KR102062840B1 - 양안 시차를 이용한 물체 위치 검출 장치 및 그 장치의 동작 방법 - Google Patents

양안 시차를 이용한 물체 위치 검출 장치 및 그 장치의 동작 방법 Download PDF

Info

Publication number
KR102062840B1
KR102062840B1 KR1020140150467A KR20140150467A KR102062840B1 KR 102062840 B1 KR102062840 B1 KR 102062840B1 KR 1020140150467 A KR1020140150467 A KR 1020140150467A KR 20140150467 A KR20140150467 A KR 20140150467A KR 102062840 B1 KR102062840 B1 KR 102062840B1
Authority
KR
South Korea
Prior art keywords
light
reflected light
photodiodes
group
target object
Prior art date
Application number
KR1020140150467A
Other languages
English (en)
Other versions
KR20160051070A (ko
Inventor
김정우
박준아
변경석
신정순
이홍석
정태성
조백환
한승훈
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020140150467A priority Critical patent/KR102062840B1/ko
Priority to US14/728,391 priority patent/US10012493B2/en
Publication of KR20160051070A publication Critical patent/KR20160051070A/ko
Application granted granted Critical
Publication of KR102062840B1 publication Critical patent/KR102062840B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

양안 시차를 이용하여 물체의 위치를 검출하는 장치가 개시된다. 그 장치는, 검출 영역에 위치하는 대상 물체에 의해 반사된 반사광을 집광하는 집광부와, 상기 집광부에 의해 집광된 상기 반사광을 복수의 포토 다이오드를 통해 수광하는 수광부와, 상기 복수의 포토 다이오드에서 출력된 상기 반사광의 광량 패턴에 기초하여, 상기 대상 물체의 위치를 결정하는 처리부를 포함한다. 상기 처리부는 상기 반사광의 입사각에 기초하여 상기 집광부와 상기 대상 물체의 거리를 결정할 수 있다. 처리부는 상기 복수의 포토 다이오드와 상기 반사광의 상기 입사각이 매핑된 매핑 정보를 이용하여 상기 입사각을 결정할 수 있다.

Description

양안 시차를 이용한 물체 위치 검출 장치 및 그 장치의 동작 방법{APPARATUS FOR DETECTING POSITION OF OBJECT using Binocular Parallax AND OPERATING METHOD THEREOF}
본 명세서에 기재된 다양한 실시예들은 물체의 위치를 검출하는 장치에 관한 것이다.
전자 장치의 발달로 인해 다양한 입력 방법이 개발되고 있다. 입력 방법 중에는 사용자의 제스쳐를 인식하는 방법이 있다. 종전의 제스쳐 인식 방법으로는 이미지 센서, 초음파 센서 및 가속도 센서를 이용하는 방법이 있다. 종전의 제스쳐 인식 방법은 소비 전력을 낮추고 크기를 줄이기에 한계가 있다.
이미지 센서를 이용한 제스쳐 인식을 위해서는, 이미지 처리나 조사된 빛이 반사되어 되돌아오는 시간을 측정하기 위한 연산 과정이 필요하다. 초음파 센서는 사용 환경 및 크기 상의 이유로 인해 응용 분야에 제한이 있다. 가속도 센서는 비 접촉식 제스쳐 인식 기술에 활용하기에 적합하지 않다. 따라서, 크기가 작고 저전력으로 동작하는 동작 인식 장치가 요구된다.
일측에 있어서, 전자 장치는, 검출 영역에 광을 조사하는 광원부; 상기 검출 영역에 위치하는 대상 물체에 의해 반사된, 상기 광의 반사광을 집광하는 집광부; 상기 집광부에 의해 집광된 상기 반사광을 복수의 포토 다이오드를 통해 수광하는 수광부; 및 상기 복수의 포토 다이오드에서 출력된 상기 반사광의 광량 패턴에 기초하여, 상기 대상 물체의 위치를 결정하는 처리부를 포함한다.
상기 처리부는, 상기 광량 패턴에서 상기 복수의 포토 다이오드 중에 최대 광량이 검출되는 포토 다이오드의 위치를 결정하고, 상기 포토 다이오드의 위치를 이용하여 대상 물체의 위치를 결정할 수 있다.
상기 처리부는, 상기 반사광의 입사각에 기초하여, 상기 집광부와 상기 대상 물체의 거리를 결정할 수 있다.
상기 처리부는, 상기 복수의 포토 다이오드와 상기 반사광의 상기 입사각이 매핑된 매핑 정보에 기초하여, 상기 반사광의 상기 입사각을 결정할 수 있다.
상기 처리부는, 상기 복수의 포토 다이오드 중에 상기 반사광의 수광량이 상대적으로 큰 포토 다이오드에 매핑된 입사각을 상기 반사광의 입사각으로 결정할 수 있다.
상기 집광부는, 상기 대상 물체에 의해 반사된, 상기 광의 제1 반사광을 집광하는 제1 집광부; 및 상기 대상 물체에 의해 반사된, 상기 광의 제2 반사광을 집광하는 제2 집광부를 포함할 수 있고, 상기 수광부는, 상기 제1 집광부에 의해 집광된 제1 반사광을 수광하는 제1 수광부; 및 상기 제2 집광부에 의해 집광된 제2 반사광을 수광하는 제2 수광부를 포함할 수 있다.
상기 처리부는, 상기 제1 반사광의 입사각, 상기 제2 반사광의 입사각 및 상기 제1 집광부와 상기 제2 집광부의 거리에 기초하여, 상기 집광부와 상기 대상 물체의 거리를 결정할 수 있다.
상기 처리부는, 상기 제1 집광부와 상기 제2 집광부의 거리를 밑변으로 하고, 상기 제1 반사광의 입사각 및 상기 제2 반사광의 입사각을 상기 밑변의 외각 밑 내각으로 하는 삼각형의 높이를 상기 대상 물체와 상기 집광부 간의 거리로 결정할 수 있다.
상기 처리부는, 상기 제1 수광부에 포함된 복수의 포토 다이오드와 상기 제1 반사광의 상기 입사각이 매핑된 제1 매핑 정보 및 상기 제2 수광부에 포함된 복수의 포토 다이오드와 상기 제2 반사광의 상기 입사각이 매핑된 제2 매핑 정보에 기초하여, 상기 대상 물체의 위치를 결정할 수 있다.
일측에 있어서, 전자 장치의 동작 방법은, 검출 영역에 광을 조사하는 단계; 상기 검출 영역에 위치하는 대상 물체에 의해 반사된, 상기 광의 반사광을 집광하는 단계; 상기 집광부에 의해 집광된 상기 반사광을 복수의 포토 다이오드를 통해 수광하는 단계; 및 상기 복수의 포토 다이오드에서 출력된 상기 반사광의 광량 패턴에 기초하여, 상기 대상 물체의 위치를 결정하는 단계를 포함한다.
상기 대상 물체의 위치를 결정하는 단계는, 상기 반사광의 입사각에 기초하여, 상기 집광부와 상기 대상 물체의 거리를 결정하는 단계를 포함할 수 있다.
상기 대상 물체의 위치를 결정하는 단계는, 상기 복수의 포토 다이오드와 상기 반사광의 상기 입사각이 매핑된 매핑 정보에 기초하여 상기 반사광의 상기 입사각을 결정하는 단계를 포함할 수 있다.
상기 집광부와 상기 대상 물체의 거리를 결정하는 단계는, 상기 복수의 포토 다이오드 중에 상기 반사광의 수광량이 상대적으로 큰 포토 다이오드에 매핑된 입사각을 상기 반사광의 입사각으로 결정하는 단계를 포함할 수 있다.
상기 대상 물체의 위치를 결정하는 단계는, 상기 집광부에 포함된 제1 집광부와 제2 집광부의 거리를 더 고려하여, 상기 대상 물체와 상기 집광부 간의 거리를 결정하는 단계를 포함할 수 있다.
일측에 있어서, 위치 측정 센서는, 검출 영역에 위치하는 대상 물체에 의해 반사된 반사광을 집광하는 집광부; 및 상기 집광부에 의해 집광된 상기 반사광을 복수의 포토 다이오드를 통해 수광하는 수광부를 포함하고, 상기 대상 물체의 위치는, 상기 복수의 포토 다이오드에서 출력된 상기 반사광의 광량 패턴에 기초하여 결정된다.
상기 복수의 포토 다이오드는, 상기 반사광의 다양한 입사각에 각각 매핑되는 위치에 배열될 수 있다.
상기 복수의 포토 다이오드는, 동심원을 따라 원형으로 배열될 수 있다.
상기 복수의 포토 다이오드는, 하나의 교점을 갖는 복수의 선을 따라 배열될 수 있다.
도 1은 일실시예에 따른 물체 위치 인식을 위한 전자 장치를 도시한 블록도이다.
도 2는 일실시예에 따른 물체의 위치 별 광량 패턴을 도시한 도면이다.
도 3은 일실시예에 따른 입사각을 설명하기 위한 도면이다.
도 4는 일실시예에 따른 복수의 포토 다이오드와 입사각이 매핑된 매핑 정보를 도시한 도면이다.
도 5는 일실시예에 따른 입사각을 이용하여 집광부와 대상 물체 사이의 거리를 측정하는 원리를 설명하기 위한 도면이다.
도 6은 일실시예에 따른 집광부와 대상 물체 사이 간의 거리를 계산하는 방법을 설명하기 위한 도면이다.
도 7은 일실시예에 따른 포토 다이오드의 배열을 도시한 도면이다.
도 8은 일실시예에 따른 물체 위치 인식을 위한 전자 장치의 동작 방법을 도시한 플로우 차트이다.
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
아래 설명하는 실시예들에는 다양한 변경이 가해질 수 있다. 아래 설명하는 실시예들은 실시 형태에 대해 한정하려는 것이 아니며, 이들에 대한 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
실시예에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 실시예를 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
도 1은 일실시예에 따른 물체 위치 인식을 위한 전자 장치를 도시한 블록도이다.
도 1을 참조하면, 전자 장치(100)는 광원부(110), 집광부(120), 수광부(130) 및 처리부(140)를 포함한다.
전자 장치(100)는 광원부(110), 집광부(120), 수광부(130) 및 처리부(140)를 이용하여 검출 영역 내에 위치하는 대상 물체의 위치를 측정할 수 있다. 또한, 전자 장치(100)는 대상 물체의 위치 변경을 추적함으로써 대상 물체의 움직임을 측정할 수 있다. 대상 물체는 비 접촉 입력을 위한 사용자의 손, 손가락 또는 스타일러스 펜 등일 수 있다.
전자 장치(100)는 대상 물체의 위치 및 전자 장치(100)와 대상 물체 간의 거리를 측정할 수 있다. 전자 장치(100)와 대상 물체 간의 거리는 깊이(depth)를 의미한다. 전자 장치(100)는 수광부(130)에서 출력되는 반사광의 광량에 기초하여 대상 물체의 위치 및 깊이를 측정할 수 있다. 또한, 전자 장치(100)는 반사광의 입사각에 기초하여 대상 물체의 정확한 깊이를 측정할 수 있다. 이하, 전자 장치(100)의 상세 구조 및 동작을 설명한다.
광원부(110)는 검출 영역에 광을 조사한다. 광원부(110)는 검출 영역에 광을 조사하기 위해 전자 장치(100)의 외부로 노출될 수 있다. 광원부(110)는 LED-기반 소스, LD(laser diode)-기반 소스, 레이저, 백열 소스(예를 들어, 필라멘트 램프, 할로겐 램프) 및 형광 소스일 수 있다. 여기서, LED-기반 소스는 적외선 LED, 자외선 LED, 레드 LED, 블루 LED, 그린 LED, 옐로우 LED, 앰버 LED, 오렌지 LED, 및 화이트 LED일 수 있다. 바람직하게는, 광원부(110)는 적외선 LED 또는 적외선 LD일 수 있다.
집광부(120)는 검출 영역에 위치하는 대상 물체에 의해 반사된, 광원부(110)에 의해 조사된 광의 반사광을 집광한다. 집광부(120)는 반사광을 집광하기 위한 집광렌즈나 핀홀(pinhole)을 포함할 수 있다. 집광부(120)는 둘 이상 독립적으로 존재할 수 있다.
수광부(130)는 집광부(120)에 의해 집광된 반사광을 복수의 포토 다이오드를 통해 수광한다. 수광부(130)는 집광부(120)의 수에 따라 둘 이상 독립적으로 존재할 수 있다. 수광부(130)가 복수인 경우, 복수의 수광부(130)는 복수의 집광부(120)로부터 각각 반사광을 수광할 수 있다. 수광부(130)에 포함된 복수의 포토 다이오드는 수광된 반사광의 광량 패턴을 출력한다. 광량 패턴은 복수의 포토 다이오드에 포함된 각각의 다이오드가 수광한 반사광의 광량에 대한 전체 패턴을 의미한다.
처리부(140)는 복수의 포토 다이오드에서 출력된 반사광의 광량 패턴에 기초하여, 대상 물체의 위치를 결정한다. 광량 패턴은 도 2를 참조하여 상세하게 설명한다.
도 2는 일실시예에 따른 물체의 위치 별 광량 패턴을 도시한 도면이다.
도 2를 참조하면, (a) 대상 물체가 좌측에 있는 경우, (b) 대상 물체가 중앙에 있는 경우 및 (c) 대상 물체가 우측에 있는 경우의 광량 패턴이 도시되어 있다. 각각의 경우에, 제1 집광부(121), 제2 집광부(122), 제1 수광부(131) 및 제2 수광부(132)가 사용된다. 제1 수광부(131) 및 제2 수광부(132)는 각각 복수의 다이오드(135)를 포함한다.
도 2의 (a)를 참조하면, 광량 패턴(21) 및 광량 패턴(22)이 도시되어 있다. 광량 패턴(21)은 제1 수광부(131)에 의해 출력된 광량 패턴이고, 광량 패턴(22)은 제2 수광부(132)에 의해 출력된 광량 패턴이다. 광량 패턴(21)이 광량 패턴(22)에 비해 좌측으로 치우쳐 있다. 제1 수광부(131)에서 수광되는 반사광의 입사각과 제2 수광부(132)에서 수광되는 반사광의 입사각이 상이하기 때문이다.
도 2의 (b)를 참조하면, 광량 패턴(23) 및 광량 패턴(24)이 도시되어 있다. 광량 패턴(23)은 제1 수광부(131)에 의해 출력된 광량 패턴이고, 광량 패턴(24)은 제2 수광부(132)에 의해 출력된 광량 패턴이다. 광량 패턴(21) 및 광량 패턴(22)는 유사한 형태를 갖는다.
또한, 도 2의 (c)를 참조하면, 광량 패턴(25) 및 광량 패턴(26)이 도시되어 있다. 광량 패턴(25)은 제1 수광부(131)에 의해 출력된 광량 패턴이고, 광량 패턴(26)은 제2 수광부(132)에 의해 출력된 광량 패턴이다. 광량 패턴(26)이 광량 패턴(25)에 비해 우측으로 치우쳐 있다.
처리부(140)는 광량 패턴에서 최대 광량이 검출되는 포토 다이오드의 위치를 이용하여 대상 물체의 위치를 결정할 수 있다. 예를 들어, 처리부(140)는 광량 패턴(21)의 최대 광량이 검출되는 포토 다이오드의 위치 및 광량 패턴(22)의 최대 광량이 검출되는 포토 다이오드의 위치를 비교함으로써 대상 물체의 위치를 결정할 수 있다.
우선, 처리부(140)는 광량 패턴(21)의 최대 광량이 검출되는 포토 다이오드의 위치 및 광량 패턴(22)의 최대 광량이 검출되는 포토 다이오드의 위치가 좌측에 치우친 것으로부터 대상 물체가 전자 장치(100)의 좌측에 있는 것으로 결정할 수 있다. 또한, 광량 패턴(21)의 최대 광량이 검출되는 포토 다이오드의 위치와 광량 패턴(22)의 최대 광량이 검출되는 포토 다이오드의 위치 간의 차이에 기초하여 대상 물체가 전자 장치(100)의 좌측으로 치우친 정도를 결정할 수 있다.
처리부(140)는 대상 물체가 중앙 및 우측에 있는 경우에 대해서도, 광량 패턴에서 최대 광량이 검출되는 포토 다이오드의 위치를 이용하여 대상 물체의 위치를 결정할 수 있다. 또한, 처리부(140)는 광량의 크기 즉 반사광의 강도를 이용하여 깊이를 결정할 수 있다. 깊이는 전자 장치(100)와 대상 물체의 거리를 의미한다.
다시 도 1을 참조하면, 처리부(140)는 반사광의 입사각에 기초하여, 집광부(120)와 대상 물체의 거리를 결정할 수 있다. 반사광의 입사각을 이용할 경우, 반사광의 강도를 이용하는 것에 비해 깊이를 정확하게 측정할 수 있다. 입사각을 이용한 깊이 측정에 대해서는 도 3 내지 도 6을 참조하여 상세하게 설명한다.
도 3은 일실시예에 따른 입사각을 설명하기 위한 도면이다.
도 3을 참조하면, 집광부(120), 집광부에 조사되는 반사광, 반사광의 입사각, 수광부(130) 및 수광부(130)에 포함된 복수의 포토 다이오드(135)가 도시되어 있다.
입사각은 반사광이 입사되는 입사점을 기준으로 하는 수평선과 반사광에 의해 형성되는 각도를 의미한다. 입사점은 집광부(120)의 중심에 위치할 수 있다. 입사각은 반사광의 입사 방향에 따라 다양할 수 있다.
복수의 포토 다이오드(135)는 다양한 입사각에 매핑될 수 있다. 복수의 포토 다이오드(135)는 반사광의 다양한 입사각에 각각 매핑되는 위치에 배열될 수 있다. 예를 들어, 첫 번째 포토 다이오드는 70도의 입사각에 매핑될 수 있고, 두 번째 포토 다이오드는 80도의 입사각에 매핑될 수 있다. 다시 말해, 첫 번째 포토 다이오드에 반사광이 조사될 경우, 반사광의 입사각은 70도로 결정될 수 있고, 두 번째 포토 다이오드에 반사광이 조사될 경우, 반사광의 입사각은 80도로 결정될 수 있다.
처리부(140)는 복수의 포토 다이오드(135)와 반사광의 상기 입사각이 매핑된 매핑 정보를 이용하여 반사광의 입사각을 결정할 수 있다. 매핑 정보는 일실시예는 도 4에 도시되어 있다.
도 4는 일실시예에 따른 복수의 포토 다이오드와 입사각이 매핑된 매핑 정보를 도시한 도면이다.
도 4를 참조하면, 포토 다이오드의 식별 정보와 포토 다이오드에 매핑된 입사각이 도시되어 있다. 예를 들어, n 개의 포토 다이오드에 대해, 첫 번째 포토 다이오드 PD1은 입사각 50도에 매핑되고, n 번째 포토 다이오드 PDn는 입사각 130도에 매핑될 수 있다.
처리부(140)는 매핑 정보를 이용하여 PD3에서 반사광이 검출된 경우 반사광의 입사각을 60도로 결정할 수 있다. 복수의 포토 다이오드에서 반사광이 검출된 경우, 처리부(140)는 반사광이 검출된 복수의 포토 다이오드 중에 반사광의 수광량이 상대적으로 큰 포토 다이오드에 매핑된 입사각을 반사광의 입사각으로 결정할 수 있다.
도 4의 매핑 정보는 하나의 실시예에 불과하다. 매핑 정보는 포토 다이오드의 수, 포토 다이오드의 크기 및 포토 다이오드의 배열 간격 및 집광부(120)의 형태 등에 따라 다양할 수 있다.
도 5는 일실시예에 따른 입사각을 이용하여 집광부와 대상 물체 사이의 거리를 측정하는 원리를 설명하기 위한 도면이다.
도 5를 참조하면, 반사광의 다양한 입사각, 제1 집광부(121)와 제2 집광부(122)를 포함하는 집광부(120), 제1 수광부(131)와 제2 수광부(132)를 포함하는 수광부(130)가 도시되어 있다.
반사광은 집광부(120)로 대상 물체의 위치에 따라 다양한 각도로 입사된다. 반사광은 제1 집광부(121) 및 제2 집광부(122)에 상이한 각도로 입사될 수 있다. 제1 집광부(121)에서 집광된 제1 반사광은 제1 수광부(131)에서 수광된다. 또한, 제2 집광부(122)에서 집광된 제2 반사광은 제2 수광부(132)에서 수광된다.
제1 매핑 정보는 제1 수광부(131)에 포함된 복수의 포토 다이오드와 제1 반사광의 입사각이 매핑된 정보이고, 제2 매핑 정보는 제2 수광부(132)에 포함된 복수의 포토 다이오드와 제2 반사광의 입사각이 매핑된 정보이다. 처리부(140)는 제1 매핑 정보를 이용하여 제1 반사광의 입사각을 검출할 수 있고, 제2 매핑 정보를 이용하여 제2 반사광의 입사각을 검출할 수 있다.
처리부(140)는 제1 입사각, 제2 입사각과 함께, 제1 집광부(121)와 제2 집광부(122) 간의 거리(51)를 고려하여, 대상 물체의 깊이(52, 53)를 결정할 수 있다. 대상 물체의 깊이(52, 53)는 집광부(120)와 대상 물체의 거리를 의미한다. 제1 집광부(121)와 제2 집광부(122) 간의 거리(51)는 제1 집광부(121)의 중심과 제2 집광부(122)의 중심 간의 거리, 즉 입사점 간의 거리를 의미한다. 대상 물체의 깊이(52, 53)를 계산하는 방법은 도 6을 참조하여 상세하게 설명한다.
도 6은 일실시예에 따른 집광부와 대상 물체 사이 간의 거리를 계산하는 방법을 설명하기 위한 도면이다.
도 6을 참조하면, 제1 반사광의 입사각(61), 제2 반사광의 입사각(62), 입사점 간의 거리(63), 대상 물체의 깊이(64), 대상 물체의 위치(65), 제1 입사점(66) 및 제2 입사점(67)이 도시되어 있다.
처리부(140)는 제1 반사광의 입사각(61), 제2 반사광의 입사각(62) 및 입사점 간의 거리(63)에 기초하여, 대상 물체의 깊이(64)를 계산할 수 있다. 처리부(140)는 삼각함수를 이용하여 대상 물체의 깊이(64)를 계산할 수 있다. 예를 들어, 처리부(140)는 대상 물체의 깊이(64)를 계산하기 위해 [수학식 1]을 이용할 수 있다.
[수학식 1]
Figure 112014105249347-pat00001

[수학식 1]에서, h는 대상 물체의 깊이(64)를, B는 제1 반사광의 입사각(61)을, A는 제2 반사광의 입사각(62)을, d는 입사점 간의 거리(63)를 의미한다.
도 7은 일실시예에 따른 포토 다이오드의 배열을 도시한 도면이다.
도 7을 참조하면, (a) 내지 (d)의 형태를 갖는 복수의 포토 다이오드(135)의 배열이 도시되어 있다.
복수의 포토 다이오드(135)는 (a)에 도시된 것과 같이 일렬로 배열될 수 있다. 복수의 포토 다이오드(135)가 (a)와 같이 일렬로 배열될 경우, 복수의 포토 다이오드(135)가 배열된 방향에 대한 대상 물체의 위치 및 복수의 포토 다이오드(135)가 배열된 방향의 수직 방향에 대한 대상 물체의 깊이가 정확히 측정될 수 있다.
복수의 포토 다이오드(135)는 (b)에 도시된 것과 같이 하나의 교점을 갖는 복수의 선을 따라 배열될 수 있다. 복수의 포토 다이오드(135)가 (b)와 같이 배열될 경우, 모든 방향에 대한 대상 물체의 위치 및 모든 방향의 수직 방향에 대한 대상 물체의 깊이가 정확히 측정될 수 있다.
복수의 포토 다이오드(135)는 (c)에 도시된 것과 같이 동심원을 따라 원형으로 배열될 수 있다. 복수의 포토 다이오드(135)가 (b)와 같이 배열될 경우, 동심원 중심의 수직 방향에 대한 대상 물체의 위치 및 대상 물체의 깊이가 정확히 측정될 수 있다.
복수의 포토 다이오드(135)는 (d)에 도시된 것과 같이 동심원을 따라 원형으로 배열될 수 있다. 복수의 포토 다이오드(135)가 (b)와 같이 배열될 경우, 복수의 포토 다이오드(135)를 원형으로 배열하기 위해 필요한 다이오드의 수를 감소시킬 수 있다. 또한, 검출 영역이 복수의 영역으로 구분되므로, 복수의 영역에 대한 대상 물체의 움직임 및 대상 물체의 깊이가 측정될 수 있다.
도 8은 일실시예에 따른 물체 위치 인식을 위한 전자 장치의 동작 방법을 도시한 플로우 차트이다.
도 8을 참조하면, 단계(810)에서, 전자 장치는 검출 영역에 광을 조사한다. 전자 장치는 광원부를 통해 검출 영역에 광을 조사할 수 있다. 광원부는 검출 영역에 광을 조사하기 위해 전자 장치의 외부로 노출될 수 있다. 광원부는 적외선 LED일 수 있다.
단계(820)에서, 전자 장치는 검출 영역에 위치하는 대상 물체에 의해 반사된 반사광을 집광한다. 전자 장치는 집광부를 통해 반사광을 집광할 수 있다. 집광부는 반사광을 집광하기 위한 집광렌즈나 핀홀(pinhole)을 포함할 수 있다.
단계(830)에서, 전자 장치는 집광부에 의해 집광된 반사광을 수광한다. 전자 장치는 복수의 포토 다이오드를 포함하는 수광부를 통해 반사광을 수광할 수 있다. 복수의 포토 다이오드는 반사광의 다양한 입사각에 각각 매핑되는 위치에 배열될 수 있다. 복수의 포토 다이오드는 동심원을 따라 원형으로 배열되거나, 하나의 교점을 갖는 복수의 선을 따라 배열될 수 있다.
단계(840)에서, 전자 장치는 복수의 포토 다이오드에서 출력된 반사광의 광량 패턴에 기초하여, 대상 물체의 위치를 결정한다. 전자 장치는 처리부를 통해 대상 물체의 위치를 결정할 수 있다. 전자 장치는 반사광의 입사각에 기초하여 집광부와 대상 물체의 거리를 결정할 수 있다. 전자 장치는 복수의 포토 다이오드와 반사광의 입사각이 매핑된 매핑 정보에 기초하여 반사광의 입사각을 결정할 수 있다. 전자 장치는 반사광이 입사된 다이오드가 복수인 경우, 복수의 포토 다이오드 중에 반사광의 수광량이 상대적으로 큰 포토 다이오드에 매핑된 입사각을 반사광의 입사각으로 결정할 수 있다. 전자 장치는 집광부에 포함된 제1 집광부와 제2 집광부의 거리를 더 고려하여, 대상 물체와 집광부 간의 거리를 결정할 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (18)

  1. 전자 장치에 있어서,
    검출 영역에 광을 조사하는 광원부;
    상기 검출 영역에 위치하는 대상 물체에 의해 반사된, 제1 반사광을 집광하는 제1 집광부;
    상기 대상 물체에 의해 반사된, 제2 반사광을 집광하는 제2 집광부;
    상기 제1 반사광을 제1 그룹의 포토 다이오드들을 통해 수광하고, 상기 제1 반사광에 대응하는 제1 광량 패턴을 출력하는 제1 수광부;
    상기 제2 반사광을 제2 그룹의 포토 다이오드들을 통해 수광하고, 상기 제2 반사광에 대응하는 제2 광량 패턴을 출력하는 제2 수광부; 및
    상기 제1 광량 패턴 및 상기 제2 광량 패턴에 기초하여, 상기 대상 물체의 위치를 결정하고, 상기 제1 집광부로의 상기 제1 반사광의 입사각 및 상기 제2 집광부로의 상기 제2 반사광의 입사각에 기초하여, 상기 전자 장치와 상기 대상 물체 간의 거리를 결정하는 처리부
    를 포함하고,
    상기 제1 반사광의 상기 입사각은 상기 제1 그룹의 상기 포토 다이오드들의 수, 상기 제1 그룹의 상기 포토 다이오드들의 크기, 상기 제1 그룹의 상기 포토 다이오드들 간의 간격, 및 상기 제1 집광부의 형태에 기초하여 결정되는,
    전자 장치.
  2. 제1항에 있어서,
    상기 처리부는,
    상기 제1 광량 패턴 및 제2 광량 패턴 각각에서 최대 광량이 검출되는 포토 다이오드의 위치를 결정하고, 상기 결정된 포토 다이오드의 위치를 이용하여 상기 대상 물체의 위치를 결정하는,
    전자 장치.
  3. 삭제
  4. 제1항에 있어서,
    상기 처리부는,
    상기 제1 그룹의 상기 포토 다이오드들과 상기 제1 반사광의 상기 입사각이 매핑된 매핑 정보에 기초하여, 상기 제1 반사광의 상기 입사각을 결정하는,
    전자 장치.
  5. 제1항에 있어서,
    상기 처리부는,
    상기 제1 그룹의 상기 포토 다이오드들 중에 상기 제1 반사광의 수광량이 상대적으로 큰 포토 다이오드에 매핑된 입사각을 상기 제1 반사광의 상기 입사각으로 결정하는,
    전자 장치.
  6. 삭제
  7. 제1항에 있어서,
    상기 처리부는,
    상기 제1 반사광의 상기 입사각, 상기 제2 반사광의 상기 입사각 및 상기 제1 집광부와 상기 제2 집광부의 거리에 기초하여, 상기 전자 장치와 상기 대상 물체의 거리를 결정하는,
    전자 장치.
  8. 제1항에 있어서,
    상기 처리부는,
    상기 제1 집광부와 상기 제2 집광부 간의 거리를 밑변으로 하고, 상기 제1 반사광의 상기 입사각 및 상기 제2 반사광의 상기 입사각을 상기 밑변의 외각 및 내각으로 하는 삼각형의 높이를 상기 대상 물체와 상기 전자 장치 간의 거리로 결정하는,
    전자 장치.
  9. 제1항에 있어서,
    상기 처리부는,
    상기 제1 그룹의 상기 포토 다이오드들과 상기 제1 반사광의 상기 입사각이 매핑된 제1 매핑 정보 및 상기 제2 그룹의 상기 포토 다이오드들과 상기 제2 반사광의 상기 입사각이 매핑된 제2 매핑 정보에 기초하여, 상기 대상 물체의 위치를 결정하는,
    전자 장치.
  10. 전자 장치의 동작 방법에 있어서,
    검출 영역에 광을 조사하는 단계;
    상기 검출 영역에 위치하는 대상 물체에 의해 반사된, 제1 반사광을 제1 집광부로 집광하는 단계;
    상기 대상 물체에 의해 반사된, 제2 반사광을 제2 집광부로 집광하는 단계;
    상기 제1 반사광을 제1 그룹의 포토 다이오드들을 통해 수광하여, 상기 제1 반사광에 대응하는 제1 광량 패턴을 생성하는 단계;
    상기 제2 반사광을 제2 그룹의 포토 다이오드들을 통해 수광하여, 상기 제2 반사광에 대응하는 제2 광량 패턴을 생성하는 단계;
    상기 제1 광량 패턴 및 상기 제2 광량 패턴에 기초하여, 상기 대상 물체의 위치를 결정하는 단계; 및
    상기 제1 집광부로의 상기 제1 반사광의 입사각 및 상기 제2 집광부로의 상기 제2 반사광의 입사각에 기초하여, 상기 전자 장치와 상기 대상 물체 간의 거리를 결정하는 단계
    를 포함하고,
    상기 제1 반사광의 상기 입사각은 상기 제1 그룹의 상기 포토 다이오드들의 수, 상기 제1 그룹의 상기 포토 다이오드들의 크기, 상기 제1 그룹의 상기 포토 다이오드들 간의 간격, 및 상기 제1 집광부의 형태에 기초하여 결정되는,
    전자 장치의 동작 방법.
  11. 삭제
  12. 제10항에 있어서,
    상기 대상 물체의 위치를 결정하는 단계는,
    상기 제1 그룹의 상기 포토 다이오드들과 상기 제1 반사광의 상기 입사각이 매핑된 매핑 정보에 기초하여 상기 제1 반사광의 상기 입사각을 결정하는 단계를 포함하는,
    전자 장치의 동작 방법.
  13. 제10항에 있어서,
    상기 전자 장치와 상기 대상 물체 간의 거리를 결정하는 단계는,
    상기 제1 그룹의 상기 포토 다이오드들 중에 상기 제1 반사광의 수광량이 상대적으로 큰 포토 다이오드에 매핑된 입사각을 상기 제1 반사광의 상기 입사각으로 결정하는 단계를 포함하는,
    전자 장치의 동작 방법.
  14. 제10항에 있어서,
    상기 전자 장치와 상기 대상 물체 간의 거리를 결정하는 단계는,
    상기 제1 집광부와 상기 제2 집광부 간의 거리를 더 고려하여, 상기 전자 장치와 상기 대상 물체 간의 거리를 결정하는 단계를 포함하는,
    전자 장치의 동작 방법.
  15. 위치 측정 센서에 있어서,
    검출 영역에 위치하는 대상 물체에 의해 반사된 제1 반사광을 집광하는 제1 집광부;
    상기 대상 물체에 의해 반사된, 제2 반사광을 집광하는 제2 집광부;
    상기 제1 반사광을 제1 그룹의 포토 다이오드들을 통해 수광하고, 상기 제1 반사광에 대응하는 제1 광량 패턴을 출력하는 제1 수광부;
    상기 제2 반사광을 제2 그룹의 포토 다이오드들을 통해 수광하고, 상기 제2 반사광에 대응하는 제2 광량 패턴을 출력하는 제2 수광부
    를 포함하고,
    상기 대상 물체의 위치는 상기 제1 광량 패턴 및 상기 제2 광량 패턴에 기초하여 결정되고,
    상기 위치 측정 센서와 상기 대상 물체 간의 거리는 상기 제1 집광부로의 상기 제1 반사광의 입사각 및 상기 제2 집광부로의 상기 제2 반사광의 입사각에 기초하여 결정되고,
    상기 제1 반사광의 상기 입사각은 상기 제1 그룹의 상기 포토 다이오드들의 수, 상기 제1 그룹의 상기 포토 다이오드들의 크기, 상기 제1 그룹의 상기 포토 다이오드들 간의 간격, 및 상기 제1 집광부의 형태에 기초하여 결정되는,
    위치 측정 센서.
  16. 제15항에 있어서,
    상기 제1 그룹의 상기 포토 다이오드들은,
    상기 제1 반사광의 다양한 입사각에 각각 매핑되는 위치에 배열되는,
    위치 측정 센서.
  17. 제15항에 있어서,
    상기 제1 그룹의 상기 포토 다이오드들은,
    동심원을 따라 원형으로 배열되는,
    위치 측정 센서.
  18. 제15항에 있어서,
    상기 제1 그룹의 상기 포토 다이오드들은,
    하나의 교점을 갖는 복수의 선을 따라 배열되는,
    위치 측정 센서.
KR1020140150467A 2014-10-31 2014-10-31 양안 시차를 이용한 물체 위치 검출 장치 및 그 장치의 동작 방법 KR102062840B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020140150467A KR102062840B1 (ko) 2014-10-31 2014-10-31 양안 시차를 이용한 물체 위치 검출 장치 및 그 장치의 동작 방법
US14/728,391 US10012493B2 (en) 2014-10-31 2015-06-02 Device and method for detecting position of object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140150467A KR102062840B1 (ko) 2014-10-31 2014-10-31 양안 시차를 이용한 물체 위치 검출 장치 및 그 장치의 동작 방법

Publications (2)

Publication Number Publication Date
KR20160051070A KR20160051070A (ko) 2016-05-11
KR102062840B1 true KR102062840B1 (ko) 2020-02-11

Family

ID=55852318

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140150467A KR102062840B1 (ko) 2014-10-31 2014-10-31 양안 시차를 이용한 물체 위치 검출 장치 및 그 장치의 동작 방법

Country Status (2)

Country Link
US (1) US10012493B2 (ko)
KR (1) KR102062840B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102668245B1 (ko) * 2018-10-29 2024-05-23 삼성전자주식회사 3차원 깊이 측정 장치 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050002042A1 (en) * 2001-05-28 2005-01-06 Anton Schick Sensor device for performing rapid optical measurement of distances according to the confocal optical imaging principle
US20120032193A1 (en) * 2010-08-06 2012-02-09 Semiconductor Energy Laboratory Co., Ltd. Solid-state image sensing device and semiconductor display device
US20120075622A1 (en) * 2010-09-24 2012-03-29 Canon Kabushiki Kaisha Rotary encoder and optical apparatus
US20140267620A1 (en) * 2013-03-15 2014-09-18 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3d scanners by directed probing
US20140285818A1 (en) * 2013-03-15 2014-09-25 Leap Motion, Inc. Determining positional information of an object in space

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117218A (ja) * 1983-11-29 1985-06-24 Nippon Denso Co Ltd 液晶防眩型反射鏡
JP2555981B2 (ja) * 1994-06-06 1996-11-20 日本電気株式会社 固体撮像素子およびその製造方法
JP3357791B2 (ja) 1996-07-11 2002-12-16 三洋電機株式会社 光半導体集積回路
JP3882378B2 (ja) 1998-03-27 2007-02-14 株式会社デンソー 光センサ
JP3783451B2 (ja) 1999-03-12 2006-06-07 株式会社デンソー 光センサ
US6326956B1 (en) * 1998-08-24 2001-12-04 Intertactile Technologies Corporation Circuit control devices utilizing electronic display screen light
JP2000286403A (ja) 1999-04-01 2000-10-13 Ricoh Co Ltd 分割型フォトダイオード
JP2001244494A (ja) 2000-02-29 2001-09-07 Hamamatsu Photonics Kk 光追尾センサ
WO2005098475A1 (en) * 2004-03-29 2005-10-20 Evolution Robotics, Inc. Sensing device and method for measuring position and orientation relative to multiple light sources
US7042575B2 (en) * 2004-05-21 2006-05-09 Silicon Light Machines Corporation Speckle sizing and sensor dimensions in optical positioning device
RU2385286C2 (ru) * 2004-12-14 2010-03-27 Нестек С.А. Устройство и способ для контроля наполнения чашки в торговых автоматах напитками, таких, как кофейный автомат
WO2007024779A1 (en) * 2005-08-23 2007-03-01 The Charles Machine Works, Inc. System for tracking and maintaining an on-grade horizontal borehole
JP2007235509A (ja) 2006-03-01 2007-09-13 Sony Corp イメージセンサ、撮像装置、信号処理方法、画像処理方法、および、プログラム
US7684053B2 (en) * 2006-12-12 2010-03-23 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Optical displacement sensor and distance measuring apparatus
JP5058080B2 (ja) * 2008-06-13 2012-10-24 株式会社ミツトヨ 光学式変位測定器
US8363894B2 (en) * 2008-12-12 2013-01-29 Silicon Laboratories Inc. Apparatus and method for implementing a touchless slider
JP5116754B2 (ja) * 2009-12-10 2013-01-09 シャープ株式会社 光学式検出装置および電子機器
KR20120103860A (ko) * 2011-03-11 2012-09-20 광전자 주식회사 광학식 거리 측정 센서 모듈
KR101765771B1 (ko) 2011-05-05 2017-08-07 맥심 인터그래이티드 프로덕츠 인코포레이티드 다중 세그먼트 포토다이오드 및 하나 또는 소수의 조명 소스를 이용하는 제스처 검출 방법
JP2012242694A (ja) 2011-05-20 2012-12-10 Panasonic Corp 光ファイバ用ソケット
JP5675574B2 (ja) 2011-12-12 2015-02-25 三菱電機株式会社 色推定装置
US8994891B2 (en) * 2012-05-16 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and touch panel
US8947353B2 (en) 2012-06-12 2015-02-03 Microsoft Corporation Photosensor array gesture detection
US9348462B2 (en) 2012-06-13 2016-05-24 Maxim Integrated Products, Inc. Gesture detection and recognition based upon measurement and tracking of light intensity ratios within an array of photodetectors
GB2504291A (en) 2012-07-24 2014-01-29 St Microelectronics Ltd A proximity and gesture detection module
US20140085245A1 (en) * 2012-09-21 2014-03-27 Amazon Technologies, Inc. Display integrated camera array
KR20140056986A (ko) 2012-11-02 2014-05-12 삼성전자주식회사 모션 센서 어레이 장치, 상기 모선 센서 어레이를 이용한 거리 센싱 시스템, 및 거리 센싱 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050002042A1 (en) * 2001-05-28 2005-01-06 Anton Schick Sensor device for performing rapid optical measurement of distances according to the confocal optical imaging principle
US20120032193A1 (en) * 2010-08-06 2012-02-09 Semiconductor Energy Laboratory Co., Ltd. Solid-state image sensing device and semiconductor display device
US20120075622A1 (en) * 2010-09-24 2012-03-29 Canon Kabushiki Kaisha Rotary encoder and optical apparatus
US20140267620A1 (en) * 2013-03-15 2014-09-18 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3d scanners by directed probing
US20140285818A1 (en) * 2013-03-15 2014-09-25 Leap Motion, Inc. Determining positional information of an object in space

Also Published As

Publication number Publication date
US10012493B2 (en) 2018-07-03
KR20160051070A (ko) 2016-05-11
US20160123721A1 (en) 2016-05-05

Similar Documents

Publication Publication Date Title
JP2020500310A5 (ko)
JP5648050B2 (ja) 2次元及び3次元位置検出システム、及びそのセンサ
CN105631390B (zh) 空间手指定位的方法和空间手指定位的系统
US9702690B2 (en) Lens-less optical position measuring sensor
JP2006511895A5 (ko)
EP3262439A1 (en) Using intensity variations in a light pattern for depth mapping of objects in a volume
KR102074857B1 (ko) 이벤트 기반 비전 센서를 이용한 근접 센서 및 근접 센싱 방법
JP2018152082A (ja) 2次元位置検出システム、及びそのセンサ、方法
MY185923A (en) Vehicle parameter measurement device, vehicle type determination device, vehicle parameter measurement method, and program
CN102538693A (zh) 基于激光和视觉技术的立木直径检测方法
US10436910B2 (en) Line scan depth sensor comparing a time dependent waveform of the signals to an expected waveform
JP2021152553A (ja) 距離測定装置および距離測定方法
KR20150084680A (ko) 서브-레졸루션 광학 검출
KR20130040026A (ko) 측정 대상 물체에 대한 거리를 측정하는 방법 및 장치
KR102062840B1 (ko) 양안 시차를 이용한 물체 위치 검출 장치 및 그 장치의 동작 방법
EP2592435A1 (en) 3D location sensing system and method
EP4139703A1 (en) Illumination pattern for object depth measurment
JP2015191268A (ja) 人物頭部検知装置及び姿勢推定装置
KR101604867B1 (ko) 분광기술을 적용한 검지장치
US9784577B2 (en) Measuring distance from object by using size of pattern projected onto object
US9766753B2 (en) Optical touch system and method having image sensors to detect objects over a touch surface
EP2829955A3 (en) Electronic device
JP2017036995A (ja) レーザ計測システムおよびレーザ計測方法
KR20130040029A (ko) 측정 대상 물체에 대한 거리를 측정하는 방법 및 장치
JP2016130703A (ja) 計測データ処理装置と方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant