KR102341230B1 - 저항 또는 셀에 저장된 정보를 리드하는 반도체 장치 - Google Patents
저항 또는 셀에 저장된 정보를 리드하는 반도체 장치 Download PDFInfo
- Publication number
- KR102341230B1 KR102341230B1 KR1020150064854A KR20150064854A KR102341230B1 KR 102341230 B1 KR102341230 B1 KR 102341230B1 KR 1020150064854 A KR1020150064854 A KR 1020150064854A KR 20150064854 A KR20150064854 A KR 20150064854A KR 102341230 B1 KR102341230 B1 KR 102341230B1
- Authority
- KR
- South Korea
- Prior art keywords
- voltage
- signal
- abandoned
- registration fee
- transistor
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/14—Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
- G11C5/147—Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/004—Reading or sensing circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1653—Address circuits or decoders
- G11C11/1655—Bit-line or column circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1673—Reading or sensing circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1693—Timing circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0023—Address circuits or decoders
- G11C13/0026—Bit-line or column circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0061—Timing circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0069—Writing or programming circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/06—Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0004—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0007—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Read Only Memory (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Semiconductor Integrated Circuits (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
Abstract
반도체 장치는 가변 저항, 가변 저항 선택부, 전원 공급부 및 스위치 구동부를 포함할 수 있다. 상기 가변 저항 선택부는 저항 선택 신호에 응답하여 상기 가변 저항을 센스앰프와 연결할 수 있다. 상기 전원 공급부는 리드 신호에 응답하여 상기 가변 저항 선택부로 제 1 전압을 인가할 수 있다. 상기 스위치 구동부는 저항 선택 제어신호에 응답하여 상기 저항 선택 신호를 생성하고, 상기 가변 저항 선택부로 상기 제 1 전압이 인가되면 상기 저항 선택 신호의 전압 레벨을 증가시킬 수 있다.
Description
본 발명은 반도체 장치에 관한 것으로서, 더 상세하게는 저항 또는 셀에 저장된 정보를 리드하는 반도체 장치에 관한 것이다.
반도체 장치와 같은 전자 장치에서는 일반적으로 트랜지스터 소자가 다양하게 사용되고 있다. 상기 트랜지스터는 게이트, 드레인 및 소스를 포함하고, 게이트로 문턱 전압보다 높은 전압을 입력 받을 때 드레인과 소스 사이에서 채널을 형성하여 상기 채널을 통해 전류가 흐를 수 있도록 한다. 상기 트랜지스터는 일반적으로 N 채널 모스 트랜지스터와 P 채널 모스 트랜지스터로 분류될 수 있다. N 채널 모스 트랜지스터는 고전압을 잘 통과시키지 못하고, P 채널 모스 트랜지스터는 저전압을 잘 통과시키지 못하는 특성을 갖고 있다.
상기 트랜지스터는 전자 장치에서 스위칭 소자로 많이 사용되고 있음에도 불구하고, 앞서 설명한 것과 같이 N 채널 모스 트랜지스터 및 P 채널 모스 트랜지스터는 고전압과 저전압 중 어느 하나를 잘 통과시키지 못하는 문제점을 갖는다. 특히, N 채널 모스 트랜지스터가 전원전압과 접지전압 사이에 연결되는 경우, 상기 N 채널 모스 트랜지스터는 전원전압에서 문턱전압만큼 강하된 전압을 통과시킬 수 밖에 없다. 따라서, 상기 N 채널 모스 트랜지스터는 전압 레벨 또는 전류 크기에 민감한 정보를 전달하는 스위칭 소자로 사용되기 어렵다. N 채널 모스 트랜지스터를 통해 고전압을 손실 없이 통과시키기 위해서는, 상기 N 채널 모스 트랜지스터로 인가되는 게이트 전압을 상승시키거나, 상기 N 체널 모스 트랜지스터의 백 바이어스 전압을 변경하는 방법이 있을 수 있다.
본 발명의 실시예는 가변 저항 라인 또는 비트라인을 센스앰프와 연결시키는 스위치 트랜지스터의 문턱 전압에 의한 전압 손실을 방지하기 위해 상기 스위치 트랜지스터의 게이트 전압을 증가시킬 수 있는 반도체 장치를 제공할 수 있다.
본 발명의 실시예에 따른 반도체 장치는 가변 저항; 저항 선택 신호에 응답하여 상기 가변 저항을 센스앰프와 연결하는 가변 저항 선택부; 리드 신호에 응답하여 상기 가변 저항 선택부로 제 1 전압을 인가하는 전원 공급부; 및 저항 선택 제어신호에 응답하여 상기 저항 선택 신호를 생성하고, 상기 가변 저항 선택부로 상기 제 1 전압이 인가되면 상기 저항 선택 신호의 전압 레벨을 증가시키는 스위치 구동부를 포함할 수 있다.
본 발명의 실시예에 따른 반도체 장치는 비트라인 선택 신호에 응답하여 메모리 셀이 연결된 비트라인과 연결되는 컬럼 선택부; 리드 신호에 응답하여 상기 컬럼 선택부로 제 1 전압을 인가하는 전원 공급부; 및 컬럼 선택신호에 응답하여 상기 비트라인 선택 신호를 생성하고, 상기 컬럼 선택부로 상기 제 1 전압이 인가되면 상기 비트라인 선택 신호의 전압 레벨을 증가시키는 스위치 구동부를 포함할 수 있다.
본 발명의 실시예는 시스템의 통신 정확성 및 효율성을 증가시킬 수 있다.
도 1은 본 발명의 실시예에 따른 반도체 장치의 구성을 보여주는 도면,
도 2는 도 1에 도시된 제 1 스위치 구동부의 구성을 보여주는 도면,
도 3은 도 1에 도시된 전원 공급부의 구성을 보여주는 도면,
도 4는 도 1에 도시된 프리차지부의 구성을 보여주는 도면,
도 5는 스위치 구동부와 스위치 트랜지스터의 연결관계와 함께 본 발명의 실시예에 따른 반도체 장치의 동작을 보여주는 도면,
도 6은 본 발명의 실시예에 따른 반도체 장치의 구성을 보여주는 도면이다.
도 2는 도 1에 도시된 제 1 스위치 구동부의 구성을 보여주는 도면,
도 3은 도 1에 도시된 전원 공급부의 구성을 보여주는 도면,
도 4는 도 1에 도시된 프리차지부의 구성을 보여주는 도면,
도 5는 스위치 구동부와 스위치 트랜지스터의 연결관계와 함께 본 발명의 실시예에 따른 반도체 장치의 동작을 보여주는 도면,
도 6은 본 발명의 실시예에 따른 반도체 장치의 구성을 보여주는 도면이다.
도 1은 본 발명의 실시예에 따른 반도체 장치(1)의 구성을 보여주는 도면이다. 도 1에서, 상기 반도체 장치(1)는 가변 저항부(110), 가변 저항 선택부(120), 전원 공급부(130) 및 복수의 스위치 구동부(141, 142)를 포함할 수 있다. 상기 가변 저항부(110)는 제 1 및 제 2 가변 저항(R1, R2)을 포함할 수 있다. 상기 가변 저항부(110)는 2개의 가변 저항을 포함하는 것으로 예시되었으나, 이에 한정하려는 의도는 아니며, 더 많은 개수의 가변 저항이 어레이 형태로 배치될 수 있다. 상기 제 1 및 제 2 가변 저항(R1, R2)의 일 단은 각각 접지전압(VSS) 단과 연결될 수 있고, 상기 제 1 및 제 2 가변 저항(R1, R2)의 타 단은 각각 상기 가변 저항 선택부(120)와 연결될 수 있다. 상기 제 1 가변 저항(R1)은 제 1 저항 선택 라인(SL1)과 연결될 수 있고, 상기 제 2 가변 저항(R2)은 제 2 저항 선택 라인(SL2)과 연결될 수 있다.
상기 제 1 및 제 2 가변 저항(R1, R2)은 가변 저항 소자를 포함할 수 있다. 가변 저항 소자는 온도, 자기장의 배열, 전압 또는 전류 조건에 따라 변화하는 저항 값을 가질 수 있다. 상기 제 1 및 제 2 가변 저항(R1, R2)은 저장된 정보에 따라 특정 저항 값을 가질 수 있다. 상기 제 1 및 제 2 가변 저항(R1, R2)의 저항 값은 상기 정보를 저장시키는 기입 회로를 통해 설정될 수 있다.
가변 저항 선택부(120)는 저항 선택 신호(RS<1:2>)에 기초하여 제 1 및 제 2 저항 선택 라인(SL1, SL2) 중 하나를 선택할 수 있다. 상기 가변 저항 선택부(120)는 공통 노드(A)와 연결될 수 있다. 상기 가변 저항 선택부(120)는 상기 공통 노드(A)를 통해 상기 전원 공급부(130)와 연결될 수 있다. 상기 가변 저항 선택부(120)는 상기 제 1 및 제 2 저항 선택 라인(SL1, SL2)을 통해 상기 제 1 및 제 2 가변 저항(R1, R2)과 연결될 수 있다. 상기 가변 저항 선택부(120)는 복수의 스위치 트랜지스터(ST1, ST2)를 포함할 수 있고, 상기 스위치 트랜지스터의 개수는 상기 저항 선택 라인의 개수에 대응될 수 있다.
상기 복수의 스위치 트랜지스터(ST1, ST2)는 N-채널 트랜지스터를 포함할 수 있다. 상기 트랜지스터가 N-채널 트랜지스터인 경우, 상기 스위치 트랜지스터(ST1, ST2)를 통해 상기 공통 노드(A)로부터 상기 가변 저항(R1, R2)으로 인가되는 전압 또는 전류는 상기 스위치 트랜지스터(ST1, ST2)의 문턱전압만큼 손실이 발생할 수 밖에 없다. 따라서, 상기 스위치 트랜지스터(ST1, ST2)의 게이트 전압을 증가시켜 상기 스위치 트랜지스터(ST1, ST2)를 통과하는 전압 또는 전류를 증가시킬 수 있다. 이에 관한 자세한 설명은 후술하기로 한다.
상기 가변 저항 선택부(120)는 제 1 및 제 2 스위치 트랜지스터(ST1, ST2)를 포함할 수 있다. 상기 제 1 스위치 트랜지스터(ST1)는 상기 제 1 저항 선택 라인(SL1)과 연결될 수 있다. 상기 제 2 스위치 트랜지스터(ST2)는 상기 제 2 저항 선택 라인(SL2)과 연결될 수 있다. 상기 제 1 스위치 트랜지스터(ST1)는 게이트로 제 1 저항 선택 신호(RS<1>)를 수신하고, 드레인이 상기 공통 노드(A)와 연결되며, 소스가 상기 제 1 가변 저항(R1)과 연결될 수 있다. 상기 제 1 스위치 트랜지스터(ST1)는 상기 제 1 저항 선택 신호(RS<1>)가 인에이블되면 상기 제 1 가변 저항(R1)을 상기 공통 노드(A)와 연결할 수 있다. 상기 제 2 스위치 트랜지스터(ST2)는 게이트로 제 2 저항 선택 신호(RS<2>)를 수신하고, 드레인이 상기 공통 노드(A)와 연결되며, 소스가 상기 제 2 가변 저항(R2)과 연결될 수 있다. 상기 제 2 스위치 트랜지스터(ST2)는 상기 제 2 저항 선택 신호(RS2)가 인에이블되면 상기 제 2 가변 저항(R2)을 상기 공통 노드(A)와 연결할 수 있다.
상기 전원 공급부(130)는 상기 공통 노드(A)와 연결될 수 있다. 상기 전원 공급부(130)는 리드 신호(RD)에 응답하여 제 1 전압을 상기 공통 노드(A)로 인가할 수 있다. 따라서, 상기 리드 신호(RD)가 인에이블되면, 상기 전원 공급부(130)는 상기 공통 노드(A)를 통해 상기 가변 저항 선택부(120)로 상기 제 1 전압을 인가할 수 있다. 상기 리드 신호(RD)는 리드 동작에서 인에이블될 수 있는 신호이고, 상기 리드 동작은 상기 가변 저항(R1, R2)에 저장된 정보를 리드하기 위한 동작으로 정의될 수 있다. 상기 제 1 전압은 상기 반도체 장치(1)의 전원전압(VDD)에 대응하는 전압일 수 있다. 상기 전원 공급부(130)가 상기 공통 노드(A) 및 저항 선택 라인(SL1, SL2)을 통해 상기 가변 저항(R1, R2)으로 상기 제 1 전압을 공급하면, 상기 선택된 가변 저항의 저항 값에 따라 가변하는 전류가 상기 공통 노드(A)를 통해 흐를 수 있다. 또는, 상기 선택된 가변 저항의 저항 값에 따라 상기 공통 노드(A)의 전압 레벨이 변화될 수 있다.
상기 복수의 스위치 구동부는 제 1 및 제 2 스위치 구동부(141, 142)를 포함할 수 있다. 상기 제 1 및 제 2 스위치 구동부(141, 142)는 각각 제 1 및 제 2 저항 선택 제어신호(SW<1:2>)에 응답하여 상기 제 1 및 제 2 저항 선택 신호(RS<1:2>)를 생성할 수 있다. 상기 스위치 구동부의 개수, 상기 저항 선택 제어신호의 개수 및 상기 저항 선택 신호의 개수는 상기 저항 선택 라인의 개수에 대응될 수 있다. 상기 저항 선택 제어신호(SW<1:2>)는 상기 리드 동작에서 억세스하려는 가변 저항을 선택하기 위해 제공되는 신호일 수 있다. 예를 들어, 상기 제 1 가변 저항(R1)을 억세스하기 위해 상기 제 1 저항 선택 제어신호(SW<1>)가 인에이블될 수 있다. 상기 제 1 스위치 구동부(141)는 상기 제 1 저항 선택 제어신호(SW<1>)에 기초하여 상기 제 1 저항 선택 신호(RS<1>)를 인에이블시키고, 상기 제 1 저항 선택 라인(SL1)이 선택될 수 있다. 상기 제 2 가변 저항(R2)을 억세스하기 위해 상기 제 2 저항 선택 제어신호(SW<2>)가 인에이블될 수 있다. 상기 제 2 스위치 구동부(142)는 상기 제 2 저항 선택 제어신호(SW<2>)에 기초하여 상기 제 2 저항 선택 신호(RS<2>)를 인에이블시키고, 상기 제 2 저항 선택 라인(SL2)이 선택될 수 있다.
상기 제 1 스위치 구동부(141)는 상기 제 1 저항 선택 제어신호(SW<1>)가 인에이블되면 제 2 전압의 레벨을 갖는 제 1 저항 선택 신호(RS<1>)를 생성하고, 상기 리드 신호(RD)가 인에이블되어 상기 가변 저항 선택부(120)로 상기 제 1 전압이 인가되면 제 3 전압의 레벨을 갖는 상기 제 1 저항 선택 신호(RS<1>)를 생성할 수 있다. 마찬가지로, 상기 제 2 스위치 구동부(142)는 상기 제 2 저항 선택 제어신호(SW<2>)가 인에이블되면 제 2 전압의 레벨을 갖는 상기 제 2 저항 선택 신호(RS<2>)를 생성하고, 상기 리드 신호(RD)가 인에이블되어 상기 가변 저항 선택부(120)로 상기 제 1 전압이 인가되면 상기 제 3 전압의 레벨을 갖는 상기 제 2 저항 선택 신호(RS<2>)를 생성할 수 있다. 상기 제 3 전압은 상기 제 2 전압보다 높은 레벨을 갖는 전압일 수 있고, 후술되겠지만, 상기 제 3 전압의 레벨은 상기 제 1 및 제 2 전압의 레벨의 합에 대응할 수 있다. 상기 제 1 및 제 2 스위치 구동부(141, 142)는 각각 상기 가변 저항 선택부(120)로 상기 제 1 전압이 인가되면 상기 제 1 및 제 2 저항 선택 신호(RS<1:2>)의 전압 레벨을 증가시킬 수 있다. 상기 제 1 및 제 2 저항 선택 신호(RS<1:2>)는 각각 상기 제 1 및 제 2 스위치 트랜지스터(ST1, ST2)의 게이트로 입력된다. 따라서, 상기 제 1 및 제 2 스위칭 구동부(141, 142)는 상기 제 1 및 제 2 저항 선택 신호(RS<1:2>)의 전압 레벨을 증가시켜 상기 제 1 및 제 2 스위치 트랜지스터(ST1, ST2)에서 발생하는 문턱 전압에 의한 손실을 제거 또는 보상할 수 있다.
도 1에서, 상기 반도체 장치(1)는 센스앰프(150) 및 프리차지부(160)를 더 포함할 수 있다. 상기 센스앰프(150)는 제 1 및 제 2 저항 선택 신호(RS<1:2>)에 의해 특정 저항 선택 라인이 선택되면 선택된 저항 선택 라인과 연결된 가변 저항의 정보를 감지 증폭하여 출력 신호(OUT)를 생성할 수 있다. 상기 센스앰프(150)는 상기 공통 노드(A)와 연결될 수 있고, 상기 제 1 및 제 2 가변 저항(R1, R2)은 상기 제 1 및 제 2 스위치 트랜지스터(ST1, ST2)를 통해 상기 센스앰프(150)와 연결될 수 있다. 따라서, 상기 센스앰프(150)는 상기 가변 저항 선택부(120)를 통해 특정 가변 저항과 연결될 수 있고, 저항 선택 라인(SL1, SL2)을 통해 입력된 가변 저항(R1, R2)의 정보를 감지 증폭하여 출력 신호(OUT)를 생성할 수 있다. 상기 센스앰프(150)는 상기 공통 노드(A)를 통해 흐르는 전류를 감지하여 디지털 신호를 생성하는 아날로그 디지털 컨버터(Analog to Digital Converter, ADC) 또는 상기 공통 노드(A)의 전압 레벨과 기준 전압의 레벨을 비교하여 디지털 신호를 생성하는 전압 증폭기를 포함할 수 있다.
상기 프리차지부(160)는 상기 리드 신호의 반전신호(RDB)에 응답하여 상기 공통 노드(A)를 프리차지시킬 수 있다. 예를 들어, 상기 프리차지부(160)는 상기 리드 신호(RD)가 디스에이블되면, 상기 공통 노드(A)를 접지전압으로 구동하여 상기 공통 노드(A)를 프리차지시킬 수 있다. 상기 프리차지부(160)는 상기 리드 신호(RD)가 인에이블되면 턴오프될 수 있고, 상기 공통 노드(A)의 프리차지 상태를 해제시킬 수 있다.
도 2는 도 1에 도시된 제 1 스위치 구동부(141)의 구성을 보여주는 도면이다. 도 2에서, 상기 제 1 스위치 구동부(141)는 인버터(211), 제 1 트랜지스터(N1) 및 제 2 트랜지스터(N2)를 포함할 수 있다. 상기 인버터(211)는 상기 제 1 저항 선택 제어신호(SW<1>)를 반전시켜 반전된 신호를 출력할 수 있다. 상기 제 1 트랜지스터(N1)는 상기 인버터(211)의 출력을 수신하여 출력 노드(B)를 상기 제 1 전압으로 구동할 수 있다. 상기 제 2 트랜지스터(N2)는 상기 제 1 저항 선택 제어신호(SW<1>)에 수신하여 상기 출력 노드(B)를 접지전압(VSS)으로 구동할 수 있다. 상기 제 1 저항 선택 신호(RS<1>)는 상기 출력 노드(B)를 통해 생성될 수 있다. 상기 제 1 및 제 2 트랜지스터는 N-채널 트랜지스터일 수 있다. 상기 제 1 트랜지스터(N1)는 게이트로 상기 인버터(211)의 출력을 수신하고, 드레인이 상기 전원전압(VDD) 단과 연결되며, 소스가 상기 출력 노드(B)와 연결될 수 있다. 상기 제 2 트랜지스터(N2)는 게이트로 상기 제 1 저항 선택 제어신호(SW<1>)를 수신하고, 드레인이 상기 출력 노드(B)와 연결되며, 소스가 상기 접지전압(VSS) 단과 연결될 수 있다.
상기 제 1 스위치 구동부(141)는 상기 제 1 저항 선택 제어신호(SW<1>)가 하이 레벨로 디스에이블되었을 때 상기 제 1 저항 선택 신호(RS<1>)를 로우 레벨로 디스에이블시킬 수 있다. 상기 제 1 스위치 구동부(141)는 상기 제 1 저항 선택 제어신호(SW<1>)가 로우 레벨로 인에이블되었을 때 상기 제 1 저항 선택 신호(RS<1>)를 하이 레벨로 인에이블시킬 수 있다. 이 때, 상기 제 1 저항 선택 신호(RS<1>)는 제 2 전압의 레벨을 가질 수 있다. 상기 제 1 저항 선택 제어신호(SW<1>)가 인에이블되면 상기 제 1 트랜지스터(N1)가 턴온되고, 상기 제 1 전압이 상기 제 1 트랜지스터(N1)를 통해 상기 출력 노드(B)로 인가될 수 있다. 상기 제 1 전압이 인가될 때 상기 제 1 트랜지스터(N1)의 문턱 전압(VthN1)만큼 손실이 발생하므로, 상기 제 1 저항 선택 신호(RS<1>)는 상기 제 1 전압에서 상기 제 1 트랜지스터(N1)의 문턱 전압(VthN1)을 뺀 전압의 레벨(VDD-VthN1)을 가질 수 있다. 즉, 상기 제 2 전압의 레벨은 상기 제 1 전압에서 상기 제 1 트랜지스터의 문턱전압을 뺀 전압의 레벨(VDD-VthN1)에 대응할 수 있다. 상기 제 2 스위칭 구동부(142)는 입력되는 신호와 출력되는 신호를 제외하고는 상기 제 1 스위칭 구동부(141)와 실질적으로 동일한 구성을 가질 수 있다.
도 3은 도 1에 도시된 전원 공급부(130)의 구성을 보여주는 도면이다. 도 3에서, 상기 전원 공급부(130)는 스위치(311)를 포함할 수 있다. 상기 스위치(311)는 상기 리드 신호(RD)에 응답하여 턴온될 수 있다. 상기 리드 신호(RD)가 인에이블되면, 상기 스위치(311)가 턴온될 수 있고, 상기 스위치(311)를 통해 상기 공통 노드(A)로 상기 제 1 전압이 인가될 수 있다.
도 4는 도 1에 도시된 프리차지부(160)의 구성을 보여주는 도면이다. 도 4에서, 상기 프리차지부(160)는 제 3 트랜지스터(411)를 포함할 수 있다. 상기 제 3 트랜지스터(411)는 N-채널 트랜지스터일 수 있다. 상기 제 3 트랜지스터(411)는 리드 신호의 반전신호(RDB)를 게이트로 수신하고, 드레인이 상기 공통 노드(A)와 연결되며, 소스가 상기 접지전압(VSS) 단과 연결될 수 있다. 상기 제 3 트랜지스터(411)는 상기 리드 신호(RD)가 디스에이블되어 상기 리드 신호의 반전신호(RDB)가 인에이블되면, 상기 공통 노드(A)를 상기 접지전압(VSS)으로 구동할 수 있다.
도 5는 제 1 스위치 구동부(141)와 제 1 스위치 트랜지스터(ST1)의 연결관계와 함께 본 발명의 실시예에 따른 반도체 장치(1)의 동작을 보여주는 도면이다. 도 1 내지 도 5를 참조하여 본 발명의 실시예에 따른 반도체 장치(1)의 동작을 설명하면 다음과 같다. 상기 반도체 장치(1)가 상기 제 1 가변 저항(R1)에 저장된 정보를 리드하는 리드 동작을 수행할 때, 상기 제 1 가변 저항(R1)을 억세스하기 위해 상기 제 1 저항 선택 제어신호(SW<1>)가 하이 레벨에서 로우 레벨로 인에이블될 수 있다. 본 발명의 실시예에서, 상기 제 1 저항 선택 제어신호(SW<1>)가 먼저 인에이블되고, 상기 리드 신호(RD)는 나중에 인에이블될 수 있다. 상기 제 1 스위치 구동부(141)는 상기 제 1 저항 선택 제어신호(SW<1>)에 응답하여 상기 제 1 저항 선택 신호(RS<1>)를 인에이블시킬 수 있다. 이 때, 상기 제 1 저항 선택 신호(RS<1>)는 상기 제 1 전압에서 상기 제 1 트랜지스터(N1)의 문턱 전압(VthN1)만큼 감소된 상기 제 2 전압의 레벨(VDD-VthN1)을 가질 수 있다. 상기 리드 신호(RD)가 아직 인에이블되지 않았을 때, 상기 전원 공급부(130)는 제 1 전압을 상기 공통 노드(A)로 인가하지 않고 상기 프리차지부(160)가 상기 공통 노드(A)를 접지전압으로 구동하므로, 상기 제 1 스위치 트랜지스터(ST1)의 드레인은 접지전압(VSS) 레벨에 해당할 수 있다.
이 후, 리드 신호(RD)가 인에이블될 수 있다. 상기 리드 신호(RD)가 인에이블되면, 상기 전원 공급부(130)는 상기 공통 노드(A)로 상기 제 1 전압을 인가하고, 상기 제 1 스위치 트랜지스터(ST1)의 드레인은 상기 제 1 전압의 레벨이 된다. 이 때, 상기 제 1 스위치 트랜지스터(ST1)의 게이트-드레인 기생 캐패시터(Cgd)에 의해 상기 제 1 저항 선택 신호(RS<1>)의 전압 레벨이 순간적으로 증가할 수 있다. 예를 들어, 상기 제 1 저항 선택 신호(RS<1>)의 전압 레벨은 상기 제 3 전압의 레벨에 대응할 수 있고, 상기 제 3 전압의 레벨은 (2*VDD-VthN1)일 수 있다. 상기 제 1 저항 선택 신호(RS<1>)의 전압 레벨이 상승되면, 상기 제 1 트랜지스터(N1)의 게이트와 소스 사이의 전압 차이(Vgs)는 상기 제 1 트랜지스터(N1)의 문턱 전압(VthN1) 이하로 감소하게 된다. 따라서, 상기 제 1 트랜지스터(N1)는 상기 제 1 저항 선택 제어신호(SW<1>)가 인에이블된 상태임에도 불구하고 턴오프될 수 있다.
상기 제 1 트랜지스터(N1)가 턴오프되면 상기 출력 노드(B)는 플로팅 되고, 상기 제 1 저항 선택 신호(RS<1>)는 상기 제 3 전압의 레벨을 유지할 수 있다. 상기 제 1 스위치 트랜지스터(ST1)는 상기 제 3 전압의 레벨을 갖는 상기 제 1 저항 선택 신호(RS<1>)를 수신하므로, 충분히 높은 게이트 전압을 인가받는다. 따라서, 상기 전원 공급부(130)에 의해 상기 공통 노드(A)로 인가된 제 1 전압은 상기 제 1 스위치 트랜지스터(ST1)의 문턱 전압에 의한 손실 없이 상기 제 1 가변 저항(R1)으로 그대로 전달될 수 있다.
상기 제 1 전압이 상기 제 1 가변 저항(R1)으로 인가되면, 상기 제 1 가변 저항(R1)의 저항 값에 따라 상기 공통 노드(A)를 흐르는 전류량이 변화되고, 상기 센스앰프(150)는 상기 전류량을 감지하여 상기 출력 신호(OUT)를 생성할 수 있다. 위와 같이, 상기 스위치 구동부(141, 142)는 상기 저항 선택 신호(SW<1:2>)의 전압 레벨을 상승시킴으로써, 상기 스위치 트랜지스터(ST1, ST2)의 문턱 전압에 의한 손실을 방지할 수 있다. 상기 가변 저항(R1, R2)은 상기 전원 공급부(130)로부터 인가되는 전원전압(VDD)을 손실 없이 전달 받을 수 있으므로, 상기 가변 저항(R1, R2)의 저항 값에만 기인하는 전류가 상기 공통 노드(A)로 흐를 수 있고 상기 센스앰프(150)를 통해 상기 가변 저항(R1, R2)의 저장된 정보가 정확하게 출력될 수 있다.
도 6은 본 발명의 실시예에 따른 반도체 장치(6)의 구성을 보여주는 도면이다. 도 6은 데이터를 저장 및 출력하는 메모리 장치로 적용된 반도체 장치를 보여준다. 도 6에서, 상기 반도체 장치(6)는 메모리 블록(610), 컬럼 선택부(620), 전원 공급부(630) 및 복수의 스위치 구동부(641, 642, 64n)를 포함할 수 있다. 상기 메모리 블록(610)은 복수의 워드라인(WL1-WLm), 복수의 비트라인(BL1-BLn) 및 복수의 메모리 셀(Cell)을 포함할 수 있다. 상기 메모리 블록(610)은 어레이 형태를 이루며, 상기 워드라인(WL1-WLm)은 로우 방향으로 배치될 수 있고, 상기 비트라인(BL1-BLn)은 컬럼 방향으로 배치될 수 있다. 상기 복수의 메모리 셀(Cell)은 상기 워드라인(WL1-WLm)과 비트라인(BL1-BLn)이 교차하는 지점에 배치될 수 있다. 따라서, 특정한 메모리 셀과 연결되는 워드라인(WL1-WLm) 및 비트라인(BL1-BLn)을 선택하여 상기 특정한 메모리 셀을 억세스할 수 있다.
상기 반도체 장치(6)는 휘발성 메모리 장치일 수 있으나, 바람직하게는 비휘발성 메모리 장치일 수 있다. 예를 들어, 상기 반도체 장치는 플래시 메모리 장치, 저항 변화 메모리(Resistive Random Access Memory: RRAM) 장치, 상변화 메모리(Phase-Change Random Access Memory: PRAM) 장치, 강유전체 메모리(Ferroelectric Random Access Memory: FRAM) 장치, 자기 저항 메모리(Spin Transfer Torque Random Access Memory: STT-RAM) 장치 등을 포함할 수 있다.
또한, 상기 메모리 셀(Cell)은 플로팅 게이트를 포함하는 플래시 메모리 소자, 이이피롬 메모리 소자일 수 있다. 또한, 저항 변화 메모리 소자, 상변화 메모리 소자, 강유전체 메모리 소자, 자기 저항 메모리 소자 등을 포함할 수 있다.
컬럼 선택부(620)는 비트라인 선택 신호(BS<1:n>)에 기초하여 복수의 비트 라인(BL1-BLn) 중 하나를 선택할 수 있다. 상기 컬럼 선택부(620)는 메모리 블록(610)과 공통 노드(C) 사이에 연결되고, 복수의 비트 라인(BL1-BLn)을 통해 각각의 메모리 셀(Cell)과 연결된다. 상기 컬럼 선택부(620)는 복수의 스위치 트랜지스터(BT1-BTn)를 포함할 수 있고, 상기 복수의 스위치 트랜지스터(BT1-BTn)의 개수는 비트라인(BL1-BLn)의 개수와 대응될 수 있다. 상기 복수의 스위치 트랜지스터(BT1-BTn)는 각각 할당된 비트라인 선택 신호(BS<1:n>)를 수신할 수 있다.
상기 전원 공급부(630)는 리드 신호(RD)에 응답하여 상기 공통 노드(C)로 제 1 전압을 인가할 수 있다. 상기 제 1 전압은 전원전압(VDD)일 수 있다. 상기 스위치 구동부의 개수는 비트라인의 개수 및 상기 스위치 트랜지스터에 대응할 수 있다. 상기 제 1 스위치 구동부(641)는 상기 제 1 비트라인(BL1)과 연결되는 제 1 스위치 트랜지스터(BT1)와 연결될 수 있고, 제 2 스위치 구동부(642)는 제 2 비트라인(BL2)과 연결되는 제 2 스위치 트랜지스터(BT2)와 연결될 수 있으며, 제 n 스위치 구동부(64n)는 제 n 비트라인(BLn)과 연결되는 제 n 스위치 트랜지스터(BTn)와 연결될 수 있다.
상기 제 1 스위치 구동부(641), 제 2 스위치 구동부(642) 및 제 n 스위치 구동부(64n)는 각각 입력되는 신호와 출력되는 신호를 제외하고는 도 2에 도시된 제 1 스위치 구동부(141)와 실질적으로 동일한 구성을 가질 수 있다. 상기 제 1 스위치 구동부(641)는 제 1 컬럼 선택 신호(CS<1>)에 응답하여 제 1 비트라인 선택 신호(BS<1>)를 생성할 수 있다. 상기 제 2 스위치 구동부(642)는 제 2 컬럼 선택 신호(CS<2>)에 응답하여 제 2 비트라인 선택 신호(BS<2>)를 생성할 수 있다. 상기 제 n 스위치 구동부(64n)는 제 n 컬럼 선택 신호(CS<n>)에 응답하여 제 n 비트라인 선택 신호(BS<n>)를 생성할 수 있다. 상기 컬럼 선택 신호(CS<n>)는 컬럼 어드레스 신호에 기초하여 생성될 수 있고, 억세스하려는 메모리 셀(Cell)과 연결된 비트라인(BL1-BLn)을 선택하기 위해 인에이블될 수 있다. 상기 스위치 구동부(641, 642, 64n)는 각각 상기 컬럼 선택 신호(CS<1:n>)가 인에이블되면 제 2 전압의 레벨을 갖는 상기 비트라인 선택 신호(BS<1:n>)를 생성할 수 있다. 이 후, 상기 리드 신호(RD)가 인에이블되어 상기 전원 공급부(630)에 의해 상기 공통 노드(A)로 제 1 전압이 인가되면, 상기 스위치 구동부(641, 642, 64n)는 제 3 전압 레벨을 갖는 상기 비트라인 선택 신호(BS<1:n>)를 생성할 수 있다.
도 6에서, 상기 반도체 장치(6)는 센스앰프(650) 및 프리차지부(660)를 더 포함할 수 있다. 센스 앰프(650)는 비트라인 선택 신호(BS<0:n>)에 의해 특정 비트 라인이 선택되면, 선택된 비트 라인과 연결된 메모리 셀의 정보를 감지 증폭하여 출력 신호(OUT)를 생성할 수 있다. 상기 센스 앰프(650)는 상기 공통 노드(C)와 연결될 수 있고, 상기 복수의 메모리 셀(Cell)은 상기 컬럼 선택부(620)를 구성하는 복수의 스위치 트랜지스터(BT1-BTn)를 통해 상기 센스 앰프(650)와 연결될 수 있다. 따라서, 상기 센스 앰프(650)는 상기 컬럼 선택부(620)를 통해 특정 메모리 셀과 연결될 수 있고, 비트 라인(BL1-BLn)을 통해 전달된 메모리 셀의 정보를 감지 증폭하여 출력 신호(OUT)를 생성할 수 있다. 상기 센스 앰프(650)는 상기 공통 노드(C)를 통해 흐르는 전류를 감지하여 디지털 신호를 생성하는 아날로그 디지털 컨버터(Analog to Digital Converter, ADC) 또는 상기 공통 노드(C)의 전압 레벨과 기준 전압의 레벨을 비교하여 디지털 신호를 생성하는 전압 증폭기를 포함할 수 있다.
상기 프리차지부(660)는 상기 리드 신호의 반전신호(RDB)에 응답하여 상기 공통 노드(C)를 프리차지시킬 수 있다. 예를 들어, 상기 프리차지부(660)는 상기 리드 신호(RD)가 디스에이블되면 상기 공통 노드(C)를 접지전압으로 구동하여 상기 공통 노드(C)를 프리차지시킬 수 있다. 상기 프리차지부(660)는 상기 리드 신호가 인에이블되면 턴오프될 수 있고, 상기 공통 노드(C)의 프리차지 상태를 해제시킬 수 있다.
본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있으므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
Claims (19)
- 가변 저항;
저항 선택 신호에 응답하여 상기 가변 저항을 센스앰프와 연결하는 가변 저항 선택부;
리드 신호에 응답하여 상기 가변 저항 선택부로 제 1 전압을 인가하는 전원 공급부; 및
저항 선택 제어신호에 응답하여 상기 저항 선택 신호를 생성하고, 상기 가변 저항 선택부로 상기 제 1 전압이 인가되면 상기 저항 선택 신호의 전압 레벨을 증가시키는 스위치 구동부를 포함하는 반도체 장치. - ◈청구항 2은(는) 설정등록료 납부시 포기되었습니다.◈제 1 항에 있어서,
상기 가변 저항 선택부는 스위치 트랜지스터를 포함하고,
상기 스위치 트랜지스터는 게이트로 상기 저항 선택 신호를 수신하고, 드레인이 상기 전원 공급부와 연결되고, 소스가 상기 가변 저항과 연결되는 반도체 장치. - ◈청구항 3은(는) 설정등록료 납부시 포기되었습니다.◈제 1 항에 있어서,
상기 가변 저항 선택부는 스위치 트랜지스터를 포함하고,
상기 스위치 트랜지스터는 N-채널 트랜지스터를 포함하는 반도체 장치. - ◈청구항 4은(는) 설정등록료 납부시 포기되었습니다.◈제 1 항에 있어서,
상기 스위치 구동부는 상기 저항 선택 제어신호가 인에이블되면 제 2 전압의 레벨을 갖는 상기 저항 선택 신호를 생성하고, 상기 가변 저항 선택부로 상기 제 1 전압이 인가되면 제 3 전압의 레벨을 갖는 상기 저항 선택 신호를 생성하는 반도체 장치. - ◈청구항 5은(는) 설정등록료 납부시 포기되었습니다.◈제 4 항에 있어서,
상기 제 3 전압의 레벨은 상기 제 1 및 제 2 전압의 레벨의 합에 대응하는 반도체 장치. - ◈청구항 6은(는) 설정등록료 납부시 포기되었습니다.◈제 1 항에 있어서,
상기 스위치 구동부는 상기 저항 선택 제어신호를 수신하는 인버터;
상기 인버터의 출력을 수신하여 출력 노드를 상기 제 1 전압으로 구동하는 제 1 트랜지스터; 및
상기 저항 선택 제어신호에 응답하여 상기 출력 노드를 접지전압으로 구동하는 제 2 트랜지스터를 포함하고,
상기 출력 노드로부터 상기 저항 선택 신호가 생성되는 반도체 장치. - ◈청구항 7은(는) 설정등록료 납부시 포기되었습니다.◈제 6 항에 있어서,
상기 제 1 및 제 2 트랜지스터는 N-채널 트랜지스터인 반도체 장치. - ◈청구항 8은(는) 설정등록료 납부시 포기되었습니다.◈제 1 항에 있어서,
상기 저항 선택 제어신호는 상기 리드 신호보다 먼저 인에이블되는 반도체 장치. - ◈청구항 9은(는) 설정등록료 납부시 포기되었습니다.◈제 1 항에 있어서,
상기 리드 신호에 응답하여 상기 가변 저항 선택부, 상기 전원 공급부 및 상기 센스앰프가 연결되는 공통 노드를 프리차지시키는 프리차지부를 더 포함하는 반도체 장치. - 비트라인 선택 신호에 응답하여 메모리 셀이 연결된 비트라인과 연결되는 컬럼 선택부;
리드 신호에 응답하여 상기 컬럼 선택부로 제 1 전압을 인가하는 전원 공급부; 및
컬럼 선택신호에 응답하여 상기 비트라인 선택 신호를 생성하고, 상기 컬럼 선택부로 상기 제 1 전압이 인가되면 상기 비트라인 선택 신호의 전압 레벨을 증가시키는 스위치 구동부를 포함하는 반도체 장치. - ◈청구항 11은(는) 설정등록료 납부시 포기되었습니다.◈제 10 항에 있어서,
상기 컬럼 선택부는 스위치 트랜지스터를 포함하고,
상기 스위치 트랜지스터는 게이트로 상기 비트라인 선택 신호를 수신하고, 드레인이 상기 전원 공급부와 연결되며, 소스가 상기 비트라인과 연결되는 반도체 장치. - ◈청구항 12은(는) 설정등록료 납부시 포기되었습니다.◈제 10 항에 있어서,
상기 컬럼 선택부는 스위치 트랜지스터를 포함하고,
상기 스위치 트랜지스터는 N-채널 트랜지스터를 포함하는 반도체 장치. - ◈청구항 13은(는) 설정등록료 납부시 포기되었습니다.◈제 10 항에 있어서,
상기 스위치 구동부는 상기 컬럼 선택 신호가 인에이블되면 제 2 전압의 레벨을 갖는 상기 비트라인 선택 신호를 생성하고, 상기 컬럼 선택부로 상기 제 1 전압이 인가되면 제 3 전압의 레벨을 갖는 상기 비트라인 선택 신호를 생성하는 반도체 장치. - ◈청구항 14은(는) 설정등록료 납부시 포기되었습니다.◈제 13 항에 있어서,
상기 제 3 전압의 레벨은 상기 제 1 및 제 2 전압의 레벨의 합에 대응하는 반도체 장치. - ◈청구항 15은(는) 설정등록료 납부시 포기되었습니다.◈제 10 항에 있어서,
상기 스위치 구동부는 상기 컬럼 선택 신호를 수신하는 인버터;
상기 인버터의 출력을 수신하여 출력 노드를 상기 제 1 전압으로 구동하는 제 1 트랜지스터; 및
상기 컬럼 선택 신호에 응답하여 상기 출력 노드를 접지전압으로 구동하는 제 2 트랜지스터를 포함하고,
상기 출력 노드로부터 상기 비트라인 선택 신호가 생성되는 반도체 장치. - ◈청구항 16은(는) 설정등록료 납부시 포기되었습니다.◈제 15 항에 있어서,
상기 제 1 및 제 2 트랜지스터는 N-채널 트랜지스터인 반도체 장치. - ◈청구항 17은(는) 설정등록료 납부시 포기되었습니다.◈제 10 항에 있어서,
상기 컬럼 선택 신호는 상기 리드 신호보다 먼저 인에이블되는 반도체 장치. - ◈청구항 18은(는) 설정등록료 납부시 포기되었습니다.◈제 10 항에 있어서,
상기 전원 공급부와 상기 컬럼 선택부가 연결되는 공통 노드와 연결되고 상기 메모리 셀을 통해 흐르는 전류 또는 전압을 감지 증폭하는 센스앰프를 더 포함하는 반도체 장치. - ◈청구항 19은(는) 설정등록료 납부시 포기되었습니다.◈제 10 항에 있어서,
상기 리드 신호에 응답하여 상기 전원 공급부 및 상기 컬럼 선택부가 연결되는 공통 노드를 프리차지시키는 프리차지부를 더 포함하는 반도체 장치.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150064854A KR102341230B1 (ko) | 2015-05-08 | 2015-05-08 | 저항 또는 셀에 저장된 정보를 리드하는 반도체 장치 |
US14/843,562 US9472276B1 (en) | 2015-05-08 | 2015-09-02 | Semiconductor apparatus for reading stored information of a resistor or cell |
CN201510662629.7A CN106128501B (zh) | 2015-05-08 | 2015-10-14 | 用于读取电阻器或单元中储存的信息的半导体装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150064854A KR102341230B1 (ko) | 2015-05-08 | 2015-05-08 | 저항 또는 셀에 저장된 정보를 리드하는 반도체 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160132293A KR20160132293A (ko) | 2016-11-17 |
KR102341230B1 true KR102341230B1 (ko) | 2021-12-21 |
Family
ID=57120517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150064854A KR102341230B1 (ko) | 2015-05-08 | 2015-05-08 | 저항 또는 셀에 저장된 정보를 리드하는 반도체 장치 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9472276B1 (ko) |
KR (1) | KR102341230B1 (ko) |
CN (1) | CN106128501B (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10541011B1 (en) * | 2017-08-01 | 2020-01-21 | SK Hynix Inc. | Electronic device |
KR102506447B1 (ko) | 2018-04-19 | 2023-03-06 | 삼성전자주식회사 | 메모리 셀 어레이를 포함하는 저항성 메모리 장치 및 이를 포함하는 시스템 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030021168A1 (en) | 2001-06-28 | 2003-01-30 | Terufumi Ishida | Semiconductor storage device and information apparatus using the same |
US20100195377A1 (en) | 2009-02-05 | 2010-08-05 | Young Soo Kim | Semiconductor memory apparatus and method of testing the same |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5917348A (en) | 1997-09-02 | 1999-06-29 | Industrial Technology Research Institute--Computer & Communication Research Labs. | CMOS bidirectional buffer for mixed voltage applications |
KR100322541B1 (ko) * | 1999-07-14 | 2002-03-18 | 윤종용 | 입출력 라인쌍 등화회로 및 이를 구비한 메모리 장치 |
US6714075B2 (en) * | 2001-11-16 | 2004-03-30 | Matsushita Electric Industrial Co., Ltd. | Variable gain amplifier and filter circuit |
JP4221329B2 (ja) * | 2004-04-28 | 2009-02-12 | パナソニック株式会社 | 半導体記憶装置 |
KR101094904B1 (ko) * | 2009-09-30 | 2011-12-15 | 주식회사 하이닉스반도체 | 기준전압 생성 회로 및 방법, 이를 이용한 상변화 메모리 장치 및 리드 방법 |
JP2011159355A (ja) * | 2010-02-01 | 2011-08-18 | Sanyo Electric Co Ltd | 半導体記憶装置 |
KR101171254B1 (ko) * | 2010-05-31 | 2012-08-06 | 에스케이하이닉스 주식회사 | 비트라인 센스앰프 제어 회로 및 이를 구비하는 반도체 메모리 장치 |
CN101907654B (zh) * | 2010-07-20 | 2012-07-18 | 西北核技术研究所 | 用于辐射探测的大动态微弱电流探测装置 |
EP2688290A4 (en) * | 2011-03-17 | 2015-03-18 | Nat Inst Of Advanced Ind Scien | ITEM, CELL AND VARIABLE GAIN PHOTOELECTRIC CONVERSION MATRIX, METHOD OF GAIN VARIATION, READING METHOD, AND CIRCUIT |
KR101923714B1 (ko) * | 2012-01-10 | 2018-11-29 | 에스케이하이닉스 주식회사 | 반도체 장치 |
KR20160059525A (ko) * | 2014-11-18 | 2016-05-27 | 에스케이하이닉스 주식회사 | 저항 또는 셀에 저장된 정보를 리드하는 반도체 장치 |
-
2015
- 2015-05-08 KR KR1020150064854A patent/KR102341230B1/ko active IP Right Grant
- 2015-09-02 US US14/843,562 patent/US9472276B1/en active Active
- 2015-10-14 CN CN201510662629.7A patent/CN106128501B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030021168A1 (en) | 2001-06-28 | 2003-01-30 | Terufumi Ishida | Semiconductor storage device and information apparatus using the same |
US20100195377A1 (en) | 2009-02-05 | 2010-08-05 | Young Soo Kim | Semiconductor memory apparatus and method of testing the same |
Also Published As
Publication number | Publication date |
---|---|
CN106128501A (zh) | 2016-11-16 |
KR20160132293A (ko) | 2016-11-17 |
US9472276B1 (en) | 2016-10-18 |
US20160329096A1 (en) | 2016-11-10 |
CN106128501B (zh) | 2020-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9595325B2 (en) | Apparatus and methods for sensing hard bit and soft bits | |
CN107077890B (zh) | 非易失性存储装置 | |
JP5284225B2 (ja) | 不揮発性半導体記憶装置とその読み出し方法 | |
US9312000B1 (en) | Semiconductor apparatus | |
US9484091B2 (en) | Resistance change memory | |
KR20120037887A (ko) | 반도체 메모리 및 시스템 | |
US9361976B2 (en) | Sense amplifier including a single-transistor amplifier and level shifter and methods therefor | |
US9336871B2 (en) | Resistance change memory | |
US9224466B1 (en) | Dual capacitor sense amplifier and methods therefor | |
US11574678B2 (en) | Resistive random access memory, and method for manufacturing resistive random access memory | |
US20180268878A1 (en) | Non-volatile semiconductor memory device | |
WO2016072173A1 (ja) | 不揮発性メモリ装置、および不揮発性メモリ装置の制御方法 | |
US20050141306A1 (en) | Memory device | |
US10811095B2 (en) | Semiconductor storage device | |
JP6039805B2 (ja) | 半導体記憶装置および記憶データの読み出し方法 | |
CN109817269B (zh) | 测试电路块、可变电阻存储器件和形成该存储器件的方法 | |
KR102341230B1 (ko) | 저항 또는 셀에 저장된 정보를 리드하는 반도체 장치 | |
KR101205100B1 (ko) | 비휘발성 메모리 장치 | |
JP6163817B2 (ja) | 不揮発性メモリセルおよび不揮発性メモリ | |
KR101213724B1 (ko) | 비휘발성 메모리 장치 및 센싱 방법 | |
US9558797B2 (en) | Method and apparatus for controlling current in an array cell | |
TWI515739B (zh) | Reading Method of Semiconductor Memory Device and Memory Data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |