KR101981455B1 - 용융물 처리 장치 - Google Patents

용융물 처리 장치 Download PDF

Info

Publication number
KR101981455B1
KR101981455B1 KR1020170169477A KR20170169477A KR101981455B1 KR 101981455 B1 KR101981455 B1 KR 101981455B1 KR 1020170169477 A KR1020170169477 A KR 1020170169477A KR 20170169477 A KR20170169477 A KR 20170169477A KR 101981455 B1 KR101981455 B1 KR 101981455B1
Authority
KR
South Korea
Prior art keywords
melt
hole
outlet
dam
flow
Prior art date
Application number
KR1020170169477A
Other languages
English (en)
Inventor
정은주
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020170169477A priority Critical patent/KR101981455B1/ko
Priority to CN201811504785.0A priority patent/CN110000367A/zh
Application granted granted Critical
Publication of KR101981455B1 publication Critical patent/KR101981455B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/103Distributing the molten metal, e.g. using runners, floats, distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

본 발명은, 내부에 용융물 수용 공간이 형성되고, 일측에 용융물 주입부가 배치되고, 타측에 용융물 배출구가 형성되는 용기, 주입부와 배출구 사이에 배치되고, 용기의 바닥에 설치되는 댐, 댐에 형성되는 관통구를 포함하고, 관통구는 상기 주입부로부터의 거리에 따라 유동 단면적이 달라지는 용융물 처리 장치로서, 용기에 수용되는 용융물의 유동 속도를 용이하게 감소시킬 수 있는 용융물 처리 장치가 제시된다.

Description

용융물 처리 장치{PROCESSING APPARATUS FOR MOLTEN MATERIAL}
본 발명은 용융물 처리 장치에 관한 것으로서, 더욱 상세하게는 용기의 내부에 별도의 구조물 설치 없이 용기에 수용되는 용융물의 유동 속도를 원활하게 감소시킬 수 있는 용융물 처리 장치에 관한 것이다.
통상적인 연속주조 설비는, 용강(molten steel)을 운반하는 래들(Ladle), 래들에서 용강을 공급받아 임시 저장하는 턴디시(Tundish), 턴디시로부터 지속적으로 용강을 공급받으면서 이를 주편(Slab)으로 1차 응고시키는 주형(Mold), 주형으로부터 지속적으로 인발되는 주편을 2차 냉각시키며 일련의 성형 작업을 수행하는 냉각대로 구성된다.
용강은 턴디시에서 개재물이 부상 분리되고, 슬래그가 안정화되고, 재산화가 방지된다. 이후, 용강은 주형에서 주편 형상으로 초기 응고층을 형성하는데, 이때, 주편의 표면 품질이 결정된다. 주편의 표면 품질이 결정될 때, 개재물에 대한 용강의 청정도가 큰 영향을 준다.
개재물에 대한 용강의 청정도가 좋지 않으면 개재물로 인한 주형내의 용강의 이상 흐름에 의하여 주편의 표면 품질이 저하된다. 또한, 개재물은 그 자체로도 주편의 표면 결함의 원인이 된다.
개재물에 대한 용강의 청정도는 턴디시에서 결정된다. 예컨대 턴디시에 용강이 체류하는 동안 용강과 개재물의 비중 차이에 의해 용강내의 개재물이 용강 탕면으로 부상되어 용강으로부터 분리되는데, 용강이 턴디시에 체류하면서 개재물을 부상 분리시키는 정도에 따라 개재물에 대한 용강의 청정도가 크게 달라진다. 용강이 턴디시 내부에 체류하는 시간이 길어질수록 용강 중의 개재물이 더 잘 부상 분리되고, 개재물에 대한 용강의 청정도가 크게 향상된다.
한편, 용강이 턴디시에 주입될 때, 턴디시의 바닥과 용강이 충돌하여 강한 난류가 생성된다. 난류는 턴디시 내부에 적절한 용강의 상승류가 유도되는 것을 방해하고, 결과적으로, 턴디시 내부에 용강의 정체 영역을 발생시켜 개재물이 원활하게 부상 분리되는 것을 방해한다. 또한, 난류는 턴디시 플럭스를 용강 내부로 유입시키고, 용강과 공기의 접촉 기회도 증가시킨다.
종래에는 턴디시내에 임팩트 패드(impact pad)를 설치하여 용강과 먼저 충돌시키는 방식으로 난류 발생을 억제하였다. 그러나 이 방식은 임팩트 패드가 용강의 흐름을 과도하게 감소시켜, 턴디시내에 상승류가 충분하게 발생하지 못하는 문제점이 있다. 또한, 임팩트 패드의 상측에 나탕이 발생하는 문제점도 있다. 또한, 임팩트 패드는 일회성으로, 다음 번 연속주조 공정에서 재사용이 불가능한 문제점도 있다. 또한, 종래에는 턴디시내에 기하학적인 구조물을 구축하여 용강의 흐름을 강제하였다. 그러나 이러한 방식은 턴디시의 용적을 줄일 뿐만 아니라, 과도한 내화물의 사용으로 인한 제작 비용 및 제조 원가의 상승을 야기한다.
본 발명의 배경이 되는 기술은 하기의 특허문헌에 게재되어 있다.
EP 2 193 861 A1 JP, P2001-286992, A
본 발명은 용기에 수용되는 용융물의 유동 속도를 감소시킬 수 있는 용융물 처리 장치를 제공한다.
본 발명은 용융물의 체류 시간을 증가시킬 수 있는 용융물 처리 장치를 제공한다.
본 발명은 용기내에 용융물의 정체 영역이 발생하는 것을 저감할 수 있는 용융물 처리 장치를 제공한다.
본 발명은 용기내에 별도의 구조물을 설치하지 않고도 간단한 구조를 이용하여 용기내의 용융물의 유동장을 최적화시킬 수 있는 용융물 처리 장치를 제공한다.
본 발명의 실시 형태에 따른 용융물 처리 장치는, 내부에 용융물 수용 공간이 형성되고, 일측에 용융물 주입부가 배치되고, 타측에 용융물 배출구가 형성되는 용기; 상기 주입부와 배출구 사이에 배치되고, 상기 용기의 바닥에 설치되며, 상기 용기의 양 측벽과 연결되는 댐; 및 상기 댐에 형성되는 관통구;를 포함하고, 상기 관통구는 상기 주입부로부터의 거리에 따라 유동 단면적이 달라진다.
상기 주입부와 댐 사이에 배치되고, 상기 바닥에서 이격되며, 상기 양 측벽에 접촉하는 위어;를 더 포함하고, 상기 관통구는 상기 일측에서 타측을 향하는 방향으로 형성될 수 있다.
상기 관통구는 적어도 하나 이상 형성될 수 있다.
상기 관통구는 상기 주입부로부터 멀어질수록 유동 단면적이 커질 수 있다.
상기 관통구는 상기 댐의 하부에 형성되고, 상기 바닥에 접촉할 수 있다.
상기 관통구는 내벽이 상기 바닥에 직접 연결될 수 있다.
상기 관통구는, 상기 주입부측에 형성되는 입구, 상기 배출구측에 형성되는 출구, 및 상기 입구와 출구를 연결하는 통로를 포함하고, 상기 입구보다 출구의 면적이 클 수 있다.
상기 입구의 너비는 상기 배출구의 너비의 0.1배 이상일 수 있다.
상기 출구의 너비는 상기 입구의 너비보다 크고, 상기 댐의 상면 높이와 같거나 상기 댐의 상면 높이보다 작을 수 있다.
상기 통로는 상기 입구에서 출구를 향하여 연속적으로 유동 단면적이 증가할 수 있다.
상기 통로의 내벽은 적어도 하나의 경사면을 포함할 수 있다.
본 발명의 실시 형태에 따르면, 용기내에 별도의 구조물을 설치하지 않고도 간단한 구조를 이용하여 용기내의 용융물의 유동장을 최적화시킬 수 있다. 즉, 용기의 하부에 댐을 설치하고, 댐에 관통구를 형성한 후, 관통구의 입구측 면적보다 출구측 면적을 크게 하여, 관통구로 용융물을 통과시키되 그 속도를 크게 감소시킬 수 있다. 이처럼 용기의 바닥에 용강의 안정적인 흐름을 형성하여 용기에 수용되는 용융물의 유동 속도를 감소시킬 수 있고, 용기내에 용융물의 정체 영역이 발생하는 것을 저감시킬 수 있다. 이에, 용융물의 체류 시간을 증가시킬 수 있고, 용기내의 용융물의 유동장을 최적화시킬 수 있다.
따라서, 용융물 중의 개재물을 원활하게 부상 분리시켜, 용융물의 청정도를 향상시키고, 용융물로 제조되는 제품의 품질을 향상시킬 수 있다. 또한, 용기 내에 용융물의 유속 감소를 위한 추가적인 구조물을 설치하지 않아도 되기 때문에, 제조 원가를 줄일 수 있다.
도 1은 본 발명의 실시 예에 따른 용융물 처리 장치의 개략도이다.
도 2는 본 발명의 실시 예에 따른 댐 및 관통구의 개략도이다.
도 3은 본 발명의 실시 예에 따른 관통구내의 유동 특성을 설명하기 위한 모식도이다.
도 4는 본 발명의 실시 예에 따른 용융물 처리 공정의 용강 흐름을 보여주는 도면이다.
도 5는 본 발명의 비교 예에 따른 용융물 처리 공정의 용강 흐름을 보여주는 도면이다.
도 6은 본 발명의 실시 예에 따른 용융물 처리 공정의 결과로부터 얻어진 용융물의 최소 체류 시간을 비교 예와 대비하여 보여주는 그래프이다.
도 7은 본 발명의 실시 예에 따른 용융물 처리 공정의 결과로부터 얻어진 용기내 정체 영역의 면적을 비교 예와 대비하여 보여주는 그래프이다.
이하, 첨부된 도면을 참조하여, 본 발명의 실시 예를 상세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니고, 서로 다른 다양한 형태로 구현될 것이다. 단지 본 발명의 실시 예는 본 발명의 개시가 완전하도록 하고, 해당 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 본 발명의 실시 예를 설명하기 위하여 도면은 과장될 수 있고, 도면상의 동일한 부호는 동일한 요소를 지칭한다.
본 발명의 실시 예에 따른 용융물 처리 장치는, 용융물의 유동 속도를 효과적으로 감소시킬 수 있는 기술적 특징을 제시한다. 본 발명의 실시 예에 따른 용융물 처리 장치는 제철소의 연속주조 공정에 적용되나, 각종 용융물을 이용한 다양한 주조 공정에 적용될 수도 있다.
이하, 연속주조 공정을 기준으로, 본 발명의 실시 예를 설명한다.
도 1은 본 발명의 실시 예에 따른 용융물 처리 장치의 개략도이다. 이때, 도 1의 (a)는 용융물 처리 장치의 입체도이고, (b)는 용융물 처리 장치의 단면도이다. 도 2는 본 발명의 실시 예에 따른 댐 및 관통구의 개략도이다. 여기서, 도 2의 (a)는 댐 및 관통구의 입체도이고, (b)는 댐 및 관통구의 정면도이며, (c)는 댐 및 관통구의 단면도이다.
도 1 및 도 2를 참조하여, 본 발명의 실시 예에 따른 용융물 처리 장치를 상세하게 설명한다.
본 발명의 실시 예에 따른 용융물 처리 장치는, 내부에 용융물 수용 공간이 형성되고, 일측에 용융물 주입부(1)가 배치되고, 타측에 용융물 배출구(12)가 형성된 용기(10), 주입부(1)와 배출구(12) 사이에 배치되고, 용기(10)의 바닥(11)에 설치되어 용기(10)의 양 측벽(14)과 연결되는 댐(30), 댐(30)에 형성되며, 주입부(1)로부터의 거리에 따라 유동 단면적이 달라지는 관통구(40)를 포함한다.
용융물 처리 장치는, 주입부(1)와 댐(30) 사이에 배치되고, 바닥(11)에서 이격되며, 양 측벽(14)에 접촉하는 위어(20)를 더 포함할 수 있다.
용융물(미도시)은 용강을 포함할 수 있다. 용융물은 운반용기 예컨대 래들(미도시)에 담겨 용융물 처리 장치까지 운반될 수 있다. 용융물은 용기(10)의 상측에 배치될 수 있고, 주입부(1)에 연결될 수 있다. 주입부(1)를 통하여 용융물이 용기(10)의 내부로 주입될 수 있다. 물론, 용융물은 용강 외에도 다양할 수 있다.
주입부(1)는 용융물이 통과 가능한 내화물 노즐로서, 쉬라우드 노즐일 수 있다. 주입부(1)는 머니퓰레이터(미도시)에 장착되고, 머니퓰레이터의 상승에 의해, 운반용기의 콜렉터 노즐(미도시)에 결합될 수 있다. 주입부(1)는 용기(10)의 일측에 배치되어 바닥(11)에서 이격되고, 용기(10)의 상부에 소정 높이로 위치하며, 적어도 일부가 용기(10)의 내부에 위치할 수 있다.
용기(10)는 내부에 용융물 수용 공간이 형성되고, 일측에 용융물 주입부(1)가 배치되고, 타측에 용융물 배출구(12)가 형성된다. 용기(10)는 턴디시를 포함할 수 있다. 턴디시는 보트형, V형 및 H형 등 다양한 형상을 갖는데, 실시 예에서는 보트형의 턴디시를 용기(10)로서 예시한다.
한편, 턴디시의 형상은 용강의 종류, 성질, 연속주조량, 제품 형상, 크기 등에 따라 정해진다. 이를 실시 예에서 특별히 한정할 필요가 없다.
용기(10)는 일 방향(X) 및 타 방향(Y)으로 연장되는 장방형의 바닥(11), 바닥(11)의 테두리 중 양측 단변을 따라 타 방향으로 각각 연장되고, 상하 방향(Z)으로 돌출되는 한 쌍의 벽체(13), 바닥(11)의 테두리 중 양측 장변을 따라 일 방향으로 각각 연장되고, 상하 방향으로 돌출되는 양 측벽(14)을 포함할 수 있다.
