KR102323703B1 - 다중 구성 요소 정형외과용 임플란트 제작 방법 - Google Patents

다중 구성 요소 정형외과용 임플란트 제작 방법 Download PDF

Info

Publication number
KR102323703B1
KR102323703B1 KR1020207017894A KR20207017894A KR102323703B1 KR 102323703 B1 KR102323703 B1 KR 102323703B1 KR 1020207017894 A KR1020207017894 A KR 1020207017894A KR 20207017894 A KR20207017894 A KR 20207017894A KR 102323703 B1 KR102323703 B1 KR 102323703B1
Authority
KR
South Korea
Prior art keywords
bone
patient
model
specific
implant
Prior art date
Application number
KR1020207017894A
Other languages
English (en)
Other versions
KR20200079556A (ko
Inventor
모하메드 라쉬완 마푸즈
Original Assignee
모하메드 라쉬완 마푸즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 모하메드 라쉬완 마푸즈 filed Critical 모하메드 라쉬완 마푸즈
Priority to KR1020207029222A priority Critical patent/KR102407868B1/ko
Publication of KR20200079556A publication Critical patent/KR20200079556A/ko
Application granted granted Critical
Publication of KR102323703B1 publication Critical patent/KR102323703B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2/2875Skull or cranium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2825Femur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30943Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using mathematical models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30948Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using computerized tomography, i.e. CT scans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30952Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using CAD-CAM techniques or NC-techniques

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Neurosurgery (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Prostheses (AREA)
  • Surgical Instruments (AREA)
  • Architecture (AREA)
  • Software Systems (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

(a) 환자의 비정상적인 뼈의 실제 인체로부터 유도된 환자-맞춤형 비정상적인 뼈 모델을 역시 상기 환자의 뼈의 인체로부터 유도되어 재건된 환자-맞춤형 뼈 모델과 비교하는 것으로 이루어지는 환자-맞춤형 정형외과용 임플란트 구성 방법, 여기에서 상기 재건된 환자-맞춤형 뼈 모델은 상기 환자의 뼈의 표준화된 인체를 반영하며, 상기 환자-맞춤형 비정상적인 뼈 모델은 부분적인 뼈, 기형 뼈, 및 부서진 뼈 중 적어도 하나를 포함하는 상기 환자의 뼈의 실제 인체를 반영하고, 상기 환자-맞춤형 비정상적인 뼈 모델은 환자-맞춤형 비정상적인 포인트 클라우드 및 환자-맞춤형 비정상적인 뼈 표면 모델 중 적어도 하나로 이루어지며, 상기 재건된 환자-맞춤형 뼈 모델은 재건된 환자-맞춤형 포인트 클라우드 및 재건된 환자-맞춤형 뼈 표면 모델 중 적어도 하나로 이루어짐.

Description

다중 구성 요소 정형외과용 임플란트 제작 방법{A fabricating method of a multi-component orthopedic implant}
관련출원 상호참조
본 출원은 "두개골 및 후 두개골 뼈 및 연조직 재건(CRANIUM AND POSTCRANIAL BONE AND SOFT TISSUE RECONSTRUCTION)"이라는 제목으로 2013년 10월 15일자로 출원된 미국 임시 특허 출원 제 61/891,047의 이익을 청구하며, 그 개시 내용은 이에 참조로 결부된다.
발명의 분야
본 개시 내용은 정형외과 수술시의 뼈 및 생체조직 재건, 환자-맞춤형 및 대량 맞춤형 정형외과용 임플란트, 성별 및 민족성에 따른 맞춤형 정형외과용 임플란트, 절단 가이드, 외상 판, 뼈 이식편 절단 및 배치 가이드, 환자-맞춤형 기구, 운동학 및 병리학을 위한 인체 추적용 관성 측정 장치의 이용, 및 내비게이션용 관성 측정 장치의 이용을 포함하여 다양한 정형외과적 측면에 관한 것이다.
(선행기술문헌)
(특허문헌 0001) 미국 특허출원 공개공보 US 2011/0305379 A1 (2011.12.15. 공개)
(특허문헌 0002) 미국 특허출원 공개공보 US 2013/0144135 A1 (2013.06.06. 공개)
(특허문헌 0003) PCT 국제출원 공개공보 WO 2013/056036 A1 (2013.04.18. 공개)
(특허문헌 0004) 미국 특허출원 공개공보 US 2013/0211531 A1 (2013.08.15. 공개)
(특허문헌 0005) 미국 특허출원 공개공보 US 2012/0230566 A1 (2012.09.13. 공개)
발명의 소개
본 발명의 제 1 양상은: (a) 환자의 비정상적인 뼈의 실제 인체로부터 유도된 환자-맞춤형 비정상적인 뼈 모델을 역시 상기 환자의 뼈의 인체로부터 유도되어 재건된 환자-맞춤형 뼈 모델과 비교하고, 여기에서 상기 재건된 환자-맞춤형 뼈 모델은 상기 환자의 뼈의 표준화된 인체를 반영하며, 상기 환자-맞춤형 비정상적인 뼈 모델은 부분적인 뼈, 기형 뼈, 및 부서진 뼈 중 적어도 하나를 포함하는 상기 환자의 뼈의 실제 인체를 반영하고, 상기 환자-맞춤형 비정상적인 뼈 모델은 환자-맞춤형 비정상적인 포인트 클라우드 및 환자-맞춤형 비정상적인 뼈 표면 모델 중 적어도 하나로 이루어지며, 상기 재건된 환자-맞춤형 뼈 모델은 재건된 환자-맞춤형 포인트 클라우드 및 재건된 환자-맞춤형 뼈 표면 모델 중 적어도 하나로 이루어짐; (b) 상기 환자-맞춤형 비정상적인 뼈 모델과 상기 재건된 환자-맞춤형 뼈 모델과의 비교로부터 출력된 데이터를 이용하여, 상기 환자의 비정상적인 뼈에 장착될 환자-맞춤형 정형외과용 임플란트에 대하여 하나 이상의 파라미터를 최적화하고; 그리고, (c) 상기 하나 이상의 파라미터를 고려하여 상기 환자-맞춤형 정형외과용 임플란트를 위한 전자 설계 파일을 생성하는 것;으로 이루어지는 환자-맞춤형 정형외과용 임플란트 구성 방법을 제공하는 것이다.
상기 제 1 양상의 보다 상세한 실시 예에서, 상기 방법은 상기 전자 설계 파일을 이용하여 상기 환자-맞춤형 임플란트를 제작하는 것으로 더욱 이루어진다. 보다 상세한 또 다른 실시 예에서, 상기 방법은 상기 환자-맞춤형 비정상적인 뼈 모델로부터 부재하는 뼈 또는 기형 뼈를 식별하기 위하여 상기 환자-맞춤형 비정상적인 뼈 모델을 상기 재건된 환자-맞춤형 뼈 모델과 비교하고, 그리고, 상기 부재하는 뼈 또는 기형 뼈를 상기 재건된 환자-맞춤형 뼈 모델 상에 국소화(localize)하는 것을 더욱 포함한다. 더욱 상세한 실시 예에서, 상기 방법은 상기 환자의 비정상적인 뼈를 나타내는 데이터로부터 상기 환자-맞춤형 비정상적인 뼈 모델을 생성하고, 그리고, 상기 환자의 비정상적인 뼈를 나타내는 데이터로부터 그리고 스태티스티컬 아틀라스(statistical atlas)로부터의 데이터로부터 상기 재건된 환자-맞춤형 뼈 모델을 생성하는 것으로 더욱 이루어지며, 여기에서 상기 스태티스티컬 아틀라스 데이터는 상기 환자의 비정상적인 뼈와 유사한 정상적인 뼈의 포인트 클라우드 및 표면 모델 중 적어도 하나로 이루어진다. 더 더욱 상세한 실시 예에서, 상기 환자의 비정상적인 뼈를 나타내는 데이터는 자기 공명 영상, 컴퓨터 단층 촬영 영상, X-선 영상, 및 초음파 영상 중 적어도 하나로 이루어진다. 보다 상세한 실시 예에서, 상기 스태티스티컬 아틀라스 데이터는 상기 정상적인 뼈의 자기 공명 영상, 컴퓨터 단층 촬영 영상, X-선 영상, 및 초음파 영상 중 적어도 하나로부터 유래된다. 보다 상세한 실시 예에서, 상기 식별된 부재하는 뼈 또는 기형 뼈는 경계점 세트로 이루어지고, 그리고, 상기 부재하는 뼈 또는 상기 기형 뼈를 상기 재건된 환자-맞춤형 뼈 모델 상에서 국소화하는 것은 상기 경계점 세트를 상기 재건된 환자-맞춤형 뼈 모델에 연관시키는 것을 포함한다. 보다 상세한 다른 실시 예에서, 상기 환자-맞춤형 비정상적인 뼈 모델로부터 부재하는 뼈 또는 기형 뼈를 식별하기 위하여 상기 환자-맞춤형 비정상적인 뼈 모델을 상기 재건된 환자-맞춤형 뼈 모델과 비교하는 것은 적어도 2개의 데이터 리스트를 출력하는 것을 포함하며, 여기에서 상기 적어도 2개의 데이터 리스트는 상기 부재하는 뼈 또는 기형 뼈를 식별하는 제 1 리스트, 및 상기 환자-맞춤형 비정상적인 뼈 모델과 상기 재건된 환자-맞춤형 뼈 모델 사이에 공통적인 뼈를 식별하는 제 2 리스트를 포함한다. 보다 상세한 또 다른 실시 예에서, 상기 제 1 리스트는 상기 환자-맞춤형 비정상적인 뼈 모델에서 상기 부재하는 뼈 또는 상기 기형 뼈에 속하는 정점으로 이루어지고, 그리고, 상기 제 2 리스트는 상기 환자-맞춤형 비정상적인 뼈 모델과 상기 재건된 환자-맞춤형 뼈 모델 사이에 공통적인 뼈에 속하는 정점으로 이루어진다. 보다 상세한 또 다른 실시 예에서, 상기 방법은 상기 환자-맞춤형 비정상적인 뼈 모델로부터의 데이터 그리고 상기 재건된 환자-맞춤형 뼈 모델로부터의 데이터를 이용하여 하나 이상의 환자-맞춤형 정형외과용 임플란트 고정 위치를 결정하는 것으로 더욱 이루어진다.
상기 제 1 양상의 보다 상세한 또 다른 실시 예에서, 하나 이상의 환자-맞춤형 정형외과용 임플란트 고정 위치를 결정하는 것은 상기 부재하는 뼈 또는 상기 기형 뼈가 식별된 임의의 위치를 배제시키는 것을 포함한다. 보다 상세한 또 다른 실시 예에서, 환자-맞춤형 정형외과용 임플란트에 대하여 하나 이상의 파라미터를 최적화하는 것은 이후에 상기 재건된 환자-맞춤형 뼈 모델을 이용하여 최적화되는 개략적인 파라미터를 설정하기 위하여 임플란트 파라미터화 템플릿을 이용하는 것을 포함한다. 더욱 상세한 실시 예에서, 상기 파라미터는 각도 파라미터, 깊이 파라미터, 곡률 파라미터, 및 고정 장치 위치 파라미터 중 적어도 하나를 포함한다. 더 더욱 상세한 실시 예에서, 상기 방법은 상기 환자-맞춤형 정형외과용 임플란트의 표면 모델의 초기 반복을 구성하는 것으로 더욱 이루어진다. 보다 상세한 실시 예에서, 상기 표면 모델의 초기 반복을 구성하는 것은 상기 환자-맞춤형 비정상적인 뼈 모델로부터의 윤곽 그리고 상기 재건된 환자-맞춤형 뼈 모델로부터의 윤곽을 조합하는 것을 포함한다. 보다 상세한 실시 예에서, 상기 표면 모델의 초기 반복을 구성하는 것은 상기 환자-맞춤형 정형외과용 임플란트에 대하여 의도된 이식 위치를 확인하는 것을 포함한다. 보다 상세한 다른 실시 예에서, 상기 방법은 상기 환자-맞춤형 정형외과용 임플란트의 표면 모델의 후속 반복을 구성하는 것으로 더욱 이루어진다. 보다 상세한 또 다른 실시 예에서, 상기 환자-맞춤형 정형외과용 임플란트의 표면 모델의 후속 반복을 구성하는 것은 상기 표면 모델의 추가 반복이 요구되는지를 파악하기 위하여 상기 표면 모델의 후속 반복 및 상기 재건된 환자-맞춤형 뼈 모델의 수동검토를 포함한다. 보다 상세한 또 다른 실시 예에서, 상기 전자 설계 파일은 캐드(computer aided design CAD) 파일, 컴퓨터 수치제어(computer numerical control CNC) 파일, 및 신속 제작 명령어(rapid manufacturing instruction) 파일 중 적어도 하나를 포함한다.
상기 제 1 양상의 보다 상세한 실시 예에서, 상기 방법은 상기 환자-맞춤형 정형외과용 임플란트에 대하여 최적화된 상기 하나 이상의 파라미터를 이용하여 환자-맞춤형 임플란트 배치 가이드를 위한 전자 설계 파일을 생성하는 것으로 더욱 이루어진다. 보다 상세한 또 다른 실시 예에서, 상기 방법은 상기 환자-맞춤형 임플란트 배치 가이드를 위한 상기 전자 설계 파일을 이용하여 상기 환자-맞춤형 임플란트 배치 가이드를 제작하는 것으로 더욱 이루어진다. 더욱 상세한 실시 예에서, 상기 환자-맞춤형 정형외과용 임플란트에 대하여 최적화된 상기 하나 이상의 파라미터는 크기 파라미터, 형상 파라미터, 및 윤곽 파라미터 중 적어도 하나를 포함한다. 더 더욱 상세한 실시 예에서, 적어도 하나의 윤곽 파라미터는 상기 환자-맞춤형 정형외과용 임플란트 및 상기 환자-맞춤형 임플란트 배치 가이드 사이에 공통적이다. 보다 상세한 실시 예에서, 상기 방법은 상기 환자-맞춤형 임플란트 배치 가이드가 위치되도록 의도된 상기 환자의 뼈의 표면 형상에 대하여 네거티브(negative)인 표면 형상을 포함하도록 환자-맞춤형 임플란트 배치 가이드를 설계하는 것으로 더욱 이루어진다. 보다 상세한 실시 예에서, 상기 환자-맞춤형 비정상적인 뼈 모델은 환자-맞춤형 비정상적인 대퇴골 뼈 모델 및 환자의 비정상적인 고관절 실제 인체로부터 유래된 환자-맞춤형 비정상적인 골반 뼈 모델 중 적어도 하나로 이루어지고, 상기 재건된 환자-맞춤형 뼈 모델은 재건된 환자-맞춤형 대퇴골 뼈 모델 및 상기 환자의 고관절 인체로부터 유래된 재건된 환자-맞춤형 골반 뼈 모델 중 적어도 하나로 이루어지고, 상기 재건된 환자-맞춤형 모델은 상기 환자의 고관절로부터의 표준화된 인체를 반영하고, 그리고, 상기 환자-맞춤형 비정상적인 뼈 모델은 상기 환자의 고관절로부터의 실제 인체를 반영한다. 보다 상세한 다른 실시 예에서, 상기 환자-맞춤형 비정상적인 뼈 모델은 상기 환자-맞춤형 비정상적인 대퇴골 뼈 모델로 이루어지고, 상기 재건된 환자-맞춤형 뼈 모델은 상기 재건된 환자-맞춤형 대퇴골 뼈 모델로 이루어지고, 상기 재건된 환자-맞춤형 모델은 상기 환자의 대퇴골 근위부로부터의 표준화된 인체를 반영하고, 상기 환자-맞춤형 비정상적인 뼈 모델은 상기 환자의 대퇴골 근위부로부터의 실제 인체를 반영하고, 그리고, 상기 환자-맞춤형 정형외과용 임플란트는 대퇴골 스템 임플란트로 이루어진다.
상기 제 1 양상의 보다 상세한 실시 예에서, 상기 환자-맞춤형 비정상적인 뼈 모델은 상기 환자-맞춤형 비정상적인 골반 뼈 모델로 이루어지고, 상기 재건된 환자-맞춤형 뼈 모델은 상기 재건된 환자-맞춤형 골반 뼈 모델로 이루어지고, 상기 재건된 환자-맞춤형 모델은 상기 환자의 골반의 표준화된 인체를 반영하고, 상기 환자-맞춤형 비정상적인 뼈 모델은 상기 환자의 골반으로부터의 실제 인체를 반영하고, 그리고, 상기 환자-맞춤형 정형외과용 임플란트는 비구컵(acetabular cup) 임플란트로 이루어진다. 보다 상세한 또 다른 실시 예에서, 상기 환자-맞춤형 정형외과용 임플란트에 대한 상기 전자 설계 파일은 캐드 파일, 컴퓨터 수치제어(CNC) 파일, 및 신속 제작 명령어 파일 중 적어도 하나를 포함한다.
본 발명의 제 2 양상은: (a) 부분적인 뼈, 기형 뼈, 및 부서진 뼈 중 적어도 하나를 포함하는 비정상적인 뼈와 유사한 뼈를 스태티스티컬 아틀라스로부터 식별하는 것, 스태티스티컬 아틀라스로부터의 뼈를 상기 비정상적인 뼈에 정합하는 것, 그리고 상기 비정상적인 뼈의 포인트 클라우드 및 표면 모델 중 적어도 하나에 상기 비정상적인 뼈의 재건된 모델 상의 표면 포인트를 모핑하는 것 중 적어도 하나를 위하여, 상기 비정상적인 뼈의 포인트 클라우드 및 표면 모델 중 적어도 하나를 이용하고; 그리고, (b) 상기 비정상적인 뼈의 재건된 모델을 생성하는 것;으로 이루어지는 비정상적인 뼈의 전자 재건 뼈 모델을 생성하는 방법을 제공하는 것이다.
상기 제 2 양상의 보다 상세한 실시 예에서, 상기 비정상적인 뼈의 포인트 클라우드 및 표면 모델 중 적어도 하나를 이용하는 단계는 상기 비정상적인 뼈와 가장 유사한 스태티스티컬 아틀라스 뼈를 식별하는 것을 포함한다. 보다 상세한 또 다른 실시 예에서, 상기 비정상적인 뼈의 포인트 클라우드 및 표면 모델 중 적어도 하나를 이용하는 단계는 상기 스태티스티컬 아틀라스 뼈를 상기 비정상적인 뼈에 정합하는 것을 포함한다. 더욱 상세한 실시 예에서, 상기 비정상적인 뼈의 포인트 클라우드 및 표면 모델 중 적어도 하나를 이용하는 단계는 상기 비정상적인 뼈의 포인트 클라우드 및 표면 모델 중 적어도 하나에 상기 비정상적인 뼈의 재건된 모델 상의 표면 포인트를 모핑하는 것을 포함한다. 더 더욱 상세한 실시 예에서, 상기 비정상적인 뼈와 가장 유사한 스태티스티컬 아틀라스 뼈를 식별하는 것은 상기 스태티스티컬 아틀라스 뼈를 식별하기 위하여 하나 이상의 유사도 매트릭스를 이용하는 것을 포함한다. 보다 상세한 실시 예에서, 상기 스태티스티컬 아틀라스는 다수의 수학적 표현을 포함하며, 상기 다수의 수학적 표현 각각은 뼈를 나타낸다. 보다 상세한 실시 예에서, 상기 스태티스티컬 아틀라스는 다수의 가상 모델을 포함하며, 상기 다수의 가상 모델 각각은 뼈를 나타낸다. 보다 상세한 다른 실시 예에서, 상기 방법은 상기 스태티스티컬 아틀라스로부터 상기 비정상적인 뼈와 유사한 것으로 식별된 뼈에 상기 비정상적인 뼈의 포인트 클라우드 및 상기 표면 모델 중 적어도 하나를 정합하는 것으로 더욱 이루어진다. 보다 상세한 또 다른 실시 예에서, 상기 방법은 (a) 비정상적인 뼈의 포인트 클라우드 및 표면 모델 중 적어도 하나, 및 (b) 상기 스태티스티컬 아틀라스로부터 상기 비정상적인 뼈와 유사한 것으로 식별된 뼈 사이의 형상 파라미터 강화로 더욱 이루어진다. 보다 상세한 또 다른 실시 예에서, 형상 파라미터 강화는 상기 비정상적인 뼈의 포인트 클라우드 및 표면 모델 중 적어도 하나에서 부재하는 뼈 또는 기형 뼈를 식별하기 위하여 (a) 비정상적인 뼈의 포인트 클라우드 및 표면 모델 중 적어도 하나, 및 (b) 상기 스태티스티컬 아틀라스로부터 상기 비정상적인 뼈와 유사한 것으로 식별된 뼈 사이의 보간을 포함한다.
상기 제 2 양상의 보다 상세한 또 다른 실시 예에서, 상기 형상 파라미터 강화는 상기 부재하는 뼈 또는 기형 뼈에 해당하는 표면 포인트 생성을 초래한다. 보다 상세한 또 다른 실시 예에서, 상기 비정상적인 뼈의 재건된 모델을 생성하기 위하여, 상기 스태티스티컬 아틀라스로부터 상기 비정상적인 뼈와 유사한 것으로 식별된 뼈로부터 상기 비정상적인 뼈의 포인트 클라우드 및 표면 모델 중 적어도 하나로 보간된 표면 포인트를 모핑하는 것으로 더욱 이루어진다. 더욱 상세한 실시 예에서, 상기 비정상적인 뼈는 기형 골반 구간, 부서진 골반 구간, 및 부분적으로 골반 구간이 부재하는 뼈 중 적어도 하나로 이루어지며, 그리고, 상기 비정상적인 뼈의 재건된 모델은 상기 기형 골반 구간에서의 골 기형, 상기 부서진 골반 구간의 일부로 이루어지는 부서진 뼈, 및 상기 부분적인 골반 구간에서 결핍된 뼈 중 적어도 하나가 치료된 적어도 하나의 완전한 골반 모델 구간으로 이루어진다. 더 더욱 상세한 실시 예에서, 상기 완전한 골반 모델 구간은 비구컵 구조를 포함한다. 보다 상세한 실시 예에서, 상기 비정상적인 뼈는 기형 대퇴골 구간, 부서진 대퇴골 구간, 및 부분적으로 대퇴골 구간이 부재하는 뼈 중 적어도 하나로 이루어지며, 그리고, 상기 비정상적인 뼈의 재건된 모델은 상기 기형 대퇴골 구간에서의 골 기형, 상기 부서진 대퇴골 구간의 일부로 이루어지는 부서진 뼈, 및 상기 부분적인 대퇴골 구간에서 결핍된 뼈 중 적어도 하나가 치료된 적어도 하나의 완전한 대퇴골 모델 구간으로 이루어진다. 보다 상세한 실시 예에서, 상기 완전한 대퇴골 모델 구간은 경부 및 볼 구조를 갖는 대퇴골 근위부로 이루어진다. 보다 상세한 또 다른 실시 예에서, 상기 비정상적인 뼈는 기형 상완골 구간, 부서진 상완골 구간, 및 부분적으로 상완골 구간이 부재하는 뼈, 기형 척골 구간, 부서진 척골 구간, 부분적으로 척골 구간이 부재하는 뼈, 기형 노뼈 구간, 부서진 노뼈 구간, 부분적으로 노뼈 구간이 부재하는 뼈, 기형 두개골 구간, 부서진 두개골 구간, 부분적으로 두개골 구간이 부재하는 뼈, 기형 척추 구간, 부서진 척추 구간, 및 부분적으로 척추 구간이 부재하는 뼈 중 적어도 하나로 이루어지며, 그리고, 상기 비정상적인 뼈의 재건된 모델은 완전한 상완골 모델 구간, 완전한 척골 모델 구간, 완전한 노뼈 모델 구간, 완전한 두개골 모델 구간, 및 상기 기형 척골 구간에서 적어도 하나의 골 기형, 상기 부서진 척골 구간의 일부로 이루어지는 부서진 뼈, 상기 부분적인 척골 구간에서 부재하는 뼈, 상기 기형 노뼈 구간에서의 골 기형, 상기 부서진 노뼈 구간으로 이루어지는 부서진 뼈, 상기 부분적인 노뼈 구간에서 부재하는 뼈, 상기 기형 두개골 구간에서의 골 기형, 상기 부서진 두개골 구간의 일부로 이루어지는 부서진 뼈, 상기 부분적인 두개골 구간에서 부재하는 뼈, 상기 기형 척추 구간에서의 골 기형, 상기 부서진 척추 구간의 일부로 이루어지는 부서진 뼈, 및 상기 부분적인 척추 구간에서 부재하는 뼈 중 적어도 하나가 치료된 완전한 척추 모델 구간 중 적어도 하나로 이루어진다.
본 발명의 제 3 양상은: (a) 스태티스티컬 아틀라스 뼈 집단 전체에 걸쳐 표식자(landmarks) 및 형상 특징 중 적어도 하나로 이루어지는 특징을 식별하고; (b) 상기 스태티스티컬 아틀라스 뼈 집단 전체에 걸쳐 식별된 상기 특징을 이용하여 임플란트 설계에 관련된 디스크립터를 생성하고; (c) 유사한 디스크립터를 갖는 군에 상기 디스크립터 중 적어도 일부를 그룹화하고; (d) 상기 군으로부터 파라미터를 추출하기 위하여 상기 군을 파라미터화하고; 그리고, (e) 대량-맞춤화 정형외과용 임플란트에 대하여 전자 설계 파일을 생성하는 것;으로 이루어지는 대량-맞춤화 정형외과용 임플란트를 구성하는 방법을 제공하는 것이다.
상기 제 3 양상의 보다 상세한 실시 예에서, 상기 방법은 상기 전자 설계 파일을 이용하여 상기 대량-맞춤화 정형외과용 임플란트를 제작하는 것으로 더욱 이루어진다. 보다 상세한 또 다른 실시 예에서, 특징 식별 단계는 계산 로직에 내장된 위치 파라미터를 이용하여 스태티스티컬 아틀라스 뼈 집단 전체에 걸쳐 표식자를 계산하도록 구성된 소프트웨어 프로그램에 의하여 자동으로 수행된다. 더욱 상세한 실시 예에서, 상기 특징 식별 단계는 계산 로직에 내장된 위치 파라미터를 이용하여 스태티스티컬 아틀라스 뼈 집단 전체에 걸쳐 형상 특징을 계산하도록 구성된 소프트웨어 프로그램에 의하여 자동으로 수행된다. 더 더욱 상세한 실시 예에서, 상기 디스크립터는 상기 스태티스티컬 아틀라스 뼈 집단 전체에 걸쳐 계산된 수학적 디스크립터로 이루어진다. 보다 상세한 실시 예에서, 유사한 디스크립터를 갖는 군에 상기 디스크립터 중 적어도 일부를 그룹화하는 것은 상기 군을 설정하기 위하여 통계 분석을 이용하는 것을 포함한다. 보다 상세한 실시 예에서, 상기 군으로부터 추출된 디스크립터는 상기 대량-맞춤화 정형외과용 임플란트의 형상에 대한 설계 파라미터로 이루어진다.
보다 상세한 다른 실시 예에서, 상기 디스크립터는 수학적 디스크립터로 이루어지고, 그리고, 상기 군으로부터 디스크립터를 추출하기 위하여 상기 군을 파라미터화하는 것은 상기 수학적 디스크립터를 표면 디스크립터로 전환하는 것을 포함한다. 보다 상세한 또 다른 실시 예에서, 대량-맞춤화 정형외과용 임플란트에 대한 상기 전자 설계 파일은 상기 대량-맞춤화 정형외과용 임플란트의 가상 3-차원 모델을 포함한다. 보다 상세한 또 다른 실시 예에서, 상기 군으로부터 디스크립터를 추출하기 위하여 상기 군을 파라미터화하는 것은 상기 대량-맞춤화 정형외과용 임플란트의 가상 3-차원 모델을 생성하는 것을 포함한다.
보다 상세한 또 다른 제 3 양상의 실시 예에서, 상기 방법은 상기 스태티스티컬 아틀라스 뼈 집단 전체에 걸쳐 3-차원 망상조직의 뼈 특징을 추출하고, 그리고 상기 스태티스티컬 아틀라스 뼈 집단 내에 각각의 뼈에 대하여 그 뼈 특유의 상기 추출된 망상조직의 뼈 특징을 포함하는 3차원적 뼈 모델을 생성하는 것으로 더욱 이루어진다. 보다 상세한 또 다른 실시 예에서, 상기 방법은 망상조직의 뼈 크기 및 공극 크기를 결정하기 위하여 상기 스태티스티컬 아틀라스 뼈 집단 내 각각의 뼈에 대하여 공극률 산정(porosity evaluation)을 수행하는 것으로 더욱 이루어진다. 더욱 상세한 실시 예에서, 상기 방법은 상기 대량-맞춤화 정형외과용 임플란트에 대하여 상기 전자 설계 파일을 생성하기 위하여 망상조직의 뼈 크기 데이터, 공극 크기 데이터, 및 표면 디스크립터 파라미터를 조합하는 스트레스 테스트 과정을 수행하는 것으로 더욱 이루어진다. 더 더욱 상세한 실시 예에서, 상기 전자 설계 파일은 캐드 파일, 컴퓨터 수치제어(CNC) 파일, 및 신속 제작 명령어 파일 중 적어도 하나를 포함한다. 보다 상세한 실시 예에서, 상기 방법은 상기 추출된 파라미터 중 적어도 하나를 이용하여 대량 맞춤형 임플란트 배치 가이드를 위한 전자 설계 파일을 생성하는 것으로 더욱 이루어진다. 보다 상세한 실시 예에서, 상기 방법은 상기 대량 맞춤형 임플란트 배치 가이드를 위한 전자 설계 파일을 이용하여 상기 대량 맞춤형 임플란트 배치 가이드를 제작하는 것으로 더욱 이루어진다. 보다 상세한 다른 실시 예에서, 상기 스태티스티컬 아틀라스 뼈 집단은 민족성에 따른 맞춤형이다. 보다 상세한 또 다른 실시 예에서, 상기 스태티스티컬 아틀라스 뼈 집단은 성별에 따른 맞춤형이다. 보다 상세한 또 다른 실시 예에서, 상기 스태티스티컬 아틀라스 뼈 집단은 적어도 대퇴골 뼈 분절로 이루어진다. 보다 상세한 또 다른 실시 예에서, 상기 스태티스티컬 아틀라스 뼈 집단은 적어도 골반 뼈 분절로 이루어진다.
본 발명의 제 4 양상은: (a) 가상의 3차원적 뼈 모델 템플릿에 대하여 대량-맞춤화 외상 판을 위한 가상 경계를 설정하고; (b) 상기 가상의 3차원적 뼈 모델 템플릿 상의 표면 위치에 해당하는 상기 가상 경계 내측에 다수의 표면 포인트를 선택하고; (c) 다수의 가상의 3차원적 뼈 모델을 포함하는 스태티스티컬 아틀라스 전체에 걸쳐 상기 다수의 표면 포인트를 전파하고; (d) 상기 다수의 가상의 3차원적 뼈 모델 각각에 전파된 상기 다수의 표면 포인트를 이용하여 그 특정 뼈 모델에 적합한 가상의 3차원적 뼈 판을 구성하고; (e) 제작된 각각의 가상의 3차원적 뼈를 나타내는 다수의 곡률을 추출하고; (f) 상기 대량-맞춤화 외상 판에 대한 형상 파라미터를 도출하기 위하여 추출된 상기 다수의 곡률을 통계적으로 분석하고; 그리고, (g) 상기 형상 파라미터를 이용하여 상기 대량-맞춤화 외상 판을 위한 전자 설계 파일을 생성하는 것; 으로 이루어지는 대량-맞춤화 외상 판을 구성하는 방법을 제공하는 것이다.
본 발명의 제 5 양상은: (a) 환자의 뼈에 장착되는 정형외과용 임플란트의 크기 및 상기 환자의 뼈에 대하여 장착될 때 상기 임플란트의 위치를 결정하기 위하여 환자-맞춤형 뼈 윤곽을 처리하고; (b) 상기 정형외과용 임플란트의 크기 및 상기 환자의 뼈에 장착될 때 상기 임플란트의 위치를 이용하여 환자-맞춤형 절단 가이드를 설계하고; 그리고 (c) 상기 절단 가이드가 구성되어 장착될 상기 환자의 뼈의 형상에 대하여 네거티브(negative)인 형상을 포함하도록 환자-맞춤형인 절단 가이드를 제작하는 것;으로 이루어지는 정형외과용 임플란트용 뼈를 준비하기 위한 환자-맞춤형 절단 가이드 구성 방법을 제공하는 것이다.
도 1은 부분적인 인체로부터 대량 맞춤형 및 환자-맞춤형 금형을 제작하는 전반적인 과정을 나타낸 개략적인 다이어그램이다.
도 2는 관련성(correspondence)을 발생시키기 위하여 스태티스티컬 아틀라스에 새로운 인체 구조를 추가하는 방법을 상세히 나타낸 개략적인 다이어그램이다.
도 3은 도 2의 다중-해상도 3D 정합에 해당하는 다중-해상도 3D 정합 알고리즘이다.
도 4는 다중-스케일 특징을 이용한 다중-스케일 특징 정합이다.
도 5는 도 3에서 개략적으로 나타낸 다중-해상도 정합의 낮은 단계 내역이다.
도 6은 관련성의 발생에 따른 집단 내 캡쳐링 변화를 나타낸 도시하는 도면이다.
도 7은 부분적이거나, 기형이거나 또는 부서진 인체를 이용한 전체 뼈 재건 과정을 나타낸 개략적인 다이어그램이다.
도 8은 결함 템플릿의 생성을 위한 결함 분류 과정을 나타낸 개략적인 다이어그램이다.
도 9는 비구 결함에 대한 기존의 AAOS 분류의 도시 예이다.
도 10은 기존의 Paprosky 비구 결함 분류의 도시 예이다.
도 14의 좌측은 심각한 골반 불연속성을 갖는 환자의 3차원적 모델 표상이다. 우측에는 좌측에 나타낸 상기 환자의 골반의 3차원적 모델에 대한 일 예가 도시된다.
도 15는 재건된 좌측 모델 및 본래의 환자 모델뿐 만 아니라 우측 및 좌측 인체의 비교이다.
도 16은 재건된 모델과 상기 재건된 골반 모델의 거울 이미지와의 사이의 거리맵이다.
도 17은 완전한 골반 불연속성 및 1.8 mm의 rms 오차를 갖는 재건 결과를 갖는 환자이다.
도 18은 부분적인 두개골에 대한 재건 결과 및 재건 오차에 대한 평균 거리 맵이다.
도 19는 부서진 대퇴골의 재건 결과이다.
도 20은 환자-맞춤형 재건 임플란트를 제작하기 위한 과정을 나타낸 개략적인 다이어그램이다.
도 21은 도 20에 나타낸 임플란트 제작을 위한 상기 과정의 개략적인 다이어그램이다.
도 22는 부분적인 인체로부터 환자의 전체 인체를 재건하기 위한 그리고 골반 불연속성에 대한 환자 맞춤형 컵 임플란트를 제작하기 위한 다양한 단계를 나타내는 프로세스 흐름도이다.
도 23은 환자-맞춤형 비구 임플란트에 대한 환자-맞춤형 배치 가이드를 도시한 도면이다.
도 24는 대량 맞춤을 위하여 임플란트의 3개 부착부위와 상기 컵 방향 사이의 관계를 연구하기 위한 영상으로 이루어진다.
도 26은 모듈러 설계를 이용하여 대량 생산 맞춤형 비구 요소를 제작하기 위한 방법을 나타낸 개략적인 다이어그램이다.
도 27은 재건 수술을 위하여 환자-맞춤형 엉덩이 스템을 제작하기 위한 과정을 나타낸 개략적인 다이어그램이다.
도 28은 대량 맞춤형 임플란트 제작을 위한 과정을 나타낸 개략적인 다이어그램이다.
도 29는 대량 맞춤형 및 환자-맞춤형 엉덩이 임플란트를 모두 제작하기 위하여 스태티스티컬 아틀라스를 이용하기 위한 과정을 나타낸 개략적인 다이어그램이다.
도 30은 대량 맞춤형 및 환자-맞춤형 엉덩이 임플란트를 모두 제작하기 위하여 스태티스티컬 아틀라스를 이용하기 위한 과정을 나타낸 개략적인 다이어그램이다.
도 31은 개체군 특이적 엉덩이 스템 요소를 설계하기 위한 과정의 개요를 나타낸 개략적인 다이어그램이다.
도 32는 상기 대퇴골 근위부 표식자가 위치된 곳을 도시하는 도면이다.
도 33은 상기 대퇴골의 길이를 따라 상기 대퇴골 중앙의 관(canal) 허리 및 대퇴골 허리를 나타내는 대퇴골의 3D 모델이다.
도 34는 상기 대퇴골 근위부 축이 위치된 곳을 도시하는 도면이다.
도 35는 상기 경부(목부) 중심 계산이 위치되는 곳을 도시하는 도면이다.
도 36은 대퇴골 근위부 인체 축을 정의하는 데에 사용되는 2개의 포인트를 도시하는 도면이다.
도 37은 3D 대퇴골 근위부 측정을 도시하는 도면이다.
도 38은 통상적인 2D로(XR로부터) 모범적인 Dorr 비율을 나타낸다.
도 39는 IM 협부에서 B/A 비율을 도시하는 도면이다.
도 40은 IM 관 측정을 도시하는 도면이다.
도 41은 윤곽 및 맞춤 원이다.
도 42는 상기 IM 관 대퇴골 반경 비율을 얻기 위하여 행하는 측정을 도시하는 도면이다.
도 43은 상기 반경 비율에서의 변화의 효과를 나타내기 위하여 좌측에 0.69의 반경 비율을 갖는 하나, 및 우측에 0.38 반경 비율을 갖는 하나로 2개의 대퇴골 모델을 도시한다.
도 45는 정렬 이전에 대퇴골 근위부의 내측 윤곽, 경부축 및 머리 포인트를 도시하는 도면이다.
도 46은 Z-방향으로 인체 축 정렬을 도시하는 도면이다.
도 47은 상기 대퇴경부 피벗 포인트를 이용하여 정렬된 내측 윤곽을 도시하는 도면이다.
도 48은 보간 평활도를 나타내기 위하여 모델들 간에 보간을 이용하여 생성된 상이한 모델을 도시하는 도면이다.
도 49는 뼈 밀도의 3차원적 매핑을 도표 및 그림으로 도시한 것이다.
도 50은 3 레벨에서, 및 상기 근위부축, 헤드 오프셋 및 대퇴골두에서 상기 IM 폭을 나타낸 X-선 도면이다.
도 51은 근위부 각도 대 헤드 오프셋의 도표이다.
도 52는 근위부 각도 대 헤드 높이의 도표이다.
도 53은 헤드 오프셋 대 헤드 높이의 도표이다.
도 54는 근위부 각도 히스토그램이다.
도 55는 헤드 오프셋 및 대퇴거(새발톱형) 직경에 대한 여성 및 남성의 클러스터를 나타내는 도표이다.
도 56은 헤드 오프셋 및 근위부 각도에 대한 여성 및 남성의 클러스터를 나타내는 도표이다.
도 57은 헤드 오프셋 히스토그램이다.
도 58은 IM 크기 히스토그램이다.
도 59는 대퇴골 근위부에 대한 여성 측정을 도시하는 도면이다.
도 60은 대퇴골 근위부에 대한 남성 측정을 도시하는 도면이다.
도 61은 상기 대전자 높이에 대한 여성 측정을 도시하는 도면이다.
도 62는 상기 대전자 높이에 대한 남성 측정을 도시하는 도면이다.
도 63 성별간의 IM 관 형상 차이.
도 64 정상적인 여성: T-스코어 1.1.
도 65 골감소증 여성: T-스코어 -1.3.
도 66 골다공증 여성: T-스코어 -3.
도 67 보간된 데이터 세트 헤드 오프셋 히스토그램.
도 68 데이터 세트 관 크기 히스토그램.
도 72 AP 헤드 높이 측정.
도 73 피벗 포인트에 대한 헤드 높이 대 AP 헤드 높이.
도 74 인체 축 중간점에 대한 헤드 높이 대 AP 헤드 높이.
도 75 민족성 및 성별 모두에서 차이가 있는 엉덩이 스템 임플란트 패밀리의 제작에 사용되는 파라미터.
도 75. 클러스터링으로부터 추출된 대퇴골 스템 요소에 대한 대량 맞춤형 임플란트 형상 파라미터.
도 76. 본래의 엉덩이 스템의 조립상태 및 전개상태 도면.
도 77. 수정 엉덩이 스템의 조립상태 및 전개상태 도면.
도 78. 비구컵의 기하학적 구조를 분리.
도 79. 비구컵의 인체 템플릿.
도 80. 다중 컵 반경을 보이는 인체 비구컵 및 대퇴골 스템 볼 형상.
도 81. 비구컵과 대퇴골두 곡률 사이의 곡률 매칭이 운동학 및 제약에 미치는 영향.
도 82. 비구컵의 단면 분석을 정의하는 윤곽.
도 83. 컵 방향에 대한 방법과 같이 자동으로 검출된 가로방향 비구 인대.
도 84. 마이크로-CT로부터 뼈 인체를 매칭하기 위한 다공질 형상 및 크기를 추출하는 것. 이 과정의 서술은 오류이다! 참조 자료를 찾을 수 없음.
도 85. 애완동물 특이적 임플란트 및 절단 가이드. 사람 환자에 대하여 서술된 유사한 과정은 오류이다! 참조 자료를 찾을 수 없음.
도 86. 스태티스티컬 아틀라스를 이용하여 애완동물에 대한 대량 맞춤형 정형외과용 임플란트. 사람의 대량 맞춤형 임플란트에 대하여 서술된 유사한 과정은 오류이다! 참조 자료를 찾을 수 없음.
도 87. 엉덩이 시스템에 대한 환자 맞춤형 절단 및 배치 가이드의 제작 과정을 나타낸다.
도 88. x-선으로부터 환자 맞춤형 3차원적 골반 및 대퇴골 근위부의 제작을 위한 비강체 정합 과정. 이는 상기 비강체 정합 요소의 상세 설명 오류이다! 참조 자료를 찾을 수 없음.
도 89. 골반 및 대퇴골 근위부의 재건에 사용되는 다중 x-선 도면으로, 그 개요는 오류이다! 참조 자료를 찾을 수 없음.
도 90. 도 87에서 설명된 바와 같이, MRI 및 CT 스캔으로부터 골반 및 대퇴골 근위부의 자동 분할.
도 91. 도 87에서 설명된 바와 같이, MRI 및 CT로부터 복잡하고 부서진 인체의 자동 분할.
도 92. 비구컵 및 대퇴골 스템 요소 모두에 대한 가상 템플레이팅 과정.
도 93. 말단 고정을 이용한 스템 자동 배치.
도 94. 압입(press fit) 및 3개 접촉을 이용한 스템 자동 배치.
도 95. 자동 골반 표식.
도 96. 컵 방향 및 배치의 자동 계산.
도 97. 컵 및 스템 배치 평가.
도 98. 전반적인 사지 길이 복원 및 방향을 보장하기 위한 컵 및 스템 배치의 평가.
도 99. 임플란트 배치 및 사이징(sizing)을 평가 및 수정하기 위한 사전계획 인터페이스.
도 100. 대퇴골 스템의 절제 및 배치를 위하여 환자 맞춤형 가이드를 이용하는 과정.
도 101. 비구컵의 리밍 및 배치를 위하여 환자 맞춤형 가이드를 이용하는 과정.
도 102. 환자 맞춤형 가이드 및 로킹 메커니즘의 생성을 위하여 이용되는 이러한 예시적인 비구에서 환자 맞춤형 관절와순 부착부위의 매핑. 스태티스티컬 아틀라스, 또는 템플릿은 환자 맞춤형 가이드 합치 부위를 결정하는 데에 사용가능하다.
도 111. 집단(집단)에 대한 외상 판 및 고정 장치를 제작하는 과정.
도 112. 아틀라스 평균 뼈 상에 플레이트 형상을 국소화.
도 113. 전체 집단상의 플레이트 위치 전파, 여기에서는 단일 경우에 대해 도시됨. 단일의 사례.
도 114. 플레이트 정중선 곡선의 추출.
도 115. 플레이트 정중선 곡선에 대한 3D 곡률반경 계산.
도 116. 플레이트 길이 계산.
도 117. 중간-플레이트 폭 계산.
도 118. 플레이트 단면 반경 계산.
도 119. 최적 클러스터 수 결정.
도 120. 플레이트 크기 클러스터링. 도 111에 "클러스터링"으로서 도시됨.
도 121. 플레이트 크기의 파라미터화. 도 111에 "파라미터화된 곡선" 및 "모델 생성"으로서 도시됨.
도 122. 제작된 플레이트를 평가를 위하여 집단에 맞춤.
도 123. 플레이트 적합도 평가를 위한 플레이트 표면과 뼈 사이의 3D 표면 거리 맵.
도 124. 근육 및 인대 충돌(impingement)을 피하기 위하여 설계된 플레이트를 사체 상에 확인.
도 132. 빗장뼈 정중선 곡률 확인. 상기 인체 집단의 통계분석에 따르면, 상기 정중선 곡률은 대칭 "S" 형상이 아니다.
도 139. 상부 측방 플레이트(좌측), 플레이트 정중선 곡선(중앙) 및 노뼈 곡률(우측)을 나타내는 정중선 플레이트 곡률.
도 141. 전방 중간-축(7h) 플레이트(좌측), 플레이트 정중선 곡선(중앙) 및 단일 노뼈 곡률(우측)을 나타내는 정중선 플레이트 곡률.
도 143. 상부 중간-축 플레이트(좌측), 플레이트 정중선 곡선(중앙) 및 상이한 곡률반경(우측)을 나타내는 정중선 플레이트 곡률.
도 145. 전방 측방 플레이트(좌측), 플레이트 정중선 곡선(중앙) 및 상이한 곡률반경(우측)을 나타내는 정중선 플레이트 곡률.
도 147. 전방 중간-축 장플레이트(좌측), 플레이트 정중선 곡선(중앙) 및 상이한 곡률반경(우측)을 나타내는 정중선 플레이트 곡률.
도 149. 외상 재건 수술을 위한 맞춤형 플레이트 배치 가이드의 제작 과정.
도 150. 뼈 이식편을 이용한 재건 수술용 맞춤형 절단 및 배치 가이드의 제작 과정.
본 개시의 모범적인 실시 예는 뼈 및 생체조직 재건, 환자-맞춤형 및 대량 맞춤형 정형외과용 임플란트, 성별 및 민족성에 따른 맞춤형 정형외과용 임플란트, 절단 가이드, 외상 판, 뼈 이식편 절단 및 배치 가이드, 및 환자-맞춤형 기구를 포함하여, 다양한 정형외과용 양상을 포괄하도록 아래에 설명 및 도시된다. 물론, 후술되는 실시 예는 사실상 예시적인 것으로 본 발명의 범위 및 요지로부터 벗어남 없이 변경 가능함은 당업자에게 명백하다. 그러나, 명백함 및 정확함을 위하여, 아래에 설명된 바의 모범적인 실시 예는 본 발명의 범위에 속하는 데에 필요 없는 것으로 인정되는 선택적인 단계, 방법, 및 특징을 포함할 수 있다.
전체 인체 재건
도 1-8을 참조하면, 기형적인 인체 또는 부분적인 인체의 재건은 의료인이 직면하는 복잡한 문제 중 하나이다. 인체의 손실은 출생 조건, 종양, 질병, 개인 상해, 또는 이전 수술의 실패로부터 기인할 수 있다. 다양한 질병에 대하여 치료를 제공하는 것의 일부로, 의료인은 파손되고/부서진 뼈, 뼈 변성, 정형외과용 임플란트 수정, 관절 변성, 및 주문형 기계장치 설계에 제한되지 않고 이를 포함하는 다양한 조건에 대하여 치료를 용이하게 하는 데에 인체를 재건하거나 또는 인체를 구성하는 것이 유익하다는 것을 알 수 있다. 예를 들어, 종래기술의 엉덩이 재건 해결책은, 도 15 - 도 19에 나타낸 바와 같이, 자연적으로 발생되는 비대칭으로 인하여 건강한 인체를 정확하게 반영할 수 부재하는 건강한 환자 인체에 대해 미러링을 요한다.
본 개시는 뼈 및 생체조직 재건에 대한 시스템 및 방법을 제공한다. 이러한 재건을 수행하기 위하여, 상기 시스템 및 관련 방법은 1명 이상의 사람을 대표하는 인체 영상을 이용한다. 이들 영상은 적당한 당해 인체를 모방하는 가상의 3차원적(3D) 생체조직 모델 또는 일련의 가상의 3D 생체조직 모델을 제작하기 위하여 처리된다.
그 후, 상기 시스템 및 관련 방법은 재건 수술에 사용될 금형 및/또는 기타 장치(예를 들면, 고정 장치, 이식 장치, 환자-맞춤형 임플란트, 환자-맞춤형 수술 가이드)를 제작하기 위하여 이용된다.
도 1에 나타낸 바와 같이, 상기 예시적인 시스템 흐름의 개요는 인체를 나타내는 입력 데이터의 수신으로부터 시작된다. 이러한 인체는 유전자로부터 기인한 생체조직 변성 또는 생체조직 부재의 경우 부분적인 인체로 이루어질 수 있고, 또는 이러한 인체는 유전자 또는 환경 조건으로부터 기인한 기형적인 인체로 이루어질 수 있고, 또는 이러한 인체는 하나 이상의 인체 파손으로부터 기인하는 부서진 생체조직으로 이루어질 수 있다. 입력된 인체 데이터는, 예를 들면, 표면 모델 또는 포인트 클라우드의 형태로 될 수 있는, 당해 인체의 2차원적(2D) 영상 또는 3차원적(3D) 표면 표시로 이루어진다. 2D 영상이 이용되는 경우, 이들 2D 영상은 당해 인체의 3D 가상 표면 표시를 구성하는 데에 이용된다. 당업자는 3D 표면 표시를 구성하기 위하여 인체의 2D 영상을 이용하는 데에 익숙하다. 따라서, 이러한 과정에 대한 상세한 설명은 간결성을 도모하기 위하여 생략된다. 예를 들어, 입력된 인체 데이터는 하나 이상의 X-선, 컴퓨터 단층촬영(CT) 스캔, 자기 공명 영상(MRI), 또는 기타 영상화 데이터로 이루어질 수 있고, 이들로부터 당해 생체조직의 3D 표면 표시의 제작이 가능하다.
도 50 및 표 I을 참조하면, 가상의 3D 뼈 모델을 구성하는 데에 이용되는 X-선 영상의 맥락에서, 이미지화 과정 중에 뼈 회전이 상기 모델을 정확히 구성하는 데에 있어서 중요한 역할을 수행한다는 것이 발견되었다. 달리 말하자면, 영상 간에 뼈 회전이 발생된 상황에서 X-선 영상을 컴파일링하려 하면, 상기 X-선 영상은 이러한 뼈 회전을 고려하여 표준화되어야 한다.
예를 들어, 대퇴골 근위부의 맥락에서, 6 및 15도의 뼈 회전은 X-선 영상으로부터 추출된 치수에 중요한 변화를 초래한다는 것을 발견하였다. 예를 들어, 이들 치수는, 제한 없이, 근위부 각도, 헤드 오프셋, 및 골수강 폭을 포함한다. 표 I에 반영된 바와 같이, 0도(즉, 초기 X-선에 의하여 설정된 시작점)에서 X-선 이미지화된 동일한 대퇴골에 대하여, 6도의 회전 및 15도의 회전은 화소를 이용하여 측정된 근위부 각도, 헤드 오프셋, 및 골수강 폭에 있어서 차이를 보였고, 여기에서 각각의 화소 크기는 대략 0.29 밀리미터였다. 헤드 오프셋과 마찬가지로, 특히, 근위부 각도는 회전이 증가됨에 따라 증가되었고, 골수내 폭은 그렇지 않았다. 이러한 예시적인 표에서, 3개 가로방향 평면은 길이방향 축을 따라 서로 이격되었고, 여기에서 각각의 평면은 골수강의 폭이 측정된 위치에 상응한다. 표 I에 반영된 바와 같이, 동일한 위치에 대한 골수강의 폭은 회전 각도에 따라 변화된다. 따라서, 이하에서 더욱 상세히 설명하는 바와 같이, 뼈의 3D 가상 모델을 X-선을 이용하여 구성할 때, 이미지화 중에 뼈 회전의 범위로 하나의 회전변위를 고려해야 한다.
그러나, 이상은 예시적인 시스템 및 방법과 함께 이용 가능한 인체에 대한 예시적인 설명이고, 그러므로, 개시된 방법에 따른 본 시스템에 기타의 인체를 이용하는 것을 제한할 의도로 이루어진 것이 아님을 이해해야 한다. 여기에서 이용된 바, 생체조직은 뼈, 근육, 인대, 힘줄, 및 다세포 생물에서 특정 기능으로 갖는 기타 명백한 종류의 구조적 물질을 포함한다. 따라서, 상기 예시적인 시스템 및 방법이 뼈의 문맥에서 논의될 때, 당업자는 상기 시스템 및 방법이 기타의 생체조직에도 적용 가능함을 이해해야 한다.
다시 도 1을 참조하면, 상기 시스템에 대한 인체 데이터 입력은 3개 모듈에 대하여 이루어지며, 그 중 2개는 상기 인체 데이터의 처리(전체 뼈 재건 모듈, 환자-맞춤형 모듈)를 수반하고, 반면에 제 3의 것(비정상 데이터베이스 모듈)은 데이터베이스의 일부로서 상기 인체 데이터를 목록화한다. 상기 처리 모듈 중 제 1의 모듈로서, 상기 전체 뼈 재건 모듈은 당해 뼈(들)의 가상의 3D 모델을 제작하기 위하여 상기 스태티스티컬 아틀라스 모듈로부터 수신한 데이터로써 상기 입력된 인체 데이터를 처리한다. 이러한 3D 모델은 상기 당해 뼈(들)의 전체적인, 정상적인 재건이다. 상기 처리 모듈 중 제 2 의 모듈로서, 상기 환자-맞춤형 모듈은, 하나 이상의 최종 정형외과용 임플란트에 더하여, 하나 이상의 금형, 고정 시스템, 이식편 성형 도구, 및 랜더링을 제작하기 위하여 상기 전체 뼈 재건 모듈로부터 수신한 데이터로써 상기 입력된 인체 데이터를 처리한다. 랜더링은 예상되는 수술결과에 대한 피드백을 위하여 재건된 인체를 시각화함을 칭한다. 더욱 구체적으로, 상기 환자-맞춤형 모듈은, 환자의 인체가 정상에서 심하게 벗어남에도 불구하고, 환자-맞춤형 인체가 정밀하게 맞도록 설계된, 완전히 맞춤화된 장치를 제작하도록 조정된다. 더욱이, 상기 환자-맞춤형 모듈은 인체 부위 및 장치 설계 파라미터에 대한 특징(예를 들면, 맞춤 부위 및/또는 형상)을 자동으로 식별하기 위하여 상기 전체 뼈 재건 모듈로부터 상기 가상의 3D 재건된 뼈 모델을 이용한다. 이러한 방식으로, 환자-맞춤형 데이터는 설계 파라미터를 정의하는 데에 이용되어 그 출력 장치 및 임의의 임플란트가 상기 환자의 특이적 인체에 정밀하게 맞게 된다. 상기 환자-맞춤형 모듈의 예시적인 이용은 아래에 더욱 상세히 설명된다. 상기 시스템의 기능 및 처리를 더욱 상세히 이해하기 위하여, 상기 스태티스티컬 아틀라스 모듈로 시작되는 상기 시스템의 모듈에 대해 아래에 설명한다.
도 1 및 도 2에 나타낸 바와 같이, 상기 스태티스티컬 아틀라스 모듈은 특정 집단에서 고유한 해부학적 변동성을 포착하기 위하여 하나 이상의 인체(예를 들면, 뼈)에 대한 가상, 3D 모델을 기록한다(log). 예시적인 형태에서, 상기 아틀라스는 평균 표상으로 나타나는 상기 하나 이상의 인체의 인체 특징에 대한 수학적 표현 및 상기 평균 표상에 대한 변화를 기록한다. 상기 인체 특징을 수학적 표현으로서 나타냄으로써, 상기 스태티스티컬 아틀라스는 인체의 측정 자동화를 가능케 하고, 이하에서 더욱 상세히 설명하는 바와 같이, 결손 인체의 재건을 가능케 한다.
공통적인 인체에 걸쳐 인체 변화를 추출하기 위하여, 입력된 인체 데이터는 집단 전체에 걸쳐 공통 기준 프레임에 비교된다, 공통적으로 템플릿 3D 모델 또는 인체 3D 템플릿 모델로 칭함. 이러한 템플릿 3D 모델은 회전가능하고 그밖에 시각적으로 조작 가능한 3D 모델로서 그래픽 디스플레이 상에 시각적으로 나타내어지나, 이는 당해 생체조직에 대하여 스태티스티컬 아틀라스 전체에 걸쳐 모든 인체에 대한 인체 표면 특징/표현의 수학적 표현(즉, 특정 뼈에 대하여 상기 템플릿 3D 모델로부터 제작된 스태티스티컬 아틀라스의 집단 전체에 걸쳐 공유되는 상기 뼈의 모든 특성)으로 이루어진다. 상기 템플릿 3D 모델은 다중 인체 표상 또는 단일의 대표사례의 조합으로 될 수 있고 상기 스태티스티컬 아틀라스의 최저 엔트로피 상태를 나타낼 수 있다. 상기 스태티스티컬 아틀라스에 추가될 각각의 인체에 대하여(즉, 입력된 인체 데이터), 인체 3D 모델이 제작되며, 상기 인체 3D 모델 및 상기 템플릿 3D 모델은 모두 표준화 과정을 거친다.
상기 표준화 과정 중에, 상기 인체 3D 모델은 상기 템플릿 3D 모델의 스케일에 대하여 표준화된다. 상기 표준화 과정은 상기 인체 3D 모델 및 상기 템플릿 3D 모델 중 하나 또는 모두가 공통적인 단위 스케일을 갖도록 하는 스케일링을 수반할 수 있다. 상기 인체 3D 모델 및 상기 템플릿 3D 모델의 표준화 이후, 상기 표준화된 인체 3D 모델 및 템플릿 3D 모델은 스케일 불변성으로 제시되므로, 형상 특징은 스케일 독립적으로 이용될 수 있다(이 경우 크기를 의미함). 표준화 종료 후, 두 3D 모델은 스케일 공간 매핑 및 특징추출 순서를 통하여 처리된다.
스케일 공간 매핑 및 특징추출은 근본적으로 다중-해상도 특징추출 과정이다. 특히, 이러한 과정은 다중 특징 스케일로 형상-특이적 특징을 추출한다. 처음에는, 다수의 인체 특징이 선택되고, 각각의 표시 특징은 상이한 스케일 공간에 나타내어진다. 그 후, 상기 선택된 인체 특징 각각의 스케일 공간 표시에 대하여, 모델 특이적 특징이 추출된다. 이들 추출된 특징은 상기 템플릿 3D 모델과 상기 인체 3D 모델 사이의 로버스트(노이즈에 대하여) 정합 파라미터를 이끌어내는 데에 이용된다. 이러한 다중-해상도 특징추출 과정에 이어서, 상기 추출된 데이터는 다중-해상도 3D 정합 과정을 통하여 처리된다.
도 2-5를 참조하면, 상기 다중-해상도 3D 정합 과정은 상기 2개의 모델을 정합하기 위하여 상기 인체 3D 모델과 템플릿 3D 모델 사이의 아핀 정합 계산을 수행하도록 상기 스케일 공간 추출된 특징을 이용한다. 특히, 상기 인체 3D 모델 및 템플릿 3D 모델은 강체 정합 과정을 통하여 처리된다. 도 5에 나타낸 바와 같이, 상기 인체 3D 모델 및 템플릿 3D 모델이 모두 동일한 공간 내에 있고 자세의 특이점이 없음을 보장하기 위하여, 이러한 강체 정합 과정은 상기 인체 3D 모델 및 템플릿 3D 모델을 정렬하도록 작동된다. 상기 3D 모델을 정렬하기 위하여, 각각의 모델에 연관된 중심점이 정렬된다. 또한, 각각의 3D 모델의 주축을 정렬하여 두 3D 모델의 주방향이 동일하게 되도록 한다. 마지막으로, 반복적인 최근접점 계산을 수행함으로써 상기 3D 모델 사이의 자세 차이를 최소화한다.
강체 정합 후, 상기 3D 모델은 유사도 정합 과정을 이용함으로써 정합된다. 이러한 과정은 상기 템플릿 3D 모델 및 상기 인체 3D 모델 모두에 대하여 상기 정상적인 스케일 특징(즉, 능선(능선)을 가장 잘 정렬하는 상사변환(similarity transformation)을 반복적으로 계산함으로써 정상적인 스케일로 상기 템플릿 3D 모델 및 상기 인체 3D 모델을 정렬하는 것을 수반한다. 상기 반복적인 유사도 정렬 알고리즘은 반복적인 최근접점의 변종이다. 각각의 반복 회전에서, 병진운동 및 스케일은 수렴까지 포인트 쌍 간에 계산된다. 2개 세트의 포인트 사이에서 쌍의 매칭 또는 관련성은 Kd-tree를 이용하여 계산된 거리 쿼리(query), 또는 기타 공간 분할 데이터 구조를 이용함으로써 평가된다. 특히, 상기 두 모델에 대한 융선은 매칭 포인트 쌍 계산 과정을 수행하는 데에 이용된다. 이러한 예시적인 설명에서, 능선은 단일의 주요 곡률이 그의 만곡선을 따라 극값을 갖는 3D 모델 상의 포인트를 칭한다. 매칭 포인트 쌍 계산 과정의 일부로서, 포인트는 서로 매칭되는 상기 3D 모델의 능선 상에서 식별된다. 다음으로, 두 3D 모델의 능선은, 회전, 병진운동, 및 스케일을 계산하며 두 모델의 능선을 가장 잘 정렬하는 상사변환 계산 과정을 거친다. 변환 포인트 과정이 이어져, 상기 계산된 회전, 병진운동, 및 스케일을 상기 템플릿 3D 모델 능선에 적용하도록 작용한다. 그 후, 각각의 매칭된 포인트 세트 사이에 평균 제곱근 오차(root mean square error) 또는 거리 오차가 계산되고, 이어서 이전 과정으로부터의 상대 제곱근 오차(relative root mean square error) 또는 거리 오차에 있어서의 변화가 계산 된다. 상대 제곱근 오차 또는 거리 오차에 있어서의 변화가 소정의 임계치 이내이면, 최종 회전, 병진운동, 및 스케일을 상기 템플릿 3D 모델에 적용하기 위하여 변화 과정이 수행된다.
상기 유사도 정합 과정에 뒤이어 아티큘레이티드 정합 과정이 이어지며 스케일 공간 특징 과정으로부터 입력 데이터를 수신한다. 상기 스케일 공간 특징 과정에서, 특징은 상이한 스케일 공간에서 상기 템플릿 3D 모델 및 상기 인체 3D 모델로부터 추출된다. 각각의 스케일 공간은 상기 본래의 인체 3D 모델을 가우시안 평활함수로 컨볼빙함으로써 정의된다.
상기 아티큘레이티드 정합 과정의 목적은 상기 템플릿 3D 모델의 "n" 스케일 공간 특징을 상기 인체 3D 모델 상에서 계산된 "m" 스케일 공간 특징과 매칭하기 위함이다. 상기 템플릿 3D 모델 및 상기 인체 3D 모델 상에서 검출된 특징의 수 사이의 차이는 인체 변화로 인한 것이다. 이러한 검출된 특징 수의 차이는 상기 템플릿 3D 모델과 상기 인체 3D 모델 사이에 많은 관계를 유발할 수 있다. 그러므로, 양방향 상호 특징 매칭은 그러한 변화를 수용하고 모든 상호 특징 간에 정확한 매칭을 달성하도록 수행된다. 구체적으로, 특징 세트는 스케일 공간에서 상기 템플릿 3D 모델 상에서 계산된다. 이러한 예시적인 과정에서, 특징 세트는 중요한 인체 구조(예를 들면, 골반에서 비구컵, 요추에서 척추 과정)를 나타내는 포인트 세트에 연결된다. 마찬가지로, 특징 세트는 스케일 공간에서 상기 인체 3D 모델 상에서 계산된다. 매칭 특징 쌍 과정은 상기 템플릿 3D 모델 상에서 계산된 상기 특징 세트를 상기 인체 3D 모델 상의 상기 특징 세트에 형상 디스크립터(예를 들면, 곡률, 형상 인덱스, 등)를 이용하여 매칭한다. 이러한 과정의 결과는 상기 템플릿 3D 모델과 상기 인체 3D 모델 사이의 특징 세트 "n-m" 매핑이다. 필요에 따라, 상기 매칭된 특징 세트를 단일의 특징 세트에 재그룹화하기 위하여 재그룹화 과정이 수행된다(예를 들어, 비구컵이 2개의 조각으로 검출되었다면, 이러한 과정은 상기 2개의 조각을 하나의 단일 특징 세트로 재그룹화한다). 그 후, 상기 템플릿 3D 모델 및 상기 인체 3D 모델 상에서 매칭된 특징 세트에서 각각의 포인트 간의 관련성을 계산하기 위하여 계산 과정이 수행된다. 상기 템플릿 3D 모델 상의 각각의 매칭된 특징 세트를 상기 인체 3D 모델 상의 해당 특징 세트에 변환하는 상기 회전, 병진운동, 및 전단(shear)을 계산하기 위하여 아핀 계산 변환 과정이 이어진다. 그 후, 상기 템플릿 3D 모델은 상기 계산된 아핀 변환 파라미터(즉, 회전, 병진운동, 및 전단)를 이용함으로써 변환된다. 마지막으로, 상기 템플릿 3D 모델 및 상기 인체 3D 모델 상에 설정된 각각의 매칭된 특징 세트를 정렬하기 위하여 강성 정렬 과정이 수행된다.
상기 아티큘레이티드 정합 과정 및 상기 정상적인 스케일 특징 과정 이후에 이루어지는 비강체 정합 과정은 상기 템플릿 3D 모델 상의 모든 표면 정점을 상기 인체 3D 모델 상의 정점에 매칭하는 것 및 초기 관련성 계산을 수반한다. 이러한 관련성은 상기 템플릿 3D 모델 상의 각각의 정점을 상기 인체 3D 모델 상의 매칭된 포인트에로 이동시키는 변형 필드를 계산하는 데에 이용된다. 매칭은 동일한 분류 내의 정점(즉, 스케일 공간 특징 정점, 정상적인 스케일 특징 정점, 또는 비-특징 정점) 사이에서 이루어진다. 상기 정상적인 스케일 특징 과정의 맥락에서, 형상 특징은 상기 본래의 입력 모델을 의미하는 상기 본래의 스케일 공간(능선)에서 상기 템플릿 3D 모델 및 상기 인체 3D 모델 상에서 계산된다.
구체적으로, 상기 비강체 정합 과정의 일부로서, 상기 스케일 공간 특징은 상기 템플릿 3D 모델(TMssf) 상에서 그리고 상기 인체 3D 모델(NMssf) 상에서 계산된다. 상기 템플릿 3D 모델 상의 특징 그리고 상기 인체 3D 모델 상의 특징 각각의 세트는 "k" 이웃 포인트를 이용함으로써 성장된다. 정렬 과정은 상기 템플릿 3D 모델 스케일 공간 특징이 상기 인체 3D 모델 상에서 그의 해당 특징에 매칭되도록 상기 템플릿 3D 모델 스케일 공간 특징에 적용된다. 기준(X) 및 이동(Y)의 2개의 포인트 클라우드가 부여되는데, 그 목적은 최소 상대 제곱근 오차 및 최대 각도 임계치의 제약 하에서 전반적인 오차 척도를 최소화하도록 상기 2개의 포인트 클라우드를 반복적으로 정렬하기 위한 것이다. 재정렬 과정은 상기 템플릿 3D 모델 상의 특징 세트를 상기 인체 3D 모델 상의 매칭 세트에 맞추어 조정하기 위하여 정상적인 스케일에서 반복적인 최근접점을 이용하여 수행된다. 재정렬 후, 상기 인체 3D 모델 상에 매칭된 특징 세트와 상기 템플릿 3D 모델 상의 각각의 특징 세트에서 포인트 간의 포인트 관련성이 계산된다. 상기 인체 3D 모델 상의 매칭된 포인트는 상기 템플릿 3D 모델 포인트에 가까운 표면 법선 방향을 갖도록 되어야 한다. 그 출력은 상기 변형 필드 계산 단계에 보내진다.
상기 스케일 공간 특징 계산 과정에 병행하여, 템플릿 3D 모델(TMnfp) 및 인체 3D 모델(NMnfp) 비-특징 포인트, 또는 스케일 공간 특징이나 정상적인 스케일 특징에 속하지 않는 상기 템플릿 3D 모델 표면 상의 나머지 포인트 세트는 상기 템플릿 3D 모델 상의 비-특징 포인트와 상기 인체 3D 모델 상의 비-특징 포인트 사이의 포인트 관련성을 계산하기 위한 관련성 계산에 따라 처리된다. 상기 새로운 모델 상에서 매칭된 포인트(들)은 상기 템플릿 모델 포인트에 가까운 표면 법선 방향을 갖도록 되어야 한다. 그 출력 상기 변형 필드 계산 단계에 보내진다.
마찬가지로 상기 스케일 공간 특징 계산 과정에 병행하여, 상기 템플릿 3D 모델(TM nsf) 상의정상적인 스케일 특징(즉, 능선)은 AICP를 이용하여 상기 인체 3D 모델(NM nsf) 상의 정상적인 스케일 특징(즉, 능선)에 맞추어 조정된다. AICP는 상기 반복적인 최근접점 계산의 변종으로서, 매칭된 포인트 세트 사이에 각각의 반복 병진운동, 회전, 및 스케일이 계산된다. 상기 정렬 과정 이후에, 관련성 과정이 수행된다.
*스케일 공간 특징 계산 과정, 상기 관련성 과정, 및 상기 정렬 과정으로부터의 출력은 변형 과정을 거치게 되며, 여기에서 상기 템플릿 3D 모델 상의 각각의 포인트를 상기 인체 3D 모델 상의 그의 매칭된 포인트에로 이동시키기 위하여 상기 변형 필드가 계산된다.
상기 비강체 정합 과정의 출력은, 상기 다중-해상도 정합 단계 이후, 상기 템플릿 3D 모델 메시(mesh)의 정점을 상기 인체 3D 모델의 표면에 가깝게 이동시키기 위하여 그리고 상기 출력 모델을 평활화하기 위하여 이완 과정을 거친다. 특히, 정상적인 공간(TM ns)에서의 상기 템플릿 3D 모델 및 정상적인 공간(NM ns)의 상기 인체 3D 모델은 템플릿 3D 모델에서 상기 인체 3D 모델에 가장 가까운 정점을 계산하기 위하여 관련성 계산에 의하여 정상적인 제한된 구형 검색 알고리즘을 이용함으로써 처리된다. 두 모델에 대하여 가장 가까운 정점을 이용하는 이러한 계산은, 상기 템플릿 3D 모델에서의 각각의 정점으로부터 그리고 인체 3D 모델에서 그의 매칭된 정점으로부터 관련성 벡터를 발생시키며, 이는 상기 인체 3D 모델로부터 하나 이상의 매칭 포인트를 야기할 수 있다. 상기 템플릿 3D 모델 상의 각각의 정점에 대하여 매칭된 포인트를 이용함으로써, 상기 포인트 및 매칭된 포인트로부터의 유클리드 거리에 기초하여 상기 인체 3D 모델 상의 매칭된 포인트의 가중 평균이 계산된다. 이때에, 상기 계산된 가중 평균 거리를 이용함으로써 템플릿 3D 모델 상에서 각각의 포인트를 이동시키기 위하여, 상기 템플릿 3D 모델은 상기 가중 평균을 이용하여 업데이트된다. 상기 가중치 계산 과정 이후, 템플릿 모델 상의 모든 포인트에 대하여 상기 인체 3D 모델 표면 상에서 가장 가까운 포인트를 찾기 위하여 그리고 이를 그 포인트로 이동시키기 위하여 이완 과정이 수행된다. 마지막으로, 노이즈를 제거하기 위하여 상기 변형된 템플릿 3D 모델에 평활화 작동이 수행된다. 그 결과로 정합된 3D 모델(즉, 템플릿 및 인체 3D 모델)은 자유 형태 변형 과정을 거친다.
상기 자유 형태 변형 과정은 상기 템플릿 3D 모델의 표면 상기 인체 3D 모델의 표면으로 모핑한다. 더욱 구체적으로, 상기 템플릿 3D 모델의 표면은 상기 템플릿 3D 모델 표면 및 상기 인체 3D 모델 표면 모두에 상호 매칭된 포인트를 이용함으로써 가중치 포인트-대-포인트 기반으로 반복적으로 이동된다.
도 2 및 도 6을 참조하면, 상기 자유 형태 변형 과정 이후, 상기 인체 3D 모델은 상기 인체 3D 모델과 상기 모핑된 템플릿 3D 모델 사이의 편차를 결정하기 위하여 관련성 계산 과정을 거친다. 이러한 관련성 계산 과정은, 상기 템플릿 변형된 3D 모델 및 상기 변형된 인체 3D 모델에서 선택된 표식자 위치의 최종 매칭을 수행하기 위하여, 상기 자유 형태 변형 단계로부터의 상기 템플릿 3D 모델을 다듬는다. 이러한 방식으로, 상기 관련성 계산 과정은 상기 3D 모델 사이의 크기 및 형상의 변화를 계산 및 기록하며, 이는 상기 평균 모델에 대한 편차로서 기록된다. 이러한 관련성 계산 과정의 출력은 표준화된 인체 3D 모델과 상기 인체 3D 모델에서의 변화를 고려하여 업데이트된 수정된 템플릿 3D 모델과의 합이다. 달리 말하자면, 도 2에 개략적으로 나타낸 과정의 출력은, 전체 인체 재건(예를 들면, 전체 뼈 재건)을 용이하게 하기 위하여, 상기 수정된 템플릿 3D 모델과 일치하는 특성(예를 들면, 포인트 관련성)을 갖도록 수정된 표준화된 인체 3D 모델이다.
도 1 및 도 7을 참조하면, 상기 스태티스티컬 아틀라스 모듈 및 인체 데이터로부터의 입력은 전체 인체 재건 모듈로 보내진다. 예를 들어, 당해 인체는 뼈 또는 다중 뼈로 될 수 있다. 그러나, 여기에 설명된 상기 예시적인 하드웨어, 과정, 및 기술을 이용함으로써 뼈가 아닌 인체가 재건될 수도 있음을 이해해야 한다. 예시적인 형태에서, 상기 전체 인체 재건 모듈은 부분적이거나, 기형이거나, 또는 부서진 골반에 대한 입력 데이터를 수신할 수 있다. 입력된 인체 데이터는 당해 인체의 2차원적(2D) 영상 또는 3차원적(3D) 표면 표시로 이루어질 수 있고, 이는, 예를 들어, 표면 모델 또는 포인트 클라우드의 형태로 될 수 있다. 2D 영상이 이용되는 경우, 이들 2D 영상은 당해 인체의 3D 표면 표시를 구성하기 위하여 이용된다. 당업자는 3D 표면 표시를 구성하기 위하여 인체의 2D 영상을 이용하는 데에 익숙하다. 따라서, 이러한 과정에 대한 상세한 설명은 간결성을 도모하기 위하여 생략된다. 예를 들어, 입력된 인체 데이터는 하나 이상의 X-선, 컴퓨터 단층촬영(CT) 스캔, 자기 공명 영상(MRI), 또는 3D 표면 표시의 제작이 가능한 기타 영상화 데이터로 이루어질 수 있다. 이하에서 더욱 상세히 설명하는 바와 같이, 이러한 입력된 인체 데이터는: (1) 상기 가장 가까운 스태티스티컬 아틀라스 3D 뼈 모델을 식별하기 위한 시작 포인트; (2) 1 세트의 3D 표면 정점을 이용하는 정합; 그리고,(3) 재건 출력의 최종 이완 단계에, 제한 없이, 사용될 수 있다.
도 7에 나타낸 바와 같이, 상기 입력된 인체 데이터(예를 들면, 환자의 뼈 모델)는 상기 스태티스티컬 아틀라스에서 당해 환자의 인체에 가장 가깝게 닮은 인체 모델(예를 들면, 뼈 모델)을 식별하기 위하여 이용된다. 이러한 단계는 상기 아틀라스에서 가장 가까운 뼈를 찾는 것으로 도 3에 도시된다. 상기 환자의 뼈 모델과 가장 가깝게 닮은 뼈 모델을 상기 스태티스티컬 아틀라스에서 초기에 식별하기 위하여, 상기 환자의 뼈 모델은 하나 이상의 유사도 매트릭스를 이용함으로써 상기 스태티스티컬 아틀라스에서 상기 뼈 모델과 비교된다. 상기 초기 유사도 매트릭스의 결과는 후속의 정합 단계에서 "초기 추측"으로서 이용되는 상기 스태티스티컬 아틀라스로부터의 뼈 모델의 선택이다. 상기 정합 단계는 상기 환자 뼈 모델을 상기 선택된 아틀라스 뼈 모델(즉, 상기 초기 추측 뼈 모델)과 정합하므로 그 출력은 상기 아틀라스 뼈 모델에 맞추어 조정되는 환자 뼈 모델이다. 상기 정합 단계에 이어서, 정렬된 "초기 추측"에 대한 형상 파라미터는 상기 형상이 상기 환자 뼈 형상에 매칭되도록 최적화된다.
형상 파라미터, 이 경우 상기 스태티스티컬 아틀라스로부터의 형상 파라미터는 최적화되어, 비-기형 또는 기존의 뼈의 상기 부위는 상기 재건 및 환자 뼈 모델 사이의 오차를 최소화하는 데에 이용된다. 형상 파라미터 값의 변화는 상이한 인체 형상의 표현을 가능하게 한다. 이러한 과정은 상기 재건된 형상의 수렴이 달성될 때까지(반복 사이의 상대적인 표면 변화로서 또는 허용된 최대 반복수로서 측정가능) 상이한 스케일 공간에서 반복된다.
이완 단계는 상기 본래의 환자 3D 생체조직 모델에 가장 잘 매칭되도록 상기 최적화된 생체조직을 모핑하기 위하여 수행된다. 상기 예시적인 경우에 일치하게, 상기 수렴 단계로부터 출력되는 상기 재건된 골반 모델의 결손 인체는 상기 환자-맞춤형 3D 골반 모델에 적용되어, 상기 환자의 재건된 골반의 환자-맞춤형 3D 모델이 제작된다. 더욱 구체적으로, 상기 재건된 골반 모델 상의 표면 포인트는 상기 재건된 형상이 상기 환자-맞춤형 형상에 가장 잘 매칭되도록 상기 환자-맞춤형 3D 골반 모델 상에서 직접적으로 이완된다(즉 모핑된다). 이러한 단계의 출력은, 상기 환자의 정상적인/완전한 인체가 어떠해야 하는 지를 나타내는, 전체적으로 재건된, 환자-맞춤형 3D 생체조직 모델이다.
도 1을 참조하면, 상기 비정상 데이터베이스는 데이터 입력으로서 이용되며 상기 결함 분류 모듈에 대한 트레이닝에 이용된다. 특히, 상기 비정상 데이터베이스는, 인체 표면 표시 및 관련 임상 및 인구통계학적 데이터를 포함하는 비정상적인 인체 특징에 대하여 특이적인 데이터를 포함한다.
도 1 및 도 8을 참조하면, 상기 정상적인/완전한 생체조직을 나타내는 상기 전체적으로 재건된, 환자-맞춤형 3D 생체조직 모델 및 비정상적인/불완전한 생체조직을 나타내는 입력된 인체 데이터(즉, 그로부터 3D 표면 표시를 제작할 수 있는 3D 표면 표시 또는 데이터)는 상기 결함 분류 모듈에 입력된다. 상기 비정상 데이터베이스로부터의 이러한 인체 데이터는 유전자로부터 기인한 생체조직 변성 또는 생체조직 부재의 경우에 부분적인 인체로 될 수 있고, 또는 이러한 인체는 유전자 또는 환경 조건(예를 들면, 외과적 교정, 질병, 등)으로부터 기인한 기형적인 인체로 될 수 있고, 또는 이러한 인체는 하나 이상의 인체 파손으로부터 기인한 부서진 생체조직으로 될 수 있다. 예를 들어, 입력된 인체 데이터는 하나 이상의 X-선, 컴퓨터 단층촬영(CT) 스캔, 자기 공명 영상(MRI), 또는 3D 표면 표시의 제작이 가능한 기타 임의의 영상화 데이터로 이루어질 수 있다.
상기 결함 분류 모듈은 정량적 결함 분류 시스템을 제작하기 위하여 당해 인체의 정상적인 3D 표상과 결합된 비정상 데이터베이스로부터 다수의 비정상적인 3D 표면 표시를 이끌어낸다. 이러한 결함 분류 시스템은 각각의 결함 유형 또는 클러스터의 "템플릿"을 제작하기 위하여 이용된다. 더 일반적으로, 상기 결함 분류 모듈은, 이들 결함을 다루는 의료 해결책의 제작을 용이하게 하기 위하여, 인체 결함을 긴밀하게 관련된 결함으로 구성된 유형으로 분류한다(형상, 임상, 외형, 또는 기타 특성과 유사한 것들을 참조하여). 본 결함 분류 모듈은 상기 결함을 자동으로 분류하기 위하여 수술 전의 데이터와 수술중의 관찰자 시각화 사이의 불일치를 제거 또는 감소시키는 수단으로서 소프트웨어 및 하드웨어를 이용한다. 전통적으로, 필요한 인체 재건의 범위를 정량적으로 분석하기 위한 수단으로서 수술 전의 방사선 사진이 이용되었으나, 이는 기껏해야 주먹구구식인 수술 전의 계획을 야기하였다. 현재, 수술중의 관찰자는 인체 결함의 범위를 최종 결정하고 방사선 사진에 의존한 수술 전 계획이 결함이 있거나 또는 불완전함을 여러 차례 결론 내린다. 결과적으로, 본 결함 분류 모듈은 결함 분류에 관련하여 측정자간 및 측정자내 변화를 감소시킴으로써 그리고 새로운 결함 사례를 분류하기 위하여 정량적 매트릭스를 제공함으로써 현 분류 시스템을 개선한다.
상기 결함 분류 모듈(t)의 일부로서, 상기 모듈은 입력 초기 상태로서 이용되는 하나 이상의 분류 유형으로 취할 수 있다. 예를 들어, 골반의 맥락에서, 상기 결함 분류 모듈은 상기 북미정형외과학회(American Academy of Orthopaedic Surgeons AAOS) (D'Antonio 외) 뼈 결함 분류 구조에 상응하는 입력 결함 특징으로서 이용될 수 있다. 이러한 구조는 다음의 4가지 상이한 유형을 포함한다: (1) 유형 I, 분절 뼈 손실에 해당; (2) 유형 II, 공동성 뼈 손실에 해당; (3) 유형 III, 분절 및 공동성 뼈 손실에 해당; 그리고, (4) 유형 IV, 골반 불연속성에 해당. 양자택일적으로, 상기 결함 분류 모듈은 Paprosky 뼈 결함 분류 구조로 프로그램화될 수 있다. 이러한 구조는 다음의 3가지 상이한 유형을 포함한다: (1) 유형 I, 뼈 용해가 부재하는 지지 경계(rim)에 해당; (2) 유형 II, 온전한 지지 기둥 및 2 센티미터 미만의 내상방 또는 측방 이동을 갖는 왜곡된 반구체에 해당; 그리고, (3) 유형 III, 2 센티미터 이상의 상방 이동 및 파손되거나 또는 온전한 콜러 라인(Kohler's line)을 갖는 심각한 좌골 용해(ischial lysis)에 해당. 더욱이, 상기 결함 분류 모듈은 수정된 Paprosky 뼈 결함 분류 구조로 프로그램화될 수 있다. 이러한 구조는 다음의 6가지 상이한 유형을 포함한다: (1) 유형 1, 요소 이동이 부재하는 지지 경계에 해당; (2) 유형 2A, 3 센티미터 미만의 상방 이동된 왜곡된 반구체에 해당; (3) 유형 2B, 1/3미만의 경계 둘레를 갖는 보다 큰 반구체 왜곡에 해당, 그리고 상기 반구형 지붕이 지지가 됨; (4) 유형 2C, 온전한 경계에 해당, 콜러 라인에 내측 이동, 그리고 상기 반구형 지붕이 지지가 됨; (5) 유형 3 A, 3 센티미터를 초과하여 상방 이동, 그리고 온전한 콜러 라인을 갖는 심각한 좌골 용해에 해당; 그리고, (6) 유형 3B, 3 센티미터를 초과하여 상방 이동, 그리고 콜러 라인이 파손된 심각한 좌골 용해 및 둘레 절반 이상의 경계 결함에 해당. 상기 출력 분류 유형 및 파라미터를 이용함으로써, 상기 결함 분류 모듈은 어느 분류 유형이 상기 인체 데이터에 가장 가깝게 닮아 상기 결과적인 할당 분류에 해당하는지 파악하기 위하여 상기 인체 데이터를 상기 재건된 데이터에 비교한다.
초기 단계로서, 스태티스티컬 아틀라스 단계에의 추가로 정상적인 아틀라스 3D 뼈 모델과 상기 비정상적인 3D 뼈 모델 사이의 관련성이 생성된다. 더욱 구체적으로, 상기 3D 뼈 모델은 상기 정상적인 3D 모델에서 무슨 뼈가 상기 비정상적인 3D 모델에서 존재하지 않는지를 파악하기 위하여 비교된다. 예시적인 형태에서, 상기 결손/비정상적인 뼈는 각각의 3D 뼈 모델의 표면 상의 포인트를 비교함으로써 그리고, 상기 비정상적인 3D 뼈 모델 상에 존재하지 않는, 상기 정상적인 3D 뼈 모델의 표면 상의 이산 포인트의 리스트를 제작함으로써 식별된다. 상기 시스템은 또한 상기 2개의 모델들 사이에 공통적인 표면 포인트를 기록 및 리스트 작성(즉, 식별)하거나, 또는 모든 기타 포인트가 상기 비정상적인 3D 뼈 모델 상에 부재하는 포인트로서 기록되지 않으면 두 뼈 모델(즉, 상기 정상적인 및 비정상적인 뼈 모델 모두)에서 공통적으로 존재하는 것으로 약식으로 메모할 수 있다. 따라서, 이러한 단계의 출력은 스태티스티컬 아틀라스 관련성을 가지며 상기 비정상적인 3D 뼈 모델이며 그 특징(포인트)이 상기 비정상적인 3D 뼈 모델에 존재하는지 또는 부재하는지를 나타내는 상기 정상적인 아틀라스 3D 뼈 모델로부터의 특징(포인트) 리스트이다.
상기 정상적인 아틀라스 3D 뼈 모델(상기 전체 뼈 재건 모듈로부터 제작됨)과 상기 비정상적인 3D 뼈 모델(상기 입력된 인체 데이터로부터 제작됨) 사이의 관련성 생성 이후, 상기 비정상적인 3D 뼈 모델로부터의 결손/비정상적인 부위는 상기 정상적인 아틀라스 3D 뼈 모델 상에 국소화된다. 달리 말하자면, 상기 정상적인 아틀라스 3D 뼈 모델은, 상기 정상적인 아틀라스 3D 뼈 모델에 존재하는, 상기 비정상적인 3D 뼈 모델의 뼈 결손을 식별 및 기록하기 위하여 상기 비정상적인 3D 뼈 모델과 비교된다. 국소화는, 제한 없이, 곡률 비교, 표면적 비교, 및 포인트 클라우드 영역 비교를 포함하는 여러 방식으로 수행될 수 있다. 궁극적으로, 예시적인 형태에서, 상기 결손/비정상적인 뼈는 상기 결손/비정상적인 부위(들)의 기하학적 경계를 식별하는 1 세트의 경계점으로 국소화된다.
상기 경계점을 이용함으로써, 상기 결함 분류 모듈은 입력된 임상 데이터를 이용함으로써 상기 결손/비정상적인 부위(들)로부터 특징을 추출한다. 예시적인 형태에서, 상기 추출된 특징은 형상 정보, 용적 정보, 또는 상기 결함(즉, 결손되거나 또는 비정상적인) 영역의 전반적인 특성을 나타내는 데에 이용되는 기타 임의의 정보를 포함할 수 있다. 이들 특징은 계속 진행 중인 결함 분류 데이터 또는 상기 인체 특징(인구통계학적, 병력, 등)에 반드시 관련되었다고는 할 수 부재하는 환자 임상 정보와 같은 기존의 임상 데이터에 기초하여 마무리될 수 있다. 이러한 단계의 출력은 후속 단계에서 유사한 생체조직(예를 들면, 뼈) 변형을 그룹화하기 위하여 이용될 상기 결함 영역(들)을 나타내는 수학적 디스크립터이다.
상기 수학적 디스크립터는 통계분석에 기초하여 클러스터링 또는 그룹화된다. 특히, 상기 디스크립터는 통계적으로 분석되고 다른 특정 집단에 특유한 결함 유형을 식별하기 위하여 환자/사체로부터의 기타 디스크립터에 비교된다. 물론, 이러한 분류는 환자/사체의 수가 증가됨에 따라 이산 군의 분류 및 식별을 개선하도록 다중 환자/사체로부터의 다중 디스크립터를 전제로 한다. 이러한 통계분석으로부터의 출력은 새로 입력된 인체 데이터를 분류하기 위하여 이용되는 1 세트의 결함 유형이며 템플릿의 수를 결정한다.
상기 결함 분류 모듈의 출력은 템플릿 모듈에 보내진다. 예시적인 형태에서, 상기 템플릿 모듈은 상기 결함 분류 모듈에 의하여 식별되는 각각의 결함 유형에 대하여 특이적인 데이터를 포함한다. 예를 들어, 특정 결함 분류에 대한 각각의 템플릿은 상기 결함 뼈의 표면 표시, 상기 결함(들)의 위치(들), 및 상기 결함 뼈에 관련한 치수를 포함한다. 이러한 템플릿 데이터는 표면 형상 데이터, 포인트 클라우드 표시, 하나 이상의 곡률 프로파일, 치수 데이터, 및 물리량 데이터의 형태로 될 수 있다. 상기 템플릿 모듈 및 상기 스태티스티컬 아틀라스로부터의 출력은 대량 맞춤형 임플란트, 고정 장치, 기구 또는 금형을 설계, 테스트 및 그 제작을 허용하도록 대량 맞춤 모듈에 의하여 이용된다. 상기 대량 맞춤 모듈의 예시적인 이용은 이후에 더욱 상세히 논의된다.
환자-맞춤형 재건 임플란트
도 1 및 도 20을 참조하면, 예시적인 과정 및 시스템은 부분적인, 기형, 및/또는 부서진 인체로 고통을 겪는 환자를 위하여 환자-맞춤형 정형외과용 임플란트 가이드 및 관련된 환자-맞춤형 정형외과용 임플란트를 제작하기 위하여 설명된다. 이러한 예시적인 설명을 위하여, 부분적인 인체를 갖는 환자를 위하여 전체 엉덩이 관절성형술절차를 설명한다. 그러나, 상기 예시적인 과정 및 시스템은 불완전하거나 또는 기형적인 인체가 존재하는 경우 환자-특이적 맞춤화에 적합한 임의의 정형외과용 임플란트에도 적용 가능함을 이해해야 한다. 예를 들어, 상기 예시적인 과정 및 시스템은 뼈 변성(부분적인 인체), 뼈 변형, 또는 부서진 뼈가 존재하는 어깨 대용물 및 무릎 대용물에 적용할 수 있다. 따라서, 아래에서는 비록 엉덩이 임플란트에 대해서 논하지만, 당업자는 상기 시스템 및 과정을 본래의 정형외과용 또는 정형외과용 재수술과 함께 이용하기 위하여 기타의 정형외과용 임플란트, 가이드, 기구, 등에 적용할 수 있음을 이해할 것이다.
골반 불연속성은 종종 전체 엉덩이 관절성형술(THA)에 가장 자주 연관되는 뼈 손실의 명백한 형태인데, 골용해증 또는 비구 골절은 열악한 부분으로부터 골반의 상부 양상이 분리되게 할 수 있다. 뼈 손실의 양 및 심각성 그리고 상기 임플란트가 생물학적으로 안으로 자랄 가능성은 특정 환자에 대한 치료 선택에 영향을 미칠 수 있는 요인이 된다. 심각한 뼈 손실 및 골반 무결성의 손실의 경우에, 맞춤형 3-플랜지 컵이 사용될 수 있다. 1992년에 처음으로 도입된, 이러한 임플란트는 기존의 케이지에 비하여 여러 장점을 갖는다. 이는 골반 불연속성에 안정성에 제공할 수 있고, 구조 이식편 및 케이지의 수술 중 윤곽형성의 필요성을 제거할 수 있으며, 주변의 뼈에 대한 상기 구성의 골 유착을 촉진할 수 있다.
환자의 부분적인, 기형, 및/또는 부서진 인체가 문제가 되는지에 상관없이, 환자-맞춤형 임플란트 및/또는 가이드를 제작하기 위한 예시적인 시스템 및 과정은 상기 환자의 재건된 인체에 대한 3차원적 모델을 제작하기 위하여 3D 뼈 모델 재건을 위한 위의 예시적인 과정 및 시스템(도 1-7 및 위의 동일한 예시적인 설명 참조)을 이용한다. 더욱 구체적으로, 골반 불연속성에 관련되는 전체 엉덩이 관절성형술의 경우, 상기 예시적인 환자-맞춤형 시스템은 측부 특이적인(우측 또는 좌측) 상기 환자의 완전한 골반에 대한 3D 모델을 제작하기 위하여 상기 환자의 골반 데이터를 이용한다. 따라서, 부분적인 인체에 대하여 환자 인체 데이터를 이용하기 위한 그리고 상기 환자의 인체에 대하여 3D 재건된 모델을 제작하기 위한 상기 시스템 및 과정의 설명은 간결성을 도모하기 위하여 생략된다. 따라서, 부분적인, 기형, 및/또는 부서진 인체로 고생하는 환자를 위하여 환자-맞춤형 정형외과용 임플란트 가이드 및 관련 환자-맞춤형 정형외과용 임플란트를 제작하기 위한 과정 및 시스템에 대한 설명은 상기 3차원적 재건된 모델의 성형 후 설명된다.
구체적으로 도 20-22 및 도 27을 참조하면, 상기 골반 및 대퇴골의 환자-맞춤형 재건된 3D 뼈 모델이 제작된 후, 상기 불완전한 환자-맞춤형 3D 뼈 모델(골반 및 대퇴골에 대한) 및 상기 재건된 3D 뼈 모델(골반 및 대퇴골에 대한)은 모두 상기 환자-맞춤형 정형외과용 임플란트 및 상기 임플란트 및/또는 그의 고정체에 대한 환자-맞춤형 배치 가이드를 제작하기 위하여 이용된다. 특히, 상기 결함 형상 추출 단계는 상기 환자-맞춤형 3D 모델과 상기 재건된 3D 모델 사이의 관련성(골반 모델들 사이의 관련성, 및 대퇴골 모델들 사이의 관련성, 하나의 대퇴골 모델과 골반 모델 사이는 아님)을 생성하는 것을 포함한다. 더욱 구체적으로, 상기 3D 모델은 상기 재건된 3D 모델에서 어느 뼈가 상기 환자-맞춤형 3D 모델에 존재하지 않는 것인지를 파악하기 위하여 비교된다. 예시적인 형태에서, 상기 결손/비정상적인 뼈는 각각의 3D 모델의 표면 상의 포인트를 비교하고 그리고, 상기 환자-맞춤형 3D 모델 상에는 존재하지 않는, 상기 재건된 3D 모델의 표면 상의 이산 포인트의 리스트를 제작함으로써 식별된다. 상기 시스템은 또한 상기 2개의 모델 사이에 공통적인 표면 포인트를 기록 및 리스트작성(즉, 식별)할 수 있고, 또는 모든 기타 포인트가 상기 환자-맞춤형 3D 모델 상에 부재하는 포인트로서 기록되지 않으면 두 뼈 모델(즉, 상기 재건된 3D 모델 및 환자-맞춤형 3D 모델 모두)에서 공통적으로 존재하는 것으로 약식으로 메모할 수 있다.
*도 21을 참조하면, 상기 재건된 3D 모델(상기 전체 뼈 재건 모듈로부터 제작됨)과 상기 환자-맞춤형 3D 모델(상기 입력된 인체 데이터로부터 제작됨) 사이의 관련성 생성 후, 상기 환자-맞춤형 3D 모델로부터의 결손/비정상적인 부위는 상기 재건된 3D 모델 상에 국소화된다. 달리 말하자면, 상기 재건된 3D 모델은 상기 재건된 3D 모델에 존재하면서 상기 환자-맞춤형 3D 모델로부터는 결손된 뼈를 식별하고 기록하기 위하여 상기 환자-맞춤형 3D 모델에 비교된다. 국소화는, 제한 없이, 곡률 비교, 표면적 비교, 및 포인트 클라우드 영역 비교를 포함하는 여러 방식으로 수행될 수 있다.
궁극적으로, 예시적인 형태에서, 상기 결손/비정상적인 뼈는 국소화되고, 상기 출력은 2개의 리스트로 이루어진다: (a) 상기 환자-맞춤형 3D 모델에서 부재하거나 또는 기형인, 상기 재건된 3D 모델의 뼈에 해당하는 정점을 식별하기 위한 제 1 리스트; 그리고,(b) 상기 환자-맞춤형 3D 모델에서 존재하고 정상적인, 상기 재건된 3D 모델의 뼈에 해당하는 정점을 식별하기 위한 제 2 리스트.
도 21, 도 22, 및 도 27을 참조하면, 상기 결함 형상 추출 단계에 이어서, 임플란트 위치 단계가 수행된다. 대퇴골 또는 골반 임플란트를 위한 고정 위치를 파악하기 위하여, 상기 결함 형상 추출 단계로부터의 2개의 정점 리스트 및 상기 스태티스티컬 아틀라스로 부터의 정상적인 뼈(예를 들면, 골반, 대퇴골, 등)의 3D 모델(도 1 및 도 2 뿐만 아니라 위의 동일한 예시적인 설명 참조)이 입력된다. 더욱 구체적으로, 상기 고정 위치(즉, 임플란트 위치)는 자동으로 선택되어 환자가 잔여 뼈를 갖는 위치에 각각 위치된다. 반대로, 상기 고정 위치는 상기 환자의 잔여 뼈의 결함 영역에서는 선택되지 않는다. 이러한 방식으로, 상기 고정 위치는 상기 궁극적인 임플란트 설계/형상에 독립적으로 선택된다. 상기 고정 위치의 선택은 형상 정보 및 스태티스티컬 아틀라스 위치를 이용함으로써 자동화가능하다.
도 21에 나타낸 바와 같이, 상기 임플란트 위치 단계 이후, 다음 단계는 환자-맞춤형 임플란트 파라미터를 발생하는 것이다. 이 단계를 완료하기 위하여, 임플란트 파라미터화된 템플릿은 상기 임플란트의 근본적인 형상을 정의하기에 충분한 수의 파라미터 세트에 의하여 상기 임플란트를 정의하는 입력이다. 예를 들어, 부재하거나 또는 변성인 비구를 대체/보강하기 위한 골반 재건의 경우, 상기 임플란트 파라미터화된 템플릿은 대체 비구컵의 방향에 대한 각도 파라미터 및 상기 대퇴골두의 치수를 수용하기 위한 깊이 파라미터를 포함한다. 비구 임플란트에 대한 기타 파라미터는, 제한 없이, 상기 비구컵 직경, 대면 방향, 플랜지 위치 및 형상, 고정 나사의 위치 및 방향을 포함할 수 있다. 다공질 임플란트의 경우, 공극률의 위치 및 구조적 특성이 포함되어야 한다. 예를 들어, 부재하거나 또는 변성인 대퇴골을 대체/보강하기 위한 대퇴골 재건의 경우, 상기 임플란트 파라미터화된 템플릿은 대체 대퇴골두의 방향에 대한 각도 파라미터, 경부 길이, 헤드 오프셋, 근위부 각도, 및 외부 대퇴골 및 과간부위 채널의 단면분석을 포함한다. 임플란트의 근본적인 형상을 정의하기 위하여 선택되는 파라미터가, 치환되거나 또는 보충된 인체에 따라 변화됨을 당업자는 이해할 것이다. 따라서, 임플란트의 근본적인 형상을 정의하기에 충분한 파라미터에 대한 한정적 열거는 의미가 없다. 그럼에도 불구하고, 예를 들어 도 22에 나타낸 바와 같이, 상기 재건된 3D 골반 모델은 상기 비구컵의 노뼈, 상기 비구컵 둘레 상부 능선으로 이루어지는 골반 뼈의 식별, 및 잔여 골반에 대한 상기 비구컵의 방향 식별을 구하기 위하여 이용될 수 있다. 더욱이, 상기 파라미터는 상기 임플란트가 최상으로/보다 잘 상기 환자-맞춤형 인체에 맞도록 상기 임플란트 위치를 고려하여 개선될 수 있다.
상기 임플란트의 근본적인 형상을 정의하기에 충분한 수의 파라미터 세트를 확정함에 이어서, 상기 임플란트의 설계에 착수된다. 더욱 구체적으로, 상기 전반적인 임플란트 표면 모델의 초기 반복이 구성된다. 상기 전반적인 임플란트 표면 모델의 이러한 초기 반복은 환자-맞춤형 윤곽 및 상기 임플란트된 부위에 대하여 추정된 윤곽의 조합에 의하여 정의된다. 추정된 윤곽은 상기 재건된 3D 뼈 모델, 결손 인체 뼈, 및 상기 재건된 3D 뼈 모델로부터 추출된 특징으로부터 결정된다. 상기 임플란트 부위의 이러한 특징 및 위치는, 자동으로 결정될 수 있는 것으로서, 예를 들어 비구컵 임플란트에 대하여 도 22에 나타낸 바와 같이, 상기 전반적인 임플란트 형상을 결정하기 위하여 이용된다.
도 20를 참조하면, 상기 전반적인 임플란트 표면 모델의 초기 반복은 맞춤형(즉, 환자-맞춤형) 계획 순서에 따라 처리된다. 이러한 맞춤형 계획 순서는 반복적인 검토 및 설계 과정의 일부로서 외과 전문의 및 엔지니어로 부터의 입력에 관계될 수 있다. 특히, 상기 외과 전문의 및/또는 엔지니어는 상기 전반적인 임플란트 표면 모델에 변화가 필요한지를 결정하기 위하여 상기 전반적인 임플란트 표면 모델 및 상기 재건된 3D 뼈 모델을 검토할 수 있다. 이러한 검토는 상기 엔지니어와 외과 전문의 사이에 합의가 도출될 때까지 상기 전반적인 임플란트 표면 모델의 반복을 야기할 수 있다. 이러한 단계로부터의 출력은 상기 최종 임플란트에 대한 표면 모델이며, 이는 상기 최종 임플란트 또는 가시적인 모델을 제작하기 위하여 CAD 파일, CNC 공작기계 인코딩, 또는 신속 제작 명령어의 형태로 될 수 있다.
도 20, 도 22, 및 도 23을 참조하면, 상기 환자-맞춤형 정형외과용 임플란트의 설계와 동시에 또는 그 이후에 환자 맞춤형 배치 가이드의 설계가 이루어진다. 위에서 예시적인 형태에서 논한 바와 같이 비구컵 임플란트에 있어서, 상기 환자-맞춤형 비구컵의 배치를 돕기 위하여 하나 이상의 수술 기구를 설계 및 제작할 수 있다. 상기 환자-맞춤형 임플란트가 상기 잔여 뼈의 크기 및 형상에 매칭되는 크기 및 형상을 갖도록 설계하는 데에, 상기 환자-맞춤형 임플란트의 윤곽 및 형상이 이용될 수 있고 상기 배치 가이드의 일부로서 결합될 수 있다.
예시적인 형태에서, 상기 비구 배치 가이드는 장골, 좌골, 및 치골 표면과 접촉하도록 구성된 3개의 플랜지로 이루어지며, 상기 3개의 플랜지는 링을 통하여 상호 연결된다. 더욱이, 상기 배치 가이드의 플랜지는 상기 비구컵 임플란트와 동일한 형상, 크기 및 윤곽을 취할 수 있으므로, 상기 배치 가이드는 상기 비구컵 임플란트에 대하여 계획된 바와 동일한 위치에 놓일 수 있다. 달리 말하자면, 상기 비구 배치 가이드는, 상기 비구컵 임플란트가 그러하듯이, 환자 인체(장골, 좌골, 및 치골 부분적인 표면)에 대한 네거티브 전사 형태로 되므로, 상기 배치 가이드는 상기 환자 인체에 정확히 맞게 된다. 그러나, 상기 임플란트 가이드는 홀 및/또는 고정체의 배치를 위하여 드릴링을 가이드하기 위하여 하나 이상의 고정 홀을 포함한다는 점에서 임플란트와 크게 상이하다. 예시적인 형태에서, 상기 배치 가이드는, 상기 비구컵 임플란트를 상기 잔여 골반에 안착시킬 때 이용될 임의의 드릴비트 또는 기타 가이드(예를 들면, 다우얼)의 적절한 방향을 보장하기 위하여, 영상 분석(예를 들면, 마이크로CT)에 기초한 크기 및 방향으로 되는 홀을 포함한다. 상기 홀의 수 및 방향은 상기 잔여 뼈에 따라 달라지는데, 이는 상기 비구컵 임플란트의 형상에도 영향을 미친다. 도 23은 전체 엉덩이 관절성형술절차에서 사용하기 위한 환자-맞춤형 배치 가이드의 일 예를 나타낸다. 또 다른 사례에서, 상기 가이드는 상기 임플란트에 맞추어져서 상기 고정 나사의 방향만을 안내하도록 형성될 수도 있다. 이 형태에서, 상기 가이드는 상기 임플란트의 네거티브 형태로 되어, 상기 임플란트 위로 직접 배치될 수 있다. 그럼에도 불구하고, 상기 환자-맞춤형 재건된 임플란트의 크기, 형상, 및 윤곽 중 적어도 일부를 포함하는 것은 상기 환자-맞춤형 임플란트가 결합될 의도된 뼈에 무관하게 수행되는 주제이다.
여기에 설명된 상기 예시적인 시스템 및 방법을 이용하는 것은 재건된 3차원적 모델을 통하여 수술 전에 정확한 각도 및 평면 방향을 측정할 수 있는 능력, 정형외과용 배치의 보다 높은 정확성, 및 보다 나은 인체 통합의 결실을 낳을 수 있는 풍부한 정보를 제공할 수 있다.
대량 맞춤화 가능한 요소를 이용한 맞춤형 임플란트의 제작
도 26을 참조하여, 대량으로 맞춤화 가능한 요소를 이용하여 맞춤형 정형외과용 임플란트를 제작하기 위한 예시적인 과정 및 시스템을 설명한다. 상기 예시적인 설명을 위하여, 심각한 비구 결함이 있는 환자에 대한 전체 엉덩이 관절성형술절차를 설명한다. 그러나, 상기 예시적인 과정 및 시스템은 불완전한 인체가 존재하는 경우에 대량 맞춤에 적절한 임의의 정형외과용 임플란트에 적용 가능함을 이해해야 한다.
심각한 비구 결함은 회복을 위하여 특별한 과정 및 임플란트 요소를 요한다. 그러한 접근 중 하나는 맞춤형 3-플랜지로서, 전체 맞춤형 임플란트는 비구컵 및 장골, 좌골, 및 치골에 부착되는 3개의 플랜지로 이루어진다. 상기 예시적인 과정 및 시스템과는 대조적으로, 종래기술의 3-플랜지 임플란트는 단일의 복합 요소로 이루어지며, 이는 제조하기에 크고 복잡하며 상기 전체 임플란트가 모든 경우를 위하여 재설계될 것을 요한다(즉, 완전히 환자-맞춤형). 상기 예시적인 과정 및 시스템은 맞춤형 3-플랜지 임플란트를 제작하며, 이는 맞춤형 부품 및 공극률을 허용하도록 전적으로 맞춤형인 요소에 더하여 대량으로 맞춤 가능한 요소의 모듈 방식 이용을 가능하게 한다.
상기 예시적인 과정에 의한 사전 계획 단계는 상기 컵, 상기 플랜지 접촉 위치, 및 상기 비구컵 방향 및 크기에 관련하여 3개 플랜지의 방향을 결정하기 위하여 수행된다. 이러한 사전계획 단계는 이 단계 직전에 상기 "환자-맞춤형 임플란트" 논의에 따라 수행된다. 예를 들어, 임플란트 고정의 특이적 위치는 바로 직전 구간에서 논의되는 바대로 그의 시작역할을 하는 데이터 입력을 이용하여 임플란트 위치 단계에 따라 결정된다. 상기하면, 이러한 임플란트 위치 단계의 일부로서, 상기 맞춤형 3-플랜지를 위한 고정 위치를 파악하기 위하여, 상기 결함 형상 추출 단계로부터의 2개의 정점 리스트 및 상기 스태티스티컬 아틀라스로부터의 정상적인 골반에 대한 3D 모델(도 1 및 도 2, 및 위의 동일한 예시적인 설명 참조)이 입력된다. 더욱 구체적으로, 상기 고정 위치(즉, 임플란트 위치)는 환자가 잔여 뼈를 갖는 곳에 각각 위치되도록 선택된다. 달리 말하자면, 상기 고정 위치는 환자의 잔여 골반의 결함 영역에서는 선택되지 않는다. 이러한 방식으로, 상기 고정 위치는 상기 궁극적인 임플란트 설계/형상에 독립적으로 선택된다.
상기 고정 위치의 결정 이후, 상기 3-플랜지 요소(즉, 플랜지)는 이러한 구간에 바로 앞서는 상기 "환자-맞춤형 임플란트" 논의를 이용하여 설계된다. 상기 플랜지는 상기 대체 비구컵에 대하여 방향도록 설계되어 상기 컵 방향이 만족스러운 관절 기능을 제공하도록 한다. 또한, 상기 3-플랜지의 접촉 표면은 골반의 뼈 표면에 대하여 "네거티브" 형상으로 되므로 상기 플랜지의 접촉 표면은 환자의 인체 골반에 매칭되도록 윤곽 형성된다. 도 23의 예시적인 과정은 상기 플랜지를 쾌속 조형하기 위하여(또는 종래의 컴퓨터 수치제어(CNC) 장치를 이용하기 위하여) 도 17에 나타낸 상기 과정의 최종 단계를 이용한다. 상기 플랜지가 제작된 후, 상기 3-플랜지에 다공질 물질을 추가할 수 있는 공동(cavity)을 제공하기 위하여 추가의 가공 또는 단계를 수행할 수 있다.
맞춤형 요소로 될 필요가 없는 상기 3-플랜지 시스템의 일부분은 상기 비구컵 요소이다. 이러한 예시적인 과정에서, 비구컵의 패밀리는 초기에 제작되고 상기 3-플랜지 시스템을 세울 토대를 제공한다. 이들 "블랭크(blank)" 컵은 필요에 따라 인벤토리로 보유할 수 있다. 상기 컵에 대하여 특정 공극률이 필요하면, 상기 컵 내로 다공질 물질을 압입할 수 있는 기계적 특징이 상기 컵에 부가된다. 양자택일적으로, 상기 컵에 특정 공극률이 필요하면, 하나 이상의 다공질 코팅을 이용하여 상기 컵을 코팅할 수도 있다.
상기 블랭크 컵이 형성되고 임의의 공극률이 이상에서 논한 바와 같이 이루어진 후, 상기 컵은 상기 플랜지를 수용하도록 상기 컵을 가공함으로써 환자-맞춤형으로 제시된다. 특히, 상기 플랜지의 가상 모델을 이용함으로써, 상기 시스템 소프트웨어로 상기 플랜지에 대한 가상 로킹 메커니즘을 구성하여, 상기 컵에 로킹 메커니즘이 처리되도록 기계코딩으로 변환된다. 이들 로킹 메커니즘은 상기 컵이 상기 플랜지에 고정될 수 있도록 하여, 상기 플랜지가 상기 환자의 잔여 뼈에 장착될 때, 상기 컵이 상기 잔여 골반에 대하여 적절하게 방향되도록 한다. 이러한 가공에는 상기 블랭크 컵에 상기 로킹 메커니즘을 형성하기 위하여 CNC장치가 사용될 수 있다.
상기 블랭크 컵의 일부로서 상기 로킹 메커니즘을 제작함에 이어서, 상기 플랜지는 상기 로킹 메커니즘들 사이의 인터페이스를 이용하여 상기 컵에 장착된다. 상기 3-플랜지 어셈블리(즉, 최종 임플란트)는 상기 요소들 사이에 강력한 접착을 도모하기 위하여 어닐링 공정을 거친다. 상기 3-플랜지 임플란트의 어닐링 이후, 상기 3-플랜지 임플란트에 대한 살균 환경을 보장하기 위하여 살균 공정이 이루어지고 이어서 적절히 포장된다.
대량 맞춤형 임플란트의 제작
*
도 28을 참조하여, 부분적인, 기형, 및/또는 부서진 인체로 고생하는 환자를 위하여 대량 맞춤형 정형외과용 임플란트 가이드 및 관련된 대량 맞춤형 정형외과용 임플란트를 제작하는 예시적인 과정 및 시스템을 설명한다. 상기 예시적인 설명을 위하여, 본래의 관절을 대체할 필요가 있는 환자에 대하여 전체 엉덩이 관절성형술절차를 설명한다. 그러나, 상기 예시적인 과정 및 시스템은 불완전한 인체가 존재하는 경우에 대량 맞춤에 적절한 임의의 정형외과용 임플란트에 적용 가능함을 이해해야 한다. 예를 들어, 상기 예시적인 과정 및 시스템은 뼈 변성(부분적인 인체), 뼈 변형, 또는 부서진 뼈가 존재하는 경우 견관절 치환술 및 슬관절 치환술에 적용가능하다. 따라서, 아래에서는 비록 엉덩이 임플란트에 대해서 논하지만, 당업자는 상기 시스템 및 과정을 본래의 정형외과용 또는 정형외과용 재수술과 함께 이용하기 위하여 기타의 정형외과용 임플란트, 가이드, 기구, 등에 적용할 수 있음을 이해할 것이다.
상기 예시적인 과정은 매크로 관점 및 마이크로 관점으로부터의 입력 데이터를 이용한다. 특히, 상기 매크로 관점은 상기 정형외과용 임플란트 및 해당 인체의 전반적인 기하학적 형상의 결정을 수반한다. 반대로, 상기 마이크로 관점은 망상조직의 뼈의 형상 및 구조 그리고 그의 공극률을 고려를 수반한다.
상기 매크로 관점은 특정 집단에서 고유의 해부학적 변동성을 포착하기 위하여 하나 이상의 인체(예를 들면, 뼈)의 가상, 3D 모델을 기록하는 스태티스티컬 아틀라스 모듈과 통신하는 데이터베이스를 포함한다. 예시적인 형태에서, 상기 아틀라스는 상기 하나 이상의 인체의 인체 특징의 수학적 표현 및 특정 인체 집단의 평균 표상에 대한 변화를 기록한다. 도 2 및 상기 스태티스티컬 아틀라스에 대한 위의 설명 및 특정 집단의 스태티스티컬 아틀라스에 인체를 추가하는 방법에 대한 설명을 참조한다. 상기 스태티스티컬 아틀라스로부터의 출력은 자동 표식자 모듈 및 표면/형상 분석 모듈에 보내진다.
상기 자동 표식자 모듈은 상기 스태티스티컬 아틀라스 내 인체의 각각의 경우에 대한 인체 표식자를 계산하기 위하여 상기 스태티스티컬 아틀라스(예를 들면, 특이적 표식자를 포함할 개연성이 높은 부위) 및 국소적인 기하학적 분석으로부터의 입력을 이용한다. 이러한 계산은 각각의 표식자에 대하여 특이적이다. 상기 부위의 대략적인 형상은 확인되어 있고, 예를 들어, 검색되는 표식자의 위치는 상기 국소적인 형상 특성에 대하여 확인된다. 예를 들어, 상기 말단 대퇴골의 내측 상과부 포인트를 국소화하는 것은 상기 스태티스티컬 아틀라스 내에서 내측 상과부 포인트의 대략적인 위치에 기초한 검색을 개선함으로써 달성된다. 따라서, 상기 내측 상과부 포인트는 이러한 검색 윈도우 내에서 가장 내측에 있다고 알려져 있으므로, 상기 가장 내측 포인트의 검색은 상기 스태티스티컬 아틀라스 내에 정의된 상기 내측 상과부 부위 내에서 각각의 뼈 모델에 대하여, 상기 내측 상과부 포인트 표식자로서 식별되는 검색의 출력으로써 수행된다. 상기 인체 표식자는 상기 스태티스티컬 아틀라스 집단 내에서 각각의 가상, 3D 모델에 대하여 자동으로 계산된 후, 상기 스태티스티컬 아틀라스의 가상, 3D 모델은 형상/표면 분석 출력을 따라 특징 추출 모듈에 보내진다.
상기 형상/표면 출력은, 역시 상기 스태티스티컬 아틀라스로부터 입력을 수신하는 형상/표면 모듈로부터 나온다. 상기 형상/표면 모듈에 있어서, 상기 스태티스티컬 아틀라스 집단 내 가상, 3D 모델은 상기 자동 표식자에 의하여 망라되지 않는 형상/표면 특징에 대하여 분석된다. 달리 말하자면, 인체의 전반적인 3D 형상에 해당하지만 이전의 자동 표식 단계에서 정의된 특징에 속하지 않는 특징 또한 계산된다. 예를 들어, 곡률 데이터는 상기 가상의 3D 모델에 대하여 계산된다.
상기 표면/형상 분석 모듈 및 상기 자동 표식자 모듈로부터의 출력은 특징추출 모듈로 보내진다. 표식자 및 형상 특징의 조합을 이용하여, 임플란트 설계에 관련된 수학적 디스크립터(즉 곡률, 치수)는 상기 아틀라스에서 각각의 경우에 대하여 계산된다. 이들 디스크립터는 클러스터링 과정에 대한 입력으로서 이용된다.
상기 수학적 디스크립터는 통계분석에 기초하여 클러스터링 또는 그룹화된다. 특히, 상기 디스크립터는 상기 집단 내에서 유사한 특징을 갖는 군(인체의)을 식별하기 위하여 통계적으로 분석되고 나머지 인체 집단으로부터의 다른 디스크립터에 비교된다. 물론, 이러한 클러스터링은 상기 집단 전체에 걸쳐 다수의 인체로부터의 다수의 디스크립터에 기초한다. 상기 초기 클러스터링에는 존재하지 않았던 새로운 사례가 상기 클러스터링에 나타나면, 상기 출력 클러스터는 상기 새로운 집단을 더욱 잘 나타내도록 개선된다. 이러한 통계분석으로부터의 출력은 모든 또는 대다수의 상기 인체 집단을 커버하는 한정된 수의 임플란트(임플란트 패밀리 및 크기 포함)이다.
각각의 클러스터에 대하여, 파라미터화 모듈은 상기 클러스터 내에서 상기 수학적 디스크립터를 추출한다. 상기 수학적 디스크립터는 상기 궁극적인 임플란트 모델에 대하여 상기 파라미터(예를 들면, CAD 설계 파라미터)를 형성한다. 상기 추출된 수학적 디스크립터는 임플란트 표면 제작 모듈에 제공된다. 각각의 클러스터에 대하여 상기 인체의 3D, 가상 모델을 제작하기 위하여 상기 수학적 디스크립터를 표면 디스크립터로 전환하는 데에는 이 모듈에 책임이 있다. 상기 3D, 가상 모델은 스트레스 테스트 및 임플란트 제작에 앞서 상기 마이크로 관점을 보완한다.
상기 마이크로 관점에서, 특정 집단의 각각의 인체에 대하여, 구조 건전성을 나타내는 데이터를 구한다. 예시적인 형태에서, 뼈에 대한 이러한 데이터는 상기 망상조직의 뼈에 대한 구조적 정보를 제공하는 마이크로CT 데이터로 이루어질 수 있다. 더욱 구체적으로, 상기 마이크로CT 데이터는 상기 당해 뼈에 대한 영상(전체 집단에 걸쳐 다중 뼈에 대한 다중 마이크로CT 영상)으로 이루어질 수 있다. 그 후, 이들 영상은, 상기 망상조직의 뼈의 3차원적 기하학적 구조를 추출하기 위하여 그리고 상기 집단 내에서 각각의 뼈에 대한 가상, 3D 모델을 제작하기 위하여, 상기 추출된 섬유주 골형 구조 모듈을 통하여 분할된다. 그 결과적인 3D 가상 모델은 공극 크기 및 형상 모듈에 입력된다. 도 84에 사실적으로 나타낸 바와 같이, 상기 3D 가상 모델은 다공질 크기 및 형상 정보를 포함하며, 이는 상기 망상조직의 뼈의 공극 크기 및 크기를 결정하기 위하여 상기 공극 크기 및 형상 모듈에 의하여 평가된다. 이러한 평가는 상기 골수강 내 뼈의 다공질 크기 및 형상을 분석하는 데에 유용하므로, 상기 대퇴골 임플란트의 스템은 상기 대퇴골의 잔여 뼈와 상기 대퇴골 임플란트 사이의 통합을 도모하기 위하여 코팅으로 처리되거나 또는 다공질 외부를 갖도록 처리될 수 있다. 이러한 모듈로부터의 출력은, 상기 임플란트 표면 제작 모듈로부터의 상기 3D 가상 모델 출력과 조합으로, 가상 스트레스 테스트 모듈에 보내진다.
상기 스트레스 테스트 모듈은 상기 최종 임플란트 형상 모델 및 특성을 정의하기 위하여 상기 공극 크기 및 형상 모듈로부터의 임플란트 공극률 데이터 및 상기 임플란트 표면 제작 모듈로부터의 임플란트 형상 데이터를 결합한다. 예를 들어, 상기 형상 및 특성은 당해 뼈에 대한 망상조직의 뼈 공극률에 대략적으로 매칭되는 상기 최종 임플란트 모델에 다공질 코팅을 제공하는 것을 포함한다. 일단 상기 형상 및 특성이 결합되면, 상기 최종 임플란트 모델은 상기 모델의 기능적 품질을 확인하기 위하여 가상 스트레스 테스트(유한-요소 분석 및 기계적 분석)를 겪는다. 상기 기능적 품질이 허용 불가능하면, 허용 가능한 성능을 달성할 때까지 상기 임플란트 형상 및 공극률을 정의하는 파라미터가 수정된다. 상기 최종 임플란트 모델이 상기 스트레스 테스트 기준을 만족시킨다고 추정되면, 상기 최종 임플란트 모델은 상기 가상 모델을 가시적인 임플란트(당업자에게 주지된 제작 과정에 의하여 더욱 개선될 수 있음)로 전환하는 데에 필요한 기계 명령어를 생성하는 데에 이용된다. 예시적인 형태에서, 상기 기계 명령어는 쾌속 조형 과정(다공질 구조를 획득하기 위하여) 또는 전통적인 제작과 쾌속 조형의 조합을 통하여 상기 최종 임플란트를 제작하기 위한 신속 제작 기계 명령어를 포함할 수 있다.
성별/민족성에 따른 맞춤형 엉덩이 임플란트의 제작
도 29-84를 참조하여, 성별 및/또는 민족성에 따른 맞춤형 임플란트를 제작하기 위하여 예시적인 과정 및 시스템을 설명한다. 상기 예시적인 설명을 위하여, 본래의 관절을 대체할 필요가 있는 환자에 대하여 전체 엉덩이 관절성형술절차를 설명한다. 그러나, 상기 예시적인 과정 및 시스템은 맞춤화에 적절한 임의의 정형외과용 임플란트에 적용 가능함을 이해해야 한다. 예를 들어, 상기 예시적인 과정 및 시스템은 견관절 치환술 및 슬관절 치환술 및 기타 원래 관절의 대체 절차에 적용가능하다. 따라서, 아래에서는 비록 엉덩이 임플란트에 대해서 논하지만, 당업자는 상기 시스템 및 과정을 본래의 정형외과용 또는 정형외과용 재수술과 함께 이용하기 위하여 기타의 정형외과용 임플란트, 가이드, 기구, 등에 적용할 수 있음을 이해할 것이다.
상기 고관절은 상기 대퇴골의 헤드 및 상기 골반의 비구로 구성된다. 상기 고관절 구조는 상기 인체에서 가장 안정적인 관절 중 하나를 형성한다. 상기 안정성은 강성 볼 및 소켓 구조에 의하여 제공된다. 상기 대퇴골두는 구의 2/3를 형성하는 그의 관절부분에서 거의 구의 형상으로 된다. 데이터는 남성보다 여성의 상기 대퇴골두의 직경이 더 작다는 것을 보여준다. 상기 정상적인 엉덩이에서, 상기 대퇴골두의 중앙은 상기 비구의 중앙과 정확히 일치하는 것으로 추정되며 이러한 추정은 대부분의 엉덩이 시스템 설계에 기초로 이용된다. 그러나, 상기 고유의 비구는 상기 고유의 대퇴골두를 전부 커버하기에 충분히 깊지 않다. 상기 대퇴골두의 대부분의 둥근 부분은 구형보다는 오히려 둥근 타원형인데 그 이유는 그 최상부가 다소 편평하기 때문이다. 이러한 둥근 타원형 형상은 부하로 하여금 상기 상부 극 주위에 링-형 패턴으로 분산되도록 한다.
상기 대퇴골두의 기하학적 중앙부는 상기 관절의 3개 축: 수평축; 상기 수직축; 그리고, 상기 전방/후방축에 의하여 횡단된다. 상기 대퇴골두는 상기 대퇴골의 경부에 의하여 지지되며, 이는 축을 연결한다. 상기 대퇴경부의 축은 상측, 내측 및 전방측으로 비스듬히 설정되고 이어진다. 전방 평면에서 상기 축에 대한 상기 대퇴경부의 경사 각도는 상기 경부 축 각도이다. 대부분의 성인에게 있어서, 이러한 각도는 90 내지 135도로 변화되며, 이는 상기 엉덩이 외전근, 사지의 길이, 및 상기 고관절에 가해지는 힘의 유효성을 결정하기 때문에 중요하다.
125도를 초과하는 경사 각도는 외반고(coxa valga)로 불리우며, 반면에 125도 미만인 경사 각도는 내반고로 불리운다. 125도보다 큰 경사 각도는 길어진 사지, 상기 엉덩이 외전근의 감소된 유효성, 상기 대퇴골두 상의 증가된 부하, 및 상기 대퇴경부 상의 증가된 응력과 부합한다. 내반고의 경우, 125도 미만의 경사 각도는 짧아진 사지, 상기 엉덩이 외전근의 증가된 유효성, 상기 대퇴골두 상의 감소된 부하, 및 상기 대퇴경부 상의 감소된 응력과 부합한다. 상기 대퇴경부는 상기 대퇴골 관절구의 가로방향 축과 예각을 형성한다. 이러한 각도는 내측 및 전방측을 향하며 전염각 각도로 불리운다. 성인에게 있어서, 이러한 각도는 대략 7.5도가 평균이다.
상기 비구는 상기 엉덩이의 측부에 놓이며, 여기에서 장골, 좌골, 및 치골이 만난다. 이들 3개의 분리된 뼈는 상기 비구의 형성으로 연결되며, 여기에서 상기 장골 및 좌골은 각각 상기 비구의 대략 2/5에 기여하고 상기 치골은 상기 비구의 1/5에 기여한다. 상기 비구는 상기 대퇴골두의 전부를 커버하기에 충분히 깊은 정도의 소켓이 아니며 관절형 부분 및 비-관절형 부분을 모두 갖는다. 그러나, 상기 비구 관절와순은 안정성을 증가시키기 위하여 상기 소켓을 깊게 한다. 관절와순과 함께, 상기 비구는 상기 대퇴골두의 50%를 살짝 넘는 정도로 상기 대퇴골두를 커버한다. 상기 비구의 측부에만 관절연골이 대어져 있는데, 이는 깊은 관골구절흔에 의하여 아래로 가로막혀 있다. 상기 비구 공동의 중앙부분은 상기 관절연골보다 깊고 비관절형이다. 이러한 중앙 부분은 안골구와로 불리우며 상기 골반 뼈의 인터페이스로부터 얇은 판에 의하여 분리되어 있다. 상기 안골구와는 모든 환자에게 있어 특유한 부위이며 상기 비구컵 요소의 리밍 및 배치를 위한 환자-맞춤형 가이드를 제작하는 데에 이용된다. 또한, 인체 특징의 변화는 개체군 특이적 임플란트 설계에 대한 필요성을 더욱 타당하게 한다.
접합제를 쓰지 않은 요소를 사용하는 종래 기술에 관련된 문제 중 일부는 상기 대퇴골 관의 크기, 형상, 및 방향에 있어서의 폭넓은 변화에 기인할 수 있다. 대퇴골 스템의 정형외과용 임플란트 설계에 있어서 문제 중 하나는 내측방 및 전후방 치수에 있어서의 큰 변화이다. 말단 관 크기에 대한 상기 근위부의 비율에도 상당한 변화가 있다. 상기 정상적인 집단에서 다양한 호 형태, 테이퍼 각도, 곡선, 및 오프셋의 상이한 조합이 진행된다. 그러나, 문제는 그뿐만이 아니다.
*대퇴골 형태학에 있어서의 조상전래의 차이 및 현대 집단에 대한 분명한 기준의 부족은 적절한 엉덩이 임플란트 시스템 설계에 문제를 야기한다. 예를 들어, 아메리카 인디언, 미국 흑인, 미국 백인 사이에는 전방 곡률, 비틀림, 및 단면 형상에 큰 차이가 존재한다. 대퇴골에 있어서 아시아 집단과 서양 집단 차이의 차이는 대퇴골의 전방 활모양(구부러짐)에서 발견되는데, 백인 대퇴골보다 중국인들의 대퇴골이 전방으로 더욱 구부러져 있고 더 작은 골수강 및 더 작은 말단 관절구로 외측으로 회전된다. 마찬가지로, 백인 대퇴골은 일본인 대퇴골보다 길이 말단 관절구 치수가 더 크다. 미국 흑인과 미국 백인 사이에 민족성 차이는 대퇴골 근위부 골밀도(mineral bone density, BMD) 및 대퇴부 축 길이에도 존재한다. 보다 높은 BMD, 보다 짧은 대퇴부 축 길이, 및 보다 짧은 대퇴전자간 폭의 병용 효과는 미국 백인 여성에 비하여 미국 흑인 여성에서 골다공증성 골절의 유병률이 더 낮음을 설명할 수 있다. 마찬가지로, 백인 남성 및 라틴 아메리카계 남성에서 보다 노인 아시아 남성 및 미국의 흑인 남성이 보다 두꺼운 피질과 보다 높은 BMD를 갖는 것으로 밝혀졌고, 이는 이들 민족성 군에서 뼈 강도가 더 높음에 기여할 수 있다. 일반적으로, 미국 흑인은 미국 백인보다 더 두꺼운 골 피질, 더 좁은 골 내막 직경 및 더 높은 BMD를 갖는다.
상기 조상 전래(및 민족성)의 대퇴골 및 골반 차이를 결합하는 것은 본래의 엉덩이 시스템에 훨씬 더 어려운 문제가 된다. 재수술은 더욱 복잡한 문제를 일으킨다. 이들 정상적인 인체의 변화 및 민족성 변화에 더해져, 재수술을 수행하는 외과 전문의가 직면하게 되는 어려움들은: (a) 원래 위치된 보철물 주위의 뼈 손실에 의하여 유발되는 대퇴골 관의 비틀림; 및, (b) 상기 요소 및 접착제 제거에 의하여 발생되는 의원성 결함에 의하여 더욱 악화된다.
상술된 바의 모든 요인들은 많은 고관절 외과 전문의로 하여금 비접착 대퇴골 보철물의 설계를 개선하는 방법을 찾도록 하고 있다. 고관절 전치환술(최초 또는 재수술)에서, 이상적인 것은 상기 대퇴골 볼과 비구컵 사이에 최적의 맞춤을 설정하는 것이다. 대퇴골 스템 경부는 강성을 줄이기 위하여 십자형 단면을 가져야 한다. 스템 길이는 상기 스템으로 하여금 2 내지 3개의 내부관 직경을 거쳐 상기 대퇴골의 벽에 평행하게 접촉되도록 되어야 한다. 상기 스템의 1/3 근위부는 다공질로 코팅되거나 또는 수산인회석(HA)으로 코팅된다. 상기 스템은 만곡하중을 제어하기 위하여 그리고 기부 쪽으로 모든 회전방향 및 축방향 부하의 전달을 허용하기 위하여 원통형(즉, 테이퍼되지 않음)으로 된다. 상기 대퇴골두 위치는 환자 자신의 헤드 중앙을 재현해야 하며, 그렇지 않으면 비정상적인 것이 된다.
이러한 목적을 만족시키기 위한 방법 중 하나는 각각의 환자에 대하여 개별적으로 대퇴골 보철물을 제작하는 것이다. 달리 말하자면, 기성품 보철에 맞추기 위하여 환자 뼈의 모양을 고치려 하기 보다는 특정 환자에 대하여 특이적인 보철을 제작하는 것이다.
환자-맞춤형(또는 대량 맞춤) 최초 또는 재수술 고관절 치환술에 대하여 공통적인 설계 규칙이 있다. 이들 설계 규칙 중에는 다음의 것들이 있다: (1) 상기 엉덩이 스템은 상기 대퇴골에 부하의 균일한 분산을 가능케 하기 위하여 칼라리스로 되어야 하며(재수술 제외); (2) 상기 엉덩이 스템은 맞춤/채움을 최대화하기 위하여 변형 장능형 단면을 가지면서도 회전 안정성을 유지해야 한다; (3) 상기 엉덩이 스템은 환자의 뼈에 맞추어야 할 때 활처럼 굽혀져야 한다; (4) 상기 엉덩이 스템은 보철물과 뼈 사이에 갭이 없이 곡선형 통로를 따라 삽입되어야 한다; (5) 상기 엉덩이 스템 경부는 강성을 줄이기 위하여 십자형 단면을 가져야 한다; (6) 상기 엉덩이 스템 길이는 2 내지 3개의 내부 관 직경을 거쳐 상기 대퇴골의 벽과 평행하게 접촉되도록 이루어져야 한다; (7) 상기 엉덩이 스템의 1/3 근위부는 다공질로 코팅되거나 또는 수산인회석(HA)으로 코팅되어야 한다; (8) 상기 엉덩이 스템은 만곡하중을 제어하기 위하여 그리고 기부쪽으로 모든 회전방향 및 축방향 부하의 전달을 허용하기 위하여 원통형(즉, 테이퍼되지 않음)이다; (9) 상기 엉덩이 스템의 대퇴골두 위치는 환자 자신의 헤드 중앙을 재현해야 하며, 그렇지 않으면 비정상적인 것이 된다.
아래에 환자 집단의 성별 및/또는 민족성을 고려하여 본래 관절의 대체를 요하는 상기 환자에 대하여 대량 맞춤형 정형외과용 임플란트를 제작하기 위한 예시적인 과정 및 시스템을 설명한다. 상기 예시적인 설명을 위하여, 부분적인 인체를 갖는 환자에 대하여 전체 엉덩이 관절성형술절차를 설명한다. 그러나, 상기 예시적인 과정 및 시스템은 불완전한 인체가 있는 사례에 대량 맞춤화에 적절한 임의의 정형외과용 임플란트에 적용 가능함을 이해해야 한다. 예를 들어, 상기 예시적인 과정 및 시스템은 뼈 변성(부분적인 인체), 뼈 변형, 또는 부서진 뼈가 존재하는 견관절 치환술 및 슬관절 치환술에 적용가능하다. 따라서, 아래에서는 비록 엉덩이 임플란트의 대퇴골 요소에 대해서 논하지만, 당업자는 상기 시스템 및 과정을 본래의 정형외과용 또는 정형외과용 재수술과 함께 이용하기 위하여 기타의 정형외과용 임플란트, 가이드, 기구, 등에 적용할 수 있음을 이해할 것이다.
도 29를 참조하여, 대량 맞춤형 및 환자-맞춤형 모두를 위한 엉덩이 임플란트의 제작을 위하여 스태티스티컬 아틀라스를 이용하기 위한 전반적인 과정의 흐름을 설명한다. 우선, 상기 과정은 분석되는 하나 이상의 뼈에 대한 여러 사례를 포함하는 스태티스티컬 아틀라스를 포함한다. 예시적인 엉덩이 임플란트에 있어서, 상기 스태티스티컬 아틀라스는 상기 골반 뼈 및 상기 대퇴골 뼈의 뼈 모델에 대하여 여러 사례를 포함한다. 적어도 상기 비구 요소(즉, 비구) 및 상기 근위부 대퇴골 요소(즉, 대퇴골두)를 위하여 아티큘레이팅 표면 기하학적 구조 분석이 수행된다. 특히, 상기 아티큘레이팅 표면 기하학적 구조 분석은 상기 스태티스티컬 아틀라스의 특정 집단으로부터의 각각의 뼈에 대하여 표식자, 측정, 및 형상 특징의 계산을 수반한다. 또한, 상기 아티큘레이팅 표면 기하학적 구조 분석은 상기 계산을 나타내는 통계와 같은 정량적 값을 생성하는 것을 포함한다. 이들 계산으로부터, 상기 계산의 분포는 표시되고 상기 분포에 기초하여 분석된다. 종-형상의 분포에 있어서, 예를 들어, 상기 집단의 대략 90 퍼센트(90%)가 그룹화되어 비-환자-맞춤형 임플란트(예를 들면, 대량 맞춤형 임플란트)를 설계할 수 있고 이러한 그룹화에 적절히 맞을 수 있음을 관찰할 수 있고, 따라서 환자-맞춤형 임플란트에 비하여 환자의 비용을 절감할 수 있다. 상기 집단의 나머지 10 퍼센트(10%)에 대해서는, 환자-맞춤형 임플란트에 보다 잘 접근할 수 있다.
대량 맞춤형 임플란트에 있어서, 상기 스태티스티컬 아틀라스는 많은 상이한 군(즉, 상이한 임플란트)이 어떻게 특정 집단의 압도적 다수를 망라할 수 있는지에 대하여 정량적으로 평가하기 위하여 이용될 수 있다. 이들 정량평가는, 환자-맞춤형이 아니면서도 기성품(off-the-shelf) 대안보다는 더 특이적인 기본 임플란트 설계에 대하여 일반적인 파라미터를 나타내는, 데이터의 클러스터를 발생할 수 있다.
환자-맞춤형 임플란트에 있어서, 상기 스태티스티컬 아틀라스는 정상적인 뼈를 구현하는 것 및 환자의 뼈와 정상적인 뼈 사이의 차이를 정량적으로 평가하는 데에 이용될 수 있다. 더욱 구체적으로, 상기 스태티스티컬 아틀라스는 평균적인 뼈 모델 또는 템플릿 뼈 모델과 연관되는 곡률 데이터를 포함할 수 있다. 이러한 템플릿 뼈 모델은 그러므로 환자의 정확한 뼈 형태가 어떠할지를 추론하기 위하여 그리고 임플란트 절차의 수행에 이용되는 임플란트 및 수술 기구를 제작하기 위하여 이용될 수 있다.
도 30은 대량 맞춤형 및 환자-맞춤형 엉덩이 임플란트를 설계하는 데에 있어서의 스태티스티컬 아틀라스 이용을 도표로 요약한다. 임플란트 박스에 관련하여, 도 20 및 도 21 및 이들 도면에 관련된 설명을 다시 참조한다. 마찬가지로, 평면형 박스에 관련하여, 도 20 및 이와 연관된 상기 맞춤형 계획 인터페이스에 관한 설명을 다시 참조한다. 마지막으로, 환자-맞춤형 가이드 박스에 관련하여, 도 22 및 이 도면에 관련된 설명을 다시 참조한다.
도 31에 나타낸 바와 같이, 플로우챠트 성별 및/또는 민족성에 따른 맞춤형 엉덩이 임플란트의 설계 및 제작에 이용될 수 있는 예시적인 과정에 대하여 나타낸 것이다. 특히, 상기 과정은 대퇴골 근위부(즉, 대퇴골 대퇴골두 포함)의 다양한 표본으로서 남성 또는 여성의 것이며 그 사람의 민족성으로부터의 뼈가 관련된 민족성이 명시된 다양한 표본을 포함하는 스태티스티컬 아틀라스의 이용을 포함한다. 더욱이, 특정 성별 및/또는 민족성 집단에서 고유의 해부학적 변동성을 포착하기 위하여 상기 스태티스티컬 아틀라스 모듈은 하나 이상의 인체(예를 들면, 뼈)의 가상, 3D 모델을 기록한다. 예시적인 형태에서, 상기 아틀라스는, 공통적인 성별 및/또는 민족성(또는 해부학적 공통성이 존재하는 다수의 민족성 중 하나를 갖도록 그룹화될 수 있음)을 가질 수 있는 상기 특정 인체 집단에 대한 평균 표상으로서 및 상기 평균 표상에 관한 변화로서 나타나는, 상기 하나 이상의 인체의 인체 특징에 대한 수학적 표현을 기록한다. 도 2 및, 상기 스태티스티컬 아틀라스에 대하여 그리고 특정 집단에 대한 스태티스티컬 아틀라스에 인체를 어떻게 추가하는지에 대하여 앞서 설명된 바를 참조한다. 상기 스태티스티컬 아틀라스로부터의 출력은 자동 표식자 모듈 및 표면/형상 분석 모듈로 보내진다.
도 31-43을 참조하면, 상기 자동 표식자 모듈은 상기 스태티스티컬 아틀라스 내 인체의 각각의 경우에 대한 인체 표식자를 계산하기 위하여 상기 스태티스티컬 아틀라스(예를 들면, 특이적 표식자를 포함할 개연성이 높은 부위) 및 국소적인 기하학적 분석으로부터의 입력을 이용한다. 예를 들어, 다양한 대퇴골 근위부 표식자는 대퇴골의 각각의 3D 가상 모델에 대하여 계산되며 이는, 제한 없이, 다음을 포함한다: (1) 대퇴골두 중심, 이는 구에 가까운 대퇴골두의 중심점이다; (2) 대전자 포인트, 이는 상기 인체 경부 중심선에 수직인 경부축 포인트를 통과하는 평면에 대하여 최소거리를 갖는 대전자 상의 포인트이다; (3) 골절술 포인트, 상기 소전자의 단부로부터 15 밀리미터(상기 소전자 포인트로부터 대략 30 밀리미터)인 포인트이다; (4) 경부축 포인트, 이는 상기 최소 대퇴경부 단면 영역을 감싸는 접평면을 갖는 헤드 구(球) 상의 포인트이다; (5) 대퇴골 허리, 이는 상기 대퇴골축을 따라 최소 직경을 갖는 단면이다; (6) 골수강 허리, 이는 상기 골수강을 따라 최소 직경을 갖는 단면이다; (7) 대퇴경부 피벗 포인트, 이는 상기 대퇴골두 중심 및 상기 대퇴골 인체 축의 말단과 함께 상기 대퇴경부 각도와 동일 한 각도를 형성하는 상기 대퇴골 인체 축 상의 포인트이다; 그리고, (8) 소전자 포인트, 이는 외측으로 가장 돌출된 상기 소전자 부위 상의 포인트이다. 예를 더 들자면, 식별된 인체 표식자를 이용하여 대퇴골의 각각의 3D 가상 모델에 대하여 다양한 대퇴골 근위부 축이 계산되며 이는, 제한 없이, 다음을 포함한다: (a) 대퇴경부 인체 축, 이는 상기 대퇴골두 중심을 상기 대퇴경부 중심에 연결하는 라인과 동축이다; (b) 대퇴경부축, 이는 상기 대퇴골두 중심 포인트와 상기 대퇴경부 피벗 포인트를 연결하는 라인과 동축이다; 그리고, (c) 대퇴골 인체 축, 이는 상기 대퇴골의 근위부 단부로부터 시작하여 상기 전체 대퇴골 길이의 23 퍼센트 및 40 퍼센트의 거리에 놓이는 2개의 포인트를 연결하는 라인과 동축이다. 예를 좀 더 들자면, 식별된 인체 표식자를 이용하여 대퇴골의 각각의 3D 가상 모델에 대하여 다양한 대퇴골 근위부 치수가 계산되며 이는, 제한 없이, 다음을 포함한다: (i) 근위부 각도, 이는 대퇴골 인체 축과 대퇴경부 인체 축 사이의 3D 각도이다; (ii) 헤드 오프셋, 이는 상기 대퇴골 인체 축과 상기 대퇴골두 중심 사이의 수평 거리이다; (iii) 헤드 높이, 이는 상기 소전자 포인트(이전에 참조함)와 대퇴골두 중심 사이의 수직 거리이다; (iv) 대전자에서 헤드 센터까지의 거리, 이는 상기 헤드 센터와 상기 대전자 포인트(이전에 참조함) 사이의 거리이다; (v) 경부 길이, 이는 상기 헤드 센터와 상기 경부-피벗 포인트(이전에 참조함) 사이의 거리이다; (vi) 상기 헤드 노뼈, 이는 대퇴골두에 맞추어지는 구의 노뼈이다; (vii) 경부 직경, 이는 대퇴경부 인체 축에 법선방향이며 경부 중심 포인트(이전에 참조함)를 통과하는 평면에서 상기 경부 단면에 맞추어지는 원의 직경이다; (viii) 대퇴경부 전염각 과상간 각도, 이는 상기 과상간축과 대퇴경부축 사이의 각도이다; (ix) 대퇴경부 전염각 대퇴골 후과 각도, 이는 상기 대퇴골 후과축과 대퇴경부축 사이의 각도이다; (x) LPFA, 이는 기계축과 상기 대전자를 나타내는 벡터 사이의 각도이다; (xi) 새발톱형 인덱스 영역, 이는 다음의 방정식에 의하여 정의된다: (Z-X)/Z, 여기에서 Z는 상기 중간 소전자 포인트의 아래로 10 센티미터에 있는 대퇴골 영역이며, 그리고 X는 상기 중간 소전자 포인트의 아래로 10 센티미터에 있는 골수강 영역이다; (xii) 관 대퇴거 비율 영역, 이는 상기 중간-소전자 레벨 아래로 3 센티미터에 있는 상기 골수강 영역 대 상기 중간-소전자 아래로 10 센티미터에 있는 골수강 영역 사이의 비율이다; (xiii) XYR 영역, 이는 상기 중간-소전자 아래로 3 센티미터에 있는 골수강 영역 대 상기 중간-소전자 아래로 10 센티미터에 있는 골수강 영역 사이의 비율이다; (xiv) 단축/장축 축 비율, 이는 골수강 상의 가장 좁은 포인트에서 상기 골수강 단면에 맞춰지는 타원의 단축과 장축 사이의 비율이다; 그리고, (xv) 대퇴골 반경 대 골수강 반경 비율, 이는 상기 대퇴골 인체 축에 법선인 평면 내에서 상기 대퇴골 및 골수강의 외주의 둘레에 최상으로 맞춰지는 원을 이용한, 원 반경의 비율이다(이 비율은 상기 피질 뼈의 두께를 반영하며, 따라서, 골다공증의 경우 피질 뼈 손실을 반영한다).
도 31 및 도 45-47을 참조하여, 상기 자동 표식자 모듈로부터의 출력을 이용함으로써, 특정 집단에 대한 상기 대퇴골 스템의 파라미터를 평가한다. 특히, 민족성, 성별, 또는 이들 2가지의 조합, 내측 윤곽, 경부 각도, 및 헤드 오프셋에 따라 그룹화되는지에 무관하게 평가된다.
상기 내측 윤곽의 경우, 상기 집단 내에서 각각의 대퇴골에 대한 골수강에 관련하여 이러한 윤곽은 상기 대퇴골 피벗 포인트를 통하여 연장되며 상기 대퇴골 인체 축 및 상기 경부축 모두에 대하여 수직인 수직축을 갖는 평면으로 상기 골수강을 교차함으로써 생성된다(외적, vectors cross product). 상기 집단 내에서 각각의 대퇴골에 윤곽이 생성된 후, 상기 집단은 골수강 크기를 이용하여 여러 군으로 다시 나뉜다. 다시 나뉠 때, 상기 윤곽은 평면 밖으로 나갈 수 있으므로, 공통적인 평면(예를 들면, X-Z 평면)에 대하여 모든 윤곽을 정렬시키기 위하여 정렬 과정이 수행된다. 상기 정렬 과정은 상기 대퇴경부축 및 인체 축 모두에 대하여 수직인 축을 상기 Y축에 정렬하고 그리고 나서 상기 인체 축을 상기 Z축에 정렬하는 것을 포함한다. 이러한 방식으로, 모든 윤곽이 공통적인 좌표 프레임을 갖도록 하기 위하여 상기 윤곽을 특이적 포인트에 대하여 이동시킨다.
상기 윤곽이 공통적인 좌표 프레임을 갖게 된 후, 상기 윤곽의 포인트가 평면 내에 있는지를 확인하기 위하여 상기 대퇴경부 포인트가 이용된다. 특히, 상기 대퇴경부 포인트는 실제 인체를 반영하고 상기 윤곽 상의 포인트가 평면 내에 있음을 보장하는 일관된 포인트이다. 상기 윤곽의 포인트가 평면 내에 있음을 확인함으로써, 집단 대퇴골 간의 정렬 변동성을 크게 감소시킬 수 있고, 이는 헤드 오프셋의 윤곽 및 임플란트 각도 설계의 이용을 용이하게 한다.
도 48을 참조하면, 상기 스태티스티컬 아틀라스는 또한 정상적인 뼈와 골다공증성 뼈 사이의 보간에도 유용할 수 있다. 대퇴골 스템을 설계 및 사이징할 때, 핵심 고려사항 중 하나는 골수강 치수이다. 정상적인 뼈의 경우에, 상기 대퇴골에서 상기 골수강은 골다공증을 보이는 대퇴골에 비교하여 크게 더 좁다. 이렇게 더 좁은 골수강 치수는, 적어도 부분적으로는, 뼈 두께(상기 대퇴골의 주축에 대하여 가로방향으로 측정됨) 감소의 결과로서, 이는 상기 골수내 채널을 묘사하는 상기 대퇴골 내표면의 후퇴로 상응하게 이어진다. 이러한 방법에서, 건강한 뼈 두께와 심각하게 골다공증성인 뼈 두께 사이의 보간에 의하여 그리고 상기 두께를 갖는 가상의 3D 모델을 생성함에 의하여 합성 집단을 제작한다. 이러한 데이터 세트는 그러므로 상이한 골다공증 단계에 해당하는 뼈를 포함한다. 이러한 데이터 세트는 이제 임플란트 스템 설계에 입력으로서 이용될 수 있다.
예시적인 형태에서, 상기 스태티스티컬 아틀라스는 정상적인, 비-골다공증성 뼈 및 골다공증성 뼈의 집단을 포함하며, 이 경우 상기 뼈는 대퇴골이다. 상기 아틀라스 이들 정상적인 대퇴골 각각은, 여기에서 스태티스티컬 아틀라스에 뼈를 추가하기 위하여 설명된 과정에 따라, 정량화되고 3D 가상 모델로서 나타내어진다. 마찬가지로, 상기 아틀라스의 골다공증성 뼈 각각은, 여기에서 스태티스티컬 아틀라스에 뼈를 추가하기 위하여 설명된 과정에 따라, 정량화되고 3D 가상 모델로서 나타내어진다. 정상적인 뼈와 골다공증성 뼈에 대한 상기 3D 모델의 일부로서, 골수강 치수가 상기 대퇴골의 길이방향 길이를 따라 기록된다. 아틀라스 포인트 관련성을 이용하여, 상기 소전자 근위부의 전반적인 뼈 길이의 고정된 퍼센트(말하자면, 5%) 및 상기 말단 피질 포인트에 근위부인 제 2 고정 퍼센트(말하자면, 2%)를 스패닝(spanning)함으로써, 상기 골수강이 상기 아틀라스 뼈 상에서 식별된다. 더욱이, 이들 근위부 및 원위부 내의 뼈 외표면의 포인트는 뼈 두께를 결정하는 데에 이용되며, 이는 상기 외부 포인트로부터 상기 IM 관 상의 가장 가까운 포인트까지의 거리로 정의된다.
대퇴골 근위부에 있어서, 도 51-62는 임의의 민족성 집단 전체에 성별차이가 존재함을 확인해준다. 도 59 및 도 60에 나타낸 바와 같이, 여성의 대퇴골 근위부에 대한 상기 스태티스티컬 아틀라스의 템플릿 3D 모델은 남성의 대퇴골 근위부의 템플릿 3D 모델에 비하여 중요한 통계적 측정치를 보인다. 특히, 상기 헤드 오프셋은 남성보다 여성이 대략 9.3% 더 작다. 현재의 임플란트에서 헤드 오프셋은 스템 크기와 함께 증가되며, 이는 정상적인 여성 경우에 허용가능하다. 그러나, 뼈 손실이 골수강 크기의 증가로 이어지는 골다공증 및 골감소증의 경우 헤드 오프셋을 고려하면 문제가 발생되는데, 이는 보다 큰 스템 크기 및 보다 큰 오프셋을 의미한다. 마찬가지로, 상기 경부 직경 및 헤드 노뼈는 남성의 경우보다 여성의 경우 대략 11.2% 더 작다. 그리고, 상기 경부 길이는 남성의 경우보다 여성의 경우 대략 9.5% 더 작다. 또한, 상기 근위부 각도는 남성의 경우보다 여성의 경우 대략 0.2% 더 작다. 마지막으로, 상기 대퇴골두 높이는 남성의 경우보다 여성의 경우 대략 13.3% 더 작다. 따라서, 포괄적인, 대퇴골 임플란트(즉, 성별 중립적)를 단순히 스케일링 하는 것은 뼈 기하학에 있어서의 차이를 고려하지 않으며 따라서 성별에 기초한 대퇴골 임플란트가 필요하다는 것을 상기 성별에 따른 뼈 데이터로부터 확인할 수 있다.
도 63-68을 참조하면, 상기 대퇴골 근위부의 치수뿐만 아니라 상기 대퇴골의 단면 형상을 상기 골수강의 길이를 따라 젠더라인 전체에 걸쳐 광범위하게 변화시킨다. 특히, 남성 및 여성 대퇴골의 스태티스티컬 아틀라스 내에서 특정 집단 전체에 걸쳐, 남성은 여성보다 더욱 원형에 가까운 골수강 단면을 갖는다. 더욱 구체적으로, 여성은 남성보다 8.98% 더욱 편심인 골수강 단면을 갖는다. 이하에서 더욱 상세히 설명하는 바와 같이, 이러한 성별에 따른 맞춤형 데이터는 클러스터에 이르도록 표시되는 특징추출 데이터의 일부로 이루어지며, 그로부터 다수의 일반적인 형상 파라미터가 추출되어 성별에 따른 맞춤형 대퇴골 임플란트에 이르게 된다.
도 72-74에 나타낸 바와 같이, 상기 스태티스티컬 아틀라스는 전-후(AP) 방향 헤드 센터 오프셋에 관하여 대퇴골(성별에 따라 구분)의 특정 집단 전체에 걸친 측정에 해당하는 계산을 포함한다. 예시적인 형태에서, AP 방향은 상기 기계적인 축 및 상기 후부과축 모두에 대하여 전방으로 직각으로 나타나는 벡터에 의하여 결정하였다. 오프셋은, 상기 인체 축의 중간점인 제 1 기준점 및 상기 대퇴경부 피벗 포인트인 제 2 기준점을 이용하여, 상기 대퇴골두 중심과 상기 2개의 기준점 사이에서 측정하였다. 요약하자면, 상기 경부 피벗 포인트 및 인체 축 중간점에 대한 AP 헤드 높이는 남성 및 여성 대퇴골 사이에 중요한 차이를 보이지 않았다. 다시, 이러한 성별에 따른 맞춤형 데이터는 클러스터에 이르도록 표시되는 특징추출 데이터의 일부로 이루어지며, 그로부터 다수의 일반적인 형상 파라미터가 추출되어 성별에 따른 맞춤형 대퇴골 임플란트에 이르게 된다.
다시 도 28 및 도 31을 참조하면, 상기 헤드 센터 오프셋, 상기 골수강의 단면 형상 데이터, 및 상기 스태티스티컬 아틀라스 집단 내에서 상기 대퇴골에 대한 내측 윤곽 데이터는, 도 28에 대한 플로우챠트 및 관련 설명과 일치하는 성별 및/또는 민족성에 따른 맞춤형, 대량 맞춤형 임플란트를 설계하기 위하여 (각각의 뼈에 연관된 상기 민족성에 대한 데이터를 상기 스태티스티컬 아틀라스가 포함하는 것으로 간주하여, 하나는 성별에 따른 맞춤형으로 두 번째 것은 민족성에 따른 맞춤형으로), 특정 집단 전체에 걸쳐 존재하는 다수의 클러스터를 파악하도록 표시되는 상기 추출된 특징 데이터의 일부로 이루어진다. 성별 및/또는 민족성에 따른 맞춤형인 식별된 클러스터는 대량 맞춤형 대퇴골 임플란트를 설계하는 데에 필요한 파라미터를 추출하기 위하여 이용된다.
도 76을 참조하여, 본 개시에 의한 예시적인 대량-맞춤화 대퇴골 요소를 설명한다. 특히, 상기 대량-맞춤화 대퇴골 요소는 볼, 경부, 근위부 스템, 및 말단 스템을 포함하는 4가지 일차 요소로 이루어진다. 각각의 상기 일차 요소는 교체 가능한 볼, 경부, 및 스템이 기타 교체 가능한 요소로 교체 가능하도록 교체 가능한 인터페이스를 포함한다. 이러한 방식으로, 보다 큰 대퇴골 볼이 필요하면, 상기 대퇴골 볼만을 교체한다. 마찬가지로, 보다 큰 경부 오프셋이 요구되면, 상기 경부 요소를 필요한 오프셋을 제공하는 상이한 경부 요소로 교체하고, 반면에 나머지 3가지 요소는 적절하다면 그대로 유지한다. 이러한 방식으로, 상기 대퇴골 요소는, 어느 정도의 제한 범위 내에서, 상기 맞춤성 또는 운동학을 포기할 필요 없이 환자에게 맞도록 맞춤될 수 있고, 그렇지 않다면 보편적으로 적용될 수 있는 임플란트를 이용함에 의하여 상기 맞춤성 또는 운동학은 포기된다. 따라서, 모든 상기 대퇴골 요소는 환자 인체에 더욱 잘 맞도록 기타의 대량 맞춤형 요소로 교체될 수 있다.
예시적인 본 실시 예에서, 상기 경부는 상기 근위부 스템의 축에 대하여 회전하는 구조로 되어, 상기 근위부 스템에 대한 상기 경부의 회전 방향은 수술 중에 조정될 수 있다. 특히, 수술 전 측정은 상기 근위부 스템에 대하여 상기 경부의 계획된 회전 위치를 설정할 수 있다. 그럼에도 불구하고, 생체 내 운동학적인 테스팅과 같은 수술중의 고려사항은 상기 외과 전문의로 하여금 개선된 운동학 또는 특정 충돌의 회피를 제공하기 위하여 상기 수술 전의 회전 방향을 변경하도록 하는 결과를 초래한다. 예를 들어, 상기 경부는 구조화 표면을 갖는 삽입된 원주방향 홈을 갖는 원통형 스터드를 포함한다. 이러한 원통형 스터드는 상기 근위부 스템의 축방향 원통형 채널 내에 수용된다. 이러한 원통형 채널에 더하여, 제 2 채널은 상기 원통형 채널을 교차하고, 상기 삽입된 원주방향 홈의 구조화된 표면에 결합되도록 역시 구조화되어 이루어진 반-원형 홈을 갖는 플레이트를 수용하는 형상으로 된다. 상기 근위부 스템의 고정된 1쌍의 나사는 상기 원통형 스터드와 맞물리도록 상기 플레이트를 밀어내므로, 궁극적으로, 상기 근위부 스템에 대한 상기 원통형 스터드의 회전 운동은 더 이상 불가능하게 된다. 따라서, 이렇게 고정된 맞물림에 이르게 될 때, 상기 나사는, 수술 중에 회전 조정을 가능하게 할 필요가 있을 때처럼, 상기 원통형 스터드와 상기 근위부 스템 사이에 회전 운동을 허용하도록 느슨하게 될 수 있다.
상기 경부와 볼 사이의 맞물림은 평범할 수 있으나, 반면에 상기 근위부 스템과 상기 말단 스템 사이의 맞물림은 이례적이다. 특히, 상기 근위부 스템은 나사산이 마련되는 말단 섕크를 포함하며, 이는 상기 말단 스템 내로 연장되는 나사산이 마련된 개구부 내에 나사삽되도록 맞물린다. 따라서, 상기 근위부 스템은 상기 말단 스템에 대한 상기 근위부 스템의 회전에 의하여 상기 말단 스템에 장착되므로, 상기 섕크의 나사산은 상기 말단 스템 개구부의 나사산에 맞물린다. 상기 말단 스템에 대한 상기 근위부 스템의 회전은 상기 근위부 스템이 상기 말단 스템에 인접하게 될 때 종료된다. 그러나, 상기 근위부 스템과 상기 말단 스템 사이에 회전 조정이 필요하게 되면, 상기 정확한 회전 조정에 상응하는 스페이서를 제공하기 위하여 와셔를 이용할 수 있다. 예를 더 들자면, 더 큰 회전 조정이 필요하면, 상기 와셔는 두께가 더 커지게 되고, 반면에 더욱 가는 와셔는 더 작은 회전 조정에 상응하게 제공된다.
각각의 상기 일차 요소는 특정 성별 및/또는 민족성 내에서 크기 및 윤곽 변화를 고려한 소정의 대안으로 생성될 수 있다. 이러한 방식으로, 종래의 대량 맞춤형 대퇴골 요소보다 환자의 인체에 더욱 가까운 구조를 이루는 환자-맞춤형 임플란트에 가깝게 상기 일차 요소의 대안은 짜 맞춰질 수 있으나, 환자-맞춤형 대퇴골 임플란트를 제작하는 데에는 아주 적은 비용 및 과정이 이용된다.
도 77은 본 개시에 의한 다른 대안적인 예시적인 대량-맞춤형 대퇴골 요소를 나타낸다. 특히, 상기 대량-맞춤화 대퇴골 요소는 볼, 경부, 근위부 스템, 중간 스템, 및 말단 스템의 5가지 일차 요소로 이루어진다. 각각의 상기 일차 요소는 교체 가능하다 볼, 경부, 및 스템이 기타의 교체 가능한 요소로 교체 가능하도록 교체 가능하다 인터페이스를 포함한다. 당업자는 상기 대량-맞춤화 대퇴골 요소 중 이러한 요소의 수를 증가시킴으로써, 이러한 뼈를 재생하기 위하여 상기 환자의 자연 대퇴골의 슬라이스를 적층하는 것처럼, 대량-맞춤화 요소를 이용하여 환자-맞춤형 임플란트의 맞춤성을 높이도록 접근할 수 있음을 이해할 것이다.
상기 대퇴골 근위부에 있어서 성별간 및 민족성간에 인체 차이가 있는 것과 마찬가지로, 도 78-83은 스태티스티컬 아틀라스 내 일반적인 골반 집단 전체에 걸쳐 성별 및 민족성 차이가 존재함을 확인한다. 다시 도 28을 참조하면, 일련의 대량 맞춤형 비구컵 임플란트는 적어도 하나의 성별 및 민족성에 기초하여 그룹화된 스태티스티컬 아틀라스 데이터(즉, 골반 집단)를 이용함으로써 설계되고 제작된다. 상기 그룹화된 아틀라스 데이터는, 도 78에 사실적으로 나타낸 바와 같이, 상기 집단 내에서 비구컵의 기하학적 구조를 고립시키기 위하여 자동 표식 과정 및 표면/형상 분석 과정을 거친다. 또한, 도 82 및 도 83에 사실적으로 나타낸 바와 같이, 상기 표식자(비구 인대의 위치에 대한) 및 윤곽 분석(상기 비구컵의 윤곽을 평가하기 위한) 과정은, 도 79에 나타낸 바와 같이, 특징추출로 이어지고, 그로부터 상기 인체 컵 임플란트 표면이 궁극적으로 제작된다. 이러한 분석은, 도 80 및 도 81에 나타낸 바와 같이, 상기 비구컵 및 대퇴골두이 단일의 곡률 반경으로 이루어지지 않고 여러 반경으로 이루어짐을 보여준다.
동물-특이적 임플란트의 제작
도 85를 참조하면, 동물-특이적(즉, 동물을 위한 환자-맞춤형) 임플란트 및 관련 기기의 설계 및 제작을 위한 예시적인 시스템 및 방법은 도 20에 관하여 앞서 설명되고 묘사된 과정과 유사며, 이는 이에 결부되어 있다. 시작 단계로, 동물 인체의 영상을 취하여 가상의 3D 뼈 모델을 생성하기 위하여 이를 자동으로 분할한다. 비록 CT 스캔 영상으로 사실적으로 나타내었으나, MRI, 초음파, 및 X-선과 같이 CT이외에 기타의 영상화 방법 또한 제한 없이 이용할 수 있음은 이해될 것이다. 질병이 있는 인체의 가상의 3D 뼈 모델은 앞서의 예시적인 개시 내용에 따라 상기 스태티스티컬 아틀라스에 로딩된다. 그 후, 상기 스태티스티컬 아틀라스로부터의 입력은 상기 뼈(들)를 재건하고 재건된 가상의 3D 뼈 모델을 제작하기 위하여 이용된다. 뼈 표식자는 정확한 임플란트 크기를 결정할 수 있도록 상기 재건된 가상의 3D 뼈 모델의 표면 상에서 계산된다. 그리고 나서, 질병이 있는 뼈의 기하학적 구조는 맵핑되고 파마리터 형식으로 전환되며, 이는 그리하여 잔여 인체 기하학적 구조를 모방하는 동물-특이적 임플란트를 제작하는 데에 이용된다. 상기 동물-특이적 임플란트에 더하여, 동물-특이적 기구를 제작하여 상기 동물의 잔여 뼈 준비 및 상기 동물-특이적 임플란트의 배치를 위하여 이용한다.
도 86을 참조하면, 대량 맞춤형 동물 임플란트의 설계 및 제작을 위한 예시적인 시스템 및 방법은 도 28에 대하여 앞서 묘사되고 설명된 과정과 유사하고, 이는 여기에 결부된다. 당해 뼈(들)에 적절한 상기 스태티스티컬 아틀라스로부터의 3D 동물 뼈 모델은 자동 표식 및 표면/형상 분석을 거친다. 상기 자동 표식 과정은 각각의 3D 동물 뼈 모델에 대한 인체 표식자를 자동으로 계산하기 위하여 상기 아틀라스에 저장된 정보(예를 들면, 특이적 표식자를 포함할 개연성이 높은 부위) 및 국소적인 기하학적 분석을 이용한다. 상기 스태티스티컬 아틀라스 내에서 당해 각각의 동물 뼈에 대하여, 상기 형상/표면 분석은 상기 3D 가상 동물 뼈 모델의 특징, 표면 기하학적 구조를 직접적으로 추출한다. 그 후, 각각의 상기 3D 동물 뼈 모델은 그에 대하여 수행되는 특징추출 과정을 가지며, 이는 임플란트 설계에 관련된 특징을 계산하기 위하여 표식자와 형상 특징의 조합을 이용한다. 이들 특징은 클러스터링 과정에 대한 입력으로서 이용되며, 여기에서 상기 동물 뼈 집단은 소정의 클러스터링 방법을 이용하여 유사한 특징을 갖는 군으로 구분된다. 그 결과적인 각각의 클러스터는 단일의 동물 임플란트의 형상 및 크기를 정의하기 위하여 이용되는 사례들을 나타낸다. 전반적인 임플란트 모델의 파라미터(예를 들면, 캐드(CAD) 파라미터)를 추출하기 위하여 파라미터화 과정은 각각의 클러스터 중심(임플란트 크기)에 대하여 이어진다. 그 후, 상기 추출된 파라미터를 이용하여, 각각의 클러스터에 대하여 상기 전반적인 임플란트 표면 및 크기가 제작된다. 상기 동물 환자가 속하는 상기 클러스터에 따라, 상기 대량-맞춤화 임플란트는 필요한 군으로부터 선택되어 임플란트로 된다.
환자-맞춤형 절단 가이드의 제작
도 87-102를 참조하면, 예시적인 과정 및 시스템은 환자-맞춤형 절단 가이드의 설계를 위하여 다차원 의료 영상, 캐드(CAD), 및 컴퓨터 그래픽스 특징의 통합을 위하여 설명된다. 단지 예시적인 설명을 위하여, 상기 환자-맞춤형 절단 가이드는 전체 엉덩이 관절성형술절차에 관하여 설명된다. 그럼에도 불구하고, 당업자는 상기 예시적인 과정 및 시스템을 절단 가이드가 이용될 수 있는 임의의 수술 절차에 적용 가능할 수 있다는 것을 이해할 것이다.
도 87에 나타낸 바와 같이, 상기 예시적인 시스템 흐름의 개요는 인체를 나타내는 입력 데이터의 수신으로부터 시작된다. 입력된 인체 데이터는 당해 인체의 2차원적(2D) 영상 또는 3차원적(3D) 표면 표시로 이루어지며, 이는, 예를 들어, 표면 모델 또는 포인트 클라우드의 형식으로 될 수 있다. 2D 영상이 이용되는 경우, 이들 2D 영상은 당해 인체의 3D 표면 표시를 구성하기 위하여 이용된다. 당업자는 3D 표면 표시를 구성하기 위한 2D 영상의 이용에 익숙하다. 따라서, 이러한 과정에 대한 상세한 설명은 간결성을 도모하기 위하여 생략된다. 예를 들어, 입력된 인체 데이터는 하나 이상의 X-선(적어도 2개의 관점으로부터 취함), 컴퓨터 단층촬영(CT) 스캔, 자기 공명 영상(MRI), 또는 기타 영상화 데이터로 이루어질 수 있고, 이들로부터 3D 표면 표시의 제작이 가능하다. 예시적인 형태에서, 상기 인체는 골반 및 대퇴골로 이루어진다.
그러나, 다음은 예시적인 시스템과 함께 이용 가능한 인체에 대한 예시적인 설명이고, 본 발명 시스템과 사용되는 것으로부터 기타의 인체를 제한할 의도는 없는 것임을 이해해야 한다. 여기에서 이용된 바, 생체조직은 뼈, 근육, 인대, 힘줄, 및 다세포 생물에서 특정 기능으로 갖는 기타 명백한 종류의 구조적 물질을 포함한다. 따라서, 상기 예시적인 시스템 및 방법이 고관절을 수반하는 뼈의 문맥에서 논의될 때, 당업자는 상기 시스템 및 방법이 기타의 생체조직에도 적용 가능함을 이해할 것이다.
상기 시스템의 대퇴골 및 골반 입력된 인체 데이터는 입력 데이터의 유형에 따라 2개의 모듈 중 하나에로 보내진다. X-선 데이터의 경우, 상기 2D X-선 영상은 3D 뼈 윤곽을 추출하기 위하여 비강체 모듈에 입력된다. 상기 입력 데이터가 CT 스캔 또는 MRI 영상의 형태로 되는 경우, 이들 스캔/영상은 상기 3D 뼈 윤곽(및 3D 연골 윤곽)을 추출하기 위하여 상기 스캔/영상이 자동으로 분할되는 자동 분할 모듈로 보내진다.
도 88을 참조하면, 상기 비강체 모듈은 하나 이상의 전처리 단계를 거치는 적어도 2개의 상이한 관점으로부터 취한 다중 X-선 영상을 이용한다. 이들 단계는 다음 중 하나 이상을 포함할 수 있다: 노이즈 감소 및 영상 강화. 상기 결과적인 전처리된 X-선 영상은 상기 X-선 영상을 정합하기 위하여 수정 단계를 거친다. 바람직하기로는, 상기 X-선 영상은 고정된 위치 수정 장치의 존재 하에 취하여 상기 X-선 영상이 이러한 고정된 위치 수정 장치에 대하여 정합된다. 그러나, 고정된 위치 수정 장치가 상기 X-선 영상에 없을 때에는, 상기 영상은 그럼에도 불구하고 다중 영상 전체에 걸쳐 공통적으로 검출된 특징을 이용하여 수정될 수 있다. 이러한 수정 과정으로부터의 출력은 상기 영상장치에 대한 상기 인체의 위치이며, 이는 도 88에서 "자세(pose)" 기준에 의하여 식별된다.
상기 결과적인 전처리된 X-선 영상은 특징추출 단계를 거친다. 이러한 특징추출 단계는 상기 전처리된 X-선 영상을 이용하는 영상 특징에 대한 하나 이상의 계산으로 이루어진다. 예를 들어, 이들 계산은 구배 특징, 윤곽, 조직 요소, 또는 기타 영상 유래 특징을 포함할 수 있다. 이러한 예시적인 과정에서, 상기 특징추출 단계는, 도 88에서 "윤곽" 기준으로 나타낸 바와 같이, 상기 인체(예를 들면, 뼈 형상)뿐만 아니라 상기 "조직" 기준에 의하여 나타낸 바와 같은 영상 특징의 개요를 출력하며, 이들은 상기 X-선 영상으로부터 유래된다. 상기 개괄적인 인체 및 영상 특징 데이터는 모두 비강체 정합 단계로 보내진다.
상기 비강체 정합 단계는 상기 특징추출 단계 및 상기 수정 단계로부터의 출력을 스태티스티컬 아틀라스로부터의 당해 인체의 3D 템플릿 모델에 정합한다. 예를 들어, 상기 3D 템플릿 모델은 상기 스태티스티컬 아틀라스의 일부로 이루어지는 인체 데이터베이스로부터의 비-선형 주요 요소에 따라 제작된다. 상기 비강체 정합 단계 중에, 상기 3D 템플릿 모델은 상기 포즈, 윤곽, 및 조직 데이터로부터 기인하는 상기 X-선 영상의 형상 파라미터에 최적화된 그의 형상 파라미터(비-선형 주요 요소)를 갖는다. 상기 비강체 정합 단계로부터의 출력은 3D 환자-맞춤형 뼈 모델이며, 이는, 상기 CT 스캔 또는 MRI 영상에 대하여 상기 자동 분할 모듈로부터 출력된 3D 환자-맞춤형 뼈 모델 출력과 마찬가지로, 가상 템플레이팅 모듈로 보내진다.
도 91을 참조하면, 상기 자동 분할 과정은 상기 CT 스캔 또는 MRI 영상을 취함으로써, 예를 들어, 및 자동 분할 순서를 수행함으로써 시작된다. 특히 도 90을 참조하면, 상기 자동 분할 순서는 상기 스캔/영상을 당해 인체의 기본 또는 시작 3D 모델에 대하여 정렬하는 것을 포함한다. 상기 스캔/영상을 상기 기본 3D 모델에 정렬한 후, 상기 정상적인 벡터를 계산하기 위하여, 상기 프로파일 포인트의 위치를 결정하기 위하여, 상기 밝기 값을 선형보간하기 위하여, 그 결과적인 프로파일을 Savitsky-Golay 필터를 이용하여 필터링하기 위하여, 상기 프로파일의 구배를 생성하기 위하여, 가우시안 가중치 프로파일 방정식을 이용하여 상기 프로파일에 가중치를 부여하기 위하여, 상기 최대 프로파일을 결정하기 위하여, 그리고 상기 기본 3D 모델의 변형을 위해 이들 최대 프로파일을 이용하기 위하여, 상기 스캔/영상을 초기 변형과정을 통하여 처리한다. 그 결과적인 변형 3D 모델을 당해 인체에 대한 스태티스티컬 아틀라스로부터 상기 템플릿 3D 모델에 투사한다. 상기 템플릿 3D 모델의 파라미터를 이용함으로써, 상기 변형 3D 모델은 상기 템플릿 3D 모델 특유의 특징을 닮도록 2차 변형 과정에서 더욱 변형된다. 이러한 후자의 변형 과정 이후, 중요한 차이가 있는지를 확인하기 위하여 상기 변형 3D 모델을 상기 스캔/영상에 비교한다.
상기 변형 3D 모델과 상기 스캔/영상 사이에 상당한 차이가 존재하는 경우, 상기 변형 3D 모델 및 상기 스캔/영상은 상기 초기 변형 과정을 다시 거치며, 이어서 2차 변형 과정을 거친다. 이러한 루핑 과정은 상기 변형 3D 모델이 상기 변형 3D 모델과 상기 스캔/영상 사이의 차이에 대한 소정의 허용차 이내로 될 때까지 계속된다.
이전에 이루어진 반복 또는 최대수의 반복에 대하여 상기 변형 3D 모델이 차이를 덜 보인다고 결정된 후, 상기 변형 3D 모델의 표면 경계는 평활화되고, 이는 평활화된 3D 모델을 제작하기 위하여 상기 표면을 더욱 평화화하도록 보다 높은 해상도 리메싱 단계로 이어진다. 이렇게 평활화된 3D 모델은 3D 분할된 뼈 모델을 제작하기 위하여 초기 변형 순서(표면 평활화에 앞선 이전의 초기 변형 과정과 동일)를 거친다.
다시 도 91을 참조하면, 상기 3D 분할된 뼈 모델은 윤곽을 생성하기 위하여 처리된다. 특히, 상기 3D 분할된 뼈 모델과 상기 스캔/영상의 교차점이 계산되고, 이는 각각의 영상/스캔 평면에서 이진 윤곽(binary contours)으로 귀결된다.
상기 3D 분할된 뼈 모델은 또한 환자-맞춤형인 상기 뼈 외형의 스태티스티컬 3D 모델을 생성하기 위하여 처리된다. 특히, 상기 뼈 및 임의의 인체 이상(abnormality)의 외형은 상기 윤곽 내 및 상기 윤곽 외에 존재하는 영상 정보에 기초하여 모델화된다.
상기 뼈 윤곽은 그 후 상기 분할 시스템의 사용자에 의하여 검토된다. 이러한 사용자는 상기 분할 시스템의 분할 전문가 또는 드믄 사용자로 될 수 있고, 상기 분할된 부위와 연관성이 없는 상기 3D 모델의 하나 이상의 영역에 주목한다. 이러한 연관성의 부족은 결손 부위 또는 확실히 부정확한 부위에 존재할 수 있다. 하나 이상의 에러 부위를 식별함에 따라, 상기 사용자는 상기 에러 부위가 존재하는 영역의 중심을 가리키는 모델 상에 "씨드 포인트"를 선택할 수 있고, 또는 수동으로 상기 결손 부위를 아우트라인 처리할 수 있다. 상기 시스템의 소프트웨어는 CT 또는 MRI로부터의 인체 초기 스캔/영상을 이용하여 상기 씨드 포인트 위치를 표시하는 윤곽에 상기 씨드 포인트를 가감하는 데에 이용한다. 예를 들어, 사용자는 골극이 있어야 하는 부위를 선택할 수 있고 상기 소프트웨어는 상기 골극을 상기 분할 순서에 추가하기 위하여 상기 스캔/영상을 상기 3D 모델 상의 부위와 비교한다. 상기 3D 모델에 가해지는 변화는 상기 사용자에 의하여 궁극적으로 검토되어 확인되거나 무효로 된다. 이러한 검토 및 수정 순서는 상기 스캔/영상과 상기 3D 모델 사이의 인체 차이를 고려할 필요가 있는 만큼 수차례 반복될 수 있다. 상기 사용자가 상기 3D 모델에 만족하면, 그 결과적인 모델은 브리지를 제거하기 위하여 수동으로 조작될 수 있고 상기 가상 템플레이팅 모듈에 출력하기 전에 필요에 따라 상기 모델의 영역에 마무리 손질을 하도록 조작될 수 있다.
도 87 및 도 92에 나타낸 바와 같이, 상기 가상 템플레이팅 모듈은 상기 자동 분할 모듈 및 상기 비강체 정합 모듈 중 어느 하나 또는 모두로부터 3D 환자-맞춤형 모델을 수신한다. 고관절에 있어서, 상기 3D 환자-맞춤형 모델은 상기 골반 및 상기 대퇴골을 포함하며, 이들은 모두 자동 표식 과정에 입력된다. 이러한 자동 표식 단계는 스태티스티컬 아틀라스 및 국소적인 기하학적 검색에 존재하는 유사한 인체로부터의 부위를 이용하여 상기 대퇴골 및 골반 3D 모델 상의 임플란트 배치와 관련된 인체 표식자를 계산한다.
말단 고정을 이용하여 상기 대퇴골 스템의 자동 배치에 있어서, 도 93에 나타낸 바와 같이, 상기 자동 표식자는 상기 대퇴골 및 상기 임플란트 상의 축을 정의하는 것을 포함한다. 상기 대퇴골에 관련하여, 상기 인체 대퇴골축(AFA)이 계산되고, 이어서 상기 근위부 인체 축(PAA)을 계산한다. 그리고나서, 상기 근위부 경부 각도(PNA)가 계산되고, 이는 상기 AFA와 PNA 사이의 각도로서 정의된다. 상기 대퇴골 임플란트에 있어서, 상기 임플란트 축은 상기 임플란트 스템의 길이를 따라 있고 및 상기 임플란트 경부축은 상기 임플란트 경부를 길이를 따라 있다. 상기 대퇴골의 PNA와 마찬가지로, 상기 임플란트 각도는 상기 임플란트 축과 상기 임플란트 경부축 사이의 각도로서 정의된다. 그리하여, 상기 임플란트는 상기 PNA에 가장 가까운 임플란트 각도를 갖도록 선택된다. 그러므로, 상기 임플란트 맞춤 각도(IF A)는 상기 선택된 임플란트 각도로 상기 대퇴골두 중심으로부터 이끌어낸 벡터로써 상기 근위부 인체 축의 교차점으로서 정의된다.
말단 고정 및 상기 계산된 인체 표식자를 이용하여 상기 대퇴골 스템의 자동 배치를 이용할 때, 도 93에 나타낸 바와 같이, 임플란트 사이징 단계는 대퇴골 요소를 위한 적합한 임플란트 크기에 대하여 결정/추정된다. 상기 임플란트 크기는 상기 임플란트의 폭을 상기 골수강의 폭에 비교함으로써 그리고 상기 골수강에 가장 비슷한 폭을 갖는 임플란트를 선택함으로써 선택된다. 그 후, 상기 시스템을 임플란트 배치 단계를 향하여 전방으로 이동시킨다.
말단 고정 대퇴골 스템의 임플란트 배치 단계에서, 외과 전문의의 바람직한 수술 기술 및 미리 계산된 인체 표식자에 기초하여, 상기 초기 임플란트 위치는 관련된 모든 임플란트될 요소에 대하여 결정/선택된다. 상기 대퇴골 근위부 골절술을 시뮬레이션하기 위하여 절제 평면이 생성되고 상기 임플란트 맞춤성(fit)이 평가된다. 상기 임플란트 축을 따라 가변적인 레벨로 상기 정렬된 임플란트 및 대퇴골 골수강의 단면을 분석함으로써 맞춤성 평가가 수행된다. 상기 임플란트 축을 인체 대퇴골축에 정렬하고 그리고나서 상기 임플란트를 이동시킴으로써 상기 임플란트가 상기 대퇴골에 정렬되어, 상기 임플란트의 경부가 상기 대퇴골 근위부 경부의 일반적인 위치에 위치된다. 그리고나서 상기 임플란트는 바람직한 전염각을 달성하도록 인체 대퇴골축에 대하여 회전된다.
이러한 임플란트 배치 단계의 일부로서, 반복 계산법을 이용하게 되며, 이는 "경험에서 비롯된 추측"의 배치를 평가하기 위하여 운동학적 모의시험의 일부로서 임플란트 배치에 관한 초기 "경험에서 비롯된 추측"을 이용하는 것을 포함한다. 예시적인 형태에서, 추정되었거나 또는 측정된 관절 운동학을 이용함으로써 상기 임플란트(상기 선택된 임플란트의 배치에 기초하여)에 대한 운동학적 모의시험이 관절 가동 범위를 통하여 이루어진다. 따라서, 상기 운동학적 모의시험은 충돌 위치를 결정하고 상기 임플란트 이식 후의 결과적인 관절 가동 범위를 추정하는 데에 이용될 수 있다. 상기 운동학적 모의시험의 결과 데이터가 만족스럽지 못한 경우(예를 들면, 만족스럽지 못한 관절 가동 범위, 자연스러운 운동학의 만족스럽지 못한 흉내, 등)에는, 만족스러운 결과에 이를 때까지 임플란트 배치에 대한 다른 위치를 이용할 수 있고 이에 운동학적인 분석을 취하여 상기 임플란트 배치를 더욱 개선할 수 있다. 관련된 모든 임플란트될 요소에 대하여 임플란트 위치를 결정/선택한 후, 상기 템플릿 데이터는 지그 제작 모듈로 보내진다.
압입 및 3개 접촉을 이용한 상기 대퇴골 스템의 자동 배치에 있어서, 도 94에 나타낸 바와 같이, 상기 자동 표식자는 상기 대퇴골 및 상기 임플란트 상의 축을 정의하는 것을 포함한다. 상기 대퇴골에 관하여, 상기 인체 대퇴골축(AFA)이 계산되고, 이어서 상기 근위부 인체 축(PAA)이 계산된다. 그리고 나서, 상기 근위부 경부 각도(PNA)가 계산되고, 이는 상기 AFA와 PNA 사이의 각도로서 정의된다. 상기 대퇴골 임플란트에 관하여, 상기 임플란트 축은 상기 임플란트 스템의 길이를 따라 있고 상기 임플란트 경부축은 상기 임플란트 경부의 길이를 따라 있다. 상기 대퇴골의 PNA와 마찬가지로, 상기 임플란트 각도는 상기 임플란트 축과 상기 임플란트 경부축 사이의 각도로서 정의된다. 그리고나서, 상기 임플란트는 상기 PNA에 가장 가까운 임플란트 각도를 갖도록 선택된다. 그리하여, 상기 임플란트 맞춤 각도(IF A)는 상기 선택된 임플란트 각도로 상기 대퇴골두 중심으로부터 이끌어낸 벡터로써 상기 근위부 인체 축의 교차점으로서 정의된다.
압입, 3개 접촉, 및 상기 계산된 인체 표식자를 이용한 상기 대퇴골 스템의 자동 배치를 이용할 때, 도 94에 나타낸 바와 같이, 임플란트 사이징 단계는 골반 및 대퇴골 요소에 대한 적절한 임플란트 크기를 위하여 결정/추정된다. 상기 임플란트 크기는 상기 임플란트 축을 상기 인체 대퇴골축에 정렬하여 상기 임플란트를 상기 대퇴골에 정렬함으로써 선택된다. 그리고나서 상기 임플란트는 그의 경부축을 상기 대퇴경부축에 맞게 조정하여 회전된다. 그리하여, 상기 임플란트는 상기 대퇴골 근위부 내에서 인체에 적합한 위치로 이동된다. 그 후, 상기 시스템은 임플란트 배치 단계로 보내진다.
압입 대퇴골 스템에 대한 임플란트 배치 단계에서, 외과 전문의의 바람직한 수술 기술 및 미리 계산된 인체 표식자에 기초하여, 상기 초기 임플란트 위치는 관련된 모든 임플란트될 요소에 대하여 결정/선택된다. 상기 대퇴골 근위부 골절술을 시뮬레이션하기 위하여 절제 평면이 생성되고 상기 임플란트 맞춤성(fit)이 평가된다. 상기 임플란트 및 대퇴골 골수강의 윤곽을 분석함으로써 맞춤성 평가가 수행된다. 상기 인체 축 및 대퇴경부축의 교차점을 통과하여, 윤곽을 생성하면서, 인체 축 및 대퇴경부축 모두에 대하여 법선인 평면으로 상기 골수강을 교차함으로써 윤곽이 생성된다. 상기 임플란트 및 골수강 윤곽이 생성될 때, 가능한 많은 정확한 임플란트 크기를 달성하도록, 상기 동일한 위치에서 상기 골수강 폭보다 작은 폭을 갖는 임플란트 만을 유지한다. 가능한 크기의 군은 상기 임플란트와 상기 골수강 사이의 평균 제곱 거리 오차를 감소시키는 2가지 전략을 통하여 감소된다. 상기 제 1 전략은 상기 임플란트 및 상기 골수강의 모든 내측과 측방 사이의 거리의 평균 제곱 오차(MSE) 또는 기타 수학적 오차 척도를 최소화한다. 제 2 전략은 상기 임플란트 및 상기 골수강의 측방 사이의 거리 MSE를 최소화한다.
이러한 임플란트 배치 단계의 일부로서, 반복 계산법을 이용하게 되며, 이는 "경험에서 비롯된 추측"의 배치를 평가하기 위하여 운동학적 모의시험의 일부로서 임플란트 배치에 관한 초기 "경험에서 비롯된 추측"을 이용하는 것을 포함한다. 예시적인 형태에서, 추정되었거나 또는 측정된 관절 운동학을 이용함으로써 상기 임플란트(상기 선택된 임플란트의 배치에 기초하여)에 대한 운동학적 모의시험이 관절 가동 범위를 통하여 이루어진다. 따라서, 상기 운동학적 모의시험은 충돌 위치를 결정하고 상기 임플란트 이식 후의 결과적인 관절 가동 범위를 추정하는 데에 이용될 수 있다. 상기 운동학적 모의시험의 결과 데이터가 만족스럽지 못한 경우(예를 들면, 만족스럽지 못한 관절 가동 범위, 자연스러운 운동학의 만족스럽지 못한 흉내, 등)에는, 만족스러운 결과에 이를 때까지 임플란트 배치에 대한 다른 위치를 이용할 수 있고 이에 운동학적인 분석을 취하여 상기 임플란트 배치를 더욱 개선할 수 있다. 관련된 모든 임플란트될 요소에 대하여 임플란트 위치를 결정/선택한 후, 상기 템플릿 데이터는 지그 제작 모듈로 보내진다.
도 87을 참조하면, 상기 지그 제작 모듈은 환자-맞춤형 가이드 모델을 제작한다. 더욱 구체적으로, 상기 템플릿 데이터 및 관련된 계획 파라미터로부터, 상기 환자의 잔여 뼈에 대하여 환자-맞춤형 임플란트의 형상 및 배치가 확인된다. 따라서, 상기 가상 템플레이팅 모듈은, 상기 환자-맞춤형 3D 뼈 모델을 이용하여, 상기 환자의 잔여 뼈에 대하여 임플란트 위치를 계산하고, 그리하여, 상기 환자의 잔여 뼈가 얼마나 많이 보유되어야 하는지에 관한 정보를 상기 지그 제작 모듈에 제공한다. 이러한 뼈 보유 데이터에 일치하게, 상기 지그 제작 모듈은 계획대로 상기 임플란트를 허용하기에 필요가 있는 상기 잔여 뼈에 대하여 환자의 현재 뼈를 제하기 위한 하나 이상의 뼈 절단을 할당하도록 상기 뼈 보유 데이터를 이용한다. 상기 의도된 뼈 절단(들)을 이용하여, 상기 지그 제작 모듈은 단일의 위치 및 방향으로 상기 환자의 뼈에 짝지어지도록 구성된 형상을 갖는 절단 가이드/지그의 가상 3D 모델을 제작한다. 달리 말하자면, 상기 절단 지그의 3D 모델은 상기 환자의 잔여 뼈의 인체 표면의 "네거티브"로서 제작되므로 상기 가시적인 절단 가이드는 정밀하게 상기 환자 인체에 매칭된다. 이러한 방식으로, 상기 절단 지그의 포지셔닝에 관련된 임의의 추측이 제거된다. 상기 지그 제작 모듈이 상기 절단 지그의 가상의 3D 모델을 제작한 후, 상기 모듈은 쾌속 조형기, CNC 공작기계, 또는 가시적인 절단 가이드를 제작하기 위한 유사한 장치에 필요한 기계코드를 출력한다. 예를 들어, 상기 대퇴골두 및 경부의 절제를 위한 예시적인 절단 지그는 중공 슬롯으로 이루어지며, 상기 중공 슬롯은 특정 관절 가동 범위 내로 절단 블레이드를 제한하기 위하여 관련 가이드를 형성하고 상기 수술계획 및 템플레이팅 모듈로부터의 상기 가상 절단을 복제하는 소정의 방향으로 상기 절단 블레이드를 유지한다. 상기 지그 제작 모듈은 또한 상기 대퇴골 스템에 대한 배치 지그를 제작하기 위하여 이용된다.
도 100을 참조하면, 상기 대퇴골두 및 경부의 절제에 이어서, 대퇴골 스템 삽입으로 이어지는 골수내 리밍이 수행된다. 상기 대퇴골 임플란트의 삽입을 위하여 대퇴골을 준비하기 위하여, 상기 골수강의 리밍은 상기 대퇴골 임플란트의 방향에 일치하는 방향을 따라 수행되어야 한다. 상기 리밍이 오프셋되면, 상기 대퇴골 임플란트의 방향은 절충될 수 있다. 이러한 문제를 다루기 위하여, 상기 지그 제작 모듈은 상기 환자의 잔여 또는 절제된 뼈의 인체 표면에 대하여 "네거티브"인 가상 가이드를 제작하여 쾌속 조형기, CNC 공작기계, 또는 유사한 장치로 하여금 상기 환자 인체에 정밀하게 매칭되는 절단 가이드를 제작하도록 할 수 있다. 예를 들어, 상기 리밍 지그는 축방향 가이드를 포함할 수 있고, 상기 축방향 가이드를 따라 상기 리머는 길이방향으로 이동할 수 있다. 이러한 리밍 지그를 이용함으로써, 상기 리밍 작업을 수행하는 외과 전문의에게는 적당한 방향의 리밍이 보장된다.
상기 골수강은 상기 대퇴골 스템을 수용할 수 있다. 거듭, 상기 대퇴골 스템이 상기 골수강 내에서 회전 관점 및 각도 관점 모두에서 적절히 위치됨을 보장하기 위하여, 상기 지그 제작 모듈은 대퇴골 스템 배치 가이드를 제작한다. 예를 들어, 상기 대퇴골 스템 배치 가이드는 상기 환자의 잔여 또는 절제된 뼈의 인체 표면뿐만 아니라 상기 대퇴골 스템의 상부에 대하여 동시에 "네거티브"이다. 이러한 방식으로, 상기 배치 가이드는 상기 대퇴골 축(상기 대퇴골 볼이 연결되는 대퇴골 스템의 부분) 위로 슬라이드하며 동시에 상기 환자의 잔여 또는 절제된 뼈를 갖는 인터페이스에 특유한 형상을 포함하므로 상기 대퇴골 스템의 단일한 방향만이 상기 환자의 대퇴골에 대하여 가능하여, 수술 전의 계획에 일치하게 상기 대퇴골 스템의 적절한 이식을 보장하게 된다. 그러나, 상기 예시적인 지그는 본래의 엉덩이 임플란트에 관련하여 설명되었으나, 당업자는 상기 전술한 바의 예시적인 과정 및 시스템이 본래의 엉덩이 임플란트 또는 엉덩이 임플란트 또는 재수술 절차에 한정되는 것이 아님을 이해해야 한다. 대신에, 상기 과정 및 시스템은 제한 없이, 무릎, 발목, 어깨, 척추, 머리, 및 팔꿈치를 포함하여 인체의 기타 영역에 필요한 수술 절차에 더하여 임의의 엉덩이 임플란트에도 적용가능하다.
도 101에 나타낸 바와 같이, 상기 비구에 있어서, 상기 지그 제작 모듈은 상기 비구컵에 대한 리밍 및 비구 임플란트 배치 가이드를 제작하기 위한 명령어를 생성할 수 있다. 특히, 상기 템플릿 데이터 및 관련 계획 파라미터로부터, 환자-맞춤형 비구 임플란트의 형상 및 배치는 상기 환자의 잔여 골반에 대하여 확인된다. 따라서, 상기 가상 템플레이팅 모듈은, 상기 환자-맞춤형 3D 비구 모델을 이용하여, 상기 환자의 잔여 뼈에 대하여 상기 비구컵 임플란트의 크기 및 위치를 계산하고, 그리하여, 상기 환자의 잔여 골반이 얼마나 많이 보유되어야 하는지 및 소망하는 임플란트 방향에 관한 정보를 상기 지그 제작 모듈에 제공한다. 이러한 뼈 보유 데이터에 일치하게, 상기 지그 제작 모듈은 계획대로 상기 비구 임플란트를 허용하기에 필요가 있는 상기 잔여 뼈에 대하여 환자의 현재 뼈를 제하기 위한 하나 이상의 뼈 절단/리밍을 할당하도록 상기 뼈 보유 데이터를 이용한다. 상기 의도된 뼈 절단(들)을 이용하여, 상기 지그 제작 모듈은 단 하나의 방향을 통하여 상기 환자의 골반 2개 부분에 짝지어지도록 구성된 형상을 갖는 절단 가이드/지그의 가상 3D 모델을 제작한다. 달리 말하자면, 상기 절단 지그의 3D 모델은 상기 환자의 골반의 인체 표면의 "네거티브"로서 제작되므로 상기 가시적인 절단 가이드는 정밀하게 상기 환자 인체에 매칭된다. 이러한 방식으로, 상기 리밍 지그의 포지셔닝에 관련된 임의의 추측이 제거된다. 상기 지그 제작 모듈이 상기 리밍 지그의 가상의 3D 모델을 제작한 후, 상기 모듈은 쾌속 조형기, CNC 공작기계, 또는 가시적인 리밍 지그를 제작하기 위한 유사한 장치에 필요한 기계코드를 출력한다. 예를 들어, 비구를 리밍하기 위한 예시적인 비구 요소 지그는 4-편 구조로 이루어지며, 그 중 제 1 편은 원래 비구에 수용되는 구조로 이루어지고, 제 2 편이 상기 제 1 편을 배치 가이드로서 이용하여 상기 골반에 안착될 때까지 상기 제 2 편을 임시로 장착하는 구조로 이루어진다. 상기 제 2 편이 상기 골반에 고정된 후, 상기 제 1 편은 제거될 수 있다. 그 후, 제 3 편은 리머가 상기 제 3 편에 대하여 길이방향으로 이동가능하면서도 그의 방향은 상기 제 1 편 및 제 3 편의 조합을 이용하여 고정되도록 함을 보장하기 위하여 상기 제 2 편에 특유하게 인터페이스 되는 원통형 또는 부분적인 원통형 요소를 포함한다. 리밍에 이어, 상기 리머는 제거되고 상기 제 3 편도 상기 제 1 편으로부터 제거된다. 상기 비구컵 임플란트는 제 4 편을 이용하여 리밍된 비구에 장착된다. 특히, 상기 제 4 편은 단일의 방향으로만 상기 제 1 편에 맞물리도록 특유한 형상으로 되며, 동시에 상기 비구컵 임플란트의 내부로 수용되도록 형성된다. 상기 임플란트 컵이 위치된 후, 상기 제 1 편 및 제 4 편은 모두 제거된다. 상기 비구 임플란트를 장착하기 위하여 상기 골반에 하나 이상의 홀을 천공하도록 추가의 지그가 형성될 수 있으며, 이 때 각각의 드릴 지그는 드릴 비트의 방향을 확인하기 위하여 상기 제 1 편에 이어서 장착됨을 주지해야 한다.
외상 판의 제작
도 111-124를 참조하여, 예시적인 과정 및 시스템은 소정 집단 전체에 걸쳐 뼈 판(즉, 외상판)을 제작하기 위하여 설명된다. 당업자는 골절에 이어 뼈 자체를 복구하기 위하여 골 재생을 거칠 수 있음을 안다. 상기 골절의 심각성 및 위치에 따라, 종래기술에서 이용되는 외상 판은 종종 불규칙한 뼈 형상에 맞추어 상기 뼈 골절들 사이에 최대한 접촉되도록 작업실에서 구부러짐 및 기타 변형을 취해야 한다. 그러나, 과도한 구부림은 상기 외상 판의 수명을 단축시키고, 이는 뼈 플레이트 불량 및/또는 외상 판-나사 고정의 헐거움을 유발할 수 있다. 본 과정 및 시스템은 수술 중에 상기 플레이트의 윤곽을 잡는 일을 줄이거나 없앨 수 있도록 보다 정확한 외상판 형상을 제공하며, 이에 플레이트 수명을 늘리고 뼈 판-나사 고정의 헐거움이 발생될 때까지의 시간을 늘릴 수 있다.
외상 판 제작을 위하여 전술된 예시적인 설명은 외상 판이 적용될 수 있는 임의의 및 모든 뼈에 적용가능하다. 간결성을 위하여, 상기 예시적인 설명에서는 상기 상완골 뼈와 함께 사용되기 위한 외상판의 제작을 위한 시스템 및 과정을 설명한다. 그러나, 상기 과정 및 시스템은 인체의 기타 뼈 및 해당 외상판의 제작에도 동일하게 적용되며 상완골 외상 판에 제한되지 않는다.
외상판을 제작하기 위한 상기 예시적인 과정 및 시스템의 일부로서, 스태티스티컬 뼈 아틀라스는 상기 당해 뼈(들)을 위하여 제작 및/또는 이용된다. 설명하자면, 당해 뼈는 상완골로 이루어진다. 당업자는 스태티스티컬 아틀라스 및 하나 이상의 뼈에 있어서 스태티스티컬 아틀라스를 어떻게 구성하는지에 대하여 익숙하다. 따라서, 상기 스태티스티컬 뼈 아틀라스를 구성하는 것에 대한 세부 사항의 설명은 간결성을 도모하기 위하여 생략한다. 그럼에도 불구하고, 상기 예시적인 시스템 및 과정의 스태티스티컬 뼈 아틀라스에 대하여 독특할 수 있는 것은 성별, 연령, 민족성, 변형, 및/또는 부분적인 구성에 기초하여 상기 스태티스티컬 뼈 아틀라스에 상완골 카테고리로 분류한다. 이러한 방식으로, 하나 이상의 외상 판은 전술한 바의 하나 이상의 카테고리에 대량 맞춤화될 수 있고, 여기에서 상기 하나 이상의 카테고리는 특정 뼈 집단을 설정한다.
예시적인 형태에서, 상기 스태티스티컬 뼈 아틀라스는 다양한 형식으로 될 수 있는 이체 데이터를 포함한다. 예를 들어, 상기 스태티스티컬 뼈 아틀라스는 2차원적 또는 3차원적 영상뿐만 아니라 뼈 파라미터에 대한 정보를 포함할 수 있고, 상기 뼈 파라미터로부터 측정이 이루어질 수 있다. 예시적인 아틀라스 입력 데이터는 X-선 영상, CT 스캔 영상, MRI 영상, 레이저 스캔 영상, 초음파 영상, 분할된 뼈, 물리적 측정 데이터, 및 뼈 모델의 제작이 가능한 임의의 기타 정보의 형식으로 될 수 있다. 이러한 입력 데이터는 3차원적 뼈 모델을 구성하기 위하여 상기 스태티스티컬 아틀라스 데이터에 소프트웨어 액세스(accessing)(상기 스태티스티컬 아틀라스의 일부로서 제작 및 저장된 3차원적 뼈 모델에 액세스)함으로써 이용되며, 그로부터 상기 소프트웨어는 3차원으로 평균적인 뼈 모델 또는 템플릿 뼈 모델을 제작하도록 작동된다.
상기 템플릿 뼈 모델을 이용하여, 상기 소프트웨어는 상기 템플릿 뼈 모델의 외표면 상에 포인트를 자동으로 지정하거나 또는 수동을 지정할 수 있다. 설명하자면, 상완골 모델에 있어서, 상기 소프트웨어의 사용자는 상기 상완골 모델의 외표면 상에 상기 외상 판의 형상을 개략적으로 아우트라인 처리함으로써 궁극적인 외상판에 대한 개략적인 경계 형상을 설정한다. 상기 외상 판의 개략적인 경계 형상은 또한 외부 경계에 해당하는 상기 상완골 모델의 외표면 상에 일련의 포인트를 지정하는 사용자에 의하여 달성될 수 있다. 상기 외부 경계 또는 경계 포인트가 일단 설정되면, 상기 소프트웨어는 상기 설정된 경계 내에서 상기 상완골 모델의 외표면 상에 포인트를 자동으로 지정하거나 또는 수동 지정을 허용할 수 있다. 예를 들어, 상기 소프트웨어는 퍼센트 채움 작업을 제공하며, 이에 따라 상기 사용자는 상기 상완골 모델의 외부에서 명백한 위치에 해당하는 일련의 포인트에 의하여 지정되는 상기 외상 판의 경계 내에서 퍼센트를 지정할 수 있다. 또한, 상기 소프트웨어는 수동 포인트 지정 특징을 제공하며, 이에 따라 상기 사용자는 상기 경계 내에서 상기 상완골 모델의 외표면 상에 하나 이상의 포인트를 지정할 수 있다. 수동 포인트 지정이 이용되는 경우, 상기 사용자는 상기 상완골 모델의 외부에 포인트를 지정하기 위한 시작단계로 경계를 설정할 필요가 없음을 이해해야 한다. 오히려, 포인트의 수동 지정이 완료될 때, 지정된 최외곽 포인트에 의하여 상기 경계가 설정된다.
상기 템플릿 뼈 모델의 외표면 상에 포인트 지정이 완료된 후, 상기 국소화된 포인트는 당해 뼈 집단 전체에 걸쳐 전파된다. 특히, 상기 국소화된 포인트는 상기 스태티스티컬 아틀라스의 포인트 관련성을 통하여 상기 소프트웨어에 의하여 상기 특정 집단 내에서 각각의 3차원 뼈 모델에 자동으로 적용된다. 예를 들어, 상기 특정 뼈 집단은 백인 여성으로부터의 상완골로 이루어지도록 성별 및 민족성에 따른 맞춤형으로 될 수 있다. 상기 집단의 각각의 뼈 모델에 대하여 전파된 포인트를 이용하여, 상기 소프트웨어는 각각의 뼈의 외상 판의 3차원적 랜더링을 생성하기 위하여 3차원적 채움 과정을 이용하여 상기 경계 내에서 포인트 간의 보이드(void)를 채운다. 그 후, 상기 소프트웨어는 세선화 과정을 통하여 상기 각각의 외상 판의 3차원적 랜더링의 길이방향 정중선을 계산한다.
각각의 3차원적 외상 판 랜더링의 정중선은 그의 길이를 따라 다양한 곡률을 갖는 3차원적 정중선으로 이루어진다. 상기 소프트웨어는 상기 3차원적 정중선을 추출하고, 최소 제곱법을 이용하여, 상기 3차원적 정중선의 주요곡률에 협조적으로 가장 근사치로 되는 상기 바람직한 수의 곡률반경을 결정한다. 상완골에 있어서는, 3개의 곡률반경이 상기 정중선 곡률에 정확하게 근사치로 됨이 결정되었다. 그러나, 이 수는 상기 뼈 집단 및 상기 외상 판의 경계에 따라 변화될 수 있다. 추가의 특징으로 상기 판의 길이를 따라 하나 이상의 위치에서의 단면 곡률, 근육의 위치, 신경 및 기타 피해야할 연조직, 또는 플레이트 크기 또는 형상을 정의하는 데에 관련된 기타의 특징 또한 이에 포함할 수 있다. 예를 들어, 상기 정중선에 대한 상기 3개의 곡률 반경은 상기 근위부 상완골에서 상기 외상 판의 구부러짐, 상기 상완골 축과 상기 상완골 헤드 사이의 전이, 및 상기 상완골 축의 곡률을 나타낸다. 각각의 곡률반경은 기록되고, 4개의 치수 특징 벡터는 상기 집단에 최상으로 맞는 군에 상기 반경을 클러스터링하기 위하여 상기 곡률반경 데이터에 적용되었다. 예시적인 형태에서, 상기 클러스터 데이터는 다중 외상 판이 상기 집단에 적절히 맞아야 한다는 것을 나타낼 수 있다. 일단 상기 곡률반경 데이터가 클러스터링 되면, 상기 외상 판 치수가 확정될 수 있다.
상기 플레이트 설계에 관련된 특징의 추출에 따라, 상기 소프트웨어는 상기 집단에 맞는 클러스터의 최상의 수를 결정한다. 도 116에 개략적으로 나타낸 바와 같이, 국소 최저점을 제공하는 2개 이상의 클러스터가 있는 경우도 있음을 주지해야 한다. 허용 가능한 오차 허용차뿐만 아니라 각각의 패밀리에서 합리적인 수의 판을 제공하는 최적의 선택을 결정하기 위하여, 상기 소프트웨어는 각각의 클러스터에서 상기 판에 대한 3차원적 표면 모델을 생성한다. 그리고 나서, 상기 집단 상에 이들 판을 배치함으로써 그리고 상기 플레이트와 상기 뼈 표면 사이의 불일치를 계산함으로써 자동 평가가 수행된다. 이러한 분석의 결과는 상기 소프트웨어로 하여금 이러한 특이적 집단에 사용되기 위한 최적의 수의 판을 선택할 수 있도록 한다. 그리고 나서, 상기 최종 플레이트 모델은 파라미터화되고, 근육 및 연조직 위치를 피하면서 고정을 최대화하는 방식으로 나사 위치가 각각의 플레이트 상에 배치된다. 상기 나사의 폭은 상기 집단 전체에 걸쳐 각각의 나사 레벨에서 상기 뼈의 단면 분석을 행함으로써 결정된다.
본 과정 및 방법은 사체 연구를 이용함으로써 상완골에 대하여 검증되었다. 특히, 백인 여성으로부터의 사체 상완골 뼈에 CT 스캔을 행하였다. 각각의 상완골에 대한 개별적인 3차원적 모델을 생성하기 위하여 상기 소프트웨어에 의하여 이들 CT 스캔을 이용하였다. 이러한 검증 연구에 이용된 상기 CT 스캔이나 상기 3차원적 모델 어느 것도 상기 스태티스티컬 아틀라스 및 상기 상완골 외상 판을 제작하기 위하여 이용된 관련 집단의 일부가 아님을 주지해야 한다. 따라서, 상기 CT 스캔이나 상기 3차원적 모델 어느 것도 새로운 데이터 및 설계된 상기 상완골 외상 판을 검증하기 위하여 이용되는 모델로 이루어지지 않는다. 상기 3차원적 검증 모델이 제작된 후, 각각의 상기 모델은 특정 클러스터(상기 설계 집단으로부터의 상기 상완골 외상 판을 설계한 결과로서의 클러스터)에 카테고리 분류된다. 클러스터 상기 검증 모델이 카테고리 분류된 것에 기초하여, 상기 클러스터에 대하여 설계된 상완골 외상 판은 상기 적절한 검증 3차원적 상완골 뼈 모델에 맞춰지고, 상기 검증 3차원적 상완골 뼈 모델의 외표면과 상기 상완골 외상 판의 아래 표면 사이의 간격을 나타내는 치수가 계산된다. 도 123은 상기 뼈와 외상 판 사이의 최대 거리의 영역을 나타내도록 상기 검증 3차원적 상완골 뼈 모델에 맞춰지는 상기 외상 판의 거리맵을 나타낸다. 상기 외상 판의 대부분은 상기 뼈로부터 최소한으로 간격을 두며, 일치가 덜한 영역은 0.06 내지 0.09 센티미터의 범위로 된 간격을 보인다는 것을 알 수 있다. 따라서, 이러한 사체 연구의 결과에서, 전술한 바의 시스템을 이용한 전술한 바의 예시적인 과정에 따라 설계된 외상 판은, 수술 중에 적용되었을 때, 수술 도중에 뼈 판을 구부리거나 수동으로 모양을 손보는 외과 전문의의 관례가 배제된, 비범한 정도의 윤곽 매칭을 가졌다는 것이 결정되었다.
이러한 과정의 또 다른 예시적인 사례에 있어서, 외상 판은 상기 빗장뼈에 대하여 제작되었다. 이 때, 스태티스티컬 아틀라스는 여러 빗장뼈 뼈로부터 제작되었고, 이는 백인 집단에서의 변화를 충분히 포착하였다. 더욱이, 근육 부착부위에 대한 위치가 상기 스태티스티컬 아틀라스에 정의되었다. 단면 윤곽은 상기 전체 뼈를 따라 5% 증분에서 뿐만 아니라 근육 부착부위에서도 그리고 빗장뼈 허리에서도 추출하였다. 각각의 단면 윤곽의 최대 및 최소 치수를 계산하였다. 또한, 상기 데이터 세트에서 모든 뼈 표면을 가로질러 상동 포인트 간의 크기 및 방향 차이를 분석함으로써 비대칭에 대하여 상기 전체 3-차원 표면을 검사하였다. 그 결과는 빗장뼈 비대칭, 즉, 좌측 빗장뼈가 우측 빗장뼈보다 길고, 상기 우측 빗장뼈가 상기 좌측 빗장뼈보다 두껍다는 것에 대한 기존의 연구와 일치한다. 그러나, 상기 비대칭 패턴은 남성과 여성 사이에 상이하다. 더욱이, 상기 빗장뼈 정중선은 기존의 플레이트 설계에서와 같이 대칭적인 "S" 형상을 따르지 않는다. 남성은 모든 치수 및 근육 및 인대 부착부위 윤곽(p<.05)에서 크게 비대칭인 반면, 여성 비대칭은 좀 더 가변적이다. 우리는 이것이 여성에 비하여 남성 근육 강도에 있어서의 절대차 및 상대차와 관련된다고 가정한다. 그러나, 후방 중간축 상에 근육이 부착되지 않은 영역은 두 성별에서 모두 크게 비대칭이었다. 상기 추출된 특징으로부터, 상기 집단에 최적으로 맞춰지는 빗장뼈 판의 패밀리를 발견하고자 클러스터링을 수행하였다. 또한, 연조직(근육 부착)을 최적으로 피하고 그리고 너무 길거나 짧은 나사로 인한 플레이트의 헐거움 또는 추가의 골절을 피하기 위하여 나사 고정 위치 및 길이를 결정할 수 있다. 상기 과정을 이용하여, 도 139, 도 141, 도 143, 도 145 및 도 147에 나타낸 바와 같이, 여러 판 패밀리를 설계하였다.
외상 판 배치 가이드의 제작
도 149를 참조하여, 환자-맞춤형인 외상 판 배치 가이드를 제작하기 위하여 예시적인 과정 및 시스템을 설명한다. 당업자는 뼈가 골절되어 뼈 파편이 하나 이상의 위치에 서로 분리된다는 것을 알고 있다. 상기 뼈를 복원하기 위한 재건 수술의 일부로서, 이들 파편을 하나 이상의 외상 판을 이용하여 이들 파편을 고정된 방향으로 유지한다. 재건 외과 전문의는 환자-맞춤형 인체 사실 보다는 타고난 지식을 이용하여 상기 뼈를 다시 합치고자 하였다. 따라서, 환자 뼈 인체가 정상에서 변화된 만큼 상기 뼈 파편이 심하게 왜곡되었거나 또는 뼈 파편의 수가 너무 많아서, 외과 전문의는 종래기술의 외상 판을 사용함으로써 그리고 상기 플레이트의 형상을 상기 뼈 파편에 매칭하기보다는 상기 뼈 파편을 상기 플레이트의 형상에 매칭시킴으로써 상기 뼈 파편을 재분류하고자 하였다. 본 과정 및 시스템은 본래의 뼈 형상 및 방향을 복제하도록 뼈에 외상 판을 매칭하는 맞춤형 외상 판 및 외상 판 배치 가이드의 제작에 의하여 종래기술의 외상판 적용을 개선한다.
상기 예시적인 시스템 흐름은 골절된 인체를 나타내는 입력 데이터를 수신하는 것으로 시작된다. 단지 설명의 목적 상, 상기 골절된 인체는 인간의 두개골로 이루어진다. 상기 전술한 바의 과정 및 시스템은, 제한 없이, 팔, 다리, 및 몸통에서의 뼈를 포함하는 기타 인체/뼈에도 동일하게 적용 가능함을 주지해야 한다. 예시적인 형태에서, 인체 데이터 입력은 X-선, CT 스캔, MRI, 또는 뼈 크기 및 형상을 나타낼 수 있는 기타 임의의 영상화 데이터의 형태로 될 수 있다.
상기 입력된 인체 데이터는 상기 골절된 인체의 3차원적 가상 모델을 구성하는 데에 이용된다. 예를 들어, 상기 입력된 인체 데이터는 골절된 두개골의 컴퓨터 단층촬영 스캔으로 이루어지며, 이는 이러한 스캔을 분할하기 위하여 그리고 3차원 모델을 제작하기 위하여 소프트웨어로 처리된다. 당업자는 3차원적 가상 모델을 구성하기 위하여 컴퓨터 단층촬영을 어떻게 이용하는지에 대하여 익숙하다. 따라서, 상기 과정의 이러한 양상에 대한 상세한 설명은 간결성을 도모하기 위하여 생략한다.
상기 골절된 두개골의 3차원적 가상 모델 제작에 이어서, 상기 소프트웨어는 상기 3차원적 가상 모델에서 상기 두개골이 골절된 영역을 결정하기 위하여 상기 두개골의 3차원적 가상 모델을 스태티스티컬 아틀라스로부터의 데이터에 비교한다. 특히, 상기 소프트웨어는 골절 부위의 영역을 추출하기 위하여 상기 입력된 인체의 표면 모델로부터 추출된 특징을 이용한다(예: 표면 조도, 곡률, 형상 인덱스, 굽어짐, 이웃 연결성). 그리하여, 이들 골절 부위의 개괄적인 윤곽이 추출되고, 매칭 골절 부위를 발견하기 위하여 함께 매칭된다. 골절된 파편은 또한, 정상적인 인체를 재건하기 위하여, 상기 매칭된 골절 부위에 배치되기 위한 최상의 위치를 나타내는 아틀라스와도 매칭된다.
상기 소프트웨어가 상기 골절된 두개골에 대하여 재건된 3차원적 가상 모델을 제작한 후, 상기 재건된 3차원적 가상 두개골 모델의 외부에 부벽을 수동을 및/또는 자동으로 위치시킬 수 있다. 상기 부벽의 자동 배치는 상기 뼈 파편의 안정성을 최대화하는 반면, 부벽의 수를 최소화하기 위하여 프로그램된 로직의 결과이다. 여기에서 사용된 바, 부벽이라는 용어 및 그의 복수 표현은 뼈 파편을 서로에 대하여 고정하기 위하여 이용되는 임의의 지지수단을 칭한다. 일부 사례에서, 외과 전문의 또는 기타 교육된 사용자에 의한 실제적인 경험은 상기 수동 부벽 배치 특징을 이용할 때 상기 로직을 보충 또는 대체할 수 있다. 어느 경우이든, 일련의 부벽은 상기 소프트웨어 또는 상기 소프트웨어 사용자로 하여금 상이한 적용을 위하여 상이한 부벽을 선택할 수 있도록 하기 위하여 상기 소프트웨어에 프로그램된다. 동시에, 상기 부벽의 길이는 상기 골절 및 뼈 파편의 치수에 기초하여 수동으로 또는 자동으로 조절될 수 있다.
상기 재건된 3차원적 가상 두개골 모델에 부벽을 할당 및 배치함에 이어서, 각각의 부벽에 대한 상기 소프트웨어 치수 및 윤곽은 상기 소프트웨어에 의하여 기록된다. 이러한 기록은 각 부벽의 제작에 필요한 정보 또는 외과 전문의 또는 기타 교육받은 개인으로 하여금 기존의 부벽을 취할 있도록 하는 데에 최소한 도움이 될 만한 정보를 포함하며, 배치 가이드에 각각 일치한다. 기존의 부벽의 금형에 있어서, 상기 소프트웨어는 상기 재건된 3차원적 두개골 모델을 나타내는 하나 이상의 가시적인 모델을 제작하기 위한 컴퓨터 이용 설계(CAD) 명령어를 생성하기 위하여 상기 재건된 3차원적 가상 두개골 모델의 윤곽을 추출한다. 이들 CAD 명령어는 쾌속 조형기에 보내지고, 이는 상기 재건된 3차원적 두개골 모델을 나타내는 상기 하나 이상의 가시적인 모델을 제작한다. 가시적인 모델로서 적절한 인체 표면을 재현함으로써, 각각의 부벽은 상기 가시적인 모델에서 목표 위치로 적용될 수 있고 상기 환자의 두개골에 이식 및 고정되기 전에 수동으로 확인될 수 있다.
임의의 부벽의 위치 및 길이에 기초하여, 상기 소프트웨어는 또한 하나 이상의 환자-맞춤형 부벽 배치 가이드를 위한 윤곽 데이터를 생성하기 위하여 상기 재건된 3차원적 가상 두개골 모델의 윤곽을 추출한다. 특히, 배치 가이드는 각각의 부벽에 대하여 제작될 수 있다. 이러한 방식으로, 상기 배치 가이드는 단일의 방향으로 상기 환자의 두개골의 윤곽에 매칭되는 표면 윤곽을 포함한다. 상기 부벽의 위치가 상기 재건된 두개골의 가상 모델 상에서 확인됨을 고려하면, 이는 두개골 외표면에 인접한 윤곽이므로, 상기 소프트웨어는 가상 환자-맞춤형 배치 가이드를 생성하기 위하여 상기 2개를 조합한다. 이러한 가상 가이드는 제작을 위하여 쾌속 조형기에 CAD 명령어 형식으로 출력된다.
예시적인 본 실시 예에서, 상기 제작된 환자-맞춤형 배치 가이드는 외과 전문의가 잡을 수 있는 구조로 이루어진 길쭉한 핸들로 이루어진다. 상기 길쭉한 핸들의 단부로부터 연장되어 C-형상 윤곽 판 블록이 있다. 상기 윤곽 플레이트의 아래쪽은, 상기 부벽이 위치되어야 하는 위치에 상기 두개골의 볼록한 지형에 매칭되도록, 오목하게 된다. 필요한 것은 아니지만, 상기 윤곽 플레이트의 단부(또는 다른 부분)는 상기 부벽에 고정될 수 있고, 또는 상기 윤곽 플레이트가 단순히 작업 윈도를 제공할 수도 있으며, 이 작업 윈도우 내에서 상기 부벽은 상기 두개골에 정렬되어 궁극적으로 이에 고정된다. 상기 부벽을 상기 두개골에 부착한 후, 상기 윤곽 플레이트는 제거할 수 있다.
맞춤형 절단 & 배치 가이드, 판
도 150을 참조하면, 기형, 골절된, 또는 부분적인 인체의 재건은 의료인이 직면하는 복잡한 문제 중 하나이다. 비정상적인 인체는 출생 조건, 종양, 질병, 또는 개인 상해로부터 기인할 수 있다. 다양한 질병에 대하여 치료를 제공하는 것의 일부로서, 의료인은, 제한 없이, 파손되고/부서진 뼈, 뼈 변성, 정형외과용 임플란트 수정, 정형외과용 초기 이식, 및 질병을 포함할 수 있는 다양한 조건에 대하여 치료를 용이하게 하는 데에 인체를 재건하거나 또는 인체를 구성하는 것이 유익하다는 것을 알 수 있다.
본 개시는 뼈 이식편을 이용하여 뼈 및 생체조직 재건에 대한 시스템 및 방법을 제공한다. 이러한 재건을 수행하기 위하여, 상기 시스템 및 관련 방법은 다음의 2개 이상의 가상 3D 모델을 구성하기 위하여 환자의 현재 인체 영상을 이용한다: (a) 상기 현재의 비정상적인 인체를 나타내는 제 1의 3D 모델; 그리고, (2) 상기 환자의 재건된 인체를 나타내는 제 2의 3D 모델. 상기 환자의 비정상적인 인체 및 재건된 인체의 가상 모델에 도달하기 위한 환자 영상(X-선, CT 스캔, MRI 영상, 등)의 이용에 대한 상세한 설명에 대해서는 앞서의 "전체 인체 재건" 구간을 참조한다. 본 시스템 및 방법은 뼈 이식편을 취할 수 있는 하나 이상의 뼈(즉, 공여체 뼈)에 대한 3D 가상 모델을 구성함과 함께 상기 2개의 3D 가상 모델을 이용하기 위하여 상기 "전체 인체 재건" 구간에 설명된 상기 시스템에 기반한다. 아래에 더욱 상세히 설명되는 바와 같이, 상기 환자의 재건된 인체의 3D 가상 모델 및 비정상적인 인체의 3D 가상 모델은 재건에 필요한 상기 뼈 이식편의 3D 가상 모델을 제작하기 위하여 분석된다. 이러한 3D 가상 이식편 모델은 뼈 이식편을 절단해낼 수 있는 상기 공여체 뼈 상에서 하나 이상의 부위에 액세스하기 위하여 상기 공여체 뼈의 3D 가상 모델에 비교된다. 상기 절단 위치(들)을 결정한 후, 상기 이식된 뼈를 모으고 재건 부위에 상기 이식된 뼈들을 장착하기 위하여 절단 가이드 및 이식편 배치 가이드가 설계 및 제작된다.
예시적인 설명으로서, 본 시스템 및 방법은 복안에 대하여 설명되며, 여기에서 상기 공여체 뼈는 상기 종아리뼈로 이루어진다. 당업자는 본 시스템 및 방법을 하나 이상의 뼈 이식편을 이용하는 임의의 재건 수술 절차에 적용할 수 있음을 주지해야 한다. 더욱이, 복안 및 뼈 공여체로서의 종아리뼈에 대하여 논하지만, 당업자는 상기 예시적인 시스템 및 방법이 상기 종아리뼈가 아닌 다른 공여체 뼈와 함께도 이용될 수 있음을 이해해야 한다.
뼈 이식편을 이용하는 재건 수술계획 및 수술 절차와 함께 이용하기 위하여 상기 예시적인 시스템 및 방법을 논하기 위한 시작 단계로서, 상기 환자의 비정상적인 인체는 영상화되었고 상기 환자의 비정상적인 인체 3D 모델 및 재건된 인체 가상 3D 모델이 앞서 "전체 인체 재건" 구간에 설명된 과정에 따라 제작되었다고 가정한다. 따라서, 상기 환자의 비정상적인 인체 3D 모델 및 재건된 인체 가상 3D 모델 모두를 제작하기 위하여 환자 영상을 이용하는 것에 대한 상세한 설명은 간결성을 도모하기 위하여 생략한다.
상기 환자의 비정상적인 인체 및 재건된 인체에 대하여 가상의 3D 모델이 제작된 후, 상기 소프트웨어는 상기 인체를 비교하고 차이가 있는 영역을 하이라이트 표시한다. 특히, 상기 가상의 3D 모델 간에 공통적인 영역은 보유될 뼈를 나타내는 반면, 상이한 영역은 재건할 하나 이상의 영역을 나타낸다. 상기 소프트웨어는 상기 환자의 재건된 인체의 가상 3D 모델에서 공통적이지 않은 영역을 추출하고, 이들 영역을 상기 의도된 뼈 이식편의 분리된 3D 가상 모델로서 고립시킨다. 상기 외과 전문의 또는 기타 수술 전의 계획자는 상기 가상의 3D 뼈 이식편 모델을 검토할 수 있고 상기 뼈에 대하여 또는 상기 뼈 이식편을 최상으로 절단해낼 수 있는 뼈들에 대하여 그의 판단을 이용할 수 있다.
이식편 후보로서 가능한 뼈를 처음 선택하기 위하여 이용되는 로직에 상관없이, 상기 당해 뼈(들)은 종래의 양식(X-선, CT, MRI, 등)을 이용하여 영상화된다. 앞서의 "전체 인체 재건" 구간에 설명된 과정을 이용하여, 각각의 영상화된 뼈는 분할되고, 상기 영상화된 뼈에 대하여 가상의 3D 모델이 제작된다. 이러한 3D 공여체 뼈 모델은 공통적인 영역을 고립시키기 위하여 상기 가상의 3D 뼈 이식편 모델에 비교된다. 특히, 상기 소프트웨어는 공통적이거나 또는 유사한 곡률을 갖는 영역을 식별하기 위하여 상기 3D 공여체 뼈 모델의 표면 윤곽을 상기 가상의 3D 뼈 이식편 모델의 표면 윤곽에 비교한다. 공통적이거나 또는 유사한 영역이 없다고 가정하면, 상기 과정은 또 다른 공여체 뼈를 분석함으로써 재시작될 수 있다. 반대로, 상기 공여체 뼈에서 공통적이거나 또는 유사한 곡률을 갖는 하나 이상의 영역이 존재하면, 이들 영역이 상기 3D 공여체 뼈 모델 상에 하이라이트 표시된다. 특히, 상기 하이라이트 표시된 영역은 상기 가상의 3D 뼈 이식편 모델의 형상처럼 보인다. 상기 공통적인 영역이 상기 뼈 이식편을 잘라내기에 적절하다고 판단되면, 상기 재건의 일부로서 절단될 필요가 있을 수도 있는 상기 환자의 비정상적인 인체의 임의의 영역 및 잠재적 적합성을 검증하기 위하여, 상기 소프트웨어는 상기 뼈 이식편을 가상의 3D 모델로서 가상으로 잘라내고 상기 뼈 이식편(상기 공여체 뼈에 대하여 특이적/특유한 윤곽을 가짐)을 상기 환자의 비정상적인 인체의 가상의 3D 모델에 적용한다. 상기 절단 뼈의 가상 3D 모델을 상기 환자의 비정상적인 인체의 가상의 3D 모델에 적용하는 것이 덜 만족스러운 재건의 결과를 얻을 경우에는, 상기 뼈 선택 포인트에서 또는 뼈의 상이한 영역을 절단하기 위하여 상기 과정을 재시작할 수 있다. 그러나, 상기 절단 뼈의 가상의 3D 모델을 상기 환자의 비정상적인 인체의 가상의 3D 모델에 적용한 결과 적절한 맞춤이 얻어진다고 가정하면, 상기 뼈 이식편의 절제하는 것 및 상기 뼈 이식편을 상기 환자의 잔여 뼈에 장착하는 것을 용이하게 하기 위하여, 상기 시스템은 지그 설계로 전진된다.
예시적인 본 실시 예에서, 상기 시스템은 쾌속 조형기, CNC 공작기계, 또는 뼈 이식편 절단 가이드 및 뼈 이식편 배치 가이드를 제작하기 위한 유사한 장치에 필요한 기계코드를 생성 및 출력한다. 상기 뼈 이식편 절단 가이드 및 뼈 이식편 배치 가이드를 제작하는 데에 필요한 출력을 생성하기 위하여, 상기 시스템은 상기 절단 뼈의 가상 3D 모델을 상기 환자의 비정상적인 인체의 가상 3D 모델에 이용한다.
특히, 상기 절단 뼈의 가상 3D 모델은 가상의 3D 절단 가이드의 경계를 정의한다. 더욱이, 이러한 예시적인 맥락에서, 상기 종아리뼈의 일부는 상기 뼈 이식편을 제공하기 위하여 절단되도록 계획된다. 상기 종아리뼈의 적절한 부위가 절단됨을 보장하기 위하여, 상기 가상의 3D 절단 가이드는 윈도우를 포함하며, 그 내부에서는 적절히 아우트라인 표시된 뼈 이식편을 제작하기 위하여 절단 장치(톱, 절단 드릴, 등)가 이동된다. 상기 가상의 3D 절단 가이드는 상기 적절히 아우트라인 표시된 뼈 이식편을 제작하기 위한 형상으로 되어야 할뿐만 아니라, 특정된 상기 환자의 공여체 뼈 상에 상기 절단 가이드의 배치를 보장하기 위한 형상으로 되어야 한다. 더욱 구체적으로, 상기 공여체 뼈 상에 상기 절단 가이드를 배치하는 것은 상기 절단 뼈가 상기 아우트라인 표시된 정확한 형상을 포함하고 또한 정확한 윤곽을 나타냄을 동시에 보장되어야 한다. 이러한 방식으로, 상기 가상의 3D 절단 가이드의 아래부분은 상기 절단 가이드가 장착될 상기 공여체 뼈의 표면에 대하여 "네거티브"로 설계된다. 상기 절단 가이드를 상기 공여체 뼈에 안착시키기 위한 예시적인 장착 기술에는, 제한 없이, 나사, 다우얼, 및 핀이 포함될 수 있다. 이들 장착 기술 또는 기타의 것들 중 하나 이상을 수용하기 위하여, 상기 가상의 3D 절단 가이드는 또한 내부에서 상기 수술 커터가 이동되는 상기 윈도우에 더하여 하나 이상의 관통 오리피스를 포함하도록 설계된다. 상기 가상의 3D 절단 가이드의 설계가 완성된 후, 상기 시스템은 쾌속 조형기, CNC 공작기계, 또는 상기 뼈 이식편 절단 가이드를 제작하기 위한 유사한 장치에 필요한 기계코드를 생성 및 출력하며, 이는 실제 절단 가이드의 제작으로 이어진다.
상기 절단 가이드에 더하여, 상기 소프트웨어는 또한 하나 이상의 뼈 이식편 배치 가이드를 설계한다. 상기 뼈 이식편 배치 가이드는 환자-맞춤형이며, 상기 잔여 뼈에 대한 상기 뼈 이식편의 정확한 배치를 보장하기 위하여, 상기 환자의 인체에 일치한다(공여체 뼈 및 상기 공여체 뼈가 장착될 잔여 뼈 모두). 예시적인 형태에서, 상기 뼈 이식편 배치 가이드는 하악골 뼈 재건 절차를 위하여 구성된다. 설계 상기 뼈 이식편 배치 가이드를 설계하기 위하여, 상기 소프트웨어는 하이브리드 모델을 구성하기 위하여 상기 환자의 비정상적인 인체의 가상 3D 모델에 적용되는 상기 절단 뼈의 가상 3D 모델을 이용한다. 이러한 하이브리드 모델을 이용하여, 상기 뼈 이식편이 인접 잔여 뼈와 인터페이스될(그리고 뼈 성장을 통하여 바람직하게 연결될) 관절을 식별한다. 이들 관절에서, 외과 전문의 선호도와 같은 다양한 요인에 따라, 상기 시스템은 뼈 이식편 플레이트 위치를 식별하고, 각각의 판에 대하여, 상기 뼈 이식편 및 잔여 뼈에 대한 정확한 배치 및 안착을 위하여 하나 이상의 가이드를 식별한다.
당업자는 종래의 하악골 뼈 판에 익숙하며, 따라서, 하악골 뼈 판의 개략적인 설계에 대한 상세한 설명은 간결성을 도모하기 위하여 생략한다. 본 시스템 및 방법이 달성하는 것은, 종래의 시스템 및 방법과는 달리, 상기 환자-맞춤형 뼈 판 그리고 상기 잔여 뼈 및 상기 뼈 이식편 모두의 형상을 고려한 배치 가이드의 형성이다. 특히, 식별된(자동으로 또는 수동으로) 각각의 뼈 플레이트 위치에 대하여, 상기 시스템은 가상의 3D 뼈 플레이트 및 관련 배치 가이드를 설계하였다. 각각의 가상의 3D 뼈 플레이트 및 가이드 모델은, 각각의 가상의 3D 뼈 플레이트의 아래 부분 및 가이드 모델이 상기 아래에 놓이는 뼈에 대하여 네거티브인지, 상기 뼈 이식편 또는 상기 잔여 뼈로 이루어지는 지를 보장하기 위하여, 상기 하이브리드 3D 모델(뼈 이식편 및 환자 잔여 뼈를 재건된 위치에 포함)에 대하여 중첩된다. 이러한 방식으로, 상기 가상의 3D 뼈 플레이트 및 가이드 모델은 상기 뼈 플레이트의 적절한 배치 그리고 상기 뼈 판, 뼈 이식편, 및 잔여 뼈 사이의 해당 맞물림을 보장하기 위하여 함께 작업된다. 뼈 플레이트를 뼈 이식편 및 잔여 뼈에 안착시키기 위한 예시적인 장착 기술에는, 제한 없이, 나사, 다우얼, 및 핀이 포함될 수 있다. 이들 또는 기타 장착 기술 중 하나 이상을 수용하기 위하여, 각각의 가상의 3D 뼈 플레이트 및 배치 가이드는 하나 이상의 관통 오리피스를 포함한다. 각각의 가상의 3D 뼈 플레이트 및 가이드의 설계가 완성된 후, 상기 시스템은 각각의 3D 뼈 플레이트 및 가이드를 제작하기 위하여 쾌속 조형기, CNC 공작기계, 또는 유사한 장치에 필요한 기계 코드를 생성 및 출력하며, 이는 실제의 뼈 플레이트 및 가이드 제작으로 이어진다.
위의 설명 및 본 발명의 요약에 이어, 이에 설명된 상기 방법 및 장치는 본 발명의 예시적인 실시 예를 구성하는 것으로서 본 발명은 이러한 정밀한 실시 예에 한정되지 않으며, 이러한 실시 예에 대하여 특허 청구의 범위에 정의된 본 발명의 범위로부터 벗어나지 않도록 변경이 가능함을 당업자에게 명백하다. 또한, 본 발명은 상기 특허 청구의 범위에 의하여 정의되며, 여기에 기재된 상기 예시적인 실시 예를 설명하는 어떠한 제한 또는 요소도 그러한 제한 또는 요소가 명백히 언급되지 않는 한 청구항 요소의 해석에 포함되도록 의도된 것이 아니다. 마찬가지로, 본 발명은 상기 특허 청구의 범위에 의하여 정의되며 또한 본 발명 고유의 및/또는 예상치 못한 장점이 여기에 명시적으로 기재되지 않았을 수도 있으나 존재할 수 있으므로, 여기에 기재된 본 발명의 명시된 장점 또는 목적 중 어느 것 또는 모든 것이 특허 청구의 범위 내에 있도록 충족되어야 할 필요는 없다.

Claims (44)

  1. 다중 구성 요소 정형외과용 임플란트가 환자의 뼈에 장착될 적어도 하나의 고정 위치를 이용하여, 환자의 뼈의 가상 3차원 모델에 대하여 대량-맞춤화 정형외과용 구성 요소를 가상으로 배치 및 선택하고;
    대량-맞춤화 정형외과용 구성 요소를 선택한 후, 상기 환자의 뼈에 상기 대량-맞춤화 정형외과용 구성 요소를 결합하도록 구성된 환자-맞춤형 고정 장치의 치수를 설정하고, 여기에서 치수는 대량-맞춤화 정형외과용 구성 요소에 따라 달라짐; 그리고,
    상기 설정된 치수를 고려하여 상기 환자-맞춤형 고정 장치를 위한 전자 설계 파일을 생성하는 것;으로 이루어지는 다중 구성요소 정형외과용 임플란트 제작 방법.
  2. 청구항 1에 있어서,
    상기 환자-맞춤형 고정 장치는 복수의 환자-맞춤형 고정 장치를 포함하고;
    상기 복수의 환자-맞춤형 고정 장치 각각은 상기 환자의 뼈에 상기 대량-맞춤화 정형외과용 구성 요소를 결합하도록 구성되고; 그리고
    상기 환자-맞춤형 고정 장치를 위한 상기 전자 설계 파일을 생성하는 것은 상기 복수의 환자-맞춤형 고정 장치 각각을 위한 전자 설계 파일을 생성하는 것을 포함함;을 특징으로 하는 다중 구성요소 정형외과용 임플란트 제작 방법.
  3. 청구항 1에 있어서,
    상기 전자 설계 파일을 이용하여 상기 환자-맞춤형 고정 장치를 제작하는 것으로 더욱 이루어지는 다중 구성요소 정형외과용 임플란트 제작 방법.
  4. 청구항 1에 있어서,
    상기 환자의 뼈의 가상 3차원 모델은 상기 환자의 뼈의 환자-맞춤형 3차원 뼈 모델과 재건된 환자-맞춤형 3차원 뼈 모델 중 적어도 하나를 포함하며, 여기에서 상기 재건된 환자-맞춤형 3차원 뼈 모델은 부분적인 뼈, 기형 뼈, 및 부서진 뼈 중 적어도 하나를 포함하는 상기 환자의 뼈의 실제 인체를 반영함을 특징으로 하는 다중 구성요소 정형외과용 임플란트 제작 방법.
  5. 청구항 1에 있어서,
    상기 적어도 하나의 고정 위치를 이용하는 것은 환자-맞춤형 3차원 뼈 모델과 재건된 환자-맞춤형 3차원 뼈 모델을 컴퓨터를 이용하여 비교하는 것을 포함하며, 여기에서 상기 재건된 환자-맞춤형 3차원 뼈 모델은 상기 두 개의 3차원 뼈 모델 사이에 공통적인 뼈를 식별하기 위해 부분적인 뼈, 기형 뼈, 및 부서진 뼈 중 적어도 하나를 포함하는 상기 환자의 뼈의 실제 인체를 반영함을 특징으로 하는 다중 구성요소 정형외과용 임플란트 제작 방법.
  6. 청구항 1에 있어서,
    상기 환자의 뼈의 가상 3차원 모델은 자기 공명 영상, 컴퓨터 단층 촬영 영상, X-선 영상, 및 초음파 영상 중 적어도 하나로부터 유래됨을 특징으로 하는 다중 구성요소 정형외과용 임플란트 제작 방법.
  7. 청구항 5에 있어서,
    상기 재건된 환자-맞춤형 3차원 뼈 모델은 스태티스티컬 아틀라스(statistical atlas)의 데이터로부터 유래됨을 특징으로 하는 다중 구성요소 정형외과용 임플란트 제작 방법.
  8. 청구항 1에 있어서,
    상기 대량-맞춤화 정형외과용 구성 요소는 비구(acetabular) 컵을 포함하고;
    상기 환자-맞춤형 고정 장치는 다중 플랜지 비구 정형외과용 임플란트의 적어도 하나의 플랜지를 포함함;을 특징으로 하는 다중 구성요소 정형외과용 임플란트 제작 방법.
  9. 청구항 8에 있어서,
    상기 다중 플랜지 비구 정형외과용 임플란트는 삼중 플랜지 비구 정형외과용 임플란트를 포함함을 특징으로 하는 다중 구성요소 정형외과용 임플란트 제작 방법.
  10. 청구항 5에 있어서,
    상기 환자-맞춤형 3차원 뼈 모델과 재건된 환자-맞춤형 3차원 뼈 모델을 비교하는 것은 상기 환자-맞춤형 3차원 뼈 모델에 존재 및 부재하고 상기 재건된 환자-맞춤형 3차원 뼈 모델에 존재하는 뼈에 대응하는 정점을 식별하는 제1 리스트를 생성하고 상기 두 개의 3차원 뼈 모델 모두에 존재하는 뼈에 대응하는 정점을 식별하는 제2 리스트를 생성하는 것을 포함함을 특징으로 하는 다중 구성요소 정형외과용 임플란트 제작 방법.
  11. 청구항 10에 있어서,
    상기 환자-맞춤형 고정 장치의 치수를 설정하는 것은 이후에 상기 재건된 환자-맞춤형 3차원 뼈 모델을 이용하여 일반 파라미터를 설정하기 위해 임플란트 파라미터화 템플릿을 이용하는 것을 포함함을 특징으로 하는 다중 구성요소 정형외과용 임플란트 제작 방법.
  12. 청구항 11에 있어서,
    상기 파라미터는 각도 파라미터, 깊이 파라미터, 곡률 파라미터, 및 고정 장치 위치 파라미터 중 적어도 하나를 포함함을 특징으로 하는 다중 구성요소 정형외과용 임플란트 제작 방법.
  13. 청구항 4에 있어서,
    상기 환자-맞춤형 고정 장치의 표면 모델을 구성하는 것으로 더욱 이루어지는 다중 구성요소 정형외과용 임플란트 제작 방법.
  14. 청구항 13에 있어서,
    상기 표면 모델을 구성하는 것은 상기 환자-맞춤형 3차원 뼈 모델로부터의 윤곽 그리고 상기 재건된 환자-맞춤형 3차원 뼈 모델로부터의 윤곽을 조합하는 것을 포함함을 특징으로 하는 다중 구성요소 정형외과용 임플란트 제작 방법.
  15. 삭제
  16. 청구항 14에 있어서,
    상기 환자-맞춤형 고정 장치의 상기 표면 모델을 구성하는 것은 상기 표면 모델의 수정이 요구되는지를 파악하기 위해 상기 표면 모델 및 상기 재건된 환자-맞춤형 3차원 뼈 모델을 수동 검토함을 포함함을 특징으로 하는 다중 구성요소 정형외과용 임플란트 제작 방법.
  17. 청구항 1 내지 14 및 청구항 16 중 어느 한 항에 있어서,
    상기 전자 설계 파일은 컴퓨터 이용 설계 파일, 컴퓨터 수치제어 파일, 및 신속 제작 명령어 파일 중 적어도 하나를 포함함을 특징으로 하는 다중 구성요소 정형외과용 임플란트 제작 방법.
  18. 청구항 1 내지 14 및 청구항 16 중 어느 한 항에 있어서,
    상기 환자의 뼈 상에 상기 환자-맞춤형 고정 장치를 배치하기 위해 사용되는 환자-맞춤형 배치 가이드를 위한 전자 설계 파일을 생성하는 것으로 더욱 이루어지는 다중 구성요소 정형외과용 임플란트 제작 방법.
  19. 청구항 18에 있어서,
    상기 환자-맞춤형 배치 가이드를 위한 상기 전자 설계 파일을 이용하여 상기 환자-맞춤형 배치 가이드를 제작하는 것으로 더욱 이루어지는 다중 구성요소 정형외과용 임플란트 제작 방법.
  20. 청구항 1에 있어서,
    상기 환자-맞춤형 고정 장치의 치수를 설정하는 것은 상기 환자-맞춤형 고정 장치가 위치되도록 의도된 상기 환자의 뼈의 표면 형상의 네거티브(negative)인 표면 형상을 채택하는 것으로 더욱 이루어지는 다중 구성요소 정형외과용 임플란트 제작 방법.
  21. 청구항 4, 5, 14 및 청구항 16 중 어느 한 항에 있어서,
    상기 환자-맞춤형 3차원 뼈 모델은 비정상적인 대퇴골 뼈 및 비정상적인 골반 뼈 중 적어도 하나를 포함하고;
    상기 재건된 환자-맞춤형 3차원 뼈 모델은 재건된 대퇴골 뼈 및 재건된 골반 뼈 중 적어도 하나를 포함함;을 특징으로 하는 다중 구성요소 정형외과용 임플란트 제작 방법.
  22. 청구항 1 내지 14 및 청구항 16 중 어느 한 항에 있어서,
    상기 대량-맞춤화 정형외과용 구성 요소는 성별, 민족성(race), 및 장애(disability) 중 적어도 하나에 따른 것임을 특징으로 하는 다중 구성요소 정형외과용 임플란트 제작 방법.
  23. 청구항 1 내지 14 및 청구항 16 중 어느 한 항에 있어서,
    상기 환자-맞춤형 고정 장치가 용이하게 장착되도록 상기 대량-맞춤화 정형외과용 구성 요소를 수정하는 것으로 더욱 이루어지는 다중 구성요소 정형외과용 임플란트 제작 방법.
  24. 청구항 1 내지 14 및 청구항 16 중 어느 한 항에 있어서,
    상기 환자-맞춤형 고정 장치의 치수를 설정하는 것은 상기 환자의 뼈의 표면 치수를 추적하는 치수를 채택하는 것을 포함함을 특징으로 하는 다중 구성요소 정형외과용 임플란트 제작 방법.
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
  36. 삭제
  37. 삭제
  38. 삭제
  39. 삭제
  40. 삭제
  41. 삭제
  42. 삭제
  43. 삭제
  44. 삭제
KR1020207017894A 2013-10-15 2014-10-15 다중 구성 요소 정형외과용 임플란트 제작 방법 KR102323703B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020207029222A KR102407868B1 (ko) 2013-10-15 2014-10-15 다중 구성 요소 환자-맞춤형 정형외과용 임플란트

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361891047P 2013-10-15 2013-10-15
US61/891,047 2013-10-15
KR1020197031085A KR102127424B1 (ko) 2013-10-15 2014-10-15 뼈 재건 및 정형외과용 임플란트 배치 가이드
PCT/US2014/060780 WO2015057898A1 (en) 2013-10-15 2014-10-15 Bone reconstruction and orthopedic implants

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020197031085A Division KR102127424B1 (ko) 2013-10-15 2014-10-15 뼈 재건 및 정형외과용 임플란트 배치 가이드

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020207029222A Division KR102407868B1 (ko) 2013-10-15 2014-10-15 다중 구성 요소 환자-맞춤형 정형외과용 임플란트

Publications (2)

Publication Number Publication Date
KR20200079556A KR20200079556A (ko) 2020-07-03
KR102323703B1 true KR102323703B1 (ko) 2021-11-08

Family

ID=52828672

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020207017894A KR102323703B1 (ko) 2013-10-15 2014-10-15 다중 구성 요소 정형외과용 임플란트 제작 방법
KR1020197031085A KR102127424B1 (ko) 2013-10-15 2014-10-15 뼈 재건 및 정형외과용 임플란트 배치 가이드
KR1020167012893A KR102037281B1 (ko) 2013-10-15 2014-10-15 뼈 재건 및 정형외과용 임플란트
KR1020207029222A KR102407868B1 (ko) 2013-10-15 2014-10-15 다중 구성 요소 환자-맞춤형 정형외과용 임플란트

Family Applications After (3)

Application Number Title Priority Date Filing Date
KR1020197031085A KR102127424B1 (ko) 2013-10-15 2014-10-15 뼈 재건 및 정형외과용 임플란트 배치 가이드
KR1020167012893A KR102037281B1 (ko) 2013-10-15 2014-10-15 뼈 재건 및 정형외과용 임플란트
KR1020207029222A KR102407868B1 (ko) 2013-10-15 2014-10-15 다중 구성 요소 환자-맞춤형 정형외과용 임플란트

Country Status (9)

Country Link
US (6) US11426281B2 (ko)
EP (4) EP4134046A1 (ko)
JP (11) JP6549567B2 (ko)
KR (4) KR102323703B1 (ko)
CN (3) CN111991122B (ko)
AU (9) AU2014337339B2 (ko)
CA (3) CA3175298A1 (ko)
ES (2) ES2971829T3 (ko)
WO (1) WO2015057898A1 (ko)

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8549888B2 (en) 2008-04-04 2013-10-08 Nuvasive, Inc. System and device for designing and forming a surgical implant
FR2932674B1 (fr) 2008-06-20 2011-11-18 Tornier Sa Procede de modelisation d'une surface glenoidienne d'une omoplate, dispositif d'implantation d'un composant glenoidien d'une prothese d'epaule, et procede de fabrication d'un tel compose.
FR3010628B1 (fr) 2013-09-18 2015-10-16 Medicrea International Procede permettant de realiser la courbure ideale d'une tige d'un materiel d'osteosynthese vertebrale destinee a etayer la colonne vertebrale d'un patient
JP6549567B2 (ja) * 2013-10-15 2019-07-24 ラシュワン マフホウズ,モハメド 骨再建及び整形外科インプラント
FR3012030B1 (fr) 2013-10-18 2015-12-25 Medicrea International Procede permettant de realiser la courbure ideale d'une tige d'un materiel d'osteosynthese vertebrale destinee a etayer la colonne vertebrale d'un patient
EP4378402A2 (en) 2013-11-13 2024-06-05 Tornier Method for providing a patient specific glenoid guide
WO2015081027A1 (en) 2013-11-29 2015-06-04 The Johns Hopkins University Patient-specific trackable cutting guides
US9849633B2 (en) * 2014-06-23 2017-12-26 Siemens Product Lifecycle Management Software Inc. Removing sharp cusps from 3D shapes for additive manufacturing
WO2016086054A1 (en) * 2014-11-24 2016-06-02 The Johns Hopkins University Computer-assisted cranioplasty
EP3223752A4 (en) 2014-11-24 2018-09-12 The Johns Hopkins University A cutting machine for resizing raw implants during surgery
US20160262800A1 (en) 2015-02-13 2016-09-15 Nuvasive, Inc. Systems and methods for planning, performing, and assessing spinal correction during surgery
US11058541B2 (en) 2015-09-04 2021-07-13 The Johns Hopkins University Low-profile intercranial device
GB2544266A (en) * 2015-11-03 2017-05-17 Attenborough Dental Laboratories Ltd Implant
AU2016349705B2 (en) 2015-11-04 2021-07-29 Medicrea International Methods and Apparatus for spinal reconstructive surgery and measuring spinal length and intervertebral spacing, tension and rotation
AU2016371425B2 (en) 2015-12-16 2021-09-02 Howmedica Osteonics Corp. Patient specific instruments and methods for joint prosthesis
WO2017127887A1 (en) * 2016-01-25 2017-08-03 3Dmorphic Pty Ltd Method and system for desi gni ng and fabr icati ng a customi sed device
EP3868294B1 (en) 2016-03-02 2024-04-24 Nuvasive, Inc. System for spinal correction surgical planning
CN112386302A (zh) * 2016-03-14 2021-02-23 穆罕默德·R·马赫福兹 用于无线超声跟踪和通信的超宽带定位
AU2017248357B2 (en) 2016-04-07 2022-06-02 Icahn School Of Medicine At Mount Sinai Apparatus, method and system for providing customizable bone implants
US10537390B2 (en) 2016-07-08 2020-01-21 Biomet Manufacturing, Llc Reverse shoulder pre-operative planning
FR3054691A1 (fr) * 2016-07-28 2018-02-02 Anatoscope Procede de conception et de fabrication d'un appareillage personnalise dont la forme est adaptee a la morphologie d'un utilisateur
CN206012763U (zh) * 2016-08-15 2017-03-15 美国锐哲有限公司 一种卡丁车
US10912648B2 (en) 2016-08-30 2021-02-09 Longeviti Neuro Solutions Llc Method for manufacturing a low-profile intercranial device and the low-profile intercranial device manufactured thereby
WO2018043422A1 (ja) * 2016-08-31 2018-03-08 キヤノン株式会社 データ処理装置、造形装置、データ処理方法、プログラム、記憶媒体、および、立体物の製造方法
CN106388978B (zh) * 2016-09-13 2018-07-20 中南大学湘雅医院 一种基于三维重建技术的髋臼侧模型和导板的制备方法
CN106420030B (zh) * 2016-10-14 2023-05-16 重庆医科大学附属第一医院 一种髋臼四边体骨折的内固定系统设计方法及其装置
RU2651104C1 (ru) * 2016-11-29 2018-04-18 Андрей Николаевич Николаенко Способ моделирования и устройство персонифицированного эндопротеза костей скелета
WO2018109556A1 (en) 2016-12-12 2018-06-21 Medicrea International Systems and methods for patient-specific spinal implants
CN106774171A (zh) * 2016-12-21 2017-05-31 嘉善中建钢结构安装有限公司 一种数控切割机cnc系统的设计方法
WO2018133029A1 (zh) * 2017-01-20 2018-07-26 无限极(中国)有限公司 一种青少年枕生物力学性能分析及设计优化方法及装置
EP3379438A1 (en) * 2017-03-24 2018-09-26 Koninklijke Philips N.V. Customized implant creation
US10426552B2 (en) 2017-03-28 2019-10-01 John Adam Davies Reduction methods for aligning bone segments using customized jigs
WO2018193316A2 (en) 2017-04-21 2018-10-25 Medicrea International A system for developing one or more patient-specific spinal implants
WO2019014281A1 (en) 2017-07-11 2019-01-17 Tornier, Inc. HUMERAL CUTTING GUIDES SPECIFIC TO A PATIENT
US11278299B2 (en) 2017-07-11 2022-03-22 Howmedica Osteonics Corp Guides and instruments for improving accuracy of glenoid implant placement
US11207135B2 (en) * 2017-07-12 2021-12-28 K2M, Inc. Systems and methods for modeling spines and treating spines based on spine models
EP3651637A4 (en) * 2017-07-12 2021-04-28 K2M, Inc. SYSTEMS AND METHODS FOR MODELING SPINE AND TREATMENT OF SPINE BASED ON SPINE MODELS
US11000334B1 (en) 2017-07-12 2021-05-11 K2M, Inc. Systems and methods for modeling spines and treating spines based on spine models
US11166764B2 (en) 2017-07-27 2021-11-09 Carlsmed, Inc. Systems and methods for assisting and augmenting surgical procedures
US11864978B2 (en) 2017-09-07 2024-01-09 Versitech Limited Bone model, modelling process and system therefor
US10874460B2 (en) * 2017-09-29 2020-12-29 K2M, Inc. Systems and methods for modeling spines and treating spines based on spine models
US10892058B2 (en) 2017-09-29 2021-01-12 K2M, Inc. Systems and methods for simulating spine and skeletal system pathologies
US10918422B2 (en) 2017-12-01 2021-02-16 Medicrea International Method and apparatus for inhibiting proximal junctional failure
DE102017131323A1 (de) * 2017-12-27 2019-06-27 Mecuris GmbH Computerimplementiertes Verfahren und System zur Herstellung einer orthopädischen Versorgung
EP3731783A1 (en) * 2017-12-29 2020-11-04 Tornier, Inc. Patient specific humeral implant components
US11589992B2 (en) 2018-01-09 2023-02-28 Longeviti Neuro Solutions Llc Universal low-profile intercranial assembly
US10535427B2 (en) * 2018-01-10 2020-01-14 Medtronic, Inc. System for planning implantation of a cranially mounted medical device
US11432943B2 (en) 2018-03-14 2022-09-06 Carlsmed, Inc. Systems and methods for orthopedic implant fixation
US11439514B2 (en) 2018-04-16 2022-09-13 Carlsmed, Inc. Systems and methods for orthopedic implant fixation
US11376054B2 (en) 2018-04-17 2022-07-05 Stryker European Operations Limited On-demand implant customization in a surgical setting
USD958151S1 (en) 2018-07-30 2022-07-19 Carlsmed, Inc. Display screen with a graphical user interface for surgical planning
CN108992135B (zh) * 2018-08-22 2023-08-11 上海交通大学医学院附属第九人民医院 一种胫骨高位截骨导板模型的构建方法
JP7285510B2 (ja) * 2018-08-23 2023-06-02 株式会社デルコ 人工臼蓋部品およびその製造方法
US11696833B2 (en) 2018-09-12 2023-07-11 Carlsmed, Inc. Systems and methods for orthopedic implants
US11636650B2 (en) 2018-09-24 2023-04-25 K2M, Inc. System and method for isolating anatomical features in computerized tomography data
CN109276351A (zh) * 2018-11-27 2019-01-29 上海市第十人民医院 一种组合式保留骨骺的肿瘤型膝关节假体
KR102509659B1 (ko) * 2019-01-10 2023-03-15 한국전자통신연구원 딥러닝을 이용한 3차원 전신 골격 모델 생성 장치 및 방법
KR102540998B1 (ko) * 2019-01-18 2023-06-05 가톨릭대학교 산학협력단 영상 정복 기반 가상 내고정물 생성 방법 및 장치
EP3920825A1 (en) * 2019-02-05 2021-12-15 Smith&Nephew, Inc. Algorithm-based optimization, tool and selectable simulation data for total hip arthroplasty
US10930069B1 (en) * 2019-02-11 2021-02-23 Amazon Technologies, Inc. 3D scanning and modeling system
EP3934519A4 (en) * 2019-03-05 2022-11-23 MAKO Surgical Corp. SURGICAL RECORDING SYSTEMS AND METHODS
CN109865756B (zh) * 2019-03-22 2020-03-24 西安交通大学 局部增量柔性成形金属固定骨板的方法及弯扭成形工具
WO2020201353A1 (en) 2019-04-02 2020-10-08 Medicrea International Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures
US11925417B2 (en) 2019-04-02 2024-03-12 Medicrea International Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures
US10867436B2 (en) * 2019-04-18 2020-12-15 Zebra Medical Vision Ltd. Systems and methods for reconstruction of 3D anatomical images from 2D anatomical images
US10799295B1 (en) * 2019-04-23 2020-10-13 Kristian Tjon Computer-aided design and preparation of bone graft
WO2020227661A1 (en) * 2019-05-09 2020-11-12 Materialise N.V. Surgery planning system with automated defect quantification
KR102254844B1 (ko) * 2019-05-29 2021-05-21 전북대학교산학협력단 기계학습을 이용한 의료 영상 처리 방법 및 장치
CN110246218B (zh) * 2019-06-17 2022-09-30 合肥工业大学 股骨头三维模型的重建方法、空间骨盆参数测量方法
DE102020127163B4 (de) 2019-10-30 2023-08-24 Werner Scholz Verfahren zur Herstellung einer patientenindividuellen Endoprothese
WO2021108270A1 (en) * 2019-11-26 2021-06-03 Tornier, Inc. Pre-operative planning and intra operative guidance for orthopedic surgical procedures in cases of bone fragmentation
US11769251B2 (en) 2019-12-26 2023-09-26 Medicrea International Systems and methods for medical image analysis
US10902944B1 (en) 2020-01-06 2021-01-26 Carlsmed, Inc. Patient-specific medical procedures and devices, and associated systems and methods
US11376076B2 (en) 2020-01-06 2022-07-05 Carlsmed, Inc. Patient-specific medical systems, devices, and methods
CN111227932B (zh) * 2020-02-19 2021-06-04 苏州微创畅行机器人有限公司 骨注册方法、骨注册系统、骨注册控制装置及可跟踪元件
US20220031460A1 (en) * 2020-07-29 2022-02-03 DePuy Synthes Products, Inc. Patient specific graft cage for craniomaxillofacial repair
US11832888B2 (en) * 2020-09-10 2023-12-05 Dignity Health Systems and methods for volumetric measurement of maximal allowable working volume within a surgical corridor
US10937542B1 (en) 2020-09-18 2021-03-02 Vent Creativity Corporation Patient specific treatment planning
CN112807136B (zh) * 2020-11-17 2022-01-25 山东协和学院 采用材料汲取的自动化义肢塑膜系统
CN112807137B (zh) * 2020-11-19 2021-11-09 温岭市山市金德利电器配件厂 基于外形分析的断臂模具定制平台
US20220183758A1 (en) * 2020-12-14 2022-06-16 Zimmer, Inc. Patient-specific orthopedic implants and procedures using bone density
US20240065845A1 (en) * 2020-12-22 2024-02-29 Healthhub Co.,Ltd. Cervical artificial disc and method of constructing the same
KR102513806B1 (ko) * 2020-12-31 2023-03-28 주식회사 코렌텍 대퇴스템 설계방법
CN112932745B (zh) * 2021-01-22 2022-12-30 北京科技大学 基于3d打印技术的钛合金骨缺损支架制备系统
CN113143432B (zh) * 2021-04-14 2022-05-31 常州工程职业技术学院 基于对侧骨骼外形匹配的个性化接骨板设计方法
WO2023023771A1 (en) * 2021-08-25 2023-03-02 3Dmorphic Pty Ltd A method and medical implant
US11957589B2 (en) 2021-08-27 2024-04-16 Acumed Llc Non-patient-specific craniofacial implants for correcting and/or preventing temporal or pterional deformities
CA3231121A1 (en) * 2021-09-30 2023-04-06 Brian R. Harris Systems and methods of using photogrammetry for intraoperatively aligning surgical elements
US11410769B1 (en) 2021-12-08 2022-08-09 Vent Creativity Corporation Tactile solutions integration for patient specific treatment
US11443838B1 (en) 2022-02-23 2022-09-13 Carlsmed, Inc. Non-fungible token systems and methods for storing and accessing healthcare data
WO2023196716A1 (en) * 2022-04-06 2023-10-12 Howmedica Osteonics Corp. Multi-atlas alignment and sizing of orthopedic implants
JP7141779B1 (ja) * 2022-05-10 2022-09-26 国立大学法人東北大学 装着体設計支援装置、装着体設計支援方法、及び、装着体設計支援プログラム
CN114939009B (zh) * 2022-06-07 2023-05-16 北京纳通医学研究院有限公司 股骨柄假体系统和髋关节假体
KR20240010278A (ko) 2022-07-15 2024-01-23 주식회사 인터메디 정형 외과용 맞춤형 임플란트의 후가공을 위한 지그 및 그 제작 방법
WO2024044169A1 (en) * 2022-08-24 2024-02-29 Think Surgical, Inc. Method for determining optimal bone resection
US11806241B1 (en) 2022-09-22 2023-11-07 Carlsmed, Inc. System for manufacturing and pre-operative inspecting of patient-specific implants
WO2024064867A1 (en) * 2022-09-23 2024-03-28 Montefiore Medical Center Generating image data for three-dimensional topographical volumes, including dicom-compliant image data for surgical navigation
US11793577B1 (en) 2023-01-27 2023-10-24 Carlsmed, Inc. Techniques to map three-dimensional human anatomy data to two-dimensional human anatomy data
CN115969581B (zh) * 2023-03-17 2023-05-30 四川大学 用于颌骨增量的堆叠式超薄预成骨片套件及其使用方法
CN116452755B (zh) * 2023-06-15 2023-09-22 成就医学科技(天津)有限公司 一种骨骼模型构建方法、系统、介质及设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002543860A (ja) 1999-05-11 2002-12-24 ドライ デー アイ ゲーエムベーハー 患者に固有のインプラントを作り出す方法
WO2012123029A1 (en) 2011-03-17 2012-09-20 Brainlab Ag Method for preparing the reconstruction of a damaged bone structure

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871548A (en) * 1996-12-07 1999-02-16 Johnson & Johnson Professional, Inc. Modular acetabular reinforcement system
US9020788B2 (en) * 1997-01-08 2015-04-28 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US8234097B2 (en) * 2001-05-25 2012-07-31 Conformis, Inc. Automated systems for manufacturing patient-specific orthopedic implants and instrumentation
US8556983B2 (en) * 2001-05-25 2013-10-15 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
US8480754B2 (en) * 2001-05-25 2013-07-09 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US8781557B2 (en) 1999-08-11 2014-07-15 Osteoplastics, Llc Producing a three dimensional model of an implant
US9421074B2 (en) * 2001-04-13 2016-08-23 Orametrix, Inc. Unified three dimensional virtual craniofacial and dentition model and uses thereof
US20130211531A1 (en) 2001-05-25 2013-08-15 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
EP1638459A2 (en) 2003-06-11 2006-03-29 Case Western Reserve University Computer-aided-design of skeletal implants
JP4507097B2 (ja) * 2005-03-24 2010-07-21 国立大学法人大阪大学 形態評価と機能評価の最適バランスに基づくインプラント三次元手術計画システム
US20100249790A1 (en) * 2009-03-26 2010-09-30 Martin Roche System and method for soft tissue tensioning in extension and flexion
US8070752B2 (en) 2006-02-27 2011-12-06 Biomet Manufacturing Corp. Patient specific alignment guide and inter-operative adjustment
US8608749B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US7967868B2 (en) 2007-04-17 2011-06-28 Biomet Manufacturing Corp. Patient-modified implant and associated method
FR2898501B1 (fr) 2006-03-15 2008-05-30 Obl Sa Implant prothetique temporo-mandibulaire, et procede de fabrication correspondant.
US8214016B2 (en) 2006-12-12 2012-07-03 Perception Raisonnement Action En Medecine System and method for determining an optimal type and position of an implant
US8014984B2 (en) * 2007-03-06 2011-09-06 The Cleveland Clinic Foundation Method and apparatus for preparing for a surgical procedure
AU2008250951B2 (en) * 2007-05-14 2014-06-05 Queen's University At Kingston Patient-specific surgical guidance tool and method of use
JP5755445B2 (ja) * 2007-07-11 2015-07-29 スミス アンド ネフュー インコーポレーテッド 股関節手術中にピン配置を決定するための方法及び装置
US8554573B2 (en) * 2007-07-27 2013-10-08 Koninklijke Philips N.V. Interactive atlas to image registration
CA2882265C (en) 2007-08-17 2017-01-03 Zimmer, Inc. Implant design analysis suite
US10582934B2 (en) * 2007-11-27 2020-03-10 Howmedica Osteonics Corporation Generating MRI images usable for the creation of 3D bone models employed to make customized arthroplasty jigs
US8160345B2 (en) * 2008-04-30 2012-04-17 Otismed Corporation System and method for image segmentation in generating computer models of a joint to undergo arthroplasty
US8221430B2 (en) 2007-12-18 2012-07-17 Otismed Corporation System and method for manufacturing arthroplasty jigs
US8311306B2 (en) 2008-04-30 2012-11-13 Otismed Corporation System and method for image segmentation in generating computer models of a joint to undergo arthroplasty
US8644568B1 (en) * 2008-07-25 2014-02-04 O.N.Diagnostics, LLC Automated patient-specific bone-implant biomechanical analysis
US8126234B1 (en) 2008-07-25 2012-02-28 O.N.Diagnostics, LLC Automated patient-specific bone-implant biomechanical analysis
US8078440B2 (en) * 2008-09-19 2011-12-13 Smith & Nephew, Inc. Operatively tuning implants for increased performance
EP2370939A1 (en) * 2008-12-02 2011-10-05 Zimmer, Inc. Mass production of individualized medical devices
US20220087827A1 (en) * 2009-02-24 2022-03-24 Conformis, Inc. Patient-Adapted and Improved Articular Implants, Designs and Related Guide Tools
WO2010099359A1 (en) 2009-02-25 2010-09-02 Mohamed Rashwan Mahfouz Customized orthopaedic implants and related methods
CA2831458C (en) * 2009-02-25 2018-06-05 Zimmer, Inc. Customized orthopaedic implants and related methods
US8457930B2 (en) * 2009-04-15 2013-06-04 James Schroeder Personalized fit and functional designed medical prostheses and surgical instruments and methods for making
GB0922640D0 (en) 2009-12-29 2010-02-10 Mobelife Nv Customized surgical guides, methods for manufacturing and uses thereof
GB201001985D0 (en) 2010-02-05 2010-03-24 Materialise Nv Guiding instruments and impactors for an acetabular cup implant, combinations therof, methods for manufacturing and uses thereof
EP2558011A4 (en) * 2010-04-14 2017-11-15 Smith & Nephew, Inc. Systems and methods for patient- based computer assisted surgical procedures
US8532806B1 (en) * 2010-06-07 2013-09-10 Marcos V. Masson Process for manufacture of joint implants
AU2011266778B2 (en) * 2010-06-16 2014-10-30 A2 Surgical Method of determination of access areas from 3D patient images
US20130144135A1 (en) * 2011-08-02 2013-06-06 Mohamed R. Mahfouz Method and apparatus for three dimensional reconstruction of a joint using ultrasound
CA2816339C (en) * 2010-10-29 2020-09-15 The Cleveland Clinic Foundation System of preoperative planning and provision of patient-specific surgical aids
US20120276509A1 (en) * 2010-10-29 2012-11-01 The Cleveland Clinic Foundation System of preoperative planning and provision of patient-specific surgical aids
BE1019572A5 (nl) * 2010-11-10 2012-08-07 Materialise Nv Geoptimaliseerde methoden voor de productie van patientspecifieke medische hulpmiddelen.
KR101251580B1 (ko) 2010-12-23 2013-04-08 주식회사 코렌텍 주문형 인공 고관절용 비구컵 제작방법
US8391573B2 (en) 2011-03-09 2013-03-05 General Electric Company Method and apparatus for motion correcting medical images
EP2514373B1 (en) 2011-04-21 2013-12-04 Episurf IP Management AB Guide tool for cartilage repair
US8641721B2 (en) * 2011-06-30 2014-02-04 DePuy Synthes Products, LLC Customized patient-specific orthopaedic pin guides
RU2014101264A (ru) * 2011-07-20 2015-08-27 Смит Энд Нефью, Инк. Системы и способы оптимизации подбора имплантата соответственно анатомическим характеристикам
US8597365B2 (en) * 2011-08-04 2013-12-03 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US20140257508A1 (en) * 2011-10-14 2014-09-11 Conformis, Inc. Methods and Systems for Identification, Assessment, Modeling and Repair of Anatomical Disparities in Joint Replacement
EP3451298A3 (en) 2011-12-14 2019-06-05 Stryker European Holdings I, LLC Technique for generating a bone plate design
EP2797542B1 (en) * 2011-12-30 2019-08-28 MAKO Surgical Corp. Systems and methods for customizing interactive haptic boundaries
US8983807B2 (en) * 2012-01-26 2015-03-17 Howmedica Osteonics Corp. Method for designing a bone morphology based hip system
US20140188240A1 (en) * 2012-02-07 2014-07-03 Conformis, Inc. Methods and devices related to patient-adapted hip joint implants
EP2852348B1 (en) * 2012-05-22 2019-08-28 Mako Surgical Corp. Soft tissue cutting instrument
WO2014036551A1 (en) * 2012-08-31 2014-03-06 Smith & Nephew, Inc. Patient specific implant technology
US9396395B2 (en) * 2012-09-07 2016-07-19 Hitachi Medical Corporation Image processing apparatus and image processing method, configured to apply threshold conditions to specify target pixel
KR102162952B1 (ko) * 2012-09-18 2020-10-07 씽크 써지컬, 인크. 정형 외과 응용들에서의 정합을 위한 시스템 및 방법
US9839438B2 (en) * 2013-03-11 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US20160045317A1 (en) * 2013-03-15 2016-02-18 Conformis, Inc. Kinematic and Parameterized Modeling for Patient-Adapted Implants, Tools, and Surgical Procedures
EP3019542B1 (en) 2013-07-08 2017-07-05 INEOS Styrolution Group GmbH Mono vinyl aromatic conjugated diene block copolymer and polymer composition comprising said block copolymer and a mono vinylarene acrylate copolymer
JP6549567B2 (ja) 2013-10-15 2019-07-24 ラシュワン マフホウズ,モハメド 骨再建及び整形外科インプラント
US20230165482A1 (en) * 2013-12-09 2023-06-01 Mohamed R. Mahfouz Methods of creating a patient-specific bone plate
JP2017183217A (ja) 2016-03-31 2017-10-05 イビデン株式会社 セラミックヒーター
JP2019120204A (ja) 2018-01-09 2019-07-22 株式会社Subaru エンジン制御装置
JP6554566B2 (ja) 2018-01-10 2019-07-31 三久建材工業股▲ふん▼有限公司 防水ゲートドア直接押圧圧着水密装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002543860A (ja) 1999-05-11 2002-12-24 ドライ デー アイ ゲーエムベーハー 患者に固有のインプラントを作り出す方法
WO2012123029A1 (en) 2011-03-17 2012-09-20 Brainlab Ag Method for preparing the reconstruction of a damaged bone structure

Also Published As

Publication number Publication date
JP2024014914A (ja) 2024-02-01
US20240033096A1 (en) 2024-02-01
AU2023226767A1 (en) 2023-09-28
EP4293450A2 (en) 2023-12-20
JP2018029982A (ja) 2018-03-01
KR102037281B1 (ko) 2019-10-28
EP3569199B1 (en) 2023-11-22
AU2020294241A1 (en) 2021-01-28
JP2021168986A (ja) 2021-10-28
JP2016537065A (ja) 2016-12-01
US11813165B2 (en) 2023-11-14
AU2021232699A1 (en) 2021-10-07
AU2021277728B2 (en) 2023-07-27
JP6833912B2 (ja) 2021-02-24
US11951009B2 (en) 2024-04-09
JP7382747B2 (ja) 2023-11-17
JP2021168987A (ja) 2021-10-28
KR20160091322A (ko) 2016-08-02
US20150328004A1 (en) 2015-11-19
EP3057537B1 (en) 2019-06-12
JP6549667B2 (ja) 2019-07-24
CN105792781A (zh) 2016-07-20
JP6549567B2 (ja) 2019-07-24
JP2019188196A (ja) 2019-10-31
US20230157829A1 (en) 2023-05-25
AU2018253490B9 (en) 2019-09-05
AU2018253490A1 (en) 2018-11-15
JP2021183150A (ja) 2021-12-02
AU2014337339A1 (en) 2016-05-05
AU2014337339B2 (en) 2018-07-26
KR20200079556A (ko) 2020-07-03
US20210106427A1 (en) 2021-04-15
JP7384866B2 (ja) 2023-11-21
US11426281B2 (en) 2022-08-30
AU2022241596A1 (en) 2022-10-27
CN111991122B (zh) 2024-04-09
JP2023029916A (ja) 2023-03-07
EP3057537A1 (en) 2016-08-24
EP3057537A4 (en) 2017-06-28
CN116459045A (zh) 2023-07-21
CA2927549C (en) 2020-11-03
AU2021277728A1 (en) 2021-12-23
CA3175298A1 (en) 2015-04-23
KR20190121889A (ko) 2019-10-28
EP4134046A1 (en) 2023-02-15
KR102407868B1 (ko) 2022-06-10
AU2019257418B2 (en) 2021-09-02
KR20200119914A (ko) 2020-10-20
WO2015057898A1 (en) 2015-04-23
AU2023226765A1 (en) 2023-09-28
AU2022241596B2 (en) 2023-06-08
JP2021176573A (ja) 2021-11-11
ES2971829T3 (es) 2024-06-07
EP3569199A1 (en) 2019-11-20
US20230380977A1 (en) 2023-11-30
JP2019195649A (ja) 2019-11-14
AU2021232699A8 (en) 2021-10-28
KR102127424B1 (ko) 2020-06-26
AU2020294241B2 (en) 2022-07-14
US20210106428A1 (en) 2021-04-15
CN111991122A (zh) 2020-11-27
AU2018253490B2 (en) 2019-08-22
CA3092713A1 (en) 2015-04-23
EP4293450A3 (en) 2024-03-13
AU2021232699B2 (en) 2022-12-15
JP2021176574A (ja) 2021-11-11
ES2735018T3 (es) 2019-12-13
CA2927549A1 (en) 2015-04-23
AU2019257418A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
JP7384866B2 (ja) 骨再建及び整形外科インプラント
JP2016537065A5 (ko)

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant