KR102377508B1 - 듀얼 포어-제어 및 감지 장치 - Google Patents

듀얼 포어-제어 및 감지 장치 Download PDF

Info

Publication number
KR102377508B1
KR102377508B1 KR1020217033158A KR20217033158A KR102377508B1 KR 102377508 B1 KR102377508 B1 KR 102377508B1 KR 1020217033158 A KR1020217033158 A KR 1020217033158A KR 20217033158 A KR20217033158 A KR 20217033158A KR 102377508 B1 KR102377508 B1 KR 102377508B1
Authority
KR
South Korea
Prior art keywords
nanopore
chamber
voltage
nanopores
sensing
Prior art date
Application number
KR1020217033158A
Other languages
English (en)
Other versions
KR20210129726A (ko
Inventor
레토 스탬
마이클 서머스
에릭 쏜
윌리엄 비. 던바
Original Assignee
온테라 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 온테라 인크. filed Critical 온테라 인크.
Publication of KR20210129726A publication Critical patent/KR20210129726A/ko
Application granted granted Critical
Publication of KR102377508B1 publication Critical patent/KR102377508B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44743Introducing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Hematology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

시퀀싱을 위한 이중 포어 장치 및 방법이 서술된다. 이중 포어 장치는 제 1 챔버, 제 2 챔버, 및 제 3 챔버를 포함할 수 있고, 여기서 제 1 챔버는 제 1 나노포어를 통해 제 2 챔버와 연통하고, 제 2 챔버는 제 2 나노포어를 통해 제 3 챔버와 연통한다. 이 장치는 또한 나노포어에 있는 타겟과 관련된 전기 신호를 측정하기 위한 감지 회로, 및 나노포어에 있는 타겟의 움직임을 제어하기 위한 제어 회로를 포함할 수 있다. 이 장치는 제 1 나노포어 및 제 2 나노포어 각각에 대한 감지 및 제어 모드를 포함하고 및/또는 모드 간 전환이 가능하다. 시퀀싱 방법은 하나 이상의 나노포어를 통한 타겟의 전위, 적절한 감지 및 제어 모드 간 전환, 및 감지 모드를 사용하여 타겟의 양태들을 측정하는 것과 관련하여 이중 포어 장치를 구현할 수 있다.

Description

듀얼 포어-제어 및 감지 장치{DUAL PORE-CONTROL AND SENSOR DEVICE}
본 발명은 듀얼 포어-제어 및 감지 장치에 관한 것이다.
본 출원은 그 전체가 참조로서 본 명세서에 통합된, 2017년 6월 21일에 출원된 미국 가출원 번호 제62/523,228호의 우선권을 주장한다.
나노포어(nanopore)는 지질막 내 단백질 채널로서 자연적으로 형성되거나(생물학적 포어), 고체 기판에 개구를 천공 또는 에칭함으로써 제작되는(고체 포어) 나노 규모의 도관이다. 이러한 나노포어가 나노포어에 의해 분리된 2개의 챔버를 포함하는 나노 장치에 통합될 때, 패치 클램프 또는 전압 클램프 시스템과 같은 감지 장치는 막 횡단(trans-membrane) 전압을 인가하고 그 포어를 통한 이온 전류를 측정하는데 사용될 수 있다.
나노포어는 전체 게놈 DNA 시퀀싱에 매우 유망하다. 나노포어 시퀀싱에 대한 두 가지 장애물은 (1) 새로운 시퀀싱을 위한 핵산 내의 각 뉴클레오티드의 신원을 정확하게 판정하기에 충분한 감도의 결여(단일 뉴클레오티드 감도의 결여), 및 (2) 감지 동안 나노포어를 통과하는 각 뉴클레오티드 유닛의 전달 속도를 조절 및 제어하는 능력이다. 전달 속도를 조절할 수 없다는 것이 단일 뉴클레오티드 감도의 결여와 관련될 수 있는 근본적인 문제 중 하나이기 때문에 이러한 두 장애물은 종종 서로 관련이 있다. 달리 말하면, DNA가 센서를 너무 빨리 지나가면 센서의 기능이 저하될 수 있다. 효소 또는 광학부재의 사용을 포함하지 않는 두 번째 장애물을 해결하기 위한 기존의 방법은 존재하지 않으며, 효소 및 광학부재 둘 모두는 특수한 나노포어 기술에서만 작동하고 전기적 방법에 비해 더 복잡하고 비용이 많이 든다.
개시된 실시예들은 상세한 설명, 첨부된 청구 범위 및 첨부된 도면(또는 도안)으로부터 보다 쉽게 명백해지는 장점 및 특징을 갖는다. 도면에 대한 간략한 소개는 다음과 같다.
도 1은 일 실시예에 따른, 2개의 나노포어를 갖는 예시적인 나노포어 장치를 도시한다.
도 2a 및 도 2b는 각각 2개의 실시예에 따른, 예시적인 나노포어 장치의 2개의 나노포어를 포함하는 예시적인 회로를 도시한다.
도 3은 일 실시예에 따른, 각각의 포어에 대한 감지 회로 및 제어 회로 옵션 및 각각의 포어에 대한 두 옵션 사이의 스위치를 갖는 예시적인 2개의 나노포어 장치를 도시한다.
도 4a는 일 실시예에 따른, 제 1 구성의 예시적인 이중 나노포어 장치를 도시한다.
도 4b는 일 실시예에 따른, 제 2 구성의 예시적인 이중 나노포어 장치를 도시한다.
도 5는 일 실시예에 따른, 폴리뉴클레오티드와 같은 분자를 시퀀싱하기 위한 흐름 과정을 도시한다.
개요
본 개시물은 2개의 나노포어 각각이 전환 가능한 2개의 회로 옵션 내에 통합되어 있는 이중 나노포어 장치를 기술한다. 나노포어를 포함하는 제 1 회로(이하 감지 회로라 함)는 감지 전압 클램프 또는 패치 클램프 증폭기 회로를 포함한다. 나노포어를 포함하는 제 1 회로가 사용될 때, 나노포어는 "이온 전류 감지" 나노포어로서 기능한다. 제 2 회로(이하 제어 회로라 함)는 제 2 회로 내에 포함된 나노포어를 가로지르는 장력(field force)의 크기 및 방향을 제어하는 맞춤형 회로를 포함한다. 다양한 실시예들에서, 제어 회로는 위상 동기 루프(PLL) 또는 일부 다른 주기적 전압-제어 파형을 포함한다. 제어 회로는 또한 피드백 전압-제어에 사용될 수 있는 제 1 회로로부터의 정보(예컨대, 측정 전류)에 접근할 수 있다. 이 구성에서, 감지 회로는 제 1 나노포어에 적용되고, 최적의 트랜스-포어 전압-제어를 위해 설계된 제어 회로는 제 2 나노포어에 적용된다. 두 회로 유형간 전환은 언제든지 수행될 수 있다. 다시 말해, 감지 회로는 제 2 나노포어에 적용될 수 있고 제어 회로는 제 1 나노포어에 적용될 수 있다. 일반적으로, 하나의 나노포어에서의 제어 회로는 다른 나노포어를 통한 분자의 움직임에 영향을 미치므로, 다른 나노포어의 감지 회로를 사용하여 분자의 다중 재판독을 가능하게 한다. 다양한 실시예에서, 2개의 상이한 나노포어에서 작동되는 제어 회로와 감지 회로의 조합은 제어된 전달 및 감지 동안 분자가 나노포어를 통해 전위(translocate)할 때 분자를 감속시킴으로써 전술한 제 2 장애물을 해결하기 위해 사용될 수 있다.
예시적인 이중 나노포어 장치는 개별 분자들을 한번에 2개의 나노포어 내에 캡쳐하고, 감지 회로를 사용하여 하나의 나노포어를 통한 분자의 전위를 측정하는데 사용될 수 있다. 이중 포어 장치를 기술하는 이러한 실시예들은 제 1 챔버와 제 2 챔버를 유체 연결하는 제 1 나노포어; 및 제 2 챔버를 제 3 챔버에 유체 연결하는 제 2 나노포어를 포함하는 제 2 멤브레인(membrane) 층을 포함하고, 제 1 나노포어는 제 1 나노포어에 걸쳐 일정한 전압을 인가하고 제 1 나노포어를 통한 전류를 측정하는 감지 회로 내에 연결되고, 제 2 나노포어는 제 2 나노포어에 걸쳐 동적 전압을 인가하는 제어 회로 내에 연결된다. 대안의 실시예에서, 제 1 포어는 제어 회로에 연결되고 제 2 포어는 감지 회로에 연결된다.
각 나노포어의 제 1 회로를 참조하면, 통합된 회로는 패치 클램프 또는 전압 클램프 증폭기 중 하나일 수 있다. 제 1 회로의 TIA는 전압이 일정하게 설정될 때 나노포어에 걸쳐 일정한 장력을 제공하며, 나노포어를 통해 측정된 전류는 DNA, RNA, 단백질 및 이들 분자의 임의의 조합(매크로-분자)과 같은 분자의 존재 및 통과를 검출하는 감지 신호로서 역할한다. 이와 관련하여, TIA(패치 클램프, 전압 클램프)는 나노포어 분석에 사용되는 "감지 회로"의 예이다. 전압이 감지하는 동안 일정하게 설정되므로, 나노포어 내의 임의의 통과 분자에 대한 직접적인 제어를 제공하지 않지만, 나노포어가 장력 영향의 범위 내에서 횡단하기 전, 도중 및 후에 분자에 작용하는 장력을 인가한다. 다양한 실시예에서, 패치 클램프는 전압 작동 메커니즘이 아니라 최적의 감지를 위해 설계된다.
각각의 나노포어의 제 2 회로를 참조하면, DNA 모션 제어에 최적화된 제어 회로 옵션은 각각의 나노포어에서 구현될 수 있고, 캡쳐된 분자의 피드백 모션 제어를 위한 피드백 신호로서 제 1 회로로부터의 측정값(예컨대, 측정 전류)을 사용할 수 있다. 다양한 실시예에서, 제어 회로에 의해 인가된 전압은 제 1 회로로부터의 피드백 신호에 의존하는 발진 전압 신호(oscillatory voltage signal)이다. 예를 들어, 제어 회로에 의해 인가된 전압은 원하는 경우 감지 회로에 의해 수집된 피드백 데이터의 함수로서 변조될 수 있다. 데이터는 주파수, 진폭, 위상, 이벤트 지속 시간, 수량 및 전위 이벤트 또는 전위 이벤트 시퀀스와 관련된 기타 비교 관계 또는 전위 이벤트 내의 패턴(예컨대, 이벤트 내에서 신호 깊이의 변화로서 등록되는 시퀀스-특정 시그니처)를 포함한다. 일례로서, 다양한 실시예에서, 제어 회로는 직류 바이어스 교류 신호 소스를 사용하여 동적 전압을 인가한다. 동적 전압은 넓은 주파수 범위(잠재적으로 0.001Hz 내지 100MHz) 및 0.001V 내지 10V의 다양한 진폭 범위를 갖는 제어 회로에 의해 인가될 수 있다. 다른 실시예에서, 인가된 전압 및 주파수는 다른 범위에 있을 수 있다.
다양한 실시예에서, 예를 들어, 전압 변화가 각각의 포어를 포함하는 멤브레인의 커패시턴스를 포함하여, 포어 사이의 임의의 공유 커패시턴스를 여기시키기 때문에, 감지 회로에 의해 검출된 측정 전류는 제어 회로에 의해 인가된 전압의 변화에 의해 영향을 받는다. 이와 같이, 확장형 칼만 필터 구현을 포함하는 필터 및 추정기는 감지 신호 상에 중첩되는 전류의 분자-유도 변화를 추정하도록 설계 또는 공동 설계될 수 있다.
또한, 대전된 폴리펩티드, 폴리뉴클레오티드, 인지질, 다당류 및 폴리케타이드 또는 다른 유형의 분자 중 하나와 같은 분자의 시퀀스를 판정하는 방법이 본 명세서에 제공된다. 분자를 시퀀싱하는 방법은: a) 임의의 상기 실시예의 장치의 제 1 또는 제 2 챔버 중 하나에 폴리뉴클레오티드를 포함하는 샘플을 로딩(loading)하는 단계로서, 상기 장치는 제 1 챔버와 중간 층 사이에 위치하는 제 1 나노포어에 걸친 제 1 전압 및 중간 층과 제 2 챔버 사이에 위치하는 제 2 나노포어에 걸친 제 2 전압을 제공하기 위해, 전압 클램프 또는 패치 클램프 시스템과 같은, 제 2 회로에 연결되어 있는 것인, 상기 샘플을 로딩하는 단계; (b) 폴리뉴클레오티드가 챔버를 통해 이동하도록 초기 제 1 전압 및 초기 제 2 전압을 설정함으로써, 폴리뉴클레오티드를 제 1 및 제 2 나노포어 모두에 걸쳐 위치시키는 단계; (c) 폴리뉴클레오티드가 제 1 및 제 2 나노포어를 통해 한 방향으로 제어된 방식으로 이동하도록, 제어된 조건 하에서 크기가 상이한 제 1 전압 및 제 2 전압을 조정하는 단계; (d) 제 1 포어 또는 제 2 포어에서의 감지 회로로부터 제어 회로로 전환하고, 여전히 감지 회로를 사용하는 다른 포어("감지 나노포어")를 통해 폴리뉴클레오티드의 향상된 제어된 전달을 위해 상기 포어에서 제어 회로를 사용하는 단계; 및 (e) 감지 나노포어를 통과하는 폴리뉴클레오티드의 각 뉴클레오티드를 식별하는 단계를 포함한다.
예시적인 나노포어 장치
다양한 실시예에서, 이중 나노포어, 단일 센서 구성을 채용한 예시적인 나노포어 장치(100)는 다중 챔버, 이중 포어 장치이다. 도 1을 참조하면, 예시적인 나노포어 장치(100)는 제 1 챔버(105), 제 2 챔버(110) 및 제 3 챔버(115)를 포함한다. 다양한 실시예들에서, 제 1 챔버(105)는 유리와 같은 절연 재료로 구성될 수 있는 커버(170) 내에 위치된다. 제 3 챔버(115)는 유리와 같은 절연 재료로 구성된 절연층(160)의 표면상에 생성된다. 챔버는 다양한 실시예에서 여러 옵션으로부터 선택된 재료로 구성된 2개의 멤브레인(120a 및 120b)에 의해 분리된다. 고체상태(solid-state) 제조 공정에서, 멤브레인 재료는 실리콘 질화물, 실리콘 이산화물, 알루미늄 산화물, 그래핀, 이들의 임의의 조합, 또는 당업계에 공지된 임의의 다른 고체 재료일 수 있다. 대안은 생물학적 나노포어가 삽입된 중합체 멤브레인일 수 있다. 각각의 멤브레인 층(120a 및 120b)은 이하 제 1 나노포어(125) 및 제 2 나노포어(130)로 지칭되는 별도의 나노포어를 포함한다. 제 1 나노포어(125)는 고체상태 나노포어, 생물학적 나노포어 또는 전계 효과 나노포어 트랜지스터(FENT) 일 수 있다. 제 2 나노포어(130)는 임의의 이들 시스템일 수 있고, 또는 훨씬 더 큰 마이크로포어(μm 규모)일 수 있다. 제 1 나노포어(125)는 제 1 챔버(105)와 유체 연결되고, 제 2 나노포어(130)는 제 3 챔버(115)와 유체 연결(fluidic conncetion)된다.
제 1, 제 2 및 제 3 챔버의 묘사는 하나의 예로서 도 1에 도시되어 있으며, 이는, 예를 들어, 제 1 챔버가 제 2 또는 제 3 챔버 위에 또는 그 반대로 배치된 것을 나타내지는 않는다. 2개의 나노포어(125 및 130)는 그들이 챔버들 사이의 유체 연통(fluid communication)을 허용하는 한 임의의 위치로 배열될 수 있다. 일 양태에서, 나노포어는 도 1에 도시된 바와 같이 정렬된다.
다양한 실시예에서, 이중 나노포어, 단일 센서 구성을 사용하는 예시적인 나노포어 장치(100)는 이중 챔버, 이중 포어 장치이다. 일례로서, 이중 챔버, 이중포어 장치는 각각 제 1 나노포어(125) 및 제 2 나노포어(130)와 각각 유체 연통하는 제 1 챔버 및 제 2 챔버를 포함할 수 있다. 복수의 층은 2개의 챔버를 분리할 수 있다. 예를 들어, 복수의 층은 제 1 층; 제 2 층; 및 제 1 층과 제 2 층 사이에 배치된 전도성 중간 층을 포함한다. 이러한 이중 챔버, 이중 포어 장치에서, 제 1 나노포어(125) 및 제 2 나노포어(130)는 전도성 중간 층 내에 위치한 채널을 통해 서로 연결될 수 있다. 채널은 제 1 나노포어(125)와 제 2 나노포어(130) 사이의 유체 흐름을 가능하게 하는 임의의 유체 경로를 지칭한다.
예시적인 이중 포어, 단일 센서
본 개시물에서, 전압 클램프 또는 패치 클램프와 같은 TIA를 포함하는 감지 회로는 나노포어에 걸쳐 일정한 전압을 인가하고 이온 변화를 검출하기 위해 사용된다. 또한, 제어 회로는 분자의 움직임을 제어하기 위해 나노포어에서 사용된다. 도 2a 및 도 2b는 각각 두 실시예에 따른, 예시적인 나노포어 장치의 제 1 나노포어(125) 및 제 2 나노포어(130)를 포함하는 예시적인 회로를 도시한다.
구체적으로, 도 2a는 제 1 챔버(105), 제 2 챔버(110) 및 제 3 챔버(115)를 포함하는, 예시적인 다중 챔버 이중 포어 장치(100)(도 1 참조)의 회로를 도시한다. 이 실시예에서, 분자의 감지 및 제어는 분자의 적어도 일부가 제 2 챔버(110) 내에 존재하는 동안 발생할 수 있다. 추가로, 도 2b는 제 1 챔버(105), 제 2 챔버(110) 및 제 1 나노포어(125)와 제 2 나노포어(130) 사이에 위치한 채널(150)을 포함하는 이중 챔버, 이중 포어 장치(100)를 도시한다. 이 실시예에서, 분자의 감지 및 제어는 분자의 적어도 일부가 채널(150) 내에 존재하는 동안 발생할 수 있다.
이 실시예는 2개의 나노포어를 도시하지만, 이 회로 디자인은 2개 이상의 나노포어에 적용될 수 있다. 또한, 도 2a 및 도 2b에 도시된 실시예에 묘사된 바와 같이, 예시적인 회로는 제 1 나노포어(125)를 포함하는 감지 회로(225) 및 제 2 나노포어(130)를 포함하는 제어 회로(240)를 포함한다. 다른 실시예에서, 감지 회로(225)가 제 2 나노포어(130)를 포함할 수 있고 제어 회로(240)가 제 1 나노포어(125)를 포함할 수도 있다. 다른 실시예에서, 제 1 나노포어(125) 및 제 2 나노포어(130) 각각은 감지 회로와 제어 회로 간 전환 가능한 회로 내에 통합될 수 있다. 따라서, 분자를 감지 및 제어하는 것은 나노포어(125 및 130) 둘 모두에서 수행될 수 있다.
감지 회로
도 2a 및 도 2b에 도시된 바와 같이, 감지 회로(225)는 1) 제 2 나노포어(130)에 걸쳐 정적 전압을 인가하고 2) 분자가 제 2 나노포어(130)를 통과할 때 센서 데이터를 캡쳐하는 전압 클램프 또는 패치 클램프 중 하나일 수 있다.
나노포어 장치는 제 1 나노포어(125) 및 제 2 나노포어(130), 감지 회로(225)에 대한 공통 전압을 포함할 수 있다. 예를 들어, 도 2a에 도시된 실시예에서, 나노포어 장치의 중간 챔버(110)는 제 1 나노포어(125) 및 제 2 나노포어(130)에 대한 공통 전압으로서 기능할 수 있다. 도 2b에 도시된 실시예에서, 이중 챔버, 이중 포어 장치는 공통 전압으로서 기능할 수 있는 중간 도전층(280)을 포함할 수 있다. 다양한 실시예에서, 중간 챔버(110)의 전기적 연결은 2개의 나노포어(125 및 130) 사이의 2개의 멤브레인 층(120a 및 120b) 내에 위치한 금속 전극을 통해 달성된다. 일부 실시예에서, 전기적 연결은 중간 챔버(110) 외부의 금속 전극에 대한 물리적 연결을 통해 달성된다. 공통 전압 전위는 외부 시스템에 의해 설정된 기준 전압을 나타낼 수 있다. 일부 실시예에서, 공통 전압은 제 1 나노포어(125) 및 제 2 나노포어(130)에 대한 공통 접지이다.
또한, 감지 회로(225)는 제 2 나노포어(130)를 가로 질러 전위하는 분자(예를 들어, DNA와 같은 폴리뉴클레오티드)에 대응하는 센서 데이터의 캡쳐를 가능하게 하도록 구성될 수 있다. 일 양태에서, 감지 회로(225)는 센서 데이터를 캡쳐하기 위한 하나 이상의 센서를 더 포함한다. 일 양태에서, 센서는 분자, 특히, 폴리뉴클레오티드가 제 2 나노포어(130)를 통해 전위할 때 제 2 나노포어(130)에 걸친 이온 전류를 측정하기 위해 제 2 나노포어(130)의 양측에 배치된 한 쌍의 전극을 포함한다.
제 2 나노포어(130)에 걸친 측정된 이온 전류는 제 2 나노포어(130)의 기하학적 형상에 의존한다. 예를 들어, 제 2 나노포어(130)는 감지 회로(225) 내에 저항(R2)을 갖는다. 저항(R2)은 제 2 나노포어(130)의 기하학적 형상(예컨대, 직경)에 의존한다. 저항(R2)은 제 2 나노포어(130)를 통한 분자의 전위를 감지하기 위해 감지 회로(225)에 의해 측정되는 동적 포어 전도도(pore conductance)를 나타낸다.
일부 양태에서, 센서는 터널 갭을 통해 전위할 때 분자의 검출이 가능하도록 하는 터널 갭을 제 2 나노포어(130)에 형성하도록 구성된다. 분자가 터널 갭을 통해 이동할 때, 센서는 분자의 개별 성분(예를 들어, 뉴클레오티드)을 식별할 수 있다. 일부 실시예에서, 센서는 각각의 뉴클레오티드 염기와 별개의 비공유 결합을 형성하는 시약(regents)을 통해 기능화된다. 기능화된 센서를 통한 터널 감지를 "인지 터널링(recognition tunneling)"이라 한다. 인지 터널링과 함께 주사 터널 현미경(STM: Scanning Tunneling Microscope)을 사용하면, 짧은 DNA 올리고머 내의 다른 염기가 측면에 있는 DNA 염기가 식별될 수 있다. 인지 터널링은 또한 4 개의 DNA 염기(A, C, G, T) 각각 및 후생적 변형(epigenetic modification)으로 인해 자연적으로 발생하는 염기 5-메틸-시토신(mC)에 고유한 방향으로 수소 결합하도록 설계된 "범용 판독기"를 제공할 수 있다.
제어 회로
제어 회로는 제 1 및 제 2 나노포어 모두에서 동시에 캡쳐되는 분자(예컨대, DNA 폴리뉴클레오티드 및 단백질 등)의 움직임을 제어한다. 일반적으로, 제어 회로는 제 2 나노포어(130)에서의 감지 회로에 의해 인가된 전압으로 인해 발생하는 장력에 대항하는 지향성 장력(directional field force)을 인가한다. 제어 회로는 전압 클램프 또는 패치 클램프 회로를 포함하지 않는다. 그 대신, 제어 회로는 전압 제어 요소를 이용한다. 이 전압 제어 요소는 전압 클램프 또는 패치 클램프 증폭기 회로(예컨대, 감지 회로)를 통해 가능한 것을 능가하는 제어 성능을 제공한다. 특히, 이러한 제어 요소는 2개의 나노포어 내에서 분자의 움직임을 정확하게 제어하도록 특수하게 구성될 수 있는 매우 다양한 파형을 제공할 수 있다. 또한, 제 2 나노포어(130)에서의 감지 회로에 의해 검출된 전류 측정값은 실시간으로 제어 회로의 제어 요소에 대한 피드백으로서 기능할 수 있다.
도 2a 또는 도 2b의 제어 회로(240)를 참조하면, 전류 및 전압 모두를 제어하기 위한 다양한 방식을 포함할 수 있다. 제어 방법은 개별적으로 또는 조합하여 작동하는 전압 제어 증폭기(VCA), 디지털 제어 증폭기(DCA), 펄스 폭 변조기(PWM), 진폭 제어 또는 위상 루프 고정(PLL)을 포함할 수 있으나, 이에 제한되는 것은 아니다. 일반적으로, 제어 회로(240)는 1) 제 1 나노포어(125)에 걸쳐 동적 전압을 인가하고 2) 제 2 나노포어(130)를 통한 분자의 움직임을 제어한다. 제어 회로(240)는 제 1 나노포어(125)에 걸쳐 동적 전압을 인가한다. 인가된 동적 전압은 감지 회로(225)에 의해 생성된 정적 힘에 의해 부여된 힘에 대항하는 힘을 분자에 부여하는데, 감지 포어를 향한 분자 움직임에 대하여 정적 힘 강도보다 작은 반대 힘 강도를 갖고, 또는 제어 포어를 향한 분자 움직임에 대하여 정적 힘 강도보다 큰 반대 힘 강도를 갖는다. 따라서, 동적 전압을 변경함으로써, 분자의 움직임 방향뿐만 아니라 제 2 나노포어(130)를 통한 분자의 이동율(예컨대, 속도)에 대한 제어가 가능해진다.
제어 회로는 또한 직류(DC) 소스 또는 교류(AC) 소스와 연관된 전기장을 제공하도록 구성될 수 있다. 일 응용예에서, 연관된 주파수를 갖는 AC 전기장에 의한 구동력의 인가는 시스템의 하나 이상의 나노포어에서의, 그것을 관통하는 또는 그 사이에서의 타겟의 위치, 속도 및/또는 가속도를 제어하는데 사용될 수 있다.
제어 회로는 동적 전압을 인가하는데 사용될 수 있는 피드백 데이터를 수신 할 수 있다. 일례로서, 피드백 데이터는 감지 회로(225)(예를 들어, 감지 회로(225)에 포함된 나노포어를 통한 측정된 전류)에 의해 검출될 수 있다. 일 실시예에서, 피드백 데이터는 감지 회로(225)에 의해 캡쳐된 센서 데이터로부터 도출된, 분자가 제 2 나노포어(130)를 통해 반복적으로 앞뒤로 통과하는 주파수(예컨대, 주기)일 수 있다. 따라서, 인가된 동적 전압은 분자가 감지 회로(225)에 의해 통합된 제 2 나노포어(130)를 통해 계속해서 앞뒤로 지나간다는 것을 보장할 수 있다.
동적 전압을 생성하기 위해, 제어 회로(240)의 PLL은 감지 회로(225)에 의해 검출된 측정 전류에 대응할 수 있는 피드백 데이터를 수신한다. 측정 전류는 필터링될 수 있고 기준 신호와 비교되어 오차 신호(예컨대, 기준 신호와 주파수 데이터의 차)를 생성할 수 있다. 또한, 다른 필터링된 버전의 오차 신호는 제어 전압 신호를 실시간으로 조절하기 위해 사용될 수 있다. 비례 오차 항에 더하여, 오차 신호의 1 차 및 고차 미분 및/또는 오차 신호의 적분(들)이 피드백 계산에 사용될 수 있다. 기준 신호는 이전 실험에서 수행된 데이터 수집 및 학습에 기초하여 선험적으로 알 수도 있고, 또는 적응형 또는 실시간 학습 프로세스 또는 이들의 조합을 통해 실험 동안 생성될 수도 있다.
다양한 실시예서, 분자가 DNA 분자인 경우, 예시적인 기준 신호는 이중 가닥 DNA(dsDNA) 스캐폴드(scaffold) 상의 기지의 부위에 결합된 기지의 시퀀스-특이적 페이로드(payload)와 일치하는, DNA 신호 내의 감쇠 펄스일 수 있고, 각각의 페이로드는 페이로드가 없는 dsDNA 신호 레벨에 대해, 그것이 나노포어를 통과할 때 펄스를 발생시킨다. 이 예에서, 바람직한 기준 펄스 주파수는 나노포어를 통한 기지의 DNA 속도에 대응할 수 있다. 다른 기준 신호는 피드백 데이터 내의 측정 신호의 바람직한 변화율(즉, 기지의 선험의 존재 여부에 관계없이 측정 신호 내의 단계적 변화 이벤트의 검출 속도를 높이거나 늦추는 것)에 기초할 수 있다. 다른 기준 신호는 위상 동기 루프 제어기 회로에서 사용될 수 있는 주파수 데이터의 바람직한 위상에 기초한다.
제어 회로(240)는 피드포워드 또는 피드백 방향 중 어느 한 방향으로 기준 신호에 대한 제어 전압 신호를 안정화시키도록 구성된 피드백 제어기를 포함할 수 있다. 다양한 실시예에서, 피드백 및 피드포워드 제어 시스템은, 예컨대, 시스템 식별 툴을 사용하여 식별된 전체 시스템의 충분히 상세한 모델로 설계 및 구현될 수 있다. 피드백은 오차를 0으로(예를 들어, 측정된 신호가 정의된 기준 신호와 일치하도록) 유도한다. 불확실성이 존재하는 경우에도, 피드포워드는 전체 시스템 성능을 향상시키기 위해 기준 추적 및 장애 제거에 도움을 준다. 피드백 또는 피드포워드 신호는 주파수 도메인(예컨대, 주파수) 또는 시간 도메인(예컨대, 주기) 중 하나로 설계될 수 있다.
도 2a 및 도 2b에 도시된 것과 같은 다양한 실시예에서, 기준 신호는 피드백 데이터의 위상을 판정하기 위해 처리된다. 위상 검출기의 출력 전압은 전압 제어 발진기(VCO)에 의해 출력되는 전압 신호의 위상과 기준 신호의 위상 간의 위상차가 일정하게 유지되도록 VCO를 제어하여, 그것을 네거티브 피드백 시스템으로 만드는데 사용된다. 다양한 실시예에서, 도 2a 및 도 2b에 도시된 바와 같이, 피드백 루프는 N분의 1 함수와 같은 분수-N 합성기를 포함한다. 이것은 VCO로부터의 출력이 기준 주파수의 합리적인 배수이고 지정된 주파수 해상도로의 비교를 가능하게 함을 보장한다.
PLL로부터 출력된 전압은 진폭 제어에 기초하여 전압 제어 증폭기(VCA)에 의해 증폭된다. VCA는 제 1 나노포어(125)에 걸쳐 인가된 피크 전압의 제어를 제공한다. 제 1 나노포어(125)는 제 1 나노포어(125)의 기하학적 형상(예를 들어, 직경)에 의존하는 저항(R1)을 갖는다. 저항(R1)은 PLL 및 VCA 출력에 대한 부하로서 역할을 하는 동적 포어 전도도를 나타낸다.
전체적으로 보아, 제 1 나노포어(125)를 포함하는 제어 회로(240)는 전자기력 회로로서 기능한다. 다시 말해서, 제 1 나노포어(125)에 걸쳐 인가된 전압은 중간 챔버(110) 내의 멤브레인 층(120a 및 120b) 사이에 위치한 분자와 상호 작용하는 전자기 장력을 생성한다. 인가된 힘은 제 2 나노포어(130)에 걸쳐 인가된 전압의 크기에 상대적인 제 1 나노포어(125)에 걸쳐 인가된 전압의 크기의 선택을 통해, 어느 한 방향(예컨대, 제 1 나노포어(125)를 향해 제 2 나노포어(130)로부터 멀어지는 방향 또는 제 2 나노포어(130)를 향해 제 1 나노포어(125)로부터 멀어지는 방향)으로 분자를 지향시킨다. 제어하는 동안, 전압 극성은 포어 사이의 중간 챔버로부터 DNA를 당겨 빼내도록 설정되고, 제어 회로의 전압 크기는 감지 회로에 의해 인가된 전압에 상대적으로 조정되어 어느 한 방향으로의 DNA의 순 이동을 달성한다. 따라서, 분자와 상호 작용하는 전자기 장력을 변경시키는 동적 전압의 인가는 제 2 나노포어(130)를 통한 분자의 반복적인 앞뒤 움직임을 가능하게 한다.
다양한 실시예에서, 제어 회로(240)는 직류(DC) 바이어스 AC 신호 소스를 사용하여 제 1 나노포어(125)에 걸쳐 주기적 전압 제어 메커니즘을 사용한다. 이 신호 소스는 제 1 나노포어(125)에서 인가된 전압 및 결과적인 전기장/력의 동적 조정을 가능하게 하는 아래의 적어도 2개의 파라미터를 튜닝할 수 있다:
1) 신호 소스의 진폭(또는 이득)
2) 신호 소스의 주기(또는 주파수).
듀티 사이클, 파형(정현파, 정사각형, 톱니) 및 정지 기간과 같은 입력 전압 신호의 다른 파라미터도 신호 소스에 의해 인가될 수 있다. 다양한 실시예에서, 신호 소스는 AD9102 디지털 투 아날로그 변환기 및 파형 발생기와 같은 단일 장치일 수 있다. 이러한 장치는 이득, 주기, 듀티 사이클 및 파형을 제어함과 동시에 광범위한(예컨대, 0.001Hz 내지 100MHz의 주파수 범위의) 파형을 쉽게 생성할 수 있다. 일부 실시예에서, 입력 전압 신호의 파형의 넓은 주파수 범위는 도 2a 및 도 2b에 도시된 바와 같이 가변 주파수 출력 위상 동기 루프(PLL)(또는 다른 클록 발생기)를 사용함으로써 달성될 수 있다. PLL은 가변 이득 증폭기와 직렬로 배치될 수 있다. PLL은 고정 주파수일 수도 있고, 또는 특정 범위(예컨대, 8kHz-250MHz, IDT 8T49N1012 참조) 내에서 가변적일 수 있다. 다양한 실시예에서, 더 넓은 주파수 범위를 달성하기 위해 복수의 PLL이 제어 회로(240)에 직렬로 포함될 수 있다.
전환 가능한 감지 및 제어 회로
다양한 실시예에서, 감지 및 제어 회로 옵션은 2개의 포어 각각에서 이용 가능하다. 도 3은 일 실시예에 따른, 각각의 나노포어에 대한 감지 회로(225) 및 제어 회로(240) 옵션 및 각각의 포어에 대한 두 옵션 간의 스위치(310)를 갖는 예시적인 이중 나노포어 장치를 도시한다. 특히, 제 1 나노포어(125)는 제 1 세트의 감지 회로(225A) 및 제어 회로(240A)를 모두 포함하는 제 1 종합 회로(350A)에 통합된다. 또한, 제 2 나노포어(130)는 제 2 세트의 감지 회로(225B) 및 제어 회로(240B)를 모두 포함하는 제 2 종합 회로(350B)에 통합된다. 각각의 종합 회로(350)는 각각의 종합 회로(350)의 감지 회로(225)와 제어 회로(240) 간의 전환을 가능하게 하는 스위치(310A 및 310B)를 포함한다. 일 실시예에서, 각각의 스위치(310)를 설정하는 것은 제 1 나노포어(125)에 걸쳐 감지하고 제 2 나노포어(130)에서 제어하는 것을 가능하게 할 수 있고, 그 역도 가능하다. 다양한 실시예에서, 스위치(310A 및 310B)는 도 3에 도시된 것과 다르게 구현될 수 있다. 예를 들어, 특정 하드웨어 구성요소가 감지 회로(225)와 제어 회로(240) 간에 공유될 수 있고, 그러므로 각각의 스위치(310)는 (필요한 하드웨어 구성 요소를 포함하는) 각 회로의 기능이 필요에 따라 적절하게 활성화되도록 구성될 수 있다. 이 실시예들은 아래에서 도 4a 및 도 4b에서 더 상세히 설명된다.
이 실시예에서, 제 1 나노포어(125) 및 제 2 나노포어(130) 각각은 1) 분자의 움직임을 제어하기 위해 동적 전압을 인가하는 것 및 2) 나노포어에 걸친 전위 이벤트에 대응하는 이온 측정값을 검출하는 것의 이중 역할을 갖는 종합 회로(350)에 통합될 수 있다. 각각의 종합 회로(350)의 스위치(310A 및 310B)는 각각의 종합 회로(350A 및 350B)의 역할을 설정하기 위해 사용된다.
도 3에 도시된 바와 같이, 각각의 감지 회로(225)는 센서 데이터를 제공할 수 있고, 각각의 제어 회로(240)는 피드백 데이터를 수신한다. 각각의 감지 회로(225)로부터의 센서 데이터는 컨피규레이션 선택 및 신호 멀티플렉서에 의해 수신 및 처리될 수 있다. 다양한 실시예에서, 멀티플렉서는 각각의 감지 회로(225)로부터 센서 데이터를 수신하고 필터링할 수 있다. 예를 들어, 멀티플렉서는 각 센서 데이터로부터 노이즈를 걸러낸다. 멀티플렉서는 센서 데이터를 피드백 데이터로서 다른 종합 회로(350)로 보낸다. 예를 들어, 센서 데이터가 제 1 종합 회로(350A)의 감지 회로(225A)에 의해 생성되면, 멀티플렉서는 그 센서 데이터를 피드백 데이터로서 제 2 종합 회로(350B)의 제어 회로(240B)에 보낸다.
일 구현예에 따르면, 각각 제 1 및 제 2 구성인 예시적인 이중 나노포어 장치를 도시한 도 4a 및 4b를 참조한다. 제 1 및 제 2 구성에서, 스위치(310)는 하나의 감지 회로(225) 및 하나의 제어 회로(240)에 대한 연결을 제어한다. 특히, 닫힌 회로(및 대응하는 센서 데이터 및 피드백 데이터)는 흰색 상자로 표시되고, 연결되지 않은 회로(예컨대, 개방 회로) 및 대응하는 센서 데이터 및 피드백 데이터는 음영 상자로 표시되어 있다.
도 4a를 참조하면, 이중 나노포어 장치의 제 1 구성은 제 1 스위치(310A)가 제 1 종합 회로(350A)의 감지 회로(225A)에 연결되고 제 2 스위치(310B)가 제 2 종합 회로(350B)의 제어 회로(240B)에 연결된 것을 나타낸다. 따라서, 제 1 종합 회로(350A)의 감지 회로(225A)는 제 1 나노포어(125)를 통한 분자의 전위를 검출하기 위해 사용된다. 또한, 제 2 종합 회로(350B)의 제어 회로(240B)는 분자의 움직임을 제어하는데 사용된다.
도 4b를 참조하면, 이중 나노포어 장치의 제 2 구성은 제 1 스위치(310A)가 제 1 종합 회로(350A)의 제어 회로(240A)에 연결되고 제 2 스위치(310B)가 제 2 종합 회로(350B)의 감지 회로(225B)에 연결된 것을 나타낸다. 따라서, 제 1 종합 회로(350A)의 제어 회로(240A)는 분자의 움직임을 제어하는데 사용되고, 제 2 종합 회로(350B)의 감지 회로(225B)는 제 2 나노포어(130)를 통한 분자의 전위를 검출하는데 사용된다.
다양한 실시예에서, 이중 나노포어 장치는 추가 구성으로 배치될 수 있다. 예를 들어, 제 3 구성은 각각 스위치(310A 및 310B)를 통해 감지 회로(225A 및 225B) 둘 모두를 연결하는 것을 포함한다. 따라서, 각각의 나노포어(125 및 130)에 걸쳐 감지 회로(225A 및 225B)에 의해 인가된 정적 전압은 나노포어 중 하나를 통해 중간 챔버(110) 내로 또는 2개의 나노포어 사이에 위치한 채널(150) 내로 분자를 끌어당기는데 사용될 수 있다. 다양한 실시예에서, 이중 나노포어 장치의 제 3 구성은 분자가 이중 나노포어 장치의 챔버(예를 들어, 제 1 챔버(105))에 최초 로딩된 후에 구현된다.
다른 예로서, 추가 구성은 각각 스위치(310A 및 310B)를 통해 두 제어 회로(240A 및 240B) 모두를 연결하는 것을 포함한다. 이 구성은 나노포어를 통한 분자 전위를 감지하는 추가 방법과 함께 사용될 수 있다. 일례로서, 광학 보조 센서는 광학적으로 태그 될 수 있는 분자를 광학적으로 이미지화하도록 구현될 수 있다. 따라서, 추가 구성의 두 제어 회로(240A 및 240B)는 하나 또는 둘 모두의 나노포어를 통한 분자 움직임에 대한 더 미세한 제어를 가능하게 할 수 있다.
이중 포어, 단일 센서의 동작
일반적으로, 도 2a 및 2b에 도시된 제어 회로(240) 및 감지 회로(225), 또는 도 3, 4a 및 4b에 도시된 복수의 제어 회로(240A/240B) 및 복수의 감지 회로(225A/225B)는 감지 및 데이터 수집을 위해 DNA 세그먼트와 같은 분자의 움직임을 제어하기 위해 이중 포어 단일 센서 장치에서 함께 사용될 수 있다. 이하 설명은 제 2 구성 상태(예컨대, 감지 회로(225B)가 제 2 나노포어(130)를 포함하고 제어 회로(240A)가 제 1 나노포어(125)를 포함함)의 이중 나노포어 장치를 다루지만, 이 설명은 다른 구성 상태(예컨대, 제 1 구성 상태)에도 유사하게 적용될 수 있다.
예를 들어, 도 2a 및 도 2b에 도시된 이중 포어 장치에서, 제어 회로(240)는 어느 한 방향으로 분자의 제어된 움직임을 야기하는 동적 크기로, 감지 회로(225)에 의해 제 2 나노포어(130)에 걸쳐 인가된 정적 전압에 의해 발생되는 힘에 방향적으로 반대되는 힘을 생성하는 제 1 나노포어(125)에 걸쳐 동적으로 변경되는 전압을 인가한다. 특히, 제 1 나노포어(125)에 걸쳐 제어 회로(240)에 의해 인가된 전압은 감지 회로(225)에 의해 제 2 나노포어(130)에 인가된 전압으로부터 유도된 정적 힘보다 크기 면에서 크거나, 같거나, 또는 그보다 작은 다양한 장력 강도를 생성함으로써 분자의 움직임을 지향시킬 수 있다. 따라서, 제 2 나노포어(130)에서의 정적 장력에 상대적인, 제 1 나노포어(125)에서의 전압 장력의 동적 조정은 중간 챔버(110) 또는 채널(150) 중 하나 내의 두 나노포어(125 및 130) 사이에 위치한 분자의 이동율(예컨대, 속도)뿐만 아니라 분자의 순 이동 방향에 대한 제어가 가능하다.
관련 예에서, 도 2a 및 도 2b에 도시된 이중 포어 장치에서, 제어 회로(240)는 연관된 AC 주파수를 갖는 AC 전기장을 이용하여 구동력을 인가한다. AC 주파수(또는 구동력을 인가하는 AC 전기장의 다른 양태)의 제어 또는 선택은 감지 회로(225)로부터의 정보에 기초할 수 있다. 예를 들어, 하나 이상의 주파수(예컨대, 타겟이 나노포어를 통해 앞뒤로 통과하는 주파수), 신호의 진폭, 신호의 위상, 이벤트 지속기간(예컨대, 포어에서의 타겟 움직임과 연관됨), 타겟의 양 및/또는 감지 회로(225)로부터의 전기 신호의 임의의 다른 적절한 피처가 제어 회로(240)의 구동력을 인가하는 AC 전기장의 양태들을 동적으로 조정하기 위해 사용될 수 있다. 따라서, 하나의 나노포어(예컨대, 제 2 나노포어(130))에서의 AC 소스로부터의 구동력은 나노포어(125, 130) 사이에 위치한 분자의 이동율(예컨대, 속도)뿐만 아니라 분자의 순 이동 방향에 대한 제어를 가능하게 할 수 있다.
특히, 제어 회로(240)에 의해 인가된 동적 전압은 감지 회로(225)에 의해 수집된 센서 데이터의 위상과 비교하여 시프트된 위상을 가질 수 있다. 따라서, 분자가 제 1 방향으로 제 2 나노포어(130)를 통해 지나갈 때, 인가된 동적 전압은 그 동적 전압에 의해 부여된 힘이 분자의 이동 방향에 대항하도록 변한다. 그 다음, 분자는 방향을 변경하고 제 2 방향으로(예컨대, 제 1 방향과 반대로) 제 2 나노포어(130)를 통해 지나간다. 여기서, 동적 전압은 분자의 제 2 이동 방향에 대항하도록 다시 변한다. 이 과정은 분자의 세그먼트의 충분한 측정값이 얻어질 때까지 분자가 제 2 나노포어(130)를 통해 앞뒤로 통과할 수 있도록 반복될 수 있다.
제 2 나노포어(130)에서의 정적 힘에 비하여, 제 1 나노포어(125)에서의 더 작거나 더 큰 힘을 진동시킴으로써, 분자의 세그먼트는 그 분자를 제 2 나노포어(130)를 통해 반복적으로 통과시킴으로써 감지 회로(225B)에 의해 여러 번 감지될 수 있다. 그렇게 함으로써, 제 2 나노포어(130)를 가로지르는 분자의 전위에 대응하는 검출된 이온 변화의 신호를 개선할 수 있으며, 이는, 예를 들어, DNA와 같은 분자의 시퀀싱을 개선하기 위한 것과 같은, 다양한 신호 처리 목적에 유용하다. 제 2 나노포어(130)를 통한 폴리뉴클레오티드와 같은 분자의 반복적인 앞뒤로의 통과는 폴리뉴클레오티드의 "플로싱(flossing)"이라 지칭된다. 구체적으로, 제 2 나노포어(130)를 통한 DNA 세그먼트(또는 DNA 세그먼트의 일부)의 플로싱은 인가된 힘(예를 들어, 인가된 전압으로부터 유도되는 전기력)에 응답하고, 제 2 나노포어(130)를 통한 DNA 세그먼트의 전위의 속도에 대응하는 주파수 데이터를 더 포함할 수 있다. 일례로서, 주파수 데이터는 초기 위치에서 시작하여 제 1 방향으로 제 2 나노포어(130)를 가로 질러 전위하고(예를 들어, 중간 챔버(110)로 들어가거나 중간 챔버(110)를 떠나고), 제 1 방향과 반대인 방향으로 제 2 나노포어(130)를 가로 질러 다시 전위하고, 초기 위치로 복귀하는 단일 뉴클레오티드 염기의 주기이다.
도 5는 일 실시예에 따른, 폴리뉴클레오티드와 같은 분자를 시퀀싱하기 위한 흐름 과정을 도시한다. 구체적으로, 폴리뉴클레오티드를 포함하는 샘플은 나노포어 장치(100)의 제 1 챔버(105)에 로딩된다(505). 일부 실시예에서, 폴리뉴클레오티드는 다른 챔버(도 2a에 도시된 제 3 챔버(115) 또는 도 2b의 제 2 챔버(110))에 로딩될 수 있다. 이중 나노포어 장치는 제 1 나노포어(125)에 걸쳐 제 1 전압 및 제 2 나노포어(130)에 걸쳐 제 2 전압을 인가한다(510). 다양한 실시예들에서, 이것은 이중 나노포어 장치를 (예를 들어, 제 1 나노포어(125) 및 제 2 나노포어(130)가 모두 각각 감지 회로(225A 및 225B)에 통합되어 있는) 제 3 구성 상태에 놓음으로써 달성될 수 있다. 따라서, 제 1 및 제 2 전압은 각각 감지 회로(225)에 의해 인가된다. 폴리뉴클레오티드는 제 1 챔버(105)로부터 그리고 제 1 나노포어(125)를 통해 전위한다(515). 구체적으로, 제 1 나노포어(125)의 감지 회로(225A)는 제 1 나노포어(125)를 통해 폴리뉴클레오티드를 끌어 당기는 전기력을 발생시키는 제 1 나노포어(125)에 걸쳐 일정한 전압을 인가할 수 있다. 감지 회로(225)는 제 1 나노포어(125)를 통한 이온 전류의 변화를 측정하도록 구성될 수 있다. 따라서, 폴리뉴클레오티드가 제 1 나노포어(125)를 통해 전위할 때, 감지 회로는 이온 전류의 검출된 변화에 기초하여 전위 이벤트를 검출한다. 또한, 폴리뉴클레오티드는 감지 회로(225B)에 의해 인가된 전압으로 인해 제 2 나노포어(130)를 통해 전위한다(520).
이중 나노포어 장치는 분자의 이동 방향에 대항하는 상이한 구성으로 전환될 수 있다. 예를 들어, 이중 나노포어 장치는 분자의 방향성 이동에 따라 제 3 구성 상태에서 제 1 구성 상태 또는 제 2 구성 상태로 전환된다. 분자가 초기에 제 1 챔버(105)에 로딩되면, 그 분자는 방향적으로 제 1 챔버(105)로부터 빠져나와 제 2 챔버(110) 또는 제 3 챔버(115)를 향해 이동한다. 따라서, 분자의 이동에 대항하기 위해, 이중 나노포어 장치는 제 3 구성에서 제 1 구성 상태로 전환될 수 있다(예를 들어, 도 4a 참조). 일부 실시예에서, 분자가 초기에 바닥 챔버(예를 들어, 도 2a의 제 3 챔버(115) 또는 도 2b의 제 2 챔버(110))에 로딩된 경우, 분자는 방향적으로 제 1 챔버(105)를 향해 이동한다. 따라서, 분자의 이동에 대항하기 위해, 이중 나노포어 장치는 제 3 구성에서 제 2 구성 상태로 전환될 수 있다(예컨대, 도 4b 참조).
아래 설명은 이중 나노포어 장치를 제 1 구성 상태로 전환하는 것을 다루지만, 제 2 구성 상태로의 전환에도 적용될 수 있다. 다양한 실시예에서, 제 1 나노포어(125)를 포함하는 회로에 의해 인가되는 제 1 전압이 조정된다(525). 구체적으로, 감지 회로(225A)의 극성은 그것이 분자의 움직임에 대항하도록 설정된다. 예를 들어, 감지 회로(225A)의 극성은 제 3 구성 상태의 제 1 극성에서 제 1 구성 상태의 제 1 극성의 역으로 반전될 수 있다. 부가적으로, 제 2 나노포어(130)를 포함하는 회로에 의해 인가된 제 2 전압이 또한 조정된다(530). 구체적으로, 제 2 종합 회로(350B)의 제어 회로(240B)는 폴리뉴클레오티드가 제 1 나노포어(125)를 통해 전위되었다는 검출에 응답하여 제 2 나노포어(130)에 걸쳐 조정된 제 2 전압을 인가한다(320). 일반적으로, 제어 회로(240)에 의해 인가된 조정된 제 2 전압의 크기는 그 조정된 제 2 전압으로 인해 발생하는 전기력이 조정된 제 1 전압으로 인해 발생하는 정적 힘에 대항할 수 있도록 동적으로 변화하고 있다(예를 들어, 발진 전압). 제어 회로(240)에 의해 인가된 제 2 전압은 폴리뉴클레오티드가 제 1 나노포어(125)를 통해 앞뒤로 유사하게 진동(예컨대, 플로싱)할 수 있도록 특정 파형(예컨대, 특정 주파수에서의 진폭/크기를 변경하는 것)을 갖는다. 폴리뉴클레오티드가 진동함에 따라, 감지 회로(225A)는 폴리뉴클레오티드의 뉴클레오티드 염기의 전위에 대응하는 제 1 나노포어(125)를 통한 이온 전류 변화를 검출할 수 있다. 폴리뉴클레오티드가 제 1 나노포어(125)를 통해 앞뒤로 플로싱할 때 각각의 뉴클레오티드 염기는 여러 번 판독될 수 있고, 이로 인해 폴리뉴클레오티드의 개별 뉴클레오티드의 보다 정확한 식별(535)이 가능해진다.
폴리뉴클레오티드로부터의 단일 뉴클레오티드 염기가 충분히 판독되면, 인가된 제 2 전압에서의 폴리뉴클레오티드 탈출 상태는 DNA 세그먼트 증분을 허용하기 위해 제어 회로(240B)에 의해 인가될 수 있다. 다시 말해서, 후속 뉴클레오티드 염기 쌍이 제 1 나노포어(125)를 통해 전위 가능하도록 제 2 전압이 일시적으로 조정될 수 있고, 이 시점에서 제 2 전압이 재개되어 후속 뉴클레오티드 염기 쌍을 제 1 나노포어(125)를 통해 앞뒤로 플로싱할 수 있다. 제어 회로(240B)에 의해 제 2 나노포어(130)에 걸쳐 인가된 제 2 전압의 크기 및 주파수는 감지 회로(225A)에 의해 검출된 이온 전류 측정값에 대응하는 주파수 정보에 따라 조정될 수 있다.
다양한 실시예에서, (예를 들어, 피드백 제어와 협력하여 상태 머신 또는 기계 학습 알고리즘을 사용하는) 자동화된 기능 회로는 감지된 데이터를 지속적으로 모니터링하기 위해 감지 회로(225A) 및 제어 회로(240B)를 모두 제어할 수 있다. 따라서, 최적의 성능을 위해 DNA의 한 섹션이 판독될 수 있다. 예를 들어, 제 1 나노포어(125)를 통한 DNA 전위 이벤트에 대응하는 이온 전류가 분해(resolve)되지 않으면, 제어 회로(240)는 제 2 나노포어(130)에 걸친 인가 전압의 단계적 증가를 수행할 수 있다. 그렇게 함으로써, 감지 회로(225)에 의해 인가된 정적 힘에 대항하는 힘이 증가하여, DNA 세그먼트가 제 1 나노포어(125)를 통해 이동할 때 DNA 세그먼트의 움직임이 감속된다. 이는 원하는 성능(예를 들어, 신호 분해능)이 달성될 때까지 제 1 나노포어(125)를 가로지르는 각각의 DNA 전위에 대한 신호 대 잡음비를 개선시킨다.
감지 회로를 사용하여 DNA 세그먼트를 플로싱하고 세그먼트를 여러 번 감지하면 신호 오차를 수용 가능한 수준으로 감소시킬 수 있다. 수용 가능한 정확도를 갖는 컨센서스 시퀀스(consensus sequence)를 달성하기 위해 신호 정렬이 사용될 수 있다. 일부 실시예에서, 다중 DNA 전위에 대응하는 다중 판독은 컨센서스 신호를 생성하는데 사용될 수 있으며, 이러한 컨센서스 신호는 후속하여 뉴클레오티드 염기 쌍을 식별하는데 사용될 수 있다.
추가 고려사항
이중 포어 장치 및 이중 포어 장치로 구현되는 방법들의 실시예, 변형예 및 예시가 앞서 설명되었지만, 설명된 본 발명(들)의 대안의 실시예, 변형예 및 예시는 포어가 둘이 아닌 장치를 포함할 수도 있다. 예를 들어, 변형 예에서, 제 2 챔버(110)(및 그것의 기술된 변형예)는 단일 포어 장치의 전도성 채널일 수도 있으며, 여기서 단일 포어 장치는 (예를 들어, 게이트 전압에 의한) 제어 회로, (예컨대, 소스-드레인 전류 흐름과 관련된) 감지 회로를 가지며, 제어 회로와 감지 회로 사이를 전환할 수 있는 기능을 갖는다. 이러한 단일 포어 장치는 리소그래피 공정, 드릴링 공정, 또는 재료 층을 통과하는 채널 또는 챔버를 생성하는 임의의 다른 적절한 공정으로 제조될 수 있다.
본 발명은 상기 실시예들과 관련하여 설명되었지만, 전술한 설명 및 예시는 본 발명의 범위를 설명하기 위한 것일 뿐 제한하려는 의도는 아님을 이해해야 한다. 본 발명의 범위 내에서 다른 양태, 장점 및 변형은 본 발명이 속하는 기술 분야의 당업자에게 명백할 것이다.

Claims (20)

  1. 나노포어 장치로서,
    제 1 챔버, 제 2 챔버 및 제 3 챔버로서, 상기 제 1 챔버는 제 1 나노포어를 통해 상기 제 2 챔버와 연통하고 상기 제 2 챔버는 제 2 나노포어를 통해 상기 제 3 챔버와 연통하는 것인, 상기 제 1 챔버, 제 2 챔버 및 제 3 챔버; 및
    상기 제 1 나노포어에 연결되며 상기 제 1 나노포어에 걸쳐 일정한 전압을 인가하고 상기 제 1 나노포어를 가로 질러 전위하는 대전된 중합체를 감지하기 위해 상기 제 1 나노포어에 걸쳐 감지 전류를 측정하도록 구성되는 감지 회로; 및
    상기 제 2 나노포어에 연결되며 상기 제 2 나노포어에 걸쳐 동적 전압을 인가하도록 구성되는 제어회로로서, 상기 인가된 동적 전압은 상기 제 1 나노포어 및 상기 제 2 나노포어에 걸쳐 대전된 중합체의 전위를 제어하고, 상기 인가된 동적 전압은 직류 바이어스 교류 신호 소스를 이용하여 인가되는, 제어회로를 포함하는 것을 특징으로 하는 나노포어 장치.
  2. 제 1 항에 있어서,
    상기 감지 회로는 트랜스임피던스 증폭기를 포함하는 것을 특징으로 하는 나노포어 장치.
  3. 제 2 항에 있어서,
    상기 트랜스임피던스 증폭기는 패치 클램프 또는 전압 클램프 증폭기 중 하나인 것을 특징으로 하는 나노포어 장치.
  4. 제 1 항에 있어서,
    상기 제어 회로는 위상 동기 루프(PLL)를 포함하는 것을 특징으로 하는 나노포어 장치.
  5. 제 4 항에 있어서,
    상기 제어 회로는 상기 감지 회로로부터의 피드백에 기초하여 발진 전압 출력을 생성하도록 구성된 것을 특징으로 하는 나노포어 장치.
  6. 제 5 항에 있어서,
    상기 발진 전압 출력의 주파수와 상기 감지 전류의 상기 주파수 사이의 위상차는 시간에 따라 고정된 것을 특징으로 하는 나노포어 장치.
  7. 제 5 항에 있어서,
    상기 발진 전압 출력은 상기 제 2 나노포어에 걸쳐 동적 전압을 인가하는 전압 제어 증폭기(VCA)에 제공되는 것을 특징으로 하는 나노포어 장치.
  8. 제 1 항에 있어서,
    상기 제 2 챔버는 상기 제 1 나노포어 또는 상기 제 2 나노포어 중 적어도 하나의 상기 감지 회로 및 상기 제어 회로 둘 모두를 위한 전기 리턴 경로로서 전기적으로 결합된 것을 특징으로 하는 나노포어 장치.
  9. 나노포어 장치로서,
    제 1 챔버 및 제 2 챔버로서, 상기 제 1 챔버는 제 1 나노포어 및 제 2 나노포어를 통해 상기 제 2 챔버와 연통하는 것인, 상기 제 1 챔버 및 제 3 챔버; 및
    상기 제 1 나노포어에 연결되며 상기 제 1 나노포어에 걸쳐 일정한 전압을 인가하고 상기 제 1 나노포어를 가로 질러 전위하는 대전된 중합체를 감지하기 위해 상기 제 1 나노포어에 걸쳐 감지 전류를 측정하도록 구성되는 감지 회로; 및
    상기 제 2 나노포어에 연결되며 상기 제 2 나노포어에 걸쳐 동적 전압을 인가하도록 구성되는 제어회로로서, 상기 인가된 동적 전압은 상기 제 1 나노포어 및 상기 제 2 나노포어에 걸쳐 대전된 중합체의 전위를 제어하고, 상기 인가된 동적 전압은 직류 바이어스 교류 신호 소스를 이용하여 인가되는, 제어회로를 포함하는 것을 특징으로 하는 나노포어 장치.
  10. 제 9 항에 있어서,
    상기 감지 회로는 트랜스임피던스 증폭기를 포함하는 것을 특징으로 하는 나노포어 장치.
  11. 제 10 항에 있어서,
    상기 트랜스임피던스 증폭기는 패치 클램프 또는 전압 클램프 증폭기 중 하나인 것을 특징으로 하는 나노포어 장치.
  12. 제 9 항에 있어서,
    상기 제어 회로는 위상 동기 루프(PLL)를 포함하는 것을 특징으로 하는 나노포어 장치.
  13. 제 9 항에 있어서,
    상기 장치는 상기 제 1 나노포어를 포함하는 제 1 멤브레인 층, 상기 제 2 나노포어를 포함하는 제 2 멤브레인 층, 및 상기 제 1 멤브레인 층과 상기 제 2 멤브레인 층 사이의 전도성 중간층을 더 포함하는 것을 특징으로 하는 나노포어 장치.
  14. 대전된 중합체를 포함하는 샘플을 나노포어 장치의 제 1 챔버에 로딩하는 단계로서, 상기 나노포어 장치는 상기 제 1 챔버, 제 2 챔버, 제 1 나노포어, 및 제 2 나노포어를 포함하고, 상기 제 1 챔버 및 상기 제 2 챔버는 상기 제 1 나노포어 및 상기 제 2 나노포어를 통해 연통하는, 단계;
    상기 제 2 나노포어에 연결된 제어 회로를 통해 상기 제 2 나노포어에 걸쳐 동적으로 변경된 전압을 인가함으로써 상기 제 1 챔버로부터 그리고 상기 제 1 나노포어를 통해 상기 대전된 중합체를 전위시키는 단계;
    상기 제 1 나노포어에 연결된 감지 회로를 통해 상기 제 1 나노포어에 일정한 전압을 인가하고 상기 감지 회로를 통해 상기 제 1 나노포어에 걸친 감지 전류를 측정함으로써 상기 대전된 중합체를 감지하는 단계를 포함하는, 방법.
  15. 제 14 항에 있어서,
    상기 동적으로 변경된 전압은 상기 제 1 나노포어와 연결된 상기 감지 회로에 의해 캡쳐된 피드백 신호에 기초하여 결정되는 것을 특징으로 하는 방법.
  16. 제 15 항에 있어서,
    상기 피드백 신호는 상기 제 1 나노포어에 걸쳐 측정된 감지 전류이고, 상기 전류는 상기 제 1 나노포어에 걸친 상기 대전된 중합체의 이동의 측정값인 것을 특징으로 방법.
  17. 제 16 항에 있어서,
    상기 대전된 중합체의 이동의 측정값은 상기 대전된 중합체의 위치, 속도 또는 가속도 중 하나의 측정값인 것을 특징으로 하는 방법.
  18. 제 15 항에 있어서,
    상기 피드백 신호는 피드포워드 또는 피드백 중 하나를 사용하여 주파수 도메인 또는 시간 도메인 중 하나로 설계된 것을 특징으로 하는 방법.
  19. 제 15 항에 있어서,
    상기 피드백 신호는 설계된 추정기 및 필터를 이용하여 설계된 것을 특징으로 하는 방법.
  20. 제 14 항에 있어서,
    상기 동적으로 변경된 전압은 0.001Hz 내지 100MHz의 주파수 범위 및 0.001mV 내지 10V의 진폭 범위로 인가되는 것을 특징으로 하는 방법.
KR1020217033158A 2017-06-21 2018-06-14 듀얼 포어-제어 및 감지 장치 KR102377508B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762523228P 2017-06-21 2017-06-21
US62/523,228 2017-06-21
KR1020207001849A KR102315815B1 (ko) 2017-06-21 2018-06-14 듀얼 포어-제어 및 감지 장치
PCT/US2018/037634 WO2018236673A1 (en) 2017-06-21 2018-06-14 DOUBLE PORE DETECTION AND CONTROL DEVICE

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020207001849A Division KR102315815B1 (ko) 2017-06-21 2018-06-14 듀얼 포어-제어 및 감지 장치

Publications (2)

Publication Number Publication Date
KR20210129726A KR20210129726A (ko) 2021-10-28
KR102377508B1 true KR102377508B1 (ko) 2022-03-23

Family

ID=64692458

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020207001849A KR102315815B1 (ko) 2017-06-21 2018-06-14 듀얼 포어-제어 및 감지 장치
KR1020217033158A KR102377508B1 (ko) 2017-06-21 2018-06-14 듀얼 포어-제어 및 감지 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020207001849A KR102315815B1 (ko) 2017-06-21 2018-06-14 듀얼 포어-제어 및 감지 장치

Country Status (8)

Country Link
US (2) US11099169B2 (ko)
EP (1) EP3642607A4 (ko)
JP (2) JP7038147B2 (ko)
KR (2) KR102315815B1 (ko)
CN (1) CN111065917A (ko)
CA (1) CA3067993C (ko)
MX (1) MX2019015156A (ko)
WO (1) WO2018236673A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201202519D0 (en) 2012-02-13 2012-03-28 Oxford Nanopore Tech Ltd Apparatus for supporting an array of layers of amphiphilic molecules and method of forming an array of layers of amphiphilic molecules
CN111065917A (zh) * 2017-06-21 2020-04-24 奥特拉公司 双孔-控制和传感器设备
US11789006B2 (en) 2019-03-12 2023-10-17 Oxford Nanopore Technologies Plc Nanopore sensing device, components and method of operation
EP3980557A4 (en) * 2019-06-07 2023-07-26 Applied Materials, Inc. METHODS OF MAKING TWO-PORE SENSORS
EP4010492A4 (en) * 2019-08-06 2024-04-03 Nooma Bio Inc LOGIC-CONTROLLED POLYNUCLEOTIDE SCANNING FOR FEATURE IMAGING IN A NANOPORE DEVICE
CN112708544A (zh) * 2019-10-25 2021-04-27 成都今是科技有限公司 基因测序的测量装置及其测量方法
CN110823773A (zh) * 2019-11-22 2020-02-21 瑞芯智造(深圳)科技有限公司 用于测量微纳颗粒的装置及方法
US11536708B2 (en) 2020-01-09 2022-12-27 Applied Materials, Inc. Methods to fabricate dual pore devices
US20230349882A1 (en) * 2020-07-17 2023-11-02 Oxford Nanopore Technologies Plc Nanopore sensing device
JP2024512838A (ja) * 2021-03-31 2024-03-21 イルミナ インコーポレイテッド 分子検出のためのスケーラブル回路

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110031389A1 (en) 2009-03-23 2011-02-10 Reed Mark A System and Method for Trapping and Measuring a Charged Particle in a Liquid

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740518B1 (en) 1998-09-17 2004-05-25 Clinical Micro Sensors, Inc. Signal detection techniques for the detection of analytes
US7250115B2 (en) * 2003-06-12 2007-07-31 Agilent Technologies, Inc Nanopore with resonant tunneling electrodes
EP1912062B1 (en) * 2006-10-13 2010-09-08 Sabanci Universitesi A biosensor and chemical sensor implementation using RF and microwave device, circuits and systems
KR101559096B1 (ko) * 2011-07-20 2015-10-08 더 리전트 오브 더 유니버시티 오브 캘리포니아 나노포어 폴리뉴클레오티드 서열분석용 보상 패치-클램프 증폭기 및 기타 용도
CN104774757B (zh) * 2011-07-20 2017-03-01 加利福尼亚大学董事会 双孔装置
IN2014DN00221A (ko) * 2011-07-25 2015-06-05 Oxford Nanopore Tech Ltd
US9696277B2 (en) 2011-11-14 2017-07-04 The Regents Of The University Of California Two-chamber dual-pore device
US20140099726A1 (en) * 2012-10-10 2014-04-10 Two Pore Guys, Inc. Device for characterizing polymers
JP2016512605A (ja) * 2013-03-13 2016-04-28 アリゾナ ボード オブ リージェンツ オン ビハーフ オブ アリゾナ ステート ユニバーシティ 転位制御のためのシステム、デバイス、および方法
ES2704902T3 (es) 2013-05-06 2019-03-20 Two Pore Guys Inc Un método de detección de objetivos biológicos usando un nanoporo y un agente de unión a proteínas de fusión
KR102245192B1 (ko) * 2013-05-06 2021-04-29 온테라 인크. 나노포어를 이용한 표적 검출
WO2016154337A2 (en) 2015-03-23 2016-09-29 The University Of North Carolina At Chapel Hill Method for identification and enumeration of nucleic acid sequences, expression, splice variant, translocation, copy, or dna methylation changes using combined nuclease, ligase, polymerase, terminal transferase, and sequencing reactions
EP3303620A1 (en) 2015-06-02 2018-04-11 Nanopore Diagnostics LLC Nucleic acid detection
WO2018093976A1 (en) 2016-11-16 2018-05-24 Nanopore Diagnostics, Llc Analysis of nucleic acids using probe with non-linear tag
CN111065917A (zh) * 2017-06-21 2020-04-24 奥特拉公司 双孔-控制和传感器设备

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110031389A1 (en) 2009-03-23 2011-02-10 Reed Mark A System and Method for Trapping and Measuring a Charged Particle in a Liquid

Also Published As

Publication number Publication date
US20180372713A1 (en) 2018-12-27
EP3642607A4 (en) 2021-04-14
EP3642607A1 (en) 2020-04-29
KR20200042894A (ko) 2020-04-24
WO2018236673A1 (en) 2018-12-27
US11099169B2 (en) 2021-08-24
JP2020524801A (ja) 2020-08-20
CN111065917A (zh) 2020-04-24
CA3067993C (en) 2024-02-27
CA3067993A1 (en) 2018-12-27
US20210405020A1 (en) 2021-12-30
KR20210129726A (ko) 2021-10-28
MX2019015156A (es) 2020-08-17
KR102315815B1 (ko) 2021-10-25
JP7038147B2 (ja) 2022-03-17
JP2022088415A (ja) 2022-06-14

Similar Documents

Publication Publication Date Title
KR102377508B1 (ko) 듀얼 포어-제어 및 감지 장치
CN109196343B (zh) 生物分子测量装置
US9989516B2 (en) Electro-diffusion enhanced bio-molecule charge detection using electrostatic interaction
Uram et al. Noise and bandwidth of current recordings from submicrometer pores and nanopores
EP2988128B1 (en) Dual-pore device
US7368923B2 (en) Time interval trimmed differential capacitance sensor
CN102753936B (zh) 振动型惯性力传感器
JP2020524801A5 (ko)
Lin et al. Electrodiffusioosmosis-induced negative differential resistance in pH-regulated mesopores containing purely monovalent solutions
Schiel et al. Diffusion and trapping of single particles in pores with combined pressure and dynamic voltage
He et al. Salt-gradient approach for regulating capture-to-translocation dynamics of dna with nanochannel sensors
Wang et al. Dynamics of ion transport and electric double layer in single conical nanopores
CN113765516B (zh) 一种mems谐振器闭环控制方法及控制结构
US11820649B2 (en) Position sensing circuit for an electrostatically driven MEMS device
JP3854420B2 (ja) 電磁流量計
JP2005039325A (ja) スピーカ装置およびその調整方法

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right