바닥(11), 한 쌍의 벽체(13) 및 양 측벽(14)에 의해 용융물 수용 공간이 형성된다. 한 쌍의 벽체(13)는 일 방향으로 대향하고, 양 측벽(14)은 타 방향으로 대향할 수 있다. 바닥(11)의 일측에 주입부(1)가 배치되되 바닥(11)의 일측에서 상하 방향으로 이격되어 배치될 수 있다. 바닥(11)의 타측을 상하 방향으로 관통하여 배출구(12) 예컨대 출강구가 형성될 수 있다. 바닥(11)은 타측의 높이가 일측의 높이보다 낮은 계단 형상일 수 있으나, 이를 특별히 한정하는 것은 아니다.
용기(10)의 하측에서 배출구(12)를 관통하여 배출 노즐(미도시) 예컨대 침지 노즐이 설치되고, 침지 노즐의 하부를 감싸 주형(미도시)이 배치될 수 있다. 배출구(12)는 슬라이드 게이트(미도시)에 의해 개도가 조절되며, 용융물을 주형으로 배출시키는 역할을 한다. 주형은 용융물을 주편으로 응고시킬 수 있다. 주형의 하측에는 냉각대(미도시)가 설치된다. 냉각대는 주형에서 연속하여 인발되는 주편을 냉각 및 압하하며 일련의 성형 작업을 수행할 수 있다. 냉각대를 통과한 주편은 절단부(미도시)에서 절단되고, 압연 설비로 이송되거나, 용도에 따라 다양한 후처리 설비로 이송될 수 있다.
용기(10)는 주형(미도시)으로의 용융물 공급량을 조절 및 분배하는 기능과, 용융물의 하중에 의한 압력 예컨대 철정압을 감소시키는 기능 및 용융물의 유동 제어를 통해 개재물을 제거하여 청정도를 향상시키는 기능을 수행한다. 이때, 개재물의 제거를 위해 용기(10)의 하부에 댐(30)이 설치되고, 상부에 위어(20)가 설치된다. 위어(20)와 댐(30)은 일 방향으로 이격된다. 댐(30)과 위어(20)는 용융물의 흐름을 제어하여 용융물의 체류 시간을 증가시킴으로써 용융물 중에 함유되어 있는 슬래그 및 개재물을 용융물의 상면 예컨대 탕면으로 부상시키는 역할을 한다. 용융물의 상면으로 부상된 슬래그와 개재물이 용융물에서 분리됨에 따라, 주형으로 개재물과 슬래그가 혼입되는 것이 최소화될 수 있다.
위어(20)는 주입부(1)와 댐(30)의 사이에 배치되고, 바닥(11)에서 이격되며, 타 방향으로 연장되어 양 측벽(14)에 접촉할 수 있다. 위어(20)는 용기(10)의 상부를 타 방향으로 가로질러 연장되며, 양 측벽(14)과 연결될 수 있다. 용기(10)의 내부에서, 위어(20)는 주입구(1) 부근의 용융물을 바닥(11)측으로 유도할 수 있다.
댐(30)은 주입부(1)와 배출구(12) 사이에 배치되고, 용기(10)의 바닥(11)에 설치되며, 타 방향으로 연장되어 용기(10)의 양 측벽(14)을 연결한다. 댐(30)은 바닥(11)측으로 유도된 용융물의 흐름을 용기(10)의 상부로 상승시키는 역할을 한다.
한편, 댐(30)에는 최대한 많은 양의 용융물을 배출구(12)측으로 보내기 위하여 관통구(40)가 형성된다. 구조적인 안정을 위해, 관통구(40)는 원형 단면이나 반원형 단면을 갖도록 형성된다. 관통구(40)는 잔탕량의 감소와, 주입부(1)측에서 배출구(12)측으로의 용융물의 일 방향 흐름을 형성하는 역할을 한다.
본 발명의 실시 예에서는 관통구(40)를 통과하는 용융물의 유동을 제어하여, 용융물의 유동 속도를 줄일 수 있고, 용융물의 체류 시간을 증가시킬 수 있고, 용융물의 유동장을 최적화시킬 수 있다. 이를 위한 관통구(40)의 구체적 구조를 아래에서 설명한다.
관통구(40)는 댐(30)을 관통하여 형성될 수 있다. 이때, 관통구(40)는 일측에서 타측을 향하는 방향으로 형성되며, 이에 의해, 용융물을 주입부(1)측에서 배출구(12)측으로 통과시킨다. 즉, 관통구(40)는 용융물이 통과 가능하게 형성된다.
관통구(40)에서 용융물이 예컨대 댐(30)의 상측을 범람하는 용융물의 유동에 비하여 비교적 높은 속도로 배출되면, 용융물의 흐름이 불안정해진다. 용융물의 속도는 크게 보면 관통구(40)의 입구 면적과 출구 면적의 차이에 의해 제어되는데, 관통구(40)의 입구 면적과 출구 면적이 같게 되면, 용융물이 감속되지 못하여, 비교적 높은 속도로 배출되고, 이에, 용융물의 흐름이 불안정해진다.
따라서, 관통구(40)는 용융물의 유동 속도를 감소시키기 위해 주입부(1)로부터의 거리에 따라 유동 단면적이 달라지도록 형성한다. 상세하게는, 관통구(40)는 주입부(1)로부터 멀어질수록 유동 단면적이 커지게 형성된다. 즉, 관통구(40)는 용융물이 바닥(11)을 따라서 유동하는 방향으로 유동 단면적이 증가할 수 있다.
유동 단면적은 용융물이 유입되는 방향에 수직한 단면적을 의미한다. 이처럼 유동 단면적이 유동하는 방향으로 커지면, 정상 상태의 비압축성 유동에서, 유동의 입구측보다 출구측의 유속이 감소되는 효과가 있다. 이에, 관통구(40)는 입구로 들어온 용융물을 출구로 배출할 때, 용융물의 배출 속도를 크게 감속시켜 원하는 속도 범위 내로 제어할 수 있다. 따라서, 안정적인 용융물의 흐름을 바닥(11)상에 형성할 수 있다. 여기서, 관통구(40)의 입구는 주입부(10)측의 개구를 지칭하고, 출구는 배출구(12)측의 개구를 지칭한다.
관통구(40)는 댐(30)의 하부를 일 방향으로 관통할 수 있고, 바닥(11)에 접촉할 수 있다. 이때, 관통구(40)의 내벽이 바닥(11)에 접촉할 수 있다. 관통구(40)는 반원형의 단면 형상을 가질 수 있다. 물론, 이를 특별히 한정하지 않는다. 예컨대 관통구(40)는 단면 형상이 원형이거나 타원형이거나 각종 활꼴 형상일 수 있고, 다양한 다각형 형상일 수도 있다.
관통구(40)는 내벽이 바닥(11)에 직접 연결된다. 즉, 반원형 단면의 현 부분이 바닥(11)으로 형성되고, 호 부분이 관통구(40)의 내벽으로 형성될 수 있다. 관통구(40)가 바닥(11)에 접해서 형성됨에 따라 바닥(11)에 용융물의 유동을 더욱 안정적으로 형성할 수 있다.
관통구(40)는 주입부(1)측에 형성되는 입구, 배출구측에 형성되며, 입구보다 면적이 큰 출구, 및 입구와 출구를 연결하는 통로를 포함할 수 있다. 관통구(40)의 입구 너비는 배출구(12)의 너비의 0.1배 이상일 수 있다. 여기서, 관통구(40)의 입구 너비는 상하 방향의 너비를 의미한다. 상세하게는 관통구(40)의 단면 형상이 반원일 때, 너비는 반원의 반지름을 의미한다. 한편, 관통구(40)의 단면 형상이 반원이 아닐 경우, 관통구(40)의 입구 너비는 입구의 단면 형상의 중심을 기준으로 한 평균 반지름일 수 있다. 배출구(12)의 너비는 배출구(12)의 직경을 의미한다. 관통구(40)의 입구 너비가 배출구(12)의 너비의 0.1배보다 작으면 관통구(40)를 지나는 용융물의 유동량이 배출구(12)에서 배출되는 용융물의 유동량보다 지나치게 작아지게 되어, 용기(10)에서 주형으로의 용융물 흐름이 영향을 받게 된다. 따라서, 관통구(40)의 입구 너비를 배출구(12)의 너비의 0.1배보다 크게 한다.
관통구(40)의 입구 너비의 상한은 관통구(40)의 출구 너비에 따라 정해지는데, 즉, 관통구(40)의 입구 너비는 관통구(40)의 출구 너비보다 작고, 상세하게는, 관통구(40)의 입구 너비의 상한은 관통구(40)의 출구 너비의 상한보다 작은 값을 가진다. 즉, 관통구(40)는 출구의 너비보다 입구의 너비가 항상 작아야 한다. 관통구(40)의 출구 너비는 출구의 상하 방향의 너비로서, 반원 형상의 단면에서 보면 출구의 반지름 또는 출구의 평균 반지름일 수 있다. 관통구(40)의 출구 너비는 입구의 너비보다 크고, 댐(30)의 상면 높이(h)와 같거나 댐(30)의 상면 높이(h)보다 작을 수 있다.
상기에서 설명한 관통구(40)의 출구 너비와 입구 너비의 조건은 아래의 관계식 1 및 관계식 2와 같다.
관계식 1) r1 < r2 ≤ h
관계식 2) r1 ≥ 0.1×D
r1은 관통구(40)의 입구 반지름이고, r2는 관통구(40)의 출구 반지름이며, h는 댐(30)의 상면 높이이고, D는 도면으로 도시하지는 않았으나 배출구(12)의 직경을 의미한다.
이 구조에 의해 관통구(40)를 통하여 주입부(1)측에서 배출구(12)측으로 유동하는 용융물의 속도를 감소시킬 수 있고, 이에, 용융물의 체류 시간을 증가시킬 수 있다.
상술한 바와 같이 형성되는 관통구(40)의 통로는 입구에서 출구를 향하여 연속적으로 유동 단면적이 증가할 수 있다. 즉, 관통구(40)의 내벽은 단면 형상을 볼 때, 용기(10)의 일측에서 타측을 향하여 상향 경사진 형상인 경사면일 수 있다
물론, 경사면은 직선 형상이거나, 곡선 형상일 수도 있다. 한편, 통로(40)의 내벽은 적어도 하나의 경사면을 포함할 수 있다. 즉, 경사면 기울기가 하나의 단일 경사면일 수 있고, 기울기가 구간별로 여러개인 복합 경사면일 수도 있다. 여기서, 구간은 일 방향으로의 거리에 따른 내벽내의 소정 구간(미도시)을 의미할 수 있다.
또한, 관통구(40)는 적어도 하나 이상 형성될 수 있다. 이때, 실시 예에서는 하나의 관통구(40)를 예시하나, 그 변형 예에 따르면 관통구(40)는 댐(30)의 타 방향으로 이격된 복수의 위치에 형성될 수도 있다. 이때, 각 관통구(40)의 중심을 일 방향으로 지나는 중심축은 서로 평행하거나, 소정의 각도를 이룰 수 있다. 중심축들이 소정의 각도를 이루면 용융물의 유동을 원하는 방식으로 다양하게 조절할 수 있다. 예컨대 용융물의 유동을 일 방향으로 제어하면서도 타 방향으로도 제어할 수 있다.
상기한 바와 같이 형성되는 용융물 처리 장치는 이를테면 고청정강용 용융물 처리 장치라고 할 수 있다. 실시 예에 따르면 용기(10)의 내부에 별도의 임팩트 패드나 내화물 구조물을 구축하지 않고도, 관통구(40)의 구조를 상기와 같이 구성함에 의하여, 간단한 구조로 용융물의 유동 속도를 크게 저감시켜, 체류 시간을 늘리고, 개재물 부상 분리의 효율을 극대화시킬 수 있다.
도 3은 본 발명의 실시 예에 따른 관통구내의 유동 특성을 설명하기 위한 모식도이다.
도 3을 참조하여, 본 발명의 실시 예에 따른 관통구(40)의 구조에 대한 이론적인 배경을 설명한다. 연속방정식(continuity equation)은 질량 보존의 법칙에 입각하여 유동 중인 유체의 운동을 설명하는 방정식이다.
유체가 유동관을 가득 채우면서 유체 흐름 방향으로 정상(steady) 상태로 흘러간다고 하면, 임의의 단면적을 통과하는 단위 시간당 유체의 질량인 질량 유량은 아래의 관계식 3과 같다.
관계식 3) 질량 유량 = 단면적 × 속도 × 밀도 = A1 × V1 × ρ1
유동관내 유동이 정상 흐름이면 단면적 A1과 단면적 A2를 통과하는 단위 시간당 유체의 질량은 동일해야 하므로, 아래의 관계식 4가 도출된다.
관계식 4) 정상 상태 질량 유량 = A1 × V1 × ρ1 = A2 × V2 × ρ2
이때, 유체가 용융물 예컨대 용강과 같은 비압축성 유체이면, 유동관 내부에서 밀도 변화가 없으므로, 아래의 관계식 5가 도출된다.
관계식 5) 유량Q = A1 × V1 = A2 × V2
상기한 바에 따르면, 유체가 용강일 때, 유동관의 단면적과 유동관을 통과하는 유체의 속도는 반비례함을 알 수 있고, 단면적이 증가하면 속도가 감소함을 알 수 있다. 따라서, 본 발명의 실시 예와 같이 관통구(40)의 직경을 용융물의 흐름 방향에 대해 단면적이 증가하도록 제작하면, 관통구(40)를 통과한 용융물 유동장의 속도는 감소하게 되고, 유동장의 속도가 감소하면, 주형으로 빠져나가는 유속을 감소시켜, 용융물의 용기(10)내 체류 시간을 증가시킬 수 있다.
도 4는 본 발명의 실시 예에 따른 용융물 처리 공정의 용강 흐름을 보여주는 도면이다. 도 5는 본 발명의 비교 예에 따른 용융물 처리 공정의 용강 흐름을 보여주는 도면이다.
본 발명의 실시 예에 따른 용융물 처리 장치를 이용한 용융물 처리 공정과, 본 발명의 비교 예에 따른 용융물 처리 장치를 이용한 용융물 처리 공정을 모델링하고, 유동 해석 프로그램을 사용하여 용융물의 유동을 각각 수치 해석하였다.
도 4는 본 발명의 실시 예의 용융물 처리 공정 예컨대 연속주조 공정의 용융물 유동 시뮬레이션 결과를 도시한 도면이다. 도 4의 노란색 화살표는 유동장을 보여준다. 이와 대비하여, 도 5를 보면, 도 4의 유동장이 안정적으로 형성?음을 확인할 수 있다.
도 5는 본 발명의 비교 예의 용융물 처리 공정 예컨대 연속주조 공정의 용융물 유동 시뮬레이션 결과를 도시한 도면이다. 본 발명의 비교 예에 따른 용융물 처리 장치는 댐(30')에 형성된 관통구(40')의 입구 면적과 출구 면적이 같다. 도 5에 노란색 화살표로 표시된 유동장을 보면, 관통구(40')를 통과한 용융물의 유동이 도 4에 도시된 실시 예의 경우보다 강하게 형성됨을 볼 수 있다. 즉, 용융물이 비교적 높은 속도를 가지고 이동함을 볼 수 있다.
도 4와 도 5를 대비하면, 본 발명의 실시 예에 따르면, 비교 예의 경우보다 관통구(40)를 통과한 용융물의 유동 속도가 감소함을 확인할 수 있다.
도 6은 본 발명의 실시 예에 따른 용융물 처리 공정의 결과로부터 얻어진 용융물의 최소 체류 시간을 비교 예와 대비하여 보여주는 그래프이다. 결과는 상술한 유동 시뮬레이션에서 도출하였다. 두 결과를 대비하면, 비교 예의 관통구 구조에서는 용융물의 최소 체류 시간이 30초이고, 실시 예의 관통구 구조에서는 용융물의 최소 체류 시간이 88초로서, 실시 예가 비교 예보다 2.93배 증가하였다. 이처럼 용융물의 최소 체류 시간이 증가하게 되면, 개재물이 용기(10)의 상부로 부상할 시간이 증가하는 것으로서, 이에 용융물 처리 장치는 청정한 용융물 즉, 청정강의 제조 기능을 하게 되는 것이다.
도 7은 본 발명의 실시 예에 따른 용융물 처리 공정의 결과로부터 얻어진 용기내 정체 영역의 면적을 비교 예와 대비하여 보여주는 그래프이다. 이를테면 실시 예와 비교 예의 용융물 유동 시뮬레이션 결과로부터 용융물의 정체 영역 형성 결과를 얻고, 이를 대비하였다. 용기(10)내 정체 영역이 작을수록 용융물의 유효한 유동 영역은 보다 많아지므로, 즉, 용기(10)내 보다 많은 용융물의 유동 영역을 확보할 수 있고, 이는 용융물의 체류 시간의 증가로 이어져, 용융물 중의 개재물이 부상할 기회가 많아진다. 비교 예의 정체 영역이 용기의 용적 대비 14.3%이고, 실시 예의 정체 영역이 용기의 용적 대비 13.5%이므로, 실시 예가 비교 예보다 정체 영역이 줄어듬을 확인할 수 있고, 따라서, 실시 예가 비교 예보다 개재물 제거에 효과적임을 확인할 수 있다.
상술한 바와 같이 형성되는 용융물 처리 장치가 연속주조 공정에 적용되면, 용강의 체류 시간을 효과적으로 늘릴 수 있고, 턴디시내의 용강 유동장이 안정적으로 형성될 수 있다. 따라서, 용강의 개재물 제거 효율이 향상될 수 있고, 고품질의 주편을 주조할 수 있다.
본 발명의 상기 실시 예는 본 발명의 설명을 위한 것이고, 본 발명의 제한을 위한 것이 아니다. 본 발명의 상기 실시 예에 개시된 구성과 방식은 서로 결합하거나 교차하여 다양한 형태로 변형될 것이고, 이 같은 변형 예들도 본 발명의 범주로 볼 수 있음을 주지해야 한다. 즉, 본 발명은 청구범위 및 이와 균등한 기술적 사상의 범위 내에서 서로 다른 다양한 형태로 구현될 것이며, 본 발명이 해당하는 기술 분야에서의 업자는 본 발명의 기술적 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.
10: 용기 20: 위어
30: 댐 40 관통구

Claims (11)

  1. 내부에 용융물 수용 공간이 형성되고, 일측에 용융물 주입부가 배치되고, 타측에 용융물 배출구가 형성되는 용기;
    상기 주입부와 배출구 사이에 배치되고, 상기 용기의 바닥에 설치되는 댐;
    상기 댐에 형성되고, 상기 주입부로부터 멀어질수록 유동 단면적이 커지는 관통구;를 포함하고,
    상기 관통구는,
    상기 주입부측에 형성되는 입구;
    상기 배출구측에 형성되는 출구; 및
    상기 입구와 출구를 연결하는 통로;를 포함하고,
    상기 입구의 너비는 상기 배출구의 너비의 0.1 배 이상이고,
    상기 출구의 너비는 상기 입구의 너비보다 크고, 상기 댐의 상면 높이와 같거나, 상기 댐의 상면 높이보다 작고,
    상기 통로의 단면은 반원형 형상이고, 상기 반원형 형상은 현 부분이 상기 용기의 바닥으로 형성되고, 호 부분이 상기 관통구의 내벽으로 형성되는 용융물 처리 장치.
  2. 청구항 1에 있어서,
    상기 주입부와 댐 사이에 배치되고, 상기 바닥에서 이격되며, 상기 용기의 양 측벽에 접촉하는 위어;를 더 포함하고,
    상기 관통구는 상기 일측에서 타측을 향하는 방향으로 형성되는 용융물 처리 장치.
  3. 청구항 1에 있어서,
    상기 관통구는 적어도 하나 이상 형성되는 용융물 처리 장치.
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 청구항 1에 있어서,
    상기 통로는 상기 입구에서 출구를 향하여 연속적으로 유동 단면적이 증가하는 용융물 처리 장치.
  11. 청구항 10에 있어서,
    상기 통로의 내벽은 적어도 하나의 경사면을 포함하는 용융물 처리 장치.
KR1020170169477A 2017-12-11 2017-12-11 용융물 처리 장치 KR101981455B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170169477A KR101981455B1 (ko) 2017-12-11 2017-12-11 용융물 처리 장치
CN201811504785.0A CN110000367A (zh) 2017-12-11 2018-12-10 熔融物处理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170169477A KR101981455B1 (ko) 2017-12-11 2017-12-11 용융물 처리 장치

Publications (1)

Publication Number Publication Date
KR101981455B1 true KR101981455B1 (ko) 2019-05-24

Family

ID=66680326

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170169477A KR101981455B1 (ko) 2017-12-11 2017-12-11 용융물 처리 장치

Country Status (2)

Country Link
KR (1) KR101981455B1 (ko)
CN (1) CN110000367A (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174764A (ja) * 1987-01-12 1988-07-19 Kawasaki Steel Corp 連続鋳造における鋳込み開始時の溶鋼酸化防止方法
JP2001286992A (ja) 2000-04-03 2001-10-16 Sumitomo Metal Ind Ltd タンディッシュおよび連続鋳造方法
JP2008036660A (ja) * 2006-08-03 2008-02-21 Kobe Steel Ltd タンディッシュ
EP2193861A1 (en) 2008-12-02 2010-06-09 Foseco International Limited Tundish Impact pad.
KR20170069051A (ko) * 2015-12-10 2017-06-20 주식회사 포스코 턴디쉬 및 필터의 제조 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083753A (en) * 1990-08-06 1992-01-28 Magneco/Metrel Tundish barriers containing pressure differential flow increasing devices
CN101947643B (zh) * 2010-09-26 2012-07-25 南京钢铁股份有限公司 中间包坝堰控流装置
CN202377519U (zh) * 2011-11-23 2012-08-15 福建三钢闽光股份有限公司 板坯中间包内控流带直角挡流板的挡渣堰
CN202684063U (zh) * 2012-07-26 2013-01-23 莱芜钢铁集团有限公司 一种板坯连铸机中间包控流装置
CN103894571B (zh) * 2014-03-28 2016-03-30 上海大学 气体漩流净化中间包钢液的方法及钢液净化装置
CN206296443U (zh) * 2016-08-27 2017-07-04 上海利尔耐火材料有限公司 一种具有导流孔挡板的中间包挡渣坝
CN206622606U (zh) * 2017-04-18 2017-11-10 河钢股份有限公司邯郸分公司 一种减少连铸浇余剩钢的中间包

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174764A (ja) * 1987-01-12 1988-07-19 Kawasaki Steel Corp 連続鋳造における鋳込み開始時の溶鋼酸化防止方法
JP2001286992A (ja) 2000-04-03 2001-10-16 Sumitomo Metal Ind Ltd タンディッシュおよび連続鋳造方法
JP2008036660A (ja) * 2006-08-03 2008-02-21 Kobe Steel Ltd タンディッシュ
EP2193861A1 (en) 2008-12-02 2010-06-09 Foseco International Limited Tundish Impact pad.
KR20170069051A (ko) * 2015-12-10 2017-06-20 주식회사 포스코 턴디쉬 및 필터의 제조 방법

Also Published As

Publication number Publication date
CN110000367A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
JP5807719B2 (ja) 高清浄度鋼鋳片の製造方法及びタンディッシュ
KR101981455B1 (ko) 용융물 처리 장치
JP6701517B2 (ja) 連続鋳造用タンディッシュ、及びそのタンディッシュを用いた連続鋳造方法
JP2012045583A (ja) 連続鋳造による高清浄度鋼鋳片の製造方法
JP5867531B2 (ja) 連続鋳造による高清浄度鋼鋳片の製造方法
JP5556465B2 (ja) 連続鋳造による高清浄度鋼鋳片の製造方法
JP2010167457A (ja) 連続鋳造装置の鋳造方法
JP2766529B2 (ja) タンディッシュ装置
EP3725430A1 (en) Molten material processing device
JP6668568B2 (ja) 連続鋳造用タンディッシュ、及びそのタンディッシュを用いた連続鋳造方法
JP5206591B2 (ja) 連続鋳造用タンディッシュ
JP5673162B2 (ja) 連続鋳造方法および連続鋳造装置
JP5794969B2 (ja) 連続鋳造方法
KR102209610B1 (ko) 노즐 장치
JPH04238658A (ja) 連続鋳造用浸漬ノズル
JP6701516B2 (ja) 連続鋳造用タンディッシュ、及びそのタンディッシュを用いた連続鋳造方法
JP5009033B2 (ja) 鋼の連続鋳造方法および連続鋳造装置
JP5053226B2 (ja) 連続鋳造用タンディッシュ
KR101149183B1 (ko) 불순물 혼입 방지장치
KR100946659B1 (ko) 연속주조용 침지노즐
JP6668567B2 (ja) 連続鋳造用タンディッシュ、及びそのタンディッシュを用いた連続鋳造方法
JP2007054861A (ja) 連続鋳造用タンディッシュ及び鋳片の製造方法
JP2019018241A (ja) 連続鋳造用タンディッシュ
JP3470537B2 (ja) 連続鋳造用タンディッシュにおける介在物除去方法
JP4549112B2 (ja) 連続鋳造方法

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant