 추정된 상기 신호 대 간섭 잡음비ρ을 허용하는 MCS 중, 보다 전송 효율이 높은(다시 말하면, 보다 스루풋이 높은) MCS를 선택할 수 있다.
또한, MCS는, 송신 대상이 되는 정보(이후에서는, 「송신 데이터」라고 언급될 수 있다)를 변조 및 부호화하는 것으로 송신 신호로서 송신할 때의 변조 차수 및 부호화율과, 상기 변조 차수 및 부호화율에 기초하는 송신 신호를 송신할 때에 허용되는 수신 품질을 미리 연관시킨 제어 정보이다. 변조 차수로서는, 예를 들어, QPSK, 16QAM, 64QAM, 256QAM등을 들 수 있다.
이상과 같이 해서, MCS를 선택하면 MCS선택부 (85)는 선택한 MCS에 연관된 부호화율을 채널 부호화부(81)로 출력하고, 상기 MCS에 연관된 변조 차수를 매핑부 (82)로 출력할 수 있다.
채널 부호화부(81)는, 무선수신 장치(30)로 보낸 계통 마다의 송신 데이터를 취득하고, 취득한 상기 송신 데이터를 MCS선택부(85)로부터 통지된 부호화율에 기초하여 부호화할 수 있다. 채널 부호화부(81)는 부호화된 송신 데이터를 매핑부 (82)로 출력할 수 있다.
매핑부(82)는, 채널 부호화부(81)로부터 부호화된 송신 데이터를 취득하고, 취득한 상기 부호화된 송신 데이터 중의 각 비트를 MCS선택부(85)로부터 통지된 변조 차수에 기초하여 변조 심볼에 매핑 할 수 있다. 그리고, 매핑부(82)는, 송신 데이터중의 각 비트가 매핑된 변조 심볼을, 프리코딩부(86)으로 출력할 수 있다. 이상과 같이 해서, 각 매핑부(82)로부터, 부호화된 송신 데이터의 각 비트가 매핑된 변조 심볼이 계통마다 프리코딩부(86)으로 출력될 수 있다.
프리코딩부(86)는, 각 매핑부(82)로부터 계통마다 변조된 변조 심볼을 획득할 수 있다. 프리코딩부(86)는, 이상과 같이 해서 취득한 계통마다의 변조 심볼에 기초하여, 변조 심볼 벡터s(다시 말하면, 송신 심볼 벡터s)을 획득할 수 있다. 또한, 프리코딩부(86)는, 추정된 채널 행렬 H에 기초하여 산출된 프리코딩행렬 W를 프리코딩행렬 산출부(83)로부터 획득할 수 있다.
프리코딩부(86)는, 변조 심볼 벡터 s에 대해서 프리코딩행렬 W를 승산(multiplying)하고, 승산결과를 상기 프리코딩행렬 W에 기초하여 산출된 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00012
로 정규화하여, 송신 신호 벡터 z를 획득할 수 있다. 또한, 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00013
의 산출 방법은, 상기 수학식 3 내지 수학식 5에 기초하여 상술한 바와 같다. 이상과 같이 해서, 송신 신호에 대해서 선형 프리코딩 처리가 수행될 수 있다.
이렇게 하여 획득된 송신 신호 벡터 z, 즉, 선형 프리코딩 처리가 수행된 M계통의 송신 신호는, 송신 안테나 세트 Tx의 각 송신 안테나 Tx1∼TxM에 의해 RF(Radio Frequency)신호로서 무선수신 장치(30)로 송신될 수 있다. 또한, 이 때, 상기 송신 신호는, 예를 들어, 소정의 무선주파수대의 신호로 주파수 변환 된 후, 무선수신 장치(30)로 송신될 수 있다.
또한, 무선수신 장치(30)는 예를 들어, 송신 안테나 세트 Tx를 통해서 송신된 M계통의 무선신호를 수신 안테나 세트 Rx로 수신할 수 있다. 무선수신 장치 (30)는, 취득한 RF신호 각각을 수신 계통마다 소정대역으로 필터링하고, 증폭 및 주파수변환 등을 행해서 기저대역신호로 변환한다. 그리고, 무선 수신 장치(30)는, 상기 기저대역신호를 복조하는 것으로, 무선송신 장치 (10a)로부터 무선 수신 장치 (30)로 송신된 송신 데이터를 획득할 수 있다.
이상, 비교예 1로서, 도 2를 참조하여 선형 프리코딩 기술을 이용하여 송신 신호에 대해서 프리코딩 처리를 하는 무선송신 장치 (10a)의 일 예에 대해서 설명했다.
이상 설명한 바와 같이, 비교예 1에 관한 무선송신 장치 (10a)는, 채널 행렬 H의 추정 결과로부터 산출된 프리코딩 행렬 W에 기초하여, 수신 신호의 신호 대 간섭 잡음비ρ(dB)을 산출하고, 상기 신호 대 간섭 잡음비ρ을 기초로 MCS를 선택할 수 있다. 이러한 구성에 의해, 비교예 1에 관한 무선송신 장치 (10a)는, 송신 안테나 세트 Tx와 수신 안테나 세트 Rx 사이의 전송로의 상태에 따라서, 보다 전송 효율이 높은 변조 차수 및 부호화율을 선택하는 것이 가능해 질 수 있다.
한편, 선형 프리코딩 기술은, 채널 행렬 H의 역 행렬 연산에 기초하는 방식이므로, 복수의 스트림 간에서 채널 상관이 높을 경우에는, 산출되는 프리코딩 행렬 W의 각 스트림에 대한 웨이트 벡터가 비교적 큰 값을 가지게 될 수 있다. 이에 따라, 복수의 스트림간에서 채널 상관이 높을 경우에는 송신 전력이 증대하고, 미리 정한 송신 전력으로 정규화하면 이득이 감소하므로, 수신측에서 신호의 품질이 열화하는 경우가 있다.
(비교예2)
이어서, 비교예 2로서, 도 3을 참조하여 비선형 프리코딩기술을 이용한 무선송신 장치의 일예로서, 벡터 섭동법(VP:vector perturbation)을 이용하여 송신 신호에 대해서 프리코딩 처리를 하는 무선송신 장치의 일 예에 대해서 설명한다. 도 3은 비교예 2에 관한 무선송신 장치의 기능 구성의 일 예를 나타낸 블록도이다. 또한, 이후에서는, 비교예 2에 관한 무선송신 장치와 본실시예에 관한 무선송신 장치 10을 구별하는 경우에는, 비교예 2에 관한 무선송신 장치를 「무선송신 장치10b」라고 언급되는 경우가 있다.
도 3에 도시한 바와 같이, 비교예 2에 관한 무선송신 장치 (10b)는, 채널 부호화부(81)와 매핑부(82)와 프리코딩행렬 산출부(83)와 섭동벡터 부가 처리부(87)와 프리코딩부(86)를 포함할 수 있다. 또한, 도 3에 도시된 무선송신 장치(10b)는, 전술한 비교예 1에 관한 무선송신 장치 10a(도2 참조)와 동일하게, M개 송신 안테나 Tx1∼TxM으로부터, M 계통의 신호를 송신할 수 있다. 이에 따라, 도 3에 도시된 바와 같이, 무선송신 장치(10b)에는, M계통의 신호 각각을 처리하기 위해서, 채널 부호화부(81)와 매핑부(82)가 계통마다 구비되어 있을 수 있다. 또한, 송신 안테나 세트 Tx는, 무선송신 장치(10b)에 내장되어 있어도 되고, 무선송신 장치(10b)의 외부에 구비되어 있어도 된다.
프리코딩행렬 산출부(83)는, 전술한 비교예 1의 경우와 동일하게, 채널 행렬 H의 추정 결과를 취득하고, 취득한 상기 채널 행렬 H의 역행렬을, 프리코딩 행렬 W로서 산출할 수 있다(즉, W=H-1). 프리코딩 행렬 산출부(83)는, 산출한 프리코딩 행렬 W를 섭동벡터 부가 처리부(87)와 프리코딩부(86)로 출력할 수 있다.
채널 부호화부(81)는, 무선수신 장치(30)로 전송된(또는, 전송될) 계통마다의 송신 데이터를 취득하고, 취득한 상기송신 데이터를 미리 결정된 부호화율에 기초하여 부호화할 수 있다. 채널 부호화부(81)은 부호화된 송신 데이터를 매핑부 (82)로 출력할 수 있다.
매핑부(82)는, 채널 부호화부(81)로부터 부호화된 송신 데이터를 취득할 수 있고, 취득한 상기 부호화된 송신 데이터중의 각 비트를, 미리 결정된 변조 차수에 기초하여 변조 심볼에 매핑할 수 있다. 매핑부(82)는, 송신 데이터중의 각 비트가 매핑된 변조 심볼을 섭동벡터 부가 처리부(87)로 출력할 수 있다. 이상과 같이 해서, 매핑부(82)로부터, 부호화된 송신 데이터의 각 비트가 매핑된 변조 심볼이 계통마다 섭동벡터 부가 처리부(87)로 출력될 수 있다.
섭동벡터 부가 처리부(87)는, 매핑부(82)로부터 계통마다 변조된 변조 심볼을 획득할 수 있다. 섭동벡터 부가 처리부(87)는, 획득한 각 계통의 변조 심볼에 기초하여 변조 심볼 벡터 s를 획득할 수 있다. 또한, 섭동벡터 부가 처리부(87)는, 추정된 채널 행렬 H에 기초하여 산출된 프리코딩 행렬 W를 프리코딩 행렬 산출부(83)로부터 획득할 수 있다.
섭동벡터 부가 처리부(87)는, 취득한 변조 심볼 벡터s와 프리코딩 행렬 W에 기초하여 미리 결정된 섭동벡터의 후보 중에서 프리코딩 후의 총 송신 전력이 최소가 되는 섭동벡터를 탐색할 수 있다. 섭동벡터 부가 처리부(87)는, 탐색된 섭동벡터를 변조 심볼 벡터 s에 부가할 수 있다.
도 4 내지 도 6을 참조하여 섭동 전의 변조 신호를 QPSK(=±a±ja)한 경우에 있어서, 예를 들어, 섭동변수를 τl로 하여, 섭동벡터 부가 처리부(87)의 처리에 관해서 상세히 설명한다. 도 4 내지 도 6은 섭동벡터의 탐색 및 부가에 관한 처리를 설명하기 위한 예시 도면이다. 또한, 섭동변수를 구성하는 τ는, 섭동의 크기를 규정하는 정수(constant)일 수 있다. 또한, 섭동변수를 구성하는 l은, 복소정수(complex integer)일 수 있다.
예를 들어, 도 4는, 섭동전의 변조 신호를 QPSK로 한 경우의 송신 심볼의 일 예를 도시한다. 또한, 도 4와 관련하여, 도 4에 참조 부호 b11로 나타낸 송신 심볼(a+ja)에 섭동벡터를 부가하는 경우의 일 예에 대해서 설명된다.
예를 들어, 도 5은, τ=4a로 한 경우에 있어서, 송신 심볼과 상기 송신 심볼에 대해서 섭동벡터가 부가된 경우의 후보가 되는 확대 신호점의 관계의 일 예를 도시한다. 또한, QPSK의 경우에는, l의 후보는 {-1-j, -1+j0,-1+j, 0-j, 0+j0, 0+j, 1-j, 1+j0, 1+j}일 수 있고, l의 후보수 C는 9일 수 있다. 이에 따라, 도 5에 도시된, 송신 심볼 b11에 대해서 섭동벡터를 부가하는 경우에는, 상기 송신 심볼b11과 참조 부호 b21∼b28로 나타낸 확대 신호점이, 섭동벡터가 부가된 송신 심볼의 후보가 될 수 있다.
예를 들어, 도 5의 참조 부호 b30으로 나타낸 바와 같이, 섭동벡터를 τ(1+j)로 하고, 상기 섭동벡터를 송신 심볼 b11에 부가한 경우에는, 참조 부호 b21로 나타낸 확대 신호점의 위치가 섭동벡터 부가 후의 상기 송신 심볼 b11의 위치가 될 수 있다.
이상으로부터, 스트림수를 M으로 한 경우에는, 섭동벡터의 후보수는 CM이 되고, 섭동벡터 부가 처리부(87)는, 이 섭동벡터의 후보 중에서 프리코딩 후의 총송신 전력이 최소가 되는 섭동벡터를, 이하의 수학식 9에 기초하여 탐색할 수 있다.
Figure 112015083424573-pat00014
탐색된 섭동벡터를 부가한 경우의 평균 송신 전력 정규화 계수를
Figure 112015083424573-pat00015
로 한 경우에는, 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00016
는 이하에 나타내는 수학식 10으로 표현될 수 있다.
Figure 112015083424573-pat00017
또한, 상기에 나타낸 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00018
는, 수학식 3에 기초하여 전술한 제로포싱(Zero-Forcing) 프리코딩 시에 획득되는 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00019
와 같거나, 상기 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00020
보다 작아질 수 있다. 즉, 송신 심볼에 대해서 섭동벡터가 부가되는 것으로, 송신 전력효율이 개선될 수 있다.
이상과 같이 해서, 섭동벡터 부가 처리부(87)는, 섭동벡터를 탐색하고, 탐색된 섭동벡터를 변조 심볼 벡터s에 부가할 수 있다. 섭동벡터 부가 처리부(87)는, 섭동벡터가 부가된 변조 심볼 벡터s를 프리코딩부(86)로 출력할 수 있다.
프리코딩부(86)는, 섭동벡터가 부가된 변조 심볼 벡터 s를 섭동벡터 부가 처리부(87)로부터 획득할 수 있다. 프리코딩부(86)는, 변조 심볼 벡터 s에 대해서 프리코딩행렬 W를 승산하고, 승산결과를 수학식 10에 기초하여 상술한 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00021
로 정규화하는 것으로, 송신 신호 벡터 z를 획득할 수 있다. 예를 들어, 송신 신호 벡터 z는 이하에 나타내는 수학식 11로 표현될 수 있다.
Figure 112015083424573-pat00022
이렇게 하여 획득된 송신 신호 벡터 z, 즉, 비선형 프리코딩 처리된 M 계통의 송신 신호는, 송신 안테나 세트 Tx의 각 송신 안테나 Tx1∼TxM에 의해 RF(Radio Frequency)신호로서 무선수신 장치(30)에 송신될 수 있다. 본 발명의 다양한 실시예들에 따르면, 상기 송신 신호는, 예를 들어, 미리 지정된 무선 주파수대의 신호로 변환된 후, 무선수신 장치(30)에 송신될 수도 있다.
무선수신 장치(30)에서 수신되는 수신 신호 벡터 r은 이하에 나타내는 수학식 12로 표현될 수 있다.
Figure 112015083424573-pat00023
무선수신 장치(30)는, 상기 수학식 12를 통하여 획득된 수신 신호 벡터 r을 수신 이득으로 정규화할 수 있다. 본 발명의 일 실시예에 따르면, 정규화 후의 수신 신호 벡터를 r'이라고 하면, 상기 정규화 후의 수신 신호 벡터 r'은, 이하에 나타내는 수학식 13으로 표현될 수 있다. 또한, n'은 잡음을 나타낸다.
Figure 112015083424573-pat00024
무선수신 장치(30)는, 정규화 후의 수신 신호 벡터 r'의 각 요소에 대해서, 섭동의 크기를 규정하는 정수 τ로 모듈로(modulo) 연산을 적용하는 것으로, 섭동벡터의 영향을 제거하고 송신 심볼을 복원할 수 있다. 예를 들어, m번째의 스트림에 대한 처리는 이하에 나타내는 수학식 14로 표현될 수 있다.
Figure 112015083424573-pat00025
수학식 14의 좌변에 나타낸 Sm 햇(hat)(S 위에 "^"을 붙인 것을 이하 이와 같이 기재)은, m번째의 스트림에 대응하는 복원후의 송신 심볼을 나타낸다.
도 6은, 도 5에 도시한 섭동벡터 부가 후의 송신 심볼 b21을 무선송신 장치(10)로부터 송신한 경우에 있어서의, 상기 섭동벡터 부가 후의 송신 심볼 b21을 수신한 무선수신 장치(30)의 처리를 개략적으로 도시한다. 이 경우에는, 무선수신 장치(30)는, 참조 부호 b40에 나타낸 바와 같이, 수신한 심볼 b21에 대해서, τ=4a인 모듈로(modulo) 연산을 적용하는 것으로, 도 5에 나타낸 섭동벡터 b30의 영향을 제거하고, 송신 심볼 b11'을 복원할 수 있다.
무선수신 장치(30)는, 이상과 같이 해서 획득된 송신 심볼을 복조하는 것으로, 무선송신 장치(10b)으로부터 무선수신 장치(30)로 송신된 송신 데이터를 획득할 수 있다.
이상, 비교예 2로서, 도 3을 참조하여, 비선형 프리코딩 기술을 이용하는 것으로, 송신 신호에 대해서 프리코딩 처리를 하는 무선송신 장치(10b)의 일예에 대해서 설명하였다.
비교예 1로서 설명한 바와 같이, 선형 프리코딩 기술을 이용한 경우에는, 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00026
는, 채널 행렬 H와 상기 채널 행렬 H로부터 도출되는 프리코딩 행렬 W와 무선수신 장치(30)로부터 피드백되는 잡음전력 σ²에 기초하여 결정될 수 있다. 이러한 구성에 의해, 비교예 1에 관한 무선송신 장치(10a)는, MCS를 용이하게 선택할 수 있으므로, 선택된 상기 MCS에 기초하여 부호화 및 변조 매핑을 실행하는 것이 가능할 수 있다.
비교예 2로서 설명한 바와 같이, 섭동벡터의 부가에 기초하는 비선형 프리코딩 기술을 이용한 경우에는, 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00027
는, 송신 심볼에 의존하여, 비선형 프리코딩에 의한 이득을 미리 추정하는 것이 곤란할 수 있다. 다시 말하면, 비교예 2에 관한 무선송신 장치(10b)는, 부호화 및 변조 매핑이 종료한 후에 섭동벡터의 탐색을 하기 때문에, 섭동벡터의 부가에 따르는 이득의 개선량을, MCS의 선택(즉, 변조 차수 및 부호화의 선택)에 반영하는 것이 곤란할 수 있다. 그 때문에, 섭동벡터의 부가에 기초하는 비선형 프리코딩 기술을 이용한 경우에는, 오류율이 저감되지만, 선형 프리코딩을 이용한 경우에 대한 스루풋의 증가가 매우 적게 되는 경우가 적지 않다.
본 발명의 일 실시예에 관한 통신 시스템(1)은, 상기 과제를 해결하기 위하여 안출된 것이다. 본 발명의 일 실시예에 관한 통신 시스템(1)로서, 섭동벡터의 부가에 의해 소요 송신 전력을 저감하고, 또한 스루풋을 향상시키는 것이 가능한 구조에 대해서, 이하에 설명한다.
구체적으로는, 본실시예에 관한 무선송신 장치(10)는, 우선 선형 프리코딩 기술에 기초하여 MCS를 선택할 수 있다. 무선송신 장치(10)는, 선택된 MCS에 기초하여, 송신 신호로서 송신되는 정보 비트와 오류 정정 부호(예를 들어, 패리티 비트. 이후, 「패리티 비트」라고 언급될 수 있다) 중, 우선 정보 비트만을 변조 심볼에 매핑하고, 상기 변조 심볼에 기초하여 섭동벡터를 탐색할 수 있다.
무선송신 장치(10)는, 섭동벡터의 탐색 결과로부터, 섭동벡터의 부가에 기초하는 비선형 프리코딩 기술에 기초하여, 섭동벡터의 부가에 의해 개선되는 수신 신호의 신호 대 간섭 잡음비를 산출할 수 있다. 무선송신 장치(10)는, 개선되는 수신 신호의 신호 대 간섭 잡음비의 산출 결과에 기초하여, MCS를 재선택하고, 재선택된 MCS에 기초하여 패리티 비트를 생성하고, 상기 패리티 비트를 변조 매핑 할 수 있다.
이러한 구성에 의해, 본 발명의 일 실시예에 관한 무선송신 장치(10)는, 섭동벡터의 부가에 의해 소요 송신 전력을 저감하는 동시에, 섭동벡터의 부가에 따르는 이득의 개선량을 MCS의 선택에 반영해 스루풋을 향상시키는 것이 가능해 진다. 또한, 이후에서는, 본 발명의 일 실시예에 관한 통신 시스템(1)에 대해서, 특히, 무선송신 장치(10)와 관련하여 더욱 자세하게 설명한다.
<2. 기능 구성>
도 7을 참조하여, 본 발명의 일 실시예에 관한 무선송신 장치(10)의 기능 구성의 일 예에 대해서 설명한다. 도 7은 본 발명의 일 실시예에 관한 무선송신 장치(10)의 기능 구성의 일 예에 대해서 나타낸 예시 도면이다.
도 7에 나타낸 바와 같이, 본 발명의 일 실시예에 관한 무선송신 장치(10)는, 수신 SINR 추정부(11)와 MCS 선택부(12)와 정보 비트 생성부(13)와 정보 비트 처리부(14)와 오류 정정 부호처리부(15)와 멀티플렉서(16)와, 프리코딩부(17)를 포함할 수 있다. 정보 비트 처리부(14)는 매핑부(141)와 섭동벡터 부가 처리부 (143)를 포함할 수 있다. 오류 정정 부호처리부(15)는, 스위칭부(155)와 채널 부호화부(157)와 매핑부(151)와 섭동벡터 부가 처리부(153)를 포함할 수 있다. 또한, 정보 비트 처리부(14)에는 M계통의 신호 각각을 처리하기 위해서, 매핑부(141)가 계통마다 구비될 수 있다. 오류 정정 부호처리부(15)에는 M 계통의 신호 각각을 처리하기 위해서, 스위칭부(155)와 채널 부호화부(157)와 매핑부(151)가 계통마다 구비될 수 있다.
본 발명의 일 실시예에 관한 무선송신 장치(10)의 각 구성에 대해서, 전반의 「선형 프리코딩기술에 기초하여 선택된 MCS에 기초하는 처리」와 후반의 「섭동벡터의 부가에 따라 재선택된 MCS에 기초하는 처리」로 나누고, 각각의 처리에서 동작하는 구성에 착안해서 설명한다.
(선형 프리코딩 기술에 기초하여 선택된 MCS에 기초하는 처리)
무선송신 장치(10)에 관해서, 선형 프리코딩 기술에 기초하여 MCS를 선택하고, 선택된 MCS에 기초하여, 정보 비트만을 변조 심볼에 매핑하고, 상기 변조 심볼에 기초하여 섭동벡터를 탐색할 때까지의 처리에 착안해서 설명한다.
수신 SINR 추정부(11)는, 추정된 채널 행렬 H와 상기 채널 행렬 H에 기초하여 산출된 프리코딩 행렬 W(즉, W=H-1)과 무선수신 장치(30)로부터 피드백된 잡음전력 σ²를 획득할 수 있다. 또한, 각 정보의 취득원은 전술한 비교예 1에 관한 무선송신 장치(10a)와 동일할 수 있다.
수신 SINR 추정부(11)는, 취득한 프리코딩 행렬 W와 전술한 수학식 5에 기초하여, 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00028
를 산출할 수 있다. 수신 SINR 추정부(11)는, 산출한 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00029
와 취득한 잡음전력 σ²와 송신 전력 P에 의해, 수신 신호의 신호 대 간섭 잡음비
Figure 112015083424573-pat00030
(dB)를 이하에 나타내는 수학식 15에 기초하여 추정할 수 있다. 또한, 설명의 편의를 위하여, 각 스트림의 잡음전력이 같은 것으로서 설명하기로 한다.
Figure 112015083424573-pat00031
수신 SINR 추정부(11)는, 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00032
와 잡음전력 σ²와 송신 전력 P에 의해 추정한 수신 신호의 신호 대 간섭 잡음비
Figure 112015083424573-pat00033
를, MCS 선택부(12)에 출력할 수 있다. 또한, 이상과 같이 해서 추정된 수신 신호의 신호 대 간섭 잡음비
Figure 112015083424573-pat00034
가 「제1 수신SINR」의 일 예에 대응할 수 있다.
MCS 선택부(12)는, 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00035
와 잡음전력 σ²와 송신 전력 P에 의해 추정된 수신 신호의 신호 대 간섭 잡음비
Figure 112015083424573-pat00036
를, 수신 SINR 추정부(11)로부터 획득할 수 있다. MCS 선택부 (12)는, 미리 설정된 복수의 MCS와 취득한 신호 대 간섭 잡음비
Figure 112015083424573-pat00037
를 비교하여, 상기 신호 대 간섭 잡음비
Figure 112015083424573-pat00038
를 허용하는 MCS 중, 보다 전송 효율이 높은(다시 말하면, 보다 스루풋의 높은) MCS를 선택할 수 있다.
예를 들어, 도 8에 도시된 제어 테이블(d10)은 미리 설정된 MCS의 일 예를 나타낸다. 도 8에 나타낸 바와 같이, 각 MCS에는, 변조 차수(d12) 및 부호화율(d13)이 설정되어 있고, 상기 변조 차수(d12) 및 부호화율(d13)을 적용한 경우의 전송 레이트(d14)와 소요 신호 대 잡음비(SNR:Signal-Noise Ratio)(d15)가 관련되어 있다. 또한, 소요 신호 대 잡음비(d15)는, 소정의 통신 품질을 확보하기 위해서(예를 들어, 패킷 오류율을 소정값 이하로 하기 위해서) 필요로 하는 신호 대 잡음비를 나타낸다. 또한, 도 8에 도시된 예에서는, 전송 레이트(d14)는, 변조 차수(d12)을 「QPSK」, 부호화율(d13)을 「1/2」으로 한 경우를 「1.000」로 한 전송 레이트의 상대값을 나타낸다. 또한, 각 MCS에는 각각을 식별하기 위한 식별 정보로서 인덱스(d11)가 설정되어 있다.
예를 들어, MCS 선택부(12)는, 도 8에 도시된 제어 테이블(d10)을 참조하여, 취득한 수신 신호의 신호 대 간섭 잡음비
Figure 112015083424573-pat00039
가, 각 MCS에 설정된 소요 신호 대 잡음비(d15)이상이 되고, 또한, 전송 레이트(d14)가 최대가 되는 MCS를 선택할 수 있다.
구체적인 일 실시예로서, 신호 대 간섭 잡음비
Figure 112015083424573-pat00040
가 7.0(dB)의 경우에는, MCS 선택부 (12)는, 소요 신호 대 잡음비(d15)이 7.0(dB)이하의 MCS, 즉, 도 8을 참조하면, 인덱스 d11이 「1」∼「4」로 제시된 MCS를 추출할 수 있다. MCS 선택부(12)는, 추출한 MCS 중 전송 레이트(d14)가 최대가 되는 MCS, 즉, 인덱스(d11)가 「4」로 제시된 MCS를 선택할 수 있다. 또한, 이 경우에는, 변조 차수로서 「QPSK」이 설정되고, 부호화율로서 「4/5」이 설정되게 될 수 있다.
이상과 같이 해서, MCS 선택부(12)는, 취득한 수신 신호의 신호 대 간섭 잡음비
Figure 112015083424573-pat00041
에 기초하여 MCS를 선택하고, 선택한 MCS(즉, 변조 차수 및 부호화율)를 정보 비트 생성부(13)에 출력할 수 있다.
정보 비트 생성부(13)는, 신호 대 간섭 잡음비
Figure 112015083424573-pat00042
에 기초하여 선택된 MCS를 MCS 선택부(12)로부터 획득할 수 있다. 정보 비트 생성부(13)는, 획득한 MCS에 설정된 변조 차수에 기초하여 부호화 비트(즉, 정보 비트+패리티 비트)의 비트 길이를 산출하고, 상기 MCS에 설정된 부호화율에 기초하여, 상기 부호화 비트중의 정보 비트의 비트 길이를 산출할 수 있다.
정보 비트의 비트 길이를 산출하면, 정보 비트 생성부(13)는, 상기 정보 비트의 비트 길이에 따라, 송신 대상이 되는 송신 데이터를 독출하고, 독출한 송신 데이터에 기초하여, M 계통의 정보 비트 계열을 생성할 수 있다. 정보 비트 생성부(13)는, M 계통의 정보 비트 계열 각각과 취득한 MCS에 설정된 변조 차수를, 계통마다, 정보 비트 처리부(14)의 매핑부(141)에 출력할 할 수 있다.
매핑부(141)는, 생성된 계통마다의 정보 비트 계열과 변조 차수를 정보 비트 생성부(13)로부터 획득할 수 있다. 매핑부(141)는 획득한 계통마다의 정보 비트 계열중의 각 비트를 취득한 변조 차수에 기초하여 변조 심볼에 매핑할 수 있다. 매핑부(141)는, 계통마다의 정보 비트 계열중의 각 비트가 매핑된 변조 심볼을 섭동벡터 부가 처리부(143)에 출력할 수 있다. 또한, 정보 비트 계열중의 각 비트가 매핑된 변조 심볼이 「제1 변조 심볼」의 일 예에 대응될 수 있다.
섭동벡터 부가 처리부(143)는, 각 매핑부(141)로부터 계통마다 정보 비트 계열이 변조된 변조 심볼을 획득할 수 있다. 이 때, 계통마다 정보 비트 계열이 변조된 변조 심볼의 심볼 길이를 Ns라고 하면, 섭동벡터 부가 처리부(143)는, 계통마다 정보 비트 계열이 변조된 변조 심볼에 기초하여, 심볼 길이가 Ns의 M차원 변조 심볼 벡터 Ss를 획득할 수 있다. 심볼 길이가 Ns의 M차원 변조 심볼 벡터 Ss는, k번째(k은, 1≤k≤Ns의 정수)의 송신 심볼을 s(k) 라고 하면, 이하에 나타내는 수학식16으로 표현될 수 있다.
Figure 112015083424573-pat00043
섭동벡터 부가 처리부(143)는, 추정된 채널 행렬 H에 기초하여 산출된 프리코딩 행렬 W를 획득할 수 있다. 섭동벡터 부가 처리부(143)가 프리코딩 행렬 W를 취득할 수 있으면, 상기 프리코딩 행렬 W의 취득원은 특별히 한정되지 않는다. 예를 들어, 섭동벡터 부가 처리부(143)는 수신 SINR 추정부(11)로부터 프리코딩 행렬 W를 취득해도 되고, 수신 SINR 추정부(11)가 프리코딩 행렬 W를 취득한 취득원으로부터 동일하게 취득해도 된다.
섭동벡터 부가 처리부(143)는, 취득한 변조 심볼 벡터Ss와 프리코딩 행렬 W에 기초하여, 미리 결정된 섭동벡터의 후보 중에서, 프리코딩 후의 총 송신 전력이 최소가 되는 섭동벡터를 탐색할 수 있다. 섭동벡터 부가 처리부(143)는, 탐색된 섭동벡터를 변조 심볼 벡터Ss에 부가할 수 있다. 또한, 섭동벡터 부가 처리부(143)에 의한, 섭동벡터의 탐색에 관한 처리와 변조 심볼 벡터 Ss에 대한 섭동벡터의 부가에 관한 처리는, 전술한 비교예 2에 관한 무선송신 장치(10b)와 동일할 수 있다.
섭동벡터가 부가된 M차원 변조 심볼 벡터 Ss를 이후에서는 「M차원 변조 심볼 벡터Ss’」라고 언급될 수 있다. 이 때, k번째의 송신 심볼s(k)에 대해서 탐색된 섭동벡터를 τl(k)으로 하면, 정보 비트 길이에 대응하는 심볼수 Ns에 걸쳐 섭동벡터가 부가된 M차원 변조 심볼 벡터Ss’은, 이하에 나타내는 수학식 17로 표현된다.
Figure 112015083424573-pat00044
섭동벡터 부가 처리부(143)는, 정보 비트 길이에 대응하는 심볼수 Ns에 걸쳐 섭동벡터가 부가된 M차원 변조 심볼 벡터 Ss’을 수신 SINR 추정부(11)에 출력할 수 있다. 이에 의해, 수신 SINR 추정부(11)는 섭동벡터가 부가된 M차원 변조 심볼 벡터Ss’에 기초하여, 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00045
를 산출하는 것이 가능할 수 있다. 또한, 상세한 내용은 다음 항목에서 후술한다.
(섭동벡터의 부가에 따라 재선택된 MCS에 기초하는 처리)
무선송신 장치(10)가, 탐색된 섭동벡터의 부가에 따라 개선되는 수신 신호의 신호 대 간섭 잡음비를 산출하고, 산출 결과로부터 MCS를 재선택하는 동시에, 재선택된 MCS에 기초하여 오류 정정 부호를 변조 매핑하는 처리에 대해서 설명된다.
수신 SINR 추정부(11)는, 정보 비트 처리부(14)의 섭동벡터 부가 처리부(143)로부터, 정보 비트 길이에 대응하는 심볼수 Ns에 걸쳐 섭동벡터가 부가된 M차원 변조 심볼 벡터 Ss’을 획득할 수 있다. 수신 SINR 추정부(11)는, 취득한 상기 M차원 변조 심볼 벡터Ss’과 종전에 취득한 프리코딩 행렬 W에 기초하여, 벡터 섭동법(VP)에 기초하는 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00046
를 산출할 수 있다. 이 때, 상기 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00047
는 이하에 나타내는 수학식 18로 표현된다.
Figure 112015083424573-pat00048
수신 SINR 추정부(11)는, 산출한 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00049
와 종전에 취득한 잡음전력 σ²과 송신 전력 P에 의해, 섭동벡터의 부가에 따라 개선되는 신호 대 간섭 잡음비
Figure 112015083424573-pat00050
(dB)를 이하에 나타내는 수학식 19에 기초하여 추정할 수 있다.
Figure 112015083424573-pat00051
본 발명의 일 실시예에 관한 무선송신 장치(10)에서는, 이상과 같이 해서 추정된 신호 대 간섭 잡음비
Figure 112015083424573-pat00052
를, 부호화 비트 전체에 대한 섭동벡터의 부가에 따르는 이득의 개선량을 포함한, 수신 신호의 신호 대 간섭 잡음비(SINR)의 예측 값으로 할 수 있다.
수신 SINR 추정부(11)는, 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00053
와 잡음전력 σ²과 송신 전력P에 기초하여 수신 신호의 신호 대 간섭 잡음비
Figure 112015083424573-pat00054
를 추정하고, 상기 신호 대 간섭 잡음비
Figure 112015083424573-pat00055
를 MCS 선택부(12)에 출력할 수 있다. 또한, 이상과 같이 해서 추정된 수신 신호의 신호 대 간섭 잡음비
Figure 112015083424573-pat00056
가 「제2 수신SINR」의 일 예에 대응될 수 있다.
MCS 선택부(12)는, 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00057
와 잡음전력 σ²과 송신 전력 P에 의해 추정된 수신 신호의 신호 대 간섭 잡음비
Figure 112015083424573-pat00058
를 수신 SINR 추정부(11)로부터 획득할 수 있다. MCS 선택부(12)는, 미리 설정된 복수의 MCS와 취득한 신호 대 간섭 잡음비
Figure 112015083424573-pat00059
를 비교하여, 상기 신호 대 간섭 잡음비
Figure 112015083424573-pat00060
를 허용하는 MCS 중, 보다 전송 효율이 높은(다시 말하면, 보다 스루풋의 높은) MCS를 재선택할 수 있다.
MCS 선택부(12)는, 취득한 수신 신호의 신호 대 간섭 잡음비
Figure 112015083424573-pat00061
에 기초하여 재선택한 MCS를 정보 비트 생성부(13)에 출력할 수 있다.
정보 비트 생성부(13)는, 신호 대 간섭 잡음비
Figure 112015083424573-pat00062
에 기초하여 재 선택된 MCS를 MCS 선택부(12)로부터 획득할 수 있다. 정보 비트 생성부(13)는, 재 선택된 MCS(즉, 신호 대 간섭 잡음비
Figure 112015083424573-pat00063
에 기초하여 재 선택된 MCS)와 종전에 선택된 MCS(즉, 신호 대 간섭 잡음비
Figure 112015083424573-pat00064
에 기초하여 선택된 MCS)를 비교할 수 있다. 또한, 이 때, 재 선택된 MCS와 종전에 획득한 MCS 사이에서, 각 MCS에 설정된 변조 차수가 다른지 아닌지에 따라서, 정보 비트 생성부(13)의 이후의 처리가 다를 수 있다. 이에 따라, 정보 비트 생성부(13)의 이후의 처리에 대해서, 「변조 차수가 다른 경우」와 「변조 차수가 같은 경우」로 나누어서 이하에 설명한다.
(변조 차수가 다른 경우)
우선, 재 선택된 MCS와 종전에 선택된 MCS 사이에서, 각 MCS에 설정된 변조 차수가 다른 경우, 즉, MCS의 재선택에 따라 변조 차수가 갱신된 경우에 대해서 설명한다.
MCS의 재 선택에 따라 변조 차수가 갱신된 경우에는, 정보 비트 생성부(13)는, 재선택된 MCS에 설정된 변조 차수에 기초하여, 부호화 비트(즉, 정보 비트+패리티 비트)의 비트 길이를 다시 산출할 수 있다. 그리고, 정보 비트 생성부(13)는, 상기 MCS에 설정된 부호화율에 기초하여, 상기 부호화 비트중의 정보 비트의 비트 길이를 다시 산출할 수 있다. 또한, 정보 비트의 비트 길이가 결정되는 것으로, 패리티 비트의 비트 길이도 결정될 수 있다.
정보 비트의 비트 길이를 다시 산출하면, 정보 비트 생성부(13)는, 상기 정보 비트의 비트 길이에 따라서, 송신 대상이 되는 송신 데이터를 독출하고, 독출한 송신 데이터에 기초하여, M 계통의 정보 비트 계열을 다시 생성할 수 있다. 그리고, 정보 비트 생성부(13)는, 다시 생성된 M계통의 정보 비트 계열 각각과 재 선택된 MCS에 설정된 변조 차수를, 계통마다, 정보 비트 처리부(14)의 매핑부(141)에 출력할 수 있다.
또한, 이 경우에는, 매핑부(141)는, 다시 생성된 계통마다의 정보 비트 계열중의 각 비트를, 취득한 변조 차수에 기초하여 변조 심볼에 다시 매핑하고, 상기 변조 심볼을 섭동벡터 부가 처리부(143)에 출력할 수 있다.
또한, 섭동벡터 부가 처리부(143)는, 각 매핑부(141)로부터 계통마다 정보 비트 계열이 변조된 변조 심볼을 획득하고, 상기 변조 심볼에 기초하는 M차원 변조 심볼 벡터 Ss를 기초로, 전술한 섭동벡터의 탐색과 섭동벡터의 부가에 관한 처리를 실행할 수 있다. 그리고, 섭동벡터 부가 처리부(143)는 섭동벡터가 부가된 M차원 변조 심볼 벡터 Ss’을 멀티플렉서(16)에 출력할 수 있다.
정보 비트 생성부(13)는, MCS의 재선택에 따라 스위칭부(155)를 온 상태로 스위치하고, 생성한 M계통의 정보 비트 계열 각각과 재선택된 MCS에 설정된 부호화율을, 계통마다, 오류 정정 부호처리부(15)의 채널 부호화부(157)에 출력할 수 있다. 또한, 오류 정정 부호처리부 15의 각 구성의 동작에 대해서는, 「변조 차수가 같은 경우」의 처리와 아울러 후술한다.
(변조 차수가 같은 경우)
이어서, 재선택된 MCS와 종전에 취득한 MCS 사이에서, 각 MCS에 설정된 변조 차수가 같은 경우, 즉, MCS의 재선택에 따라서 변조 차수가 갱신되지 않았을 경우에 대해서 설명한다.
MCS의 재선택에 따라서 변조 차수가 갱신되지 않았을 경우에는, 정보 비트 생성부(13)는, 상기 MCS의 재선택에 따라서, 종전의 부호화율이 보다 높은 부호화율로 갱신되었는지 아닌지를 확인할 수 있다.
종전의 부호화율이 보다 높은 부호화율로 갱신된 경우에는, 부호화 비트 길이가 일정한 조건하에서는(예를 들어, 변조 차수가 바뀌지 않을 경우에는), 갱신 후의 부호화율에 기초하는 정보 비트의 비트 길이는, 종전에 생성한 정보 비트(즉, 갱신 전의 부호화율에 기초하는 정보 비트)의 비트 길이보다도 길어진다. 그 때문에, 정보 비트 생성부(13)는, 부호화 비트 중의 정보 비트의 비트 길이를 다시 산출하고, 산출된 상기 비트 길이에 기초하여, 종전에 생성한 정보 비트를 연장할 수 있다. 정보 비트 생성부(13)는, 연장된 M계통의 정보 비트 계열 각각을, 계통마다, 정보 비트 처리부(14)의 매핑부(141)에 출력할 수 있다.
또한, 이 경우에는, 매핑부(141)는, 연장된 계통마다의 정보 비트 계열 중, 연장 분의 각 비트만을, 종전에 획득한 변조 차수에 기초하여 변조 심볼에 매핑할 수 있다.
또한, 연장된 계통마다의 정보 비트 계열 중, 연장분 이외의 다른 비트에 대해서는, 매핑부(141)는, 종전의 처리에 기초하여, 이미 변조 심볼에 매핑하고 있다. 이에 따라, 매핑부(141)는, 연장분의 각 비트를 변조한 변조 심볼을, 이미 매핑된 연장분 이외의 다른 비트에 대응하는 변조 심볼에 부가할 수 있다.
매핑부(141)는, 이미 매핑된 연장분 이외의 다른 비트에 대응하는 변조 심볼에 대해서, 연장 분의 각 비트를 변조한 변조 심볼이 부가된 일련의 변조 심볼을, 섭동벡터 부가 처리부(143)에 출력할 수 있다.
또한, 섭동벡터 부가 처리부(143)는, 각 매핑부(141)로부터 계통마다 정보 비트 계열이 변조된 변조 심볼을 획득하고, 상기 변조 심볼에 기초하는 M차원 변조 심볼 벡터 Ss를 기초로, 전술한 섭동벡터의 탐색과 섭동벡터의 부가에 관한 처리를 실행할 수 있다. 또한, 이 때, 섭동벡터 부가 처리부(143)는, 정보 비트 계열이 변조된 변조 심볼 중, 연장분의 각 비트가 변조된 변조 심볼에 대해서만 섭동벡터의 탐색을 행하고, 연장분 이외의 다른 비트가 변조된 변조 심볼에 대해서는, 종전의 처리에 기초하여 탐색한 섭동벡터를 이용할 수 있다.
섭동벡터 부가 처리부(143)는, 섭동벡터가 부가된 M차원 변조 심볼 벡터 Ss’을 멀티플렉서(16)에 출력할 수 있다.
정보 비트 생성부(13)는, MCS의 재선택에 따라서 스위칭부(155)를 온 상태로 스위치하고, 생성한 M계통의 정보 비트 계열 각각과 재선택된 MCS에 설정된 변조 차수 및 부호화율을, 계통마다, 오류 정정 부호처리부(15)의 채널 부호화부(157)에 출력할 수 있다.
이어서, 오류 정정 부호처리부(15)의 각 구성의 처리에 대해서 설명한다. 오류 정정 부호처리부(15)의 각 채널 부호화부(157)에는, 정보 비트 생성부(13)로부터, M계통의 정보 비트 계열 각각과 재선택된 MCS에 설정된 변조 차수 및 부호화율이, 계통마다 출력할 수 있다. 이 때, MCS의 재선택에 따라서 변조 차수가 갱신된 경우에는, 갱신 후의 변조 차수에 기초하여 생성된 M계통의 정보 비트 계열이, 정보 비트 생성부(13)로부터, 계통마다, 채널 부호화부(157)에 출력할 수 있다. 또한, MCS의 재선택에 따라 정보 비트 계열이 연장된 경우에는, 연장 후의 M계통의 정보 비트 계열이 정보 비트 생성부(13)로부터 계통마다, 채널 부호화부(157)에 출력할 수 있다.
채널 부호화부(157)는, 취득한 정보 비트 계열을, 취득한 부호화율에 기초하여 부호화하는 것으로, 계통마다의 패리티 비트 계열을 생성할 수 있다. 그리고, 채널 부호화부(157)는, 생성한 계통마다의 패리티 비트 계열과 취득한 변조 차수를 매핑부(151)에 출력할 수 있다.
매핑부(151)는, 생성된 계통마다의 패리티 비트 계열과 변조 차수를, 채널 부호화부(157)로부터 획득할 수 있다. 매핑부(151)는, 취득한 계통마다의 패리티 비트 계열중의 각 비트를, 취득한 변조 차수에 기초하여 변조 심볼에 매핑 할 수 있다. 매핑부(151)는, 계통마다의 패리티 비트 계열중의 각 비트가 매핑된 변조 심볼을, 섭동벡터 부가 처리부(153)에 출력할 수 있다. 또한, 패리티 비트 계열중의 각 비트가 매핑된 변조 심볼이 「제2 변조 심볼」의 일 예에 대응할 수 있다.
섭동벡터 부가 처리부(153)는, 각 매핑부151로부터 계통마다 패리티 비트 계열이 변조된 변조 심볼을 획득할 수 있다. 이 때, 계통마다 패리티 비트 계열이 변조된 변조 심볼의 심볼 길이를 Np라고 하면, 섭동벡터 부가 처리부(143)는, 계통마다 패리티 비트 계열이 변조된 변조 심볼에 기초하여, 심볼 길이가 Np의 M차원 변조 심볼 벡터 Sp를 획득 할 수 있다.
섭동벡터 부가 처리부(153)는, 추정된 채널 행렬 H에 기초하여 산출된 프리코딩 행렬 W를 획득할 수 있다. 또한, 전술한 섭동벡터 부가 처리부(143)와 동일하게, 섭동벡터 부가 처리부(153)가 프리코딩 행렬 W를 취득할 수 있으면, 상기 프리코딩 행렬 W의 취득원은 특별히 한정되지 않는다.
섭동벡터 부가 처리부(153)는, 취득한 변조 심볼 벡터 Sp와 프리코딩 행렬 W에 기초하여, 미리 결정된 섭동벡터의 후보 중에서, 프리코딩 후의 총송신 전력이 최소가 되는 섭동벡터를 탐색할 수 있다. 섭동벡터 부가 처리부(153)는, 탐색된 섭동벡터를 변조 심볼 벡터 Sp에 부가할 수 있다. 또한, 섭동벡터 부가 처리부(153)에 의한, 섭동벡터의 탐색에 관한 처리와 변조 심볼 벡터 Sp에 대한 섭동벡터의 부가에 관한 처리는, 전술한 비교예 2에 관한 무선송신 장치(10b)와 동일할 수 있다. 또한, 섭동벡터가 부가된 M차원 변조 심볼 벡터 Sp는, 이하에서 「M차원 변조 심볼 벡터Sp’」라고 언급될 수 있다.
섭동벡터 부가 처리부(153)는, 섭동벡터가 부가된 M차원 변조 심볼 벡터Sp’을 멀티플렉서(16)에 출력할 수 있다.
이어서, 멀티플렉서(16)보다 후단의 각 구성에 대해서 설명한다. 멀티플렉서(16)는, 정보 비트 처리부(14)의 섭동벡터 부가 처리부(143)로부터, 정보 비트 계열의 각 비트가 변조된 변조 심볼에 기초하는, 섭동벡터가 부가된 M차원 변조 심볼 벡터 Ss’을 획득할 수 있다. 또한, 멀티플렉서(16)은 오류 정정 부호처리부 (15)의 섭동벡터 부가 처리부(153)로부터, 패리티 비트 계열의 각 비트가 변조된 변조 심볼에 기초하는, 섭동벡터가 부가된 M차원 변조 심볼 벡터 Sp’을 획득할 수 있다.
멀티플렉서(16)는, M차원 변조 심볼 벡터Ss’과 M차원 변조 심볼 벡터Sp’를 다중화하고, 다중화 후의 M차원 변조 심볼 벡터 s를 프리코딩부(17)에 출력할 수 있다. 또한, 다중화 후의 M차원 변조 심볼 벡터 s는, 정보 비트 계열 및 패리티 비트 계열 각각의 각 비트가 변조된 변조 심볼에 기초하는 M차원 변조 심볼 벡터에 대응할 수 있다.
프리코딩부(17)는, 정보 비트 계열 및 패리티 비트 계열 각각의 각 비트가 변조된 변조 심볼에 기초하는 M차원 변조 심볼 벡터 s를 멀티플렉서(16)로부터 획득할 수 있다.
프리코딩부(17)는, 취득한 M차원 변조 심볼 벡터 s와 프리코딩행렬 W를 기초로, 벡터 섭동법(VP)에 기초하는 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00065
를 산출할 수 있다. 또한, 프리코딩 행렬 W의 취득원은 전술한 섭동벡터 부가 처리부(143 및 153)의 경우와 동일할 수 있다.
본 발명의 일 실시예에 따르면, 연장전의 정보 비트 계열에 대응하는 변조 심볼의 심볼 길이를 Ns, 연장 분의 정보 비트 계열에 대응하는 변조 심볼의 심볼 길이를 Ns’, 패리티 비트 계열에 대응하는 변조 심볼의 심볼 길이를 Np이라고 한다.
이 경우에는, 연장 전의 정보 비트 계열이 매핑된 변조 심볼에 기초하는 변조 심볼 벡터 Ss는, 전술한 수학식 16에 기초하여 산출될 수 있다. 또한, 상기 변조 심볼 벡터 Ss에 대해서 섭동벡터가 부가된 M차원 변조 심볼 벡터 Ss’은 전술한 수학식 17에 기초하여 산출할 수 있다.
또한, 연장 분의 정보 비트 계열과 패리티 비트 계열의 각 비트가 매핑된 변조 심볼에 기초하는 변조 심볼 벡터 s는 이하에 나타내는 수학식 20으로 표현될 수 있다.
Figure 112015083424573-pat00066
상기 수학식 20에 나타낸 변조 심볼 벡터 s에 대해서, 섭동벡터가 부가된 M차원 변조 심볼 벡터 s'은 이하에 나타내는 수학식 21로 표현될 수 있다.
Figure 112015083424573-pat00067
이상을 기초로 하여, 프리코딩부(17)는, 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00068
를 이하에 나타내는 수학식 22에 기초하여 산출할 수 있다.
Figure 112015083424573-pat00069
변조 차수가 갱신되어 정보 비트 계열을 다시 생성한 경우처럼, 정보 비트 계열의 비트 연장이 되지 않은 경우에는, 상기 수학식 22에 있어서, Ns’=0으로 지정될 수 있다.
MCS의 재선택에 따라 변조 차수가 갱신되지 않았을 경우에는, 프리코딩부17는, 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00070
의 산출시에, 종전에 수신 SINR 추정부(11)가, 수학식 18에 기초하여 산출한 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00071
를 이용해도 된다. 이 경우에는, 프리코딩부(17)는, 상기 수학식 22의 우변에 있어서의 괄호내의 제1항의 산출에 관한 처리 부하를 경감하는 것이 가능해 진다.
이상과 같이 해서, 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00072
를 산출하면, 프리코딩부(17)는, 취득한 M차원 변조 심볼 벡터s에 대해서 프리코딩 행렬 W를 승산하고, 상기 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00073
로 정규화하는 것으로, 송신 신호 벡터 z(k)을 획득할 수 있다. 예를 들어, 송신 신호 벡터 z(k)은 이하에 나타내는 수학식 23으로 표현될 수 있다.
Figure 112015083424573-pat00074
이렇게 하여 획득된 송신 신호 벡터 z(k), 즉, 상술한 프리코딩 처리된 M계통의 송신 신호는, 송신 안테나 세트 Tx의 각 송신 안테나 Tx1∼TxM에 의해 RF(Radio Frequency)신호로서 무선수신 장치(30)에 송신할 수 있다. 이 때, 상기 송신 신호는, 예를 들어, 미리 지정된 무선주파수대의 신호로 변환된 후, 무선수신 장치(30)에 송신될 수 있다.
이상, 도 7을 참조하여, 본 발명의 일 실시예에 관한 무선송신 장치(10)의 기능 구성의 일 예에 대해서 설명하였다. 또한, 도 7에 도시한 예에서는, 송신 안테나 세트 Tx를 무선송신 장치(10)의 일부의 구성으로서 도시하고 있지만, 상기 송신 안테나 세트 Tx는 무선송신 장치(10)의 외부에 구비되어 있어도 된다. 또한, 상기에 나타낸 무선송신 장치(10) 중, 송신 신호에 대해서 프리코딩 처리를 하는 구성과 프리코딩 처리 후의 송신 신호를, 송신 안테나 세트 Tx를 통해서 송신하는 구성을, 서로 다른 장치로서 구성해도 된다. 이 경우에는, 송신 신호에 대해서 프리코딩 처리를 하는 구성이 「신호 처리 장치」의 일 예에 대응될 수 있다.
<3. 처리>
이어서, 도 9를 참조하여, 본 발명의 일 실시예에 관한 무선송신 장치(10)의 일련의 동작의 일예에 대해서 설명한다. 도 9은 본 발명의 일 실시예에 관한 무선송신 장치(10)의 일련의 동작의 일 예를 나타낸 예시 도면이다.
동작 S101에서, 수신 SINR 추정부(11)는, 추정된 채널 행렬 H과, 상기 채널 행렬 H에 기초하여 산출된 프리코딩 행렬 W(즉, W=H-1), 무선수신 장치(30)로부터 피드백된 잡음전력 σ²를 획득할 수 있다. 또한, 각 정보의 취득원은 전술한 비교예 1에 관한 무선송신 장치(10a)와 동일하다.
동작 S103에서, 수신 SINR 추정부(11)는, 취득한 프리코딩 행렬 W와 전술한 수학식 5에 기초하여, 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00075
를 산출할 수 있다. 그리고, 수신 SINR 추정부(11)는, 산출한 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00076
와 취득한 잡음전력 σ²과 송신 전력 P에 의해, 수신 신호의 신호 대 간섭 잡음비
Figure 112015083424573-pat00077
(dB)을 전술한 수학식 15에 기초하여 추정할 수 있다. 그리고, 수신 SINR 추정부(11)는, 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00078
와 잡음전력 σ²과 송신 전력 P에 의해 추정한 수신 신호의 신호 대 간섭 잡음비
Figure 112015083424573-pat00079
를 MCS 선택부(12)에 출력할 수 있다. 또한, 추정된 수신 신호의 신호 대 간섭 잡음비
Figure 112015083424573-pat00080
가 「제1 수신SINR」의 일 예에 대응될 수 있다.
동작 S105에서, MCS 선택부(12)는, 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00081
와 잡음전력 σ²과 송신 전력 P에 의해 추정된 수신 신호의 신호 대 간섭 잡음비
Figure 112015083424573-pat00082
를 수신 SINR 추정부(11)로부터 획득할 수 있다. 그리고, MCS 선택부(12)는 미리 설정된 복수의 MCS와 취득한 신호 대 간섭 잡음비
Figure 112015083424573-pat00083
를 비교하여, 상기 신호 대 간섭 잡음비
Figure 112015083424573-pat00084
를 허용하는 MCS 중, 보다 전송 효율이 높은(다시 말하면, 보다 스루풋의 높은) MCS를 선택할 수 있다. MCS 선택부(12)는 선택한 MCS(즉, 변조 차수 및 부호화율)을 정보 비트 생성부(13)에 출력할 수 있다.
동작 S107에서, 정보 비트 생성부(13)는, 신호 대 간섭 잡음비
Figure 112015083424573-pat00085
에 기초하여 선택된 MCS를 MCS 선택부(12)로부터 획득할 수 있다. 정보 비트 생성부(13)는, 취득한 MCS에 설정된 변조 차수에 기초하여 부호화 비트(즉, 정보 비트+패리티 비트)의 비트 길이를 산출하고, 상기 MCS에 설정된 부호화율에 기초하여, 상기 부호화 비트 중의 정보 비트의 비트 길이를 산출할 수 있다.
정보 비트의 비트 길이를 산출하면, 정보 비트 생성부(13)는, 상기 정보 비트의 비트 길이에 따라서, 송신 대상이 되는 송신 데이터를 독출하고, 독출한 송신 데이터에 기초하여, M 계통의 정보 비트 계열을 생성할 수 있다. 그리고, 정보 비트 생성부(13)는, M 계통의 정보 비트 계열 각각과 취득한 MCS에 설정된 변조 차수를, 계통마다, 정보 비트 처리부(14)의 매핑부(141)에 출력할 수 있다.
동작 S109에서, 매핑부(141)는, 생성된 계통 마다의 정보 비트 계열과 변조 차수를 정보 비트 생성부(13)로부터 획득할 수 있다. 매핑부(141)는, 취득한 계통마다의 정보 비트 계열중의 각 비트를, 취득한 변조 차수에 기초하여 변조 심볼에 매핑한다. 그리고, 매핑부(141)는, 계통마다의 정보 비트 계열중의 각 비트가 매핑된 변조 심볼을 섭동벡터 부가 처리부(143)에 출력할 수 있다.
동작 S111에서, 섭동벡터 부가 처리부(143)는, 각 매핑부(141)로부터 계통마다 정보 비트 계열이 변조된 변조 심볼을 획득할 수 있다. 이 때, 계통마다 정보 비트 계열이 변조된 변조 심볼의 심볼 길이를 Ns라고 하면, 섭동벡터 부가 처리부(143)는, 계통마다 정보 비트 계열이 변조된 변조 심볼에 기초하여, 심볼 길이가 Ns의 M차원 변조 심볼 벡터Ss를 획득할 수 있다. 또한, 섭동벡터 부가 처리부(143)은 추정된 채널 행렬 H에 기초하여 산출된 프리코딩 행렬 W를 획득할 수 있다.
섭동벡터 부가 처리부(143)는, 취득한 변조 심볼 벡터 Ss와 프리코딩 행렬 W에 기초하여, 미리 결정된 섭동벡터의 후보 중에서, 프리코딩 후의 총 송신 전력이 최소가 되는 섭동벡터를 탐색할 수 있다. 섭동벡터 부가 처리부(143)는, 탐색된 섭동벡터를 변조 심볼 벡터 Ss에 부가할 수 있다.
섭동벡터 부가 처리부(143)는, 정보 비트 길이에 대응하는 심볼수 Ns에 걸쳐 섭동벡터가 부가된 M차원 변조 심볼 벡터Ss’을, 수신 SINR 추정부(11)에 출력할 수 있다.
동작 S115에서, 이어서, 수신 SINR 추정부(11)는, 정보 비트 처리부(14)의 섭동벡터 부가 처리부(143)로부터, 정보 비트 길이에 대응하는 심볼수 Ns에 걸쳐 섭동벡터가 부가된 M차원 변조 심볼 벡터Ss’을 획득할 수 있다(동작 S113, NO). 수신 SINR 추정부(11)는, 취득한 상기 M차원 변조 심볼 벡터Ss’과 종전에 취득한 프리코딩행렬 W에 기초하여, 벡터 섭동법(VP)에 기초하는 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00086
를 산출할 수 있다. 또한, 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00087
는, 전술한 수학식 18에 기초하여 산출할 수 있다.
수신 SINR 추정부(11)는, 산출한 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00088
와 종전에 취득한 잡음전력 σ²과 송신 전력P에 의해, 섭동벡터의 부가에 따라 개선되는 신호 대 간섭 잡음비
Figure 112015083424573-pat00089
(dB)를, 전술한 수학식 19에 기초하여 추정할 수 있다. 수신 SINR 추정부(11)는, 추정한 신호 대 간섭 잡음비
Figure 112015083424573-pat00090
를 MCS 선택부(12)에 출력할 수 있다. 또한, 이상과 같이 해서 추정된 수신 신호의 신호 대 간섭 잡음비
Figure 112015083424573-pat00091
가 「제2 수신SINR」의 일 예에 대응할 수 있다.
동작 S117에서, MCS 선택부(12)는, 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00092
와 잡음전력 σ²과 송신 전력P에 의해 추정된 수신 신호의 신호 대 간섭 잡음비
Figure 112015083424573-pat00093
를 수신 SINR 추정부 11로부터 획득할 수 있다. 그리고, MCS선택부(12)는, 미리 설정된 복수의 MCS와 취득한 신호 대 간섭 잡음비
Figure 112015083424573-pat00094
를 비교하고, 상기 신호 대 간섭 잡음비
Figure 112015083424573-pat00095
를 허용하는 MCS 중, 보다 전송 효율이 높은(다시 말하면, 보다 스루풋이 높은) MCS를 재선택할 수 있다. MCS 선택부(12)는, 취득한 수신 신호의 신호 대 간섭 잡음비
Figure 112015083424573-pat00096
에 기초하여 재선택한 MCS를 정보 비트 생성부(13)에 출력할 수 있다.
동작 S107에서, MCS의 재선택에 따라 변조 차수가 갱신된 경우에는(동작 S119, YES), 정보 비트 생성부(13)는, 재선택된 MCS에 설정된 변조 차수에 기초하여, 부호화 비트(즉, 정보 비트+패리티 비트)의 비트 길이를 다시 산출할 수 있다. 정보 비트 생성부(13)는, 상기 MCS에 설정된 부호화율에 기초하여, 상기 부호화 비트중의 정보 비트의 비트 길이를 다시 산출할 수 있다.
정보 비트의 비트 길이를 다시 산출하면, 정보 비트 생성부(13)는, 상기 정보 비트의 비트 길이에 따라서, 송신 대상이 되는 송신 데이터를 독출하고, 독출한 송신 데이터에 기초하여, M계통의 정보 비트 계열을 다시 생성할 수 있다. 그리고, 정보 비트 생성부(13)는, 다시 생성된 M계통의 정보 비트 계열 각각과 재선택된 MCS에 설정된 변조 차수를, 계통마다, 정보 비트 처리부(14)의 매핑부(141)에 출력할 수 있다.
동작 S109에서, 매핑부(141)는, 다시 생성된 계통 마다의 정보 비트 계열중의 각 비트를, 취득한 변조 차수에 기초하여 변조 심볼에 다시 매핑하고, 상기 변조 심볼을 섭동벡터 부가 처리부(143)에 출력할 수 있다.
동작 S111에서, 섭동벡터 부가 처리부(143)는, 각 매핑부(141)로부터 계통마다 정보 비트 계열이 변조된 변조 심볼을 획득하고, 상기 변조 심볼에 기초하는 M차원 변조 심볼 벡터 Ss를 기초로, 전술한 섭동벡터의 탐색과 섭동벡터의 부가에 관한 처리를 실행할 수 있다. 섭동벡터 부가 처리부(143)는, 섭동벡터가 부가된 M차원 변조 심볼 벡터 Ss’을 멀티플렉서(16)에 출력할 수 있다(동작 S113, YES).
동작 S123에서, MCS의 재선택에 따라 변조 차수가 갱신되지 않았을 경우에는(동작 S119, NO), 정보 비트 생성부(13)는, 상기 MCS의 재선택에 따라, 종전의 부호화율이 보다 높은 부호화율로 갱신되었는지 아닌지를 확인할 수 있다.
종전의 부호화율이 보다 높은 부호화율로 갱신된 경우에는(동작 S121, YES), 정보 비트 생성부(13)는, 부호화 비트중의 정보 비트의 비트 길이를 다시 산출하고, 산출된 상기 비트 길이에 기초하여, 종전에 생성한 정보 비트를 연장할 수 있다. 정보 비트 생성부(13)는, 연장된 M계통의 정보 비트 계열 각각을, 계통마다, 정보 비트 처리부(14)의 매핑부(141)에 출력할 수 있다.
또한, 이 경우에는, 매핑부(141)는, 연장된 계통마다의 정보 비트 계열 중, 연장 분의 각 비트만을, 종전에 취득한 변조 차수에 기초하여 변조 심볼에 매핑할 수 있다.
또한, 연장된 계통 마다의 정보 비트 계열 중, 연장분 이외의 다른 비트에 대해서는, 매핑부(141)는, 종전의 처리에 기초하여, 이미 변조 심볼에 매핑 하였을 수 있다. 그 때문에, 매핑부(141)는, 연장분의 각 비트를 변조한 변조 심볼을, 이미 매핑된 연장분 이외의 다른 비트에 대응하는 변조 심볼에 부가할 수 있다.
매핑부(141)는, 이미 매핑된 연장분 이외의 다른 비트에 대응하는 변조 심볼에 대해서, 연장 분의 각 비트를 변조한 변조 심볼이 부가된 일련의 변조 심볼을, 섭동벡터 부가 처리부(143)에 출력할 수 있다.
동작 S125에서, 섭동벡터 부가 처리부(143)는, 각 매핑부(141)로부터 계통마다 정보 비트 계열이 변조된 변조 심볼을 취득하고, 상기 변조 심볼에 기초하는 M차원 변조 심볼 벡터 Ss를 기초로, 전술한 섭동벡터의 탐색과 섭동벡터의 부가에 관한 처리를 실행할 수 있다. 또한, 이 때, 섭동벡터 부가 처리부(143)는, 정보 비트 계열이 변조된 변조 심볼 중, 연장 분의 각 비트가 변조된 변조 심볼에 대해서만 섭동벡터의 탐색을 행하고, 연장분 이외의 다른 비트가 변조된 변조 심볼에 대해서는, 종전의 처리에 기초하여 탐색한 섭동벡터를 이용할 수 있다.
섭동벡터 부가 처리부(143)는, 섭동벡터가 부가된 M차원 변조 심볼 벡터 Ss’을 멀티플렉서(16)에 출력할 수 있다.
동작 S127에서, 정보 비트 생성부(13)는, MCS의 재선택에 따라 스위칭부(155)을 온 상태에 스위치하고, 생성한 M계통의 정보 비트 계열 각각과 재선택된 MCS에 설정된 변조 차수 및 부호화율을, 계통마다, 오류 정정 부호처리부(15)의 채널 부호화부(157)에 출력할 수 있다.
채널 부호화부(157)는, 취득한 정보 비트 계열을, 취득한 부호화율에 기초하여 부호화하는 것으로, 계통마다의 패리티 비트 계열을 생성할 수 있다. 그리고, 채널 부호화부(157)은 생성한 계통마다의 패리티 비트 계열과 취득한 변조 차수를 매핑부(151)에 출력할 수 있다.
동작 S129에서, 매핑부(151)는, 생성된 계통마다의 패리티 비트 계열과 변조 차수를 채널 부호화부(157)로부터 획득할 수 있다. 매핑부(151)는, 취득한 계통마다의 패리티 비트 계열 중의 각 비트를, 취득한 변조 차수에 기초하여 변조 심볼에 매핑할 수 있다. 매핑부(151)는, 계통마다의 패리티 비트 계열중의 각 비트가 매핑된 변조 심볼을 섭동벡터 부가 처리부(153)에 출력할 수 있다.
동작 S131에서, 섭동벡터 부가 처리부(153)는, 각 매핑부(151)로부터 계통마다 패리티 비트 계열이 변조된 변조 심볼을 획득할 수 있다. 이 때, 계통마다 패리티 비트 계열이 변조된 변조 심볼의 심볼 길이를 Np이라고 하면, 섭동벡터 부가 처리부(143)는, 계통마다 패리티 비트 계열이 변조된 변조 심볼에 기초하여, 심볼 길이가 Np의 M차원 변조 심볼 벡터 Sp을 획득할 수 있다. 또한, 섭동벡터 부가 처리부(153)는 추정된 채널 행렬 H에 기초하여 산출된 프리코딩 행렬 W를 획득할 수 있다.
섭동벡터 부가 처리부(153)는 취득한 변조 심볼 벡터 Sp와 프리코딩행렬 W에 기초하여, 미리 결정된 섭동벡터의 후보 중에서, 프리코딩 후의 총 송신 전력이 최소가 되는 섭동벡터를 탐색할 수 있다. 섭동벡터 부가 처리부(153)는, 탐색된 섭동벡터를 변조 심볼 벡터 Sp에 부가할 수 있다. 섭동벡터 부가 처리부(153)는, 섭동벡터가 부가된 M차원 변조 심볼 벡터 Sp’을 멀티플렉서(16)에 출력할 수 있다.
동작 S133에서, 멀티플렉서(16)는, 정보 비트 처리부(14)의 섭동벡터 부가 처리부(143)로부터, 정보 비트 계열의 각 비트가 변조된 변조 심볼에 기초하는, 섭동벡터가 부가된 M차원 변조 심볼 벡터 Ss’을 획득할 수 있다. 또한, 멀티플렉서(16)는, 오류 정정 부호처리부(15)의 섭동벡터 부가 처리부(153)로부터, 패리티 비트 계열의 각 비트가 변조된 변조 심볼에 기초하는, 섭동벡터가 부가된 M차원 변조 심볼 벡터Sp’을 획득할 수 있다.
멀티플렉서(16)은, M차원 변조 심볼 벡터Ss’과 M차원 변조 심볼 벡터Sp’를 다중화하고, 다중화 후의 M차원 변조 심볼 벡터 s를 프리코딩부(17)에 출력할 수 있다. 또한, 다중 후의 M차원 변조 심볼 벡터 s는 정보 비트 계열 및 패리티 비트 계열 각각의 각 비트가 변조된 변조 심볼에 기초하는 M차원 변조 심볼 벡터에 대응될 수 있다.
동작 S135, 프리코딩부(17)는, 정보 비트 계열 및 패리티 비트 계열 각각의 각 비트가 변조된 변조 심볼에 기초하는 M차원 변조 심볼 벡터 s를 멀티플렉서(16)로부터 획득할 수 있다.
동작 S137에서, 프리코딩부(17)는, 취득한 M차원 변조 심볼 벡터 s와 프리코딩 행렬 W를 기초로, 벡터 섭동법(VP)에 기초하는 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00097
를 전술한 수학식 22에 기초하여 산출할 수 있다.
이상과 같이 해서, 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00098
를 산출하면, 프리코딩부(17)는 취득한 M차원 변조 심볼 벡터s에 대해서 프리코딩행렬 W를 승산하고(동작 S135), 상기 평균 송신 전력 정규화 계수
Figure 112015083424573-pat00099
로 정규화하는 것으로, 송신 신호 벡터 z(k)을 획득할 수 있다(동작 S137).
동작 S139에서, 이렇게 하여 획득된 송신 신호 벡터 z(k), 즉, 상술한 프리코딩 처리된 M계통의 송신 신호는, 송신 안테나 세트 Tx의 각 송신 안테나 Tx1∼TxM에 의해 RF(Radio Frequency)신호로서 무선수신 장치(30)에 송신될 수 있다. 또한, 이 때, 상기 송신 신호는, 예를 들어, 소정의 무선주파수대의 신호로 변환된 후, 무선수신 장치(30)로 송신되어도 된다.
이상, 도 9를 참조하여, 본 발명의 일 실시예에 관한 무선송신 장치(10)의 일련의 동작의 일 예에 대해서 설명했다. 또한, 상술한 일련의 동작이 「정보처리 방법」의 일 예에 대응될 수 있다.
또한, 상술한 일련의 동작은, 무선송신 장치(10)의 각 구성을 동작시키는 장치의 CPU를 기능시키기 위한 프로그램에 의해 구성할 수 있다. 이 프로그램은, 그 장치에 인스톨된 OS(Operating System)을 통해서 실행되도록 구성해도 된다. 또한, 이 프로그램은, 상술한 처리를 실행하는 구성이 포함되는 장치가 독출 가능하면, 기억되는 위치는 한정되지 않는다. 예를 들어, 장치의 외부로부터 접속되는 기록 매체에 프로그램이 저장되어 있어도 된다. 이 경우에는, 프로그램이 저장된 기록 매체를 장치에 접속함으로써, 그 장치의 CPU에 상기 프로그램을 실행시키도록 구성하면 된다.
<4. 정리>
이상, 설명한 바와 같이, 본 발명의 일 실시예에 관한 무선송신 장치(10)에서는, 정보 비트 계열과 패리티 비트 계열을 구별하고, 각각 개별로 변조 심볼에 매핑하고 있다. 이러한 무선송신 장치(10)의 구성은, 오류 정정 부호가 조직 부호일 경우에는 정보 비트와 패리티 비트가 구별되어, 부호화율이 보다 높은 다른 부호화율로 변환되어도, 부호화 비트중의 정보 비트 계열은 바뀌지 않는다고 하는 특성을 이용한 것이다.
즉, 본 발명의 일 실시예에 관한 무선송신 장치(10)는, 우선 종래의 선형 프리코딩 기술을 이용한 경우와 동일하게 MCS를 선택하고, 상기 MCS에 설정된 변조 차수 및 부호화율에 기초하여 정보 비트 계열을 생성할 수 있다. 또한, 무선송신 장치(10)은, 생성된 정보 비트 계열을 변조 심볼에 매핑하고, 획득된 변조 심볼 벡터를 기초로 섭동벡터를 탐색할 수 있다. 그리고, 무선송신 장치(10)은, 탐색된 섭동벡터로부터, 상기 섭동벡터의 부가에 따르는 이득의 개선량을 예상한 수신 신호의 신호 대 간섭 잡음비
Figure 112015083424573-pat00100
를 추정하고, 상기 추정 결과에 기초하여 MCS를 재선택 할 수 있다.
이상과 같이 해서 재선택한 MCS에 기초하여, 무선송신 장치(10)은, 정보 비트 계열을 부호화해서 패리티 비트 계열을 생성하고, 상기 패리티 비트 계열을 변조 심볼에 매핑하고, 획득된 변조 심볼 벡터를 기초로 섭동벡터를 탐색할 수 있다. 그리고, 무선송신 장치(10)은, 탐색된 섭동벡터를 상기 패리티 비트 계열이 변조된 변조 심볼에 부가할 수 있다.
이러한 구성에 의해, 본 발명의 일 실시예에 관한 무선송신 장치(10)는, 섭동벡터의 부가에 따르는 이득의 개선량을, MCS의 선택, 즉, 변조 차수나 부호화율의 선택에 반영하는 것이 가능해 진다. 그 때문에, 본 발명의 일 실시예에 관한 무선송신 장치(10)에 따르면, 섭동벡터의 부가에 의해 소요 송신 전력을 저감하고, 또한, 스루풋을 보다 향상시키는 것이 가능해 진다.
또한, 본 발명의 일 실시예에 관한 무선송신 장치(10)에서는, 섭동벡터의 부가에 따르는 이득의 개선량을 산출하는 때는, 정보 비트 계열만을 변조 심볼에 매핑하면 되고, 패리티 비트 계열을 변조 심볼에 매핑할 필요는 없다. 그 때문에, 본 발명의 일 실시예에 관한 무선송신 장치(10)에서는, 섭동벡터의 부가에 따르는 이득의 개선량의 산출에 관한 처리 부하를 경감하는 것이 가능해 진다.
또한, 본 발명의 일 실시예에 관한 무선송신 장치(10)은, MCS의 재선택에 따라서, 정보 비트 계열을 연장한 경우에는, 연장 분에 대해서만, 변조 심볼로의 매핑에 관한 처리와 섭동벡터의 탐색 및 부가에 관한 처리를 실행하면 된다. 그 때문에, 무선송신 장치 10은, 연장후의 정보 비트 계열전체에 대해서, 다시 변조심볼로의 매핑에 관한 처리와 섭동벡터의 탐색 및 부가에 관한 처리를 실행하는 경우에 비하여, 처리 부하를 경감하는 것이 가능해 진다.
이상과 같은 구성에 의해, 본 발명의 일 실시예에 관한 무선송신 장치 10은, 섭동벡터의 부가에 따르는 이득의 개선량이 송신 심볼에 의존하는 것 같은 비선형 프리코딩을 이용한 링크 어댑테이션을 효율적으로 실행하는 것이 가능해 진다.
또한, 본 발명의 일 실시예에 관한 무선송신 장치(10)에서는, 섭동벡터의 부가에 따르는 이득의 개선량을 고 부호화율의 선택(즉, MCS의 재선택)으로 전가할 수 있으므로, MCS의 후보로서, 부호화율이 보다 높은 후보(즉, 부호화율이 보다 1에 가까운 후보)을 준비해 두면 된다. 이러한 구성에 의해, 본 발명의 일 실시예에 관한 무선송신 장치(10)는 전송 효율을 보다 향상시키는 것이 가능해 진다.
다양한 실시예에 따른 장치(예: 부(unit), 모듈 또는 그 기능들) 또는 방법(예: 동작들)의 적어도 일부는, 예컨대, 프로그램 모듈의 형태로 컴퓨터로 읽을 수 있는 저장매체(computer-readable storage media)에 저장된 명령어로 구현될 수 있다. 상기 명령어가 프로세서에 의해 실행될 경우, 상기 하나 이상의 프로세서가 상기 명령어에 상기하는 기능을 수행할 수 있다. 컴퓨터로 읽을 수 있는 저장매체는, 예를 들면, 상기 메모리가 될 수 있다.
컴퓨터로 판독 가능한 기록 매체는, 하드디스크, 플로피디스크, 마그네틱 매체(magnetic media)(예: 자기테이프), 광기록 매체(optical media)(예: CD-ROM(compact disc read only memory), DVD(digital versatile disc), 자기-광 매체(magneto-optical media)(예: 플롭티컬 디스크(floptical disk)), 하드웨어 장치(예: ROM(read only memory), RAM(random access memory), 또는 플래시 메모리 등) 등을 포함할 수 있다. 또한, 프로그램 명령에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함할 수 있다. 상술한 하드웨어 장치는 다양한 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지다.
다양한 실시예에 따른 모듈 또는 프로그램 모듈은 전술한 구성요소들 중 적어도 하나 이상을 포함하거나, 일부가 생략되거나, 또는 추가적인 다른 구성요소를 더 포함할 수 있다. 다양한 실시예에 따른 모듈, 프로그램 모듈 또는 다른 구성요소에 의해 수행되는 동작들은 순차적, 병렬적, 반복적 또는 휴리스틱(heuristic)한 방법으로 실행될 수 있다. 또한, 일부 동작은 다른 순서로 실행되거나, 생략되거나, 또는 다른 동작이 추가될 수 있다. 그리고 본 명세서에 개시된 실시예는 개시된, 기술 내용의 설명 및 이해를 위해 제시된 것이며, 본 발명에서 기재된 기술의 범위를 한정하는 것은 아니다. 따라서, 본 발명의 범위는, 본 발명의 기술적 사상에 근거한 모든 변경 또는 다양한 다른 실시예를 포함하는 것으로 해석되어야 한다.
1: 통신 시스템
10: 무선송신 장치
11: 추정부
12: 선택부
13: 정보 비트 생성부
14: 정보 비트 처리부
141: 매핑부
143: 섭동벡터 부가 처리부
15: 오류 정정 부호처리부
151: 매핑부
153: 섭동벡터 부가 처리부
155: 스위칭부
157: 채널 부호화부
16: 멀티플렉서
17: 프리코딩부
30: 무선수신 장치

Claims (20)

  1. 신호 처리 장치에 있어서,
    복수의 전송로의 추정 결과에 기초하는 전송로 정보와 무선수신 장치로부터 통지되는 잡음전력에 기초하여, 수신 신호의 제1 신호 대 간섭 잡음비를 추정하는 추정부;
    상기 제1 신호 대 간섭 잡음비를 기초로 결정된 제1 변조 차수 및 제1 부호화율에 기초하여 취득되는 정보 비트를, 상기 제1 변조 차수에 기초하여 변조함으로써 제1 변조 심볼을 생성하는 신호 처리부, 및
    상기 복수의 전송로 각각에 대해서 생성된 상기 제1 변조 심볼에 기초하여 제1 섭동벡터를 탐색하고, 상기 제1 변조 심볼에 대해서 상기 제1 섭동벡터를 부가하는 섭동부가 처리부를 포함하고,
    상기 추정부는, 상기 전송로 정보와 상기 제1 섭동벡터가 부가된 상기 제1 변조 심볼에 기초하여 제2 신호 대 간섭 잡음비를 추정하고,
    상기 신호 처리부는, 상기 제2 신호 대 간섭 잡음비를 기초로 결정된 제2 부호화율에 기초하여 상기 정보 비트를 부호화함으로써 오류 정정 부호를 산출하고, 상기 오류 정정 부호를, 상기 제2 신호 대 간섭 잡음비를 기초로 결정된 제2 변조 차수에 기초하여 변조함으로써 제2 변조 심볼을 생성하고,
    상기 섭동부가 처리부는, 상기 복수의 전송로 각각에 대해서 생성된 상기 제2 변조 심볼에 기초하여 제2 섭동벡터를 탐색하고, 상기 제2 변조 심볼에 대해서 상기 제2 섭동벡터를 부가하고,
    상기 신호 처리 장치는, 복수의 안테나로부터, 복수의 전송로를 통하여, 적어도 하나의 무선수신 장치로, 정보 비트 및 오류 정정 부호를 포함하는 송신 신호를 공간 다중화하여 송신하는 것을 특징으로 하는, 신호 처리 장치.
  2. 제1항에 있어서,
    상기 신호 처리부는, 상기 제2 변조 차수와 상기 제1 변조 차수가 다른 경우에는, 상기 제2 변조 차수에 기초하여, 상기 정보 비트를 변조하는 것으로 제1 변조 심볼을 다시 생성하는 것을 특징으로 하는, 신호 처리 장치.
  3. ◈청구항 3은(는) 설정등록료 납부시 포기되었습니다.◈
    제1항에 있어서,
    상기 신호 처리부는,
    상기 제2 변조 차수와 상기 제1 변조 차수가 같고, 상기 제2 부호화율이 상기 제1 부호화율 보다 높은 경우에는,
    상기 정보 비트를 연장하고, 상기 연장에 따라 새롭게 추가된 정보 비트를 상기 제1 변조 차수에 기초하여 변조함으로써 생성되는 변조 심볼을, 상기 제1 변조 심볼에 부가하여 새로운 제1 변조 심볼을 생성하고,
    연장된 상기 정보 비트를 상기 제2 부호화율에 기초하여 부호화함으로써 상기 오류 정정 부호를 산출하는 것을 특징으로 하는, 신호 처리 장치.
  4. 제1항에 있어서,
    상기 전송로 정보는 상기 복수의 전송로의 추정 결과를 나타내는 채널 행렬에 기초하여 산출된 프리코딩 행렬인 것을 특징으로 하는, 신호 처리 장치.
  5. 제1항에 있어서,
    상기 섭동부가 처리부는 상기 제1 변조 심볼 및 상기 제2 변조 심볼 각각에 대해서, 프리코딩 후의 송신 전력이 감소되도록 상기 제1 섭동벡터 및 상기 제2 섭동벡터를 탐색하는 것을 특징으로 하는, 신호 처리 장치.
  6. ◈청구항 6은(는) 설정등록료 납부시 포기되었습니다.◈
    제1항에 있어서,
    상기 제1 변조 차수 및 상기 제1 부호화율은, 미리 설정된 복수의 변조 및 부호화율 세트(MCS:Modulation and Coding Set) 중, 상기 제1 신호 대 간섭 잡음비를 기초로 선택된 상기 변조 및 부호화율 세트에 기초하여 결정되고,
    상기 제2 변조 차수 및 상기 제2 부호화율은, 상기 복수의 변조 및 부호화율 세트 중, 상기 제2 신호 대 간섭 잡음비를 기초로 선택된 상기 미리 설정된 변조 및 부호화율 세트에 기초하여 결정되는 것을 특징으로 하는, 신호 처리 장치.
  7. ◈청구항 7은(는) 설정등록료 납부시 포기되었습니다.◈
    제6항에 있어서,
    상기 제1 변조 차수 및 상기 제1 부호화율은, 상기 복수의 변조 및 부호화율 세트중의, 상기 제1 신호 대 간섭 잡음비가, 상기 변조 및 부호화율 세트마다 요구되는 신호 대 잡음비 이하가 되는 상기 변조 및 부호화율 세트 중, 전송 레이트가 최대가 되는 상기 변조 및 부호화율 세트에 기초하여 결정되고,
    상기 제2 변조 차수 및 상기 제2 부호화율은, 상기 복수의 변조 및 부호화율 세트중의, 상기 제2 신호 대 간섭 잡음비가, 상기 변조 및 부호화율 세트마다 요구되는 신호 대 잡음비 이하가 되는 상기 변조 및 부호화율 세트 중, 전송 레이트가 최대가 되는 상기 변조 및 부호화율 세트에 기초하여 결정되는 것을 특징으로 하는, 신호 처리 장치.
  8. 제1항에 있어서,
    상기 제1 섭동벡터 및 상기 제2 섭동벡터가 각각 부가된 상기 제1 변조 심볼 및 상기 제2 변조 심볼에 기초하여 획득되는 변조 심볼 벡터에 대해서, 상기 전송로 정보를 승산하고, 상기 변조 심볼 벡터에 기초하여 산출되는 정규화 계수에 기초하여 정규화를 하는 것으로, 상기 송신 신호를 생성하는 프리코딩부를 더 포함하는 것을 특징으로 하는, 신호 처리 장치.
  9. ◈청구항 9은(는) 설정등록료 납부시 포기되었습니다.◈
    제8항에 있어서,
    상기 복수의 안테나로부터 상기 복수의 전송로를 통하여, 상기 송신 신호를 상기 무선수신 장치에 송신하는 송신부를 더 포함하는 것을 특징으로 하는, 신호 처리 장치.
  10. ◈청구항 10은(는) 설정등록료 납부시 포기되었습니다.◈
    제9항에 있어서,
    상기 복수의 안테나를 더 구비하는 것을 특징으로 하는, 신호 처리 장치.
  11. 무선 송신 장치(wireless transmission device)에 의하여 수행되는 신호 처리 방법에 있어서,
    복수의 전송로의 추정 결과에 기초하는 전송로 정보와 하나 이상의 무선 수신 장치들로부터 통지되는 잡음전력에 기초하여, 수신 신호의 제1 신호 대 간섭 잡음비를 추정하는 동작;
    상기 제1 신호 대 간섭 잡음비를 기초로 결정된 제1 변조 차수 및 제1 부호화율에 기초하여 취득되는 정보 비트를, 상기 제1 변조 차수에 기초하여 변조함으로써 제1 변조 심볼을 생성하는 동작;
    상기 복수의 전송로 각각에 대해서 생성된 상기 제1 변조 심볼에 기초하여 제1 섭동벡터를 탐색하고, 상기 제1 변조 심볼에 대해서 상기 제1 섭동벡터를 부가하는 동작;
    상기 전송로 정보와 상기 제1 섭동벡터가 부가된 상기 제1 변조 심볼에 기초하여 제2 신호 대 간섭 잡음비를 추정하는 동작;
    상기 제2 신호 대 간섭 잡음비를 기초로 결정된 제2 부호화율에 기초하여 상기 정보 비트를 부호화함으로써 오류 정정 부호를 산출하고, 상기 오류 정정 부호를, 상기 제2 신호 대 간섭 잡음비를 기초로 결정된 제2 변조 차수에 기초하여 변조함으로써 제2 변조 심볼을 생성하는 동작; 및
    상기 복수의 전송로 각각에 대해서 생성된 상기 제2 변조 심볼에 기초하여 제2 섭동벡터를 탐색하고, 상기 제2 변조 심볼에 대해서 상기 제2 섭동벡터를 부가하는 동작을 포함하고,
    상기 무선 송신 장치는, 복수의 안테나로부터, 복수의 전송로를 통하여, 적어도 하나의 무선수신 장치로, 정보 비트 및 오류 정정 부호를 포함하는 송신 신호를 공간다중화하여 송신하는 것을 특징으로 하는, 신호 처리 방법.
  12. 제11항에 있어서,
    상기 제2 변조 차수와 상기 제1 변조 차수가 다른 경우에는, 상기 제2 변조 차수에 기초하여, 상기 정보 비트를 변조하는 것으로 제1 변조 심볼을 다시 생성하는 동작을 포함하는 것을 특징으로 하는, 신호 처리 방법.
  13. ◈청구항 13은(는) 설정등록료 납부시 포기되었습니다.◈
    제11항에 있어서,
    상기 제2 변조 차수와 상기 제1 변조 차수가 같고, 상기 제2 부호화율이 상기 제1 부호화율 보다 높은 경우에는,
    상기 정보 비트를 연장하고, 상기 연장에 따라 새롭게 추가된 정보 비트를 상기 제1 변조 차수에 기초하여 변조함으로써 생성되는 변조 심볼을, 상기 제1 변조 심볼에 부가하여 새로운 제1 변조 심볼을 생성하는 동작; 및
    연장된 상기 정보 비트를 상기 제2 부호화율에 기초하여 부호화함으로써 상기 오류 정정 부호를 산출하는 동작을 포함하는 것을 특징으로 하는, 신호 처리 방법.
  14. 제11항에 있어서,
    상기 전송로 정보는, 상기 복수의 전송로의 추정 결과를 나타내는 채널 행렬에 기초하여 산출된 프리코딩 행렬인 것을 특징으로 하는, 신호 처리 방법.
  15. 제11항에 있어서,
    상기 제1 변조 심볼 및 상기 제2 변조 심볼 각각에 대해서, 프리코딩 후의 송신 전력이 감소되도록 상기 제1 섭동벡터 및 상기 제2 섭동벡터가 탐색되는 것을 특징으로 하는, 신호 처리 방법.
  16. ◈청구항 16은(는) 설정등록료 납부시 포기되었습니다.◈
    제11항에 있어서,
    상기 제1 변조 차수 및 상기 제1 부호화율은, 미리 설정된 복수의 변조 및 부호화율 세트(MCS:Modulation and Coding Set) 중, 상기 제1 신호 대 간섭 잡음비를 기초로 선택된 상기 변조 및 부호화율 세트에 기초하여 결정되고,
    상기 제2 변조 차수 및 상기 제2 부호화율은, 상기 미리 설정된 복수의 변조 및 부호화율 세트 중, 상기 제2 신호 대 간섭 잡음비를 기초로 선택된 상기 변조 및 부호화율 세트에 기초하여 결정되는 것을 특징으로 하는, 신호 처리 방법.
  17. ◈청구항 17은(는) 설정등록료 납부시 포기되었습니다.◈
    제16항에 있어서,
    상기 제1 변조 차수 및 상기 제1 부호화율은, 상기 복수의 변조 및 부호화율 세트중의, 상기 제1 신호 대 간섭 잡음비가, 상기 변조 및 부호화율 세트마다 요구되는 신호 대 잡음비 이하가 되는 상기 변조 및 부호화율 세트 중, 전송 레이트가 최대가 되는 상기 변조 및 부호화율 세트에 기초하여 결정되고,
    상기 제2 변조 차수 및 상기 제2 부호화율은, 상기 복수의 변조 및 부호화율 세트중의, 상기 제2 신호 대 간섭 잡음비가, 상기 변조 및 부호화율 세트마다 요구되는 신호 대 잡음비 이하가 되는 상기 변조 및 부호화율 세트 중, 전송 레이트가 최대가 되는 상기 변조 및 부호화율 세트에 기초하여 결정되는 것을 특징으로 하는, 신호 처리 방법.
  18. 제11항에 있어서,
    상기 제1 섭동벡터 및 상기 제2 섭동벡터가 각각 부가된 상기 제1 변조 심볼 및 상기 제2 변조 심볼에 기초하여 획득되는 변조 심볼 벡터에 대해서, 상기 전송로 정보를 승산하고, 상기 변조 심볼 벡터에 기초하여 산출되는 정규화 계수에 기초하여 정규화를 하는 것으로, 상기 송신 신호를 생성하는 동작을 포함하는 것을 특징으로 하는, 신호 처리 방법.
  19. ◈청구항 19은(는) 설정등록료 납부시 포기되었습니다.◈
    제18항에 있어서,
    상기 복수의 안테나로부터 상기 복수의 전송로를 통하여, 상기 송신 신호를 상기 무선수신 장치로 송신하는 동작을 포함하는 것을 특징으로 하는, 신호 처리 방법.
  20. ◈청구항 20은(는) 설정등록료 납부시 포기되었습니다.◈
    프로세서에 의하여 적어도 하나의 동작을 수행하도록 설정된 명령들(instructions)이 저장된 컴퓨터 판독 가능한(computer readable) 기록 매체에 있어서, 상기 적어도 하나의 동작은,
    복수의 전송로의 추정 결과에 기초하는 전송로 정보와 하나 이상의 무선 수신 장치들로부터 통지되는 잡음전력에 기초하여, 수신 신호의 제1 신호 대 간섭 잡음비를 추정하는 동작;
    상기 제1 신호 대 간섭 잡음비를 기초로 결정된 제1 변조 차수 및 제1 부호화율에 기초하여 획득되는 정보 비트를, 상기 제1 변조 차수에 기초하여 변조하여 제1 변조 심볼을 생성하는 동작;
    상기 복수의 전송로 각각에 대해서 생성된 상기 제1 변조 심볼에 기초하여 제1 섭동벡터를 탐색하고, 상기 제1 변조 심볼에 대해서 상기 제1 섭동벡터를 부가하는 동작;
    상기 전송로 정보와, 상기 제1 섭동벡터가 부가된 상기 제1 변조 심볼에 기초하여 제2 신호 대 간섭 잡음비를 추정하는 동작;
    상기 제2 신호 대 간섭 잡음비를 기초로 결정된 제2 부호화율에 기초하여 상기 정보 비트를 부호화함으로써 오류 정정 부호를 산출하고, 상기 오류 정정 부호를, 상기 제2 신호 대 간섭 잡음비를 기초로 결정된 제2 변조 차수에 기초하여 변조함으로써 제2 변조 심볼을 생성하는 동작; 및
    상기 복수의 전송로 각각에 대해서 생성된 상기 제2 변조 심볼에 기초하여 제2 섭동벡터를 탐색하고, 상기 제2 변조 심볼에 대해서 상기 제2 섭동벡터를 부가하는 동작을 포함하는 것을 특징으로 하는, 컴퓨터 판독 가능한 기록 매체.
KR1020150121149A 2014-08-27 2015-08-27 신호 처리 장치, 신호 처리 방법 및 기록 매체 KR102393822B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2014-172546 2014-08-27
JP2014172546A JP6405155B2 (ja) 2014-08-27 2014-08-27 信号処理装置、信号処理方法、及びプログラム

Publications (2)

Publication Number Publication Date
KR20160025487A KR20160025487A (ko) 2016-03-08
KR102393822B1 true KR102393822B1 (ko) 2022-05-04

Family

ID=55403777

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150121149A KR102393822B1 (ko) 2014-08-27 2015-08-27 신호 처리 장치, 신호 처리 방법 및 기록 매체

Country Status (3)

Country Link
US (1) US9634747B2 (ko)
JP (1) JP6405155B2 (ko)
KR (1) KR102393822B1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067318A1 (en) * 2014-10-29 2016-05-06 Nec Corporation Communication system and method, base station, and user terminal
US9838170B2 (en) * 2015-09-17 2017-12-05 Taiwan Semiconductor Manufacturing Co., Ltd. Root non-orthogonal frequency division multiplexing (RNOFDM)
US20170230136A1 (en) * 2016-02-04 2017-08-10 Shanghai Research Center For Wireless Communications Method, base station, and terminal for fusing baseband resources between networks of different standards
CN113810166B (zh) 2016-06-09 2024-04-26 Lg电子株式会社 发送和接收相位噪声补偿参考信号的方法及其装置
EP3469714B1 (en) * 2016-07-27 2020-12-30 Huawei Technologies Co., Ltd. Polar code encoding with puncturing, shortening and extending
TWI628969B (zh) * 2017-02-14 2018-07-01 國立清華大學 聯合用戶分組與功率分配方法以及使用所述方法的基地台
KR102402248B1 (ko) * 2018-04-26 2022-05-26 엘지전자 주식회사 전력 제어를 수행하는 전자 기기
CN111201731B (zh) * 2018-09-18 2021-09-21 Oppo广东移动通信有限公司 一种信号处理方法、设备及存储介质
EP3864901A4 (en) * 2018-10-12 2022-07-06 Telefonaktiebolaget Lm Ericsson (Publ) METHODS AND DEVICES FOR CELL-FREE MASSIVE MIMO COMMUNICATIONS
US11805431B2 (en) * 2019-11-22 2023-10-31 Qualcomm Incorporated Transmitter-based link adaptation
CN111064859B (zh) * 2020-01-09 2021-11-05 暨南大学 一种图像信息嵌入方法
CN111313948B (zh) * 2020-02-14 2021-05-28 北京邮电大学 一种信号传输方法、装置及电子设备
US11483039B2 (en) * 2020-07-30 2022-10-25 Samsung Electronics Co., Ltd. Method and apparatus for detecting signal with quantum computing in MIMO system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098379A1 (ja) 2005-03-16 2006-09-21 Matsushita Electric Industrial Co., Ltd. マルチユーザ・プレコーディングに基づく適応変調方法
WO2012121153A1 (ja) 2011-03-04 2012-09-13 シャープ株式会社 無線通信システム、基地局装置及び端末装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101005233B1 (ko) * 2007-03-14 2010-12-31 더 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 다중 안테나 시스템에서 간섭 제거 장치 및 방법
JP5687524B2 (ja) * 2011-03-01 2015-03-18 シャープ株式会社 送信装置、受信装置、通信システム、通信方法、および集積回路
JP5804594B2 (ja) * 2011-08-05 2015-11-04 シャープ株式会社 プリコーディング装置、プリコーディング用プログラムおよび集積回路
JP5859913B2 (ja) * 2012-05-11 2016-02-16 シャープ株式会社 無線受信装置、無線送信装置、無線通信システム、プログラムおよび集積回路
WO2014104206A1 (ja) * 2012-12-28 2014-07-03 シャープ株式会社 送信装置、受信装置および通信システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098379A1 (ja) 2005-03-16 2006-09-21 Matsushita Electric Industrial Co., Ltd. マルチユーザ・プレコーディングに基づく適応変調方法
WO2012121153A1 (ja) 2011-03-04 2012-09-13 シャープ株式会社 無線通信システム、基地局装置及び端末装置

Also Published As

Publication number Publication date
KR20160025487A (ko) 2016-03-08
JP2016048826A (ja) 2016-04-07
US9634747B2 (en) 2017-04-25
JP6405155B2 (ja) 2018-10-17
US20160065257A1 (en) 2016-03-03

Similar Documents

Publication Publication Date Title
KR102393822B1 (ko) 신호 처리 장치, 신호 처리 방법 및 기록 매체
US9008166B2 (en) Filter calculating device, transmitting device, receiving device, processor, and filter calculating method
JP5804594B2 (ja) プリコーディング装置、プリコーディング用プログラムおよび集積回路
JP5133007B2 (ja) 送信装置、及びビームフォーミング行列生成方法
CN111512562A (zh) 用于处理下行链路通信的分布式基站系统的方法、系统和单元
WO2011078726A1 (en) Method and apparatus for downlink multiuser mimo transmission in a wireless network
CN107276935B (zh) 用于顺序球形解码的方法和设备
WO2015112883A1 (en) System and method for early termination in iterative null-space directed singular value decomposition for mimo
CN108234072A (zh) 用于对数据信号进行子块解码的方法和设备
JP2009153139A (ja) Mimo下りリンクにおけるプリコーディング処理方法、装置及び基地局
JP4503539B2 (ja) 無線通信システムおよび空間多重用無線通信方法
JP5859913B2 (ja) 無線受信装置、無線送信装置、無線通信システム、プログラムおよび集積回路
WO2013018555A1 (ja) 無線受信装置およびプログラム
WO2012157393A1 (ja) 基地局装置、移動局装置、制御プログラムおよび集積回路
JP4455511B2 (ja) 無線通信方法、無線通信システム及び無線端末局
CN107094124B (zh) 一种下行多用户多天线数据传输方法、装置及系统
JP5557704B2 (ja) 無線送信装置、無線受信装置、無線通信システムおよび集積回路
US9025530B2 (en) Wireless communication method, wireless communication system, base station, and mobile station
CN110858773B (zh) 无线通信设备及由其执行的方法、计算机可读介质
JP4624277B2 (ja) 無線通信システムおよび送信指向性制御方法
JP4327207B2 (ja) 無線通信方法及び無線通信装置
JP2013123196A (ja) プリコーディング装置、無線送信装置、プリコーディング方法、プログラムおよび集積回路
Pavan Kumar Chodisetti et al. Equalization Based Soft Output Data Detection for Massive MU-MIMO-OFDM Using Coordinate Descent
WO2023064529A1 (en) Geometric mean decomposition precoding for wireless communication
WO2023121647A1 (en) Singular value decomposition preconding for wireless communication

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right