KR102135711B1 - 플렉시블 디바이스용 기판 및 그의 제조 방법 - Google Patents

플렉시블 디바이스용 기판 및 그의 제조 방법 Download PDF

Info

Publication number
KR102135711B1
KR102135711B1 KR1020187030958A KR20187030958A KR102135711B1 KR 102135711 B1 KR102135711 B1 KR 102135711B1 KR 1020187030958 A KR1020187030958 A KR 1020187030958A KR 20187030958 A KR20187030958 A KR 20187030958A KR 102135711 B1 KR102135711 B1 KR 102135711B1
Authority
KR
South Korea
Prior art keywords
substrate
nickel
layer
glass
flexible device
Prior art date
Application number
KR1020187030958A
Other languages
English (en)
Other versions
KR20180128950A (ko
Inventor
도시히코 미야자키
히로히사 마스다
히로시 시모무라
고우지 난부
Original Assignee
도요세이칸 그룹 홀딩스 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017037333A external-priority patent/JP6772897B2/ja
Priority claimed from JP2017042159A external-priority patent/JP6915307B2/ja
Priority claimed from JP2017042160A external-priority patent/JP6911390B2/ja
Application filed by 도요세이칸 그룹 홀딩스 가부시키가이샤 filed Critical 도요세이칸 그룹 홀딩스 가부시키가이샤
Priority claimed from PCT/JP2017/011448 external-priority patent/WO2017170038A1/ja
Publication of KR20180128950A publication Critical patent/KR20180128950A/ko
Application granted granted Critical
Publication of KR102135711B1 publication Critical patent/KR102135711B1/ko

Links

Images

Classifications

    • H01L51/0097
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/122Silica-free oxide glass compositions containing oxides of As, Sb, Bi, Mo, W, V, Te as glass formers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • H01L51/56
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2207/00Compositions specially applicable for the manufacture of vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2207/00Compositions specially applicable for the manufacture of vitreous enamels
    • C03C2207/04Compositions specially applicable for the manufacture of vitreous enamels for steel
    • H01L2251/5338
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • Y10T428/12618Plural oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 금속 기재의 적어도 한쪽의 표면에 니켈 도금층이 형성되어 이루어지는 니켈 도금 금속 기재 또는 니켈계 기재와, 상기 니켈 도금층 또는 니켈계 기재의 표면에 전기 절연성을 갖는 비스무트계 유리가 층상으로 형성된 유리층을 갖는 플렉시블 디바이스용 기판에 관한 것이며, 상기 니켈 도금층 표면 또는 니켈계 기재 표면에는, 표면에 요철을 갖는 산화물막이 형성되어 있고, 상기 비스무트계 유리가 Bi2O3을 70∼84 중량%, ZnO를 10∼12 중량%, B2O3을 6∼12 중량%의 양으로 함유함으로써, 수분 배리어성 및 유리층의 밀착성이 우수함과 동시에, 유리층 표면의 범프와 피트의 발생이 유효하게 억제되어, 표면 평활성도 우수하다.

Description

플렉시블 디바이스용 기판 및 그의 제조 방법
본 발명은 플렉시블 디바이스용 기판 및 그의 제조 방법에 관한 것으로, 보다 상세하게는, 수분 배리어성 및 절연층의 밀착성이 우수함과 동시에 표면 결함이 없고, 유기 EL 관련의 용도에도 적합하게 사용 가능한 플렉시블 디바이스용 기판 및 그의 제조 방법에 관한 것이다.
또한 본 발명은 플렉시블 디바이스용 기판용 기재 및 그의 제조 방법에 관한 것으로, 보다 상세하게는, 유리층과의 밀착성이 우수함과 동시에, 형성되는 유리층의 표면결함을 저감할 수 있는 플렉시블 디바이스용 기판용 기재 및 그의 제조 방법에 관한 것이다.
또한 본 발명은 비스무트계 무연 유리 조성물에 관한 것으로, 보다 상세하게는, 범프와 피트의 발생이 유효하게 방지되어, 표면 평활성이 우수한 유리층을 형성할 수 있는 비스무트계 무연 유리 조성물에 관한 것이다.
유기 EL 조명이나 유기 EL 디스플레이, 유기 태양 전지 등에 이용되는 플렉시블 디바이스용 기판은, 수분 배리어성 및 증기 배리어성 등의 배리어성 외에, 평활성 및 절연성이 요구되고 있다.
하기 특허문헌 1에는, 플라스틱 필름 기재 상에, 투명 도전층, 유기 발광 매체층, 음극층을 순차 적층하고, 접착층을 통해 금속박이 적층된 유기 EL 소자의 구조가 제안되어 있지만, 이러한 플라스틱 필름 기재는 수분 배리어성의 점에서 만족할만한 것이 아니다.
또한 하기 특허문헌 2에는, 스테인레스 기재 상에 폴리이미드 수지로 이루어지는 평탄화층을 설치한 플렉시블 디바이스용 기판이 제안되어 있지만, 폴리이미드 수지의 흡수성이 높기 때문에, 역시 수분 배리어성의 점에서 만족할만한 것이 아니다.
또한 하기 특허문헌 3에는, 스테인레스 기재 상에 실리카계 유리를 막 제조한 플렉시블 태양 전지 기판이 제안되어 있지만, 실리카계 유리는 일반적으로 스테인레스에 비해서 열 팽창 계수가 작고, 스테인레스 기재에 대한 밀착성이 부족함과 동시에, 실리카계 유리는 굽힘 가공이나 충격에 약하다고 하는 문제를 갖고 있다.
또한 박막 전기 회로나 플렉시블 디스플레이의 기판으로서 이용 가능한 유리 기판도 여러 가지 제안되어 있지만(특허문헌 4 등), 유리 기판은 비틀림 등의 굽힘에 약하다고 하는 특징이 있어, 플렉시블 디바이스용 기판으로서 보다 강도가 높은 것이 요구되고 있다.
이러한 문제를 해결하기 위해, 본 발명자들은 금속 기재의 표면에 니켈 도금층을 형성하고, 그 니켈 도금층의 표면에, 전기 절연성을 갖는 비스무트계 유리를 적층하여 이루어지는 플렉시블 디바이스용 금속 기판을 제안하였다(특허문헌 5).
특허문헌 1: 일본 특허 공개 제2004-171806호 공보 특허문헌 2: 일본 특허 공개 제2011-97007호 공보 특허문헌 3: 일본 특허 공개 제2006-80370호 공보 특허문헌 4: 일본 특허 공개 제2012-197185호 공보 특허문헌 5: 일본 특허 공개 제2014-107053호 공보
상기 플렉시블 디바이스용 금속 기판은 기계적 강도가 우수한 금속 기재 상에, 수분 배리어성 및 금속 기재와의 밀착성이 우수한 비스무트계 유리를 적층하고 있기 때문에, 굽힘 내성이 우수함과 동시에, 절연성 및 평탄성도 우수하고, 경량이며 플렉시블성을 가지고 있지만, 소성 후의 유리층 표면에, 미소 볼록부인 범프(bump)나 미소 오목부인 피트(pit)가 발생하는 경우가 있고, 이러한 미소 결함에 의해 유리층의 평활성이 손상되는 경우가 있었다.
본 발명자들은, 유리층 표면에 형성되는 이들 미소 결함에 대해서 그 발생 원인을 연구한 결과, 유리층 표면에 형성되는 이들 미소 결함이, 유리로부터의 결정의 발생이나, 기포의 파열흔 등을 원인으로 하여 형성되고, 특히 피트가 기포의 파열흔이나 유리의 결정화 등에 의한 유리층의 혼란을 기점으로 한 표면 장력의 영향에 의해 발생한다는 것을 알 수 있었다.
따라서, 본 발명의 목적은 수분 배리어성 및 유리층의 밀착성이 우수함과 동시에, 유리층 표면의 범프와 피트의 발생이 유효하게 억제된, 표면 평활성이 우수한 플렉시블 디바이스용 기판 및 그의 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은 유리층의 밀착성이 우수함과 동시에, 형성되는 유리층 표면의 피트 등의 표면 결함의 발생을 유효하게 억제할 수 있는 플렉시블 디바이스용 기판용 기재 및 그의 제조 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 수분 배리어성 및 금속 기판과의 밀착성이 우수함과 동시에, 범프와 피트의 발생이 유효하게 억제된, 표면 평활성이 우수한 유리층을 형성할 수 있는 비스무트계 무연 유리 조성물을 제공하는 것이다.
본 발명에 따르면, 금속 기재의 적어도 한쪽의 표면에 니켈 도금층이 형성되어 이루어지는 니켈 도금 금속 기재 또는 니켈계 기재와, 상기 니켈 도금층 또는 니켈계 기재 위에 전기 절연성을 갖는 비스무트계 유리가 층상으로 형성된 유리층을 갖는 플렉시블 디바이스용 기판으로서, 상기 니켈 도금층 표면 또는 니켈계 기재 표면에는, 표면에 요철을 갖는 산화물막이 형성되어 있고, 상기 비스무트계 유리가 Bi2O3을 70∼84 중량%, ZnO를 10∼12 중량%, B2O3을 6∼12 중량%의 양으로 함유하는 것을 특징으로 하는 플렉시블 디바이스용 기판이 제공된다.
본 발명의 플렉시블 디바이스용 기판에 있어서는,
1. 상기 비스무트계 유리가 SiO2 및/또는 Al2O3을 함유하고, SiO2의 함유량이 0∼2 중량%, Al2O3의 함유량이 0∼1 중량%의 양(SiO2 및 Al2O3의 양쪽이 제로인 경우를 포함하지 않음)인 것,
2. 상기 비스무트계 유리가 CuO 및/또는 NiO를 함유하고, CuO의 함유량이 0∼2 중량%, NiO의 함유량이 0∼2 중량%의 양(CuO 및 NiO의 양쪽이 제로인 경우를 포함하지 않음)인 것,
3. 상기 비스무트계 유리가 Y2O3, ZrO2, La2O3, CeO2, TiO2, CoO, Fe2O3 중 어느 하나를 1.5 중량% 이하(제로를 포함하지 않음)의 양으로 함유하는 것,
4. 상기 산화물막의 표면의 산술 평균 거칠기(Ra)가 30∼100 ㎚의 범위에 있는 것,
5. 상기 산화물막의 표면의 최대 높이 거칠기(Rz)가 420∼900 ㎚의 범위에 있는 것,
6. 상기 산화물막의 두께가 40∼1200 ㎚의 범위에 있는 것,
7. 상기 유리층의 두께가 2∼45 ㎛인 것,
8. 상기 니켈 도금층 표층 또는 니켈계 기재 표층에 철이 존재하는 것,
9. 상기 니켈 도금층 표층 또는 니켈계 기재 표층에 존재하는 철 중, 금속 철이 3 원자% 이하인 것,
10. 상기 니켈 도금층 표층 또는 니켈계 기재 표층에 있어서의 산소의 비율이 30 원자% 이상인 것,
11. 상기 니켈 도금층 표층 또는 니켈계 기재 표층에 존재하는 니켈 중, 금속 니켈의 비율이 20 원자% 이하인 것,
12. 상기 유리층의 두께 방향의 임의의 면에 있어서의 산소량을 100%로 한 경우에, 상기 유리층과 니켈 도금층 또는 니켈계 기재의 계면에 있어서의 산소량이 80% 이상인 것,
13. 상기 유리층의 표면에, 전극층 형성을 위한 하지(下地)가 되는 층이 형성되어 있고, 그 하지층이 니켈 또는 산화인듐주석으로 이루어지는 것
이 적합하다.
본 발명에 따르면 또한, 금속 기재의 적어도 한쪽의 표면에 니켈 도금층이 형성되어 이루어지는 니켈 도금 금속 기재 또는 니켈계 기재와, 상기 니켈 도금층 또는 니켈계 기재 위에 전기 절연성을 갖는 비스무트계 유리가 층상으로 형성된 유리층과, 그 유리층의 표면에 전극층 형성을 위한 하지가 되는 하지층을 갖는 것을 특징으로 하는 플렉시블 디바이스용 기판이 제공된다.
본 발명의 상기 플렉시블 디바이스용 기판에 있어서는, 상기 하지층이 니켈, 산화인듐주석, 은, 금, 구리, 마그네슘-은, 금-구리, 은-구리, 산화아연, 코발트, 팔라듐 중 어느 하나로 이루어지는 것이 적합하다.
본 발명에 따르면 또한, 금속 기재의 적어도 한쪽의 표면에 니켈 도금층이 형성되어 이루어지는 니켈 도금 금속 기재 또는 니켈계 기재를 산소 함유 분위기 중에서 소성(이하, 「하소」라고 하는 경우가 있음)함으로써, 니켈 도금층 표면 또는 니켈계 기재 표면에 산화물막을 형성하는 산화물막 형성 공정, 상기 산화물막 상에, Bi2O3, ZnO, B2O3을 함유하는 비스무트계 유리층을 형성하는 유리층 형성 공정을 포함하는 것을 특징으로 하는 플렉시블 디바이스용 기판의 제조 방법이 제공된다.
본 발명의 플렉시블 디바이스용 기판의 제조 방법에 있어서는,
1. 상기 산화물막 형성 공정에 있어서, 니켈 도금층 또는 니켈계 기재 표면을 550∼900℃의 온도에서 소성하는 것,
2. 상기 유리층 형성 공정에 있어서, 니켈 도금층 상에 또는 니켈계 기재 상에 코팅된 비스무트계 유리 조성물을 550∼900℃의 온도에서 10∼300초간 소성하는 것
이 적합하다.
본 발명에 따르면 또한, 상기 플렉시블 디바이스용 기판과, 이 플렉시블 디바이스용 기판의 상기 유리층 또는 상기 하지층 위에 형성된 전극층과, 이 전극층 위에 형성된 유기 박막 발광층과, 이 유기 박막 발광층 위에 형성된 투명 전극층을 갖는 것을 특징으로 하는 유기 EL 디바이스용 기판이 제공된다.
본 발명에 따르면, 금속 기재의 적어도 한쪽의 표면에 니켈 도금층이 형성되어 이루어지는 니켈 도금 금속 기재 또는 니켈계 기재로 이루어지는 플렉시블 디바이스용 기판용 기재로서, 상기 니켈 도금층 표면 또는 니켈계 기재 표면에는 요철을 갖는 산화물막이 형성되어 있는 것을 특징으로 하는 플렉시블 디바이스용 기판용 기재가 제공된다.
본 발명의 플렉시블 디바이스용 기판용 기재에 있어서는,
1. 상기 산화물막의 산술 평균 거칠기(Ra)가 30∼100 ㎚의 범위에 있는 것,
2. 상기 산화물막의 표면의 최대 높이 거칠기(Rz)가 420∼900 ㎚의 범위에 있는 것,
3. 상기 산화물막의 두께가 40∼1200 ㎚의 범위에 있는 것,
4. 상기 산화물막의 두께가 500∼1000 ㎚의 범위에 있는 것,
5. 상기 니켈 도금층의 표층 또는 니켈계 기재 표층에 철이 존재하는 것,
6. 상기 니켈 도금층의 표층 또는 니켈계 기재 표층에 존재하는 철 중, 금속 철이 3 원자% 이하인 것,
7. 상기 니켈 도금층 표층 또는 니켈계 기재 표층에 있어서의 산소의 비율이 30 원자% 이상인 것,
8. 상기 니켈 도금층 표층 또는 니켈계 기재 표층에 존재하는 니켈 중, 금속 니켈의 비율이 20 원자% 이하인 것
이 적합하다.
본 발명에 따르면 또한, 금속 기재의 적어도 한쪽의 표면에 니켈 도금층이 형성되어 이루어지는 니켈 도금 금속 기재 또는 니켈계 기재를 산소 함유 분위기 중에서 소성함으로써, 니켈 도금층 표면 또는 니켈계 기재 표면에 산화물막을 형성하는 것을 특징으로 하는 플렉시블 디바이스용 기판용 기재의 제조 방법이 제공된다.
본 발명에 따르면, Bi2O3을 70∼84 중량%, ZnO를 10∼12 중량%, B2O3을 6∼12 중량%의 양으로 함유하는 것을 특징으로 하는 비스무트계 무연 유리 조성물이 제공된다.
본 발명의 비스무트계 무연 유리 조성물에 있어서는,
1. SiO2 및/또는 Al2O3을 함유하고, SiO2의 함유량이 0∼2 중량%, Al2O3의 함유량이 0∼1 중량%의 양(SiO2 및 Al2O3의 양쪽이 제로인 경우를 포함하지 않음)인 것,
2. CuO 및/또는 NiO를 함유하고, CuO의 함유량이 0∼2 중량%, NiO의 함유량이 0∼2 중량%의 양(CuO 및 NiO의 양쪽이 제로인 경우를 포함하지 않음)인 것,
3. Y2O3, ZrO2, La2O3, CeO2, TiO2, CoO, Fe2O3 중 어느 하나를 1.5 중량% 이하(제로를 포함하지 않음)의 양으로 함유하는 것
이 적합하다.
본 발명에 따르면 또한, 상기 유리 조성물의 분체 및 비히클로 이루어지는 비스무트계 무연 유리 조성물 페이스트로서, 상기 유리 조성물 분체의 평균 입경이 20 ㎛ 이하인 것을 특징으로 하는 비스무트계 무연 유리 조성물 페이스트가 제공된다.
본 발명에 있어서는, 유리층 표면의 결정(범프)이나 피트의 발생이 억제되어, 표면 평활성 및 절연성이 우수한 유리층을 갖는 플렉시블 디바이스용 기판이 제공된다. 또한 본 발명의 플렉시블 디바이스용 기판에 있어서는, 표면에 요철을 갖는 산화물막이 형성되어 있는, 니켈 도금층을 갖는 금속 기재 또는 니켈계 기재를 이용함으로써, 유리층의 밀착성이 우수하여, 롤 투 롤의 공정에 제공한 경우라도 박리 등이 발생하지 않는, 충분한 플렉시블성을 갖고 있다.
또한 본 발명에 있어서는, 조밀한 구조로 수분의 투과를 완전히 막는 것이 가능한 유리층을 가지고 있기 때문에, 수분 배리어성도 우수하고, 유기 EL 관련용의 기판으로서 유효하게 사용할 수 있다.
또한, 유리층 위에 전극층 형성을 위한 기초가 되는 하지층이 형성되어 있음으로써, 전극층의 플렉시블 디바이스용 기판과의 밀착성이 향상되어, 전극층의 박리를 유효하게 방지할 수 있다.
또한 본 발명의 플렉시블 디바이스용 기판의 제조 방법에 따르면, 표면 결함이 없는 플렉시블 디바이스용 기판을 연속적으로 제조할 수 있어, 생산성 및 경제성도 우수하다.
본 발명의 플렉시블 디바이스용 기판용 기재에 있어서는, 니켈 도금 금속 기재의 니켈 도금층 표면 또는 니켈계 기재 표면에, 표면에 요철을 갖는 산화물막이 형성되어 있음으로써, 니켈 도금층 표면 또는 니켈계 기재 표면에 절연층으로서 형성되는 유리층과의 밀착성이 현저히 향상되어, 플렉시블 디바이스용 기판에 이용한 경우, 롤 투 롤의 공정에 제공한 경우라도 유리층의 박리 등이 발생하지 않는, 충분한 플렉시블성을 발현 가능하다.
또한, 산화물막 표면에 요철이 형성되어 있음으로써, 유리층 형성 시의 유리의 늘어짐을 억제할 수 있기 때문에, 유리층의 표면의 피트의 발생을 유효하게 억제할 수 있다.
또한 본 발명의 플렉시블 디바이스용 기판용 기재의 제조 방법에 따르면, 니켈 도금 금속 기재 또는 니켈계 기재를 산소 함유 분위기 중에서 하소함으로써, 니켈 도금층 표면 또는 니켈계 기재 표면에 상기 기능을 갖는 산화물막을 형성하는 것이 가능하고, 그 결과, 표면 결함이 없는 유리층을 형성할 수 있는, 표면에 요철을 갖는 산화물막을 용이하게 또한 연속적으로 제조할 수 있어, 생산성 및 경제성도 우수하다.
본 발명의 비스무트계 무연 유리 조성물은 납을 함유하지 않아, 환경성이 우수함과 동시에, 결정화하기 어려운 유리 조성이기 때문에, 유리층 표면의 범프와 피트의 발생이 억제되어, 표면 평활성이 우수한 유리층을 형성할 수 있다.
더구나 금속 기재와의 밀착성이 우수함과 동시에, 박층이어도 범프와 피트의 발생이 없기 때문에, 플렉시블 디바이스용 기판 등의 유기 EL 관련용의 기판에 적합하게 사용할 수 있다.
또한 본 발명의 비스무트계 무연 유리 조성물은 조밀한 구조로 수분의 투과를 완전히 막는 것이 가능하기 때문에, 금속 기판을 이용한 전자 디바이스용의 절연층으로서 우수한 수분 배리어성을 발현하는 것이 가능하다.
도 1은 본 발명의 플렉시블 디바이스용 기판용 기재의 일례의 단면 구조를 설명하기 위한 도면이다.
도 2는 본 발명의 플렉시블 디바이스용 기판의 일례의 단면 구조를 나타내는 도면이다.
도 3은 본 발명의 플렉시블 디바이스용 기판의 다른 일례의 단면 구조를 나타내는 도면이다.
도 4는 도 2에 나타내는 본 발명의 플렉시블 디바이스용 기판을 이용한 유기 EL 디바이스용 기판의 단면 구조를 나타내는 도면이다.
도 5는 도 3에 나타내는 본 발명의 플렉시블 디바이스용 기판을 이용한 유기 EL 디바이스용 기판의 단면 구조를 나타내는 도면이다.
도 6은 표 1에 있어서의 니켈 도금 강판의 기재 번호 1, 번호 2, 번호 6, 번호 10에 대해서 하소 후의 니켈 도금층 표면의 SEM 사진[(A)∼(D)] 및 기재 번호 4의 니켈 도금층 표면의 SEM 사진(E)이다.
도 7은 표 5에 있어서의 실시예 12 및 비교예 1에 대해서, 니켈 도금층과 유리층의 계면의 TEM 사진[(A) 및 (B)]이다.
(플렉시블 디바이스용 기판용 기재)
본 발명의 플렉시블 디바이스용 기판용 기재는, 금속 기재의 적어도 한쪽의 표면에 니켈 도금층이 형성되어 이루어지는 니켈 도금 금속 기재 또는 니켈계 기재로서, 상기 니켈 도금층 표면 또는 니켈계 기재 표면에는, 표면에 요철을 갖는 산화물막이 형성되어 있는 것이 중요한 특징이다.
도 1은 금속 기재(10)의 표면에 니켈 도금층(11)이 형성된 니켈 도금 금속 기재를 이용한, 본 발명의 플렉시블 디바이스용 기판용 기재의 단면 구조를 나타내는 도면이고, 니켈 도금층(11)의 표면에 산화물막(12)이 형성되어 있고, 이 산화물막(12)의 표면이 요철(12a)로 형성되어 있다.
[금속 기재]
본 발명의 플렉시블 디바이스용 기판용 기재에 이용되는, 니켈 도금층을 형성하는 금속 기재로서는, 이것에 한정되지 않지만, 철, 스테인레스, 티탄, 알루미늄, 구리 등을 사용할 수 있고, 열 팽창 계수가 8×10-6∼25×10-6/℃, 특히 10×10-6∼20×10-6/℃의 범위에 있는 것을 사용하는 것이 바람직하다.
또한 본 발명에 있어서는, 니켈 도금층을 형성하는 일없이, 금속 기재 자체를 니켈계 기재, 즉 순니켈판 또는 니켈 합금판으로 할 수도 있다. 니켈 합금판에 있어서, 니켈과 합금 가능한 금속으로서는, 철(Fe), 구리(Cu), 크롬(Cr)을 이용할 수 있다.
금속 기재 또는 니켈계 기재의 두께는 10∼200 ㎛, 특히 20∼100 ㎛의 범위에 있는 것이 적합하고, 이에 의해 충분한 플렉시블성을 얻을 수 있다.
[니켈 도금층]
본 발명의 플렉시블 디바이스용 기판용 기재에 있어서, 금속 기재 표면에 형성되는 니켈 도금층은, 니켈 도금에 의해 형성되는 층이고, 후술하는 바와 같이 전해 도금 또는 무전해 도금 중 어느 것이어도 좋다. 니켈 도금층은 도 1에 나타낸 예에서는, 금속 기재의 한쪽의 표면에만 형성되어 있지만, 물론 금속 기재의 양면에 형성되어 있어도 좋다.
니켈 도금층의 두께는 상기 산화물막을 포함한 값으로 0.1∼10 ㎛, 특히 0.5∼5 ㎛의 범위에 있는 것이 적합하고, 상기 범위보다 니켈 도금층의 두께가 얇으면, 상기 범위에 있는 경우에 비해서 유리층의 밀착성이 뒤떨어지게 되고, 한편 상기 범위보다 니켈 도금층의 두께가 두꺼워도 추가적인 효과는 기대할 수 없어, 경제성이 뒤떨어지게 된다.
니켈 도금층은 금속 기재와의 계면에 합금층을 가지고 있어도 좋다.
[산화물막]
전술한 바와 같이, 본 발명에 있어서는, 니켈 도금층 또는 니켈계 기재의 표면에, 표면이 요철인 산화물막이 형성되어 있는 것이 중요한 특징이고, 이 산화물과 유리가 반응함으로써 밀착층이 형성되어, 유리층의 밀착성이 향상된다. 따라서, 니켈 도금층 또는 니켈계 기재의 표면에 존재하는 금속 니켈은 20 원자% 이하, 특히 18 원자% 이하인 것이 바람직하다.
산화물막은 니켈 도금층 또는 니켈계 기재의 표면이 후술하는 산소 함유 분위기 중에서 하소됨으로써 형성되는 니켈산화물로 적어도 이루어지지만, 니켈산화물과 금속 기재로부터 확산된 금속의 산화물로 이루어져 있어도 좋다.
즉, 금속 소재로서 강판을 이용한 경우나, 니켈계 기재로서 니켈-철 합금판을 이용한 경우에는, 니켈 도금층 또는 니켈계 기재의 표면에 철이 존재하는 것이 바람직하고, 이 표면에 존재하는 철은 산화물로서 존재함으로써, 상기 니켈산화물과 더불어 유리층의 밀착성을 더욱 향상시킬 수 있기 때문에, 니켈 도금층 표층 또는 니켈계 기재 표층에 존재하는 철 중 금속 철은 3 원자% 이하인 것이 바람직하다.
또한 니켈 도금층 표층 또는 니켈계 기재 표층에 있어서의 산소의 비율이, 30 원자% 이상, 특히 35∼50 원자%의 범위에 있는 것이 적합하고, 이에 의해 유리층과의 밀착성이 우수한 산화물막이 형성된다.
또한, 니켈 도금층 또는 니켈계 기재 표면에 유리층을 형성한 경우, 니켈 도금층 또는 니켈계 기재와 유리층의 계면(이하, 「(니켈 도금층/유리층) 계면」이라고 하는 경우가 있음)에 있어서의 산소량은, 후술하는 유리층의 두께 방향의 임의의 면(이하, 「유리층 내부」라고 하는 경우가 있음)에 있어서의 산소량을 100%로 한 경우에, 80% 이상, 특히 85∼100%인 것이 바람직하다. 즉, 니켈 도금층 또는 니켈계 기재가 유리층의 계면에 있어서, 유리층에 존재하는 산소량에 가까운 산소량을 가지고 있음으로써, 니켈 도금층 또는 니켈계 기재의 표면은 유리층으로부터의 앵커 효과를 받고 있다고 생각되며, 후술하는 실시예의 결과에서도 알 수 있는 바와 같이, 계면에 있어서의 층간 밀착성이 현저히 향상된다. 또한, 유리층의 두께 방향의 임의의 면이란, 니켈 도금층 또는 니켈계 기재 표면과의 계면 부근이나 후술하는 하지층을 형성하는 것 같은 표면 부근을 제외한 외부의 영향을 거의 받는 일이 없이, 어떤 임의의 면에 있어서도 유리층의 조성이 거의 같은 유리층의 두께 방향의 임의의 면을 의미한다.
본 발명에 있어서 산화물막의 표면에는 결정립으로 생각되는 볼록부가 형성됨으로써 요철(조면)이 형성되어 있고, 이에 의해 유리층의 형성에 있어서 유리 조성물의 늘어짐이 억제되어, 피트의 발생이 유효하게 억제된다.
산화물막 표면에 있어서의 요철(표면 조도)은, 산술 평균 거칠기(Ra)가 30∼100 ㎚, 특히 50∼90 ㎚의 범위에 있고, 최대 높이 거칠기(Rz)가 420∼900 ㎚, 특히 600∼850 ㎚의 범위에 있도록 형성되어 있는 것이 바람직하다.
또한 이 산화물막의 두께는 40∼1200 ㎚, 바람직하게는 500∼1000 ㎚, 보다 바람직하게는 500∼900 ㎚의 범위에 있는 것이 바람직하다. 상기 범위보다 산화물막의 두께가 얇은 경우에는, 상기 범위에 있는 경우에 비해서 니켈 도금층 또는 니켈계 기재의 표면 개질이 불충분해질 우려가 있고, 한편 상기 범위보다 산화물막의 두께가 두꺼운 경우에는, 상기 범위에 있는 경우에 비해서 니켈 도금층 표층 또는 니켈계 기재 표층의 합금화가 진행되어 니켈 도금층 표층 또는 니켈계 기재 표층이 취약화될 우려가 있어, 니켈 도금층 표층 또는 니켈계 기재 표층이 박리할 우려가 있다.
(플렉시블 디바이스용 기판용 기재의 제조 방법)
본 발명의 플렉시블 디바이스용 기판용 기재는 금속 기재의 적어도 한쪽의 표면에 니켈 도금층이 형성되어 이루어지는 니켈 도금 금속 기재 또는 니켈계 기재를 산소 함유 분위기 중에서 소성함으로써, 니켈 도금층 표면 또는 니켈계 기재 표면에 산화물막을 형성하는 산화물막 형성 공정을 포함하는 제조 방법에 따라 제조할 수 있다.
[니켈 도금층 형성 공정]
본 발명의 플렉시블 디바이스용 기판용 기판에 있어서, 니켈 도금 금속 기재에 있어서의 니켈 도금층의 형성 방법 자체는 종래 공지의 방법에 따라 행할 수 있다.
니켈 도금층 형성 공정에 있어서는, 이용하는 금속 기재에 따라 처리 방법이 상이하지만, 금속 기재로서 강판을 사용하는 경우에는, 도금 처리에 앞서, 알칼리 전해 등에 의해 탈지를 행하고, 수세한 후, 황산 침지 등에 의한 산세척 등의 종래 공지의 전처리를 실시한다.
전처리가 실시된 금속 기재를, 전술한 바와 같이, 전해 도금, 무전해 도금 등 종래 공지의 도금 방법에 의해 니켈 도금층을 형성할 수 있다. 연속 생산성의 관점에서 전해 도금에 의한 것이 바람직하다. 니켈 도금욕은, 와트욕(watt bath), 설파민산욕 등 일반적으로 널리 사용되고 있는 욕을 공지의 처방에 따라, 공지의 전해 조건에서 사용할 수 있다. 또한, 니켈 도금층은 전술한 바와 같이, 0.1∼10 ㎛, 특히 0.5∼5 ㎛의 범위의 두께가 되도록 형성되는 것이 바람직하다.
[산화물막 형성 공정]
본 발명의 플렉시블 디바이스용 기판용 기재의 제조 방법에 있어서는, 니켈 도금 금속 기재의 니켈 도금층 표면 또는 니켈계 기재 표면을 산소 함유 분위기 중에서 하소함으로써, 니켈 도금층 표면 또는 니켈계 기재 표면에 요철을 갖는 산화물막을 형성하는 것이 중요하다.
하소 조건은, 전술한 산화물막이 형성되는 한, 특별히 한정되지 않지만, 하소 온도가 550∼900℃, 특히 750∼850℃의 온도인 것이 바람직하다. 하소 시간은 산소 함유 분위기의 산소 농도, 하소 온도에 따라 적절하게 변경할 수 있지만, 대기 중에서 상기 온도 범위에서 하소하는 경우에는, 상기 하소 온도에서 5∼120초간 하소하는 것이 적합하다. 산화물막은, 전술한 바와 같이, 40∼1200 ㎚, 바람직하게는 500∼1000 ㎚, 보다 바람직하게는 500∼900 ㎚의 범위가 되도록 형성되는 것이 바람직하다.
또한, 본 공정의 산화물막 형성을 위한 소성에 의해, 하소 조건에 따라서는, 니켈 도금층 또는 니켈계 기재의 표면에 합금층이 형성되는 경우가 있다.
[기타]
본 발명의 플렉시블 디바이스용 기판용 기재는, 전술한 바와 같이, 절연층으로서 유리층을 갖는 플렉시블 디바이스용 기판의 기재로서 적합하게 이용할 수 있다.
본 발명의 플렉시블 디바이스용 기판용 기재에 있어서, 그 표면에 요철을 갖는 산화물막 상에 형성 가능한 유리층으로서는, 종래부터 유기 EL 조명 등의 절연층 또는 투명 기판으로서 사용되고 있던 것을 제한 없이 사용할 수 있고, 이에 한정되지 않지만, 주석-인산계 유리, 비스무트계 유리, 바나듐계 유리, 납계 유리 등의 저융점 유리를 예시할 수 있다. 이들 중에서도, 수분 배리어성이 우수하고, 금속 기재와의 밀착성이 우수한 비스무트계 유리를 적합하게 적층할 수 있다.
비스무트계 유리로서는, 연화점 온도가 300∼500℃인 전기 절연성을 갖는 비스무트계 유리가 적합하고, 특히 유리 조성으로서 Bi2O3을 주성분(특히 70 중량% 이상)으로 함유하는 것이 바람직하다.
본 발명의 플렉시블 디바이스용 기판용 기재를 이용하여 플렉시블 디바이스용 기판을 형성하는 경우, 유리층은 평균 입경 20 ㎛ 이하, 적합하게는 1∼10 ㎛의 유리 프릿을 이용하여, 소성함으로써 형성된다. 유리층의 유리 형성의 소성 온도 및 소성 시간으로서는, 비스무트계 유리를 이용한 경우에는, 430℃ 이상 900℃ 미만이며, 10초∼30분의 조건으로 행해진다.
본 발명의 플렉시블 디바이스용 기판용 기재 상에 형성된 유리층은, 표면 조도(Ra)가 10 ㎚ 이하로 평활하고, 피트라고 하는 표면 결함도 없다.
(플렉시블 디바이스용 기판)
본 발명의 플렉시블 디바이스용 기판은, 금속 기재의 적어도 한쪽의 표면에 니켈 도금층이 형성되어 이루어지는 니켈 도금 금속 기재 또는 니켈계 기재와, 상기 니켈 도금층 또는 니켈계 기재 위에 전기 절연성을 갖는 비스무트계 유리가 층상으로 형성된 유리층을 갖는 플렉시블 디바이스용 기판으로서, 상기 니켈 도금층 표면 또는 니켈계 기재 표면에는, 표면에 요철을 갖는 산화물막이 형성되어 있는 것 및 상기 비스무트계 유리가 Bi2O3을 70∼84 중량%, ZnO를 10∼12 중량%, B2O3을 6∼12 중량%의 양으로 함유하는 것을 중요한 특징으로 한다.
즉, 본 발명의 플렉시블 디바이스용 기판은, 전술한 플렉시블 디바이스용 기판용 기재의 니켈 도금층 또는 니켈계 기재 위에 형성된 요철 표면을 갖는 산화물막 상에, 절연층으로서, Bi2O3, ZnO, B2O3을 함유하는 비스무트계 유리 조성물로 이루어지는 유리층을 형성하여 이루어지는 것이다.
도 2는 금속 기재(10)의 표면에 니켈 도금층(11)이 형성된 니켈 도금 금속 기재[도 1에 나타내는 플렉시블 디바이스용 기판용 기재(1)]를 이용한, 본 발명의 플렉시블 디바이스용 기판(2)의 단면 구조의 일례를 나타내는 도면이며, 니켈 도금층(11)의 표면에 유리층(13)이 형성되고, 니켈 도금층(11)의 표면에 형성된 산화물막(12)의 표면이 요철(12a)로 형성되어 있다.
[유리층]
비스무트계 유리는 우수한 수분 배리어성 및 금속 기재와의 우수한 밀착성을 갖는 것은 알려져 있지만, 본 발명에 있어서는, 이러한 비스무트계 유리에 있어서, 주성분인 Bi2O3과 함께, ZnO 및 B2O3을 필수적인 성분으로서 함유하고, 또한 이들 성분의 배합이 공정점 주변의 범위에 있음으로써, 결정화하기 어려운 유리 네트워크 구조를 형성할 수 있어, 전술한 니켈 도금층과의 조합과 더불어, 유리 표면에는 피트의 발생이 유효하게 억제된 플렉시블 디바이스용 기판을 제공하는 것이 가능해진다.
상기 비스무트계 유리는 Bi2O3이 70∼84 중량%, ZnO가 10∼12 중량%, B2O3이 6∼12 중량%의 양으로 함유되어 있는 것이 중요하고, 이들 성분이 상기 범위에 있음으로써, 유리층의 결정화가 억제되어, 피트의 발생이 유효하게 억제된다.
본 발명의 플렉시블 디바이스용 기판에 이용하는 상기 비스무트계 유리는, 상기 필수 성분에 더하여, SiO2 및/또는 Al2O3이, SiO2가 0∼2 중량%, Al2O3이 0∼1 중량%인 양(SiO2 및 Al2O3의 양쪽이 제로인 경우를 포함하지 않음)으로 더 함유되어 있는 것이 적합하다. 이들 중 적어도 한쪽의 성분이 배합됨으로써, 내구성 등이 향상되어, 유리층을 안정화하는 것이 가능해진다.
또한 본 발명의 플렉시블 디바이스용 기판에 이용하는 상기 비스무트계 유리는, 상기 필수 성분에 더하여, CuO 및/또는 NiO가, CuO를 0∼2 중량%, NiO를 0∼2 중량%의 양(CuO 및 NiO의 양쪽이 제로인 경우를 포함하지 않음)으로 더 함유되어 있는 것이 적합하고, 이들 중 적어도 한쪽의 성분이 배합되어 있음으로써, 니켈 도금층과의 밀착성이 더욱 향상되어, 피트 억제 효과가 더욱 개선된다.
또한 본 발명의 플렉시블 디바이스용 기판에 이용하는 상기 비스무트계 유리는, 상기 필수 성분에 더하여, Y2O3, ZrO2, La2O3, CeO2, TiO2, CoO, Fe2O3 중 어느 하나를 1.5 중량% 이하(제로를 포함하지 않음)의 양으로 함유하는 것이 적합하고, 이에 의해, 유리의 내구성을 향상시킬 수 있고, 또한, 플렉시블 디바이스용 기판의 휘어짐을 유효하게 방지할 수 있다. 또한, 이들 성분은 복수종을 조합하여 사용하는 것도 가능하지만, 그 경우에는, 합계량이 1.5 중량% 이하인 것이 바람직하다.
본 발명의 플렉시블 디바이스용 기판에 있어서, 유리층의 두께는 2∼45 ㎛의 범위에 있는 것이 적합하다. 상기 범위보다 유리층의 두께가 얇은 경우에는, 상기 범위에 있는 경우에 비해서 산화물막에 의한 요철을 충분히 평활화할 수 없을 우려가 있고, 한편 상기 범위보다 두꺼우면, 상기 범위에 있는 경우에 비해서 플렉시블성이 뒤떨어질 우려가 있다.
[전극층 형성을 위한 하지층]
본 발명의 플렉시블 디바이스용 기판에 있어서는, 유리층 표면에 직접 애노드 또는 캐소드 등의 전극층을 형성할 수 있지만, 적합하게는 도 3에 나타내는 바와 같이, 유리층(13)의 표면에, 니켈(Ni), 산화인듐주석(ITO), 은(Ag), 금(Au), 구리(Cu), 마그네슘-은(MgAg), 금-구리(AuCu), 은-구리(AgCu), 산화아연(ZnO), 코발트(Co), 팔라듐(Pd) 등으로 이루어지는 하지층(14)을 형성하는 것이, 전극층의 밀착성의 점에서 바람직하다.
이 하지층은 유기 EL 기판에 사용되는 알루미늄(Al), 은(Ag), 금(Au)이나 이들 합금 등으로 이루어지는 모든 전극층에 대하여 우수한 밀착성을 발현할 수 있지만, 특히 알루미늄(Al), 은(Ag)으로 이루어지는 전극층을 형성하는 경우에는, 하지층은 상기 금속 또는 산화 금속 등 중에서도 니켈, 산화인듐주석으로 이루어지는 것이 적합하다.
하지층의 두께는 5∼100 ㎚의 범위에 있는 것이 바람직하다. 상기 범위보다 얇은 경우에는, 전극층의 밀착성을 충분히 향상시킬 수 없을 우려가 있고, 한편 상기 범위보다 두꺼워도 추가적인 밀착성의 향상을 기대할 수 없어, 경제적으로 뒤떨어질 뿐이다.
또한, 이 하지층은 플렉시블 디바이스용 기판에 이용되는 전기 절연성을 갖는 비스무트계 유리 전반에 대하여 우수한 밀착성을 가지고 있기 때문에, 전술한 특정 비스무트계 유리를 이용한 경우에 한정되지 않고, 플렉시블 디바이스용 기판에 있어서 전극층을 형성하는 경우에, 이 하지층을 적합하게 사용할 수 있다.
(플렉시블 디바이스용 기판의 제조 방법)
본 발명의 플렉시블 디바이스용 기판은, 금속 기재의 적어도 한쪽의 표면에 니켈 도금층이 형성되어 이루어지는 니켈 도금 금속 기재 또는 니켈계 기재를 산소 함유 분위기 중에서 소성함으로써, 니켈 도금층 표면 또는 니켈계 기재 표면에 산화물막을 형성하는 산화물막 형성 공정, 및 상기 산화물막 상에, Bi2O3, ZnO, B2O3을 함유하는 비스무트계 유리층을 형성하는 유리층 형성 공정을 포함하는 제조 방법에 의해 제조할 수 있다.
즉, 본 발명의 플렉시블 디바이스용 기판은, 전술한 플렉시블 디바이스용 기판용 기재의 제조 방법에 있어서의, 니켈 도금층 형성 공정, 산화물막 형성 공정을 거친 후, 후술하는 유리층 형성 공정을 거쳐 형성된다.
또한 상기 유리층 형성 공정 후에, 유리층의 표면에, 니켈, 산화인듐주석 등으로 이루어지는 전극층을 형성하기 위한 하지층을 형성하는 공정을 가질 수도 있다.
[유리층 형성 공정]
전술한 산화물막 형성 공정에 의해, 산화물막이 형성된 니켈 도금층 상에, Bi2O3, ZnO, B2O3을 함유하는 비스무트계 유리층을 형성한다.
유리층의 형성 공정은 이 순서에 한정되지 않지만, 대략적으로 말하면, 유리 분체와 비히클을 혼합·분산하여 유리 페이스트를 조제하고, 이 유리 페이스트를 니켈 도금층 표면의 산화물막 상에 코팅·건조한 후, 소성함으로써 형성할 수 있다.
<유리 페이스트의 조제>
유리층 형성에 이용하는 유리 분체는, Bi2O3, ZnO, B2O3을 기본 구성으로 하고, 전술한 바와 같이, Bi2O3이 70∼84 중량%, ZnO가 10∼12 중량%, B2O3이 6∼12 중량%인 양으로 함유되어 있는 유리 프릿을 이용한다.
또한 전술한 바와 같이, 유리 조성물에는 상기 필수 성분 이외에, 유리의 안정성의 견지에서, SiO2 및/또는 Al2O3이, SiO2가 0∼2 중량%, Al2O3이 0∼1 중량%인 양으로 더 함유되어 있는 것, 니켈 도금층과의 밀착성을 향상하는 견지에서, CuO 및/또는 NiO가, CuO를 0∼2 중량%, NiO를 0∼2 중량%의 양으로 함유되어 있는 것, 또한, 안정성 향상, 소성 후의 기판의 휘어짐을 방지하는 견지에서, Y2O3, ZrO2, La2O3, CeO2, TiO2, CoO, Fe2O3 중 어느 하나가 1.5 중량% 이하인 양으로 함유되어 있는 것이 적합하다.
유리 조성물은 연화점 온도가 300∼500℃의 범위에 있는 것이 바람직하다. 상기 범위보다 저온에서 연화되는 비스무트계 유리는, 상기 범위에 있는 경우에 비해서 소성 시에 결정화를 일으키기 쉬움과 동시에, 탈바인더 처리를 행할 필요가 있는 경우에는, 탈바인더 처리의 온도에서 연화할 우려가 있고, 바인더의 분해 가스가 유리 중에 혼입되어, 핀 홀의 원인이 될 우려가 있다. 한편 상기 범위보다 연화점 온도가 높은 경우에는, 상기 범위에 있는 경우에 비해서 소성 시에 높은 온도가 필요로 되어, 기판 자체가 변형 또는 변질됨으로써 막 제조가 곤란해질 우려가 있다. 또한 비교적 저온에서 소성하면, 유리의 용융이 불충분해져, 표면 평활성이 손실될 우려가 있다.
유리 분체는 상기 유리 조성물을 혼합하고, 800∼1200℃의 온도에서 가열하여 용융 유리화하고, 급냉하여 유리 프릿을 얻은 후, JET 분쇄법 등에 의해 분쇄함으로써 얻어진다. 평활한 유리면을 얻기 위해서는 평균 입경이 20 ㎛ 이하, 적합하게는 1∼10 ㎛, 보다 적합하게는 1∼5 ㎛의 입경으로 분쇄하는 것이 바람직하다. 또한, 본 발명에 있어서 유리 분체의 평균 입경은 레이저 회절·산란법에 의한 측정값이다.
유리 페이스트는 상기 유리 분체와 비히클을, 비드 밀이나 페인트 쉐이커, 롤 밀 등으로 균일하게 혼합하여, 분산시킴으로써 얻어진다. 또한 분산성의 관점에서, 분산액으로 할 수도 있다.
비히클로서는, 종래 공지의 용제계 또는 수계의 비히클을 이용할 수 있고, 이에 한정되지 않지만, 이하의 유기 바인더 및 용제를 예시할 수 있다.
유기 바인더로서는, 이에 한정되지 않지만, 메틸셀룰로오스, 에틸셀룰로오스, 카르복시메틸셀룰로오스, 옥시에틸셀룰로오스, 벤질셀룰로오스, 프로필셀룰로오스, 니트로셀룰로오스 등의 셀룰로오스계 수지; 메틸메타크릴레이트, 에틸메타크릴레이트, 부틸메타크릴레이트, 2-히드록시에틸메타크릴레이트, 부틸아크릴레이트, 2-히드록시에틸아크릴레이트 등의 아크릴계 모노머의 1종 이상을 중합하여 얻어지는 아크릴계 수지 등의 유기 수지; 폴리프로필렌카르보네이트 등의 지방족 폴리올레핀계 카르보네이트 수지를 예시할 수 있다.
또한 용제는 이용하는 유기 바인더에 따라 적절하게 선택되고, 이에 한정되지 않지만, 셀룰로오스계 수지의 경우는, 물, 테르피네올, 부틸카르비톨아세테이트, 에틸카르비톨아세테이트 등; 아크릴계 수지의 경우는, 메틸에틸케톤, 테르피네올, 부틸카르비톨아세테이트, 에틸카르비톨아세테이트 등; 지방족 폴리올레핀계 카르보네이트의 경우는, 탄산프로필렌, 트리아세틴 등;의 용매를 이용할 수 있다.
또한, 유리 페이스트에는 필요에 따라, 공지의 증점제, 분산제 등을 공지의 처방에 따라 첨가할 수도 있다.
<유리 페이스트의 코팅·건조·소성>
조제된 유리 페이스트를, 유리 페이스트의 점도에 대응한 코팅 방법으로 니켈 도금층 상에 코팅한다. 코팅 방법으로서는, 이에 한정되지 않지만, 바 코터, 다이 코터, 롤 코터, 그라비어 코터, 스크린 인쇄 등에 의해 행할 수 있고, 형성되는 유리층의 두께가 2∼45 ㎛가 되도록, 코팅하는 것이 바람직하다.
코팅된 유리 페이스트는 80∼180℃의 온도에서 건조한다. 건조 후, 필요에 따라, 탈바인더 처리를 행한다. 탈바인더 처리는 180∼450℃의 온도에서 10분 이상 가열하는 것이 바람직하다.
건조 후, 필요에 따라 탈바인더 처리에 할당된 코팅면을, 550∼900℃, 적합하게는 650∼850℃의 온도에서 10∼300초간 소성함으로써 유리층이 형성된다. 상기 범위보다 소성 온도가 낮은 경우에는, 상기 범위에 있는 경우에 비해서 용융이 불충분해질 우려가 있고, 한편 상기 범위보다 소성 온도가 높은 경우에는, 상기 범위에 있는 경우에 비해서 니켈 도금층에 영향을 끼칠 우려가 있다.
[하지층 형성 공정]
본 발명의 플렉시블 디바이스용 기판에 있어서는, 유리층에 직접 전극층을 형성할 수도 있지만, 전술한 바와 같이, 하지층을 형성하고, 이 하지층 상에 전극층을 형성하는 것이 적합하다.
하지층은 니켈, 산화인듐주석 등의 하지층을 구성하는 금속 또는 금속 산화물 등을 스퍼터링법, 증착법, CVD법 등 종래 공지의 방법에 따라 형성할 수 있지만, 특히 스퍼터로 성막하는 것이 적합하다.
스퍼터의 조건은, 특별히 한정되지 않고, 5∼100 ㎚의 범위의 두께의 하지층을 형성할 수 있는 한, 종래 공지의 조건으로 행할 수 있다. 또한 하지층의 형성에 앞서, 종래 공지의 세정·건조 방법에 의해 유리층 표면을 청정화하는 것이 바람직하다.
(유기 EL 디바이스용 기판)
도 4는 도 2에 나타낸 본 발명의 플렉시블 디바이스용 기판을 이용한, 유기 EL 디바이스용 기판의 일례의 단면 구조를 나타내는 도면이다.
전체를 2로 나타내는 플렉시블 디바이스용 기판은, 양면에 니켈 도금층(11a, 11b)이 형성된 금속 기재(10)의 한쪽의 니켈 도금층(11a)의 표면에, 표면에 요철을 갖는 산화물막(12)이 형성되고, 이 산화물막(12) 상에 유리층(13)이 형성되어 있다.
전체를 3으로 나타내는 본 발명의 유기 EL 디바이스용 기판은, 상기 플렉시블 디바이스용 기판의 유리층(13) 상에 형성된 전극층(Ag, Al)(20), 전극층(20) 위에 형성된 유기 박막 발광층(21), 유기 박막 발광층(21) 위에 형성된 투명 전극층(22)을 적어도 가지고 있지만, 도 4에 나타내는 구체예에서는, 투명 전극층(22) 위에 투명 밀봉층(23), 투명 밀봉재(24)가 더 적층되어 있음과 동시에, 니켈 도금층(11b) 위에 내식성층(25)이 적층되어 있다.
또한 도 5는 도 3에 나타낸 유리층(13) 위에 하지층(14)을 형성한 플렉시블 디바이스용 기판(2’)을 이용하여 형성된 유기 EL 디바이스용 기판(3’)의 단면 구조를 나타내는 도면이다.
(비스무트계 무연 유리 조성물)
본 발명의 비스무트계 무연 유리 조성물은, Bi2O3을 70∼84 중량%, ZnO를 10∼12 중량%, B2O3을 6∼12 중량%의 양으로 함유하는 것이 중요한 특징이고, 이들 성분이 상기 범위로 함유되어, 공정점 주변의 범위에 있음으로써, 결정화하기 어려운 유리가 형성된다.
본 발명에 있어서, Bi2O3은 유리의 점성을 낮추기 위한 주요 성분이고, 70∼84 중량%, 특히 75∼82 중량%의 양으로 함유되어 있는 것이 적합하다. 상기 범위보다 Bi2O3의 함유량이 적으면, 연화점이 높아져 점성이 지나치게 커지고, 한편 상기 범위보다 Bi2O3의 함유량이 많으면, 결정화가 촉진되어, 범프나 피트 발생의 우려가 있다.
또한, ZnO는 유리를 안정화하여, 유리 용융 시에 실투를 억제하기 위한 성분으로, 10∼12 중량%, 특히 10.5∼11 중량%의 양으로 함유되어 있는 것이 적합하다. 상기 범위보다 ZnO의 함유량이 적으면, 유리의 내구성이 저하함과 동시에, 실투하기 쉬워진다. 또한 유리 전이 온도가 높아져, 소성된 유리의 평활성이 저하한다. 한편 상기 범위보다 ZnO의 함유량이 많으면, 결정화가 촉진되어, 범프나 피트 발생의 우려가 있으며, 내구성이 저하한다.
또한 B2O3는 유리 네트워크를 형성하는 성분으로, 6∼12 중량%, 특히 6∼7 중량%의 양으로 함유되어 있는 것이 적합하다. 상기 범위보다 B2O3의 함유량이 적으면, 유리가 불안정해져 내구성이 저하함과 동시에, 소성 시에 결정화하기 쉬워져, 범프나 피트 발생의 우려가 있다. 한편, 상기 범위보다 B2O3의 함유량이 많으면, 내수성이 저하한다.
본 발명의 유리 조성물에 있어서는, 상기 필수 성분에 더하여, SiO2 및/또는 Al2O3을 함유하는 것이 적합하다.
SiO2는 B2O3과 함께 유리 네트워크를 형성하여, 유리를 더욱 안정화시키는 것이 가능해진다. SiO2의 배합량은 2 중량% 이하, 특히 1.2∼1.5 중량%의 범위에 있는 것이 적합하다. 상기 범위보다 SiO2의 배합량이 많으면, 상기 범위로 배합한 경우에 비해서 유리의 용융성이 저하할 우려가 있다.
또한, Al2O3을 배합함으로써, 유리를 더욱 안정화하는 것이 가능해진다. Al2O3의 배합량은 1 중량% 이하, 특히 0.4∼0.6 중량%의 범위인 것이 적합하다. 상기 범위보다 Al2O3의 배합량이 많으면, 상기 범위로 배합한 경우에 비해서 유리의 용융성이 저하할 우려가 있다.
본 발명의 유리 조성물에 있어서는, 상기 필수 성분에 더하여, CuO 및/또는 NiO를 더 함유하는 것이 적합하다.
CuO를 2 중량% 이하, 특히 1.3∼1.6 중량%의 양으로 배합함으로써, 유리의 용융성이 향상된다. 상기 범위보다 CuO의 배합량이 많으면, 금속 기재에의 밀착성이 저하할 우려가 있다.
또한 NiO를 2 중량% 이하, 특히 1.3∼1.6 중량%의 양으로 배합함으로써, CuO를 배합한 경우와 마찬가지로, 유리의 용융성이 향상된다. 상기 범위보다 NiO의 배합량이 많으면, 금속 기재에의 밀착성이 저하할 우려가 있다.
본 발명의 유리 조성물에 있어서는, 상기 필수 성분에 더하여, Y2O3, ZrO2, La2O3, CeO2, TiO2, CoO, Fe2O3 중 어느 하나를 1.5 중량% 이하의 양으로 더 함유하는 것이 적합하다.
Y2O3, ZrO2, La2O3, CeO2, TiO2, CoO, Fe2O3 중 어느 하나를 상기 양으로 함유함으로써, 유리의 내구성을 향상할 수 있지만, 상기 범위보다 이들 성분의 배합량이 많아지면, 도리어 유리의 내구성을 저하시킬 우려가 있다. 또한, 이들 성분은 복수종을 조합하여 사용하는 것도 가능하지만, 그 경우에는, 합계량이 1.5 중량% 이하인 것이 바람직하다.
[비스무트계 무연 유리 조성물 페이스트]
본 발명의 비스무트계 무연 유리 조성물 페이스트는 전술한 유리 조성물의 분체 및 비히클로 이루어지고, 유리 조성물 분체의 평균 입경은 20 ㎛ 이하인 것이 중요한 특징이다.
유리 조성물 분체와 함께 페이스트를 구성하는 비히클은, 페이스트의 점성을 조정하기 위해 이용되고, 유기 바인더를 용제에 용해하여 조제된다.
유리 조성물 페이스트는 전술한 유리 조성물 분체를 30∼80 중량%, 유기 바인더를 0∼10 중량%(제로를 포함하지 않음), 용매를 10∼70 중량%의 양으로 함유하는 것이 적합하다. 상기 범위보다 유리 조성물 분체의 양이 적은 경우에는, 페이스트 점도가 낮아져, 원하는 두께의 유리층의 형성이 어려워지고, 한편 상기 범위보다 유리 조성물 분체의 양이 많은 경우에는, 페이스트 점도가 높아져 코팅성이 뒤떨어지게 된다. 또한 상기 범위보다 유기 바인더의 양이 적은 경우에는, 코팅성이 뒤떨어지게 되고, 한편 상기 범위보다 유기 바인더의 양이 많으면, 소성 후에 유기물의 미소성물이 잔류할 우려가 있다. 또한 상기 범위보다 용매의 양이 적은 경우에는, 페이스트 점도가 높아져 코팅성이 뒤떨어지게 되고, 한편 상기 범위보다 용매의 양이 많으면, 페이스트 점도가 지나치게 낮아져, 원하는 두께의 유리층의 형성이 곤란해진다.
유기 바인더로서는, 이에 한정되지 않지만, 메틸셀룰로오스, 에틸셀룰로오스, 카르복시메틸셀룰로오스, 옥시에틸셀룰로오스, 벤질셀룰로오스, 프로필셀룰로오스, 니트로셀룰로오스 등의 셀룰로오스계 수지; 메틸메타크릴레이트, 에틸메타크릴레이트, 부틸메타크릴레이트, 2-히드록시에틸메타크릴레이트, 부틸아크릴레이트, 2-히드록시에틸아크릴레이트 등의 아크릴계 모노머의 1종 이상을 중합하여 얻어지는 아크릴계 수지 등의 유기 수지; 폴리프로필렌카르보네이트 등의 지방족 폴리올레핀계 카르보네이트 수지를 예시할 수 있다.
또한 용제는 이용하는 유기 바인더에 따라 적절하게 선택되고, 이에 한정되지 않지만, 셀룰로오스계 수지의 경우는, 물, 테르피네올, 부틸카르비톨아세테이트, 에틸카르비톨아세테이트 등; 아크릴계 수지의 경우는, 메틸에틸케톤, 테르피네올, 부틸카르비톨아세테이트, 에틸카르비톨아세테이트 등; 지방족 폴리올레핀계 카르보네이트의 경우는, 탄산프로필렌, 트리아세틴 등의 용매를 이용할 수 있다.
유리 조성물 페이스트는 전술한 비스무트계 무연 유리 조성물로 이루어지는 유리 프릿을 분쇄하여 얻어지는 유리 조성물 분체와 비히클을 혼합·분산함으로써 얻어진다.
유리 조성물 분체는 전술한 유리 조성물을 혼합하여, 800∼1200℃의 온도로 가열하여 용융 유리화하고, 급냉하여 유리 프릿을 얻은 후, 이것을 분쇄함으로써 얻어진다. 분쇄 방법으로서는, JET 분쇄, 라피드(rapid) 밀 분쇄, 볼 밀 분쇄 등 종래 공지의 방법을 들 수 있다.
본 발명에 있어서는, 유리 조성물 분체의 평균 입경이 20 ㎛ 이하, 바람직하게는 1∼10 ㎛, 보다 바람직하게는 1∼5 ㎛의 범위에 있는 것이, 평활한 유리 표면을 얻는 데 있어서 중요하고, 이러한 미세한 분체를 얻기 위해서는, 상기 분쇄 방법 중에서도 JET 분쇄에 의한 것이 적합하다.
또한, 본 발명에 있어서 유리 조성물 분체의 평균 입경은 레이저 회절·산란법에 의한 측정값이다.
이어서 얻어진 평균 입경 20 ㎛ 이하의 유리 조성물 분체와 비히클을 혼합·분산한다.
혼합·분산의 방법은, 교반 날개를 구비한 회전식의 혼합기나 비드 밀, 페인트 쉐이커, 롤 밀, 마노 유발, 초음파 등에 의한 분산 방법을 예시할 수 있지만, 적합하게는, 비드 밀, 페인트 쉐이커, 롤 밀에 의해, 혼합·분산하는 것이 바람직하다.
또한, 유리 조성물 페이스트에는 필요에 따라, 공지의 증점제, 분산제 등을 공지의 처방에 따라 첨가할 수도 있다.
[유리층의 형성]
본 발명의 유리 조성물 페이스트는, 전술한 본 발명의 플렉시블 디바이스용 기판용 기재에 한정되지 않고, 유리 기판, 세라믹스 기판, 알루미늄 기판, 스테인레스 기판, 강판 및 Ni를 비롯한 각종 도금 강판, 티탄 기판 등의 기판에, 예컨대 바 코터, 다이 코터, 롤 코터, 그라비어 코터, 스크린 인쇄, 오프셋 인쇄, 어플리케이터 등에 의해 코팅할 수 있다.
코팅된 유리 페이스트는 80∼180℃의 온도에서 건조한다. 건조 후, 필요에 따라, 탈바인더 처리를 행한다. 탈바인더 처리는 180∼450℃의 온도에서 10분 이상 가열하는 것이 바람직하다.
건조 후, 필요에 따라 탈바인더 처리에 할당된 코팅면을 550∼900℃, 적합하게는 650∼850℃의 온도에서 10∼300초간 소성함으로써 유리층이 형성된다. 상기 범위보다 소성 온도가 낮은 경우에는, 상기 범위에 있는 경우에 비해서 용융이 불충분해질 우려가 있고, 한편 상기 범위보다 소성 온도가 높은 경우에는, 상기 범위에 있는 경우에 비해서 기판에 영향을 부여할 우려가 있다.
본 발명의 유리 조성물은 연화점 온도가 300∼500℃의 범위에 있는 것이 바람직하다. 상기 범위보다 저온에서 연화하는 비스무트계 유리는, 상기 범위에 있는 경우에 비해서 소성 시에 결정화를 일으키기 쉬움과 동시에, 탈바인더 처리를 행할 필요가 있는 경우에는, 탈바인더 처리의 온도에서 연화할 우려가 있고, 바인더의 분해 가스가 유리 중에 혼입되어, 핀 홀의 원인이 될 우려가 있다. 한편 상기 범위보다 연화점 온도가 높은 경우에는, 상기 범위에 있는 경우에 비해서 소성 시에 높은 온도가 필요해져, 기판 자체가 변형 또는 변질됨으로써 막 제조가 곤란해질 우려가 있다. 또한 비교적 저온에서 소성하면, 유리의 용융이 불충분해져, 표면 평활성이 손실될 우려가 있다.
실시예
실험 A
(기재 번호 1∼11, 번호 15)
1. 니켈 도금 강판
[금속 기재]
금속 기재로서, 하기에 나타내는 화학 조성을 갖는 보통 강의 냉간 압연판(두께 50 ㎛)을 소둔 탈지하여 얻어진 강판을 준비하였다.
조성: C; 0.03 중량%, Si; 0.01 중량%, Mn; 0.25 중량%, P; 0.008 중량%, S; 0.005 중량%, Al; 0.051 중량%, 잔부; Fe 및 불가피하게 함유하는 성분을 포함한다.
[니켈 도금층의 형성]
이어서, 준비한 강판(사이즈: 세로 12 ㎝, 가로 10 ㎝, 두께 50 ㎛)에 대해서, 알칼리 전해 탈지, 황산 침지의 산세척을 행한 후, 하기 조건으로 니켈 도금을 행하여, 두께 1 ㎛, 표면 조도(Ra) 30.1 ㎚의 니켈 도금층을 양면에 형성하였다.
욕 조성: 황산니켈 300 g/L, 염화니켈 40 g/L, 붕산 35 g/L, 피트 억제제(라우릴황산나트륨) 0.4 mL/L
pH: 4∼4.6
욕온: 55℃∼60℃
전류 밀도: 25 A/dm2
(기재 번호 12∼번호 14)
2. 순니켈판
니켈계 기재로서, 두께 100 ㎛의 순니켈판을 준비하였다.
3. 산화물막의 형성
상기 니켈 도금 강판 및 순니켈판을 이용하여, 표 1에 나타내는 조건으로, 기재 번호 1∼3, 번호 5∼7, 번호 15의 니켈 도금 강판 및 기재 번호 13, 번호 14의 순니켈판을 박강판 열처리 시뮬레이터(신쿠리코 가부시키가이샤 제조, 품번; CCT-AV)를 이용하여 하소하였다. 기재 번호 4, 번호 12는 비교를 위해 하소를 행하지 않았다. 또한 기재 번호 8∼번호 11에 대해서는 NH 분위기 하에서 하소하였다.
하소된 니켈 도금 강판, 기재 번호 4의 니켈 도금 강판, 하소된 순니켈판 및 기재 번호 12의 순니켈판에 대해서, 표면 조도로서 산술 평균 거칠기(Ra) 및 최대 높이 거칠기(Rz), 표면 산화물의 두께에 대해서 조사하였다. 결과를 표 1에 아울러 나타낸다.
또한, 기재 번호 1, 번호 2, 번호 6, 번호 10에 대해서 하소 후의 니켈 도금층 표면의 SEM 사진 및 기재 번호 4의 니켈 도금층 표면의 SEM 사진을 도 6에 나타낸다.
또한, 표 1의 산화물막의 두께, 표면 조도(Ra, Rz)에 대해서는, 이하의 방법에 따라 측정하였다.
산술 평균 거칠기(Ra) 및 최대 높이 거칠기(Rz):JIS B 0601에 준거하여, 현미경(올림푸스사 제조, 나노 서치 현미경, 품번; OLS3500)의 SPM 측정 모드로 측정하였다.
산화물막 두께: 필드 에미션 오거 마이크로프로브(AES: 니혼덴시사 제조 품번 JAMP-9500F)를 이용하여 측정하였다.
Figure 112018105672396-pct00001
4. 기재 표층의 XPS에 의한 측정
상기 기재 번호 1, 번호 4, 번호 6, 번호 10, 번호 11의 표층에 대해서, 탄소, 산소, 철, 니켈의 비율(합계 100 원자%)과, 금속 철, 철산화물의 비율(합계 100 원자%) 및 금속 니켈, 니켈산화물의 비율(합계 100 원자%)을, 스캐닝 XPS 마이크로프로브(XPS 장치, 울박파이사(ULVAC-PHI, Incorporated), 제조 품번 PHI5000 VersaProbe II)를 이용하여 측정하였다. 결과를 표 2에 나타낸다.
Figure 112018105672396-pct00002
5. 기재 표층의 철의 존재의 확인
상기 기재 번호 1, 번호 4, 번호 6, 번호 12∼번호 14의 표층에 대해서, 상기 스캐닝 XPS 마이크로프로브를 이용하여 철의 존재를 확인하였다. 결과를 표 3에 나타낸다.
Figure 112018105672396-pct00003
6. 유리층의 형성
탈지 공정: 기재 번호 1∼번호 15를 이용하여, 각 기재의 표면을 알코올에 적신 거즈로 닦아, 탈지하였다.
도포막 형성 공정: 유기 용제와 바인더를 혼합한 비히클을 준비하고, 비히클과, 표 4에 기재된 유리 조성 번호 A∼번호 K의 비스무트계 유리 프릿을 중량비가 25:75가 되도록 유발로 혼합하고, 세라믹제 롤로 분산 처리를 행하여, 도포막 형성용 유리 페이스트를 제작하였다. 그리고, 기재 번호 1∼번호 15의 표면에 도포막 형성용 유리 페이스트를 소성 후의 막 두께가 20 ㎛가 되도록 바 코터로 도포하여, 도포막을 형성하였다.
Figure 112018105672396-pct00004
(실시예 1∼13, 비교예 1∼20)
7. 플렉시블 디바이스용 기판 평가(유리층 평가)
기재(기재 번호)와 도포막 형성용 유리 페이스트(유리 조성 번호)를 표 5와 같이 조합하여, 플렉시블 디바이스용 기판을 제작하였다. 유리 소성 공정은 전기로를 이용하며, 건조(온도: 110℃, 시간: 20분), 탈바인더(온도: 330℃, 시간: 20분), 소성(온도: 750℃, 시간: 15초)이다.
얻어진 플렉시블 디바이스용 기판에 대해서, 유리층 중의 기포의 유무, 피트의 유무, 결정화(범프)의 유무에 대해서, 하기와 같이 평가하였다. 결과를 표 5에 나타낸다.
피트의 주원인은 기포이지만, 기포 기인 이외의 피트도 있기 때문에, 기포의 유무와, 전체 피트(기포 기인의 것을 포함함)의 유무를 나누어 평가하였다.
[기포 평가]
기포 평가는 100×100 ㎜ 사이즈의 플렉시블 디바이스용 기판에 대해, 광학 현미경으로 초점을 각 기재 표면(각 기재와 유리층의 계면)으로부터 유리층 표면 방향으로 초점 이동해 갈 때에 기포를 확인할 수 있는지의 여부로 판단하였다.
[피트 평가]
피트 평가는 동일한 100×100 ㎜ 사이즈의 플렉시블 디바이스용 기판에 대해, 눈으로 보아 확인할 수 있는 피트의 개수를 하기의 평가 기준으로 평가하였다.
◎: 피트는 전무
○: 피트 개수 5개 미만
△: 피트 개수가 5개 이상 10개 미만
×: 피트 개수가 10개 이상
[결정화 평가]
결정화 평가는 동일한 100×100 ㎜ 사이즈의 플렉시블 디바이스용 기판에 대해, 눈으로 보아 확인할 수 있는 결정화의 유무를 평가하였다.
[종합 평가]
상기 기포 평가, 피트 평가 및 결정화 평가로부터, 하기의 기준으로 종합 평가를 행하였다.
◎: 기포, 피트 전무, 결정화 없음
○: 기포 있음, 피트 평가 ○, 결정화 없음
△: 기포 있음, 피트 평가 △, 결정화 없음
△△: 기포 있음, 피트 평가 △, 결정화 있음
×: 기포 있음, 피트 평가 ×, 결정화 없음
××: 기포 있음, 피트 평가 ×, 결정화 있음
Figure 112018105672396-pct00005
8. (니켈 도금층/유리층) 계면의 산소량
실시예 12, 비교예 1에 대해서, 유리층 내부[(니켈 도금층/유리층) 계면으로부터 0.4 ㎛ 유리측의 부분]의 산소량과, (니켈 도금층/유리층) 계면의 산소량을, TEM(전계 방사형 투과 전자 현미경)을 이용하여 측정하였다. 유리층 내부의 산소량을 100%으로 하면, (니켈 도금층/유리층) 계면에 있어서의 산소량은 실시예 12에서는 89.1%인 데 대하여, 비교예 1에서는 75.3%였다. 실시예 12의(니켈 도금층/유리층) 계면의 TEM 사진을 도 7의 (A)에, 비교예 1의 (니켈 도금층/유리층) 계면의 TEM 사진을 도 7의 (B)에 각각 나타내었다.
(실험예 1∼7)
상기 실시예 12의 플렉시블 디바이스용 기판을 이용하여, 20 ㎜×20 ㎜의 소편으로 절단하고, 유리층 표면을 하기 세정 방법에 따라 표면을 세정하였다. 세정된 유리층 표면에, 하기 성막 방법에 따라, 니켈, 산화인듐주석(산화주석 10 중량%)으로 이루어지는 하지층을 형성함과 동시에, 그 하지층 상에 알루미늄으로 이루어지는 전극층(애노드)을 형성하였다. 전극 형성 후의 플렉시블 디바이스용 기판에 대해서 이하의 평가를 행하였다. 하기 표 6에, 하지층 및 전극층의 종류, 두께 및 성막 레이트와, 평가 결과를 나타내었다.
[세정 방법]
세제, 이온 교환수, 알코올의 순서로 순차 세정하여, 드라이어로 건조하였다.
[성막 방법]
(1) 세정이 끝난 플렉시블 디바이스용 기판을 RF 마그네트론 스퍼터 장치에 세팅하여, 1×10-5 ㎩ 대까지 진공 상태로 하였다.
(2) 성막 챔버 내의 압력이 0.3 ㎩가 되도록 아르곤(Ar)을 도입하였다.
(3) 표 6에 나타낸 성막 레이트로 소정 시간 성막하였다.
[평가 방법]
평가는 크로스 컷트부와 크로스 컷트부 이외의 부위의 양자에 대해서, 테이프 박리법으로 행하였다.
크로스 컷트부는 이하 (1)∼(4)에 나타내는 크로스 컷트법(JIS K5600-5-6 준거)에 의해 절입을 넣고, 테이프 박리 후, 25 매스 중 박리되지 않은 매스의 수를 카운트하였다. 크로스 컷트부 이외의 영역에 대해서는 박리의 유무를 평가하였다.
(1) 컷터 나이프를 이용하여, 성막면에 2 ㎜ 간격의 직각 격자 패턴의 절입을 작성하였다(2 ㎜ 간격 25 매스).
(2) 점착 테이프(특수 아크릴계 점착제 3M 제조 PPS-15)를 격자 패턴 상에 접착하고, 플라스틱 지우개로 문질러, 점착 테이프를 부착시킨다.
(3) 점착 테이프를 시험편에 대하여 60도에 가까운 각도로 단숨에 벗긴다.
(4) 점착 테이프에 의해 박리되지 않은 성막 영역의 매스의 수를 카운트하였다.
Figure 112018105672396-pct00006
실험 B
(실시예 1∼9, 비교예 1∼3)
유리 조성물: 표 7에 나타내는 조성의 비스무트계 유리 조성물을 이용하였다.
비히클: 유기 바인더로서 메틸셀룰로오스, 용매로서 물로 이루어지고, 이들이 1:99의 중량비로 배합되어 이루어지는 비히클을 이용하였다.
표 7에 나타내는 유리 조성물 분체와, 비히클을 중량비가 50:50이 되도록 유발로 혼합하고, 세라믹제 롤로 분산 처리를 행하여, 유리층 형성용 유리 페이스트를 제작하였다.
기판으로서, Ni 도금 강판을 이용하여, 알코올에 적신 거즈로 표면을 닦아, 탈지한 후, 열 처리된 Ni 도금층 상에, 바코터로 소성 후의 막 두께가 20 ㎛가 되도록 유리 페이스트를 도포하여, 도포막을 형성하였다. 이어서, 전기로를 이용하여, 건조(온도: 120℃, 시간: 20분), 소성(온도: 750℃, 시간: 15초)을 행함으로써, 플렉시블 디바이스용 기판을 작성하였다.
(평가 결과)
형성된 유리층에 대해서, 유리막 중의 피트의 유무, 결정화(범프)의 유무에 대해서, 하기와 같이 평가하였다. 결과를 표 7에 나타낸다.
또한, 평가 기준은 이하와 같다.
[피트의 판단 기준]
100×100 ㎜ 사이즈의 플렉시블 디바이스용 기판에 대해, 눈으로 보아 확인할 수 있는 피트의 유무를 이하의 평가 기준으로 평가하였다.
◎: 피트는 전무
○: 피트 개수 5개 미만
△: 피트 개수가 5개 이상 10개 미만
×: 피트 개수가 10개 이상
[결정화]
100×100 ㎜ 사이즈의 플렉시블 디바이스용 기판에 대해, 눈으로 보아 확인할 수 있는 결정화의 유무로 판단하였다.
Figure 112018105672396-pct00007
본 발명의 플렉시블 디바이스용 기판에 있어서는, 우수한 수분 배리어성, 절연성, 유리층의 표면 평활성 및 밀착성을 가지고 있어, 유기 EL 조명, 유기 EL 디스플레이, 유기 박막 태양 전지 등의 기판으로서 적합하게 사용할 수 있다.
본 발명의 플렉시블 디바이스용 기판용 기재에 있어서는, 유리층의 밀착성이 우수함과 동시에, 형성되는 유리층 표면의 피트 등 표면 결함의 발생을 유효하게 억제 가능하기 때문에, 특히 유리층을 절연층으로 하는, 유기 EL 조명, 유기 EL 디스플레이, 유기 박막 태양 전지 등에 이용되는 플렉시블 디바이스용 기판의 기판으로서 적합하게 사용할 수 있다.
또한 본 발명의 플렉시블 디바이스용 기판용 기재는, 상기 유리층이 형성되는 용도에 특별히 적합하게 사용할 수 있지만, 이에 한정되지 않고, 스퍼터링이나 증착에 의한 무기막이나, 또는 폴리이미드 수지 등의 수지막을 형성하는 것도 가능하다.
본 발명의 비스무트계 무연 유리 조성물은, 범프와 피트의 발생이 없는 표면 평활성이 우수한 유리층을 형성할 수 있기 때문에, 전자 디바이스용 기판, 특히 유기 EL 관련의 플렉시블 디바이스용 기판에 유효하게 이용할 수 있다.
1: 플렉시블 디바이스용 기판용 기재
2: 플렉시블 디바이스용 기판
3: 유기 EL 디바이스용 기판
10: 금속 기재
11: 니켈 도금층
12: 산화물막
13: 유리층
14: 하지층
20: 전극층(Ag, Al)
21: 유기 박막 발광층
22: 투명 전극층
23: 투명 밀봉층
24: 투명 밀봉재
25: 내식성 층

Claims (35)

  1. 금속 기재의 적어도 한쪽의 표면에 니켈 도금층이 형성되어 이루어지는 니켈 도금 금속 기재 또는 니켈계 기재와, 상기 니켈 도금층 또는 니켈계 기재 위에 전기 절연성을 갖는 비스무트계 유리가 층상으로 형성된 유리층을 갖는 플렉시블 디바이스용 기판으로서,
    상기 니켈 도금층 표면 또는 니켈계 기재 표면에는, 표면에 요철을 갖는 산화물막이 형성되어 있고,
    상기 비스무트계 유리가 Bi2O3을 70∼84 중량%, ZnO를 10∼12 중량%, B2O3을 6∼12 중량%의 양으로 함유하고,
    상기 산화물막은, 표면의 산술 평균 거칠기(Ra)가 30∼100 ㎚의 범위에 있고 또한 표면의 최대 높이 거칠기(Rz)가 420∼900 ㎚의 범위에 있고, 그 두께가 40∼1200 ㎚의 범위에 있는 것을 특징으로 하는 플렉시블 디바이스용 기판.
  2. 제1항에 있어서, 상기 비스무트계 유리가 SiO2 및 Al2O3 중 하나 이상을 함유하고, SiO2의 함유량이 0∼2 중량%, Al2O3의 함유량이 0∼1 중량%의 양(SiO2 및 Al2O3의 양쪽이 제로인 경우를 포함하지 않음)인 플렉시블 디바이스용 기판.
  3. 제1항 또는 제2항에 있어서, 상기 비스무트계 유리가 CuO 및 NiO 중 하나 이상을 함유하고, CuO의 함유량이 0∼2 중량%, NiO의 함유량이 0∼2 중량%의 양(CuO 및 NiO의 양쪽이 제로인 경우를 포함하지 않음)인 플렉시블 디바이스용 기판.
  4. 제1항 또는 제2항에 있어서, 상기 비스무트계 유리가 Y2O3, ZrO2, La2O3, CeO2, TiO2, CoO, Fe2O3 중 어느 하나를 1.5 중량% 이하(제로를 포함하지 않음)의 양으로 함유하는 플렉시블 디바이스용 기판.
  5. 삭제
  6. 삭제
  7. 삭제
  8. 제1항 또는 제2항에 있어서, 상기 유리층의 두께가 2∼45 ㎛인 플렉시블 디바이스용 기판.
  9. 제1항 또는 제2항에 있어서, 상기 니켈 도금층 표층 또는 니켈계 기재 표층에 철이 존재하는 플렉시블 디바이스용 기판.
  10. 제9항에 있어서, 상기 니켈 도금층 표층 또는 니켈계 기재 표층에 존재하는 철 중, 금속 철이 3 원자% 이하인 플렉시블 디바이스용 기판.
  11. 제1항 또는 제2항에 있어서, 상기 니켈 도금층 표층 또는 니켈계 기재 표층에 있어서의 산소의 비율이 30 원자% 이상인 플렉시블 디바이스용 기판.
  12. 제1항 또는 제2항에 있어서, 상기 니켈 도금층 표층 또는 니켈계 기재 표층에 존재하는 니켈 중, 금속 니켈의 비율이 20 원자% 이하인 플렉시블 디바이스용 기판.
  13. 제1항 또는 제2항에 있어서, 상기 유리층의 두께 방향의 임의의 면에 있어서의 산소량을 100%로 한 경우에, 상기 유리층과 니켈 도금층 또는 니켈계 기재의 계면에 있어서의 산소량이 80% 이상인 플렉시블 디바이스용 기판.
  14. 제1항 또는 제2항에 있어서, 상기 유리층의 표면에, 전극층 형성을 위한 하지(下地)가 되는 층이 형성되어 있고, 그 하지층이 니켈, 산화인듐주석 중 어느 하나로 이루어지는 플렉시블 디바이스용 기판.
  15. 금속 기재의 적어도 한쪽의 표면에 니켈 도금층이 형성되어 이루어지는 니켈 도금 금속 기재 또는 니켈계 기재와, 상기 니켈 도금층 또는 니켈계 기재 위에 전기 절연성을 갖는 비스무트계 유리가 층상으로 형성된 유리층과, 이 유리층의 표면에 전극층 형성을 위한 하지가 되는 하지층을 갖고,
    상기 하지층이 니켈, 산화인듐주석, 은, 금, 구리, 마그네슘-은, 금-구리, 은-구리, 산화아연, 코발트, 팔라듐 중 어느 하나로 이루어지고,
    상기 니켈 도금층 표면 또는 니켈계 기재 표면에는, 표면에 요철을 갖는 산화물막이 형성되어 있고, 상기 산화물막이 표면의 산술 평균 거칠기(Ra)가 30~100 nm의 범위에 있고 또한 표면의 최대 높이 거칠기(Rz)가 420∼900 ㎚의 범위에 있고, 그 두께가 40∼1200 ㎚의 범위에 있는 것을 특징으로 하는 플렉시블 디바이스용 기판.
  16. 삭제
  17. 금속 기재의 적어도 한쪽의 표면에 니켈 도금층이 형성되어 이루어지는 니켈 도금 금속 기재 또는 니켈계 기재를 산소 함유 분위기 중에서 소성함으로써, 니켈 도금층 표면 또는 니켈계 기재 표면에 표면의 산술 평균 거칠기(Ra)가 30~100 nm의 범위에 있고 또한 표면의 최대 높이 거칠기(Rz)가 420∼900 ㎚의 범위에 있고, 그 두께가 40∼1200 ㎚의 범위에 있는 산화물막을 형성하는 산화물막 형성 공정,
    상기 산화물막 상에, Bi2O3, ZnO, B2O3을 함유하는 비스무트계 유리층을 형성하는 유리층 형성 공정
    을 포함하는 것을 특징으로 하는 플렉시블 디바이스용 기판의 제조 방법.
  18. 제17항에 있어서, 상기 산화물막 형성 공정에 있어서, 니켈 도금층 또는 니켈계 기재 표면을 550∼900℃의 온도에서 소성하는 플렉시블 디바이스용 기판의 제조 방법.
  19. 제17항 또는 제18항에 있어서, 상기 유리층 형성 공정에 있어서, 니켈 도금층 상에 또는 니켈계 기재 상에 코팅된 비스무트계 유리 조성물을 550∼900℃의 온도에서 10∼300초간 소성하는 플렉시블 디바이스용 기판의 제조 방법.
  20. 제15항에 기재된 플렉시블 디바이스용 기판과, 이 플렉시블 디바이스용 기판의 상기 유리층 또는 상기 하지층 위에 형성된 전극층과, 이 전극층 위에 형성된 유기 박막 발광층과, 이 유기 박막 발광층의 위에 형성된 투명 전극층을 갖는 것을 특징으로 하는 유기 EL 디바이스용 기판.
  21. 금속 기재의 적어도 한쪽의 표면에 니켈 도금층이 형성되어 이루어지는 니켈 도금 금속 기재 또는 니켈계 기재로 이루어지는 플렉시블 디바이스용 기판용 기재로서,
    상기 니켈 도금층 표면 또는 니켈계 기재 표면에는, 요철을 갖는 산화물막이 형성되어 있고,
    상기 산화물막은, 표면의 산술 평균 거칠기(Ra)가 30∼100 ㎚의 범위에 있고 또한 표면의 최대 높이 거칠기(Rz)가 420∼900 ㎚의 범위에 있고, 그 두께가 40∼1200 ㎚의 범위에 있는 것을 특징으로 하는 플렉시블 디바이스용 기판용 기재.
  22. 삭제
  23. 삭제
  24. 삭제
  25. 제21항에 있어서, 상기 산화물막의 두께가 500∼1000 ㎚의 범위에 있는 플렉시블 디바이스용 기판용 기재.
  26. 제21항에 있어서, 상기 니켈 도금층의 표층 또는 니켈계 기재 표층에 철이 존재하는 플렉시블 디바이스용 기판용 기재.
  27. 제26항에 있어서, 상기 니켈 도금층의 표층 또는 니켈계 기재 표층에 존재하는 철 중, 금속 철이 3 원자% 이하인 플렉시블 디바이스용 기판용 기재.
  28. 제21항에 있어서, 상기 니켈 도금층 표층 또는 니켈계 기재 표층에 있어서의 산소의 비율이 30 원자% 이상인 플렉시블 디바이스용 기판용 기재.
  29. 제21항에 있어서, 상기 니켈 도금층 표층 또는 니켈계 기재 표층에 존재하는 니켈 중, 금속 니켈의 비율이 20 원자% 이하인 플렉시블 디바이스용 기판용 기재.
  30. 금속 기재의 적어도 한쪽의 표면에 니켈 도금층이 형성되어 이루어지는 니켈 도금 금속 기재 또는 니켈계 기재를 산소 함유 분위기 중에서 소성함으로써, 니켈 도금층 표면 또는 니켈계 기재 표면에, 표면의 산술 평균 거칠기(Ra)가 30∼100 ㎚의 범위에 있고 또한 표면의 최대 높이 거칠기(Rz)가 420∼900 ㎚의 범위에 있고, 그 두께가 40∼1200 ㎚의 범위에 있는 산화물막을 형성하는 것을 특징으로 하는 플렉시블 디바이스용 기판용 기재의 제조 방법.
  31. 플렉시블 디바이스용 금속 기판에 이용되는 유리 조성물로서, Bi2O3을 70∼84 중량%, ZnO를 10∼12 중량%, B2O3을 6∼12 중량%의 양으로 함유하는 것을 특징으로 하는 비스무트계 무연 유리 조성물.
  32. 제31항에 있어서, SiO2 및 Al2O3 중 하나 이상을 함유하고, SiO2의 함유량이 0∼2 중량%, Al2O3의 함유량이 0∼1 중량%의 양(SiO2 및 Al2O3의 양쪽이 제로인 경우를 포함하지 않음)인 비스무트계 무연 유리 조성물.
  33. 제31항 또는 제32항에 있어서, CuO 및 NiO 중 하나 이상을 함유하고, CuO의 함유량이 0∼2 중량%, NiO의 함유량이 0∼2 중량%의 양(CuO 및 NiO의 양쪽이 제로인 경우를 포함하지 않음)인 비스무트계 무연 유리 조성물.
  34. 제31항 또는 제32항에 있어서, Y2O3, ZrO2, La2O3, CeO2, TiO2, CoO, Fe2O3 중 어느 하나를 1.5 중량% 이하(제로를 포함하지 않음)의 양으로 함유하는 비스무트계 무연 유리 조성물.
  35. 제31항 또는 제32항에 기재된 유리 조성물의 분체 및 비히클로 이루어지는 비스무트계 무연 유리 조성물 페이스트로서, 상기 유리 조성물 분체의 평균 입경이 20 ㎛ 이하인 것을 특징으로 하는 비스무트계 무연 유리 조성물 페이스트.
KR1020187030958A 2016-03-28 2017-03-22 플렉시블 디바이스용 기판 및 그의 제조 방법 KR102135711B1 (ko)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
JPJP-P-2016-063335 2016-03-28
JP2016063337 2016-03-28
JP2016063335 2016-03-28
JPJP-P-2016-063341 2016-03-28
JP2016063341 2016-03-28
JPJP-P-2016-063337 2016-03-28
JPJP-P-2017-037333 2017-02-28
JP2017037333A JP6772897B2 (ja) 2016-03-28 2017-02-28 フレキシブルデバイス用基板及びその製造方法
JPJP-P-2017-042160 2017-03-06
JPJP-P-2017-042159 2017-03-06
JP2017042159A JP6915307B2 (ja) 2016-03-28 2017-03-06 フレキシブルデバイス用基板用基材及びその製造方法
JP2017042160A JP6911390B2 (ja) 2016-03-28 2017-03-06 ビスマス系無鉛ガラス組成物
PCT/JP2017/011448 WO2017170038A1 (ja) 2016-03-28 2017-03-22 フレキシブルデバイス用基板及びその製造方法

Publications (2)

Publication Number Publication Date
KR20180128950A KR20180128950A (ko) 2018-12-04
KR102135711B1 true KR102135711B1 (ko) 2020-07-20

Family

ID=62014358

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187030958A KR102135711B1 (ko) 2016-03-28 2017-03-22 플렉시블 디바이스용 기판 및 그의 제조 방법

Country Status (3)

Country Link
US (2) US11101436B2 (ko)
KR (1) KR102135711B1 (ko)
CN (1) CN108886847B (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015623A (ja) * 2000-04-27 2002-01-18 Mitsui Chemicals Inc 透明電極
JP2011126722A (ja) * 2009-12-15 2011-06-30 Asahi Glass Co Ltd レーザ封着用封着材料、封着材料層付きガラス部材、およびそれを用いた太陽電池とその製造方法
JP2014107053A (ja) * 2012-11-26 2014-06-09 Toyo Kohan Co Ltd フレキシブルデバイス用基板およびその製造方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434030A (en) * 1982-11-12 1984-02-28 Institute Po Physikochimia Bath for the electrodeposition of bright nickel iron alloy
US5252521A (en) * 1992-10-19 1993-10-12 Ferro Corporation Bismuth-containing lead-free glass enamels and glazes of low silica content
JPH09152731A (ja) * 1995-11-30 1997-06-10 Shindengen Electric Mfg Co Ltd 電子写真感光体
JP4839539B2 (ja) * 2001-07-24 2011-12-21 旭硝子株式会社 無鉛ガラス、ガラスフリット、ガラスペースト、電子回路部品および電子回路
JP2003229069A (ja) * 2002-02-05 2003-08-15 Toshiba Corp パネルピンおよびそれを用いた陰極線管用ガラスパネルと陰極線管
JP2004171806A (ja) 2002-11-18 2004-06-17 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子
JP4062171B2 (ja) 2003-05-28 2008-03-19 ソニー株式会社 積層構造の製造方法
JP2006080370A (ja) 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd 太陽電池
JP2006228647A (ja) 2005-02-21 2006-08-31 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス用封止基板及びその製造方法
JP4839024B2 (ja) * 2005-06-22 2011-12-14 パナソニック株式会社 電池缶およびその製造方法
JP2008243772A (ja) 2007-03-29 2008-10-09 Seiko Epson Corp 発光装置およびその製造方法
JP5448425B2 (ja) * 2008-11-21 2014-03-19 公益財団法人国際超電導産業技術研究センター 超電導膜成膜用基板、超電導線材及びそれらの製造方法
JP5732740B2 (ja) 2009-09-30 2015-06-10 大日本印刷株式会社 フレキシブルデバイス用薄膜トランジスタ基板およびフレキシブルデバイス
KR101728573B1 (ko) 2009-09-30 2017-04-19 다이니폰 인사츠 가부시키가이샤 플렉시블 디바이스용 기판, 플렉시블 디바이스용 박막 트랜지스터 기판, 플렉시블 디바이스, 박막 소자용 기판, 박막 소자, 박막 트랜지스터, 박막 소자용 기판의 제조 방법, 박막 소자의 제조 방법 및 박막 트랜지스터의 제조 방법
JP5656080B2 (ja) 2010-03-23 2015-01-21 日本電気硝子株式会社 ガラス基板の製造方法
KR101464996B1 (ko) * 2010-05-10 2014-11-25 니폰 덴키 가라스 가부시키가이샤 내화성 필러 및 이것을 사용한 밀봉 재료, 및 내화성 필러의 제조 방법
KR102042940B1 (ko) * 2010-07-06 2019-11-27 아토테크 도이칠란드 게엠베하 인쇄회로기판
JP2012041196A (ja) * 2010-08-12 2012-03-01 Asahi Glass Co Ltd 封着材料層付きガラス部材とそれを用いた電子デバイスおよびその製造方法
JP5609537B2 (ja) 2010-10-26 2014-10-22 住友化学株式会社 発電装置
US9224983B2 (en) 2010-12-20 2015-12-29 Samsung Electronics Co., Ltd. Substrate for surface light emitting device and method of manufacturing the substrate, surface light emitting device, lighting apparatus, and backlight including the same
JP2012133944A (ja) 2010-12-20 2012-07-12 Samsung Yokohama Research Institute Co Ltd 面発光素子用基板、面発光素子用基板の製造方法、面発光素子、照明器具及び表示装置。
KR101883192B1 (ko) 2011-03-28 2018-07-30 도레이 카부시키가이샤 페이스트 및 평면 디스플레이용 패널의 제조방법
US20120312369A1 (en) 2011-06-13 2012-12-13 E I Du Pont De Nemours And Company Thick film paste containing bismuth-based oxide and its use in the manufacture of semiconductor devices
JP5816029B2 (ja) 2011-08-24 2015-11-17 株式会社半導体エネルギー研究所 発光装置
JP2015199620A (ja) 2014-04-07 2015-11-12 旭硝子株式会社 封着材料、封着体
JP2015199629A (ja) 2014-04-08 2015-11-12 旭硝子株式会社 封着材料、封着体
JP6475936B2 (ja) * 2014-08-19 2019-02-27 株式会社ミツトヨ エンコーダスケールおよびその製造方法
CN110786078B (zh) * 2017-06-23 2022-09-09 东洋制罐集团控股株式会社 柔性装置用基板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015623A (ja) * 2000-04-27 2002-01-18 Mitsui Chemicals Inc 透明電極
JP2011126722A (ja) * 2009-12-15 2011-06-30 Asahi Glass Co Ltd レーザ封着用封着材料、封着材料層付きガラス部材、およびそれを用いた太陽電池とその製造方法
JP2014107053A (ja) * 2012-11-26 2014-06-09 Toyo Kohan Co Ltd フレキシブルデバイス用基板およびその製造方法

Also Published As

Publication number Publication date
CN108886847B (zh) 2021-02-12
US20190088893A1 (en) 2019-03-21
CN108886847A (zh) 2018-11-23
KR20180128950A (ko) 2018-12-04
US20210343956A1 (en) 2021-11-04
US11101436B2 (en) 2021-08-24
US11723262B2 (en) 2023-08-08

Similar Documents

Publication Publication Date Title
US20230329079A1 (en) Substrate for flexible device and method for producing the same
KR102137193B1 (ko) 플렉시블 디바이스용 기판 및 그 제조 방법
JP2003246644A (ja) ガラスおよびこれを用いた導体ペースト
KR102387759B1 (ko) 플렉시블 디바이스용 기판
JP6772897B2 (ja) フレキシブルデバイス用基板及びその製造方法
KR102135711B1 (ko) 플렉시블 디바이스용 기판 및 그의 제조 방법
JP5819751B2 (ja) 導電性積層体並びにその製造方法及び前駆体
KR102546912B1 (ko) 플렉시블 디바이스용 기판
JP6915307B2 (ja) フレキシブルデバイス用基板用基材及びその製造方法
JP2003165938A (ja) ガラス印刷用インキ組成物

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant