KR102317834B1 - 하전 입자선 장치 - Google Patents

하전 입자선 장치 Download PDF

Info

Publication number
KR102317834B1
KR102317834B1 KR1020190083621A KR20190083621A KR102317834B1 KR 102317834 B1 KR102317834 B1 KR 102317834B1 KR 1020190083621 A KR1020190083621 A KR 1020190083621A KR 20190083621 A KR20190083621 A KR 20190083621A KR 102317834 B1 KR102317834 B1 KR 102317834B1
Authority
KR
South Korea
Prior art keywords
detection surface
sample
charged particle
particle beam
drive mechanism
Prior art date
Application number
KR1020190083621A
Other languages
English (en)
Other versions
KR20200012738A (ko
Inventor
슌스케 미즈타니
šœ스케 미즈타니
유우지 가사이
미노루 야마자키
마코토 스즈키
Original Assignee
주식회사 히타치하이테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 히타치하이테크 filed Critical 주식회사 히타치하이테크
Publication of KR20200012738A publication Critical patent/KR20200012738A/ko
Application granted granted Critical
Publication of KR102317834B1 publication Critical patent/KR102317834B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/145Combinations of electrostatic and magnetic lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/024Moving components not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20221Translation
    • H01J2237/20235Z movement or adjustment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2446Position sensitive detectors
    • H01J2237/24465Sectored detectors, e.g. quadrants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

[과제] 본 개시는 단(短)WD 설정에 의한 고분해능화와 장(長)WD 설정시의 검출 효율의 향상의 양립 가능한 하전 입자선 장치의 제공을 목적으로 한다.
[해결 수단] 상기 목적을 달성하기 위한 일 태양으로서, 하전 입자원으로부터 방출된 하전 입자빔을 수속(收束)하는 대물 렌즈(7)와, 상기 하전 입자빔의 조사(照射) 대상인 시료를, 제1 위치와, 당해 제1 위치보다 상기 대물 렌즈로부터 이간(離間)한 제2 위치 사이에서 이동시키는 제1 구동 기구를 갖는 시료대(9)와, 상기 시료로부터 방출된 하전 입자를 검출하는 검출면(10)과, 당해 검출면을 상기 제1 위치와 상기 제2 위치 사이의 상기 시료의 가동 범위 내와, 당해 시료의 가동 범위 외 사이에서 이동시키는 제2 구동 기구(16)를 구비한 하전 입자선 장치를 제안한다.

Description

하전 입자선 장치{CHARGED PARTICLE BEAM DEVICE}
본 개시는, 시료에 하전 입자빔을 조사(照射)함으로써, 시료로부터 방출되는 하전 입자를 검출하는 하전 입자선 장치에 관한 것으로, 특히, 하전 입자빔 광축에 대하여, 어떤 상대 각도 방향으로 방출되는 하전 입자를 검출하는 하전 입자선 장치에 관한 것이다.
하전 입자선 장치의 일 태양인 주사 전자 현미경은, 시료에 전자빔을 조사하여 시료로부터 방출되는 신호 전자를 검출함으로써, 화상을 생성하는 장치이다. 시료로부터 방출되는 신호 전자 중, 수 eV인 낮은 에너지를 가지는 것이 이차 전자, 조사 전자빔과 동등(수 keV)한 에너지를 가지는 것이 후방 산란 전자(반사 전자)라고 불려 구별되고 있다.
이들 전자는 발생 원리가 달라, 시료에 관하여 다른 정보를 가지고 있는 것이 알려져 있다. 주사 전자 현미경은 이들 신호 전자를 선택적으로 검출함으로써 다양한 정보를 취득한다. 특허문헌 1에는, 시료로부터 방사 형상으로 퍼지는 반사 전자를 고효율로 검출하기 위해, 대물 렌즈 자로(磁路)와 시료 사이에, 구동 기구를 가지는 검출기가 배치되는 전자 현미경이 개시되어 있다. 또한, 특허문헌 2에는, 대물 렌즈의 초점 거리(WD)를 짧게 하여 분해능을 향상시키기 때문에, 대물 렌즈 자로 하면(下面)에 검출면을 가지는 구성이 개시되어 있다.
일본국 특개평9-35679호 공보 일본국 특개소58-18851호 공보
다양한 재료·구조로 구성되는 시료를 관찰할 경우에는, 분해능의 향상과 다양한 시료 정보의 취득이 필요하다. 고분해능화에는 일반적으로 대물 렌즈의 초점 거리(워킹 디스턴스: WD)를 짧게 하는 것이 유효하다. 또한 다양한 정보의 취득에는, 조사 전자빔의 에너지(가속 전압)를 바꾸어 신호 전자를 변별하여 검출하는 것이 유효하다. 예를 들면 시료 최표면의 형상 관찰에는 저가속 전압에 의한 이차 전자의 검출이, 시료의 하층에 묻힌 재료 관찰에는 고가속 전압에 의한 반사 전자의 검출이 적합하다.
넓은 가속 전압의 설정 범위를 가지는 장치에 있어서, WD를 일정하게 유지하는 것은 어렵다. 고가속 전압에서는 전자의 수속(收束)에 필요한 렌즈 강도가 커진다. 자장형(磁場型) 대물 렌즈에서는 렌즈 자로의 자기(磁氣) 포화에 의해, 수속에 필요한 자장 강도를 얻을 수 없다. 그 때문에, 저가속 전압과 비교하여 WD를 길게 하여 관찰하는 것이 바람직하다. 한편으로 WD를 늘리면 시료로부터 경사지게 방출되는 반사 전자가 대물 렌즈의 누설 자장에 의해 회전 작용을 받아, 시료 방향으로 리턴되는 「리턴 전자」의 수가 늘어난다.
특허문헌 1에는 반사 전자가 회전 작용을 받아 시료로 리턴되기 전에 검출하기 위한 검출기의 구성이 나타나 있다. 그러나 이 구성에서는, 시료와 대물 렌즈 사이에 검출기를 도입하기 위한 공간을 마련할 필요가 있기 때문에, 단(短)WD화에 의거하는 고분해능화의 실현이 곤란하다. 특허문헌 2에 개시된 구성에서는, 장(長)WD로 했을 때에 전자의 검출면과, 방출 전자의 발생원인 시료 상의 빔의 조사점 사이의 거리가 길어지므로, 검출 효율이 저하된다.
이하에, 단WD 설정에 의한 고분해능화와 장WD 설정시의 검출 효율의 향상의 양립을 목적으로 하는 하전 입자선 장치를 제안한다.
상기 목적을 달성하기 위한 일 태양으로서, 하전 입자원으로부터 방출된 하전 입자빔을 수속하는 대물 렌즈와, 상기 하전 입자빔의 조사 대상인 시료를, 제1 위치와, 당해 제1 위치보다 상기 대물 렌즈로부터 이간(離間)한 제2 위치 사이에서 이동시키는 제1 구동 기구를 갖는 시료대와, 상기 시료로부터 방출된 하전 입자를 검출하는 검출면과, 당해 검출면을 상기 제1 위치와 상기 제2 위치 사이의 상기 시료의 가동 범위 내와, 당해 시료의 가동 범위 외 사이에서 이동시키는 제2 구동 기구를 구비한 하전 입자선 장치를 제안한다.
상기 구성에 의하면, 단WD 설정에 의한 고분해능화와 장WD 설정시의 검출 효율의 향상의 양립이 가능해진다.
도 1은 자로 갭간에 신호 전자 검출면을 가지는 주사 전자 현미경의 개략도.
도 2는 장WD 조건에 있어서의 반사 전자의 궤도 모식도.
도 3은 WD와 검출면 위치의 관계와 구동 기구를 나타내는 개략도.
도 4는 분할 검출면의 배치의 일례를 나타내는 도면.
도 5는 분할 가동 검출면의 구성과 이동 방향을 나타내는 도면.
도 6은 시료대와 검출기의 위치의 제어 신호의 구성을 나타내는 도면.
도 7은 구멍이 뚫린 자로에 지지 부재를 통과시켜, 검출면이 가동하는 구성을 나타내는 모식도.
도 8은 검출면 높이 구동에 의한 신호 전자의 검출 각도 제어를 나타내는 모식도.
도 9는 검출면과 지지 부재가 대물 렌즈 자로 아래를 통과할 경우의 모식도.
도 10은 검출면을 자로 하면을 따른 홈을 따라 삽입하는 구성의 모식도.
도 11은 검출면이 회전 운동에 의해 삽입될 경우의 모식도.
도 12는 검출면을 복수 가질 경우의 모식도.
도 13은 시료대에 인가된 전압에 의한 위치 조정 방법을 나타내는 모식도.
도 14는 검출면에 인가된 전압에 의한 위치 조정 방법을 나타내는 모식도.
도 15는 전자 현미경상에 의한 위치 조정 방법을 나타내는 모식도.
도 16은 시료로부터 방출된 전자를 검출하는 검출면이 대물 렌즈의 렌즈 갭에 수용된 상태와, 렌즈 갭 외의 시료에 근접한 위치에 위치 부여되어 있는 상태를 나타내는 도면.
도 17은 검출기 이동용 구동 기구를 상하로 이동시키는 이동 기구를 구비한 주사 전자 현미경의 일례를 나타내는 도면.
도 18은 검출면의 위치 결정을 행하기 위한 가이드 구멍이 마련되어 있는 대물 렌즈의 구성을 나타내는 도면.
도 19는 장치 조건을 설정하는 GUI 화면의 일례를 나타내는 도면.
도 20은 시료의 이동 범위와 검출면의 이동 범위와의 관계를 나타내는 도면.
도 21은 검출면의 위치 맞춤 공정을 나타내는 플로우 차트.
도 22는 시료 전위를 변화시켰을 때의 화상의 어긋남으로부터, 검출면의 개구 중심과 광축이 일치하는 검출면 위치를 특정할 수 있는 원리를 설명하는 도면.
도 23은 검출면을 이동시키는 구동 기구로서 리니어 모터를 채용한 예를 나타내는 도면.
이하에 설명하는 실시예에서는, 예를 들면, 하전 입자원으로부터 방출된 하전 입자선을 수속하는 대물 렌즈와, 시료로부터 방출된 하전 입자를 검출하는 검출기와, 높이 방향으로 구동하는 시료를 유지하는 시료대를 구비한 하전 입자선 장치로서, 상기 대물 렌즈는, 전자 코일 및 상기 전자 코일을 둘러싸는 자로를 갖고, 상기 시료 표면에 가장 가까운 상기 자로면보다도 상기 시료 표면으로부터 떨어진 위치와, 상기 시료대의 높이가 변화했을 때에 상기 시료 표면과의 거리를 일정하게 유지하면서 구동하는 검출면을 갖는 하전 입자선 장치에 대해서 설명한다. 이러한 구성에 의하면, 가속 전압에 따라 변화하는 WD에 상관없이, 동등한 검출 효율을 유지하는 것이 가능해진다.
하전 입자선 장치의 일종인 주사 전자 현미경의 용도의 하나로, 반도체 디바이스의 완성도 평가가 있다. 반도체 디바이스의 구조는 미세화, 3D화가 진행되고 있으며, 반도체 디바이스 메이커가 요구하는 평가값이 다양화되고 있다.
전자빔을 시료에 조사하면, 전자와 시료의 상호작용에 의해 다양한 에너지를 가진 신호 전자가 다양한 방향으로 출사(出射)된다. 신호 전자는, 출사 에너지와 출사 각도에 따라 시료에 관한 다른 정보를 가지고 있어, 신호 전자의 변별 검출이, 다양한 계측에 불가결하다.
일반적으로, 50eV 이하의 에너지로 출사되는 신호 전자를 이차 전자, 그보다도 크고, 전자빔의 에너지에 가까운 에너지로 출사되는 신호 전자를 반사 전자라고 하여 구별한다. 이차 전자는 시료의 최표면 형상이나 전위 포텐셜에 민감하며, 디바이스 구조의 패턴 폭의 계측에 유효하다. 또한 반사 전자는 시료의 조성이나 입체 형상의 정보를 포함하고 있어, 3D 구조의 저부(底部)나 하층의 조성의 차이 등의 정보를 얻을 수 있다.
또한, 이하의 설명에서는 시료로부터 방출되는 전자의 출사 각도에 대해서, 전자빔의 광축 방향을 90도로 정의한다. 출사 각도에 따라 90도 부근을 고각, 45도 부근을 중각, 0도 부근을 저각 반사 전자로 정의한다. 반사 전자의 방출 분포는 중각 방향에 가장 많고, 고각·저각 방향에 적은, 코사인 분포인 것이 알려져 있다.
이하에, 고분해능화와 신호 전자 검출의 고효율화의 양립을 실현하는 주사 전자 현미경에 대해서 설명한다. 구체적으로는, 다양한 가속 전압이나 WD에 따라, 검출기를 시료면과의 거리를 일정하게 유지하도록 가동하고, 단WD시에는 자로간에 저장됨으로써 고분해능화와 신호 전자의 고효율 검출을 양립하는 주사 전자 현미경에 대해서 설명한다.
이하에 설명하는 실시예에서는, 예를 들면, 일차 하전 입자선(전자빔)을 발생시키는 하전 입자선원과, 상기 하전 입자선을 시료 상에 수속시키는 자장형 대물 렌즈와, 상기 일차 하전 입자선을 상기 시료 상에서 편향하기 위한 편향기와, 상기 시료를 x, y, z의 3축으로 가동할 수 있는 시료대를 갖고, 상기 대물 렌즈와 상기 시료대의 거리가 가까울 경우에 검출면은 상기 대물 렌즈 자로의 갭 사이에 배치되고, 상기 대물 렌즈와 상기 시료대의 거리가 멀 경우에, 상기 시료 표면과 상기 검출면의 거리가 일정하게 유지되도록 상기 검출면이 가동하는 하전 입자선 장치에 대해서 설명한다.
이하에 도면을 이용하여, 주사 전자 현미경의 개요에 대해서 설명한다.
[실시예 1]
도 1은 주사 전자 현미경의 개요를 나타내는 도면이다. 진공 환경인 전자 현미경 경통(1)의 내부에, 전자원(2)이 배치되어 있고, 전자원(2)으로부터 방출된 일차 전자선(전자빔)은, 일차 전자선 광축(3)을 따라 비행한다. 대물 렌즈 코일(6)과 대물 렌즈 코일(6)을 둘러싸는 외측 자로(7), 내측 자로(8)에 의해 구성되는 대물 렌즈 자장에 의해 시료대(9) 상에 유지된 시료에 수속된다. 또한 편향기(5)에 의해 시료 위를 이차원 주사하여 전자 현미경상을 얻는다. 고분해능화를 달성하는 일반적인 대물 렌즈 구성인 세미 인 렌즈형은 대물 렌즈 자로(7)와 렌즈 내측 자로(8) 사이에 갭부를 갖는다. 대물 렌즈의 초점 거리는, 내측 자로(8) 하면과 시료 표면까지의 거리로서 정의하고, 그 거리를 워킹 디스턴스(WD)(4)라고 한다.
시료를 유지하는 시료대(9)는 구동 기구에 의해 x, y의 평면 내와 z의 높이 방향으로 구동하고, WD(4)를 시료대(9)의 높이에 따라 바꾼다. 반도체 웨이퍼와 같이, x-y 방향의 면적이 큰 시료를 대상으로 할 경우, x-y 방향의 구동에는 예를 들면 리니어 모터를 구동원으로 하는 구동 기구를 채용하고, 큰 이동을 필요로 하지 않는 z 방향의 이동에는 예를 들면 피에조 액츄에이터를 구동원으로 하는 구동 기구를 채용하면 된다.
시료대(9)에는 음전압이 인가되어 있고, 일차 전자선은 방출 후의 가속 전압에 의해 얻어지는 에너지보다도 낮은 에너지로 시료에 조사된다. 시료로부터 방출된 신호 전자는, 대물 렌즈 자장이나 시료대(9)에 인가된 음전압의 영향을 받으면서, 출사 에너지와 출사 각도에 따른 궤도를 가진다. 검출면(10)은, 시료로부터 거리(11) 떨어진 위치에 배치되고, 거리(11)는 WD(4)와 같거나 또는 보다 길다. 또한 검출면(10)은 대물 렌즈 자로의 갭부 혹은 외측 자로(7)나 내측 자로(8)의 시료측의 면에 배치된다. 검출면(10)에 의해 신호 전자를 검출한다.
제어 장치(101)는, 가속 전극, 주사용의 편향기, 및 각 렌즈 등의 광학 소자, 시료대(9)에 내장된 구동 기구나 검출기의 위치를 조정하는 구동 기구 등을, 미리 기억 매체(103)에 기억된 동작 프로그램(레시피)에 따라서 제어한다. 동작 프로그램은 예를 들면 입력 장치(104)로부터 입력된 동작 조건에 따라 설정할 수도 있다. 제어 장치(101)는, 레시피에 기술된 명령 세트에 의거하여 연산이나 제어를 실행한다. 프로세서(102)는, 기억 매체(103)에 기억된 소프트웨어 프로그램에 기술된 명령 세트를 실행하기 위해 탑재되어 있다.
상기 검출면(10)은 WD(4)에 따라 위치를 변경하는 것이 바람직하다. 도 2의 (a)에 WD(4)가 길 경우의 반사 전자의 궤도 모식도를 나타낸다. 고각 반사 전자는 궤도(12)와 같이 비행하고, 전자 현미경 경통 내부에 침입한다. 중각에 가까운 고각반사 전자는 궤도(13)와 같이 비행하고, 내측 자로(8)의 선단부에 충돌한다. 중각으로부터 저각의 반사 전자는 궤도(14)와 같이 비행하고, 시료로 리턴된다. 또한, 본 실시예에서는, 다른 반사 전자에 대하여, 상대적으로 빔의 광축에 가까운 방향을 향하는 반사 전자를 고각 반사 전자라고 칭하고, 시료 표면과 평행한 방향에 가까운 방향을 향하는 반사 전자를 저각 반사 전자라고 칭한다. 또한, 궤도(14)와 같은 궤도에서 시료로 리턴되는 전자를 리턴 전자라고 호칭한다.
도 2의 (b)는 발생한 반사 전자 중, 궤도(12∼14)를 취하는 비율을 나타낸 그래프이다. 어떤 광학 조건에 있어서는 반사 전자의 약 70%가 리턴 전자가 되어 검출할 수 없다. 또한 리턴 전자는 외측 자로(7)나 내측 자로(8)와 시료 사이의 공간 내에서 시료로 리턴되는 궤도를 가지기 때문에, 반사 전자의 고효율 검출에는, 거리(11)를 짧게 해야만 한다.
도 3에 WD(4)의 변화에 수반하여 검출면(10)을 이동시키는 이동 기구의 개략도를 나타낸다. 도 3의 (a)에 WD(4)가 짧을 경우의 배치를, 도 3의 (b)에 WD(4)가 길 경우의 배치를 나타낸다. 검출면(10)은 지지 부재(15)에 의해 유지된다. 대물 렌즈 코일(6)이 있는 외측 자로(7)로 둘러싸인 공간을 대기압으로 하기 때문에 진공 밀봉 부재(17)가 외측 자로(7)에 배치되어 있다. 지지 부재(15)는 진공 밀봉 부재(17)를 관통하도록 배치되고, 대기압 공간에 구동 기구를 갖는다. 구동 기구(16)에 의해 검출면(10)을 높이 방향으로 이동하고, WD(4)의 변화에 수반하여 검출면(10)을 이동한다. 그때, 검출면(10)이 검출면 거리(11)를 유지하도록 구동한다. 이 구성에 의해, WD(4)에 의존하지 않고 신호 전자의 방출 각도에 대하여 같은 화각(angle of view)으로 검출을 할 수 있다.
검출면(10)을 구비하는 검출기는, 신호 전자를 전기 신호로 변환하는 반도체 검출기나, 신호 전자를 광으로 변환하고, 그 광을 검출하여 전기 신호로 변환하는 ET형 검출기가 이용된다. 공간적으로 좁으므로 1부품으로 구성할 수 있는 반도체 검출기는 유효한 검출기이다.
한편으로 반도체 디바이스의 평가 장치와 같이 사용될 경우에는 스루풋이 요구되기 때문에, 고발광 강도, 고속 응답성의 관점에서 ET형 검출기를 이용하는 것도 유효하다. ET형 검출기의 경우, 전자를 광으로 변환하는 신틸레이터는, 하전 입자의 입사(入射)에 의해 발광하는 물질이면, YAP나 YAG 등의 단결정이어도 되고, P47 등의 분체, GaN계의 다층 박막 구조체 등이어도 된다.
광의 검출에는 예를 들면 광전자 증배관(PMT), 포토 다이오드, Si-PM 등을 이용할 수 있다. 단, 대물 렌즈 자장 내에 배치되기 때문에, 외부 자장의 영향을 받기 어려운 포토 다이오드나 Si-PM이 적합하다. 광검출 소자까지의 도광(道光)은 라이트 가이드나 광파이버를 이용할 수도 있지만, 신틸레이터에 광검출 소자를 설치하여, 라이트 가이드 등의 도광 부재를 이용하지 않는 구성도 있을 수 있다. 도광 부재를 이용할 경우에는 도광 부재가 지지 부재(15)를 겸함으로써 검출기를 소형화한다.
구동 기구는 볼 나사와 같이 지지 부재(15) 그 자체가 구동 기구가 되는 것이어도, 모터와 같이, 지지 부재(15)를 송출하는 구동 기구여도 된다. 특히 높은 자장 중에 이용하는 것이 상정된 비(非)자성 초음파 모터가 유효하다.
도 3에 예시하는 구동 기구를 구비한 검출기에 의하면, 필요에 따라 검출면(검출기)을 대물 렌즈의 렌즈 갭(내측 자로와 외측 자로 사이에 마련된 갭으로서, 누설 자장이 발생하는 부위)에 수용할 수 있기 때문에, 설정되는 가속 전압에 따라, 적절한 장치 조건을 설정하는 것이 가능해진다. 구체적으로는, 저가속 전압 설정시의 장치의 고분해능화와, 고가속 전압 설정시의 전자의 고효율 검출의 양립을 실현하는 것이 가능해진다.
저가속 전압 설정시에는, 분해능을 우선하여 검출면을 렌즈 갭에 수용함과 함께, 시료를 대물 렌즈에 근접시키도록 스테이지의 z 구동 기구를 제어하고, 고가속 전압 설정시에는, 대물 렌즈에 의해 집속(集束)되는 빔이 시료 표면에서 초점을 맺도록, 저가속 전압 설정시와 비교하여, 시료를 대물 렌즈로부터 멀어지도록 스테이지의 z 구동 기구를 제어함과 함께, 대물 렌즈의 자로 하면보다 하측에 검출면이 위치하도록, 검출면을 지지하는 구동 기구를 제어한다.
본 실시예에서는, 누설 자장을 아래쪽(시료측)을 향하여 누설시키기 위해, 렌즈 갭이 아래쪽을 향하여 개방되어 있는 세미 인 렌즈를 채용하고 있다. 세미 인 렌즈는, 단부(端部)가 빔 광축에 가까운 내측 자극(磁極)(제1 자극)과, 단부가 당해 내측 자극의 단부보다 빔 광축으로부터 이간하여 배치되는 외측 자극(제2 자극)을 구비한 렌즈이며, 내측 자극과 외측 자극 사이에 형성되는 렌즈 갭이 시료면에 대향하게 된다. 그러므로, 상하 방향을 향하여 이동하는 검출면의 이동 궤도와, 단WD 설정시의 검출면을 수용하는 수용부를 확보할 수 있다. 또한, 세미 인 렌즈는, 아래쪽을 향하여 자장을 누설하는 타입의 렌즈이기 때문에, 렌즈 주면(主面)을 시료에 근접시킬 수 있으며, 또한 인 렌즈와 같이 시료가 자로에 포위되어 있지 않으므로, 대형의 시료에도 대응할 수 있다.
또한, 도 3은 검출면(10)이 대물 렌즈의 렌즈 갭에 완전히 수용(검출면이 대물 렌즈 자로의 최하부보다 위쪽(전자원측)에 위치하는 상태) 가능한 구성예를 나타내고 있지만, 이것에 한정하지 않고, 예를 들면 렌즈 갭에 검출면의 일부가 수용되고, 검출면의 다른 부분이 대물 렌즈 자로의 최하부보다 아래쪽에 위치해 있었다고 해도, 그 비수용 부분의 z 방향의 치수가, 설정해야 하는 단WD(저가속 전압 설정시)보다 작으면 된다. 즉, 부분적으로 수용된 상태여도, 저가속 설정시의 단WD와, 고가속 설정시의 검출 효율 향상의 양립을 실현하는 것이 가능해진다.
도 20은 시료대(9)에 실린 시료의 z 방향의 이동 범위와, 검출면(11)의 z 방향의 이동 범위의 관계를 나타내는 도면이다. 도 20에 예시하는 바와 같이, 시료의 z 방향의 가동 범위(시료대를 z 방향으로 이동시키는 제1 구동 기구에 의한 시료의 이동 가능 범위) 내에, 검출면이 도달 가능하도록 시료대와 검출면의 구동 기구(제2 구동 기구)의 가동 범위가 설정되어 있다. 즉, 단WD일 때에는 시료를 대물 렌즈에 근접시키도록 이동함과 함께, 검출면을 시료의 가동 범위로부터 퇴피시키도록 각 구동 기구를 제어한다. 한편으로, 빔의 시료에의 도달 에너지를 상대적으로 높게 설정했을 때에는, 장WD로 하도록 시료대를 이동함과 함께, 검출면을 강하시키도록 각 구동 기구를 제어한다.
이상과 같은 제어를 행함으로써, 상술한 바와 같이 저가속 설정시의 단WD와, 고가속 설정시의 검출 효율 향상의 양립을 실현하는 것이 가능해진다.
도 19는, 입력 장치(104)의 표시 화면 등에 표시되는 GUI(Graphical User Interface) 화면의 일례를 나타내는 도면이다. 제어 장치(101)는, 도 19에 예시하는 GUI 화면으로부터 설정된 시야 사이즈, 빔 에너지, 가속 전압, 시료 전압, 빔 전류, WD, 및 검출기의 위치(본 예의 경우, 시료로부터의 거리) 등의 장치 조건에 의거하여, 각 광학 소자나 구동 기구 등을 제어한다. 도 19의 예에서는, 빔 에너지가 60keV로 설정되어 있다. 빔 에너지(빔의 시료에의 도달 에너지)는, 가속 전극에 인가하는 전압과, 시료 전압의 차분(差分)으로 결정되기 때문에, 빔 에너지의 설정에 의거하여, 기억 매체에 기억된 가속 전압과 시료 전압의 데이터 세트를 판독함으로써, 가속 전압과 시료 전압을 설정해도 되고, 가속 전압과 시료 전압의 설정에 의거하여, 빔 에너지를 간접적으로 설정하도록 해도 된다.
또한, 빔 에너지의 설정에 의거하여, WD를 자동적으로 설정하도록 해도 된다. 빔 에너지에 소정의 임계값을 설정해 두고, 그 임계값을 초과하는 빔 에너지가 설정되었을 경우에, 저가속 전압 설정시와 비교하여, 장WD가 되는 설정을 자동으로 행하는 프로그램을 미리 기억 매체(103)에 기억시켜 두어도 된다. 또한, 빔 에너지와 WD의 관계를 나타내는 테이블, 혹은 연산식을 미리 기억해 두고, 설정된 빔 에너지에 따라, 자동적으로 WD의 조정(시료대의 z 구동 기구의 제어)을 행하는 프로그램을 준비하는 것도 가능하다. 이 경우, 가속 전압이 클수록, WD가 커지는 테이블이나 연산식을 준비한다.
또한, 검출기의 위치를 미리 결정해 둠으로써, 검출기의 위치를 자동적으로 조정하도록 해도 된다. 이 경우, WD의 변화에 추종하여 검출기의 위치를 자동 조정함으로써, 시료와 검출기 사이의 거리를 유지하는 제어를 행하도록 하면 된다.
또한, 저가속 전압 설정에 따라, 자동적으로 단WD 설정과 검출기의 렌즈 갭에의 수납을 행하고, 고가속 전압 설정에 따라, 자동적으로 장WD 설정과, 검출기가 시료에 근접하는 제어를 행하도록 해도 된다.
도 3에 예시하는 구성에 의하면, 고가속 전압 설정, 저가속 전압 설정의 쌍방에 적합한 장치 조건의 설정이 가능해진다.
다음으로, 렌즈 갭에 수납 가능한 검출기의 다른 구성예에 대해서 설명한다. 도 4에 검출면을 분할했을 경우의 배치도를 나타낸다. 도 4의 (a)는 WD(4)가 짧을 경우의 배치도이다. 도 4의 (b)는 WD(4)가 길 경우의 배치도이며, 검출면(10)이 검출면 거리(11)를 유지하면서 이동했을 때에 원환(圓環) 형상을 구성하도록 형상을 결정한다.
도 5에 도 4와 같이 검출면을 분할하여 내경(內徑)을 근접시키는 가동 방식의 구조를 나타낸다. WD(4)가 길 경우에는 넓은 각도 범위에서 반사 전자가 리턴 전자가 되어버리기 때문에, 검출 전자 수를 늘리기 위해서는, 검출면(10)을 일차 전자선 광축(3)에 근접시켜 신호 전자의 방출 각도에 대하여 검출 화각을 크게 하는 것이 유효하다.
예를 들면 도 2의 (b)에 나타나는 내측 자로(8) 선단 충돌 궤도(13)의 중각 반사 전자를 합쳐 검출하는 것이 가능해져, 반사 전자 검출량을 늘릴 수 있다. 도 3도 마찬가지로 지지 부재(15)에서 검출면을 유지하고, 진공 밀봉 부재(17)를 통과하여 구동 기구(16)에서 가동한다. 이때, 방향(18)을 따라 가동함으로써, 검출면 거리(11)의 유지와 내경의 단축을 일축으로 실현한다. 분할된 각 검출면은 구동 기구(16)에 의해 각각 독립적으로 제어되고 위치를 맞춘다.
검출기가 신틸레이터, 라이트 가이드, 광검출 소자로 구성될 경우, 라이트 가이드를 직선 구조로 설계할 수 있어 광의 이용 효율이 향상된다. 또한 광검출 소자를 대기압 공간에 둘 수 있기 때문에, 소자의 실장(實裝)의 관점에서도 유효하다.
도 6을 이용하여 검출면(10)의 제어 방식을 설명한다. 검출면(10)은 지지 부품(15)에 의해 가동한다. 도 5에 나타낸 분할 검출면(10)의 내경을 좁히는 형태의 경우, 방향(18)을 따라 일축으로 동작함으로써 높이와 내경을 바꿀 수 있다. 시료대의 높이를 바꾸는 제어 신호를 검출면의 가동량으로 연산하여 제어함으로써, 검출면 거리(11)의 정밀도를 얻을 수 있다. 또한 방향(18)이 아니라, x, y, z 방향의 3축의 경우도 검출면 위치를 규정하는 계수(a, b, c)를 가짐으로써 동일 제어 신호에 의한 검출면의 가동이 가능하다.
도 7에는 외측 자로(7)의 하측에 관통 구멍을 뚫어, 검출기를 배치하는 구성을 나타낸다. 구체적으로는 자로를 분할하고, 외측 자로(7)의 하면에 하측 자로(19)를 배치한다. 도 7은 단면도이며, 다른 방위(方位)의 단면에서는 하측 자로(19)는 외측 자로(7)에 유지되어 있으며, 일부에 지지 부재(15)가 통과하기 위한 공간이 있는 구성이다. 외측 자로(7)에 지지 부재(15)를 통과시킨 후, 하측 자로(19)를 장착함으로써 본 구성을 실현한다. 분할한 검출면(10)은 자로 내부의 공간을 통과하여, 외측 자로(7)의 최외경보다도 외측에서 구동 기구(16)를 갖는다. 구동 기구(16)는 수평 방향과 높이 방향으로 검출면(10)을 이동시키고, 검출면 거리(11)를 유지한다. 구동부를 시료나 고전압부로부터 멀리함으로써 슬라이딩에 의한 이물의 발생 등의 영향을 억제할 수 있다.
도 16은, 도 4, 5에 예시한 분할형의 검출기를, 하측(시료측)에서 본 도면이다. 도 16의 (a)는, 검출면(10)이 대물 렌즈의 렌즈 갭에 수납되어 있는 상태, 도 16의 (b)는 도 16의 (a)의 상태에서 화살표 방향으로 검출면(10)을 이동시킴으로써, 4개의 검출면(10)을 일체화한 상태를 나타내는 도면이다. 1601은 내측 자로의 시료 측단부, 1602는 외측 자로의 광축 측단부를 나타내고 있다. 또한, 도 16에 예시하는 검출기 구조에서는, 4개의 검출면(10)에 더해, 렌즈 갭 내에 검출면(10)이 수용되어 있는 상태에서, 검출면(10)간에 배치되는 제2 검출면(1603)을 구비하고 있다.
이러한 구성에 의하면, 4개의 검출면(10)의 렌즈 갭 수용시에, 빔 광축 주위의 축대칭성을 높일 수 있으며, 또한, 제2 검출면(1603)에서도 전자의 검출이 가능하므로, 검출 효율을 높이는 것이 가능해진다. 또한, 도 16의 구성에서는 4개의 검출면(10)이 시료를 향하여 하강한 상태에서 원환 형상이 되도록 구성되어 있기 때문에, 렌즈 수용시에는 4개의 검출면(10)과 제2 검출면(1603)은, 그 외형은 진원(眞圓)이 아니지만, 렌즈 갭 수용시의 축대칭성을 우선하여, 4개의 검출면(10)과 제2 검출면(1603)이 렌즈 갭에 수용되어 있을 때에, 외형이 진원이 되도록 각 검출면을 형성하도록 해도 된다.
도 8을 이용하여 검출기 이동에 의한 신호 전자의 각도 변별 검출 방식에 대해서 설명한다. 같은 WD(4)의 상태에서 검출면 거리(11)를 변경하고, 신호 전자의 출사점으로부터의 검출 화각도를 바꿈으로써, 예를 들면 도 2의 (a)의 궤도(13)나 궤도(14)를 선택하여 검출할 수 있게 되어, 검출 신호 전자의 각도 변별 효과를 얻을 수 있다. 즉 검출 각도를 선택함으로써 시료나 평가 항목에 따른 검출계의 최적화가 가능하다.
[실시예 2]
도 9는 본 실시예의 기본이 되는 구성을 나타내는 개략도이다. 검출면(10)을 진공 내에 배치된 구동 기구(16)를 이용하여 WD(4)가 길 경우에 외측 자로(7)의 하측을 통과하여 삽입되는 구성이다. 시료대와 검출기, 구동 기구를 일체로 하고, 높이 방향으로 움직임으로써 검출면 거리(11)를 일정하게 유지한 채 동작시킨다. 외측 자로(7)의 하측 부분이 경사지는 구성이어도 마찬가지의 방법을 실현할 수 있다. 검출면(10)은 신틸레이터, 반도체 검출기여도 된다.
검출면(10)이 신틸레이터일 경우, 지지 부재(15)가 라이트 가이드 또는 광파이버 등의 도광 부재로 구성되고, 구동 기구(16)에 검출기 제어부를 동시에 탑재한다. 반도체 검출기일 경우, 지지 부재(15)에 배선을 통과시키는 것이 가능하며, 마찬가지로 구동 기구(16)에 검출기 제어부를 탑재할 수 있다. 이 구동 기구(16)를 높이 방향으로 움직임으로써 검출면 거리(11)를 일정하게 유지하도록 움직인다.
직선적으로 이동할 경우, 이동 중의 검출기 위치 치우침에 의한 부품끼리의 충돌이 우려된다. 도 10을 이용하여 구체적인 삽입 방법을 설명한다. 도 10의 (a)는 전자 현미경 경통의 단면도의 일부이다. 외측 자로(7)의 하면에 지지 부재(15)가 통과하는 홈(20)(가이드)을 둔다. 지지 부재(15)에는 돌기(21)가 있고, 이 돌기(21)가 홈(20)을 따라 움직인다. 돌기(21)가 홈(20) 단부에 접촉하는 곳에서 검출면(10)의 위치가 결정된다.
WD(4)를 짧게 할 경우, 시료 가동 범위 외로 검출기를 퇴피시키기 때문에, 구동 기구와 그 스트로크를 충분히 확보할 필요가 있다. 또한 돌기(21)를 자로 외까지 이동시킨 후, z 방향으로 이동시켜 홈(20)에 검출기를 수납함으로써, 퇴피시키는 구성도 생각할 수 있다. 또한 지지 부재(15)를 접는 구성으로 함으로써, 구동 기구를 멀리하지 않고 검출기를 시료 가동 범위 외에 배치하는 것이 가능하다.
또한 도 10의 (b)에 다른 형태로서, 지지 부재(15)에 단차(段差)를 갖게 한 구조를 나타낸다. 단차를 가지는 지지 부재 중, 외측 자로(7) 하면에 가까운 부분이, 홈(20)을 따라 움직이도록 배치된다. 시료대(9)가 WD를 길게 하도록 이동한 후, 구동 기구에 의해 검출면(10)이 지지 부재(15)에 유지되어 이동한다. 외측 자로(7)의 홈(20) 단부와 지지 부재(15)의 단차 부분이 접촉함으로써 검출면(10)의 위치가 결정된다. 도 10의 (a), 도 10의 (b)에 예시하는 바와 같이 검출기 위치에 가능한 한 가까운 위치까지 지지 부재(15)를 유지함으로써, 검출기의 치우침을 억제하여 안정된 이동이 가능하다.
한편으로 진공 내에 슬라이딩부가 존재하면 이물의 영향이 있다. 따라서, 검출기의 이동은 시료대(9)에 시료가 유지되고 있지 않은 상태에서 실시하고, 전장 등을 이용하여 이물을 시료대(9) 주변으로부터 제거한 후에, 시료를 넣을 필요가 있다.
구동 방법은 직선을 따른 삽입뿐만 아니라, 도 11에 나타내는 바와 같이 외측 자로(7)의 외측 부근을 중심으로 한 원운동에 의한 삽입도 가능하다. 구동 기구(16)부터 검출면(10)까지는 진공 분위기 하의 시료대(9) 중에 있다. 원운동으로 하면 전자 현미경 경통의 외경(外徑) 위치에 중심을 둠으로써, 외경을 1변으로 한 정방형 내부에 구조물을 수납할 수 있고, 직선적 삽입에 비해 사용하는 공간을 작게 할 수 있다. 원운동에 의한 삽입의 경우도, 도 10과 마찬가지로 대물 렌즈 하면(대물 렌즈의 시료에의 대향면)에 구동 기구를 중심으로 한 원호형의 홈을 형성하고, 홈을 따라 지지 부재(15)를 움직이는 구성이 가능하다.
또한 도 12에는 구동 기구에 대하여 2개의 검출기를 둔 모식도를 나타낸다. 검출면(10)과 그 지지 부재(15)와, 제2 검출면(22)과 그 지지 부재(23)가 하나의 구동 기구(16)에 접속되어 있다. 가속 전압, WD에 따라 감도나 높이가 다른 검출기를 복수 장착함으로써, 용도에 따라 다양한 검출기를 구분하여 사용할 수 있다. 예를 들면, 신호 전자의 에너지 변별과 같은 관점에서, 검출면(10)과 제2 검출면(22)에서 표면에 두께를 바꾼 금속막을 생성하고, 금속막을 투과한 전자만을 검출하도록 함으로써, 에너지 필터의 기능을 갖게 할 수 있다.
검출면(10)은 분할하여, 복수 방향으로부터의 삽입도 가능하다. 그 경우, 검출면에 번갈아 볼록부, 오목부를 만들어 넣음으로써 대물 렌즈 자로(7)와 시료 사이에 삽입되었을 때에 도입시켜 위치 정밀도를 향상시킬 수 있다. 또한 검출기를 축대칭으로 구성할 수 있기 때문에, 방위각 방향의 신호 검출 효율의 불균일을 저감할 수 있다.
또한, 반도체 웨이퍼와 같은 대형 시료를 측정, 검사하는 장치의 경우, 그 이동 범위는 광범위에 걸친다. 도 17은, 단WD시에 시료의 이동 범위와 검출기 이동용 구동 기구가 간섭하지 않도록, 검출기 이동용 구동 기구를 상하(빔 조사 방향, z 방향)로 이동시키는 이동 기구를 구비한 주사 전자 현미경의 일례를 나타내는 도면이다. 도 17에 예시하는 바와 같이, 검출면(10)을 광축 외로부터 광축까지 이동시키는 구동 기구(16)는, 당해 구동 기구(16)를 z 방향으로 이동시키는 구동 기구(1701)에 지지되어 있다. 구동 기구(1701)는 진공 시료실의 천판(1702)에 지지되어 있고, 당해 구동 기구(1701)는, 단WD 설정시에는, 검출면(10), 지지 부재(15), 및 구동 기구(16)의 최하면이, 시료의 x-y 방향의 이동 궤도에 간섭하지 않는 높이까지, 이들 부재를 들어올린다(도 17의 (a)). 또한, 장WD 설정시에는, 검출면(10), 지지 부재(15), 및 구동 기구(16)를 하강시킨다(도 17의 (b)).
도 17에 예시하는 구성에 의하면, 진공 시료실 내이며, 대물 렌즈 하면과 진공 시료실 천판 사이의 스페이스에, 구동 기구를 포함하는 검출 기구가 위치하도록 설치되어 있기 때문에, 단WD 설정시에 광범한 시료의 이동 궤도를 확보하면서, 장WD 설정시의 고효율이 가능한 검출기 설치를 실현하는 것이 가능해진다.
또한, 도 18에 예시하는 바와 같이, 내측 자로(8)의 단부 등에 검출면(10)의 위치 결정을 행하기 위한 가이드 구멍(1901)을 마련해 두고, 지지 부재(1802)를 가이드 구멍(1801)에 끼워맞춤으로써 검출면(10)을 적절한 위치에 위치 부여하도록 구성해도 된다.
도 23은, 본 실시예의 다른 형태를 나타내는 도면이며, 검출면(10)을 이동시키는 구동 기구로서, 코일(2304)(가동자)과 영구 자석(2303)(고정자)을 갖는 리니어 모터를 채용한 예를 나타내는 도면이다. 도 23의 (a)는, 하전 입자선 장치를 광축 방향에서 본 도면(상시도(上視圖))이며, 도 23의 (b)는, 하전 입자선 장치를 광축에 직교하는 방향(y 방향)에서 본 도면(측시도)이다. 검출면(10)은, 지지 부재(15)에 의해 지지되고, 당해 지지 부재(15)는 슬라이드 유닛(2302)에 지지되어 있다. 슬라이드 유닛(2302)은, 레일(2301)에 안내되고, 리니어 모터로부터 공급되는 구동력에 의해, y 방향으로 이동한다.
또한, 시료대(9)는 x-y 방향으로 구동 기구(도시 생략)로부터 공급되는 구동력에 의해, 가동 범위(2306) 내를 이동한다.
도 23에 예시하는 하전 입자선 장치를 제어하는 제어 장치는, 단WD 설정시에는 가동 범위(2306)로부터 검출면을 퇴피하도록, 리니어 모터를 제어함과 함께, 장WD 설정시에는, 검출면(10)의 개구 중심과 일차 전자선 광축(3)의 위치를 일치시키도록, 리니어 모터를 제어한다.
또한, 지지 부재(15)에는 개구(2307)가 마련되어 있고, 당해 개구(2307) 내에 검출면(10)이 마련되어 있다. 검출면(10)은 x-y 방향으로 각각 한 쌍씩 마련된 피에조 액츄에이터(2308)에 의해 지지되고 있다. 피에조 액츄에이터(2308)는, 검출면(10)을 x-y 방향으로 이동시키기 위해 마련되어 있고, 검출면(10) 위치의 미세 조정을 위해 이용된다. 예를 들면 검출면(10)을 x 방향으로 이동시킬 경우에는, x 방향에 마련된 한 쌍의 피에조 액츄에이터에는, 역상(逆相)의 전압이 인가되어, 검출면(10)을 미동시킨다. 또한, 도 23의 예에서는 x-y 방향의 미동 기구를 구비한 검출면을 예로 들어 설명했지만, z 방향으로의 미동 기구를 마련하도록 해도 된다.
단WD 설정시에는, 시료나 시료대의 가동 범위를 회피하도록 검출면을 이동시킴과 함께, 장WD 설정시에는, 대물 렌즈 바로 아래에 위치 부여하도록 검출면을 이동시키는 제어를 행함으로써, 단WD 설정에 의한 고분해능화와 장WD 설정시의 검출 효율의 향상의 양립이 가능해진다. 또한, 검출면을 2개의 지지 부재로 지지하고 있기 때문에, 검출면을 소정의 위치에 고정밀도로 위치 부여하는 것이 가능해진다. 한편, 레일(2301)의 수가 적은 쪽이 2개의 슬라이드 유닛을 동기시키는 것에 대한 배려가 불필요해지기 때문에, 레일(2301)을 1개로 하는 구성도 생각할 수 있다. 레일(2301)부를 시료로부터 멀리하는 등 하여 발진(發塵)을 관리함과 함께, 이동에 따른 파손 가능성을 경감할 수 있다. 또한, 도 23에서는, 슬라이드 유닛을 안내하는 레일이나 리니어 모터의 고정자를 시료실 바닥면에 설치하는 예에 대해서 설명했지만, 이에 한정하지 않고 측벽이나 천판에 이들 부재를 설치하도록 해도 된다.
[실시예 3]
본 실시예에서는 구동 검출기의 고정밀도의 위치 조정 방법에 대해서 설명한다. 도 13을 이용하여 시료대(9)에 인가하는 전압을 이용한 위치 조정 방법을 설명한다. 시료대(9)에 음전압을 인가하고, 시료 바로 위에 검출면(10)이 존재할 경우, 전위차에 의해 전위 분포(24)가 형성된다. 이때 검출면(10)의 축(검출면(10)의 개구 중심)이 일차 전자선 광축(3)과 어긋나 있으면, 일차 전자선이 전장에 의해 휘어진다. 그 결과 시료에 도달하는 위치가 시료대(9)에 인가한 전압을 바꿈으로써 변화한다. 이 일차 전자선의 위치 어긋남을 제로로 하도록 검출면(10)의 위치를 맞춤으로써 위치 조정이 가능해진다.
또한, 이하에 설명하는 실시예에서는, 검출면(10)(검출면(10)의 개구)의 위치를 가시화하기 위해, 검출면(10)과는 다른 검출기(도시 생략)를, 검출면(10)과 전자원(2) 사이에 마련하고, 당해 검출기의 출력에 의거하여, 검출면(10)의 개구를 화상화한다.
도 21은, 검출면의 위치 맞춤 공정을 나타내는 플로우 차트이다. 또한, 도 13에 예시한 검출면(10)은, 도시하지 않은 이동 기구에 의해 지지되고 있으며, 예를 들면 x, y, z 방향으로의 이동이 가능하다. 우선, 검출면의 이동 기구에 의해, 일차 전자선 광축(3)과, 검출면(10)의 개구 중심이 일치하도록, 검출면(10)을 위치 Ps로 이동한다(스텝 2101). 다음으로, 시료 전압을 V1로 설정(스텝 2102)하고, 스텝 2101에서 설정된 검출면 위치를 유지한 상태(제1 상태)에서 전자빔을 주사하여, SEM 화상(제1 화상)을 생성한다(스텝 2103). 또한, 제1 상태에서, 시료 전압을 V2로 설정(스텝 2104)하고, 그때의 SEM 화상(제2 화상)을 생성한다(스텝 2105).
이때 시료 전압 V1의 상태에서 얻어진 SEM 화상에 포함되는 패턴과, 시료 전압 V2의 상태에서 얻어진 SEM 화상에 포함되는 패턴 사이에 어긋남이 없으면, 검출면의 위치가 적절한 위치에 설정되어 있는 것이 되기 때문에 검출면의 위치 맞춤 처리를 종료한다. 이때, 어긋남이 제로, 혹은 어긋남이 소정값 이하일 경우에, 어긋남이 없는 것으로 판정한다.
어긋남이 있을 경우, 검출면(10)의 위치를 Δd 변화시키고(스텝 2107), 검출면의 위치를 PΔd로 위치 부여한 상태에서, 다시, 시료 전압 V1, 시료 전압 V2에서 SEM 화상(제3, 제4 화상)을 취득하고, 어긋남 평가를 행한다. 그리고 제3 화상, 제4 화상을 취득한 시점에서 어긋남량이 제로가 되어 있지 않을 경우, 제1 화상과 제2 화상간의 어긋남(Δd12)과, 제3 화상과 제4 화상간의 어긋남(Δd34)을 이용하여, 검출면의 개구 중심과 광축이 일치하는 검출면 위치까지의 이동량(Δd0)을 산출한다(스텝 2108).
여기에서, 4개의 화상을 이용한 이동량(Δd0)의 산출법에 대해서 설명한다. 어긋남량은 도 22에 예시하는 바와 같이, 2 이상의 검출면의 위치(Ps, PΔd)에서 구해진 시료 전압을 변화시켰을 때의 화상간의 어긋남량(Δd12, Δd34)으로부터, 어긋남량과 검출면의 위치를 변수로 하는 함수에 포함되는 계수(도 22의 예에서는 직선(2201)의 기울기)를, 예를 들면 연립(連立) 방정식 등을 이용하여 구하고, 당해 계수를 포함하는 함수를 이용하여, 어긋남량이 제로가 되는 검출면 위치(PM)를 구함으로써, Δd0을 산출한다. 또한, 본 실시예에서는 설명을 간단하게 하기 위해, x 방향의 어긋남만을 보정하는 예에 대해서 설명했지만, 이에 한정하지 않고, x, y의 2방향의 이동 기구를 구비한 검출면의 이차원 방향의 어긋남의 평가에 의거하여, 검출면의 위치 조정을 행하도록 해도 된다.
다음으로, 도 14를 이용하여 검출면(10)에 전압을 인가하는 기구를 구비했을 경우의 위치 조정 방법을 설명한다. 전압을 인가하면 정전 렌즈(25)가 형성되어, 일차 전자선에 영향을 준다. 이 정전 렌즈(25)의 축이 일차 전자선 광축(3)과 일치해 있지 않을 경우, 시료 상에 수속하는 일차 전자선의 위치가 전압값에 따라 변화한다.
이때의 위치 어긋남을 억제하도록 검출면(10)을 움직임으로써 위치 조정이 가능해진다. 또한 위치 조정 후, 규정된 대물 렌즈 여자량과 규정된 전압에 의한 정전 렌즈(25)에서의 수속값을 평가함으로써, 높이 방향의 위치 조정을 할 수 있다. 검출면(10)이 분할되어 있을 경우, 각 검출면(10)에 전압을 인가한다. 예를 들면 4분할되어 있을 경우, 정전 렌즈(25)는 x, y 방향의 이차원 분포를 가진다. 각 제어 전압을 일정하게 하고, 정전 렌즈의 강도를 전압에 의해 제어하면서 위치 어긋남과 어긋나는 방향을 관측함으로써, 분할된 검출면(10)을 각각 독립적으로 제어할 수 있다. 또한 전압을 잘 제어함으로써, 일차 전자선의 수속 등의 제어에도 응용할 수 있다.
또한, 도 21에 예시한 플로우 차트에 따라, 검출면의 위치 맞춤을 행하도록 해도 된다.
도 15의 (a)를 이용하여 전자 현미경 화상을 이용한 위치 조정 방법에 대해서 설명한다. 편향기(5)에 의해 일차 전자선을 검출면 상면에서 주사하여 이차원 화상을 취득하면, 도 15의 (b)에 예시하는 바와 같이, 중심에 원형이 있어, 외주부(外周部)가 검출면 상면이 되는 화상을 얻을 수 있다. 이 원의 중심을 화상 중심에 맞추도록 위치를 움직임으로써, 검출면의 위치 조정이 가능해진다. 또한 검출면(10)의 휘도 분포나, 중심의 원의 진원도를 조사함으로써 검출면(10)이 일차 전자선 광축(3)에 대하여 경사져 있는 것을 조사하는 것이 가능하며, 수평 방향과 면 기울기를 조정할 수 있다. 또한 일차 전자선을 검출면(10)에 수속시키기 위한 대물 렌즈 여자량을 평가함으로써 높이 방향의 위치를 알 수 있기 때문에, 규정된 여자량이 되도록 높이를 맞춤으로써 검출면의 위치 조정을 실시할 수 있다.
예를 들면, 적정한 검출면 높이가 될 때의 검출면 상면 위치에, 초점을 맞출 때의 대물 렌즈의 여자 조건(렌즈 조건)을 미리 기억 매체(103)에 기억해 두고, 검출면의 높이 조정시에, 당해 기억된 렌즈 조건이 되도록 대물 렌즈를 제어한다. 그리고, 이 렌즈 조건을 유지한 상태에서, 검출면의 높이를 변화시키면서, 화상의 초점 평가값을 평가하고, 초점 평가값이 가장 높아지거나, 혹은 소정값 이상이 되는 검출면 위치가 되도록, 검출면 위치를 조정한다.
1: 전자 현미경 경통 2: 전자원
3: 일차 전자선 광축 4: 자로와 시료면의 거리(WD)
5: 편향기 6: 대물 렌즈 코일
7: 외측 자로 8: 내측 자로
9: 시료대 10: 검출면
11: 검출면과 시료면의 거리
12: 내측 자로를 관통하는 고각 반사 전자의 궤도
13: 내측 자로(8)에 충돌하는 중각 반사 전자의 궤도
14: 시료로 리턴되는 저각 반사 전자의 궤도
15: 지지 부재 16: 구동 기구
17: 진공 밀봉 부재 18: 가동 방향
19: 하측 자로 20: 자로의 홈
21: 지지 부재에 있는 돌기 22: 제2 검출면
23: 제2 지지 부재 24: 전위 분포
25: 정전 렌즈

Claims (19)

  1. 하전 입자원으로부터 방출된 하전 입자빔을 수속(收束)하는 대물 렌즈와,
    상기 하전 입자빔의 조사(照射) 대상인 시료를, 제1 위치와, 당해 제1 위치보다 상기 대물 렌즈로부터 이간(離間)한 제2 위치 사이에서 이동시키는 제1 구동 기구를 갖는 시료대와,
    상기 시료로부터 방출된 하전 입자를 검출하는 검출면과,
    당해 검출면을 상기 제1 위치와 상기 제2 위치 사이의 상기 시료의 가동 범위 내와, 당해 시료의 가동 범위 외 사이에서 이동시키는 제2 구동 기구를 구비한 것을 특징으로 하는 하전 입자선 장치.
  2. 제1항에 있어서,
    상기 검출면과 상기 제2 구동 기구를 접속하는 지지 부재를 구비하고,
    상기 대물 렌즈는, 제1 자극(磁極)과, 당해 제1 자극보다 상기 하전 입자빔 광축으로부터 이간한 제2 자극을 갖고, 상기 제2 구동 기구는, 상기 제1 자극과 상기 제2 자극 사이에 형성된 렌즈 갭과, 상기 시료의 가동 범위 사이에서 상기 검출면을 이동시키는 것을 특징으로 하는 하전 입자선 장치.
  3. 제2항에 있어서,
    상기 제2 구동 기구와 검출면을 접속하는 지지 부재를 구비하고, 당해 지지 부재는, 상기 렌즈 갭을 통과하여 상기 검출면을 지지하는 것을 특징으로 하는 하전 입자선 장치.
  4. 제2항에 있어서,
    상기 제2 구동 기구는 자로(磁路)에 둘러싸인 대기압 공간에 배치되는 것을 특징으로 하는 하전 입자선 장치.
  5. 제2항에 있어서,
    상기 검출면은, 복수의 분할 검출면을 갖는 것을 특징으로 하는 하전 입자선 장치.
  6. 제5항에 있어서,
    상기 제2 구동 기구는, 상기 분할 검출면이, 상기 시료의 가동 범위 외에 위치할 때와 비교하여, 상기 시료의 가동 범위 내에 위치할 때에, 서로 근접하도록 상기 분할 검출면을 이동시키는 것을 특징으로 하는 하전 입자선 장치.
  7. 제6항에 있어서,
    상기 분할 검출면은, 상기 시료의 가동 범위 내에 위치할 때에, 원환(圓環) 형상의 검출면이 되는 것을 특징으로 하는 하전 입자선 장치.
  8. 제2항에 있어서,
    상기 검출면은 반도체 검출기인 것을 특징으로 하는 하전 입자선 장치.
  9. 제2항에 있어서,
    상기 제2 구동 기구와 상기 검출면을 접속하는 지지 부재를 구비하고, 상기 검출면이 신틸레이터이며, 상기 지지 부재가 라이트 가이드인 것을 특징으로 하는 하전 입자선 장치.
  10. 제1항에 있어서,
    상기 제1 구동 기구와 상기 제2 구동 기구를 제어하는 제어 장치를 구비하고, 당해 제어 장치는, 상기 시료와 상기 검출면 사이의 거리를 유지하도록, 상기 제1 구동 기구와 제2 구동 기구를 제어하는 것을 특징으로 하는 하전 입자선 장치.
  11. 제1항에 있어서,
    상기 검출면은 자성체로 구성되어 있는 것을 특징으로 하는 하전 입자선 장치.
  12. 제1항에 있어서,
    상기 제2 구동 기구는, 상기 하전 입자빔의 빔 광축에 직교하는 방향으로, 상기 검출면을 이동시키는 것을 특징으로 하는 하전 입자선 장치.
  13. 제12항에 있어서,
    상기 대물 렌즈의 상기 시료측의 면에는, 상기 제2 구동 기구에 의해 이동하는 검출면을 안내하는 가이드가 마련되어 있는 것을 특징으로 하는 하전 입자선 장치.
  14. 제12항에 있어서,
    상기 검출면은, 복수의 분할 검출면을 갖고, 상기 제2 구동 기구는 당해 복수의 분할 검출면을, 상기 하전 입자빔의 광축을 향하여 이동시키는 것을 특징으로 하는 하전 입자선 장치.
  15. 제1항에 있어서,
    상기 제2 구동 기구는, 회전 기구로서, 그 회전에 의해, 상기 시료의 가동 범위 내와, 당해 시료의 가동 범위 외 사이에서 상기 검출면을 이동시키는 것을 특징으로 하는 하전 입자선 장치.
  16. 제15항에 있어서,
    상기 대물 렌즈의 상기 시료측의 면에는, 원호 형상의 홈이 형성되고, 당해 홈에 의해 상기 검출면이 안내되는 것을 특징으로 하는 하전 입자선 장치.
  17. 제15항에 있어서,
    상기 제2 구동 기구는, 상기 검출면을 지지하는 복수의 지지 부재를 이동시키도록 구성되고, 복수의 상기 검출면을 회전 운동에 의해 전환하는 것을 특징으로 하는 하전 입자선 장치.
  18. 하전 입자원으로부터 방출된 하전 입자빔을 수속하는 대물 렌즈와, 시료를 지지하는 시료대와, 시료로부터 방출된 전자를 검출하는 검출면과, 상기 시료대, 혹은 상기 검출면의 적어도 한쪽에 전압을 인가하기 위한 전압원과, 상기 검출면의 위치를 조정하는 구동 기구와, 당해 구동 기구를 제어하는 제어 장치를 구비하고, 당해 제어 장치는, 상기 시료대, 혹은 상기 검출면의 적어도 한쪽에의 인가 전압을 변화시켰을 때의 상기 검출면의 화상 상(上)의 어긋남을 억제하도록, 상기 구동 기구를 제어하는 것을 특징으로 하는 하전 입자선 장치.
  19. 하전 입자원으로부터 방출된 하전 입자빔을 수속하는 대물 렌즈와, 시료를 지지하는 시료대와, 시료로부터 방출된 전자를 검출하는 검출면과, 당해 검출면의 위치를 조정하는 구동 기구와, 당해 구동 기구를 제어하는 제어 장치를 구비하고, 당해 제어 장치는, 상기 검출면 상에 상기 하전 입자빔을 주사했을 때에 얻어지는 화상 상에서, 상기 검출면의 개구 중심이 시야의 중심이 되도록, 상기 구동 기구를 제어하는 것을 특징으로 하는 하전 입자선 장치.
KR1020190083621A 2018-07-26 2019-07-11 하전 입자선 장치 KR102317834B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2018-139902 2018-07-26
JP2018139902A JP2020017415A (ja) 2018-07-26 2018-07-26 荷電粒子線装置

Publications (2)

Publication Number Publication Date
KR20200012738A KR20200012738A (ko) 2020-02-05
KR102317834B1 true KR102317834B1 (ko) 2021-10-27

Family

ID=69178263

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190083621A KR102317834B1 (ko) 2018-07-26 2019-07-11 하전 입자선 장치

Country Status (3)

Country Link
US (1) US10991543B2 (ko)
JP (1) JP2020017415A (ko)
KR (1) KR102317834B1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230017292A (ko) * 2020-07-07 2023-02-03 주식회사 히타치하이테크 하전 입자선 장치
JP2022047193A (ja) * 2020-09-11 2022-03-24 キオクシア株式会社 電子ビーム装置および画像取得方法
CN114171361A (zh) * 2020-09-11 2022-03-11 聚束科技(北京)有限公司 一种电子显微镜
CN115410888A (zh) * 2022-09-16 2022-11-29 纳克微束(北京)有限公司 一种电子显微镜及其使用方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033671A (ja) * 2011-08-03 2013-02-14 Hitachi High-Technologies Corp 荷電粒子線装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818851A (ja) 1981-07-24 1983-02-03 Hitachi Ltd 反射電子検出装置
JPH0935679A (ja) 1995-07-24 1997-02-07 Jeol Ltd 走査電子顕微鏡
JP3776887B2 (ja) * 2003-01-07 2006-05-17 株式会社日立ハイテクノロジーズ 電子線装置
JP5406308B2 (ja) * 2009-11-13 2014-02-05 株式会社日立ハイテクノロジーズ 電子線を用いた試料観察方法及び電子顕微鏡
JP5320418B2 (ja) * 2011-01-31 2013-10-23 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP5936484B2 (ja) * 2012-08-20 2016-06-22 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び試料観察方法
JP2014229716A (ja) * 2013-05-21 2014-12-08 キヤノン株式会社 描画装置、および物品の製造方法
JP2017198588A (ja) * 2016-04-28 2017-11-02 株式会社ニューフレアテクノロジー パターン検査装置
JP7040927B2 (ja) * 2017-12-01 2022-03-23 株式会社日立ハイテク 荷電粒子線装置、及び荷電粒子線装置における撮像条件調整方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033671A (ja) * 2011-08-03 2013-02-14 Hitachi High-Technologies Corp 荷電粒子線装置

Also Published As

Publication number Publication date
KR20200012738A (ko) 2020-02-05
US10991543B2 (en) 2021-04-27
JP2020017415A (ja) 2020-01-30
US20200035450A1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
KR102317834B1 (ko) 하전 입자선 장치
KR102179897B1 (ko) 시료를 검사하기 위한 방법 및 하전 입자 다중-빔 디바이스
JP6091573B2 (ja) 試料観察方法及び装置
TWI794782B (zh) 具有多個偵測器之帶電粒子束裝置及用於成像之方法
EP1304717A1 (en) Sheet beam test apparatus
KR20190091318A (ko) 1차 하전 입자 빔렛들의 어레이를 이용하여 시료를 검사하기 위한 방법, 1차 하전 입자 빔렛들의 어레이를 이용한 시료의 검사를 위한 하전 입자 빔 디바이스, 및 시료의 검사를 위한 다중-컬럼 현미경
TWI592976B (zh) Charged particle beam device and inspection method using the device
US10121632B2 (en) Charged particle beam apparatus
JP2017017031A (ja) 適応2次荷電粒子光学系を用いて2次荷電粒子ビームを画像化するシステムおよび方法
WO2013187115A1 (ja) 荷電粒子線装置
KR20170101265A (ko) 기판을 검사하기 위한 장치, 기판을 검사하기 위한 방법, 대면적 기판 검사 장치 및 그 동작 방법
WO2015050201A1 (ja) 荷電粒子線の傾斜補正方法および荷電粒子線装置
JP2010055756A (ja) 荷電粒子線の照射方法及び荷電粒子線装置
US8227752B1 (en) Method of operating a scanning electron microscope
KR20230173726A (ko) 캡 바이어스 전압을 사용하여 경사 모드의 sem을 이용한 후방산란된 전자들(bse) 이미징
KR20190102170A (ko) 디스플레이 제조를 위한 기판에 대한 자동화된 임계 치수 측정을 위한 방법, 디스플레이 제조를 위한 대면적 기판을 검사하는 방법, 디스플레이 제조를 위한 대면적 기판을 검사하기 위한 장치, 및 그 동작 방법
JP6950088B2 (ja) 荷電粒子線装置及び荷電粒子線装置の検出器位置調整方法
US8008629B2 (en) Charged particle beam device and method for inspecting specimen
KR101445475B1 (ko) 전자 빔의 조사 방법 및 주사 전자 현미경
JP5478683B2 (ja) 荷電粒子線の照射方法及び荷電粒子線装置
JP2015170593A (ja) 分析装置
US20240087838A1 (en) Multi-beam microscope and method for operating a multi-beam microscope using settings adjusted to an inspection site
JPH10223169A (ja) 走査試料像表示装置,走査試料像表示方法,マーク検出方法および電子線露光装置
KR20230002742A (ko) 3d 디바이스들의 검사 및 검토를 위한 전자 빔 시스템
JP2006179255A (ja) パターン欠陥検査方法および装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant