KR101946933B1 - 전극 집전체용 알루미늄 합금호일 및 제조 방법 - Google Patents

전극 집전체용 알루미늄 합금호일 및 제조 방법 Download PDF

Info

Publication number
KR101946933B1
KR101946933B1 KR1020147004357A KR20147004357A KR101946933B1 KR 101946933 B1 KR101946933 B1 KR 101946933B1 KR 1020147004357 A KR1020147004357 A KR 1020147004357A KR 20147004357 A KR20147004357 A KR 20147004357A KR 101946933 B1 KR101946933 B1 KR 101946933B1
Authority
KR
South Korea
Prior art keywords
aluminum alloy
strength
alloy foil
hours
active material
Prior art date
Application number
KR1020147004357A
Other languages
English (en)
Other versions
KR20140051321A (ko
Inventor
마사카즈 세키
사토시 스즈키
켄지 야마모토
토모히코 후루타니
Original Assignee
가부시키가이샤 유에이씨제이
가부시키가이샤 유에이씨제이 포일
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 유에이씨제이, 가부시키가이샤 유에이씨제이 포일 filed Critical 가부시키가이샤 유에이씨제이
Publication of KR20140051321A publication Critical patent/KR20140051321A/ko
Application granted granted Critical
Publication of KR101946933B1 publication Critical patent/KR101946933B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • B22D25/04Casting metal electric battery plates or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

전극 집전체용 알루미늄 합금호일에 있어서, 높은 도전율을 가지면서, 활물질이 도포된 후의 건조 공정후의 강도도 높은 전극 집전체용 알루미늄 합금호일을 제공하는 것을 목적으로 한다. 본 발명에 의하면, Fe: 0.1~0.5%, Si: 0.01~0.3%, Cu: 0.01~0.2%, Mn: 0.01%이하를 함유하고, 잔부Al와 불가피적 불순물로 형성되는 알루미늄 합금주괴를 550~620℃에서 1~20시간 보유하고, 시작 온도가 500℃이상, 종료 온도가 255~300℃에서 열간 압연 하는 것을 특징으로 하는 전극 집전체용 알루미늄 합금호일의 제조 방법이 제공된다.

Description

전극 집전체용 알루미늄 합금호일 및 제조 방법{ALUMINUM ALLOY FOIL FOR ELECTRODE COLLECTORS AND PRODUCTION METHOD THEREFOR}
본 발명은 이차전지, 전기 이중층 커패시터, 리튬이온 커패시터 등에 사용되는 전극 집전체에 관한 것이며, 특히 리튬이온 이차전지의 정극용 전극재료에 사용되는 알루미늄 합금호일에 관한 것이다. 또한 리튬이온 이차전지의 부극용 전극재료에 사용되는 알루미늄 합금호일에 관한 것이다.
휴대폰, 노트형 컴퓨터 등의 휴대폰용 전자기기의 전원으로 에너지 밀도가 높은 리튬이온 이차전지가 이용된다.
리튬이온 이차전지의 전극재료는, 정극판, 세퍼레이터 및 부극판으로 구성된다. 정극재료에는 전기전도성이 뛰어나고, 이차전지의 전기효율에 영향을 주지 않고, 발열이 적은 특징을 가지는 알루미늄 합금호일이 지지체로 사용되고 있다. 알루미늄 합금호일 표면에는 리튬 함유 금속산화물, 예를 들면 LiCoO2를 주성분으로 하는 활물질을 도포한다. 제조 방법으로서는, 두께가 20㎛정도인 알루미늄 합금호일에, 두께가 100㎛정도인 활물질을 양면에 도포하고, 활물질중의 용매를 제거하는 건조를 실시한다. 더욱이, 활물질의 밀도를 증대시키기 위하여, 프레스기로 압축 가공을 실시한다. (이하, 상기 '프레스기에서 압축 가공을 실시하는' 공정을 프레스 가공이라 칭함) 이렇게 제조된 정극판은 세퍼레이터, 부극판과 적층된 후, 권회하여, 케이스에 수납하기 위한 형성을 행하여, 케이스에 수납된다.
리튬이온 이차전지의 정극재료에 사용되는 알루미늄 합금호일에는, 활물질 도포시에 발생되는 단절이나, 권회시에 굴곡부에서 발생되는 파탄 등 문제가 있기때문에, 높은 강도가 요구되고 있다. 특히, 활물질 도포후의 건조 공정 (이하, 단지 건조 공정이라 칭함)에서는, 100℃~180℃정도의 가열 처리를 실시하기 때문에, 건조 공정후의 강도가 낮으면, 프레스 가공시에 중부가 쉽게 신장하기에, 권회시에 권회 주름이 발생하고, 활물질과 알루미늄 합금호일의 밀착성이 저하되고, 슬릿(slit)시에 파탄이 쉽게 일어난다. 활물질과 알루미늄 합금호일 표면의 밀착성이 저하되면, 충방전을 반복으로 사용하는 과정에서 박리가 진행하고, 전지의 용량이 저하되는 문제가 있다.
최근, 리튬이온 이차전지의 정극재료에 사용되는 알루미늄 합금호일에는, 높은 도전율이 요구되고 있다. 도전율이란, 물질내에 있어서의 전기가 통하기 쉬움을 나타내는 물성치이며, 도전율이 높을수록, 전기가 통과하기 쉬운것을 나타낸다. 자동차나 전동공구 등에 사용되는 리튬이온 이차전지는, 민생용으로 사용되는 휴대폰이나 노트형 컴퓨터 등의 리튬이온 이차전지보다 큰 출력특성이 필요하다. 도전율이 낮을 경우, 큰 전류가 흘렀을 때에는, 전지의 내부저항이 증가하기 때문에, 전지의 출력 전압이 저하되는 문제가 있다.
고강도의 리튬이온 이차전지용 알루미늄 합금호일로서, 일반적으로 3003합금이 사용되고 있다. 3003합금에는, Si, Fe, Mn, Cu등의 원소가 주요하게 첨가되기 때문에, 강도가 높은 것이 특징이다. 특히, Mn가 고용 및 미세석출됨으로써, 가열 처리시의 강도가 적게 저하된다. 그러나, 고용된 Mn는 도전율을 저하시키기 때문에, Al순도가 99%이상인 알루미늄 합금에 대하여, 3003합금의 도전율이 매우 낮다. 즉, 3003합금에서는, 리튬이온 이차전지용 알루미늄 합금호일에 요구되는, 고강도와 고도전율의 양쪽을 만족시키기는 곤란하다.
특허문헌 1에는, 인장강도가 98MPa이상인 전지 집전체용 알루미늄 합금호일이 제안되어 있다. 특허문헌 2에는, 인장강도가 200MPa이상인 리튬이온 이차전지 전극 집전체용 알루미늄 합금호일이 제안되어 있다. 그러나, 특허문헌 1과 특허문헌 2는, 모두 도전율에 관하여서는 기재되지 않았다.
특허문헌 3에는, 알루미늄 합금호일을 고강도화하는 것으로 프레스 가공시에 소성변형이 생기지 않고, 활물질과의 박리를 방지하는 방법이 제안되어 있다. 그러나, 주요원소로서 Mn, Cu, Mg가 첨가된 합금이기 때문에, 높은 도전율을 만족시킬 수는 없었다.
특허문헌 4에는, Fe의 고용량이 50ppm미만이고, 판두께가 0.1~2mm이고, 인장강도가 145~200MPa인 알루미늄 합금판이 제안되어 있다. 그러나, 상기 판두께의 범위내에서는, 전극 집전체에의 적용이 곤란하다. 또한, Fe의 고용량이 적기때문에, 120~160℃에서 15분~24시간의 열처리를 행할때에는, 강도가 크게 저하된다.
일본공개특허 2004-207117호 공보 일본공개특허 평 11-219709호 공보 일본공개특허 2002-129269호 공보 일본공개특허 2008-15065호 공보
이와 같이, 종래 기술에서는, 강도와 도전율의 양쪽에 있어서 만족되는 특성을 가지는 전극 집전체용 알루미늄 합금호일을 얻을 수 없었다.
본 발명은, 이러한 사정에 비추어 행해진 것이며, 전극 집전체용 알루미늄 합금호일에 관하여, 높은 도전율을 가지고, 또한 건조 공정후의 강도도 높은 전극 집전체용 알루미늄 합금호일을 제공하는 것을 목적으로 한다.
본 발명자들은, 리튬이온 이차전지의 정극재료에 사용되는 알루미늄 합금호일에 대하여 검토한 바, 성분을 적절한 범위로 규제하고, 제조 공정에 있어서 주괴의 균질화 처리와 열간 압연시의 온도조건을 최적화한 원소의 고용석출 상태를 제어함으로써, 높은 도전율을 유지하면서, 활물질 도포후의 건조 공정에 있어서 열처리후에도 높은 강도를 유지할 수 있다는 것을 찾아내어, 본 발명에 이르렀다.
즉, 제1발명은, Fe: 0.1~0.5mass%(이하 단지 %이라 기재함), Si: 0.01~0.3%, Cu: 0.01~0.2%, Mn: 0.01%이하를 함유하고, 잔부 Al과 불가피적 불순물로 이루어지고, 인장강도가 220MPa이상, 0.2% 내력이 180MPa이상, 도전율이 58% IACS이상을 특징으로 하는 전극 집전체용 알루미늄 합금호일에 관한것이다.
제2발명은, Fe의 고용량이 100ppm이상, Si의 고용량이 80~1800ppm, Cu의 고용량이 80~1500ppm인 것을 특징으로 하는 상기 기재된 전극 집전체용 알루미늄 합금호일에 관한것이다.
제3발명은, 120℃에서 24시간, 140℃에서 3시간, 160℃에서 15분간중의 임의의 하나의 열처리를 행하였을 경우에도 열처리후의 인장강도가 190MPa이상, 0.2% 내력이 160MPa이상인 것을 특징으로 하는, 상기 기재된 전극 집전체용 알루미늄 합금호일에 관한것이다.
제4발명은, 상기 기재된 전극 집전체용 알루미늄 합금호일의 제조 방법에 있어서, Fe: 0.1~0.5%, Si: 0.01~0.3%, Cu: 0.01~0.2%, Mn: 0.01%이하를 함유하고, 잔부Al과 불가피적 불순물로 이루어지는 알루미늄 합금주괴를 550~620℃에서 1~20시간 보유하고, 시작 온도가 500℃이상, 종료 온도가 255~300℃에서 열간 압연하는 것을 특징으로 하는 전극 집전체용 알루미늄 합금호일의 제조 방법에 관한것이다.
또한, 제1~제4발명은, 적당히 조합시킬수 있다.
본 발명을 완성함에 있어서 특히 중요한 점은, (1)균질화 열처리를 550~620℃에서 1~20시간 행하는 것, (2)열간 압연의 시작 온도를 500℃이상으로 하는 것, (3)열간 압연의 종료 온도를 255~300℃로 하는 3개의 온도조건을 동시에 만족시키는 것이며, 이것들의 조건중의 하나라도 만족시키지 않을 경우에는, 강도와 도전율의 양쪽에 있어서 뛰어난 특성을 가지는 전극 집전체용 알루미늄 합금호일을 얻을 수는 없었다. 이것들의 온도조건을 충족시킴으로써 처음으로, Fe, Si, Cu가 충분히 고용된 상태에서의 고강도 또한 고도전율의 알루미늄 합금호일을 얻을 수 있다는 것이 밝혀졌다.
이것들의 3개 조건중에서 특히 중요한 것은, 열간 압연의 종료 온도를 255~300℃로 하는 것이다. 열간 압연의 종료 온도가 상기 범위외일 경우에는, 알루미늄 호일의 생산효율이 악화되거나, 알루미늄 호일의 강도가 저하되는 문제가 생긴다.
본 발명에 의해, 높은 도전율을 가지면서, 건조 공정후의 강도를 높이기 위하여, 프레스 가공시에 중부에서 신장이 발생되지 않고, 활물질의 박리나 슬릿시에 발생되는 파탄을 방지할 수 있고, 리튬이온 전지용 알루미늄 합금호일을 비롯한 전극 집전체용 알루미늄 합금호일을 제공할 수 있다.
<알루미늄 합금호일의 조성>
본 발명에 따른 리튬이온 전지용 알루미늄 합금호일의 조성은, Fe: 0.1~0.5%, Si: 0.01~0.3%, Cu: 0.01~0.2%, Mn: 0.01%이하를 함유하고, 잔부Al 및 불가피적 불순물로 이루어진다.
Si는, 첨가됨으로써 강도를 향상시키는 원소이며, 0.01~0.3% 함유한다. Si첨가량이 0.01%미만일 경우에는, 강도향상에는 기여하지 않는다. 또한, 통상적으로 사용되는 Al덩어리에는 불순물로서 Si가 포함되고, 0.01%미만으로 규제하기 위하여서는 고순도의Al덩어리을 사용하기 때문에, 경제적으로 실현이 곤란하다. 한편, Si첨가량이 0.3%를 초과하면, Al-Fe-Si화합물이 알루미늄 합금호일 내부 및 표면에 많이 존재하게 되어, 핀홀(pinhole)을 증가시키 때문에, 바람직하지 못하다.
Fe는, 첨가됨으로써 강도를 향상시키는 원소이며, 0.1~0.5% 함유한다. Fe첨가량이 0.1%미만일 경우에는, 강도향상에는 작용하지 않는다. 한편, Fe첨가량이 0.5%를 초과하면, Al-Fe화합물 혹은 Al-Fe-Si화합물이 알루미늄 합금호일 내부 및 표면에 많이 존재하게 되어, 핀홀을 증가시키기 때문에 바람직하지 못하다.
Cu는, 첨가됨으로써, 강도를 향상시키는 원소이며, 0.01~0.2% 함유한다. Cu첨가량이 0.01%미만일 경우에는, Cu고용량이 저하되기 때문에, 강도가 저하된다. 한편, Cu 첨가량이 0.2%를 초과하면 가공 경화성이 높아지기 때문에, 호일압연시에 단절이 쉽게 발생한다.
Mn에 있어서, 미량이라도 함유하면 Al합금중에 고용되어 도전율을 크게 저하시키기 때문에, 0.01%이하로 규제한다. 0.01%를 초과하면, 고도전율을 유지하는 것이 곤란해지기 때문에 바람직하지 못하다.
그 외에, 본 발명의 재료에는 Cr, Ni, Zn, Mg, Ti, B, V, Zr 등의 불가피적 불순물이 포함된다. 이것들의 불가피적 불순물은, 각각 0.02%이하, 총량으로는 0.15%이하가 바람직하다.
<고용량>
알루미늄에 고용된 Fe는, 알루미늄의 강도를 향상시킨다. 그 고용량은, 100ppm이상으로 하는 것이 바람직하다. Fe의 고용량이 100ppm미만일 경우에는, 강도향상에는 적게 기여한다. Fe의 고용량의 상한은 특히 규정되지 않지만, Fe의 고용량이 너무 많으면 도전율의 저하가 커지기 때문에, 300ppm이하가 바람직하다.
알루미늄에 고용된 Si는, 알루미늄의 강도를 향상시킨다. 그 고용량은, 80~1800ppm로 하는 것이 바람직하다. Si의 고용량이 80ppm미만일 경우에는, 강도향상에는 적게 기여하고, 또한 고순도의 지금을 사용하기 때문에, 경제적으로 실현이 곤란하다. 1800ppm를 초과하면, 가공 경화성이 너무 높아지기 때문에, 호일압연시에 단절이 쉽게 발생한다.
알루미늄에 고용된 Cu는, 알루미늄의 강도를 향상시킨다. 그 고용량은, 80~1500ppm로 하는 것이 바람직하다. Cu의 고용량이 80ppm미만일 경우에는, 강도향상에는 적게 기여한다. 1500ppm를 초과하면, 가공 경화성이 너무 높아지기 때문에, 호일압연시에 단절이 쉽게 발생된다.
<소판 강도>
Fe, Si, Cu만이 주로 첨가되어 있는 알루미늄 합금에서는, 주괴의 균질화 처리와 열간 압연시의 온도조건을 최적화하고, 각 원소를 보다 많이 고용시킴으로써, 전위의 이동이 억제되고, 보다 높은 강도를 달성할 수 있다. 더욱이, 고용량이 증가됨으로써, 가공 경화성도 향상되기 때문에, 냉간 압연과 호일압연에 의해, 알루미늄 합금호일의 강도를 더욱 높일 수 있다.
최종냉간 압연후의 소판 인장강도는 220MPa이상, 0.2% 내력은 180MPa이상으로 한다. 인장강도가 220MPa미만, 0.2% 내력이 180MPa미만일 경우에는 강도가 부족되고, 활물질 도포시에 가해지는 장력에 의해, 단절이나 균열이 쉽게 발생한다. 또한, 중부가 신장되는 등 불량도 야기시키고, 생산성에 악영향을 끼치기 때문에, 바람직하지 못하다.
<열처리후의 강도>
정극판의 제조 공정은, 활물질중의 용매를 제거할 목적으로 활물질 도포후에 건조 공정이 존재한다. 상기 건조 공정에서는 100~180℃정도의 온도에서 열처리가 행하여진다. 상기 열처리에 의해, 알루미늄 합금호일은 연화되어 기계적 특성이 변화될 수 있기 때문에, 열처리후의 알루미늄 합금호일의 기계적 특성이 중요하다. 100~180℃의 열처리시에는, 외부에서의 열 에너지에 의해, 전위가 활성화되어 이동이 쉬워지고, 회복 과정에서 강도가 저하한다. 열처리시의 회복 과정에서 강도가 저하되는 것을 막기 위하여, 알루미늄 합금중의 고용원소나 석출물에 의해, 전위의 이동을 억제하는 것이 유효하다. 특히, Fe, Si, Cu만이 주로 첨가되어 있는 알루미늄 합금에서는, Fe고용량에 의한 효과가 크다. 즉, 주괴의 균질화 처리 온도를 고온화시킴으로써, Fe를 보다 많이 고용시켜, 열간 압연시에는 이것들의 고용된 Fe를 될 수 있는한 석출시키지 않고, 높은 고용량을 유지함으로써, 열처리후의 강도 저하를 억제할 수 있다.
본 발명에서는, 120℃에서 24시간, 140℃에서 3시간, 160℃에서 15분간중의 임의의 하나의 열처리를 행하였을 경우에도 열처리후의 인장강도를 190MPa이상, 0.2% 내력을 160MPa이상으로 하게끔 균질화 처리 조건 및 열간 압연조건을 제어한다. 이러한 열처리후의 인장강도가 190MPa미만, 0.2% 내력이 160MPa미만일 경우에는, 건조 공정후의 프레스 가공시에 중부에서 신장이 쉽게 발생되기 때문에, 권회시에 권회 주름이 발생하고, 활물질의 박리나 슬릿시에 파탄이 쉽게 일어나기 때문에, 바람직하지 못하다.
<도전율>
도전율은 58% IACS이상으로 한다. 도전율은 용질원소의 고용상태를 나타낸다. 본 발명의 전극 집전체를 리튬이온 이차전지에 이용할 경우, 도전율이 58% IACS미만일 경우에는, 방전 레이트가 5C를 초과하는 높은 전류값으로 사용할 때에, 전지용량이 저하되기 때문에, 바람직하지 못하다. 한편, 1C란 공칭 용량값의 용량을 가지는 셀을 정전류 방전하여, 1시간동안에 방전이 종료되는 전류값이다.
<알루미늄 합금호일의 제조 방법>
본 발명에서는 상기 합금을 조성된 알루미늄 합금주괴를 이하의 공정으로 제조한다.
상기 조성을 가지는 알루미늄 합금은, 통상의 방법에 의해 용해 주조한 후, 주괴를 얻을 수 있고, 반연속 주조법이나 연속 주조법에 의해 제조된다. 주조된 알루미늄 합금주괴는, 550~620℃에서 1~20시간 균질화 처리된다.
균질화 처리 온도가 550℃미만 혹은 유지시간이 1시간미만일 경우에는, Si, Fe등의 원소가 충분히 고용하지 않고, 강도가 저하되기 때문에 바람직하지 못하다. 온도가 620℃를 초과하면 국부적으로 주괴가 용융하거나 주조시에 혼입된 지극히 적은 수소 가스가 표면에 나와서 재료표면에 팽창이 쉽게 생기기 때문에 바람직하지 못하다. 또한, 균질화 처리 시간이 20시간을 초과하면 효과가 포화되고, 생산성이 저하되거나 비용이 증대된다.
상기 균질화 처리를 실시한후, 열간 압연, 냉간 압연 및 호일압연이 실시되어, 호일 두께가 6~30㎛인 알루미늄 합금호일을 얻는다. 열간 압연은, 균질화 처리 종료후에 500℃이상의 온도에서 시작한다. 열간 압연의 시작 온도가 500℃미만일 경우에는, Si, Fe등 원소의 석출량이 많아지고, 강도를 향상시키기 위한 고용량 확보가 곤란해진다. 특히 고용된 Fe량은, 고강도를 유지하기 위하여 큰 영향을 준다. Fe는, 350~500℃의 온도영역에서, Al3Fe, Al-Fe-Si계의 금속간 화합물로서 석출이 쉬워지기 때문에, 상기 온도영역의 소요시간을 될 수 있는한 짧게 할 필요가 있다. 특히, 열간 압연에 있어서의 350~500℃의 온도영역에서의 소요시간은, 20분이내가 바람직하다.
열간 압연의 종료 온도는, 255~300℃로 한다. 열간 압연시의 종료 온도는, 라인 속도를 변화시키고, 가공 발열이나 냉각 조건을 조정 함으로써, 결정할 수 있다. 한편, 열간 압연된 알루미늄판은, 열간 압연기의 출력측에서 권취하여 코일로 형성되어 냉각된다.
열간 압연의 종료 온도를 255℃미만으로 하기 위하여서는, 가공 발열의 발생을 억제하기 위한 라인 속도를 크게 저하시킬 필요가 있고, 생산성이 저하되기 때문에 바람직하지 못하다. 열간 압연의 종료 온도가 300℃를 초과하면, 냉각중에 코일 내부의 알루미늄이 재결하기 때문에, 축적된 뒤틀림이 감소되고 강도가 저하된다. 보다 바람직한 온도영역은, 255~285℃이다.
열간 압연종료후에 냉간 압연을 실시하지만, 냉간 압연 전 혹은 도중에 있어서, 중간풀림은 실시하지 않는 것이 바람직하다. 중간풀림을 실시하면, 중간풀림전의 열간 압연 및 냉간 압연에 의해 축적된 뒤틀림이 풀려서, 강도가 저하되어 버린다. 더욱이, 균질화 처리 및 열간 압연시에 고용된 Fe가 석출되고, Fe의 고용량이 저하되기 때문에, 최종냉간 압연후의 알루미늄 합금호일의 강도 및 120~160℃에서 15분~24시간의 열처리후의 강도가 저하된다.
최종냉간 압연후의 알루미늄 합금호일의 두께는 6~30㎛로 한다. 두께가 6㎛미만일 경우, 호일압연중에 핀홀이 발생하기 쉬워지기 때문에 바람직하지 못하다. 30㎛를 초과하면, 동일한 체적을 차지하는 전극 집전체의 체적 및 중량이 증가되고, 활물질의 체적 및 중량이 감소된다. 리튬이온 이차전지일 경우, 전지용량의 저하를 초대하기 때문에 바람직하지 못하다.
이하에, 실시예·비교예에 의해 본 발명을 상세하게 설명하지만, 본 실시예는 일례에 지나치지 않고, 본 발명을 한정하는 것이 아니다.
표1에 나타내는 조성으로 형성된 알루미늄 합금을 반연속 주조법에 의해 용해 주조하고, 두께가 500mm인 주괴를 제작하였다. 다음에, 상기 주괴를 면취한 후, 표1에 나타내는 조건으로 균질화 처리를 하고, 균질화 처리후에는 열간 압연을 하고, 판두께를 3.0mm로 하였다. 실시예 1~4 및 6~14에 있어서는, 중간풀림을 실시하지 않고, 냉간 압연과 호일압연을 연속으로 하고, 호일 두께가 12㎛인 알루미늄 합금호일을 얻었다. 실시예 5는, 열간 압연후에 0.8mm까지 냉간 압연을 실시하고, 490℃에서 4시간의 중간풀림을 실시하였다. 그 후, 냉간 압연과 호일압연을 연속으로 하고, 호일 두께가 12㎛인 알루미늄 합금호일을 얻었다. 비교예 15~24에 대하여서도, 상기 실시예와 동일한 제조 공정으로 제조하였다.
Figure 112014016634223-pct00001
그리고, 각 알루미늄 합금호일로 리튬이온 이차전지의 정극재료를 제조하였다. LiCoO2를 주체로 하는 활물질에, 바인더로 되는 PVDF를 첨가하여 정극 슬러리로 하였다. 정극 슬러리를, 폭 30mm로 한 상기 알루미늄 합금호일의 양면에 도포하고, 120℃에서 24시간, 140℃에서 3시간, 160℃에서 15분간의 세개 조건에서 열처리를 하여 건조시킨 후, 롤러 프레스기에 의해 압축 가공을 실시하고, 활물질의 밀도를 증가시켰다.
제조된 각각의 알루미늄 합금호일에 대하여, 인장강도, 0.2% 내력, 도전율, 고용량, 호일압연시에 발생되는 단절의 발생 회수, 핀홀 개수, 120℃에서 24시간의 열처리후의 인장강도와 0.2% 내력, 140℃에서 3시간의 열처리후의 인장강도와 0.2% 내력, 160℃에서 15분간의 열처리후의 인장강도와 0.2% 내력을 측정하여 평가하였다. 결과를 표2에 나타낸다. 더욱이, 각 정극재료에 대하여, 활물질 도포 공정에 있어서의 단절의 발생의 유무, 활물질 박리의 유무를 평가하였다. 결과를 표3에 나타낸다.
Figure 112014016634223-pct00002
Figure 112014016634223-pct00003
<인장강도>
압연 방향으로 절단하기 시작한 알루미늄 합금호일의 인장강도를, 시마쯔 코포레이션(SHIMADZU CORPORATION)제 인스트론형 인장력시험기AG-10kNX를 사용하여 측정하였다. 측정 조건은, 시험편 사이즈를 10mm X 100mm, 척 사이의 거리 50mm, 크로스헤드(crosshead) 속도 10mm/분으로 하였다. 또한, 건조 공정을 상정하여, 120℃에서 24시간, 140℃에서 3시간, 160℃에서 15분간의 열처리를 실시한후의 알루미늄 합금호일에 대하여서도, 압연 방향으로 절단하여, 상기와 같이 인장강도를 측정하였다. 인장강도는, 220MPa이상을 합격이라 하고, 220MPa미만을 불합격으로 하였다. 120℃에서 24시간, 140℃에서 3시간, 160℃에서 15분간의 열처리를 실시한후의 인장강도는, 190MPa이상을 합격이라 하고, 190MPa미만을 불합격으로 하였다.
<0.2% 내력>
상기와 같이, 인장력시험을 실시하여, 응력/뒤틀림 곡선으로부터 0.2% 내력을 계산하였다.
0.2% 내력은, 180MPa이상을 합격이라 하고, 180MPa미만을 불합격으로 하였다. 120℃에서 24시간, 140℃에서 3시간, 160℃에서 15분간의 열처리를 실시한후의 0.2% 내력은, 160MPa이상을 합격이라 하고, 160MPa미만을 불합격으로 하였다.
<도전율>
도전율은, 4단자법으로 전기비 저항치를 측정하고, 도전율로 환산하여 계산하였다. 58% IACS이상을 합격이라 하고, 58% IACS미만을 불합격으로 하였다.
<고용량>
Fe 및 Cu의 고용량은, 알루미늄 합금호일 1.0g과 페놀50Ml를, 약 200℃로 가열하여 분해시키고, 고화방지 재료로서 벤질 알코올(benzyl alcohol) 100mL를 첨가한 후, 금속간 화합물을 여과하여 분리시키고, 여과액을 ICP발광 분석하여 측정하였다.
상기 여과에서 분리된 금속간 화합물을, 불산과 초산과 염산의 혼합 용액으로 용해시키고, 여과액을 ICP발광 분석에 의해, 금속간 화합물로서 석출된 Si량을 측정하였다. Si의 고용량은, 초기의 Si함유량에서, 석출된 Si량을 감하여 얻었다.
<핀홀 밀도>
12㎛까지 호일압연된 알루미늄 합금호일을, 폭 0.6m, 길이 6000m인 코일 형상으로 하여, 표면검사기로 핀홀의 개수를 측정하였다. 측정된 핀홀의 개수를 전체 표면적으로 나누어, 단위면적 1m2당의 핀홀의 개수를 산출하여, 핀홀의 밀도로 하였다. 핀홀의 밀도가 2.0 X 10-3개/m2미만을 합격이라 하고, 핀홀의 밀도가 2.0 X 10-3개/m2이상을 불합격으로 하였다.
<활물질 도포 공정에서의 단절의 발생의 유무>
활물질 도포 공정에 있어서 도포된 정극재료에, 단절이 발생하였는지 발생하지 않았는지를 목시로 관찰하였다. 단절이 발생하지 않은 경우를 합격이라 하고, 발생한 경우를 불합격으로 하였다.
<활물질 박리의 유무>
활물질 박리의 유무는, 목시로 관찰하였다. 박리가 발생하지 않은 경우를 합격이라 하고, 일부분이라도 박리가 발생하였을 경우를 불합격으로 하였다.
실시예 1~14에서, 활물질 도포 공정에서의 단절의 발생이나 활물질이 박리되지 않았고, 도전율도 높고, 양호한 평가 결과를 얻을 수 있었다. 단지, 중간풀림을 행한 실시예 5에서 도전율은 충분히 높지만 강도는 다른 실시예에 비하여 약간 낮았다. 또한, 실시예 9와 10을 비교하면, 열간 압연종료 온도를 285℃이하로 함으로써, 알루미늄 합금호일의 강도가 더 높아진다는 것을 알았다.
비교예 15에서는, Si량이 많기 때문에, 도전율이 충분하지 않고, 가공 경화성이 너무 높아져서 호일압연시에는 단절이 발생하고, 핀홀도 많이 발생하였다.
비교예 16에서는, Fe량이 많기 때문에, 도전율이 충분하지 않고, 핀홀도 많이 발생하였다.
비교예 17에서는, Fe량 및 Fe고용량이 적기 때문에, 강도 및 120℃에서 24시간, 140℃에서 3시간, 160℃에서 15분간의 열처리를 실시한후의 강도가 부족되고, 활물질 도포 공정에 있어서의 단절과 활물질의 박리가 발생하였다.
비교예 18에서는, Cu량 및 Cu고용량이 많기 때문에, 가공 경화성이 너무 놀아져서, 호일압연시에 단절이 발생하였다.
비교예 19에서는, Mn량이 많기 때문에, 도전율이 저하되었다.
비교예 20에서는, Cu량 및 Cu고용량이 적기 때문에, 강도 및 120℃에서 24시간을 실시한후의 강도가 부족되고, 활물질 도포 공정에 있어서의 단절과 활물질의 박리가 발생하였다.
비교예 21에서는, 열간 압연시작 온도가 낮기 때문에, Fe고용량이 낮고, 강도 및 120℃에서 24시간, 140℃에서 3시간, 160℃에서 15분간의 열처리를 실시한후의 강도가 부족되고, 활물질 도포 공정에 있어서의 단절과 활물질의 박리가 발생하였다.
비교예 22에서는, 균질화 처리 온도가 낮기 때문에, Fe고용량이 낮고, 강도 및 120℃에서 24시간, 140℃에서 3시간의 열처리를 실시한후의 강도가 부족되고, 활물질 도포 공정에 있어서의 단절과 활물질의 박리가 발생하였다.
비교예 23에서는, 균질화 처리시의 유지시간이 짧기 때문에, Fe고용량이 충분하지 않고, 강도 및 120℃에서 24시간, 140℃에서 3시간, 160℃에서 15분간의 열처리를 실시한후의 강도가 부족되고, 활물질 도포 공정에 있어서의 단절과 활물질의 박리가 발생하였다.
비교예 24에서는, 열간 압연종료 온도가 높기 때문에, 열간 압연후의 알루미늄판이 재결정되고, 강도 및 120℃에서 24시간, 140℃에서 3시간, 160℃에서 15분간의 열처리를 실시한후의 강도가 부족되고, 활물질 도포 공정에 있어서의 단절과 활물질의 박리가 발생하였다.

Claims (4)

  1. Fe: 0.1~0.5mass%, Si: 0.01~0.3 mass%, Cu: 0.02~0.2 mass%, Mn: 0.01 mass%이하를 함유하고, 잔부Al와 불가피적 불순물로 이루어지고, 인장강도가 220MPa이상, 0.2% 내력이 180MPa이상, 도전율이 58% IACS이상을 특징으로 하는 전극 집전체용 알루미늄 합금호일.
  2. 청구항 1에 있어서,
    Fe의 고용량이 100ppm이상, Si의 고용량이 80~1800ppm, Cu의 고용량이 80~1500ppm인 것을 특징으로 하는 전극 집전체용 알루미늄 합금호일.
  3. 청구항 1 또는 청구항 2에 있어서,
    120℃에서 24시간, 140℃에서 3시간, 160℃에서 15분간중의 임의의 하나의 열처리를 행하였 경우에도 열처리후의 인장강도가 190MPa이상, 0.2% 내력이 160MPa이상인 것을 특징으로 하는, 전극 집전체용 알루미늄 합금호일.
  4. 청구항 1에 기재된 전극 집전체용 알루미늄 합금호일의 제조 방법에 있어서, Fe: 0.1~0.5 mass%, Si: 0.01~0.3 mass%, Cu: 0.02~0.2 mass%, Mn: 0.01 mass%이하를 함유하고, 잔부Al와 불가피적 불순물로 형성되는 알루미늄 합금주괴를 550~620℃에서 1~20시간 보유하고, 시작 온도가 500℃이상, 종료 온도가 255~300℃에서 열간 압연하는 것을 특징으로 하는 전극 집전체용 알루미늄 합금호일의 제조 방법.
KR1020147004357A 2011-07-29 2011-07-29 전극 집전체용 알루미늄 합금호일 및 제조 방법 KR101946933B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/067477 WO2013018162A1 (ja) 2011-07-29 2011-07-29 電極集電体用アルミニウム合金箔及びその製造方法

Publications (2)

Publication Number Publication Date
KR20140051321A KR20140051321A (ko) 2014-04-30
KR101946933B1 true KR101946933B1 (ko) 2019-02-12

Family

ID=47628735

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147004357A KR101946933B1 (ko) 2011-07-29 2011-07-29 전극 집전체용 알루미늄 합금호일 및 제조 방법

Country Status (6)

Country Link
US (1) US9543588B2 (ko)
EP (1) EP2738851B1 (ko)
JP (1) JP5816285B2 (ko)
KR (1) KR101946933B1 (ko)
CN (1) CN103748714B (ko)
WO (1) WO2013018162A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220614B (zh) * 2012-03-29 2016-10-05 株式会社Uacj 电极集电体用铝合金箔及其制造方法
US9698426B2 (en) 2012-04-24 2017-07-04 Uacj Corporation Aluminum alloy foil for electrode current collector, method for manufacturing same, and lithium ion secondary battery
JP6475404B2 (ja) * 2013-04-12 2019-02-27 株式会社Uacj 電極集電体用アルミニウム合金箔及びその製造方法
EP3061839B2 (en) * 2013-10-25 2024-06-19 UACJ Corporation Aluminum alloy foil for electrode current collector, and method for producing same
WO2015149175A1 (en) * 2014-03-31 2015-10-08 Universite Du Quebec A Chicoutimi Aluminum alloy composition and method
JP2018076590A (ja) * 2017-10-31 2018-05-17 株式会社Uacj 電極集電体用アルミニウム合金箔及びその製造方法
US11495801B2 (en) * 2017-11-21 2022-11-08 Speira Gmbh High-strength battery electrode foil for the production of lithium-ion accumulators
WO2019101723A1 (de) * 2017-11-21 2019-05-31 Hydro Aluminium Rolled Products Gmbh Batterieelektrodenfolie für die herstellung von lithium-ionen-akkumulatoren
CN111044598A (zh) * 2018-11-28 2020-04-21 东莞东阳光科研发有限公司 铝箔中合金化金属元素固溶析出量及固溶度的测定方法
CN112030017B (zh) * 2020-07-22 2022-03-11 乳源瑶族自治县东阳光高纯新材料有限公司 一种高压阳极铝箔用铸锭的生产方法
JPWO2022168852A1 (ko) 2021-02-08 2022-08-11
CN114559015A (zh) * 2022-01-26 2022-05-31 广东工业大学 一种细晶、低位错密度和弱择优取向Mg-Al-Sn-RE阳极材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043333A (ja) * 2008-08-14 2010-02-25 Furukawa-Sky Aluminum Corp 正極集電体用アルミニウム箔
JP2011026656A (ja) * 2009-07-24 2011-02-10 Nippon Foil Mfg Co Ltd リチウムイオン二次電池用アルミニウム合金箔及びその製造方法
JP2011144440A (ja) * 2010-01-18 2011-07-28 Sumitomo Light Metal Ind Ltd リチウムイオン電池電極集電体用アルミニウム合金箔

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756067B2 (ja) 1986-07-11 1995-06-14 古河電気工業株式会社 アルミニウム箔地の製造方法
JPH0441645A (ja) 1990-06-07 1992-02-12 Furukawa Alum Co Ltd 箔圧延性に優れるアルミニウム箔地及びその製造方法
JP2578521B2 (ja) * 1990-06-25 1997-02-05 昭和アルミニウム株式会社 電解コンデンサ電極用アルミニウム箔
JP3444769B2 (ja) 1997-11-25 2003-09-08 東洋アルミニウム株式会社 集電体用アルミニウム箔とその製造方法、集電体、二次電池および電気二重層コンデンサ
JPH11219709A (ja) 1998-02-02 1999-08-10 Shin Kobe Electric Mach Co Ltd 非水電解質電池用正極板
JP2002129269A (ja) * 2000-10-31 2002-05-09 Nippon Light Metal Co Ltd アルミニウム合金板およびその製造方法
JP3933573B2 (ja) 2002-12-26 2007-06-20 東洋アルミニウム株式会社 リチウムイオン電池の集電体用アルミニウム箔、リチウムイオン電池の集電体およびリチウムイオン電池
JP4839987B2 (ja) 2006-07-04 2011-12-21 東レ株式会社 水なし平版印刷版用処理液および水なし平版印刷版の処理方法
JP4021921B1 (ja) * 2006-10-11 2007-12-12 三菱アルミニウム株式会社 電解コンデンサ電極用アルミニウム箔及びその製造方法
JP5083799B2 (ja) 2006-12-15 2012-11-28 三菱アルミニウム株式会社 耐折り曲げ性に優れたリチウムイオン電池電極材用アルミニウム合金箔およびその製造方法
JP5532424B2 (ja) * 2009-09-28 2014-06-25 株式会社神戸製鋼所 電池集電体用アルミニウム合金硬質箔
KR101902763B1 (ko) 2010-12-20 2018-10-01 가부시키가이샤 유에이씨제이 전극 집전체용 알루미늄 합금호일 및 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043333A (ja) * 2008-08-14 2010-02-25 Furukawa-Sky Aluminum Corp 正極集電体用アルミニウム箔
JP2011026656A (ja) * 2009-07-24 2011-02-10 Nippon Foil Mfg Co Ltd リチウムイオン二次電池用アルミニウム合金箔及びその製造方法
JP2011144440A (ja) * 2010-01-18 2011-07-28 Sumitomo Light Metal Ind Ltd リチウムイオン電池電極集電体用アルミニウム合金箔

Also Published As

Publication number Publication date
WO2013018162A1 (ja) 2013-02-07
CN103748714B (zh) 2016-08-24
JP5816285B2 (ja) 2015-11-18
EP2738851B1 (en) 2017-06-28
JPWO2013018162A1 (ja) 2015-02-23
KR20140051321A (ko) 2014-04-30
US20140178709A1 (en) 2014-06-26
EP2738851A1 (en) 2014-06-04
US9543588B2 (en) 2017-01-10
EP2738851A4 (en) 2015-04-01
CN103748714A (zh) 2014-04-23

Similar Documents

Publication Publication Date Title
KR101946933B1 (ko) 전극 집전체용 알루미늄 합금호일 및 제조 방법
KR101902763B1 (ko) 전극 집전체용 알루미늄 합금호일 및 제조 방법
KR101912767B1 (ko) 전극 집전체용 알루미늄 합금호일 및 제조 방법
JP6174012B2 (ja) 電極集電体用アルミニウム合金箔、その製造方法及びリチウムイオン二次電池
JP5798128B2 (ja) 電極集電体用アルミニウム合金箔及びその製造方法
KR20160075604A (ko) 전극 집전체용 알루미늄 합금박 및 그 제조방법
JP6220773B2 (ja) 電極集電体用アルミニウム合金箔の製造方法
KR101894719B1 (ko) 전극 집전체용 알루미늄 합금호일 및 그 제조 방법
WO2013176038A1 (ja) 電極集電体用アルミニウム合金箔、その製造方法及び電極材
KR20140138912A (ko) 전극 집전체용 알루미늄 합금호일 및 그 제조 방법
KR101944243B1 (ko) 전극 집전체용 알루미늄 합금호일 및 그 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant