JP2020524801A - 二重細孔制御およびセンサデバイス - Google Patents

二重細孔制御およびセンサデバイス Download PDF

Info

Publication number
JP2020524801A
JP2020524801A JP2019571035A JP2019571035A JP2020524801A JP 2020524801 A JP2020524801 A JP 2020524801A JP 2019571035 A JP2019571035 A JP 2019571035A JP 2019571035 A JP2019571035 A JP 2019571035A JP 2020524801 A JP2020524801 A JP 2020524801A
Authority
JP
Japan
Prior art keywords
nanopore
nanopores
voltage
circuit
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019571035A
Other languages
English (en)
Other versions
JP7038147B2 (ja
JP2020524801A5 (ja
Inventor
スタム レト
スタム レト
サマーズ マイケル
サマーズ マイケル
ソーン エリック
ソーン エリック
ビー.ダンバー ウィリアム
ビー.ダンバー ウィリアム
Original Assignee
オンテラ インコーポレイテッド
オンテラ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オンテラ インコーポレイテッド, オンテラ インコーポレイテッド filed Critical オンテラ インコーポレイテッド
Publication of JP2020524801A publication Critical patent/JP2020524801A/ja
Publication of JP2020524801A5 publication Critical patent/JP2020524801A5/ja
Priority to JP2022034503A priority Critical patent/JP2022088415A/ja
Application granted granted Critical
Publication of JP7038147B2 publication Critical patent/JP7038147B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44743Introducing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Urology & Nephrology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Food Science & Technology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

配列決定を行うための2細孔デバイスおよび方法が、説明される。2細孔デバイスは、第1のチャンバと、第2のチャンバと、第3のチャンバとを含むことができ、第1のチャンバは、第1のナノ細孔を通して、第2のチャンバと連通しており、第2のチャンバは、第2のナノ細孔を通して、第3のチャンバと連通している。デバイスは、ナノ細孔においてターゲットと関連付けられた電気信号を測定するためのセンシング回路と、ナノ細孔においてターゲットの動きを制御するための制御回路も含むことができる。デバイスは、第1のナノ細孔および第2のナノ細孔の各々について、センシングモードと制御モードとを含み、および/またはセンシングモードと制御モードとの間で切り換えを行うことができる。配列決定方法は、1つまたは複数のナノ細孔を通り抜けるターゲットの転位、必要に応じたセンシングモードと制御モードとの間の切り換え、およびセンシングモードにおいて使用するターゲットの態様の測定に関連して、2細孔デバイスを実施することができる。

Description

本発明は、二重細孔制御およびセンサデバイスに関する。
関連出願の相互参照
本出願は、その全体がこの参照によって本明細書に組み込まれる、2017年6月21日に出願された米国特許仮出願第62/523228号明細書の利益を主張する。
ナノ細孔は、脂質膜においてタンパク質チャネルとして自然に形成される(生物学的細孔)、または固体基板において開口を穿孔もしくは食刻することによって工作される(固体細孔)、ナノスケール管路である。そのようなナノ細孔が、ナノ細孔によって隔てられた2つのチャンバを備えるナノデバイス内に組み込まれるとき、膜貫通電圧を印加し、細孔を通り抜けるイオン電流を測定するために、パッチクランプまたは電圧クランプシステムなどのセンシングデバイスが、使用されることができる。
ナノ細孔は、安価な全ゲノムDNA塩基配列決定に対するきわめて明るい見通しを提供する。ナノ細孔配列決定に対する2つの障害は、(1)デノボシーケンシングのために核酸内の各ヌクレオチドのアイデンティティを正確に決定するのに十分な感度の不足(単一ヌクレオチド感度の不足)、ならびに(2)センシング中にナノ細孔を通り抜ける各ヌクレオチド単位の配送レートを規制および制御する能力である。配送レートを規制する能力がないことは、単一ヌクレオチド感度の不足と関連付けられることができる、その原因となる問題の1つであるので、これら2つの障害は、しばしば相互に関係する。言い換えると、DNAが、あまりにも速くセンサを横断して通過していく場合、センサの機能は、損なわれ得る。酵素または光学素子の使用を必要としない、障害2に対処するための既存の方法は、存在せず、それらはともに、特化されたナノ細孔技法だけにおいて機能し、そのことが、電気的方法と比較して、より高い複雑さおよびコストを招く。
IDT 8T49N1012
開示される実施形態は、詳細な説明、添付の特許請求の範囲、および添付の図(または図面)からより容易に明らかになる、利点および特徴を有する。図についての簡潔な予備解説は、以下の通りである。
一実施形態に従った、2つのナノ細孔を有する例示的なナノ細孔デバイスを示す図である。 一実施形態に従った、例示的なナノ細孔デバイスの2つのナノ細孔を組み込んだ例示的な回路を示す図である。 一実施形態に従った、例示的なナノ細孔デバイスの2つのナノ細孔を組み込んだ例示的な回路を示す図である。 一実施形態に従った、各細孔のためのセンシング回路と制御回路からなる選択肢、および各細孔のための2つの選択肢を切り換えるスイッチを有する、例示的な2ナノ細孔デバイスを示す図である。 一実施形態に従った、第1の構成における例示的な2ナノ細孔デバイスを示す図である。 一実施形態に従った、第2の構成における例示的な2ナノ細孔デバイスを示す図である。 一実施形態に従った、ポリヌクレオチドなどの分子の配列決定を行うためのフロープロセスを示す図である。
概要
本開示は、2つのナノ細孔の各々が、切り換え可能な2つの回路からなる選択肢内に組み込まれた、2ナノ細孔デバイスについて説明する。これ以降、センサ回路と呼ばれる、ナノ細孔を組み込んだ第1の回路は、センシング電圧クランプまたはパッチクランプ増幅器回路を備える。ナノ細孔を組み込んだ第1の回路が、使用されるとき、ナノ細孔は、「イオン電流センシング」ナノ細孔として機能する。これ以降、制御回路と呼ばれる、第2の回路は、第2の回路内に組み込まれたナノ細孔を横断する場の力の大きさおよび方向を制御する、カスタマイズされた回路を備える。様々な実施形態において、制御回路は、位相ロックループ(PLL)、または他の何らかの周期的電圧制御波形を備える。制御回路は、また、フィードバック電圧制御のために使用されることができる、第1の回路からの情報(例えば、測定された電流)にアクセスする。この構成においては、センシング回路は、第1のナノ細孔に適用され、一方、最適な細孔通過電圧制御のために設計された、制御回路は、第2のナノ細孔に適用される。2つの回路種類間の切り換えは、任意の時に行われることができる。言い換えると、センサ回路は、第2のナノ細孔に適用されることができ、一方、制御回路は、第1のナノ細孔に適用される。一般に、一方のナノ細孔における制御回路は、他方のナノ細孔を通り抜ける分子の動きに影響を与えるために使用され、それによって、反対のナノ細孔のセンシング回路を使用した、分子の複数の再読を可能にする。様々な実施形態において、2つの異なるナノ細孔において動作させられる制御回路とセンシング回路の組合せは、制御された配送およびセンシング中に、分子を、それがナノ細孔を通り抜けて転位するときに、低速化することによって、上で説明された障害2に対処するために使用されることができる。
例示的な2ナノ細孔デバイスは、2つのナノ細孔に入る個々の分子を一度に捕捉するために、およびセンシング回路を使用して、1つのナノ細孔を通り抜ける分子の転位を測定するために、使用されることができる。2細孔デバイスについて説明するそのような実施形態は、第1のチャンバを第2のチャンバと流体的に接続する第1のナノ細孔を備える、第1の膜層と、第2のチャンバを第3のチャンバと流体的に接続する第2のナノ細孔を備える、第2の膜層とを備えることができ、第1のナノ細孔は、第1のナノ細孔の間に定電圧を印加し、第1のナノ細孔を通り抜ける電流を測定する、センサ回路内において接続され、第2のナノ細孔は、第2のナノ細孔の間に動的電圧を印加する、制御回路内において接続される。代替的実施形態においては、第1の細孔は、制御回路に接続され、第2の細孔は、センシング回路に接続される。
各ナノ細孔の第1の回路を参照すると、組み込まれた回路は、パッチクランプまたは電圧クランプ増幅器の一方であることができる。第1の回路のTIAは、電圧が一定に設定されたとき、ナノ細孔を横断する一定の場の力を提供し、ナノ細孔を通り抜ける測定された電流は、DNA、RNA、タンパク質などの分子、およびこれらの分子の任意の組合せ(高分子)の存在および通過を検出する、センシング信号として機能する。これに関して、TIA(パッチクランプ、電圧クランプ)は、ナノ細孔分析において使用される、「センシング回路」回路の例である。電圧は、センシング中、一定に設定され、したがって、ナノ細孔において、いずれの通過分子に対する直接的な制御も提供しないが、場の力の影響が及ぶ範囲において、ナノ細孔の通過前、通過中、および通過後に、分子に作用する場の力を印加する。様々な実施形態において、パッチクランプは、電圧作動メカニズムとしてではなく、最適なセンシングのために設計される。
各ナノ細孔の第2の回路を参照すると、DNA動き制御のために最適化された、制御回路選択肢は、各ナノ細孔において実施されることができ、第1の回路からの測定(例えば、測定された電流)を、捕捉された分子のフィードバック動き制御のためのフィードバック信号として使用することができる。様々な実施形態において、制御回路によって印加される電圧は、第1の回路からのフィードバック信号に依存する、振動電圧信号である。例えば、制御回路によって印加される電圧は、望ましいときは、センサ回路によって集められたフィードバックデータの関数として、調整されることができる。データは、周波数、振幅、位相、イベント持続時間、量、および転位イベント、もしくは転位イベントのシーケンス、または転位イベント内におけるパターン(例えば、イベント内における信号深度の変化として登録するシーケンス固有の署名)に関する他の比較関係を含む。例として、様々な実施形態において、制御回路は、直流バイアスの交流信号源を使用して、動的電圧を印加する。動的電圧は、潜在的には0.001Hzから100MHzの間の広い周波数範囲、および0.001Vから10Vの間の変化する振幅範囲を有し、制御回路によって印加されることができる。他の実施形態においては、印加される電圧および周波数は、他の範囲にあることができる。
様々な実施形態において、例えば、電圧変化は、各細孔を備える膜の容量を含む、細孔間のいずれの共有容量も高めるので、センシング回路によって検出される測定された電流は、制御回路によって印加される電圧の変化によって影響される。そのため、センシング信号上に重ね合わされた、電流の分子誘起された変化を推定するために、拡張されたカルマンフィルタ実施を含む、フィルタと推定器が、設計または協調設計されることができる。
本明細書においては、荷電されたポリペプチド、ポリヌクレオチド、リン脂質、多糖類、およびポリケチド、または別の種類の分子の1つなどの分子の配列を決定するための方法も、提供される。分子の配列決定を行う方法は、a)上述の実施形態のいずれかのデバイスの第1または第2のチャンバの一方に、ポリヌクレオチドを含む試料を入れるステップであって、デバイスは、第1のチャンバと中間層との間に配置された第1のナノ細孔の間に第1の電圧を、また中間層と第2のチャンバとの間に配置された第2のナノ細孔の間に第2の電圧を提供するための、電圧クランプまたはパッチクランプシステムなどの、センサ回路に接続される、ステップと、(b)ポリヌクレオチドがチャンバを通り抜けて移動するように、初期の第1の電圧および初期の第2の電圧を設定し、それによって、ポリヌクレオチドを第1および第2のナノ細孔の両方を横断して配置するステップと、(c)第1の電圧および第2の電圧を調整するステップであって、ポリヌクレオチドが、一方向に、制御された方式で、第1および第2のナノ細孔を通り抜けて移動するように、2つの電圧は、制御された状態の下において、大きさが異なる、ステップと、(d)第1の細孔または第2の細孔において、センシング回路から制御回路に切り換え、その細孔において、まだセンシング回路を使用している他方の細孔(「センシングナノ細孔」)を通り抜けるポリヌクレオチドの高度化された制御された配送のために、制御回路を利用するステップと、(e)センシングナノ細孔を通過するポリヌクレオチドの各ヌクレオチドを識別するステップとを含む。
例示的なナノ細孔デバイス
様々な実施形態において、2ナノ細孔1センサ構成を利用するための例示的なナノ細孔デバイス100は、多チャンバ2細孔デバイスである。図1を参照すると、例示的なナノ細孔デバイス100は、第1のチャンバ105と、第2のチャンバ110と、第3のチャンバ115とを含む。様々な実施形態において、第1のチャンバ105は、ガラスなどの絶縁素材から構成されてよいカバー170内に配置される。第3のチャンバ115は、ガラスなどの絶縁素材から構成される絶縁層160の表面上に生成される。チャンバは、様々な実施形態において、いくつかの選択肢から選択される素材から構成された、2つの膜(120a、120b)によって隔てられる。固体製作プロセスにおいて、膜素材は、窒化ケイ素、二酸化ケイ素、酸化アルミニウム、グラフェン、これらの任意の組合せ、または当技術分野において知られた他の任意の固体素材であることができる。代替物は、生物学的ナノ細孔が挿入されたポリマ膜である。各膜層120a、120bは、これ以降、第1のナノ細孔125および第2のナノ細孔130と呼ばれる、別個のナノ細孔を含む。第1のナノ細孔125は、固体ナノ細孔、生物学的ナノ細孔、または電界効果ナノ細孔トランジスタ(FENT)であってよい。第2のナノ細孔130は、それらのシステムのいずれか、またははるかに大きいマイクロ細孔(μmスケール)であってよい。第1のナノ細孔125は、第1のチャンバ105と流体的に接続しており、第2のナノ細孔130は、第3のチャンバ115と流体的に接続している。
図1における第1、第2、および第3のチャンバの描写は、一例として示されており、例えば、第1のチャンバが、第2もしくは第3のチャンバの上方に配置されること、またはその反対であることを示していない。2つのナノ細孔125、130は、それらが、チャンバ間における流体連通を可能にする限り、任意の位置に配置されることができる。また、一態様においては、ナノ細孔は、図1に示されるように、アライメントされる。
様々な実施形態において、2ナノ細孔1センサ構成を利用するための例示的なナノ細孔デバイス100は、2チャンバ2細孔デバイスである。例として、2チャンバ2細孔デバイスは、各々が、それぞれ、第1のナノ細孔125および第2のナノ細孔130と流体連通している、第1のチャンバと、第2のチャンバとを含むことができる。複数の層が、2つのチャンバを分離することができる。例えば、複数の層は、第1の層と、第2の層と、第1の層と第2の層との間に配置された導電性中間層とを含む。この2チャンバ2細孔デバイスにおいては、第1のナノ細孔125と第2のナノ細孔130は、導電性中間層内に配置されたチャネルを通して、互いに接続されてよい。チャネルとは、第1のナノ細孔125と第2のナノ細孔130との間の流体フローを可能にする任意の流体経路のことである。
例示的な2細孔1センサ
本開示においては、電圧クランプまたはパッチクランプなどのTIAを含む、センサ回路は、定電圧を印加し、ナノ細孔を横断するイオンの変化を検出するために使用される。加えて、制御回路が、分子の動きを制御するために、ナノ細孔において使用される。図2Aないし図2Bは、各々、2つの実施形態に従った、例示的なナノ細孔デバイスの第1のナノ細孔125および第2のナノ細孔130を組み込んだ例示的な回路を示している。
具体的には、図2Aは、第1のチャンバ105と、第2のチャンバ110と、第3のチャンバ115とを含む、例示的な多チャンバ2細孔デバイス(図1参照)の回路を示している。この実施形態においては、分子のセンシングおよび制御は、分子の少なくとも一部が第2のチャンバ110内に存在する間、生じることができる。加えて、図2Bは、第1のチャンバ105と、第2のチャンバ110と、第1のナノ細孔125と第2のナノ細孔130との間に配置されたチャネル150とを含む、2チャンバ2細孔デバイス100を示している。この実施形態においては、分子のセンシングおよび制御は、分子の少なくとも一部がチャネル150内に存在する間、生じることができる。
この実施形態は、2つのナノ細孔を示しているが、回路設計は、3つ以上のナノ細孔に適用されることができる。加えて、図2Aおよび図2Bに示される実施形態に示されるように、例示的な回路は、第1のナノ細孔125を組み込んだセンサ回路225と、第2のナノ細孔130を組み込んだ制御回路240とを含む。他の実施形態においては、センサ回路225は、代わりに、第2のナノ細孔130を組み込んでよく、一方、制御回路240は、第1のナノ細孔125を組み込む。さらなる実施形態においては、第1のナノ細孔125および第2のナノ細孔130の各々は、センサ回路と制御回路との間で切り換え可能な回路内に組み込まれてよい。したがって、分子のセンシングおよび制御は、第1のナノ細孔125および第2のナノ細孔130の両方において、実行されることができる。
センサ回路
図2Aおよび図2Bに示されるように、センサ回路225は、1)第2のナノ細孔130の間に静的電圧を印加し、2)分子が第2のナノ細孔130を通過するときに、センサデータをキャプチャする電圧クランプまたはパッチクランプのうちの一方であってよい。
ナノ細孔デバイスは、第1のナノ細孔125およびセンサ回路225における第2のナノ細孔130のための共通電圧を含むことができる。例えば、図2Aに示される実施形態においては、ナノ細孔デバイスの中間チャンバ110は、第1のナノ細孔125および第2のナノ細孔130のための共通電圧として機能することができる。図2Bに示される実施形態においては、2チャンバ2細孔デバイスは、共通電圧として機能することができる、中間導電性層280を含んでよい。様々な実施形態において、中間チャンバ110の電気的接続は、2つのナノ細孔125および130の間の2つの膜層120aおよび120b内に配置された、金属電極を通して達成される。いくつかの実施形態においては、電気的接続は、中間チャンバ110の外部の金属電極への物理的接続を通して達成される。共通電圧ポテンシャルとは、外部システムによって設定された基準電圧のことであることができる。いくつかの実施形態においては、共通電圧は、第1のナノ細孔125および第2のナノ細孔130のための共通接地である。
センサ回路225は、第2のナノ細孔130を横断して転位する分子(例えば、DNAなどのポリヌクレオチド)に対応する、センサデータのキャプチャを可能にするようにさらに構成されることができる。一態様においては、センサ回路225は、センサデータをキャプチャするための1つまたは複数のセンサをさらに含む。一態様においては、分子、特に、ポリヌクレオチドが通り抜けて転位するときに、第2のナノ細孔130を横断するイオン電流を測定するために、センサは、第2のナノ細孔130の両側に配置された電極のペアを含む。
第2のナノ細孔130を横断する測定されたイオン電流は、第2のナノ細孔130の形状に依存する。例えば、第2のナノ細孔130は、センサ回路225内の抵抗R2を所有する。抵抗R2は、第2のナノ細孔130の形状(例えば、直径)に依存する。抵抗R2は、第2のナノ細孔130を通り抜ける分子の転位をセンスするための、センサ回路225によって測定される動的細孔コンダクタンスを表す。
いくつかの態様においては、センサは、第2のナノ細孔130において、トンネルギャップを形成するように構成され、それは、分子の検出を、トンネルギャップを通り抜けて転位するときに可能にする。分子が、トンネルギャップを通り抜けて移動するとき、センサは、そのとき、分子の個々の構成要素(例えば、ヌクレオチド)を識別することができる。いくつかの実施形態においては、センサは、各ヌクレオチド塩基と異なる非共有結合を形成する試薬を用いて、官能基化される。官能基化されたセンサを用いるトンネルセンシングは、「認識トンネリング」と呼ばれる。認識トンネリングを用いる走査型トンネル顕微鏡(STM)を使用して、短いDNAオリゴマにおいて他の塩基が脇側に位置するDNA塩基が、識別されることができる。認識トンネリングは、4つのDNA塩基(A、C、G、T)の各々に、また後成的修飾のせいで自然に発生している塩基5−メチルシトシン(mC)にも一意的な配向で水素結合するように設計された、「汎用リーダ」も提供することができる。
制御回路
制御回路は、同時に、第1のナノ細孔と第2のナノ細孔の両方の中に捕捉された分子(例えば、DNAポリヌクレオチドおよびタンパク質など)の動きを制御する。一般に、制御回路は、第2のナノ細孔130においてセンサ回路によって印加された電圧から生じる場の力とは反対向きの方向性のある場の力を印加する。制御回路は、電圧クランプまたはパッチクランプ回路を組み込まない。代わりに、制御回路は、電圧制御要素を利用する。これらの電圧制御要素は、電圧クランプまたはパッチクランプ増幅器回路(例えば、センサ回路)を用いた場合に可能なものを上回る制御についての性能を提供する。特に、そのような制御要素は、2つのナノ細孔内における分子の動きを正確に制御するように特に構成されることができる、多種多様な波形を提供することができる。さらに、第2のナノ細孔130におけるセンサ回路によって検出された電流の測定は、リアルタイムに、制御回路の制御要素のためのフィードバックとして機能することができる。
図2Aまたは図2Bのいずれかにおける制御回路240を参照すると、それは、電流と電圧の両方を制御するための様々な方法を含むことができる。制御方法は、別々にまたは組み合わされて機能する、電圧制御増幅器(VCA)、デジタル制御増幅器(DCA)、パルス幅変調器(PWM)、振幅制御、または位相ループロック(PLL)を含むことができるが、それらに限定されない。一般に、制御回路240は、1)第1のナノ細孔125の間に動的電圧を印加し、2)第2のナノ細孔130を通り抜ける分子の動きを制御する。制御回路240は、第1のナノ細孔125の間に動的電圧を印加する。印加された動的電圧は、センサ回路225によって発生させられた静的力によって与えられる力とは反対向きの分子に作用する力を与え、反対向きの力の強さは、センシング細孔に向かう分子運動のための静的力の強さよりも小さく、または反対向きの力の強さは、制御細孔に向かう分子運動のための静的力の強さよりも大きい。したがって、動的電圧を変化させることは、第2のナノ細孔130を通り抜ける分子の動きの方向、および分子の動きのレート(例えば、速度)に対する制御を可能にする。
制御回路は、直流(DC)源または交流(AC)源と関連付けられた電場を提供するようにも構成されることができる。1つの適用例においては、関連付けられた周波数を有するAC電場による駆動力の印加は、システムのナノ細孔のうちの1つまたは複数における、それらを通り抜ける、またはそれらの間における、ターゲットの位置、速度、および/または加速度を制御するために使用されることができる。
制御回路は、動的電圧を印加するために使用されることができる、フィードバックデータを受信することができる。例として、フィードバックデータ(例えば、センサ回路225に組み込まれたナノ細孔を通り抜ける測定された電流)は、センサ回路225によって検出されることができる。一実施形態においては、フィードバックデータは、センサ回路225によってキャプチャされたセンサデータから導出される、分子が第2のナノ細孔130を繰り返し前後に通過する周波数(例えば、周期)であってよい。したがって、印加される動的電圧は、分子が、センシング回路225によって組み込まれた第2のナノ細孔130を前後に通過し続けることを保証することができる。
動的電圧を発生させるために、制御回路240のPLLは、センシング回路225によって検出された測定された電流に対応することができる、フィードバックデータを受信する。誤差信号(例えば、基準信号と周波数データとの間の差)を生成するために、測定された電流は、フィルタリングされ、基準信号と比較されることができる。加えて、リアルタイムに制御電圧信号を調整するために、誤差信号の他のフィルタリングされたバージョンが、使用されることができる。比例誤差項に加えて、誤差信号の1次およびより高次の微分、ならびに/または誤差信号の積分が、フィードバック計算において使用されることができる。基準信号は、事前実験において行われたデータ収集および学習に基づいて、事前に知られていることができ、またはそれは、適応もしくはリアルタイム学習プロセス、もしくはそれらの組合せを通して、実験中に生成されることができる。
様々な実施形態において、分子がDNA分子である場合、例示的な基準信号は、二本鎖DNA(dsDNA)スカフォード上の知られた部位に結合された知られた配列固有のペイロードに一致する、DNA信号内の減衰パルスであることができ、各ペイロードは、ペイロードを有さないdsDNA信号レベルに対して、それがナノ細孔を通過するときに、パルスを発生させる。その例においては、望ましい基準パルス周波数は、ナノ細孔を通り抜ける知られたDNAレートに対応することができる。別の基準信号は、フィードバックデータ内の測定された信号の望ましい変化率、すなわち、存在することが事前に知られているかどうかにかかわらず、測定された信号内のイベントを変化させるステップの検出をスピードアップまたはスローダウンさせる変化率に基づくことができる。別の基準信号は、位相ロックループコントローラ回路において使用されることができる、周波数データの望ましい位相に基づく。
制御回路240は、フィードフォワードまたはフィードバック方向のどちらかにおいて、制御電圧信号をそれの基準信号に対して安定させるように構成された、フィードバックコントローラを含んでよい。様々な実施形態において、フィードバックおよびフィードフォワード制御システムは、例えば、システム識別ツールを使用して識別される、全システムの十分に詳細なモデルを用いて設計および実施されることができる。フィードバックは、(例えば、測定された信号が、定義された基準信号に一致するように)誤差をゼロに近づける。不確実性が存在しても、フィードフォワードは、基準追跡および攪乱排除に役立ち、全システム性能を改善する。フィードバックまたはフィードフォワード信号は、周波数領域(例えば、周波数)または時間領域(例えば、周期)のどちらかにおいて、設計されることができる。
図2Aおよび図2Bに示されるものなど、様々な実施形態において、基準信号は、フィードバックデータの位相を決定するために、処理される。位相検出器の出力電圧は、電圧制御発振器(VCO)によって出力された電圧信号の位相と、基準信号の位相との間の位相差が、一定に保たれ、それによって、それをネガティブフィードバックシステムにするように、VCOを制御するために使用される。様々な実施形態において、図2A/図2Bに示されるように、フィードバックループは、Nによる除算関数など、N分の1合成器を組み込む。これは、VCOからの出力が、基準周波数の有理数倍であり、指定された周波数解像度における比較を可能にすることができることを保証する。
PLLからの電圧出力は、振幅制御に基づいて、電圧制御増幅器(VCA)によって増幅される。VCAは、第1のナノ細孔125の間に印加されるピーク電圧の制御を提供する。第1のナノ細孔125は、第1のナノ細孔125の形状(例えば、直径)に依存する、抵抗R1を所有する。抵抗R1は、PLLおよびVCA出力に対する負荷として機能する、動的細孔コンダクタンスを表す。
要するに、第1のナノ細孔125を組み込んだ制御回路240は、電磁気力回路として機能する。言い換えると、第1のナノ細孔125の間に印加される電圧は、中間チャンバ110において膜層120aおよび120bの間に配置された分子と相互作用する、電磁場の力を生成する。印加される力は、第2のナノ細孔130の間に印加される電圧の大きさに対する、第1のナノ細孔125の間に印加される電圧の大きさの選択を通して、分子をどちらかの方向に(例えば、第2のナノ細孔130から離れて、第1のナノ細孔125の方に、または第1のナノ細孔125から離れて、第2のナノ細孔130の方に)向かわせる。制御中、電圧の極性は、細孔の間の中間チャンバからDNAを引き離すように設定され、制御回路の電圧の大きさは、どちらかの方向においてDNAの正味の動きを達成するように、センシング回路によって印加される電圧に対して調整される。したがって、分子と相互作用する電磁場の力を変更する動的電圧の印加は、第2のナノ細孔130を通り抜けて繰り返し前後への分子の動きを可能にする。
様々な実施形態において、制御回路240は、直流(DC)バイアスのAC信号源を使用して、第1のナノ細孔125の間に印加される周期的な電圧の制御メカニズムを利用する。この信号源は、第1のナノ細孔125における印加される電圧および結果の電場/電気力の動的調整を可能にする少なくとも2つのパラメータ、すなわち、1)信号源の振幅(または利得)、および2)信号源の周期(または周波数)を調整することができる。
デューティサイクル、波形状(正弦、方形、鋸歯)、および停止周期などの、入力電圧信号の他のパラメータも、同様に信号源に適用されてよい。様々な実施形態において、信号源は、AD9102デジタル−アナログ変換器および波形発生器などの、単一のデバイスであってよい。そのようなデバイスは、利得、周期、デューティサイクル、および波形状を制御しながら、広範な(例えば、0.001Hzから100MHzの周波数範囲の)波形を容易に生成することができる。いくつかの実施形態においては、入力電圧信号の波形の広い周波数範囲は、図2A/図2Bに示されるような、可変周波数出力位相ロックループ(PLL)(または他のクロック発生器)を利用することによって、達成されることができる。PLLは、可変利得増幅器と直列に配置されることができる。PLLは、固定周波数であること、またはある範囲(例えば、8kHzないし250MHz、非特許文献1参照)を有する可変であることができる。様々な実施形態において、より広い周波数範囲を達成するために、複数のPLLが、直列で制御回路240内に含まれることができる。
交換可能なセンシングおよび制御回路
様々な実施形態において、2つの細孔の各々において、センサと制御回路からなる選択肢が、利用可能である。図3は、一実施形態に従った、各ナノ細孔ごとのセンシング回路225と制御回路240からなる選択肢と、各細孔ごとの2つの選択肢を切り換えるスイッチ310とを有する、例示的な2ナノ細孔デバイスを示している。特に、第1のナノ細孔125は、センシング回路225Aと制御回路240Aの両方からなる第1のセットを含む、第1の全体回路350Aに組み込まれる。加えて、第2のナノ細孔130は、センシング回路225Bと制御回路240Bの両方からなる第2のセットを含む、第2の全体回路350Bに組み込まれる。各全体回路350は、各全体回路350のセンシング回路225と制御回路240との間の切り換えを可能にする、スイッチ310A、310Bを含む。一実施形態においては、各スイッチ310を設定することは、第1のナノ細孔125にわたるセンシングと、第2のナノ細孔130における制御、またはそれの反対を可能にすることができる。様々な実施形態において、スイッチ310A、310Bは、図3に表示されたのとは異なるように、具体化されてよい。例えば、あるハードウェアコンポーネントは、センシング回路225と制御回路240との間で共用されてよく、したがって、各スイッチ310は、(必要なハードウェアコンポーネントを含む)各回路の機能が、望まれるときに、適切に有効化にされるように、構成されることができる。これらの実施形態は、以下の図4Aおよび図4Bにおいて、さらに詳細に説明される。
これらの実施形態においては、第1のナノ細孔125および第2のナノ細孔130の各々は、1)分子の動きを制御するために動的電圧を印加すること、および2)ナノ細孔を横断する転位イベントに対応するイオン測定を検出することという二重の役割をもって、全体回路350内に組み込まれることができる。各全体回路350のスイッチ310A、310Bは、各全体回路350A、350Bの役割を設定するために使用される。
図3に示されるように、各センシング回路225は、センサデータを提供し、一方、各制御回路240は、フィードバックデータを受信する。各センシング回路225からのセンサデータは、構成選択および信号マルチプレクサによって、受信および処理されることができる。様々な実施形態において、マルチプレクサは、各センシング回路225からのセンサデータを受信およびフィルタリングすることができる。例えば、マルチプレクサは、各センサデータからノイズを取り除く。マルチプレクサは、センサデータを、フィードバックデータとして、反対側の全体回路350に向かわせる。例えば、センサデータが、第1の全体回路350Aのセンシング回路225Aによって生成された場合、マルチプレクサは、センサデータを、フィードバックデータとして、第2の全体回路350Bの制御回路240Bに向かわせる。
今から、一実施形態に従って、例示的な2ナノ細孔デバイスを第1および第2の構成でそれぞれ示す、図4Aおよび図4Bを参照する。第1および第2の構成においては、スイッチ310は、1つのセンシング回路225および1つの制御回路240への接続性を制御する。特に、閉じられた回路(ならびに対応するセンサデータおよびフィードバックデータ)は、白いボックスで示され、一方、接続されていない回路(例えば、開いた回路)、ならびに対応するセンサデータおよびフィードバックデータは、影付きボックスで示される。
図4Aを参照すると、2ナノ細孔デバイスの第1の構成とは、第1のスイッチ310Aが、第1の全体回路350Aのセンシング回路225Aを接続しており、第2のスイッチ310Bが、第2の全体回路350Bの制御回路240Bを接続していることである。したがって、第1の全体回路350Aのセンシング回路225Aは、第1のナノ細孔125を通り抜ける分子の転位を検出するために使用される。加えて、第2の全体回路350Bの制御回路240Bは、分子の動きを制御するために使用される。
図4Bを参照すると、2ナノ細孔デバイスの第2の構成とは、第1のスイッチ310Aが、第1の全体回路350Aの制御回路240Aを接続しており、第2のスイッチ310Bが、第2の全体回路350Bのセンシング回路225Bを接続していることである。したがって、第1の全体回路350Aの制御回路240Aは、分子の動きを制御するために使用され、一方、第2の全体回路350Bのセンシング回路は、第2のナノ細孔130を通り抜ける分子の転位を検出するために使用される。
様々な実施形態において、2ナノ細孔デバイスは、追加の構成で配置されてよい。例えば、第3の構成は、それぞれスイッチ310A、310Bを通して、センシング回路225A、225Bの両方を接続することを含む。したがって、ナノ細孔125、130それぞれの間にセンシング回路225A、225Bによって印加される静的電圧は、ナノ細孔のうちの一方を通して、2つのナノ細孔の間に配置された中間チャンバ110またはチャネル150の中に、分子を引き寄せるために使用されることができる。様々な実施形態において、2ナノ細孔デバイスの第3の構成は、分子が、2ナノ細孔デバイスのチャンバ(例えば、第1のチャンバ105)内に最初に入れられた後、実施される。
別の例として、追加の構成は、それぞれスイッチ310A、310Bを通して、制御回路240A、240Bの両方を接続することを含む。この構成は、ナノ細孔を通り抜ける分子転位をセンシングする追加の方法と併せて、利用されることができる。例として、光学的にタグ付けされてよい分子を光学的に撮像するために、光学補助センサが、実施されることができる。したがって、追加の構成の2つの制御回路240A、240Bは、一方または両方のナノ細孔を通り抜ける分子運動に対するより精細な制御を可能にすることができる。
2細孔1センサの動作
一般に、図2A/図2Bに示されるような制御回路240とセンサ回路225、または図3/図4A/図4Bに示されるような複数の制御回路240A/240Bとセンサ回路225A/225Bは、センシングおよびデータ収集のために、DNAセグメントなどの分子の動きを制御するために、2細孔1センサデバイスにおいて一緒に利用されることができる。以降の説明は、第2の構成状態(例えば、第2のナノ細孔130を組み込んだセンシング回路225Bと、第1のナノ細孔125を組み込んだ制御回路240A)における、2ナノ細孔デバイスを参照するが、説明は、追加の構成状態(例えば、第1の構成状態)に同様に適用されることができる。
例えば、図2Aおよび図2Bに示された2細孔デバイスにおいては、制御回路240は、センサ回路225によって第2のナノ細孔130の間に印加された静的電圧によって発生させられた力と反対方向の力を発生させる、動的に変更される電圧を、第1のナノ細孔125の間に印加し、動的な大きさは、どちらかの方向における分子の制御された動きという結果となる。特に、第1のナノ細孔125の間に制御回路240によって印加された電圧は、大きさが、センサ回路225によって第2のナノ細孔130に印加される電圧から導出される静的力よりも大きい、それに等しい、またはそれよりも小さい、変化する場の力の強さを発生させることによって、分子の動きを導くことができる。したがって、第2のナノ細孔130における静的な場の力に対する、第1のナノ細孔125における電圧場の力の動的な調整は、中間チャンバ110内またはチャネル150内のどちらかにおいて、ナノ細孔125と130の両方の間に配置された分子の動きの正味の方向、および分子の動きのレート(例えば、速度)に対する制御を可能にする。
関連する例においては、図2Aおよび図2Bに示される2細孔デバイスにおいて、制御回路240は、関連付けられたAC周波数を有するAC電場を使用して、駆動力を印加する。AC周波数の制御もしくは選択(または駆動力を印加するAC電場の別の態様)は、センサ回路225からの情報に基づくことができる。例えば、周波数(例えば、ターゲットがナノ細孔を前後に通過する周波数)、信号の振幅、信号の位相、(例えば、細孔におけるターゲット運動と関連付けられた)イベント持続時間、ターゲットの量、および/またはセンサ回路225からの電気信号の他の任意の適切な特徴のうちの1つまたは複数が、制御回路240の駆動力を印加するAC電場の態様を動的に調整するために、使用されることができる。したがって、一方のナノ細孔(例えば、第2のナノ細孔130)におけるAC源からの駆動力は、ナノ細孔125、130の間に配置された分子の動きの正味の方向、および分子の動きのレート(例えば、速度)に対する制御を可能にすることができる。
特に、制御回路240によって印加される動的電圧は、センサ回路225によって集められたセンサデータの位相と比較してシフトさせられた、位相を有することができる。したがって、分子が、第1の方向において、第2のナノ細孔130を通過するとき、動的電圧によって与えられる力のような、印加される動的電圧の変化は、分子の動きの方向を反対向きにする。分子は、その後、方向を変化させ、(例えば、第1の方向と反対の)第2の方向において、第2のナノ細孔130を通過する。ここで、分子の動きの第2の方向を反対向きにするために、動的電圧が、再び変化する。このプロセスは、分子のセグメントの十分な測定が獲得されるまで、分子が前後に第2のナノ細孔130を通過することを可能にするために、繰り返されることができる。
第2のナノ細孔130における静的力と比較して、より小さくなったり、またはより大きくなったりするように、第1のナノ細孔125における力を振動させることによって、分子に第2のナノ細孔130を繰り返し通過させることによって、分子のセグメントは、センサ回路225Bによって何回もセンスされることができる。そうすることは、第2のナノ細孔130を横断する分子の転位に対応する、検出されるイオン変化の信号を改善することができ、それは、様々な信号処理目的にとって、例えば、DNAなどの分子の配列決定を改善するために、有益である。ポリヌクレオチドなどの分子が第2のナノ細孔130を前後に繰り返し通過することは、ポリヌクレオチドの「フロッシング」と呼ばれる。特に、第2のナノ細孔130を通り抜けるDNAセグメント(またはDNAセグメントの一部)のフロッシングは、印加された力(例えば、印加された電圧から導出される電気力)に応答したものであり、第2のナノ細孔130を通り抜けるDNAセグメントの転位のレートに対応する、周波数データをさらに含むことができる。例として、周波数データは、初期位置において開始し、第1の方向において第2のナノ細孔130を横断して転位し(例えば、中間チャンバ110に入り、または中間チャンバ110から出て行き)、第1の方向とは反対の方向において、第2のナノ細孔130を横断して転位し、初期位置に戻る、単一のヌクレオチド塩基の周期である。
図5は、実施形態に従った、ポリヌクレオチドなどの分子の配列決定を行うためのフロープロセスを示している。具体的には、505において、ポリヌクレオチドを含む試料が、ナノ細孔デバイス100の第1のチャンバ105内に入れられる。いくつかの実施形態においては、ポリヌクレオチドは、異なるチャンバ(例えば、図2Aに示されるような第3のチャンバ115、または図2Bにおける第2のチャンバ110)に入れられることができる。510において、2ナノ細孔デバイスは、第1のナノ細孔125の間に第1の電圧を、また第2のナノ細孔130の間に第2の電圧を印加する。様々な実施形態において、これは、2ナノ細孔デバイスを第3の構成状態に配置する(例えば、第1のナノ細孔125と第2のナノ細孔130の両方が、それぞれ、センシング回路225A、225Bに組み込まれる)ことによって、達成されることができる。したがって、第1および第2の電圧は、各々、センシング回路225によって印加される。515において、ポリヌクレオチドは、第1のチャンバ105から、第1のナノ細孔125を通り抜けて、転位する。具体的には、第1のナノ細孔125のセンシング回路225Aは、第1のナノ細孔125を通り抜けるようにポリヌクレオチドを引き寄せる電気力を発生させる定電圧を、第1のナノ細孔125の間に印加することができる。センサ回路225は、第1のナノ細孔125を通り抜けるイオン電流の変化を測定するように構成されてよい。したがって、ポリヌクレオチドが、第1のナノ細孔125を通り抜けて転位したとき、センサ回路は、イオン電流の検出された変化に基づいて、転位イベントを検出する。加えて、520において、ポリヌクレオチドは、センサ回路225Bによって印加された電圧のせいで、第2のナノ細孔130を通り抜けて転位する。
2ナノ細孔デバイスは、分子の動きの方向を反対向きにする、異なる構成に切り換わってよい。例えば、2ナノ細孔デバイスは、分子の方向性のある動きに応じて、第3の構成状態から第1の構成状態または第2の構成状態に切り換わる。分子が、最初に、第1のチャンバ105に入れられた場合、分子は、方向性をもって、第1のチャンバ105から退出し、第2のチャンバ110または第3のチャンバ115に向かって移動していく。したがって、分子の動きを反対向きにするために、2ナノ細孔デバイスは、第3の構成から第1の構成状態(例えば、図4A参照)に切り換わることができる。いくつかの実施形態においては、分子が、最初に、下部チャンバ(例えば、図2Aおける第3のチャンバ115、または図2Bおける第2のチャンバ110)に入れられた場合、分子は、方向性をもって、第1のチャンバ105に向かって移動していく。したがって、分子の動きを反対向きにするために、2ナノ細孔デバイスは、第3の構成から、第2の構成状態(例えば、図4B参照)に切り換わることができる。
以降の説明は、2ナノ細孔デバイスを第1の構成状態に切り換えることを参照するが、第2の構成状態への切り換えに対しても適用されることができる。様々な実施形態において、525において、第1のナノ細孔125を組み込んだ回路によって印加される第1の電圧が、調整される。具体的には、センシング回路225Aの極性は、それが分子の動きを反対向きにするように、設定される。例えば、センシング回路225Aの極性は、第1の構成状態においては、第3の構成状態における第1の極性から、第1の極性の反対に反転されることができる。加えて、530において、第2のナノ細孔130を組み込んだ回路によって印加される第2の電圧も、調整される。具体的には、第2の全体回路350Bの制御回路240Bは、ポリヌクレオチドが第1のナノ細孔125を通り抜けて転位したことを検出したのに応答して、調整された第2の電圧を第2のナノ細孔130の間に印加する320。一般に、制御回路240によって印加された調整された第2の電圧の大きさは、調整された第2の電圧のせいで生じた電気力が、調整された第1の電圧から生じた静的力と反対向きであることができるように、動的に変化している(例えば、振動電圧)。制御回路240によって印加される第2の電圧は、ポリヌクレオチドが、第1のナノ細孔125を前後に通り抜けて、同様に振動する(例えば、フロッシングする)ことができるように、(例えば、特定の周波数における振幅/大きさを変化させる)特定の波形を有する。ポリヌクレオチドが、振動するとき、センサ回路225Aは、ポリヌクレオチドのヌクレオチド塩基の転位に対応する、第1のナノ細孔125を通り抜けるイオン電流の変化を検出することができる。各ヌクレオチド塩基は、ポリヌクレオチドが、第1のナノ細孔125を前後に通り抜けてフロッシングするとき、何回も読み取られることができ、それによって、535において、ポリヌクレオチドの個々のヌクレオチドのより正確な識別を可能にする。
ポリヌクレオチドからの単一のヌクレオチド塩基が、十分に読み取られたとき、DNAセグメント増加を可能にするために、印加された第2の電圧におけるポリヌクレオチド退出状態が、制御回路240Bによって適用されることができる。言い換えると、第2の電圧は、一時的に調整されて、後続のヌクレオチド塩基対が、第1のナノ細孔125を通り抜けて転位することを可能にすることができ、その時点において、第2の電圧は、元に戻され、後続のヌクレオチド塩基対に第1のナノ細孔125を前後に通り抜けてフロッシングさせることができる。制御回路240Bによって第2のナノ細孔130の間に印加された第2の電圧の大きさおよび周波数は、センサ回路225Aによって検出されたイオン電流の測定に対応する周波数情報に従って、適合させることができる。
様々な実施形態において、(例えば、フィードバック制御と協力する状態機械または機械学習アルゴリズムを使用する)自動化された機能回路は、センスされたデータを継続的に監視するために、センサ回路225Aおよび制御回路240Bの両方を制御することができる。したがって、DNAのセクションは、最適性能のために読み取られることができる。例えば、第1のナノ細孔125を通り抜けるDNA転位イベントに対応するイオン電流が、解消されない場合、制御回路240は、第2のナノ細孔130の間に印加される電圧の段階的な増加を実行することができる。そうすることは、センサ回路225によって印加された静的力に対抗する力を増加させ、それによって、DNAセグメントの動きを、それが第1のナノ細孔125を通り抜けて転位するときに、低速化する。これは、望ましい性能(例えば、信号解像度)が達成されるまで、第1のナノ細孔125を横断する各DNA転位についての信号対雑音比を改善する。
DNAセグメントをフロッシングし、センシング回路を使用してセグメントを何回もセンスすることは、信号誤差を許容可能なレベルまで低減させることを可能にする。許容可能な正確性を有するコンセンサス配列を達成するために、信号のアライメントが、使用されることができる。いくつかの実施形態においては、後でヌクレオチド塩基対を識別するために使用されることができる、コンセンサス信号を生成するために、複数のDNA転位に対応する複数の読み取りが、使用されることができる。
追加の検討事項
2細孔デバイスを用いて実施される、2細孔デバイスおよび方法の実施形態、変形、および例が、上で説明されたが、説明された本発明の代替的実施形態、変形、および例は、非2細孔デバイスを含むことができる。例えば、変形においては、第2のチャンバ110(およびそれの説明された変形)は、単一細孔デバイスの導電性チャネルであることができ、単一細孔デバイスは、(例えば、ゲート電圧による)制御回路と、(例えば、ソース−ドレーン電流フローに関連する)センシング回路とを有し、制御回路とセンシング回路との間で切り換えを行う能力を有する。そのような単一細孔デバイスは、リソグラフィプロセス、穿孔プロセス、または素材の層を貫通するチャネルもしくはチャンバを生成する他の任意の適切なプロセスを用いて、製造されることができる。
本発明が、上述の実施形態との関連において説明されたが、上述の説明および例は、本発明の範囲を示すことが意図されており、本発明の範囲を限定しないことが理解されるべきである。本発明の範囲内の他の態様、利点、および変更は、本発明に関係する当業者に明らかである。

Claims (22)

  1. 2細孔デバイスであって、
    上方チャンバ、中間チャンバ、および下方チャンバであって、前記上方チャンバは、第1のナノ細孔を通して、前記中間チャンバと連通しており、前記中間チャンバは、第2のナノ細孔を通して、前記下方チャンバと連通している、該上方チャンバ、該中間チャンバ、および該下方チャンバと、
    前記第1のナノ細孔および前記第2のナノ細孔の各々のためのセンシング回路および制御回路であって、
    各センシング回路は、対応するナノ細孔の間に定電圧を印加するように構成され、また前記対応するナノ細孔を通り抜けるセンシング電流を測定するようにさらに構成され、
    各制御回路は、前記対応するナノ細孔の間に動的電圧を印加するように構成され、前記印加された動的電圧は、前記第1のナノ細孔および前記第2のナノ細孔を横断する荷電されたポリマの制御された動きを決定する、
    該センシング回路および該制御回路と
    を備え、
    前記センシング電流は、前記制御された動き中に、前記荷電されたポリマから導出されることを特徴とする2細孔デバイス。
  2. 各センサ回路は、トランスインピーダンス増幅器を備えたことを特徴とする請求項1に記載の2細孔デバイス。
  3. 前記トランスインピーダンス増幅器は、パッチクランプまたは電圧クランプ増幅器のうちの一方であることを特徴とする請求項2に記載の2細孔デバイス。
  4. 各制御回路は、位相ロックループ(PLL)を備えたことを特徴とする請求項1ないし3のいずれか1つに記載の2細孔デバイス。
  5. 前記第1のナノ細孔の前記制御回路は、前記第2のナノ細孔の前記センサ回路からのフィードバックに基づいて、振動電圧出力を発生させるように構成されたことを特徴とする請求項4に記載の2細孔デバイス。
  6. 前記振動電圧出力の周波数と前記センシング回路の周波数との間の位相差は、時間とともに固定されることを特徴とする請求項5に記載の2細孔デバイス。
  7. 前記振動電圧出力は、前記第2のナノ細孔の間に前記動的電圧を印加する電圧制御増幅器(VCA)に提供されることを特徴とする請求項5または6に記載の2細孔デバイス。
  8. 前記中間チャンバは、前記第1のナノ細孔または前記第2のナノ細孔の少なくとも1つの前記センシング回路および前記制御回路の両方について電気的戻り通路として結合されたことを特徴とする請求項1ないし7のいずれか1つに記載の2細孔デバイス。
  9. 2細孔デバイスであって、
    上方チャンバおよび下方チャンバであって、前記上方チャンバは、第1のナノ細孔および第2のナノ細孔を通して、前記下方チャンバと連通している、該上方チャンバおよび該下方チャンバと、
    前記第1のナノ細孔および前記第2のナノ細孔の各々のためのセンシング回路および制御回路であって、
    各センシング回路は、対応するナノ細孔の間に定電圧を印加するように構成され、また前記対応するナノ細孔を通り抜けるセンシング電流を測定するようにさらに構成され、
    各制御回路は、前記対応するナノ細孔の間に動的電圧を印加するように構成され、前記印加された動的電圧は、前記第1のナノ細孔および前記第2のナノ細孔を横断する荷電されたポリマの制御された動きを決定する、
    該センシング回路および該制御回路と
    を備え、
    前記センシング電流は、前記制御された動き中に、前記荷電されたポリマから導出されることを特徴とする2細孔デバイス。
  10. 前記第1のナノ細孔および前記第2のナノ細孔は、チャネルによって接続されていることを特徴とする請求項9に記載の2細孔デバイス。
  11. 当該デバイスは、前記第1のナノ細孔を含む第1の膜層、前記第2のナノ細孔を含む第2の膜層、および、前記第1の膜層と前記第2の膜層との間の導電性中間層をさらに備えたことを特徴とする請求項9又は10に記載の2細孔デバイス。
  12. 前記導電性中間層は、前記第1のナノ細孔または前記第2のナノ細孔の少なくとも1つの前記センシング回路および前記制御回路の両方について電気的戻り通路として結合されたことを特徴とする請求項1ないし7のいずれか1つに記載の2細孔デバイス。
  13. ポリヌクレオチドをシーケンスするための方法であって、
    細孔デバイスの第1のチャンバ内に前記ポリヌクレオチドを含むサンプルをロードするステップと、
    第1のナノ細孔の間に第1の電圧を印加するため、前記第1のナノ細孔のセンシング回路を使用することによって前記第1のナノ細孔を通じて前記ポリヌクレオチドを転位させるステップと、
    第2のナノ細孔の間に第2の電圧を印加するため、前記第2のナノ細孔のセンシング回路を使用することによって前記第2のナノ細孔を通じて前記ポリヌクレオチドを転位させるステップと、
    前記第1のナノ細孔の前記センシング回路によって印加された前記第1の電圧の極性を反転させることによって、前記第1のナノ細孔の間に印加された前記第1の電圧を調整するステップと、
    前記第2のナノ細孔の前記センシング回路を制御回路に切り換えることによって、前記第2のナノ細孔の間の前記第2の電圧を調整するステップと、
    前記ポリヌクレオチドのヌクレオチドを識別するステップと
    を備えたことを特徴とする方法。
  14. 前記調整された第2の電圧は、発振制御回路の電圧であり、前記ポリヌクレオチドのヌクレオチドを識別するステップは、
    前記印加された発振電圧の初期発振について、前記ポリヌクレオチドのヌクレオチドの第1の転位に対応する前記第1のナノ細孔の間のイオン電流における第1の変化を検出するステップと、
    前記印加された発振電圧の継続発振について、前記ポリヌクレオチドのヌクレオチドの第2の転位に対応する前記第1のナノ細孔の間のイオン電流における第2の変化を検出するステップと
    を含むことを特徴とする請求項13に記載の方法。
  15. 前記調整された第2の電圧は、前記第1のナノ細孔の前記センシング回路によって捕獲されたフィードバック信号に基づいて印加されることを特徴とする請求項14記載の方法。
  16. 前記フィードバック信号は、前記第1のナノ細孔の間で測定された電流であり、前記電流は、前記第1のナノ細孔の間のポリヌクレオチドの動きの測定であることを特徴とする請求項15に記載の方法。
  17. 前記ポリヌクレオチドの動きの測定は、ポリヌクレオチドの位置、速度、又は加速度の1つの測定であることを特徴とする請求項16に記載の方法。
  18. 前記ポリヌクレオチドの動きの測定は、少なくともカルマンフィルタを使用して決定されることを特徴とする請求項16又は17に記載の方法。
  19. 前記フィードバック信号は、フィードフォワード又はフィードバックの1つを使用することによって、周波数領域又は時間領域のいずれかにおいて設計されたことを特徴とする請求項15ないし18のいずれか1つに記載の方法。
  20. 前記フィードバック信号は、協調設計された推定器およびコントローラを使用することによって設計されたことを特徴とする請求項15ないし19のいずれか1つに記載の方法。
  21. 前記調整された第2の電圧は、直流バイアスの交流信号源を使用することによって印加されることを特徴とする請求項13ないし18のいずれか1つに記載の方法。
  22. 前記調整された第2の電圧は、0.001Hzと100Hzとの間の周波数範囲、および、0.001mVと10Vとの間の電圧範囲で印加されることを特徴とする請求項13ないし19のいずれか1つに記載の方法。
JP2019571035A 2017-06-21 2018-06-14 二重細孔制御およびセンサデバイス Active JP7038147B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022034503A JP2022088415A (ja) 2017-06-21 2022-03-07 二重細孔制御およびセンサデバイス

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762523228P 2017-06-21 2017-06-21
US62/523,228 2017-06-21
PCT/US2018/037634 WO2018236673A1 (en) 2017-06-21 2018-06-14 DOUBLE PORE DETECTION AND CONTROL DEVICE

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022034503A Division JP2022088415A (ja) 2017-06-21 2022-03-07 二重細孔制御およびセンサデバイス

Publications (3)

Publication Number Publication Date
JP2020524801A true JP2020524801A (ja) 2020-08-20
JP2020524801A5 JP2020524801A5 (ja) 2021-07-26
JP7038147B2 JP7038147B2 (ja) 2022-03-17

Family

ID=64692458

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019571035A Active JP7038147B2 (ja) 2017-06-21 2018-06-14 二重細孔制御およびセンサデバイス
JP2022034503A Pending JP2022088415A (ja) 2017-06-21 2022-03-07 二重細孔制御およびセンサデバイス

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022034503A Pending JP2022088415A (ja) 2017-06-21 2022-03-07 二重細孔制御およびセンサデバイス

Country Status (8)

Country Link
US (2) US11099169B2 (ja)
EP (1) EP3642607A4 (ja)
JP (2) JP7038147B2 (ja)
KR (2) KR102315815B1 (ja)
CN (1) CN111065917A (ja)
CA (1) CA3067993C (ja)
MX (1) MX2019015156A (ja)
WO (1) WO2018236673A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201202519D0 (en) 2012-02-13 2012-03-28 Oxford Nanopore Tech Ltd Apparatus for supporting an array of layers of amphiphilic molecules and method of forming an array of layers of amphiphilic molecules
CN111065917A (zh) * 2017-06-21 2020-04-24 奥特拉公司 双孔-控制和传感器设备
US11789006B2 (en) 2019-03-12 2023-10-17 Oxford Nanopore Technologies Plc Nanopore sensing device, components and method of operation
EP3980557A4 (en) * 2019-06-07 2023-07-26 Applied Materials, Inc. METHODS OF MAKING TWO-PORE SENSORS
EP4010492A4 (en) * 2019-08-06 2024-04-03 Nooma Bio Inc LOGIC-CONTROLLED POLYNUCLEOTIDE SCANNING FOR FEATURE IMAGING IN A NANOPORE DEVICE
CN112708544A (zh) * 2019-10-25 2021-04-27 成都今是科技有限公司 基因测序的测量装置及其测量方法
CN110823773A (zh) * 2019-11-22 2020-02-21 瑞芯智造(深圳)科技有限公司 用于测量微纳颗粒的装置及方法
US11536708B2 (en) 2020-01-09 2022-12-27 Applied Materials, Inc. Methods to fabricate dual pore devices
US20230349882A1 (en) * 2020-07-17 2023-11-02 Oxford Nanopore Technologies Plc Nanopore sensing device
JP2024512838A (ja) * 2021-03-31 2024-03-21 イルミナ インコーポレイテッド 分子検出のためのスケーラブル回路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140099726A1 (en) * 2012-10-10 2014-04-10 Two Pore Guys, Inc. Device for characterizing polymers
US20140318964A1 (en) * 2011-11-14 2014-10-30 Brigham Young University Two-Chamber Dual-Pore Device
JP2014529296A (ja) * 2011-07-20 2014-11-06 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 2細孔装置
WO2016154337A2 (en) * 2015-03-23 2016-09-29 The University Of North Carolina At Chapel Hill Method for identification and enumeration of nucleic acid sequences, expression, splice variant, translocation, copy, or dna methylation changes using combined nuclease, ligase, polymerase, terminal transferase, and sequencing reactions
JP2017515131A (ja) * 2013-05-06 2017-06-08 ツー ポア ガイズ インコーポレイテッド ナノポアによる標的検出法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740518B1 (en) 1998-09-17 2004-05-25 Clinical Micro Sensors, Inc. Signal detection techniques for the detection of analytes
US7250115B2 (en) * 2003-06-12 2007-07-31 Agilent Technologies, Inc Nanopore with resonant tunneling electrodes
EP1912062B1 (en) * 2006-10-13 2010-09-08 Sabanci Universitesi A biosensor and chemical sensor implementation using RF and microwave device, circuits and systems
US8294092B2 (en) * 2009-03-23 2012-10-23 Yale University System and method for trapping and measuring a charged particle in a liquid
KR101559096B1 (ko) * 2011-07-20 2015-10-08 더 리전트 오브 더 유니버시티 오브 캘리포니아 나노포어 폴리뉴클레오티드 서열분석용 보상 패치-클램프 증폭기 및 기타 용도
IN2014DN00221A (ja) * 2011-07-25 2015-06-05 Oxford Nanopore Tech Ltd
JP2016512605A (ja) * 2013-03-13 2016-04-28 アリゾナ ボード オブ リージェンツ オン ビハーフ オブ アリゾナ ステート ユニバーシティ 転位制御のためのシステム、デバイス、および方法
KR102245192B1 (ko) * 2013-05-06 2021-04-29 온테라 인크. 나노포어를 이용한 표적 검출
EP3303620A1 (en) 2015-06-02 2018-04-11 Nanopore Diagnostics LLC Nucleic acid detection
WO2018093976A1 (en) 2016-11-16 2018-05-24 Nanopore Diagnostics, Llc Analysis of nucleic acids using probe with non-linear tag
CN111065917A (zh) * 2017-06-21 2020-04-24 奥特拉公司 双孔-控制和传感器设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529296A (ja) * 2011-07-20 2014-11-06 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 2細孔装置
US20140318964A1 (en) * 2011-11-14 2014-10-30 Brigham Young University Two-Chamber Dual-Pore Device
US20140099726A1 (en) * 2012-10-10 2014-04-10 Two Pore Guys, Inc. Device for characterizing polymers
JP2017515131A (ja) * 2013-05-06 2017-06-08 ツー ポア ガイズ インコーポレイテッド ナノポアによる標的検出法
WO2016154337A2 (en) * 2015-03-23 2016-09-29 The University Of North Carolina At Chapel Hill Method for identification and enumeration of nucleic acid sequences, expression, splice variant, translocation, copy, or dna methylation changes using combined nuclease, ligase, polymerase, terminal transferase, and sequencing reactions

Also Published As

Publication number Publication date
US20180372713A1 (en) 2018-12-27
KR102377508B1 (ko) 2022-03-23
EP3642607A4 (en) 2021-04-14
EP3642607A1 (en) 2020-04-29
KR20200042894A (ko) 2020-04-24
WO2018236673A1 (en) 2018-12-27
US11099169B2 (en) 2021-08-24
CN111065917A (zh) 2020-04-24
CA3067993C (en) 2024-02-27
CA3067993A1 (en) 2018-12-27
US20210405020A1 (en) 2021-12-30
KR20210129726A (ko) 2021-10-28
MX2019015156A (es) 2020-08-17
KR102315815B1 (ko) 2021-10-25
JP7038147B2 (ja) 2022-03-17
JP2022088415A (ja) 2022-06-14

Similar Documents

Publication Publication Date Title
JP2020524801A (ja) 二重細孔制御およびセンサデバイス
US9989516B2 (en) Electro-diffusion enhanced bio-molecule charge detection using electrostatic interaction
Bacri et al. Dynamics of colloids in single solid-state nanopores
Gyurcsányi Chemically-modified nanopores for sensing
EP2734840B1 (en) Dual-pore device
CN109196343B (zh) 生物分子测量装置
US20140099726A1 (en) Device for characterizing polymers
CA2700859A1 (en) Capture, recapture, and trapping of molecules with a nanopore
CA2708782A1 (en) Systems and methods for polymer characterization
Schiel et al. Diffusion and trapping of single particles in pores with combined pressure and dynamic voltage
US10809221B2 (en) Methods of electrochemically measuring an analyte with a test sequence having a pulsed DC block as well as devices, apparatuses and systems incorporating the same
He et al. Salt-gradient approach for regulating capture-to-translocation dynamics of dna with nanochannel sensors
Harms et al. Conductivity-based detection techniques in nanofluidic devices
Tang et al. Understanding and modelling the magnitude of the change in current of nanopore sensors
Zhang et al. In-Plane, In-Series Nanopores with Circular Cross Sections for Resistive-Pulse Sensing
Kang et al. Biomimetic Smart Nanopores and Nanochannels
US20210206626A1 (en) Position sensing circuit for an electrostatically driven mems device
Sharma et al. DNA Coil Dynamics and Hydrodynamic Gating of Pressure‐Biased Nanopores
Wang et al. Screening of Short Single-and Double-stranded DNA Molecules Using Silicon Nitride Nanopores

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210517

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211013

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20211125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220307

R150 Certificate of patent or registration of utility model

Ref document number: 7038147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150