KR102160518B1 - 배기가스 봉입을 동반한 실린더 셧오프 시, 가스 스프링 작용을 보상하기 위한 방법 - Google Patents

배기가스 봉입을 동반한 실린더 셧오프 시, 가스 스프링 작용을 보상하기 위한 방법 Download PDF

Info

Publication number
KR102160518B1
KR102160518B1 KR1020190111334A KR20190111334A KR102160518B1 KR 102160518 B1 KR102160518 B1 KR 102160518B1 KR 1020190111334 A KR1020190111334 A KR 1020190111334A KR 20190111334 A KR20190111334 A KR 20190111334A KR 102160518 B1 KR102160518 B1 KR 102160518B1
Authority
KR
South Korea
Prior art keywords
cylinder
combustion engine
cylinders
deactivated
torque
Prior art date
Application number
KR1020190111334A
Other languages
English (en)
Other versions
KR20200031527A (ko
Inventor
팀 탈러
크리스토퍼 게쎈하르트
Original Assignee
폭스바겐 악티엔 게젤샤프트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 폭스바겐 악티엔 게젤샤프트 filed Critical 폭스바겐 악티엔 게젤샤프트
Publication of KR20200031527A publication Critical patent/KR20200031527A/ko
Application granted granted Critical
Publication of KR102160518B1 publication Critical patent/KR102160518B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0005Deactivating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/06Cutting-out cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1504Digital data processing using one central computing unit with particular means during a transient phase, e.g. acceleration, deceleration, gear change
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1512Digital data processing using one central computing unit with particular means concerning an individual cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0005Deactivating valves
    • F01L2013/001Deactivating cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0036Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
    • F01L2013/0052Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction with cams provided on an axially slidable sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L2013/10Auxiliary actuators for variable valve timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • F02D2041/0012Controlling intake air for engines with variable valve actuation with selective deactivation of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1006Engine torque losses, e.g. friction or pumping losses or losses caused by external loads of accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/21Control of the engine output torque during a transition between engine operation modes or states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/22Control of the engine output torque by keeping a torque reserve, i.e. with temporarily reduced drive train or engine efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2700/00Mechanical control of speed or power of a single cylinder piston engine
    • F02D2700/05Controlling by preventing combustion in one or more cylinders
    • F02D2700/052Methods therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

본 발명은, 복수의 실린더를 갖는 연소 엔진을 제어하기 위한 방법에 관한 것이며, 이 경우 연소 엔진은 모든 실린더가 활성인 제1 작동 상태 및 복수의 실린더 중 하나는 활성이고 복수의 실린더 중 하나는 비활성인 제2 작동 상태를 갖는다. 이 방법은, 연소 엔진을 제1 작동 상태로부터 제2 작동 상태로 전환하는 단계를 포함하며, 이 경우 비활성화될 실린더 내에서는, 연소 행정 후에 배기 밸브가 그리고 연소 행정에 후속하는 흡기 행정 전에 흡기 밸브가 폐쇄된 상태에서 비활성화되며, 비활성화될 실린더의 점화각의 더 앞선 점화 시점으로의 변경 그리고 공기/연료 혼합물의 선택적 변화는 연소 행정 동안 생성되는 배기가스의 온도 감소를 유도한다. 본 발명은 또한, 상기 방법을 수행하도록 설계되고 상기 방법을 수행하기에 적합한 엔진 제어부, 연소 엔진 및 차량과도 관련이 있다.

Description

배기가스 봉입을 동반한 실린더 셧오프 시, 가스 스프링 작용을 보상하기 위한 방법{METHOD FOR COMPENSATING A GAS SPRING ACTION IN THE CASE OF CYLINDER SHUTOFF WITH EXHAUST GAS INCLUSION}
본 발명은, 복수의 실린더를 갖는 연소 엔진을 제어하기 위한 방법에 관한 것으로, 이 경우 연소 엔진은 모든 실린더가 활성인 제1 작동 상태와, 복수의 실린더 중 하나는 활성이고 복수의 실린더 중 하나는 비활성인 제2 작동 상태를 갖는다. 즉, 엔진은 부분 작동 모드로 작동될 수 있다.
본 발명은 또한 상응하는 엔진 제어부, 연소 엔진 및 차량과도 관련이 있다.
CO2 배출량을 줄이기 위해, 연소 엔진이 부분 부하 영역에 있을 때 개별 실린더가 비활성화/셧오프될 수 있다. 이를 위해, 비활성화될 실린더 내에서는, 흡기 밸브 및 배기 밸브가 폐쇄되고 연소실 내로의 연료 분사가 차단되며, 이로 인해 관련 실린더는 이제 연소 엔진에 의해 송출되는 토크에 전혀 기여를 하지 않게 된다. 이러한 실린더 셧오프는 운전자가 가급적 알아차릴 수 없도록 유지되어야 하며, 다시 말해 연소 엔진에 의해 송출되는 토크는 실린더 셧오프 직전, 진행 중, 그리고 그 이후에 가급적 일정하게 유지되어야 한다. 달리 표현하면, 실린더 셧오프 후에는, 비활성화된 실린더에 의한 토크 손실/전력 손실을 보상하기 위하여, 계속 활성인/점화된 실린더가 더 높은 부하로 작동되어야 한다. 그렇기 때문에, 연소 엔진의 디자인 및 설계 시, 완전 엔진 작동 모드로부터 부분 엔진 모드로의 전환이 특별히 고려되어야 한다.
DE 10 2012 002 377 A1호로부터, 실린더를 위한 점화 불꽃 시점이 조정됨으로써, 실린더 비활성화 및 실린더 재활성화 동안 토크 변동을 감소시키는 점이 공지되어 있다. DE 11 2015 001 206 T5호에는, 실린더 셧오프 엔진 제어부를 이용해서 원하지 않는 잡음, 원하지 않는 진동 및 원하지 않는 불쾌감(noise, vibration, harshness, 축약어: NVH)의 감소가 달성될 수 있다고 기술되어 있다. DE 10 2004 025 953 A1호는, 연소 엔진의 연료 차단 모드에 의해서 야기되는 충격을 줄이기 위하여, 가변 실린더들을 가진 연소 엔진을 위한 방법을 개시한다.
실린더 셧오프 시, 비활성화될 실린더의 흡기 밸브 및 배기 밸브가 셧오프되는 가변 순서에 의해, 비활성화된 실린더의 연소실 내에 압축 가능 매체의 봉입이 가능하다. 그에 따라, 연소실 내에 외기(fresh air) 봉입 또는 배기가스 봉입이 실현될 수 있다. 연소실을 전반적으로 진공화하는 것도 가능하다.
현재는, 실린더 셧오프의 진행 중 외기 봉입이 바람직한데, 그 이유는 이 경우 토크 프로파일, 엔진 부하 및 오일 소비와 관련된 단점들이 나타나지 않기 때문이다. 진공 봉입 시에는, 연소실과 크랭크 샤프트 하우징 사이에서 압력 강하가 발생할 수 있으며, 이는 크랭크 샤프트 하우징으로부터 연소실 내로의 오일 유입 증가를 야기할 수 있다. 이는 다시 방출값을 악화시킬 수 있고, 연소 엔진의 완전 작동 모드로 역전환된 후에는 예컨대 노킹 및 조기 점화와 같은 불규칙적 연소의 경향을 증가시킬 수 있다.
비활성화된 실린더 내에서 배기가스 봉입을 이용하는 경우, 비활성화될 실린더의 최종 연소 행정으로부터의 긍정적인 토크 기여 후, 고온의 봉입 배기가스의 후속 압축 때문에 (이어지는 배출 행정에서) 피스톤의 감속이 뒤따르고, 그 결과 연소 엔진의 송출된 토크의 감소/폭락이 야기될 수 있다. 그에 따라, 연소실 내에 봉입된 배기가스는, 상기 행정에서 구동에 반작용하는 가스 스프링으로서 작용하게 된다.
구성 방식에서 기인하는 제약으로 인해, 예를 들어 밸브 제어를 위해 사용되는 캠 샤프트의 기계역학 때문에, 배기가스 봉입을 위해 바람직한 외기 봉입을 포기해야 할 수 있다.
따라서, 본 발명의 과제는, 전술한 실린더 셧오프 동안의 배기가스 봉입의 단점들을 적어도 부분적으로 극복하는 연소 엔진을 제어하기 위한 방법을 제공하는 것이다.
상기 과제는, 청구항 1에 따른 방법, 청구항 13에 따른 엔진 제어부, 청구항 14에 따른 연소 엔진 및 청구항 15에 따른 차량에 의해 해결된다.
본 발명의 또 다른 바람직한 구성들은 종속항들 및 본 발명의 바람직한 실시예들에 대한 이하의 설명에 명시되어 있다.
본 개시의 제1 양태는, 복수의 실린더를 갖는 연소 엔진을 제어하기 위한 본 발명에 따른 방법이며, 이 경우 연소 엔진은 모든 실린더가 활성인 제1 작동 상태 및 복수의 실린더 중 하나는 활성이고 복수의 실린더 중 하나는 비활성화된 제2 작동 상태를 가지며, 상기 방법은 다음의 단계들:
- 연소 엔진을 제1 작동 상태로부터 제2 작동 상태로 전환하는 단계로서, 비활성화될 실린더 내에서는, 연소 행정 후에 배기 밸브가 그리고 연소 행정에 후속하는 흡기 행정 전에 흡기 밸브가 폐쇄된 상태에서 비활성화되는 단계, 및
- 연소 행정 동안 생성되는 배기가스의 온도를 감소시키기 위해, 비활성화될 실린더의 점화각을 더 앞선 점화 시점으로 변경하는 단계를 포함한다.
활성 실린더란, 특히 이들 실린더의 연소실 내에서 열역학적 순환 프로세스(예컨대 가솔린 프로세스, 디젤 프로세스 또는 다른 적합한 프로세스)가 완전하게 수행되는 실린더를 의미한다. 이와 같은 열역학적 순환 프로세스는 통상적으로 흡기 행정, 압축 행정, 연소 행정 및 배기 행정을 포함한다.
비활성화된 실린더란, 특히 이들 실린더의 연소실 내에서 열역학적 순환 프로세스가 실행되지 않으며, 특히 연소 행정이 실시되지 않는 실린더를 의미한다. 이를 위해, 비활성화된 실린더의 연소실 내로의 연료 공급이 중단될 수 있고, 그리고/또는 연료의 점화가 방지될 수 있고, 그리고/또는 비활성화된 실린더의 흡기 밸브 및 배기 밸브의 작동이 중지될 수 있으며, 이로 인해 이들 밸브는 폐쇄된 상태로 유지된다.
제2 작동 상태에서는, 복수의 실린더 중 하나는 비활성화될 수 있는 한편, 복수의 실린더 중 나머지는 계속 작동될 수 있거나 달리 말하면 활성일 수 있고, 크랭크 샤프트를 통해 결합된 비활성화된 실린더의 피스톤을 종동시킬 수 있다.
또한, 복수의 실린더 중 적어도 하나는 활성이고, 복수의 실린더 중 적어도 하나는 비활성화될 수 있음을 알 수 있다. 예를 들어, 4기통 엔진의 부분 엔진 작동 모드에서는, 2개의 실린더는 활성이고, 2개의 실린더는 비활성화될 수 있다. 더 나아가, 연소 엔진 내에서 정확히 1개의 실린더가 활성이고, 정확히 1개의 실린더가 비활성화되는 것도 가능하다.
본 발명에 따르면, 비활성화될 실린더의 배기 밸브는 연소 행정 후에 비활성화되고, 비활성화될 실린더의 흡기 밸브는 연소 행정에 후속하는 흡기 행정 전에 비활성화된다. 이 경우, 비활성화될 실린더의 모든 흡기 밸브 및 배기 밸브가 해당된다. 하지만, 비활성화될/비활성화된 실린더 내에서 배기가스 봉입이 발생하는 한, 흡기 밸브 및 배기 밸브의 비활성화를 위한 다른 시점들도 고려될 수 있다. 달리 표현하면, 연소 엔진이 제1 작동 상태로부터 제2 작동 상태로 전환되는 경우, 즉, 복수의 실린더 중 하나가 비활성화되면, 비활성화될 실린더의 모든 흡기 밸브 및 배기 밸브는, 비활성화될/비활성화된 실린더 내에서, 특히 그 실린더의 연소실 내에서 배기가스 봉입이 발생하도록 작동되며, 특히 비활성화되거나 폐쇄된다.
배기가스 봉입은, (개별적으로 비활성화될 실린더의) 연소 행정 동안 생성 되는 배기가스의 봉입이다. 봉입된 배기가스는 비활성화된 실린더 내에서 가스 스프링 작용을 구현한다.
또한, 흡기 밸브 및 배기 밸브는 폐쇄된 상태에서 비활성화된다. 일반적으로, 흡기 밸브 및 배기 밸브는 연소 행정 동안에는 여하간에 폐쇄된 상태로 유지된다. 비활성화는, 예컨대 밸브 제어를 위해 제공된 캠 샤프트가 상응하게 작동됨으로써 수행될 수 있다.
비활성화될 실린더의 점화각을 진각(더 앞선 점화 시점) 방향으로 변경/조정함으로써, 연소 행정으로부터 생성되는 배기가스의 온도의 감소 및 이로써 배기가스에 의해 야기되는 가스 스프링 작용의 상응하는 감소가 달성될 수 있다. 따라서, 비활성화된 실린더 내에 있는 봉입된 배기가스에 의해 야기되는 가스 스프링 작용이 감소할 수 있는데, 그 이유는 가스 스프링의 작용/강도가 가스 스프링을 형성하는 가스의 온도에 좌우되기 때문이다. 점화각의 상응한 조정을 통해, 생성되는 배기가스의 온도가 하강하고, 가스 스프링 작용이 감소하며, 이와 더불어 토크 급락의 유발도 감소한다.
상기 방법의 일 변형예는, 비활성화될 실린더 내의 공기/연료 혼합물을 희박화하는 단계를 더 포함할 수 있다. 희박화된 공기/연료 혼합물은 비활성화될 실린더 내에서, 연소 행정에서 연소되도록 조정/분사되어야 한다. 희박화란, 공기량과 (분사된) 연료량 간의 연소 공기 비율(λ)이 1보다 큰 상태를 의미한다. 희박화된 공기/연료 혼합물의 연소는, 연소 결과 도출된 토크 기여가 포화된 공기/연료 혼합물(λ = 1)을 이용한 연소의 경우보다 더 작은 효과를 갖는다. 여기에서, 토크 기여란, 실린더의 연소 행정으로부터 발생 가능하고 연소 엔진의 크랭크 샤프트에 작용하는 토크를 의미한다.
희박화에 의해 감소된 토크 기여로 인해, 전술한 바와 같이 점화각이 더 앞선 점화 시점으로 변경됨으로써 발생하는 토크 기여 증가가 보상될 수 있다. 추가로, 희박화된 공기/연료 혼합물의 연소의 결과로서, 포화된 공기/연료 혼합물의 연소로부터 생성되는 배기가스보다 낮은 온도를 갖는 배기가스가 생성된다. 그에 상응하게, 온도가 감소함에 따라 가스 스프링 작용도 마찬가지로 감소하기 때문에, 더 적은 가스 스프링 작용이 나타난다.
또한, 상기 방법에서는, 비활성화된 실린더 내에 봉입된 배기가스에 의해 야기되는 가스 스프링 작용에 따라, 활성 실린더에 의해 발생할 수 있는 토크 기여가 증가될 수 있다. 이로 인해, 비활성화된 실린더 내에서의 가스 스프링 작용은 활성 실린더에 의해 적어도 부분적으로 보상될 수 있다.
활성 실린더의 점화각을 더 앞선 시점으로 변경함으로써 활성 실린더의 발생가능한 토크 기여가 증가할 수 있는 실시예들이 있다. 이 경우, 연소를 위해 제공된 공기/연료 혼합물 및/또는 활성 실린더의 연소실로의 (외부)공기 공급을 변경/제어하는 대신, 점화각의 제어/변경만으로 토크 기여의 상승(토크 상승)을 제공하는 효과가 나타난다. 이와 같은 점화각 진각 조정(즉, 더 앞선 시점으로의 점화각의 변경)에 의해, 연소 행정에서 실시되는 연소를 통한 토크 상승이 간단히 실현될 수 있다.
또한, 비활성화될 실린더의 점화각을 변경하기 위한 더 앞선 점화 시점은 연소 엔진의 목표 토크에 상응하게 조정될 수 있다. 그에 대한 대안으로 또는 보완으로, 활성 실린더의 점화각을 변경하기 위한 더 앞선 점화 시점도 마찬가지로 연소 엔진의 목표 토크에 상응하게 조정될 수 있다. 연소 엔진의 목표 토크란, 연소 엔진이 특정 시점에 이용할 수 있고, 가속 페달의 작동을 통해 요청되는(운전자 요청) 토크로 이해될 수 있다.
연소 엔진의 목표 토크가 다음의 단계들을 통해 결정되는 실시예들이 있다:
- 연소 엔진의 출력 샤프트의 목표 토크를 검출하는 단계,
- 가스 스프링 작용의 결과로 도출되는 토크 손실을 결정하는 단계로서, 비활성화된 실린더 내에 있는 배기가스에 의해 가스 스프링 작용이 야기되는 단계, 및
- 출력 샤프트의 목표 토크 및 가스 스프링 작용의 결과로 도출되는 토크 손실에 따라, 연소 엔진의 목표 토크를 결정하는 단계.
이 경우, 출력 샤프트는 예를 들어 크랭크 샤프트일 수 있다. 출력 샤프트의 목표 토크는 예를 들어 가속 페달 위치를 통해 검출될 수 있다. 달리 표현하면, 출력 샤프트의 목표 토크는, 가속 페달 위치에 상응하는 작동 상태(예를 들어 차량 속도)에 도달하기 위해 제공되어야 하는 토크이다. 이 경우, 연소 엔진에 의해, 특히 연소 엔진의 실린더에 의해 발생하는 토크가 전부 차량의 구동을 위해 사용되지는 않는다는 사실에 유의해야 한다. 일반적으로 토크 손실은, 예컨대 목표 토크의 계산에 함께 산입되어야 하는 부품 마찰 및 추가 사용자 장치[예를 들어 발전기, 공조 압축기((air conditioning compressor)와 같은 장치]에 의해 발생한다. 비활성화된 실린더 내에 존재하고 그곳에 봉입된 배기가스는 가스 스프링을 형성할 수 있으며, 이 가스 스프링의 작용도 마찬가지로 연소 엔진에 의해 발생할 수 있는 토크에 대한 토크 손실을 의미할 수 있다. 다시 말해, 이와 같은 가스 스프링 작용에 의한 토크 손실은, 연소 엔진에 의해 발생할 목표 토크를 결정하기 위하여, 출력 샤프트의 목표 토크와 함께 계산될 수 있다. 또한, 연소 엔진의 목표 토크를 결정할 때, 부품 마찰 및 또 다른 사용자 장치(발전기, 공조 압축기)의 작동에 의한 전술한 추가 토크 손실을 고려하는 것도 가능하다.
또한, 가스 스프링 작용의 결과로 도출되는 토크 손실의 결정은 비활성화된 실린더 내에서의 배기가스 압축 시 수행될 수 있다. 배기가스의 압축(또는 달리 표현하면, 가스 스프링 압축)은, 비활성화된 실린더의 피스톤이 상사점으로 변위됨으로써 실시되며, 즉, 밸브들이 폐쇄된 상태에서 비활성화된 실린더의 압축 행정 또는 배기 행정 중에 수행된다. 그에 상응하게, 압축 행정 및/또는 배기 행정, 특히 압축 행정 및/또는 배기 행정의 시간 간격을 표시/검출하기 위하여, 연속하는 복수의 시점에 상기 프로세스 단계를 수행하는 것이 고려될 수 있다. 상기 프로세스 단계는, 배기가스 압축 동안 생성되는/결정된 토크 손실이 활성 실린더 내에서의 토크 상승에 의해 (예컨대, 적응된 연소 행정에서) 보상될 수 있는 효과를 가져온다.
일 대안예에서는, 가스 스프링 작용의 결과로 도출되는 토크 손실이 경험적 모델에 의해 결정될 수 있다. 이 경우, 특히 가스 스프링 압축 시점에서의 가스 스프링 작용의 토크 손실은 엔진 검사대에서 경험적으로 결정된 것일 수 있다. 이와 같은 방식으로 결정된 토크 손실은, 추후에 엔진 부하 및 엔진 회전수를 통해 형성된 특성맵에 저장될 수 있다.
또 다른 실시예들에서는, 토크 손실이 기지의 경계 조건 및 작동 상태 변수로부터 알고리즘 또는 수학적 모델을 이용하여 결정될 수도 있다.
또 다른 일 대안예에서는, 비활성화될 실린더 내 공기/연료 혼합물에 대한 희박화 하한선이 경험적 모델을 이용하여 결정될 수 있다. 이 희박화 하한선도 마찬가지로 엔진 검사대에서 경험적으로 결정되었을 수 있고, 엔진 부하 및 엔진 회전수를 통해 형성된 특성맵에 저장될 수 있다. 희박화 하한선의 결정은, 실린더 셧오프 동안 실화(misfiring)가 발생하지 않도록 하기 위해 수행된다.
또한, 활성 실린더에 의해 발생할 수 있는 토크 기여의 증가는 가스 스프링이 토크 손실을 발생시키는 시점에, 특히 전술한 가스 스프링 압축 시점에/압축 동안에 이루어질 수 있다. 이렇게 함으로써, 활성 실린더의 토크 상승에 의해 가스 스프링 작용의 보상, 특히 가스 스프링 작용의 결과로 도출되는 토크 손실의 보상이 이루어질 수 있다. 이와 같은 토크 손실이 복수의 활성 실린더의 토크 상승에 의해서도 보상될 수 있다.
일 대안예에서는, 활성인 그리고/또는 비활성화될 실린더(들)에 대한 점화각의 변경, 특히 점화각 진각 조정이, 활성인 그리고/또는 비활성화될 실린더(들)의 현재 점화각에 대한 오프셋으로서 특성맵에 저장될 수 있다. 오프셋이란, 점화각의 조정도를 규정하는, 사전에 결정된 고정 값 또는 편차를 의미한다.
또한, 본원 방법은 다음 단계들을 더 포함할 수 있다:
- 연소 엔진을 제1 작동 상태로부터 제2 작동 상태로 전환하기 전에, 연소 엔진의 모든 실린더를 위한 공기 충전량을 증가시키는 단계, 및
- 연소 엔진을 제1 작동 상태로부터 제2 작동 상태로 전환하기 전에, 연소 엔진의 모든 실린더에 대한 점화각을 더 늦은 점화 시점으로 변경하는 단계.
그에 따라, 실린더 비활성화에 앞서서, 다시 말해 연소 엔진이 제1 작동 상태로부터 제2 작동 상태로 전환되기 전에, 모든 실린더 내에서 공급된 (외부)공기량이 증가한다. "실린더 비활성화에 앞서서"라는 표현은, 모든 실린더 내에서의 (외부)공기 공급 및 점화각 지각 조정이, 복수의 동작 주기(operating cycle)가 아니더라도 적어도 하나의 동작 주기에서 실린더 비활성화 이전에 수행됨을 의미할 수도 있다. 특히, 실린더 비활성화의 시점은, 비활성화될 실린더의 흡기 밸브 및 밸기 밸브가 예컨대 밸브 제어를 위해 제공된 캠 샤프트의 상응하는 작동에 의해 비활성화/셧오프되는 시점이다.
실린더 내에서의 (외부)공기 증가는 예를 들어 실린더 내에서의 (외부)공기량의 체적 효율(volumetric efficiency)의 증가에 의해 이루어질 수 있다. 체적 효율은, 특히 실린더의 흡기 밸브 및/또는 배기 밸브의 개방 시간 및/또는 밸브 양정의 제어에 의해 조정 가능하다.
그 대안으로 또는 보완으로, (외부)공기 증가가 특히 흡입관 내에서의 압력 상승에 의해 이루어질 수 있다. 이를 위해, 연소 엔진은 이 연소 엔진의 (외부)공기 라인/가스 라인 내에 배치된/통합된 압축기를 구비할 수 있다. 특히, 압축기는, 연소 엔진의 배기가스 라인 내에 배치/통합되어 압축기를 구동시킬 수 있는 터빈을 구비한 배기가스 터보차저의 일부일 수 있다. "흡입관"이란, 특히 (외부)공기 흐름/가스 흐름이 연소 엔진의 개별 연소실에 공급되는 부분 흐름으로 분할되는 (외부)공기 라인/가스 라인의 마지막 섹션을 의미하며, 이 경우 흡입관은 연소실의 수에 상응하는 수의 가스 안내 채널을 구비한다.
실린더 내 (외부)공기량의 상승은, 개별 실린더의 이론적 토크 기여가 증가하는 결과를 낳는다. 이와 같은 공기량 증가로 인한 토크의 실제 증가를 방지하기 위하여, 모든 실린더에 대해 추가로 점화각이 더 늦은 점화 시점으로 (또는 달리 표현하면 "지각 방향으로") 조정/변경된다. 이들 단계는 특히 실린더 셧오프가 실시되기 전에 수행된다. 이들 방법 단계들은, 이론적 토크 기여의 증가에 의해서, 특히 제2 작동 상태 동안 활성인 실린더 내에서, 토크 리저브(torque reserve)가 존재하게 되는 효과를 제공하며, 이 토크 리저브에 의해 가스 스프링 작용, 특히 가스 스프링 작용의 결과로 도출되는 토크 손실이 보상될 수 있다.
본 발명의 제2 양태는, 연소 엔진용 엔진 제어부와 관련이 있다. 엔진 제어부는, 본 발명에 따른 방법 및 이 방법의 전술한 실시예들 및 대안예들을 실행하도록 설계되고 형성된다.
본 발명의 제3 양태는, 상기 엔진 제어부를 갖는 연소 엔진과 관련이 있다. 연소 엔진은 전술한 방법에 따라 제어 가능하다.
본 발명의 제4 양태는, 전술한 엔진 제어부를 가진 연소 엔진을 구비한 차량과 관련된다.
본 발명의 실시예들을 이제 예시적으로, 그리고 첨부된 도면들을 참고하여 기술한다.
도 1은 본 발명에 따른 연소 엔진의 개략도이다.
도 2는 도 1에 도시된 연소 엔진의 실린더의 토크 기여 및 밸브 제어의 다이어그램이다.
도 3은 가스 스프링으로부터 유발되는 토크 손실을 연소 엔진의 내부 목표 토크에 산입하기 위한 방법의 개략도이다.
도 4는 도 1에 도시된 연소 엔진의 일 실린더에 대한 점화각을 결정하기 위한 방법의 개략도이다.
특히 오토 원리(otto principle)에 따라 작동 가능한 연소 엔진(1)의 일 실시예가 도 1에 개략적으로 도시되어 있다. 연소 엔진(1)은 하나의 크랭크 케이스(3); 및 4개의 실린더(6)를 갖는 실린더 헤드(5);를 포함한다. 도시된 구성에서, 내연 엔진(1)은 직렬 엔진으로서 형성되어 있지만, 또 다른 엔진 배열, 예를 들어 V형 엔진(V-type engine)도 고려될 수 있다. 4개보다 더 적은 또는 더 많은 실린더(6)를 갖는 엔진도 있다.
이하에서는, 모든 4개의 실린더(6)를 대표하여 하나의 실린더(6)를 더욱 상세하게 설명한다. 연소실(12)은 실린더(6), 상기 실린더 내에서 가이드되는 피스톤(8) 및 실린더 헤드(5)에 의해 제한된다. 피스톤(8)은 커넥팅 로드(10)를 통해, 특히 크랭크 샤프트(2) 상에 배치된 크랭크 핀(4)을 통해, 크랭크 케이스(3) 내에 배치된 크랭크 샤프트(2) 형상의 출력 샤프트와 결합되어 있다.
실린더(6), 특히 연소실(12)은 2개의 흡기 밸브(14)를 통해 (도시되지 않은) 흡입관과 유체 가이드 방식으로 연결되어 있고, 2개의 배기 밸브(16)를 통해 (도시되지 않은) 배기 매니폴드와 유체 가이드 방식으로 연결되어 있다. 도 1에 도시된 구조에서, 배기 밸브(16)는 관찰 방향에서 볼 때 흡기 밸브(14) 후방의 도면 평면에 대해 수직으로 배치되어 있다. 2개보다 더 많거나 더 적은 흡기 밸브 및 밸기 밸브도 존재할 수 있다.
연소실(12) 내에서는, 실질적으로 흡기 밸브(14)를 통해 공급되는 외기(공기)가 연료와 함께 연소되는 열역학적 순환 프로세스가 실시될 수 있다. 연료는 분사 장치(18)를 통해 연소실(12)에 공급될 수 있다. 공기/연료 혼합물의 연소로부터 생성되는 배기가스가 배기 밸브(16)를 통해 배기 매니폴드 내로 배출된다.
연소 엔진(1)은, 이하에서 예시적으로 기술되는 흡기 행정, 압축 행정, 연소 행정 및 배기 행정으로 이루어진 4행정 프로세스으로 작동될 수 있다. 흡기 행정에서는, 다시 말해 피스톤(8)이 피스톤 운동의 상사점(TDC)으로부터 하사점(BDC)으로 변위되는 동안에는, 개방된 흡기 밸브(14)를 통해 외기가 연소실(12)로 유입되도록 하기 위해, 흡기 밸브(14)가 개방된다. 이 경우, 아래쪽으로[즉, 크랭크 샤프트(2)의 방향으로] 움직이는 피스톤(8)이 외기를 흡입할 수 있다. 흡기 행정 동안에는, 배기 밸브(16)가 특정 시간 간격 동안, 예를 들어 5° 내지 20°의 크랭크 샤프트 각도(CA) 동안 흡기 밸브(14)와 동시에 개방될 수 있다. 흡기 행정에 후속하며 피스톤(8)이 BDC로부터 TDC로 움직이는 압축 행정 동안에는, 흡기 밸브(14)가 BDC 직후에, 예를 들어 40° 내지 60°CA에서 폐쇄되고, 배기 밸브(16)는 계속해서 폐쇄된 상태로 유지된다. TDC에 도달하기 직전에 또는 도달 시, 예를 들어 0° 내지 40°CA에서 점화로써 연소 행정이 시작되고, 연소실(12) 내에 포함된 가스 혼합물이 연소되는 한편, 흡기 밸브(14)뿐만 아니라 배기 밸브(16)도 폐쇄된 상태로 유지된다. 연소 행정은 BDC 직전까지, 예를 들어 45° 내지 60°CA까지 지속되며, 이 경우 연소 행정의 끝에 배기 밸브(16)가 개방됨으로써, 배기 행정이 시작되고 피스톤(8)이 BDC로부터 TDC로 움직이며, 이로 인해 연소에 의해 생성된 배기가스가 개방된 배기 밸브(16)를 통해 연소실(12)로부터 배출된다. 배기 행정은, TDC 직후, 예컨대 5° 내지 20°CA에서 배기 밸브(16)의 폐쇄로써 종료된다. 다음 번 흡기 행정이 TDC 직전에, 예를 들어 10° 내지 15°CA에서 흡기 밸브의 개방과 함께 시작됨으로써, 흡기 밸브 및 밸기 밸브(14, 16)는 짧은 시간 간격 동안 동시에 개방되어 있다.
전술한 4행정 프로세스는 일례이며, 밸브(14, 16)의 점화 시점 및/또는 개방 시점 및/또는 폐쇄 시점(밸브 제어 시간)과 관련된 변형이 가능하다.
전술한 4행정 프로세스를 위한 흡기 밸브 및 밸기 밸브(14, 16)의 작동은, 실린더 헤드(5) 내에 배치된 2개의 캠 샤프트(20)에 의해 실현된다. 도 1에서는 흡기 밸브(14)를 위한 캠 샤프트(20)만 보인다. 배기 밸브(16)를 작동시키는 캠 샤프트(20)(배기 캠 샤프트)는 관찰 방향에서 볼 때 흡기 밸브(14)를 작동시키는 캠 샤프트(20)(흡기 캠 샤프트)의 뒤에 도면 평면에 수직으로 배치되어 있다. 캠 샤프트(20)가 도시된 구조에서는 비록 실린더(6) 상부에 배치되어 있지만, 대안예에서는, 예컨대 하부에 놓여 있는 [크랭크 케이스(3) 내에 배치된] 캠 샤프트와 같은, 다른 캠 샤프트 배치도 고려될 수 있다. 도 1에 도시된 구조에서 캠 샤프트(20), 특히 캠 샤프트 상에 배치된 벨트 풀리(30)는 전동 요소(32), 예를 들어 체인 또는 톱니 벨트를 통해 크랭크 샤프트(2)에 의해 구동된다.
캠 샤프트(20)는 각각 2개의 캠 캐리어(22)를 구비하며, 이들 캠 캐리어는 각각 제1 캠(24) 및 제2 캠(26)으로 이루어진 4개의 캠 쌍을 갖는다. 캠들(24, 26)은 흡기 밸브 및 밸기 밸브(14, 16)의 작동을 위해 이용된다. 제어 장치(34)를 통해 전환 장치(36)가 제어될 수 있고, 이 전환 장치에 의해 흡기 밸브 및 밸기 밸브(14, 16)가 제1 캠(24)에 의한 작동으로부터 제2 캠(26)에 의한 작동으로 전환될 수 있다. 2개의 캠 캐리어(22)를 통해, 서로 나란히 놓여 있는 2개의 실린더(6), 특히 이들 실린더의 흡기 밸브 및 밸기 밸브(14, 16)가 각각 작동될 수 있다.
캠 캐리어(22)는 슬리브 형상으로 형성되고, 캠 샤프트(22)의 베이스 샤프트(21) 상에 일체로 회전하도록 고정 배치된다. 흡기 캠 샤프트 및 배기 캠 샤프트(20)는 베이스 샤프트(21)를 각각 하나씩 갖는다. 전환 장치(36)의 기능은 슬리브 형상의 캠 캐리어(22)의 종축 방향 변위 가능성에 기반한다. 전환 장치(36)에 의해 조정된 캠 캐리어(22)의 종축 방향 변위 위치에 상응하게, 캠(24, 26)은 대안적으로 관련 흡기 밸브 및 밸기 밸브(14, 16)와 상호 작용한다. 이를 통해, 흡기 밸브 및 밸기 밸브(14, 16)가 활성화될 수 있거나 비활성화될 수 있다.
전환 메커니즘의 정확한 실시 및 캠 샤프트(20)의 구성은 문헌 DE 10 2016 209 957 A1호에서 참조할 수 있다.
연소 엔진(1)은, 모든 실린더(6)가 활성인 제1 작동 상태 및 적어도 하나의 실린더(6)는 활성이고 적어도 하나의 실린더(6)는 비활성인 제2 작동 상태로 작동될 수 있다. 달리 표현하면, 연소 엔진(1)은 완전 작동 모드 및 부분 작동 모드로 작동 가능하다. 도 1에 도시된 구조에서는 2개의 중앙 실린더(6)가 비활성화될 수 있다. 이러한 실린더 셧오프는, 분사 장치(18)를 통한 연료 공급 그리고 흡기 밸브 및 배기 밸브(14, 16)의 작동이 전술한 캠 샤프트(20)의 전환에 의해 중단됨으로써 달성된다. 즉, 흡기 밸브 및 밸기 밸브(14, 16)는 실린더 셧오프 동안에는 더 이상 개방되지 않는다.
도 2는, 연소 엔진(1)의 4개의 실린더(6)의 토크 기여가 도시되어 있는 다이어그램을 보여준다. 이 다이어그램은 3개의 영역으로 세분되어 있으며, 이들 3개의 영역은 완전 엔진 작동 I("제1 작동 상태"), 절반 엔진 작동을 준비하기 위한 전이 영역 Ⅱ, 및 연소 엔진(1)의 절반 엔진 작동 Ⅲ("제2 작동 상태")을 나타낸다. 이들 영역은 도 2에서 사선으로 서로 경계가 구분되어 있다. 수평축에는, 연소 엔진(1)의 개별 실린더(6)가 점화되는 순서, 다시 말해 점화 시퀀스가 명시되어 있다. 이 경우, 제1 실린더(6)는, 연소 엔진(1)의 동력 출력 측 또는 클러치에 대 향하여 배치된 실린더이다. 또 다른 엔진 배치/실린더 배치에 대해서는 실린더의 카운팅 방향에 대한 통상적인 표준 DIN 73021이 참조된다. 여기에 도시된 다이어그램은 도 1에 도시된 연소 엔진(1)과 관한 것이지만, 실린더 수, 실린더 배열 및 점화 시퀀스가 도 1에 도시된 연소 엔진(1)과 상이한 다른 연소 엔진에 대한 예로서도 이해될 수 있다.
도 2에 도시된 다이어그램은 또한, 흡기 밸브 및 밸기 밸브(14, 16)에 대한 밸브 프로파일(14', 16'), 특히 밸브 개방 프로파일과, 상응하는 실린더(6)에 대한 연료 분사 과정(18') 및 점화(40)도 명시한다. 이 경우, 밸브 프로파일(14', 16')은, 상응하는 밸브 프로파일(14', 16')이 유도되는 점화(40)가 실시되는 실린더(6)에 할당될 수 있다. 예를 들어, 위쪽에 도시된 밸브 프로파일(14', 16')은 제2 실린더(6) 내에서 일어나는 점화(40)를 리드하고, 상응하게 다이어그램에서 위쪽에 도시된 밸브 프로파일(14', 16')은 제2 실린더(6)의 흡기 밸브 및 밸기 밸브(14, 16)를 나타낸다. 흡기 밸브 프로파일(14') 및 배기 밸브 프로파일(16')로부터 밸브 개방 지속 시간뿐만 아니라 밸브 양정[밸브 프로파일(14', 16')의 진폭]도 판독될 수 있다.
완전 엔진 작동(I)으로부터 절반 엔진 작동(Ⅲ)으로의 토크 중립적인, 즉, 저크 프리(jerk-free) 전환을 가능하게 하기 위하여, 실린더 셧오프를 준비하기 위해 모든 실린더(6) 내 외기 충전량이 증가하며, 이 경우 실린더(6)의 외기량 상승에 의해 더 높은 이론적 토크 기여(42)가 발생할 수 있다. 이 때문에 나아가, 증가한 잠재 토크 기여(42)를 보상하고, 실린더(6)에 의해 각각 발생한 실제 토크 기여(44)를 외기 상승 전에 실린더(6)에 의해 발생한 원래의 수준으로 조절하기 위해, 모든 실린더(6) 내에서 점화각이 더 늦은 점화 시점으로 변경/조정된다.
달리 표현하면, 토크 기여(42, 44)는 점화(40) 및 그로부터 기인하는 연소실(12) 내에서의 상응하는 연소로부터 도출된다. 파선으로 도시된 토크 기여(42)는 이론적으로 가능한 기여인 반면, 토크 기여(44)는 실제로 달성된 기여이다. 완전 엔진 작동(I)의 영역에 존재하는 이론적 토크 기여와 실제 토크 기여(42, 44) 간의 차이는 점화각 지각 조정으로 인해 발생하는데, 다시 말해 연소 행정을 시작하기 위한 점화, 특히 점화각이 지각 방향으로 조정된다. 이로 인해, 연소실(12) 내에 있는 가스 혼합물, 특히 공기/연료 혼합물에 의해 가능한 이론적 토크 기여(42)가 최적으로 이용되지 못한다. 영역 I에서는, 모든 실린더(6)가 점화각 지각 조정으로 작동되기 때문에, 어떠한 실린더(6)에 의해서도 이론적으로 가능한 토크 기여(42)가 달성되지 않는다.
전이 영역(Ⅱ)에서는, 제1 실린더(6)에 의해 발생한 토크 기여(48)에 음의 토크 기여(46)가 중첩되어 있는 것을 알 수 있다. 음의 토크 기여(46)는, 제2 실린더(6)의 연소 행정으로부터 생성되어 그 이후로 제2 실린더(6) 내에 포함되어 있었던 배기가스의 압축의 결과로 나타난다.
제2 실린더(6) 내에 배기가스가 봉입될 수 있는 상황이 이하에서 기술된다. 도 2에 도시된 다이어그램에서 알 수 있는 바와 같이, 일 시점(또는 시간 간격)(52)에 배기 캠 샤프트(20), 특히 제1 및 제2 실린더(6)에 상응하는 캠 캐리어(22)가, 제2 실린더(6)의 배기 밸브(16)가 비활성화되도록 전환 장치(36)에 의해 작동됨으로써/종축 방향으로 변위됨으로써, 제2 실린더(6)가 셧오프된다. 배기 밸브(16)의 비활성화를 위해, 상기 배기 밸브는 이제 더 이상 제1 캠(24)에 의해 작동되지 않고, 오히려 제로 캠으로서 형성된 제2 캠(26)에 의해 작동된다. 제로 캠 형성에 의해, 제2 실린더(6)의 배기 밸브(14)는 배기 캠 샤프트(20)의 회전각과 무관하게 폐쇄된 상태로 유지된다. 제2 실린더(6)의 셧오프를 위해 추가로 상기 제2 실린더의 흡기 밸브(14)도 비활성화된다. 이 과정은, 시점(또는 시간 간격)(54)에 배기 밸브(16)에 대해 전술한 것과 유사하게 수행되며, 이때 흡기 캠 샤프트(20), 특히 상기 흡기 캠 샤프트의 캠 캐리어(22)가 전환된다. 제2 실린더(6)의 비활성화에 의해, 연소가 이루어진 후에 그리고 연소로부터 발생한 배기가스가 연소실(12)로부터 배출되기 전에, 상기 제2 실린더의 배기 밸브(16)가 비활성화되고, 후속되는 흡기 전에 상기 제2 실린더의 흡기 밸브(14)가 비활성화됨으로써, 제2 실린더(6) 내의 전술한 배기가스 봉입이 야기된다.
도 2로부터는, 비활성화될 제2 실린더(6)에 의해 수행된 일(work), 다시 말해 시점(52)에서의 양의 토크 기여(42)가, 후속하는 제2 실린더(6)의 배기 행정에서, 시점(54)에서 제2 실린더(6) 내에 봉입된 배기가스의 압축에 의하여 적어도 부분적으로 재개됨을 알 수 있다. 다른 말로 표현하면, 봉입된 배기가스는, 압축 동작에 이용되어야 하는 가스 스프링으로서 작용한다. 비활성화될/비활성화된 제2 실린더(6)의 피스톤(8)이 크랭크 샤프트(2)로의 자체 연결에 의해 계속 종동되며, 이로써 다시 TDC로 변위되고, 그 결과 연소실(12)은 축소되고 배기가스는 압축되기 때문에, 압축이 이루어진다. 하지만, 가스 스프링이 TDC로의 피스톤(8)의 변위에 대항해서 동작하기 때문에, 가스 스프링의 압축은 크랭크 샤프트(2)의 토크에 음의 방향으로 작용한다. 특히, 가스 스프링 압축의 결과로 도출되는 제2 실린더(6)의 음의 토크 기여(46)는, 시점(54)에 연소로 인해 도출되는 제1 실린더(6)의 토크 기여(48)와 중첩된다.
제2 실린더(6)의 비활성화의 시점에는 모든 실린더(6)가 점화각 지각 조정으로써 작동되기 때문에, 제2 실린더(6)의 음의 토크 기여(46)는 적어도 부분적으로 보상될 수 있는데, 그 이유는 영역 I에서 이론적 토크 기여가 완전히 활용되지 않았기 때문이다.
이를 위해, 도 2에서는 가스 스프링 압축의 시점(또는 시간 간격)에 제1 실린더(6)의 점화각이 진각 방향으로 설정되고, 이로 인해 가스 스프링 압축의 결과로 도출되는 음의 토크 기여(46)를 보상하는 추가의 토크 기여가 발생한다. 따라서, 제1 실린더(6)에 의해 발생한 토크 기여(48)는, 제2 실린더(6)의, 특히 가스 스프링 압축의 음의 토크 기여(46)를 적어도 부분적으로 보상한다.
전술한 제2 실린더(6)의 비활성화는 제3 실린더(6)에 대해서도 유사하게 적용되며, 이 경우 제3 실린더(6)의 배기 밸브(16) 및 흡기 밸브(14)가 시점(또는 시간 간격)(56 또는 58)에 비활성화된다. 그렇기 때문에, 제3 실린더(6) 내에서도, 제4 실린더(6)에 의해 증가한 토크 기여에 의해 적어도 부분적으로 보상될 수 있는 상응하는 음의 토크 기여 및 가스 스프링이 시점(58)에 형성된다. 제4 실린더(6)의 증가한 토크 기여는, 제1 실린더(6)와 관련하여 기술한 것과 동일한 방식으로 달성될 수 있다.
절반 엔진 작동(Ⅲ)의 영역에서는 제2 및 제3 실린더(6)가 셧오프된다. 제2 및 제3 실린더(6) 내에서의 가스 스프링의 영향은 더 이상 도시되어 있지는 않지만 여전히 존재할 수 있다. 진행된 동작 주기의 수가 증가함에 따라, 블로 바이(blow-by) 효과[연소실(12) 내에 봉입된 (배기)가스가 피스톤(8)의 (도시되지 않은) 피스톤 링을 통해 크랭크 케이스(3) 내로 확산되는 효과]에 의해 그리고/또는 벽 열 손실[실린더 벽으로의 (배기)가스 열의 방출]에 의해 가스 스프링의 영향이 감소한다. 그러므로, 예를 들어 영역 Ⅲ에서는 가스 스프링의 영향이 더 이상 나타나지 않는다.
또한, 도 2에서는, 활성인 나머지 (제1 및 제4) 실린더(6)가 각각 증가한 토크 기여(50)를 발생시키도록 작동된다는 것도 알 수 있다. 토크 기여(50)는, 변경된 흡기 밸브 프로파일(49)로 인해 이루어지는, 실린더(6) 내 외기의 체적 효율 증가로 인해 이론적 토크 기여(42)보다 더 크다. 따라서, 흡기 밸브 프로파일(49)의 진폭이 흡기 밸브 프로파일(14')의 진폭보다 크며, 이는 절반 엔진 작동 모드(Ⅲ)에서 흡기 밸브(14)의 더 큰 흡기 밸브 양정을 의미한다. 제2 및 제3 실린더(6)의 흡기 밸브 및 밸기 밸브(14, 16)의 비활성화를 위한 제2 캠(26)의 제로 캠 형성에 상응하게, 제1 및 제4 실린더(6)에 상응하는 제2 캠(26)은, 제1 및 제4 실린더(6)의 흡기 밸브(14) 및 배기 밸브(16)가 작동 가능하도록 형성된다. 특히, 흡기 밸브 및 밸기 밸브(14, 16)는, 변경된 흡기 밸브 프로파일(49) 및 배기 밸브 프로파일(47)을 갖는 제2 캠(26)에 의해 작동/구동된다.
실린더(6) 내에서의 체적 효율 증가에 대한 대안 또는 보완으로, 실린더(6) 내의 (외부)공기량이 연소 엔진(1)의 흡입관 내 압력 상승에 의해서도 보장될 수 있다.
토크 기여(50)에 의해, 나머지 활성 실린더(6)는 절반 엔진 작동 모드(Ⅲ)에서의 크랭크 샤프트(2)를 위해, 이전에 모든 실린더(6)가 완전 엔진 작동 모드(I)였을 때와 동일한 토크를 발생시킨다. 다시 말해, 제1 작동 상태 I(완전 엔진 작동 모드)로부터 제2 작동 상태 Ⅲ(절반 엔진 작동 모드)로의 토크 중립적 전환이 실시된다.
특히 토크 중립적 전환을 위해서는, 특히 전술한 가스 스프링 압축에 의해 전이 영역(Ⅱ)에서 발생하는 가스 스프링 작용 및 이와 결부된 음의 토크 기여(46)가 필요하다.
전술한 바와 같이, 계속 작동될 실린더(6)의 점화각 진각 조정에 의해, 가스 스프링 압축의 결과로 도출되는 음의 토크 기여(46)가 적어도 부분적으로, 바람직하게는 완전히 보상될 수 있다. 특히, 음의 토크 기여(46)의 레벨을 알고 있는 상태에서 그의 보상은 점화각 진각 조정에 의해 매우 우수하게 수행될 수 있다. 가스 스프링 작용은, 다른 무엇보다 연소실(12) 내에 있는 외기량, 특히 공기량 및 가스의 온도, 특히 연소로부터 생성되고 가스 스프링을 형성하는 배기가스의 온도에 좌우된다. 배기가스 온도는 다시 점화각에 좌우된다. 그렇기 때문에, 가스 스프링 작용은 연소실(12) 내에 존재하는 공기량(또는 공기/연료 혼합물) 및 점화각에 따라 모델링될 수 있다.
또한, 가스 스프링 작용은 측정 가능할 뿐만 아니라 영향을 받을 수도 있다. 전술한 바와 같이, 가스 스프링 작용은 가스 스프링을 형성하는 배기가스의 온도에 좌우된다. 실린더 비활성화 시점에는 모든 실린더(6)가 점화각 지각 조정으로써 작동되기 때문에, 열 에너지로부터 기계 일(토크 기여)로의 변환이 더 적게 발생하며, 이로 인해 연소실 내 배기가스 온도(연소실 온도)가 더 앞선 점화각에 비해 더 높다. 그에 따라, 토크 리저브에 의해, 즉, 이론적으로 달성 가능한 토크 기여(42)와 점화각 지각 조정에 의해 도출되는 실제 달성된 토크 기여(44) 간의 차에 의해, 가스 스프링 작용이 증폭된다. 그렇기 때문에, 배기가스 온도를 낮추기 위해, 전이 영역(Ⅱ)에서 (실린더 비활성화의 동작 주기에서) 비활성화될/비활성화된 제2 및 제3 실린더(6)의 점화각이 진각 방향으로 조정될 수 있다. 이 경우, 점화각 진각 조정이 토크 기여의 증가와 결부되며, 토크 기여는 다시 시점(52) 또는 시점(56)에 제2 및 제3 실린더(6) 내에서 연소되는 공기/연료 혼합물의 희박화에 의해 감소한다. 달리 표현하면, 실린더 비활성화의 동작 주기에서는, 비활성화될 (제2 및 제3) 실린더(6)가 희박화된 공기/연료 혼합물로써 작동된다. 따라서, 배기가스 온도의 감소 및 이에 따른 가스 스프링 작용의 감소는, 점화각 진각 조정에 의해 그리고 비활성화될 실린더(6) 내에서의 혼합물 희박화에 의해서도 실현될 수 있다.
희박화된 공기/연료 혼합물과 관련하여, 실린더 비활성화 동안 실화가 발생하지 않도록 하기 위해 연소 엔진(1)의 연소 한계에 주의를 기울여야 한다는 점에 유의해야 한다. 그에 따라, 비활성화될 실린더(6)를 위한 점화각 진각 조정도 소위 연소 엔진(1)의 희박 연소 한계(lean misfire limit)에 따라 조정되어야 한다. 달리 표현하면, 비활성화될 실린더(6)의 점화각의 진각 조정도는 연소 엔진(1)의 희박 연소 한계에 의해 설정된다.
도 3은, 가스 스프링 작용의 결과로 도출되는 음의 토크 기여(46)를 연소 엔진(1)의 내부 목표 토크(80)에 산입하기 위한 방법을 개략적으로 보여준다. 목표 토크(80)는, 모든 실린더(6)의 토크 기여에 의해 발생하는 토크이다. 이상적인 경우, 예컨대 가속 페달 위치에 의해 검출될 수 있는 크랭크 샤프트(2)의 목표 토크(60)는 연소 엔진(1)의 내부 목표 토크(80)에 상응한다. 하지만, 실제 조건하에서는, 다른 무엇보다 [예를 들어 피스톤(8)과 실린더 벽 간에] 부품 마찰에 의해 발생할 수 있는 토크 손실(62)이 부가된다. 또한, 연소 엔진(1)에 의해 발생하는 토크가, 토크 손실(62)도 나타내는 발전기 또는 공조 압축기와 같은 또 다른 차량 장치의 작동을 위해 부분적으로 사용되는 점도 고려될 수 있다. 이에 상응하게, 토크 손실(62)은, 크랭크 샤프트(2)의 목표 토크(60)에 도달하기 위해 연소 엔진(1)의 내부 목표 토크(80)에 함께 산입되어야 한다. 달리 표현하면, 내부 목표 토크(80)의 결정을 위해, 크랭크 샤프트(2)의 목표 토크(60)와 토크 손실(62)이 합산된다[이 경우, 토크 손실(62)의 절대값이 사용된다].
하지만, 전술한 제2 및 제3 실린더(6)의 실린더 셧오프 때문에, 여전히 음의 토크 기여(46)에 상응하는 토크 손실(64)이 가스 스프링 압축에 의해 발생할 수 있으며, 이와 같은 토크 손실도 마찬가지로 내부 목표 토크(80)를 결정할 때 함께 산입될 수 있다. 또는 상기 토크 손실(64)이 가스 스프링 압축의 시점(또는 시간 간격)에만 또는 가스 스프링 압축 동안에만 함께 산입될 수 있다. 상응하게, 도 3에 도시된 방법에는, 가스 스프링 압축이 나타날 때 또는 가스 스프링 압축이 실시되는 도중에 비로소 전환 블록(65)을 이용하여 토크 손실(64)을 함께 산입하는 가스 스프링 모델(74)이 도시되어 있다. 달리 표현하면, 토크 손실(64)은 가스 스프링 압축 시점에만 또는 가스 스프링 압축 중에만 내부 목표 토크(80)에 함께 산입된다.
가스 스프링의 모델(74)에서, 화살표(66)는 가스 스프링 압축의 시점(시간 간격)을 나타내고, 블록(68)은 가스 스프링 압축이 실시되지 않는 다른 모든 시점을 나타낸다. 또한, 모델(74)은, 가스 스프링에 의한 토크 손실(64)의 경험적 모델(73)도 포함한다. 이를 위해, 토크 손실(64)은 엔진 검사대에서 경험적으로 결정되고, 엔진 부하(70) 및 엔진 회전수(72)에 의해 형성된 특성맵에 저장된다.
블록(68)이 활성인 동안에는, 다시 말해 가스 스프링 압축이 실시되지 않는 동안에는, 내부 목표 토크(80)를 결정하기 위해 산입되어야 하는 토크 손실이 가스 스프링의 모델(74)로부터 도출되지 않는 것으로 전환 블록(65)에 전달된다. 가스 스프링 압축이 나타나는 즉시, 화살표(66)가 활성화되어, 토크 손실(64)이 발생하는 상황을 전환 블록(65)에 알리며, 이로써 모델(74)로부터 토크 손실(64)이 도출되고, 연소 엔진의 내부 목표 토크(80)를 결정하기 위해 또 다른 토크 손실(62) 및 크랭크 샤프트(2)의 목표 토크(60)와 계산되며, 특히 합산된다[이 경우에도 토크 손실(64)의 절대값이 사용된다].
내부 목표 토크(80)는, 도 4에 개략적으로 도시된 방법에서, 연소 엔진(1)의 실린더(6) 중 하나에 대한 점화각(100)을 결정하기 위해 사용된다. 본 도면에는, 연소 엔진(1)의 실제 토크를 결정하기 위한 토크 모델(96)이 도시되어 있다. 토크 모델(96)의 입력 변수는 연소 엔진(1)의 내부 목표 토크(80), [해당 실린더(6)의]연소실(12)에 공급된 공기량(82) 그리고 모델(94)로부터 유래하는 공기/연료 혼합물(84)이다. 그 다음에, 내부 목표 토크(80)에 도달하기 위해 필요한 해당 실린더(6)에 대한 점화각(100)이 토크 모델(96)로부터의 출력 변수로서 도출된다.
모델(94)은 가스 스프링의 모델(76)과 유사하게 기능한다. 모델(94) 내에서, 화살표(86)는 비활성화될 실린더(6) 내로의 연료 분사 시점을 나타내고, 화살표(88)는 연소 엔진(1)의 정상 작동 모드로부터의 공기/연료 혼합물을 나타낸다. 또한, 모델(94)은, 최대로 가능한 희박화 하한선을 갖는 공기/연료 혼합물(84)을 결정하기 위한 경험적 모델(83)을 포함한다. 최대로 희박화된 공기/연료 혼합물은, 비활성화될 실린더(6) 내에서 실린더 셧오프 직전에 실행된 연소 행정에서 연소된다. 이를 위해, 희박화 하한선이 엔진 검사대에서 경험적으로 결정되고, 엔진 부하(70) 및 엔진 회전수(72)를 통해 형성된 특성맵에 저장된다.
또한, 모델(94)은 전환 블록(85)을 포함한다. 특히 시점(52, 58)에 비활성화될 실린더(6) 내에서 연료 분사가 이루어지지 않는 한, 화살표(88)에 의해 규정된, 정상 작동 모드로부터의 공기/연료 혼합물이 전환 블록(85)을 거쳐 토크 모델(96)로 전달된다. 실린더 셧오프가 개시되는 즉시, 화살표(86)로 표시된 연료 분사 시점이 전환 블록(85)으로 전달된다. 상응하게, 화살표(88)로 표시된, 정상 작동 모드로부터의 공기/연료 혼합물 대신, 가스 스프링 작용의 저하를 위해 경험적 모델(83)에 의해 결정된 희박화된 공기/연료 혼합물(84)이 비활성화될 실린더(6)의 연소실(12) 내로 분사된다.
희박화된 공기/연료 혼합물(84)은 토크 모델(96)로 전달된다. 희박화된 공기/연료 혼합물(84)로 인해, 관련 실린더(6)에 의해 발생할 수 있는 토크 기여도 역시 감소한다. 토크 모델(96) 내에서는 희박화된 공기/연료 혼합물(84)의 효율이 계산되며, 이로 인해 감소된 토크 기여가 계산될 수 있다. 토크 모델(96)은 관련 실린더(6)에 상응하는 점화각(100)을 출력하고, 이 점화각은 특히 내부 목표 토크(80)에 도달하기 위해, 감소된 토크 기여를 보상한다.
도 2 및 도 3에 도시된 방법은, 계속해서 작동될 그리고 비활성화될 실린더(6)에 적용 가능하다. 모델(94)로부터 유래하는 공기/연료 혼합물의 희박화는 계속해서 작동될 실린더(6)와 관련이 없거나 수행되지 않음을 알 수 있다.
도 2 및 도 3에 도시된 방법에 대한 일 대안예에서는, 개별 점화각 조정들이 현재 계산된 점화각에 대한 오프셋으로서도 특성맵에 저장될 수 있다. 오프셋으로서 설정된 점화각 조정은, 가스 스프링 압축의 결과로 도출되는 토크 손실(64)의 보상 및/또는 가스 스프링 작용의 감소를 위한 보상을 야기할 수 있다.
1: 연소 엔진
2: 크랭크 샤프트
3: 크랭크 케이스
4: 크랭크 핀
5: 실린더 헤드
6: 실린더
8: 피스톤
10: 커넥팅 로드
12: 연소실
14: 흡기 밸브
14': 흡기 밸브 프로파일
16: 배기 밸브
16': 배기 밸브 프로파일
18: 분사 장치
18': 분사 과정
20: 캠 샤프트
21: 베이스 샤프트
22: 캠 샤프트 캐리어
24: 제1 캠
26: 제2 캠
30: 벨트 풀리
32: 전동 요소
34: 제어 장치
36: 전환 장치
40: 점화
42: 이론적 토크 기여
44: 실제 토크 기여
46: 음의 토크 기여
47: 배기 밸브 프로파일
48: 토크 기여
49: 흡기 밸브 프로파일
50: 토크 기여
52, 56: 배기 캠 샤프트의 전환 시점
54, 58: 흡기 캠 샤프트의 전환 시점
60: 크랭크 샤프트의 목표 토크
62: 토크 손실
64: 가스 스프링 작용에 의한 토크 손실
65: 전환 블록
66: 가스 스프링 압축 시점
68: 가스 스프링 압축이 없는 시점/시간 간격
70: 엔진 부하
72: 엔진 회전수
73: 가스 스프링 작용에 의한 토크 손실의 경험적 모델
76: 가스 스프링 모델
80: 연소 엔진의 내부 목표 토크
82: 공기량
83: 공기/연료 혼합물의 희박화 한계에 대한 경험적 모델
84: 희박화된 공기/연료 혼합물
86: 연료 분사 시점
88: 정상 작동 모드에서 유래하는 공기/연료 혼합물
96: 토크 모델
94: 공기/연료 혼합물 모델
100: 점화각

Claims (15)

  1. 복수의 실린더를 갖는 연소 엔진을 제어하기 위한 방법으로서, 연소 엔진이
    - 모든 실린더가 활성인 제1 작동 상태, 및
    - 복수의 실린더 중 하나는 활성이고, 복수의 실린더 중 하나는 비활성인 제2 작동 상태를 가지며,
    상기 방법이,
    - 연소 엔진을 제1 작동 상태로부터 제2 작동 상태로 전환하는 단계로서, 비활성화될 실린더 내에서는, 연소 행정 후에 배기 밸브가 그리고 연소 행정에 후속하는 흡기 행정 전에 흡기 밸브가 폐쇄된 상태에서 비활성화되는 단계, 및
    - 연소 행정 동안 생성되는 배기가스의 온도를 감소시키기 위해, 비활성화될 실린더의 점화각을 더 앞선 점화 시점으로 변경하는 단계를 포함하는, 복수의 실린더를 갖는 연소 엔진의 제어 방법.
  2. 제1항에 있어서,
    - 비활성화될 실린더 내의 공기/연료 혼합물을 희박화하는 단계를 더 포함하는, 복수의 실린더를 갖는 연소 엔진의 제어 방법.
  3. 제1항 또는 제2항에 있어서,
    - 비활성화된 실린더 내에 봉입된 배기가스에 의해 야기되는 가스 스프링 작용에 따라, 활성 실린더에 의해 발생할 수 있는 토크 기여를 증가시키는 단계를 더 포함하는, 복수의 실린더를 갖는 연소 엔진의 제어 방법.
  4. 제3항에 있어서, 상기 활성 실린더의 발생 가능한 토크 기여의 증가가 활성 실린더의 점화각을 더 앞선 점화 시점으로 변경함으로써 이루어지는, 복수의 실린더를 갖는 연소 엔진의 제어 방법.
  5. 제1항 또는 제2항에 있어서, 비활성화될 실린더의 점화각의 변경을 위한 더 앞선 점화 시점 및/또는 활성 실린더의 점화각의 변경을 위한 더 앞선 점화 시점이 연소 엔진의 목표 토크에 상응하게 조정될 수 있는, 복수의 실린더를 갖는 연소 엔진의 제어 방법.
  6. 제5항에 있어서, 연소 엔진의 목표 토크의 결정은,
    - 연소 엔진의 출력 샤프트의 목표 토크를 검출하는 단계;
    - 가스 스프링 작용의 결과로 도출되는 토크 손실을 결정하는 단계로서, 가스 스프링 작용은 비활성화된 실린더 내에 있는 배기가스에 의해 야기되는 단계; 그리고
    - 출력 샤프트의 목표 토크 및 가스 스프링 작용의 결과로 도출되는 토크 손실에 따라, 연소 엔진의 목표 토크를 결정하는 단계;를 포함하는, 복수의 실린더를 갖는 연소 엔진의 제어 방법.
  7. 제6항에 있어서, 비활성화된 실린더 내에서 배기가스의 압축 시, 가스 스프링 작용의 결과로 도출되는 토크 손실의 결정이 수행되는, 복수의 실린더를 갖는 연소 엔진의 제어 방법.
  8. 제6항에 있어서, 가스 스프링 작용의 결과로 도출되는 토크 손실이 경험적 모델을 이용하여 결정될 수 있는, 복수의 실린더를 갖는 연소 엔진의 제어 방법.
  9. 제2항에 있어서, 비활성화될 실린더 내 공기/연료 혼합물에 대한 희박화 하한선이 경험적 모델을 이용하여 결정될 수 있는, 복수의 실린더를 갖는 연소 엔진의 제어 방법.
  10. 제6항에 있어서, 활성 실린더에 의해 발생 가능한 토크 기여의 증가가, 가스 스프링이 토크 손실을 발생시키는 시점에 이루어지는, 복수의 실린더를 갖는 연소 엔진의 제어 방법.
  11. 제1항 또는 제2항에 있어서, 활성인 그리고/또는 비활성화될 실린더(들)에 대한 점화각의 변경이 상기 활성인 그리고/또는 비활성화될 실린더(들)의 현재 점화각에 대한 오프셋으로서 특성맵에 저장되는, 복수의 실린더를 갖는 연소 엔진의 제어 방법.
  12. 제1항 또는 제2항에 있어서,
    - 연소 엔진을 제1 작동 상태로부터 제2 작동 상태로 전환하기 전에, 연소 엔진의 모든 실린더를 위한 공기 충전량을 증가시키는 단계, 및
    - 연소 엔진을 제1 작동 상태로부터 제2 작동 상태로 전환하기 전에, 연소 엔진의 모든 실린더에 대한 점화각을 더 늦은 점화 시점으로 변경하는 단계를 더 포함하는, 복수의 실린더를 갖는 연소 엔진의 제어 방법.
  13. 제1항 또는 제2항에 따른 방법을 실시하는, 연소 엔진용 엔진 제어부.
  14. 제13항에 따른 엔진 제어부를 갖는 연소 엔진.
  15. 제14항에 따른 연소 엔진을 구비한 차량.
KR1020190111334A 2018-09-14 2019-09-09 배기가스 봉입을 동반한 실린더 셧오프 시, 가스 스프링 작용을 보상하기 위한 방법 KR102160518B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018215649.2 2018-09-14
DE102018215649.2A DE102018215649A1 (de) 2018-09-14 2018-09-14 Verfahren zur Kompensation einer Gasfederwirkung bei Zylinderabschaltung mit Abgaseinschluss

Publications (2)

Publication Number Publication Date
KR20200031527A KR20200031527A (ko) 2020-03-24
KR102160518B1 true KR102160518B1 (ko) 2020-09-28

Family

ID=67180673

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190111334A KR102160518B1 (ko) 2018-09-14 2019-09-09 배기가스 봉입을 동반한 실린더 셧오프 시, 가스 스프링 작용을 보상하기 위한 방법

Country Status (5)

Country Link
US (1) US11085379B2 (ko)
EP (1) EP3633168B1 (ko)
KR (1) KR102160518B1 (ko)
CN (1) CN110905669B (ko)
DE (1) DE102018215649A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11705353B2 (en) * 2020-04-28 2023-07-18 Korea Advanced Institute Of Science And Technology Dynamic routing method and apparatus for overhead hoist transport system
DE102021127892A1 (de) 2021-10-26 2023-04-27 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur Steuerung eines Verbrennungsmotors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502389A (ja) 2003-05-28 2007-02-08 ロータス カーズ リミテッド 圧縮空気による作動を含む複数の作動モードを有するエンジン
WO2016031518A1 (ja) * 2014-08-29 2016-03-03 マツダ株式会社 エンジンの制御装置
KR101807044B1 (ko) 2016-10-12 2017-12-08 현대자동차 주식회사 Cda 장치 및 물 펌프가 장착된 엔진 및 이를 제어하는 방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374224A (en) * 1993-12-23 1994-12-20 Ford Motor Company System and method for controlling the transient torque output of a variable displacement internal combustion engine
JP3175491B2 (ja) * 1994-09-01 2001-06-11 トヨタ自動車株式会社 可変気筒エンジンの制御装置
JPH094488A (ja) * 1995-06-16 1997-01-07 Yamaha Motor Co Ltd 内燃機関の急加減速制御方法および装置
JP3962358B2 (ja) * 2003-05-27 2007-08-22 本田技研工業株式会社 可変気筒式内燃機関の点火時期制御装置
DE102004033231A1 (de) 2004-07-08 2006-02-02 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine mit mehreren Zylinderbänken
US7757666B2 (en) * 2007-11-05 2010-07-20 Gm Global Technology Operations, Inc. Cylinder fueling coordination for torque estimation and control
US8887692B2 (en) 2011-02-14 2014-11-18 GM Global Technology Operations LLC Systems and methods for decreasing torque fluctuations during cylinder deactivation and reactivation
DE102011086622B4 (de) * 2011-11-18 2022-08-18 Vitesco Technologies GmbH Verfahren zum Abschalten und zum Aktivieren eines Zylinders einer Brennkraftmaschine
US9638121B2 (en) * 2012-08-24 2017-05-02 GM Global Technology Operations LLC System and method for deactivating a cylinder of an engine and reactivating the cylinder based on an estimated trapped air mass
US9284894B2 (en) * 2013-06-07 2016-03-15 GM Global Technology Operations LLC Reduced torque variation for engines with active fuel management
WO2015042054A1 (en) * 2013-09-18 2015-03-26 Tula Technology, Inc. System and method for safe valve activation in a dynamic skip firing engine
US9399964B2 (en) * 2014-11-10 2016-07-26 Tula Technology, Inc. Multi-level skip fire
KR101566740B1 (ko) * 2013-12-19 2015-11-06 현대자동차 주식회사 가변 밸브 리프트를 구비한 엔진의 제어 장치 및 방법
US10247121B2 (en) 2014-03-13 2019-04-02 Tula Technology, Inc. Method and apparatus for determining optimum skip fire firing profile
KR20170008759A (ko) * 2014-05-23 2017-01-24 툴라 테크놀로지, 인크. 밸브 결함 검출
CN110067663B (zh) * 2015-01-12 2021-11-02 图拉技术公司 用于操作混合动力传动系的方法及动力传动系控制器
US10196995B2 (en) * 2015-01-12 2019-02-05 Tula Technology, Inc. Engine torque smoothing
DE102016209957A1 (de) * 2016-06-07 2017-12-07 Volkswagen Aktiengesellschaft Verfahren zum Betreiben einer Brennkraftmaschine und Brennkraftmaschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502389A (ja) 2003-05-28 2007-02-08 ロータス カーズ リミテッド 圧縮空気による作動を含む複数の作動モードを有するエンジン
WO2016031518A1 (ja) * 2014-08-29 2016-03-03 マツダ株式会社 エンジンの制御装置
KR101807044B1 (ko) 2016-10-12 2017-12-08 현대자동차 주식회사 Cda 장치 및 물 펌프가 장착된 엔진 및 이를 제어하는 방법

Also Published As

Publication number Publication date
DE102018215649A1 (de) 2020-03-19
US11085379B2 (en) 2021-08-10
CN110905669A (zh) 2020-03-24
KR20200031527A (ko) 2020-03-24
EP3633168B1 (de) 2023-01-11
CN110905669B (zh) 2022-06-07
US20200088115A1 (en) 2020-03-19
EP3633168A1 (de) 2020-04-08

Similar Documents

Publication Publication Date Title
JP3733786B2 (ja) 電磁駆動弁を有する内燃機関
US5975052A (en) Fuel efficient valve control
JP4699017B2 (ja) エンジンのためのシステム
JP5919697B2 (ja) ディーゼルエンジンの始動制御装置
WO2016031518A1 (ja) エンジンの制御装置
US7890244B2 (en) Internal combustion engine
US7131413B2 (en) Start control apparatus of internal combustion engine
JP5548029B2 (ja) 内燃機関の制御装置
WO2011132321A1 (ja) 内燃機関
US20120283932A1 (en) Two-stroke internal combustion engine with variable compression ratio and an exhaust port shutter and a method of operating such an engine
KR102160518B1 (ko) 배기가스 봉입을 동반한 실린더 셧오프 시, 가스 스프링 작용을 보상하기 위한 방법
US7406937B2 (en) Method for operating an internal combustion engine
JPH05141336A (ja) 内燃機関の点火装置
JP4983747B2 (ja) 内燃機関
EP2063092A1 (en) An internal combustion engine system, and a method in such an engine system
JP2005105869A (ja) 可変気筒内燃機関
JP2004346770A (ja) 内燃機関の始動装置及び方法並びに動力システム
JP4144421B2 (ja) 内燃機関の制御装置
JP5045600B2 (ja) 内燃機関
JP4238629B2 (ja) 内燃機関のアイドル振動低減装置
JP6292199B2 (ja) 多気筒直噴エンジンの停止制御装置
JP5333172B2 (ja) 内燃機関の制御装置
JP4760739B2 (ja) 内燃機関の自動停止・始動システム
JP4682905B2 (ja) 予混合圧縮自着火式内燃機関の制御装置
JP6131873B2 (ja) エンジンのブローバイガス還流制御装置

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant