KR101908746B1 - 조명 장치, 표시 장치 및 3차원 표시 장치 - Google Patents

조명 장치, 표시 장치 및 3차원 표시 장치 Download PDF

Info

Publication number
KR101908746B1
KR101908746B1 KR1020137014635A KR20137014635A KR101908746B1 KR 101908746 B1 KR101908746 B1 KR 101908746B1 KR 1020137014635 A KR1020137014635 A KR 1020137014635A KR 20137014635 A KR20137014635 A KR 20137014635A KR 101908746 B1 KR101908746 B1 KR 101908746B1
Authority
KR
South Korea
Prior art keywords
light
light source
electrode
partial
guide plate
Prior art date
Application number
KR1020137014635A
Other languages
English (en)
Other versions
KR20130128409A (ko
Inventor
겐타로 오쿠야마
마코토 시노다
신페이 나가타니
유지 다카하시
도모아키 스즈키
쇼고 신카이
아키라 에비수이
다이조 니시무라
Original Assignee
소니 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 소니 주식회사 filed Critical 소니 주식회사
Publication of KR20130128409A publication Critical patent/KR20130128409A/ko
Application granted granted Critical
Publication of KR101908746B1 publication Critical patent/KR101908746B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0083Details of electrical connections of light sources to drivers, circuit boards, or the like
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13342Holographic polymer dispersed liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13345Network or three-dimensional gels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13347Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals working in reverse mode, i.e. clear in the off-state and scattering in the on-state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133601Illuminating devices for spatial active dimming
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/40Materials having a particular birefringence, retardation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/62Switchable arrangements whereby the element being usually not switchable
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/024Scrolling of light from the illumination source over the display in combination with the scanning of the display screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects

Abstract

스캔 방식에 있어서, 고휘도, 저소비 전력 및 회로 기판의 고신뢰성 모두를 겸비한 조명 장치, 표시 장치 및 3차원 표시 장치를 제공한다. 도광판(10)에 접착된 광 변조 소자(30)에는 도광판(10)을 전파하는 광에 대하여 산란성 또는 투명성을 나타내는 광 변조층(34)이 설치되어 있다. 광 변조층(34)은, 광 입사면(10A)과 평행한 방향으로 연장되는 복수의 부분 전극(32A) 등을 포함하여 이루어지는 하측 전극(32)과, 시트 형상의 상측 전극(36) 사이에 개재되어 있다. 구동 회로(50)는 복수의 부분 전극(32A)을 순차 구동함으로써 광 변조층(34) 중 산란성을 나타내는 부분을 광 입사면(10A)과 직교하는 방향으로 주사하도록 되어 있다.

Description

조명 장치, 표시 장치 및 3차원 표시 장치{LIGHTING UNIT, DISPLAY, AND THREE-DIMENSIONAL DISPLAY}
본 발명은 광에 대하여 산란성 또는 투명성을 나타내는 광 변조 소자를 구비한 조명 장치에 관한 것이다. 또한, 본 발명은 상기한 조명 장치를 구비한 표시 장치 및 3차원 표시 장치에 관한 것이다.
최근, 액정 텔레비전의 동화상 응답성의 개선을 목적으로 스캔 방식의 백라이트가 사용되고 있다. 또한, 최근에는 셔터 안경 방식을 사용해서 3D 표시를 행할 경우, 크로스 토크의 억제를 목적으로 이 방식이 주목받고 있다. 또한, 특히 대형 텔레비전에 있어서는, 박형화의 요구로부터 에지 라이트와 도광판의 조합이 주류가 되고 있으며, 도광판 방식에 있어서 스캔 구동할 수 있는 백라이트가 요망되고 있다(특허문헌 1, 2 참조).
일본 특허 공개 평1-082019호 공보 미국 특허 출원 공개 제2005/00075616호 명세서 일본 특허 공개 제2001-92370호 공보 일본 특허 공개 제2009-283383호 공보
그런데, 이러한 스캔 방식의 백라이트에서는 표시 휘도가 어두워진다는 문제가 있다. 예를 들어, 화면을 8분할한 경우, 분할한 1개소에서의 표시에 8배의 휘도를 얻을 수 있을 만큼의 전력을 광원에 투입할 수 있으면, 표시 휘도는 원리적으로는 스캔하지 않는 경우와 동일한 휘도가 된다. 그러나, 실제로는 2배 정도의 전력 투입밖에 할 수 없으므로, 표시 휘도가 낮아져 버린다. 또한, 이러한 매우 짧은 기간에 광원에 큰 전력을 투입할 경우, 광의 이용 효율이나 저소비 전력이라는 관점에서는 바람직하지 않다. 또한, 돌입 전력(구체적으로는 광원에 전력을 투입했을 때 일시적으로 흐르는 대전력)을 고려하여 회로 기판의 신뢰성을 확보할 필요가 있어 저비용화에 적합하지 않다.
또한, 대형 텔레비전에 있어서도, 백라이트의 박형화의 요구로부터 중소형 액정 디스플레이와 마찬가지로, 에지 라이트 도광판의 채용이 진행되고 있다. 예를 들어, 특허문헌 3에는, 에지 라이트 도광판 방식에 있어서, 도광판을 복수의 블록으로 구성하고, 블록간에 반사판을 설치함으로써 띠 형상 조명광의 스캔을 실현하는 것이 개시되어 있다. 또한, 예를 들어, 특허문헌 4에는, 도광판을 분할하는 대신에 도광판의 주면에 프리즘 형상 구조체를 형성함으로써 띠 형상 조명광의 스캔을 실현하는 것이 개시되어 있다. 그러나, 이들 문헌에 기재된 방법에서도 표시 휘도, 소비 전력 및 회로 기판의 신뢰성 모두에 있어서 문제가 있다.
본 발명은 이러한 문제점을 감안하여 이루어진 것으로, 그 제1 목적은, 스캔 방식에 있어서 고휘도, 저소비 전력 및 회로 기판의 고신뢰성 모두를 겸비한 조명 장치를 제공하는 데 있다. 또한, 제2 목적은, 그러한 조명 장치를 구비한 표시 장치 및 3차원 표시 장치를 제공하는 데 있다.
본 발명의 조명 장치는 도광판과, 도광판의 측면에 배치된 광원과, 도광판의 표면 또는 내부에 배치됨과 함께 도광판과 접착된 광 변조 소자를 구비한 것이다. 광 변조 소자는, 이격되어 서로 대향 배치된 한 쌍의 투명 기판과, 한 쌍의 투명 기판 각각의 표면에 설치된 한 쌍의 전극과, 한 쌍의 투명 기판의 간극에 설치된 광 변조층을 갖고 있다. 여기서, 한 쌍의 전극 중 적어도 한쪽 전극이, 도광판의 측면 중 광원으로부터의 광이 입사되는 광 입사면과 직교하는 방향으로 배열된 복수의 부분 전극을 갖고 있다. 광 변조층은, 전극에 의해 발생하는 전기장의 크기에 따라서 광원으로부터의 광에 대하여 전체적 또는 부분적으로 산란성 또는 투명성을 나타내도록 되어 있다. 구동 회로는 복수의 부분 전극을 소정의 단위마다 순차 구동함으로써, 광 변조층 중 산란성을 나타내는 부분을 광 입사면과 직교하는 방향으로 주사하도록 되어 있다.
본 발명의 표시 장치는, 조명광을 출력하는 조명 장치와, 조명광을 변조하여 영상을 출력하는 표시 패널과, 조명 장치 및 표시 패널을 구동하는 구동 회로를 구비한 것이다. 이 표시 장치에 포함되는 조명 장치는 한 단락 앞에 기재된 조명 장치와 동일한 구성 요소를 구비하고 있다.
본 발명의 3차원 표시 장치는, 영상 및 제어 신호를 출력하는 표시 장치와, 영상의 투과 및 차단을 제어 신호에 기초하여 행하는 우안용 셔터 및 좌안용 셔터를 갖는 셔터 안경을 구비한 것이다. 이 3차원 표시 장치에 포함되는 표시 장치는, 조명광을 출력하는 조명 장치와, 조명광을 변조하여 영상을 출력하는 표시 패널과, 제어 신호를 출력하는 출력 회로와, 조명 장치, 표시 패널 및 출력 회로를 구동하는 구동 회로를 갖고 있다. 여기서, 조명 장치는 두 단락 앞에 기재된 조명 장치와 동일한 구성 요소를 구비하고 있다.
본 발명의 조명 장치, 표시 장치 및 3차원 표시 장치에서는, 광 입사면과 직교하는 방향으로 배열된 복수의 부분 전극이 소정의 단위마다 순차 구동된다. 이에 의해, 광원으로부터 사출된 광이 도광판 내를 전파해 가는 과정에서 광 변조층 중 산란성을 나타내는 부분(이하 「산란 부분」이라고 칭함)이 광 입사면과 직교하는 방향으로 주사된다. 그 결과, 산란 부분에서 산란되고, 조명 장치의 상면으로부터 외부에 사출되는 광이 광 입사면과 직교하는 방향으로 주사된다. 이 때, 광원으로부터 사출된 광은, 광 변조층 중 투명성을 나타내는 부분(이하 「투명 부분」이라고 칭함)에서는 거의 산란되지 않으므로, 투명 부분으로부터의 누설 광은 거의 없다. 따라서, 광원으로부터 사출된 광은 투명 부분으로부터 산란 부분에 도광하므로, 광원을 스캔 구동하는 종래 방식보다도 고휘도를 얻을 수 있다. 또한, 광원은 스캔 구동되지 않으므로, 조명 장치에의 투입 전력을 증가시키지 않아도 고휘도를 얻을 수 있다. 또한, 본 발명에서는, 상술한 바와 같이, 광원이 스캔 구동되어 있지 않은 점에서, 매우 짧은 기간에 광원에 큰 전력을 투입하여 스캔 구동할 경우에 발생하는 돌입 전력을 고려할 필요가 거의 없어 회로 기판의 신뢰성을 손상시키는 경우가 없다.
본 발명의 조명 장치, 표시 장치 및 3차원 표시 장치에 의하면, 광원을 스캔 구동하는 대신에 광 변조층 내의 산란 부분을 주사함으로써, 조명 장치의 상면으로부터 외부에 사출되는 광을 주사하도록 했으므로, 스캔 방식에 있어서, 고휘도, 저소비 전력 및 회로 기판의 고신뢰성 모두를 동시에 실현할 수 있다.
도 1은 본 발명의 제1 실시 형태에 관한 백라이트의 구성의 일례를 도시하는 단면도이다.
도 2는 도 1의 광원의 구성의 일례를 도시하는 사시도이다.
도 3은 도 1의 광원의 구성의 다른 예를 도시하는 사시도이다.
도 4는 도 1의 전극의 구성의 일례를 도시하는 사시도이다.
도 5는 도 1의 백라이트의 구성의 다른 예를 도시하는 단면도이다.
도 6은 도 1의 광 변조 소자에 전압이 인가되고 있지 않을 때의 구성에 대하여 설명하기 위한 모식도이다.
도 7은 도 1의 광 변조 소자에 전압이 인가되고 있을 때의 구성에 대하여 설명하기 위한 모식도이다.
도 8은 도 1의 백라이트의 작용에 대하여 설명하기 위한 모식도이다.
도 9는 광 변조 소자 내의 산란 영역의 스캔에 대하여 설명하기 위한 모식도이다.
도 10은 광 변조 소자 내의 산란 영역의 스캔에 대하여 설명하기 위한 모식도이다.
도 11은 광 변조 소자 내의 산란 영역의 스캔에 대하여 설명하기 위한 모식도이다.
도 12는 광 변조 소자 내의 산란 영역의 스캔에 대하여 설명하기 위한 모식도이다.
도 13은 도 1의 백라이트의 제조 공정에 대하여 설명하기 위한 단면도이다.
도 14는 도 13에 계속되는 제조 공정에 대하여 설명하기 위한 단면도이다.
도 15는 도 14에 계속되는 제조 공정에 대하여 설명하기 위한 단면도이다.
도 16은 본 발명의 제2 실시 형태에 관한 백라이트의 구성의 일례를 도시하는 단면도이다.
도 17은 도 16의 광 변조 소자에 전압이 인가되고 있지 않을 때의 구성에 대하여 설명하기 위한 모식도이다.
도 18은 도 16의 광 변조 소자에 전압이 인가되고 있을 때의 구성에 대하여 설명하기 위한 모식도이다.
도 19는 부분 전극의 스캔 타이밍과 광원의 점멸 타이밍의 관계의 일례에 대하여 설명하기 위한 모식도이다.
도 20은 부분 전극의 스캔 타이밍과 광원의 점멸 타이밍의 관계의 다른 예에 대하여 설명하기 위한 모식도이다.
도 21은 도 1의 전극의 구성의 제1 변형예를 도시하는 평면도이다.
도 22는 도 1의 전극의 구성의 제2 변형예를 도시하는 평면도이다.
도 23은 도 22의 각 세선 전극에 인가하는 전압의 일례를 도시하는 평면도이다.
도 24는 도 1의 전극의 구성의 제3 변형예를 도시하는 평면도이다.
도 25는 도 1, 도 16의 백라이트의 구성의 제1 변형예를 도시하는 단면도이다.
도 26은 도 1, 도 16의 백라이트의 구성의 제2 변형예를 도시하는 단면도이다.
도 27은 도 1, 도 16의 백라이트의 구성의 제3 변형예를 도시하는 단면도이다.
도 28은 하나의 적용예에 관한 표시 장치의 일례를 도시하는 단면도이다.
도 29는 도 28의 표시 장치에 있어서의 표시 패널 화소의 스캔 타이밍과 부분 전극의 스캔 타이밍의 관계의 일례에 대하여 설명하기 위한 모식도이다.
도 30은 다른 적용예에 관한 3차원 표시 장치의 일례를 도시하는 사시도이다.
이하, 발명을 실시하기 위한 구체적인 내용에 대해서 도면을 참조하여 상세하게 설명한다. 또한, 설명은 이하의 순서로 행한다.
1. 제1 실시 형태(도 1 내지 도 15)
백라이트 내에 수평 배향 반전 PDLC가 설치되어 있는 예
2. 제2 실시 형태(도 16 내지 도 18)
백라이트 내에 수직 배향 반전 PDLC가 설치되어 있는 예
3. 변형예(도 19 내지 도 27)
4. 적용예(도 28 내지 도 30)
백라이트가 표시 장치의 광원으로서 사용되고 있는 예
<1. 제1 실시 형태>
도 1의 (A)는 본 발명의 제1 실시 형태에 관한 백라이트(1)의 개략 구성의 일례를 도시하는 단면도이다. 백라이트(1)는 본 발명의 조명 장치의 하나의 구체예에 상당하는 것이다. 도 1의 (B)는 도 1의 (A)의 백라이트(1) 내의 광 변조 소자의 개략 구성의 일례를 도시하는 단면도이다. 또한, 도 1의 (A), (B)는 모식적으로 도시한 것이며, 실제의 치수나 형상과 동일하다고만은 할 수 없다. 이 백라이트(1)는 상면으로부터 조명광을 출력하는 것이며, 예를 들어 액정 표시 패널 등을 배후로부터 조명하는 용도 등으로 사용되는 것이다. 백라이트(1)는, 예를 들어 도광판(10)과, 도광판(10)의 측면에 배치된 광원(20)과, 도광판(10)의 배후에 배치된 광 변조 소자(30) 및 반사판(40)과, 광원(20) 및 광 변조 소자(30)를 구동하는 구동 회로(50)를 구비하고 있다.
도광판(10)은 도광판(10)의 측면에 배치한 광원(20)으로부터의 광을 도광판(10)의 상면으로 유도하는 것이다. 이 도광판(10)은 도광판(10)의 상면에 배치되는 표시 패널(도시하지 않음)에 대응한 형상, 예를 들어 상면, 하면 및 측면으로 둘러싸인 직육면체 형상으로 되어 있다. 또한, 이하에서는, 도광판(10)의 측면 중 광원(20)으로부터의 광이 입사되는 측면을 광 입사면(10A)이라고 칭하기로 한다. 도광판(10)은, 예를 들어 상면 및 하면 중 적어도 한쪽 면에 소정의 패턴화된 형상을 갖고 있으며, 광 입사면(10A)으로부터 입사된 광을 산란하여 균일화하는 기능을 갖고 있다. 또한, 백라이트(1)에 인가하는 전압을 변조함으로써 휘도의 균일화를 행할 경우에는, 패턴화되지 않은 평탄한 도광판을 도광판(10)으로서 사용하는 것도 가능하다. 이 도광판(10)은, 예를 들어 표시 패널과 백라이트(1)의 사이에 배치되는 광학 시트(예를 들어, 확산판, 확산 시트, 렌즈 필름, 편광 분리 시트 등)를 지지하는 지지체로서도 기능한다. 도광판(10)은, 예를 들어 폴리카르보네이트 수지(PC)나 아크릴 수지(폴리메틸메타크릴레이트(PMMA) 등의 투명 열가소성 수지를 주로 포함하여 구성되어 있다.
광원(20)은, 예를 들어 도 2의 (A)에 도시한 바와 같이, 선형 광원(21)과 반사 미러(22)에 의해 구성되어 있다. 선형 광원(21)은, 예를 들어 열 음극관(HCFL; Hot Cathode Fluorescent Lamp) 또는, 냉음극관(CCFL; Cold Cathode Fluorescent Lamp)을 포함하여 이루어진다. 반사 미러(22)는 선형 광원(21)으로부터 발해진 광 중 광 입사면(10A)에 직접 입사하지 않는 방향을 향하는 광을 광 입사면(10A)측에 반사하는 것이다. 광원(20)은, 예를 들어 도 2의 (B) 또는 도 2의 (C)에 도시한 바와 같이, 복수의 점 형상 광원(23)을 일렬로 배치하여 구성된 것이어도 된다. 각 점 형상 광원(23)은 광 입사면(10A)을 향하여 광을 사출하도록 되어 있고, 예를 들어 광 입사면(10A)과의 대향면에 발광 스폿을 갖는 발광 소자 등을 포함하여 이루어진다. 그러한 발광 소자로서는, 예를 들어 LED 또는, 레이저 다이오드(LD; Laser Diode) 등을 들 수 있다.
복수의 점 형상 광원(23)은, 예를 들어 도 2의 (B) 또는 도 2의 (C)에 도시한 바와 같이, 2개 이상의 점 형상 광원(23)마다 공통의 기판(24) 상에 설치되어 있어도 된다. 이 경우, 1개의 기판(24)과, 그 기판(24) 상에 설치된 복수의 점 형상 광원(23)에 의해 광원 블록(25)이 구성되어 있다. 기판(24)은, 예를 들어 점 형상 광원(23)과 구동 회로(50)를 전기적으로 접속하는 배선이 형성된 회로 기판이며, 각 점 형상 광원(23)은 이 회로 기판 상에 실장되어 있다. 공통된 기판(24) 상에 설치된 각 점 형상 광원(23)(광원 블록(25) 내의 각 점 형상 광원(23))은 구동 회로(50)에 의해 일괄적으로(비독립적으로) 구동되도록 되어 있고, 예를 들어, 도시하지는 않지만, 서로 병렬로 또는 서로 직렬로 접속되어 있다. 또한, 서로 상이한 기판(24) 상에 설치된 점 형상 광원(23)(각 광원 블록(25) 내의 점 형상 광원(23))은, 예를 들어 구동 회로(50)에 의해 일괄적으로(비독립적으로) 구동되도록 되어 있고, 예를 들어 도 2의 (B)에 도시한 바와 같이, 서로 병렬로 접속되어 있거나, 예를 들어, 도시하지는 않지만, 서로 직렬로 접속되어 있거나 하고 있다. 서로 상이한 기판(24) 상에 설치된 점 형상 광원(23)(각 광원 블록(25) 내의 점 형상 광원(23))은, 예를 들어 구동 회로(50)에 의해 서로 독립적으로 구동되도록 되어 있어도 된다. 이 경우, 서로 상이한 기판(24) 상에 설치된 점 형상 광원(23)(각 광원 블록(25) 내의 점 형상 광원(23))은, 예를 들어 도 2의 (C)에 도시한 바와 같이, 서로 상이한 전류 경로에 접속되어 있다.
광원(20)은, 도 2의 (A) 내지 도 2의 (C)에 도시한 바와 같이, 도광판(10)의1개의 측면에만 설치되어 있어도 되고, 도 3에 도시한 바와 같이, 도광판(10)의 2개의 측면(예를 들어, 서로 대향하는 2개의 측면)에 설치되어 있어도 된다.
반사판(40)은 도광판(10)의 배후로부터 광 변조 소자(30)를 통하여 누출되어 온 광을 도광판(10)측에 복귀시키는 것이며, 예를 들어 반사, 확산, 산란 등의 기능을 갖고 있다. 이에 의해, 광원(20)으로부터의 사출광을 효율적으로 이용할 수 있고, 또한, 정면 휘도의 향상에도 도움이 되고 있다. 이 반사판(40)은, 예를 들어 발포 PET(폴리에틸렌테레프탈레이트)나 은 증착 필름, 다층막 반사 필름, 백색 PET 등을 포함하여 이루어진다.
광 변조 소자(30)는, 본 실시 형태에 있어서, 도광판(10)의 배후(하면)에 공기층을 통하지 않고 밀착되어 있으며, 예를 들어 접착제(도시하지 않음)를 통하여 도광판(10)의 배후에 접착되어 있다. 이 광 변조 소자(30)는, 예를 들어 도 1의 (B)에 도시한 바와 같이, 투명 기판(31), 하측 전극(32), 배향막(33), 광 변조층(34), 배향막(35), 상측 전극(36) 및 투명 기판(37)을 백라이트(1)의 이면측(예를 들어, 반사판(40)측)부터 순서대로 배치한 것이다.
투명 기판(31, 37)은 광 변조층(34)을 지지하는 것이며, 일반적으로 가시광에 대하여 투명한 기판, 예를 들어 유리판이나 플라스틱 필름에 의해 구성되어 있다. 하측 전극(32)은 투명 기판(31) 중 광 변조층(34)측의 표면 상에 설치된 것이며, 도 4의 (A), (B)에 도시한 바와 같이, 띠 형상의 복수의 부분 전극(32A)을 서로 병렬 배치한 것이다. 각 부분 전극(32A)은, 도 2의 (A) 내지 (C), 도 3 및 도 4의 (A), (B)의 XYZ 좌표축의 방향으로부터 알 수 있는 바와 같이, 도광판(10)의 광 입사면(10A)과 평행한 방향으로 연장되어 있다. 한편, 상측 전극(36)은 투명 기판(37) 중 광 변조층(34)측의 표면 상에 설치된 것이며, 예를 들어 도 4의 (A)에 도시한 바와 같이, 면 내 전체에 걸쳐서 형성된 단일의 시트 형상의 전극이다.
또한, 상측 전극(36)은, 예를 들어 도 4의 (B)에 도시한 바와 같이, 부분 전극(32A)의 연장 방향과 교차(또는 직교)하는 방향으로 연장하는 띠 형상의 복수의 부분 전극(36A)을 서로 병렬 배치한 것이어도 된다. 또한, 상측 전극(36)은, 예를 들어 도시하지는 않지만, 부분 전극(32A)의 연장 방향과 평행한 방향으로 연장되는 띠 형상의 복수의 부분 전극(36A)을 서로 병렬 배치함과 함께, 부분 전극(32A)과 대향하는 위치에 배치한 것이어도 된다. 또한, 상측 전극(36)이 복수의 부분 전극(36A)으로 분할되어 있는 경우에, 각 부분 전극(36A)이 서로 전기적으로 접속되어 있어도 되고, 서로 전기적으로 분리되어 있어도 된다.
하측 전극(32) 및 상측 전극(36)은, 예를 들어 투명한 도전성 재료, 예를 들어 산화인듐 주석(ITO; IndiumTin Oxide) 등을 포함하여 이루어진다. 투명한 도전성 재료는 가능한 한 가시광의 흡수가 작은 재료인 것이 바람직하다. 단, 하측 전극(32)은 투명한 재료가 아니어도 되며, 예를 들어 금속에 의해 구성되어 있어도 된다. 또한, 하측 전극(32)이 금속에 의해 구성되어 있는 경우에는, 하측 전극(32)은 광을 반사하는 기능도 겸비하고 있게 된다. 따라서, 이 경우에는, 예를 들어 도 5에 도시한 바와 같이, 반사판(40)을 생략하는 것도 가능하다.
광 변조 소자(30)를 광 변조 소자(30)의 법선 방향에서 보았을 때, 광 변조 소자(30) 중 부분 전극(32A)과 대향하는 개소가 광 변조 셀(30-1)을 구성하고 있다. 예를 들어, 도 1의 (B)에 파선으로 예시한 바와 같은 개소가 광 변조 셀(30-1)이 되어 있다. 복수의 광 변조 셀(30-1)은, 복수의 부분 전극(32A)과 마찬가지로 광 입사면(10A)과 평행한 방향으로 연장되어 있고, 또한 광 입사면(10A)과 직교하는 방향으로 배열되어 있다. 각 광 변조 셀(30-1)은 부분 전극(32A) 및 상측 전극(36)에 소정의 전압을 인가함으로써 별개 독립적으로 구동하는 것이 가능한 부위이며, 부분 전극(32A) 및 상측 전극(36)에 인가되는 전압값의 크기에 따라서 광원(20)으로부터의 광에 대하여 투명성을 나타내거나, 산란성을 나타내거나 한다. 또한, 투명성, 산란성에 대해서는 광 변조층(34)을 설명할 때 상세하게 설명한다.
배향막(33, 35)은, 예를 들어 광 변조층(34)에 사용되는 액정이나 단량체를 배향시키는 것이다. 배향막의 종류로서는, 예를 들어 수직 배향막 및 수평 배향막이 있지만, 본 실시 형태에서는 배향막(33, 35)에는 수평 배향막이 사용된다. 수평 배향막으로서는, 예를 들어 폴리이미드, 폴리아미드이미드, 폴리비닐알코올 등을 러빙 처리함으로써 형성된 배향막, 전사나 에칭 등에 의해 홈 형상이 부여된 배향막을 들 수 있다. 또한, 수평 배향막으로서는, 예를 들어 산화규소 등의 무기 재료를 사방 증착함으로써 형성된 배향막, 이온 빔 조사에 의해 형성된 다이아몬드 라이크 카본 배향막, 전극 패턴 슬릿이 형성된 배향막을 들 수 있다. 투명 기판(31, 37)으로서 플라스틱 필름을 사용할 경우에는, 제조 공정에 있어서, 투명 기판(31, 37)의 표면에 배향막(33, 35)을 도포한 후의 소성 온도가 가능한 한 낮은 것이 바람직한 점에서, 배향막(33, 35)으로서 100℃ 이하의 온도에서 형성 가능한 폴리아미드이미드를 사용하는 것이 바람직하다.
또한, 수평 배향막으로서 해당 수평 배향막에 접하는 액정 분자에 프리틸트를 부여하는 기능을 갖는 것이 사용되고 있는 것이 바람직하다. 수평 배향막에 프리틸트 기능을 발현시키는 방법으로서는, 예를 들어 러빙 등을 들 수 있다. 프리틸트란, 예를 들어 배향막에 근접하는 액정 분자의 장축이 「배향막의 표면과 평행한 면」 또는 「배향막의 법선」과 약간의 각도로 교차하는 것을 의미하고 있다. 상기한 수평 배향막은, 예를 들어 당해 수평 배향막에 근접하는 액정 분자의 장축을 광 입사면(10A)과 평행한 면 내이며, 또한 당해 수평 배향막의 표면과 약간의 각도로 교차시키는 기능을 갖고 있는 것이 바람직하다. 그러한 기능을 갖는 수평 배향막은, 예를 들어 러빙 방향을 광 입사면(10A)과 평행하게 함으로써 실현할 수 있다.
또한, 수직, 수평 중 어느 배향막에 있어서도 액정과 단량체를 배향시키는 기능이 있으면 충분하고, 통상의 액정 디스플레이에 요구되는 전압의 반복 인가에 의한 신뢰성 등은 필요없다. 디바이스 제작 후의 전압 인가에 의한 신뢰성은 단량체를 중합한 것과 액정의 계면에서 결정되기 때문이다. 또한, 배향막(33, 35)을 사용하지 않아도, 예를 들어 하측 전극(32)과 상측 전극(36) 사이에 전기장이나 자장을 인가함으로써도, 광 변조층(34)에 사용되는 액정이나 단량체를 배향시키는 것이 가능하다. 즉, 하측 전극(32)과 상측 전극(36) 사이에 전기장이나 자장을 인가하면서 자외선을 조사하여 전압 인가 상태에서의 액정이나 단량체의 배향 상태를 고정시킬 수 있다. 배향막(33, 35)의 형성에 전압을 사용할 경우에는, 배향용과 구동용으로 따로 따로인 전극을 형성하거나, 액정 재료에 주파수에 의해 유전율 이방성의 부호가 반전되는 2주파 액정 등을 사용할 수 있다. 또한, 배향막(33, 35)의 형성에 자장을 사용할 경우, 배향막(33, 35)으로서 자화율 이방성이 큰 재료를 사용하는 것이 바람직하고, 예를 들어 벤젠환이 많은 재료를 사용하는 것이 바람직하다.
광 변조층(34)은 전기장의 크기에 따라서 광원(20)으로부터의 광에 대하여 전체적 또는 부분적으로 산란성 또는 투명성을 나타내는 것이다. 구체적으로는, 광 변조층(34)은 부분 전극(32A) 및 상측 전극(36)에 전압이 인가되고 있지 않을 때 광원(20)으로부터의 광에 대하여 투명성을 나타내고, 부분 전극(32A) 및 상측 전극(36)에 전압이 인가되고 있을 때 광원(20)으로부터의 광에 대하여 산란성을 나타내는 것이다. 광 변조층(34)은, 예를 들어 도 1의 (B)에 도시한 바와 같이, 벌크(34A)와, 벌크(34A) 내에 분산된 미립자 형상의 복수의 미립자(34B)를 포함한 복합층이 되어 있다. 벌크(34A) 및 미립자(34B)는 광학 이방성을 갖고 있다.
도 6은, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때의 벌크(34A) 및 미립자(34B) 내의 배향 상태의 일례를 모식적으로 도시한 것이다. 도 6 중의 타원체(134A)는 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때의 벌크(34A)의 굴절률 이방성을 나타내는 굴절률 타원체의 일례를 도시한 것이다. 도 6 중의 타원체(134B)는 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때의 미립자(34B)의 굴절률 이방성을 나타내는 굴절률 타원체의 일례를 도시한 것이다. 이 굴절률 타원체는 여러 방향으로부터 입사된 직선 편광의 굴절률을 텐서 타원체로 나타낸 것이며, 광이 입사되는 방향으로부터의 타원체의 단면을 봄으로써 기하적으로 굴절률을 알 수 있는 것이다.
도 7은, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있을 때의 벌크(34A) 및 미립자(34B) 내의 배향 상태의 일례를 모식적으로 도시한 것이다. 도 7 중의 타원체(134A)는, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있을 때의 벌크(34A)의 굴절률 이방성을 나타내는 굴절률 타원체의 일례를 도시한 것이다. 도 7 중의 타원체(134B)는, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있을 때의 미립자(34B)의 굴절률 이방성을 나타내는 굴절률 타원체의 일례를 도시한 것이다.
벌크(34A) 및 미립자(34B)는, 예를 들어 도 6에 도시한 바와 같이, 하측 전극(32)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때, 벌크(34A)의 광축(AX1)(구체적으로는 타원체(134A)의 장축) 및 미립자(34B)의 광축(AX2)(구체적으로는 타원체(134B)의 장축)의 방향이 서로 일치하는(평행해지는) 구성으로 되어 있다. 또한, 광축(AX1, AX2)이란, 편광 방향에 상관없이 굴절률이 하나의 값이 되는 광선의 진행 방향과 평행한 선을 가리키고 있다. 또한, 하측 전극(32)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때, 광축(AX1) 및 광축(AX2)의 방향은 항상 서로 일치할 필요는 없고, 광축(AX1)의 방향과 광축(AX2)의 방향이, 예를 들어 제조 오차 등에 따라 다소 어긋나 있어도 된다.
또한, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때, 광축(AX2)은 도광판(10)의 광 입사면(10A)과 평행(또는 거의 평행)해짐과 함께, 투명 기판(31)의 표면과 평행(또는 거의 평행)하게 되어 있다. 즉, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때, 광축(AX2)은 부분 전극(32A) 또는 상측 전극(36)을 포함하는 면과 평행(또는 거의 평행)하게 되어 있고, 또한 부분 전극(32A)의 연장 방향과 평행(또는 거의 평행)하게 되어 있다.
또한, 수평 배향막이 상술한 바와 같은 프리틸트 기능을 갖고 있는 경우에는, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때, 광축(AX2)은 도광판(10)의 광 입사면(10A)과 평행(또는 거의 평행)해짐과 함께, 투명 기판(31)의 표면과 소정의 프리틸트각으로 교차하고 있다.
한편, 벌크(34A)는 부분 전극(32A)과 상측 전극(36) 사이에의 전압 인가의 유무와 상관없이 광축(AX1)이 일정해지는 구성으로 되어 있다. 구체적으로는, 광축(AX1)은 도광판(10)의 광 입사면(10A)과 평행(또는 거의 평행)해짐과 함께, 투명 기판(31)의 표면과 평행(또는 거의 평행)하게 되어 있다. 즉, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때, 광축(AX1)은 광축(AX2)과 평행(또는 거의 평행)하게 되어 있다.
또한, 수평 배향막이 상술한 바와 같은 프리틸트 기능을 갖고 있는 경우에는, 광축(AX1)은 도광판(10)의 광 입사면(10A)과 평행(또는 거의 평행)해짐과 함께, 투명 기판(31)의 표면과 소정의 프리틸트각으로 교차하고 있다. 즉, 이 경우에도, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때에는, 광축(AX1)은 광축(AX2)과 평행(또는 거의 평행)하게 되어 있다.
여기서, 벌크(34A) 및 미립자(34B)의 상광(常光) 굴절률이 서로 동등하게, 또한 벌크(34A) 및 미립자(34B)의 이상광(異常光) 굴절률이 서로 동등한 것이 바람직하다. 이 경우, 예를 들어 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때에는, 정면 방향 및 경사 방향을 포함하는 모든 방향에 있어서 굴절률차가 거의 없어 높은 투명성을 얻을 수 있다. 이에 의해, 예를 들어 정면 방향을 향하는 광 및 경사 방향을 향하는 광은 광 변조층(34) 내에서 산란되지 않고 광 변조층(34)을 투과한다. 그 결과, 예를 들어 도 8의 (A), (B)에 도시한 바와 같이, 광원(20)으로부터의 광(L1)(경사 방향으로부터의 광)은 광 변조 소자(30) 내에서 투명해진 영역(투과 영역(30A))의 계면(투명 기판(31) 또는 도광판(10)과 공기의 계면)에 있어서 전반사되고, 투과 영역(30A)의 휘도(흑색 표시의 휘도)가 광 변조 소자(30)를 설치하고 있지 않은 경우(도 8의 (B) 중의 일점 쇄선)에 비해 저하된다. 또한, 도 8의 (B)의 그래프는, 도 8의 (A)에 도시한 바와 같이 도광판(10) 상에 확산 시트(41)를 배치한 상태에서 정면 휘도를 계측했을 때의 것이다.
또한, 벌크(34A) 및 미립자(34B)는, 예를 들어 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있을 때에는, 도 7에 도시한 바와 같이, 광축(AX1) 및 광축(AX2)의 방향이 서로 상이한(교차 또는 직교하는) 구성으로 되어 있다. 또한, 미립자(34B)는, 예를 들어 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있을 때, 광축(AX2)이 도광판(10)의 광 입사면(10A)과 평행(또는 거의 평행)해짐과 함께 투명 기판(31)의 법선과 평행(또는 거의 평행)해지는 구성으로 되어 있다. 즉, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있을 때, 광축(AX2)은 부분 전극(32A) 또는 상측 전극(36)을 포함하는 면과 직교(또는 거의 직교)하고 있다.
따라서, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있을 때에는, 광 변조층(34)에 있어서, 광 입사면(10A)과 평행한 면 내의 모든 방향에 있어서 굴절률차가 커져서 높은 산란성을 얻을 수 있다. 이에 의해, 예를 들어 정면 방향을 향하는 광 및 경사 방향을 향하는 광은 광 변조층(34) 내에서 산란된다. 그 결과, 예를 들어 도 8의 (A), (B)에 도시한 바와 같이, 광원(20)으로부터의 광(L1)(경사 방향으로부터의 광)은, 광 변조 소자(30) 내에서 산란 상태가 된 영역(산란 영역(30B))의 계면(투명 기판(31) 또는 도광판(10)과 공기의 계면)을 투과함과 함께, 반사판(40)측에 투과한 광은 반사판(40)에서 반사되어 광 변조 소자(30)를 투과한다. 따라서, 산란 영역(30B)의 휘도는, 광 변조 소자(30)를 설치하고 있지 않은 경우(도 8의 (B) 중의 일점 쇄선)에 비해 지극히 높아지고, 게다가 투과 영역(30A)의 휘도가 저하된만큼 부분적인 백색 표시의 휘도(휘도 상승)가 커진다.
또한, 벌크(34A) 및 미립자(34B)의 상광 굴절률은, 예를 들어 제조 오차 등에 따라 다소 어긋나 있어도 되며, 예를 들어 0.1 이하인 것이 바람직하고, 0.05 이하인 것이 보다 바람직하다. 또한, 벌크(34A) 및 미립자(34B)의 이상광 굴절률에 대해서도, 예를 들어 제조 오차 등에 따라 다소 어긋나 있어도 되며, 예를 들어0.1 이하인 것이 바람직하고, 0.05 이하인 것이 보다 바람직하다.
또한, 벌크(34A)의 굴절률차(=이상광 굴절률-상광 굴절률)나, 미립자(34B)의 굴절률차(=이상광 굴절률-상광 굴절률)는 가능한 한 큰 것이 바람직하고, 0.05 이상인 것이 바람직하고, 0.1 이상인 것이 보다 바람직하고, 0.15 이상인 것이 더욱 바람직하다. 벌크(34A) 및 미립자(34B)의 굴절률차가 큰 경우에는, 광 변조층(34)의 산란능이 높아지고, 도광 조건을 용이하게 파괴할 수 있어 도광판(10)으로부터의 광을 추출하기 쉽기 때문이다.
또한, 벌크(34A) 및 미립자(34B)는 전기장에 대한 응답 속도가 서로 상이하다. 벌크(34A)는, 예를 들어 전기장에 대하여 응답하지 않는 줄무늬 형상 구조 또는 다공질 구조로 되어 있거나, 또는 미립자(34B)의 응답 속도보다도 느린 응답 속도를 갖는 막대 형상 구조로 되어 있다. 벌크(34A)는, 예를 들어 저분자 단량체를 중합화함으로써 얻어진 고분자 재료에 의해 형성되어 있다. 벌크(34A)는, 예를 들어 미립자(34B)의 배향 방향 또는 배향막(33, 35)의 배향 방향에 따라서 배향된 배향성 및 중합성을 갖는 재료(예를 들어, 단량체)를 열 및 광 중 적어도 한쪽에 의해 중합시킴으로써 형성되어 있다.
한편, 미립자(34B)는, 예를 들어 액정 재료를 주로 포함하여 구성되어 있고, 벌크(34A)의 응답 속도보다도 충분히 빠른 응답 속도를 갖고 있다. 미립자(34B) 내에 포함되는 액정 재료(액정 분자)는, 예를 들어 막대 형상 분자이다. 미립자(34B) 내에 포함되는 액정 분자로서 플러스의 유전율 이방성을 갖는 것(소위 포지티브형 액정)을 사용하는 것이 바람직하다.
여기서, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때에는, 미립자(34B) 내에 있어서, 액정 분자의 장축 방향은 광축(AX1)과 평행하게 되어 있다. 이 때, 미립자(34B) 내의 액정 분자의 장축은, 도광판(10)의 광 입사면(10A)과 평행(또는 거의 평행)해짐과 함께 투명 기판(31)의 표면과 평행(또는 거의 평행)하게 되어 있다. 또한, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있을 때에는, 미립자(34B) 내에 있어서, 액정 분자의 장축 방향은 광축(AX1)과 교차(또는 직교)하고 있다. 이 때, 미립자(34B) 내의 액정 분자의 장축은, 도광판(10)의 광 입사면(10A)과 평행(또는 거의 평행)해짐과 함께 투명 기판(31)의 법선과 평행(또는 거의 평행)하게 되어 있다.
상기한 배향성 및 중합성을 갖는 단량체로서는, 광학적으로 이방성을 갖고 있으며, 또한 액정과 복합되는 재료이면 되지만, 본 실시 형태에서는 자외선으로 경화하는 저분자 단량체인 것이 바람직하다. 전압 무인가의 상태에서 액정과 저분자 단량체를 중합화함으로써 형성된 것(고분자 재료)의 광학적 이방성의 방향이 일치하고 있는 것이 바람직하므로, 자외선 경화 전에 있어서, 액정과 저분자 단량체가 동일 방향으로 배향하고 있는 것이 바람직하다. 미립자(34B)로서 액정이 사용될 경우에, 그 액정이 막대 형상 분자일 때에는, 사용하는 단량체 재료의 형상도 막대 형상인 것이 바람직하다. 이상의 점에서 단량체 재료로서는 중합성과 액정성을 겸비하는 재료를 사용하는 것이 바람직하고, 예를 들어 중합성 관능기로서 아크릴레이트기, 메타크릴레이트기, 아크릴로일옥시기, 메타크릴로일옥시기, 비닐에테르기 및 에폭시기 등을 포함하여 이루어지는 군에서 선택된 적어도 1개의 관능기를 갖는 것이 바람직하다. 이들 관능기는 자외선, 적외선 또는 전자선을 조사하거나, 가열하거나 함으로써 중합시킬 수 있다. 자외선 조사 시의 배향도 저하를 억제하기 위해서 다관능기를 가진 액정성 재료를 첨가할 수도 있다. 벌크(34A)를 상술한 줄무늬 형상 구조로 할 경우에는, 벌크(34A)의 원료로서 2관능 액정성 단량체를 사용하는 것이 바람직하다. 또한, 벌크(34A)의 원료에 대하여 액정성을 나타내는 온도의 조정을 목적으로 단관능 단량체를 첨가하거나, 가교 밀도 향상을 목적으로 3관능 이상의 단량체를 첨가하거나 할 수도 있다.
구동 회로(50)는, 예를 들어 있는 광 변조 셀(30-1)에 있어서 미립자(34B)의 광축(AX2)이 벌크(34A)의 광축(AX1)과 평행하거나 거의 평행해지고, 다른 광 변조 셀(30-1)에 있어서 미립자(34B)의 광축(AX2)이 벌크(34A)의 광축(AX1)과 교차 또는 직교하도록 각 광 변조 셀(30-1)의 한 쌍의 전극(부분 전극(32A) 및 상측 전극(36))에 인가하는 전압의 크기를 제어하도록 되어 있다. 즉, 구동 회로(50)는 전기장 제어에 의해 벌크(34A) 및 미립자(34B)의 광축(AX1, AX2)의 방향을 서로 일치(또는 거의 일치)시키거나, 서로 상이하게 하거나(또는 직교시키거나) 할 수 있도록 되어 있다.
구동 회로(50)는 또한, 복수의 부분 전극(32A)을 소정의 단위마다 순차 구동함으로써, 광 변조층(34) 중 산란성을 나타내는 부분(산란 영역(30B))을 광 입사면(10A)과 직교하는 방향으로 주사하도록 되어 있다. 이에 의해, 구동 회로(50)는 광원(20)으로부터 사출된 광이 도광판 내를 전파해 가는 과정에서 산란 영역(30B)에서 산란되고, 백라이트(1)의 상면으로부터 외부에 사출되는 광을 광 입사면(10A)과 직교하는 방향으로 주사하도록 되어 있다.
도 9의 (A), (B) 내지 도 12의 (A), (B)는 산란 영역(30B)이 광 입사면(10A)과 직교하는 방향으로 주사되어 있는 모습을 모식적으로 도시한 것이다. 구동 회로(50)는, 예를 들어 도 9의 (A), (B), 도 10의 (A), (B)에 도시한 바와 같이, 백라이트(1) 내의 모든 광원(20)을 점등시킨 상태에서 복수의 부분 전극(32A)을 소정의 단위마다 순차 구동함으로써, 산란 영역(30B)(광 사출 영역)을 광 입사면(10A)과 직교하는 방향으로 주사하도록 되어 있다. 또한, 도 9의 (A), (B), 도 10의 (A), (B)에는, 복수의 부분 전극(32A)을 X축의 정방향으로 1줄씩 순서대로 구동하는 경우가 예시되어 있다.
도광판(10)의 2개의 측면에 광원(20)을 1개씩 설치하고 있는 경우에는, 구동 회로(50)는 구동 대상의 부분 전극(32A)의 광원(20)으로부터의 거리에 따라서 어느 한쪽 광원(20)을 소등하거나 어둡게 하거나 하도록 해도 된다. 예를 들어, 구동 회로(50)는, 2개의 광원(20) 중 구동 대상의 부분 전극(32A)에 가까운 쪽의 광원(20)을, 2개의 광원(20) 중 구동 대상의 부분 전극(32A)에서 먼 쪽의 광원(20)보다도 밝게 하고, 2개의 광원(20) 중 구동 대상의 부분 전극(32A)에서 먼 쪽의 광원(20)을, 2개의 광원(20) 중 구동 대상의 부분 전극(32A)에 가까운 쪽의 광원(20)보다도 어둡게 하도록 해도 된다.
예를 들어, 도 11의 (A), (B), 도 12의 (A), (B)에 도시한 바와 같이, 구동 회로(50)는 복수의 부분 전극(32A)을 소정의 단위마다 순차 구동하고 있을 때, 2개의 광원(20) 중 구동 대상의 부분 전극(32A)에 가까운 쪽의 광원(20)만을 점등시키고, 2개의 광원(20) 중 구동 대상의 부분 전극(32A)에서 먼 쪽의 광원(20)을 소등시키도록 되어 있어도 된다. 바꾸어 말하면, 구동 회로(50)는, 구동 대상의 부분 전극(32A)이 한쪽 광원(20)(편의적으로 광원 A라고 함) 근처에 위치하고 있을 때에는 광원 A만을 점등시키고, 구동 대상의 부분 전극(32A)이 다른 쪽의 광원(20)(편의적으로 광원 B라고 함) 근처에 위치하고 있을 때에는 광원 B만을 점등시키도록 되어 있어도 된다. 이와 같이 한 경우에는, 광 변조층(34) 중 투명성을 나타내는 부분(투과 영역(30A))을 전파하는 광의 광량이 감소하므로, 흑색 휘도를 작게 할 수 있다.
또한, 예를 들어 도시하지는 않지만, 구동 회로(50)는 양쪽의 광원(20)을 점등시킨 상태에서 2개의 광원(20) 중 구동 대상의 부분 전극(32A)에서 먼 쪽의 광원(20)을, 2개의 광원(20) 중 구동 대상의 부분 전극(32A)에 가까운 쪽의 광원(20)보다도 어둡게 점등시키도록 되어 있어도 된다. 이와 같이 한 경우에도, 한쪽 광원(20)의 광량을 작게 한만큼 광 변조층(34) 중 투명성을 나타내는 부분(투과 영역(30A))을 전파하는 광의 광량이 감소하므로, 흑색 휘도를 작게 할 수 있다.
이하에, 본 실시 형태의 백라이트(1)의 제조 방법에 대해서 도 13의 (A) 내지 (C)부터 도 15의 (A) 내지 (C)를 참조하면서 설명한다.
우선, 유리 기판 또는 플라스틱 필름 기판 등을 포함하여 이루어지는 투명 기판(31) 상에 ITO 등의 투명 도전막(32D)을 형성한다(도 13의 (A)). 이어서, 투명 도전막(32D) 상에 패터닝된 레지스트층(도시하지 않음)을 형성한 뒤, 레지스트층을 마스크로 하여 투명 도전막(32D)을 선택적으로 에칭한다. 그 결과, 하측 전극(32)이 형성된다(도 13의 (B)).
이어서, 표면 전체에 배향막(33)을 도포한 뒤, 건조시켜서 소성한다(도 13의 (C)). 배향막(33)으로서 폴리이미드계 재료를 사용할 경우에는, 용매에 NMP(N-메틸-2-피롤리돈)를 사용하는 경우가 많지만, 그 때에는 대기 하에서는 200℃ 정도의 온도가 필요하다. 또한, 이 경우에, 투명 기판(31, 37)으로서 플라스틱 기판을 사용할 경우에는, 배향막(33)을 100℃에서 진공 건조시켜서 소성할 수도 있다. 그 후, 배향막(33)에 대하여 러빙 처리를 행한다. 이에 의해, 배향막(33)이 수평 배향용의 배향막으로서 기능하는 것이 가능해진다.
이어서, 배향막(33) 상에 셀 간격을 형성하기 위한 스페이서(38)을 건식 또는 습식으로 산포한다(도 14의 (A)). 또한, 진공 접합법으로 광 변조 셀(30-1)을 작성할 경우에는, 적하하는 혼합물 중에 스페이서(38)를 혼합해 두어도 된다. 또한, 스페이서(38) 대신에 포토리소그래피법으로 기둥 스페이서를 형성할 수도 있다.
계속해서, 상기와 동일한 방법으로 제작해 둔 배향막(35) 상에 접합 및 액정의 누설을 방지하기 위한 밀봉제 패턴(39)을, 예를 들어 프레임 형상으로 도포한다(도 14의 (B)). 이 밀봉제 패턴(39)은 디스펜서법이나 스크린 인쇄법으로 형성할 수 있다.
이하에 진공 접합법(One Drop Fill법, ODF법)에 대하여 설명하지만, 진공 주입법이나 롤 접합 방식 등으로 광 변조 셀(30-1)을 제작하는 것도 가능하다.
우선, 셀 간격, 셀 면적 등으로부터 결정되는 체적분에 해당하는 액정과 단량체의 혼합물(42)을 면 내에 균일하게 적하한다(도 14의 (C)). 혼합물(42)의 적하에는 리니어 가이드 방식의 정밀 디스펜서를 사용하는 것이 바람직하지만, 밀봉제 패턴(39)을 댐으로서 이용하여 다이 코터 등을 사용해도 된다.
액정과 단량체는 상술한 재료를 사용할 수 있지만, 액정과 단량체의 중량비는 98:2 내지 50:50, 바람직하게는 95:5 내지 75:25, 보다 바람직하게는 92:8 내지 85:15이다. 액정의 비율을 많게 함으로써 구동 전압을 낮게 할 수 있지만, 지나치게 액정을 많게 하면 전압 인가 시의 백색도가 저하되거나, 전압 오프 후에 응답 속도가 저하되는 등 투명 시로 복귀되기 어려워지거나 하는 경향이 있다.
혼합물(42)에는, 액정과 단량체 이외에는 중합 개시제를 첨가한다. 사용하는 자외선 파장에 따라서 첨가하는 중합 개시제의 단량체비를 0.1 내지 10중량%의 범위 내에서 조정한다. 혼합물(42)에는, 이 밖에 중합 금지제나 가소제, 점도 조정제 등도 필요에 따라서 첨가 가능하다. 단량체가 실온에서 고체나 겔 상태인 경우에는 구금 부재나 시린지, 기판을 가온하는 것이 바람직하다.
투명 기판(31) 및 투명 기판(37)을 진공 접합기(도시하지 않음)에 배치한 뒤, 진공 배기하여 접합을 행한다(도 15의 (A)). 그 후, 접합한 것을 대기에 해방하여 대기압에서의 균일 가압에 의해 셀 간격을 균일화한다. 셀 간격은 백색 휘도(백색도)와 구동 전압의 관계로부터 적절히 선정할 수 있지만, 5 내지 40㎛, 바람직하게는 6 내지 20㎛, 보다 바람직하게는 7 내지 10㎛이다.
접합 후, 필요에 따라서 배향 처리를 행하는 것이 바람직하다(도시하지 않음). 크로스니콜 편광자의 사이에 접합한 셀을 삽입했을 때, 광 누설이 발생하고 있는 경우에는 셀을 어느 일정 시간 가열 처리하거나, 실온에서 방치하거나 하여 배향시킨다. 그 후, 자외선(L3)을 조사하여 단량체를 중합시켜서 중합체화한다(도 15의 (B)). 이와 같이 하여 광 변조 소자(30)가 제조된다.
자외선을 조사하고 있을 때에는 셀의 온도가 변화하지 않도록 하는 것이 바람직하다. 적외선 차단 필터를 사용하거나, 광원에 UV- LED 등을 사용하거나 하는 것이 바람직하다. 자외선 조도는 복합 재료의 조직 구조에 영향을 주므로, 사용하는 액정 재료나 단량체 재료, 이들 조성으로부터 적절히 조정하는 것이 바람직하고, 0.1 내지 500mW/cm2의 범위가 바람직하고, 더욱 바람직하게는 0.5 내지 30mW/cm2이다. 자외선 조도가 낮을수록 구동 전압이 낮아지는 경향이 있고, 생산성과 특성의 양면으로부터 바람직한 자외선 조도를 선정할 수 있다.
그리고, 도광판(10)에 광 변조 소자(30)를 접합한다(도 15의 (C)). 접합으로는 점착, 접착 중 어느 것이어도 되지만, 도광판(10)의 굴절률과 광 변조 소자(30)의 기판 재료의 굴절률에 가능한 한 가까운 굴절률의 재료로 점착, 접착하는 것이 바람직하다. 마지막으로, 하측 전극(32) 및 상측 전극(36)에 인출선(도시하지 않음)을 설치한다. 이와 같이 하여 본 실시 형태의 백라이트(1)가 제조된다.
이와 같이 광 변조 소자(30)를 제작하고, 마지막으로 도광판(10)에 광 변조 소자(30)를 접합하는 프로세스를 설명했지만, 도광판(10)의 표면에 배향막(35)을 형성한 투명 기판(37)을 미리 접합하고나서 백라이트(1)를 제작할 수도 있다. 또한, 낱장 방식, 롤·투·롤 방식 중 어느 것으로도 백라이트(1)를 제작할 수 있다.
이어서, 본 실시 형태의 백라이트(1)의 작용 및 효과에 대하여 설명한다.
본 실시 형태의 백라이트(1)에서는, 예를 들어 광 변조 셀(30-1)에 있어서 미립자(34B)의 광축(AX2)이 벌크(34A)의 광축(AX1)과 평행하거나 거의 평행해지고, 별도의 광 변조 셀(30-1)에 있어서 미립자(34B)의 광축(AX2)이 벌크(34A)의 광축(AX1)과 교차 또는 직교하도록, 각 광 변조 셀(30-1)의 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가된다. 이에 의해, 광원(20)으로부터 사출되어 도광판(10) 내에 입사된 광은, 광 변조 소자(30) 중 광축(AX1)과 광축(AX2)이 서로 평행하거나 거의 평행하게 되어 있는 투과 영역(30A)을 투과한다. 한편, 광원(20)으로부터 사출되어 도광판(10) 내에 입사된 광은, 광 변조 소자(30) 중 광축(AX1)과 광축(AX2)이 서로 교차 또는 직교하고 있는 산란 영역(30B)에서 산란된다. 이 산란광 중 산란 영역(30B)의 하면을 투과한 광은 반사판(40)에서 반사되고, 다시, 도광판(10)에 복귀된 뒤, 백라이트(1)의 상면으로부터 사출된다. 또한, 산란광 중 산란 영역(30B)의 상면을 향한 광은, 도광판(10)을 투과한 뒤, 백라이트(1)의 상면으로부터 사출된다. 이와 같이, 본 실시 형태에서는, 투과 영역(30A)의 상면으로부터는 광은 거의 사출되지 않고, 산란 영역(30B)의 상면으로부터 광이 사출된다. 이와 같이 하여 정면 방향의 변조비를 크게 하고 있다.
일반적으로, PDLC는 액정 재료와 등방성의 저분자 재료를 혼합하여 자외선 조사나 용매의 건조 등에 의해 상분리를 일으키게 함으로써 형성되고, 액정 재료의 미소 입자가 고분자 재료 중에 분산된 복합층이 되어 있다. 이 복합층 중의 액정 재료는, 전압 무인가 시에는 임의적인 방향을 향하고 있으므로 산란성을 나타내지만, 전압 인가 시에는 전기장 방향으로 배향하므로, 액정 재료의 상광 굴절률과 고분자 재료의 굴절률이 서로 동등한 경우에는, 정면 방향(PDLC의 법선 방향)에 있어서 높은 투명성을 나타낸다. 그러나, 이 액정 재료에서는, 경사 방향에 있어서는, 액정 재료의 이상광 굴절률과 고분자 재료의 차가 현저해져서 정면 방향이 투명성이어도 경사 방향에 있어서 산란성이 발현해버린다.
통상, PDLC를 사용한 광 변조 소자는, 표면에 투명 도전막이 형성된 2장의 유리판의 사이에 PDLC를 개재한 구조로 되어 있는 경우가 많다. 상술한 바와 같은 구조를 갖는 광 변조 소자에 대하여 공기 중으로부터 비스듬히 광이 입사된 경우에는, 그 경사 방향으로부터 입사된 광은 공기와 유리판의 굴절률차에 의해 굴절되고, 보다 작은 각도로 PDLC에 입사하게 된다. 그로 인해, 이러한 광 변조 소자에 있어서는 큰 산란은 발생하지 않는다. 예를 들어, 공기 중으로부터 80°의 각도로 광이 입사된 경우에는, 그 광의 PDLC에의 입사각은 유리 계면에서의 굴절에 의해 40°정도까지 작아진다.
그러나, 도광판을 사용한 에지 라이트 방식에서는, 도광판 너머로 광이 입사되므로, 광이 80°정도의 큰 각도로 PDLC 내를 가로지르게 된다. 그로 인해, 액정 재료의 이상광 굴절률과 고분자 재료의 굴절률의 차가 크고, 또한, 보다 큰 각도로 광이 PDLC 내를 가로지르므로, 산란을 받는 광로도 길어진다. 예를 들어, 상광 굴절률 1.5, 이상광 굴절률 1.65인 액정 재료의 미소 입자가 굴절률 1.5인 고분자 재료 내에 분산되어 있는 경우에는, 정면 방향(PDLC의 법선 방향)에 있어서는 굴절률차가 없지만, 경사 방향에 있어서는 굴절률차가 커진다. 이로 인해, 경사 방향의 산란성을 작게 할 수 없으므로, 시야각 특성이 나쁘다. 또한, 도광판 상에 확산 필름 등의 광학 필름을 설치한 경우에는, 기울기 누설 광이 확산 필름 등에 의해 정면 방향으로도 확산되므로, 정면 방향의 광 누설이 커져서 정면 방향의 변조비가 낮아져버린다.
또한, 상기의 PDLC 대신에 홀로그래픽 PDLC(H-PDLC)를 사용하는 것도 생각할 수 있다. 이 H-PDLC에서는, H-PDLC 일부의 영역에 전압이 인가되면, 그 영역에 존재하는 액상 분자의 방향이 변이한다. 그와 같이 하여 액상 분자의 방향이 변이한 영역(변이 영역)의 주위에는, 전압이 인가되지 않고 액상 분자의 방향이 변이하고 있지 않은 영역(비변이 영역)이 존재하고 있고, 이 2종류의 영역의 경계가 회절 격자를 구성한다. 이 회절 격자는 p편광파를 회절하고, s편광파를 투과시킨다. 그로 인해, 도광판 내를 전파해 온 광 중 p 편광파에 대해서는 회절 격자에서 회절되어 회절광이 외부에 추출되지만, 도광판 내를 전파해 온 광 중 s편광파에 대해서는 회절 격자를 투과해버린다. 따라서, H-PDLC에서는 정면 방향의 변조비가 원리적으로 낮다.
한편, 본 실시 형태에서는, 광 변조 소자(30)에 있어서 벌크(34A) 및 미립자(34B)가 광학 이방성 재료를 주로 포함하여 형성되어 있으므로, 경사 방향에 있어서 산란성이 작아져서 투명성을 향상시킬 수 있다. 예를 들어, 벌크(34A) 및 미립자(34B)가, 서로 상광 굴절률이 동등하게, 또한 서로 이상광 굴절률도 동등한 광학 이방성 재료를 주로 포함하여 구성되고, 또한, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않은 영역에서는, 이들 광축의 방향이 일치하거나 거의 일치한다. 이에 의해, 정면 방향(광 변조 소자(30)의 법선 방향) 및 경사 방향을 포함하는 모든 방향에 있어서 굴절률차가 적어지던지, 또는 없어져서 높은 투명성을 얻을 수 있다. 그 결과, 시야각이 큰 범위에 있어서의 광의 누설을 저감시키거나 거의 없앨 수가 있어 시야각 특성을 좋게 할 수 있다.
예를 들어, 상광 굴절률 1.5, 이상광 굴절률 1.65인 액정과, 상광 굴절률1.5, 이상광 굴절률 1.65인 액정성 단량체를 혼합하고, 배향막 또는 전계에 의해 액정과 액정성 단량체를 배향시킨 상태에서 액정성 단량체를 중합시키면, 액정의 광축과, 액정성 단량체가 중합함으로써 형성된 중합체의 광축이 서로 일치한다. 이에 의해, 모든 방향에서 굴절률을 일치시킬 수 있으므로, 그와 같이 한 경우에는 투명성이 높은 상태를 실현할 수 있어, 보다 한층, 시야각 특성을 좋게 할 수 있다.
또한, 본 실시 형태에서는, 예를 들어 도 8의 (A), (B)에 도시한 바와 같이, 투과 영역(30A)의 휘도(흑색 표시의 휘도)가 광 변조 소자(30)를 설치하고 있지 않은 경우(도 8의 (B) 중의 일점 쇄선)에 비해 저하되어 있다. 한편, 산란 영역(30B)의 휘도는, 광 변조 소자(30)를 설치하고 있지 않은 경우(도 8의 (B) 중의 일점 쇄선)에 비해 지극히 높아지고, 더구나, 투과 영역(30A)의 휘도가 저하된만큼 부분적인 백색 표시의 휘도(휘도 상승)가 커진다.
그런데, 휘도 상승이란, 전면 백색 표시한 경우에 비해 부분적으로 백색 표시를 행한 경우의 휘도를 높게 하는 기술이다. CRT나 PDP 등에서는 일반적으로 잘 사용되고 있는 기술이다. 그러나, 액정 디스플레이에서는, 백라이트는 화상에 관계없이 전체적으로 균일 발광하고 있으므로, 부분적으로 휘도를 높게 할 수는 없다. 무엇보다, 백라이트를, 복수의 LED를 2차원 배치한 LED 백라이트로 한 경우에는, LED를 부분적으로 소등하는 것은 가능하다. 그러나, 그와 같이 한 경우에는, LED를 소등한 어두운 영역으로부터의 확산광이 없어지므로, 모든 LED를 점등한 경우에 비해 휘도가 낮아져버린다. 또한, 부분적으로 점등하고 있는 LED에 대하여 흘리는 전류를 크게 함으로써 휘도를 증가시키는 것도 가능하지만, 그와 같이 한 경우에는, 매우 단시간에 대전류가 흐르므로, 회로의 부하나 신뢰성의 점에서 문제가 남는다.
한편, 본 실시 형태에서는, 광 변조 소자(30)에 있어서 벌크(34A) 및 미립자(34B)이 광학 이방성 재료를 주로 포함하여 형성되어 있으므로, 경사 방향의 산란성이 억제되어 어두운 상태에서의 도광판으로부터의 누설광이 적다. 이에 의해, 도광판(10)을 전파하고 있는 광은, 부분적인 어두운 상태의 부분으로부터 부분적인 밝은 상태의 부분에 근소한 광 손실로 전파하므로, 백라이트(1)에의 투입 전력을 증가시키지 않고 휘도 상승을 실현할 수 있다. 그 결과, 고휘도를 실현할 수 있다.
또한, 본 실시 형태에 있어서, 수평 배향막이 상술한 바와 같은 프리틸트 기능을 갖고 있는 경우에는, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않은 영역에 있어서, 미립자(34B)의 광축(AX2)이 도광판(10)의 광 입사면(10A)과 평행(또는 거의 평행)하게 되어 있고, 또한 투명 기판(31)의 표면과 소정의 프리틸트각으로 교차하고 있다. 즉, 미립자(34B) 내에 포함되는 액정 분자가, 광 입사면(10A)과 평행한 면 내에 있어서 소정의 프리틸트각만큼 경사진 상태에서 배향하고 있다. 그로 인해, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되었을 때, 미립자(34B) 내에 포함되는 액정 분자는, 임의적인 방위에 상승되는 경우는 없고, 광 입사면(10A)과 평행한 면 내에서 상승된다. 이 때, 벌크(34A) 및 미립자(34B)의 광축(AX1, AX2)이, 광 입사면(10A)과 평행한 면 내에 있어서 서로 교차 또는 직교한다. 따라서, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가된 영역에 있어서, 정면 방향(광 변조 소자(30)의 법선 방향) 및 경사 방향을 포함하는 모든 방향에 있어서 굴절률차가 커져서 높은 산란성을 얻을 수 있다. 그 결과, 표시 휘도를 향상시킬 수 있다. 또한, 상기의 휘도 상승의 효과에 의해 휘도를 더욱 향상시킬 수 있다.
또한, 본 실시 형태에서는, 광 입사면(10A)과 직교하는 방향으로 배열된 복수의 부분 전극(32A)이 소정의 단위마다 순차 구동된다. 이에 의해, 광원(20)으로부터 사출된 광이 도광판(10) 내를 전파해 가는 과정에서, 광 변조층(34) 중 산란성을 나타내는 부분(산란 영역(30B))이 광 입사면(10A)과 직교하는 방향으로 주사된다. 그 결과, 산란 영역(30B)에서 산란되고, 백라이트(1)의 상면으로부터 외부에 사출되는 광이 광 입사면(10A)과 직교하는 방향으로 주사된다. 이 때, 광원(20)은 스캔 구동되어 있지 않으므로, 상기한 휘도 상승의 효과에 의해 광원을 스캔 구동하는 종래 방식보다도 고휘도를 얻을 수 있다. 또한, 본 실시 형태에서는, 상술한 바와 같이, 광원(20)이 스캔 구동되어 있지 않은 점에서, 매우 짧은 기간에 광원에 큰 전력을 투입하여 스캔 구동하는 경우에 발생하는 돌입 전력을 고려 할 필요가 거의 없어서 회로 기판의 신뢰성을 손상시키는 경우가 없다.
이와 같이, 본 실시 형태에서는, 광원(20)을 스캔 구동하는 대신에, 광 변조층(34) 내의 산란 영역(30B)을 주사함으로써, 백라이트(1)의 상면으로부터 외부에 사출되는 광을 주사하도록 했으므로, 스캔 방식에 있어서 고휘도, 저소비 전력 및 회로 기판의 고신뢰성의 모두를 동시에 실현할 수 있다.
<2. 제2 실시 형태>
도 16의 (A)는 본 발명의 제2 실시 형태에 관한 백라이트(2)의 개략 구성의 일례를 도시하는 단면도이다. 백라이트(2)는 본 발명의 조명 장치의 하나의 구체예에 상당하는 것이다. 도 16의 (B)는 도 16의 (A)의 백라이트(2)에 포함되는 광 변조 소자(60)의 개략 구성의 일례를 도시하는 단면도이다. 또한, 도 16의 (A), (B)는 모식적으로 도시한 것이며, 실제의 치수나 형상과 동일하다고만은 할 수 없다.
본 실시 형태의 백라이트(2)는, 광 변조 소자(30) 대신에 광 변조 소자(60)를 구비하고 있는 점에서 제1 실시 형태에 관한 백라이트(1)의 구성과 상이하다. 따라서, 이하에서는, 상기 실시 형태와의 상위점에 대하여 주로 설명하고, 상기 실시 형태와의 공통점에 관한 설명을 적절히 생략하기로 한다.
광 변조 소자(60)는, 본 실시 형태에 있어서, 도광판(10)의 배후(하면)에 공기층을 통하지 않고 밀착되어 있고, 예를 들어 접착제(도시하지 않음)를 통하여 도광판(10)의 배후에 접착되어 있다. 이 광 변조 소자(60)는, 예를 들어 도 16의 (B)에 도시한 바와 같이, 투명 기판(31), 하측 전극(32), 배향막(63), 광 변조층(64), 배향막(65), 상측 전극(36) 및 투명 기판(37)을 반사판(40)측부터 순서대로 배치한 것이다.
배향막(63, 65)은, 예를 들어 광 변조층(64)에 사용되는 액정이나 단량체를 배향시키는 것이다. 배향막의 종류로서는, 예를 들어 수직 배향막 및 수평 배향막이 있지만, 본 실시 형태에서는 배향막(63, 65)에는 수직 배향막이 사용된다. 수직 배향막으로서는 실란 커플링 재료나 폴리비닐알코올(PVA), 폴리이미드계 재료, 계면 활성제 등을 사용하는 것이 가능하다. 또한, 투명 기판(31, 37)으로서 플라스틱 필름을 사용할 경우에는, 제조 공정에 있어서, 투명 기판(31, 37)의 표면에 배향막(63, 65)를 도포한 후의 소성 온도가 가능한 한 낮은 것이 바람직한 점에서, 배향막(63, 65)으로서 알코올계 용매를 사용하는 것이 가능한 실란 커플링 재료를 사용하는 것이 바람직하다.
또한, 수직 배향막으로서, 해당 수직 배향막에 접하는 액정 분자에 프리틸트를 부여하는 기능을 갖는 것이 사용되고 있는 것이 바람직하다. 수직 배향막에 프리틸트 기능을 발현시키는 방법으로서는, 예를 들어 러빙 등을 들 수 있다. 상기한 수직 배향막은, 예를 들어 당해 수직 배향막에 근접하는 액정 분자의 장축을 광 입사면(10A)과 평행한 면 내이며, 또한 당해 수직 배향막의 법선과 약간의 각도로 교차시키는 기능을 갖고 있는 것이 바람직하다. 그러한 기능을 갖는 수직 배향막은, 예를 들어 러빙 방향을 광 입사면(10A)과 평행하게 함으로써 실현할 수 있다.
단, 배향막(63, 65)으로서 수직 배향막을 사용할 때에는, 후술하는 미립자(64B) 내에 포함되는 액정 분자로서, 마이너스의 유전율 이방성을 갖는 것(소위 네가티브형 액정)을 사용하는 것이 바람직하다.
이어서, 본 실시 형태의 광 변조층(64)에 대하여 설명한다. 광 변조층(64)은, 예를 들어 도 16의 (B)에 도시한 바와 같이, 벌크(64A)와, 벌크(64A) 내에 분산된 미립자 형상의 복수의 미립자(64B)를 포함한 복합층이 되어 있다. 벌크(64A) 및 미립자(64B)는 광학 이방성을 갖고 있다.
도 17은, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때의 벌크(64A) 및 미립자(64B) 내의 배향 상태의 일례를 모식적으로 도시한 것이다. 도 17 중의 타원체(164A)는, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때의 벌크(64A)의 굴절률 이방성을 나타내는 굴절률 타원체의 일례를 도시한 것이다. 도 17 중의 타원체(164B)는, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때의 미립자(64B)의 굴절률 이방성을 나타내는 굴절률 타원체의 일례를 도시한 것이다.
도 18은, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있을 때의 벌크(64A) 및 미립자(64B) 내의 배향 상태의 일례를 모식적으로 도시한 것이다. 도 18 중의 타원체(164A)는, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있을 때의 벌크(64A)의 굴절률 이방성을 나타내는 굴절률 타원체의 일례를 도시한 것이다. 도 18 중의 타원체(164B)는, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있을 때의 미립자(64B)의 굴절률 이방성을 나타내는 굴절률 타원체의 일례를 도시한 것이다.
벌크(64A) 및 미립자(64B)는, 예를 들어 도 17에 도시한 바와 같이, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때, 벌크(64A)의 광축(AX3)(구체적으로는 타원체(164A)의 장축) 및 미립자(64B)의 광축(AX4)(구체적으로는 타원체(164B)의 장축)의 방향이 서로 일치하는(평행해지는) 구성으로 되어 있다. 또한, 광축(AX3, AX4)이란, 편광 방향에 상관없이 굴절률이 하나의 값이 되는 광선의 진행 방향과 평행한 선을 가리키고 있다. 또한, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때, 광축(AX3) 및 광축(AX4)의 방향은 항상 서로 일치할 필요는 없고, 광축(AX3)의 방향과 광축(AX4)의 방향이, 예를 들어 제조 오차 등에 의해 다소 어긋나 있어도 된다.
또한, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때, 광축(AX4)은 도광판(10)의 광 입사면(10A)과 평행(또는 거의 평행)해짐과 함께, 투명 기판(31)의 표면의 법선과 평행(또는 거의 평행)하게 되어 있다. 즉, 하측 전극(32)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때, 광축(AX4)은 하측 전극(32) 또는 상측 전극(36)을 포함하는 면과 직교(또는 거의 직교)하고 있다.
또한, 수직 배향막이 상술한 바와 같은 프리틸트 기능을 갖고 있는 경우에는, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때, 광축(AX4)은 도광판(10)의 광 입사면(10A)과 평행(또는 거의 평행)해짐과 함께, 투명 기판(31)의 법선과 소정의 프리틸트각으로 교차하고 있다.
한편, 벌크(64A)는 부분 전극(32A)과 상측 전극(36) 사이에의 전압 인가의 유무에 상관없이 광축(AX3)이 일정해지는 구성으로 되어 있다. 구체적으로는, 광축(AX3)은, 도광판(10)의 광 입사면(10A)과 평행(또는 거의 평행)해짐과 함께, 투명 기판(31)의 표면의 법선과 평행(또는 거의 평행)하게 되어 있다. 즉, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때, 광축(AX3)은 광축(AX4)과 평행(또는 거의 평행)하게 되어 있다.
또한, 수직 배향막이 상술한 바와 같은 프리틸트 기능을 갖고 있는 경우에는, 광축(AX3)은 도광판(10)의 광 입사면(10A)과 평행(또는 거의 평행)해짐과 함께, 투명 기판(31)의 법선과 소정의 프리틸트각으로 교차하고 있다. 즉, 이 경우에도, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때에는, 광축(AX3)은 광축(AX4)과 평행(또는 거의 평행)하게 되어 있다.
여기서, 벌크(64A) 및 미립자(64B)의 상광 굴절률이 서로 동등하게, 또한 벌크(64A) 및 미립자(64B)의 이상광 굴절률이 서로 동등한 것이 바람직하다. 이 경우에, 예를 들어 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때에는, 정면 방향 및 경사 방향을 포함하는 모든 방향에 있어서 굴절률차가 거의 없어서 높은 투명성을 얻을 수 있다. 이에 의해, 예를 들어 정면 방향을 향하는 광 및 경사 방향을 향하는 광은 광 변조층(64) 내에서 산란되지 않고 광 변조층(64)을 투과한다. 그 결과, 예를 들어 광원(20)으로부터의 광(경사 방향으로부터의 광)은, 광 변조 소자(60) 내에서 투명해진 영역(투과 영역(30A))의 계면(투명 기판(31) 또는 도광판(10)과 공기의 계면)에 있어서 전반사되고, 투과 영역(30A)의 휘도(흑색 표시의 휘도)가 광 변조 소자(60)를 설치하고 있지 않은 경우에 비하여 저하된다(도 8의 (A), (B) 참조).
또한, 벌크(64A) 및 미립자(64B)는, 예를 들어 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있을 때에는, 도 18에 도시한 바와 같이, 광축(AX3) 및 광축(AX4)의 방향이 서로 상이한(교차 또는 직교함) 구성으로 되어 있다. 또한, 미립자(64B)는, 예를 들어 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있을 때, 광축(AX4)이 도광판(10)의 광 입사면(10A)과 평행(또는 거의 평행)해짐과 함께 투명 기판(31)의 표면과 평행(또는 거의 평행)해지는 구성으로 되어 있다. 즉, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있을 때, 광축(AX4)은 부분 전극(32A) 또는 상측 전극(36)을 포함하는 면과 평행(또는 거의 평행)하게 되어 있고, 또한 부분 전극(32A)의 연장 방향과 평행(또는 거의 평행)하게 되어 있다.
따라서, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있을 때에는, 광 변조층(64)에 있어서, 광 입사면(10A)과 평행한 면이며, 또한 투명 기판(31)의 표면과 직교하는 면 내의 모든 방향에 있어서 굴절률차가 커져서 높은 산란성을 얻을 수 있다. 이에 의해, 예를 들어 정면 방향을 향하는 광 및 경사 방향을 향하는 광은 광 변조층(64) 내에서 산란된다. 그 결과, 예를 들어 광원(20)으로부터의 광(L)(경사 방향으로부터의 광)은 산란 영역(30B)의 계면(투명 기판(31) 또는 도광판(10)과 공기의 계면)을 투과함과 함께, 반사판(40)측에 투과한 광은 반사판(40)에서 반사되어 광 변조 소자(60)를 투과한다. 따라서, 산란 영역(30B)의 휘도는 광 변조 소자(60)를 설치하고 있지 않은 경우에 비해 지극히 높아지고, 게다가 투과 영역(30A)의 휘도가 저하된만큼 부분적인 백색 표시의 휘도(휘도 상승)가 커진다.
또한, 벌크(64A) 및 미립자(64B)의 상광 굴절률은, 예를 들어 제조 오차 등에 의해 다소 어긋나 있어도 되며, 예를 들어 0.1 이하인 것이 바람직하고, 0.05 이하인 것이 보다 바람직하다. 또한, 벌크(64A) 및 미립자(64B)의 이상광 굴절률에 대해서도, 예를 들어 제조 오차 등에 의해 다소 어긋나 있어도 되며, 예를 들어0.1 이하인 것이 바람직하고, 0.05 이하인 것이 보다 바람직하다.
또한, 벌크(64A)의 굴절률차(=이상광 굴절률-상광 굴절률)나, 미립자(64B)의 굴절률차(=이상광 굴절률-상광 굴절률)는 가능한 한 큰 것이 바람직하고, 0.05 이상인 것이 바람직하고, 0.1 이상인 것이 보다 바람직하고, 0.15 이상인 것이 더욱 바람직하다. 벌크(64A) 및 미립자(64B)의 굴절률차가 큰 경우에는, 광 변조층(64)의 산란능이 높아지고, 도광 조건을 용이하게 파괴할 수 있어 도광판(10)으로부터의 광을 추출하기 쉽기 때문이다.
또한, 벌크(64A) 및 미립자(64B)는 전기장에 대한 응답 속도가 서로 상이하다. 벌크(64A)는, 예를 들어 전기장에 대하여 응답하지 않는 줄무늬 형상 구조 또는 다공질 구조로 되어 있거나, 또는 미립자(64B)의 응답 속도보다도 느린 응답 속도를 갖는 막대 형상 구조로 되어 있다. 벌크(64A)는, 예를 들어 저분자 단량체를 중합화함으로써 얻어진 고분자 재료에 의해 형성되어 있다. 벌크(64A)는, 예를 들어 미립자(64B)의 배향 방향 또는 배향막(63, 65)의 배향 방향에 따라서 배향한 배향성 및 중합성을 갖는 재료(예를 들어 단량체)를 열 및 광 중 적어도 한쪽에 의해 중합시킴으로써 형성되어 있다. 한편, 미립자(64B)는, 예를 들어 액정 재료를 주로 포함하여 구성되어 있고, 벌크(64A)의 응답 속도보다도 충분히 빠른 응답 속도를 갖고 있다. 미립자(64B) 내에 포함되는 액정 재료(액정 분자)는, 예를 들어 막대 형상 분자이다.
여기서, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않을 때에는, 미립자(64B) 내에 있어서, 액정 분자의 장축 방향은 광축(AX3)과 평행하게 되어 있다. 이 때, 미립자(64B) 내의 액정 분자의 장축은 도광판(10)의 광 입사면(10A)과 평행(또는 거의 평행)해짐과 함께, 투명 기판(31)의 표면과 평행(또는 거의 평행)하게 되어 있다. 또한, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있을 때에는, 미립자(64B) 내에 있어서, 액정 분자의 장축 방향은 광축(AX3)과 교차(또는 직교)하고 있다. 이 때, 미립자(64B) 내의 액정 분자의 장축은 도광판(10)의 광 입사면(10A)과 평행(또는 거의 평행)해짐과 함께, 투명 기판(31)의 표면과 평행(또는 거의 평행)하게 되어 있다.
상기한, 배향성 및 중합성을 갖는 단량체로서는 광학적으로 이방성을 갖고 있으며, 또한 액정과 복합되는 재료이면 되지만, 본 실시 형태에서는 자외선으로 경화하는 저분자 단량체인 것이 바람직하다. 전압 무인가의 상태에서 액정과 저분자 단량체를 중합화함으로써 형성된 것(고분자 재료)과의 광학적 이방성의 방향이 일치하고 있는 것이 바람직하므로, 자외선 경화 전에 있어서, 액정과 저분자 단량체가 동일 방향으로 배향하고 있는 것이 바람직하다. 미립자(64B)로서 액정이 사용될 경우에, 그 액정이 막대 형상 분자일 때에는 사용하는 단량체 재료의 형상도 막대 형상인 것이 바람직하다. 이상으로부터, 단량체 재료로서는 중합성과 액정성을 겸비하는 재료를 사용하는 것이 바람직하고, 예를 들어 중합성 관능기로서 아크릴레이트기, 메타크릴레이트기, 아크릴로일옥시기, 메타크릴로일옥시기, 비닐에테르기 및 에폭시기를 포함하여 이루어지는 군에서 선택된 적어도 1개의 관능기를 갖는 것이 바람직하다. 이들 관능기는 자외선, 적외선 또는 전자선을 조사하거나 가열하거나 함으로써 중합시킬 수 있다. 자외선 조사 시의 배향도 저하를 억제하기 위해서 다관능기를 갖는 액정성 재료를 첨가할 수도 있다. 벌크(64A)를 상술한 줄무늬 형상 구조로 하는 경우에는, 벌크(64A)의 원료로서 2관능 액정성 단량체를 사용하는 것이 바람직하다. 또한, 벌크(64A)의 원료에 대하여 액정성을 나타내는 온도의 조정을 목적으로 단관능 단량체를 첨가하거나, 가교 밀도 향상을 목적으로 3관능 이상의 단량체를 첨가하거나 할 수도 있다.
구동 회로(50)는, 예를 들어 있는 광 변조 셀(30-1)에 있어서 미립자(64B)의 광축(AX4)이 벌크(64A)의 광축(AX3)과 평행하거나 거의 평행해지고, 다른 광 변조 셀(30-1)에 있어서 미립자(64B)의 광축(AX4)이 벌크(64A)의 광축(AX3)과 교차 또는 직교하도록 각 광 변조 셀(30-1)의 한 쌍의 전극(부분 전극(32A) 및 상측 전극(36))에 인가하는 전압의 크기를 제어하도록 되어 있다. 즉, 구동 회로(50)는, 전기장 제어에 의해 벌크(64A) 및 미립자(64B)의 광축(AX3, AX4)의 방향을 서로 일치(또는 거의 일치)시키거나, 서로 상이하게 하거나(또는 직교시키거나) 할 수 있도록 되어 있다.
구동 회로(50)는 또한, 복수의 부분 전극(32A)을 소정의 단위마다 순차 구동함으로써, 광 변조층(64) 중 산란성을 나타내는 부분(산란 영역(30B))을 광 입사면(10A)과 직교하는 방향으로 주사하도록 되어 있다. 이에 의해, 구동 회로(50)는, 광원(20)으로부터 사출된 광이 도광판 내를 전파해 가는 과정에서 산란 영역(30B)에서 산란되고, 백라이트(2)의 상면으로부터 외부에 사출되는 광을 광 입사면(10A)과 직교하는 방향으로 주사하도록 되어 있다.
이어서, 본 실시 형태의 백라이트(2)의 작용 및 효과에 대하여 설명한다.
본 실시 형태의 백라이트(2)에서는, 예를 들어 광 변조 셀(30-1)에 있어서 미립자(64B)의 광축(AX4)이 벌크(64A)의 광축(AX3)과 평행하거나 거의 평행해지고, 별도의 광 변조 셀(30-1)에 있어서 미립자(64B)의 광축(AX4)이 벌크(64A)의 광축(AX3)과 교차 또는 직교하도록 각 광 변조 셀(30-1)의 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가된다. 이에 의해, 광원(20)으로부터 사출되어 도광판(10) 내에 입사한 광은, 광 변조 소자(60) 중 광축(AX3)과 광축(AX4)이 서로 평행하거나 거의 평행하게 되어 있는 투과 영역(30A)을 투과한다. 한편, 광원(20)으로부터 사출되어 도광판(10) 내에 입사된 광은, 광 변조 소자(60) 중 광축(AX3)과 광축(AX4)이 서로 교차 또는 직교하고 있는 산란 영역(30B)에 있어서 산란된다. 이 산란광 중 산란 영역(30B)의 하면을 투과한 광은 반사판(40)에서 반사되고, 다시, 도광판(10)에 복귀된 뒤, 백라이트(2)의 상면으로부터 사출된다. 또한, 산란광 중 산란 영역(30B)의 상면을 향한 광은, 도광판(10)을 투과한 뒤, 백라이트(2)의 상면으로부터 사출된다. 이와 같이, 본 실시 형태에서는, 투과 영역(30A)의 상면으로부터는 광은 거의 사출되지 않고, 산란 영역(30B)의 상면으로부터 광이 사출된다. 이와 같이 하여 정면 방향의 변조비를 크게 하고 있다.
그런데, 본 실시 형태에서는, 벌크(64A) 및 미립자(64B)가 광학 이방성 재료를 주로 포함하여 형성되어 있으므로, 경사 방향에 있어서 산란성이 작아져서 투명성을 향상시킬 수 있다. 예를 들어, 벌크(64A) 및 미립자(64B)가, 서로 상광 굴절률이 동등하게, 또한 서로 이상광 굴절률도 동등한 광학 이방성 재료를 주로 포함하여 구성되고, 또한, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않은 영역에서는 이들 광축의 방향이 일치하거나 거의 일치한다. 이에 의해, 정면 방향(광 변조 소자(60)의 법선 방향) 및 경사 방향을 포함하는 모든 방향에 있어서 굴절률차가 적어지던지, 또는 없어져서 높은 투명성을 얻을 수 있다. 그 결과, 시야각이 큰 범위에 있어서의 광의 누설을 저감시키거나 거의 없앨 수 있어 시야각 특성을 좋게 할 수 있다.
예를 들어, 상광 굴절률 1.5, 이상광 굴절률 1.65인 액정과, 상광 굴절률 1.5, 이상광 굴절률 1.65인 액정성 단량체를 혼합하고, 배향막 또는 전계에 의해 액정과 액정성 단량체를 배향시킨 상태에서 액정성 단량체를 중합시키면, 액정의 광축과 액정성 단량체가 중합함으로써 형성된 중합체의 광축이 서로 일치한다. 이에 의해, 모든 방향에서 굴절률을 일치시킬 수 있으므로, 그와 같이 한 경우에는 투명성이 높은 상태를 실현할 수 있어, 보다 한층 시야각 특성을 좋게 할 수 있다.
또한, 본 실시 형태에서는, 예를 들어 투과 영역(30A)의 휘도(흑색 표시의 휘도)가 광 변조 소자(60)를 설치하고 있지 않은 경우에 비해 저하된다. 한편, 산란 영역(30B)의 휘도는 광 변조 소자(60)를 설치하고 있지 않은 경우에 비해 지극히 높아지고, 게다가 투과 영역(30A)의 휘도가 저하된만큼 부분적인 백색 표시의 휘도(휘도 상승)가 커진다. 이것은, 벌크(64A) 및 미립자(64B)이 광학 이방성 재료를 주로 포함하여 형성되어 있고, 경사 방향의 산란성이 억제되어 어두운 상태에서의 도광판으로부터의 누설광이 적기 때문이다. 따라서, 부분적인 어두운 상태의 부분으로부터 부분적으로 밝은 상태의 부분에 도광하므로, 백라이트(2)에의 투입 전력을 증가시키지 않고 휘도 상승을 실현할 수 있다.
또한, 본 실시 형태에 있어서, 수직 배향막이 상술한 바와 같은 프리틸트 기능을 갖고 있는 경우에는, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되고 있지 않은 영역에 있어서, 미립자(64B)의 광축(AX4)이 도광판(10)의 광 입사면(10A)과 평행(또는 거의 평행)하게 되어 있고, 또한 투명 기판(31)의 법선과 소정의 프리틸트각으로 교차하고 있다. 즉, 미립자(64B) 내에 포함되는 액정 분자가, 광 입사면(10A)과 평행한 면 내에 있어서 소정의 프리틸트각만큼 경사진 상태에서 배향하고 있다. 그로 인해, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가되었을 때, 미립자(64B) 내에 포함되는 액정 분자는 임의적인 방위에 하강되지 않고 광 입사면(10A)과 평행한 면 내에서 하강한다. 이 때, 벌크(64A) 및 미립자(64B)의 광축(AX3, AX4)이 광 입사면(10A)과 평행한 면 내에 있어서 서로 교차 또는 직교한다. 따라서, 부분 전극(32A)과 상측 전극(36) 사이에 전압이 인가된 영역에 있어서, 정면 방향(광 변조 소자(60)의 법선 방향) 및 경사 방향을 포함하는 모든 방향에 있어서 굴절률차가 커져서 높은 산란성을 얻을 수 있다. 그 결과, 표시 휘도를 향상시킬 수 있다. 또한, 상기의 휘도 상승의 효과에 의해 휘도를 더욱 향상시킬 수 있다.
또한, 본 실시 형태에서도, 광 입사면(10A)과 직교하는 방향으로 배열된 복수의 부분 전극(32A)이 소정의 단위마다 순차 구동된다. 이에 의해, 광원(20)으로부터 사출된 광이 도광판(10) 내를 전파해 가는 과정에서, 광 변조층(64) 중 산란성을 나타내는 부분(산란 영역(30B))이 광 입사면(10A)과 직교하는 방향으로 주사된다. 그 결과, 산란 영역(30B)에서 산란되고, 백라이트(2)의 상면으로부터 외부에 사출되는 광이 광 입사면(10A)과 직교하는 방향으로 주사된다. 이 때, 광원(20)은 스캔 구동되어 있지 않으므로, 상기한 휘도 상승의 효과에 의해 광원을 스캔 구동하는 종래 방식보다도 고휘도를 얻을 수 있다. 또한, 본 실시 형태에서는, 상술한 바와 같이, 광원(20)이 스캔 구동되어 있지 않은 점에서, 매우 짧은 기간에 광원에 큰 전력을 투입하여 스캔 구동하는 경우에 발생하는 돌입 전력을 고려 할 필요가 거의 없어서 회로 기판의 신뢰성을 손상시키는 경우가 없다.
이와 같이, 본 실시 형태에서도, 광원(20)을 스캔 구동하는 대신에 광 변조층(64) 내의 산란 영역(30B)을 주사함으로써, 백라이트(2)의 상면으로부터 외부에 사출되는 광을 주사하도록 했으므로, 스캔 방식에 있어서 고휘도, 저소비 전력 및 회로 기판의 고신뢰성의 모두를 동시에 실현할 수 있다.
<3. 변형예>
[제1 변형예]
상기 각 실시 형태에 있어서, 구동 회로(50)는 복수의 부분 전극(32A)을 소정의 단위마다 순차 구동해 가는 과정에서 광원(20)을 항상 점등시키도록 되어 있어도 된다. 예를 들어, 도 19의 (A), (B)에 도시한 바와 같이, 구동 회로(50)는 1개 또는 복수의 부분 전극(32A)을 1개의 블록으로 간주했을 때, 복수의 부분 전극(32A)을 블록마다 순차 구동해 가는 과정에서, 1블럭째의 구동과 동기하여 광원(20)을 점등시키고, 모든 블록의 주사가 종료될 때까지의 동안에 계속하여 점등시키도록 되어 있어도 된다.
또한, 도 19의 (A)는 부분 전극(32A)에의 전압 인가의 타이밍의 일례를 개념적으로 도시한 것이며, 도 19의 (B)는 광원(20)에의 인가 전압의 파형의 일례를 모식적으로 도시한 것이다. 도 19의 (A), (B)에는 구동 회로(50)가 1블럭째의 구동의 개시와 동시에 광원(20)을 점등시키는 겨우가 예시되어 있지만, 구동 회로(50)가 1블럭째의 구동의 개시 전에 광원(20)을 점등시키도록 되어 있어도 된다. 또한, 액정이 전압 인가의 순간부터 지연되어 응답하는 성질을 고려하여 구동 회로(50)가 1블럭째의 구동의 개시 직후에 광원(20)을 점등시키도록 되어 있어도 된다.
[제2 변형예]
또한, 상기 각 실시 형태에 있어서, 구동 회로(50)는 복수의 부분 전극(32A)을 소정의 단위마다 순차 구동해 가는 과정에서, 광원(20)을 부분 전극(32A)의 구동 타이밍으로 동기하여 점멸시키도록 되어 있어도 된다. 예를 들어, 도 20의 (A), (B)에 도시한 바와 같이, 구동 회로(50)는 복수의 부분 전극(32A)을 소정의 단위마다 순차 구동해 가는 과정에서, 부분 전극(32A)에 전압을 인가하고 있는 기간만큼 광원(20)을 점등시키도록 되어 있어도 된다.
또한, 도 20의 (A)는 부분 전극(32A)에의 전압 인가의 타이밍의 일례를 개념적으로 도시한 것이며, 도 20의 (B)는 광원(20)에의 인가 전압의 파형의 일례를 모식적으로 도시한 것이다. 도 20의 (A), (B)에는 구동 회로(50)가 각 블록의 구동의 개시와 동시에 광원(20)을 점등시키는 경우가 예시되어 있지만, 구동 회로(50)가 각 블럭째의 구동의 개시 전에 광원(20)을 점등시키도록 되어 있어도 된다. 또한, 액정이 전압 인가의 순간부터 지연되어 응답하는 성질을 고려하여 구동 회로(50)가 각 블록의 구동의 개시 직후에 광원(20)을 점등시키도록 되어 있어도 된다.
본 변형예에 있어서, 구동 회로(50)는, 광 변조층(34)이 일부의 영역에서 산란성을 나타내고 있을 때 광원(20)을 점등시키고, 광 변조층(34)이 전체 영역에서 투명성을 나타내고 있을 때 광원(20)을 소등시키도록 되어 있다고도 할 수 있다.
그런데, 상기 각 실시 형태에 있어서, 스캔 구동을 고속으로(예를 들어 몇백Hz로) 행할 경우, 부분 전극(32A)의 배선 저항 및 광 변조층(34)(또는 광 변조층(64))의 정전 용량으로 결정되는 시상수에 의해 부분 전극(32A)에 인가한 전압의 파형이 완만해지고, 부분 전극(32A)의 말단에 있어서, 인가되는 파형이 지연되어버릴 가능성이 있다. 그 경우, 백라이트(1)(또는 백라이트(2))로부터 출력된 광에 있어서, 부분 전극(32A)의 연장 방향과 대응하는 방향에서 밝기에 차가 발생하거나, 인접하는 주사 영역과 간섭하거나 하는 등의 화상 품질상의 문제가 발생할 가능성이 있다. 따라서, 그러한 문제가 발생하는 경우에는, 예를 들어 도 20의 (A), (B)에 도시한 바와 같이, 복수의 부분 전극(32A)이 소정의 단위마다 순차 구동되어 가는 과정에서 광원(20)을 부분 전극(32A)의 구동 타이밍으로 동기하여 점멸하는 것이 바람직하다. 이와 같이 함으로써 고속 스캔 구동 시의 화상 품질을 개선할 수 있다.
[제3 변형예]
또한, 상기 각 실시 형태 및 그들의 변형예(이하, 간단히 「상기 각 실시 형태 등」이라고 칭함)에 있어서, 예를 들어 도 21에 도시한 바와 같이, 부분 전극(32A)의 연장 방향으로 연장하는 금속 배선(43)이 각 부분 전극(32A)에 1개씩 접하여 설치되어 있어도 된다. 금속 배선(43)은 가능한 한 표면이 경면이 되는 재료이며, 또한 가능한 한 배선 저항이 작은 재료로 구성되어 있는 것이 바람직하다. 그러한 재료로서는, 예를 들어 Al(알루미늄), Ag(은), Au(금), Cu(구리), Mo(몰리브덴), Ta(탄탈) 등을 들 수 있다. 금속 배선(43)의 폭은, 금속 배선(43)이 백라이트(1, 2)의 암선이 되지 않을 정도로 되어 있는 것이 바람직하고, 500㎛ 이하가 되어 있는 것이 바람직하고, 300㎛ 이하가 되어 있는 것이 보다 바람직하고, 150㎛ 이하가 되어 있는 것이 더욱 바람직하다.
[제4 변형예]
또한, 상기 각 실시 형태 등에 있어서, 구동 회로(50)는 구동 대상의 부분 전극(32A)의 광원(20)으로부터의 거리에 따라서 광원(20)의 광량을 조정하도록 되어 있어도 된다. 예를 들어, 구동 회로(50)는 구동 대상의 부분 전극(32A)의 광원(20)으로부터의 거리가 멀어짐에 따라서 광원(20)의 광량을 증대시키도록 되어 있어도 된다.
[제5 변형예]
또한, 상기 각 실시 형태 등에 있어서, 도 22에 도시한 바와 같이, 각 부분 전극(32A)이 복수의 세선 전극(32B)에 의해 구성되어 있어도 된다. 또한, 세선 전극(32B)은 본 발명의 「부분 전극」의 하나의 구체예에 상당하는 경우가 있다. 그런데, 본 변형예에 있어서, 구동 회로(50)는, 복수의 부분 전극(32A)을 소정의 단위마다 순차 구동할 때, 구동 대상의 부분 전극(32A)에 포함되는 복수의 세선 전극(32B)에 대하여 광원(20)으로부터의 거리에 따라서 변조된 전압을 인가하도록 되어 있어도 된다. 예를 들어, 도 23에 도시한 바와 같이, 구동 회로(50)는, 복수의 부분 전극(32A)을 소정의 단위마다 순차 구동할 때, 구동 대상의 부분 전극(32A)에 포함되는 복수의 세선 전극(32B)에 대하여 광원(20)으로부터의 거리가 멀어짐에 따라서 파고값의 보다 큰 전압을 인가하도록 되어 있어도 된다. 또한, 구동 회로(50)는 복수의 세선 전극(32B)을 소정의 단위마다(예를 들어 부분 전극(32A)마다) 순차 구동하도록 되어 있어도 되고, 복수의 세선 전극(32B)을 1개씩 순서대로 구동하도록 되어 있어도 된다.
[제6 변형예]
또한, 상기 각 실시 형태 등에 있어서, 각 부분 전극(32A)이 패터닝된 것이어도 된다. 예를 들어, 도 24의 (A), (B)에 도시한 바와 같이, 각 부분 전극(32A)이 복수의 개구(32C)를 갖고 있어도 된다. 개구(32C)는, 예를 들어 원 형상, 타원 형상 또는 다각형 형상으로 되어 있다. 이 때, 각 부분 전극(32A)에 설치된 복수의 개구(32C)의 밀도(단위 면적당의 개구(32B)의 점유율)가 광원(20)으로부터의 거리에 따라서 상이하다. 예를 들어, 도 24의 (A)에 도시한 바와 같이, 단위 면적당의 개구(32C)의 수가 광원(20)으로부터의 거리에 상관없이 일정하고, 개구(32C)의 직경이 광원(20)으로부터의 거리가 멀어짐에 따라서 작아져 있다. 또한, 예를 들어 도 24의 (B)에 도시한 바와 같이, 개구(32C)의 직경이 광원(20)으로부터의 거리에 상관없이 일정하고, 단위 면적당의 개구(32C)의 수가 광원(20)으로부터의 거리가 멀어짐에 따라서 적어져 있다. 따라서, 상기 중 어느 예에 있어서도, 개구(32C)의 밀도가 광원(20)으로부터의 거리가 멀어짐에 따라서 성겨져 있다(작아져 있음). 바꾸어 말하면, 부분 전극(32A)의 패턴 밀도(부분 전극(32A) 중 개구(32C) 이외의 부분의 단위 면적당의 점유율)가 광원(20)으로부터의 거리가 멀어짐에 따라서 밀하게 되어 있다(커져 있음).
이와 같이, 부분 전극(32A)의 패턴 밀도를 광원(20)으로부터의 거리에 따라서 상이하게 함으로써, 백라이트(1, 2)의 광 사출 영역에서의 투명 영역(30A) 및 산란 영역(30B)의 밀도 분포를 원하는 분포로 할 수 있다. 이에 의해, 백라이트(1, 2)의 광 사출 영역 중 광원(20)에 가까운 쪽의 휘도를, 광 변조 소자(30, 60)를 설치하고 있지 않은 경우보다도 낮게 억제하고, 또한 백라이트(1, 2)의 광 사출 영역 중 광원(20)으로부터 멀리 떨어진 쪽의 휘도를, 광 변조 소자(30, 60)를 설치하고 있지 않은 경우보다도 높게 할 수 있다. 그 결과, 예를 들어 백라이트(1, 2)의 광 사출 영역 전체를 어두운 상태로 한 경우 뿐만 아니라, 백라이트(1, 2)의 광 사출 영역 전체를 밝은 상태로 한 경우에도 면 내 휘도를 균일화할 수 있다. 따라서, 예를 들어 광원(20)에 가까운 영역과, 광원(20)으로부터 먼 영역에 있어서 백색 표시를 했을 때, 양쪽 영역의 백색 휘도를 동등하게 하는 것이 가능해진다. 또한, 예를 들어 광원(20)에 가까운 영역과, 광원(20)으로부터 먼 영역에 있어서 흑색 표시를 했을 때에도, 이들 영역의 흑색 휘도를 동등하게 하는 것이 가능해진다. 이상으로부터, 본 변형예에서는, 면 내 휘도를 균일화하면서 변조비를 높게 할 수 있다.
[제7 변형예]
또한, 상기 각 실시 형태 등에서는, 광 변조 소자(30, 60)는 도광판(10)의 배후(하면)에 공기층을 통하지 않고 밀착하여 접합되어 있었지만, 예를 들어 도 25에 도시한 바와 같이, 도광판(10)의 상면에 공기층을 통하지 않고 밀착하여 접합되어 있어도 된다. 또한, 광 변조 소자(30, 60)는, 예를 들어 도 26에 도시한 바와 같이, 도광판(10)의 내부에 설치되어 있어도 된다. 단, 이 경우에도, 광 변조 소자(30, 60)는 도광판(10)과 공기층을 통하지 않고 밀착하여 접합되어 있는 것이 필요하다.
[제8 변형예]
또한, 상기 실시 형태 등에서는, 도광판(10) 상에 특히 아무것도 설치되어 있지 않았지만, 예를 들어 도 27에 도시한 바와 같이, 광학 시트(70)(예를 들어, 확산판, 확산 시트, 렌즈 필름, 편광 분리 시트 등)를 설치해도 된다. 이와 같이 한 경우에는, 도광판(10)으로부터 경사 방향에 사출된 광의 일부가 정면 방향으로 상승되므로 변조비를 효과적으로 향상시킬 수 있다.
<적용예>
[제1 적용예]
이어서, 상기 각 실시 형태 등의 백라이트(1, 2)의 하나의 적용예에 대하여 설명한다.
도 28은 본 적용예에 관한 표시 장치(3)의 개략 구성의 일례를 도시한 것이다. 이 표시 장치(3)는 표시 패널(80)과 표시 패널(80)의 배후에 배치된 백라이트(1, 2)를 구비하고 있다.
표시 패널(80)은 영상을 표시하기 위한 것이다. 표시 패널(80)은 2차원 배치된 복수의 화소를 가짐과 함께, 복수의 화소가 영상 신호에 기초하여 구동됨으로써 영상을 표시하는 것이 가능하게 되어 있다. 표시 패널(80)은, 예를 들어 투과형의 액정 표시 패널이며, 액정층을 한 쌍의 투명 기판 사이에 개재한 구조로 되어 있다. 표시 패널(80)은, 예를 들어 도시하지는 않지만, 백라이트(1, 2)측부터 순서대로 편광자, 투명 기판, 화소 전극, 배향막, 액정층, 배향막, 공통 전극, 컬러 필터, 투명 기판 및 편광자를 갖고 있다.
투명 기판은 가시광에 대하여 투명한 기판, 예를 들어 판유리 등을 포함하여 이루어진다. 또한, 백라이트(1, 2)측의 투명 기판에는, 도시하지는 않지만, 화소 전극에 전기적으로 접속된 TFT(Thin Film Transistor; 박막 트랜지스터) 및 배선 등을 포함하는 능동형의 구동 회로가 형성되어 있다. 화소 전극 및 공통 전극은, 예를 들어 ITO 등을 포함하여 이루어진다. 화소 전극은 투명 기판 상에 규칙적으로 배열되어 있고, 예를 들어 격자 배열 또는 델타 배열되어 있다. 화소 전극은 화소마다의 전극으로서 기능하는 것이다. 한편, 공통 전극은 컬러 필터 상에 한 면에 형성된 것이다. 공통 전극은 각 화소 전극에 대하여 대향하는 공통 전극으로서 기능하는 것이다. 배향막은, 예를 들어 폴리이미드 등의 고분자 재료 등을 포함하여 이루어지고, 액정에 대하여 배향 처리를 행하는 것이다. 액정층은, 예를 들어VA(Vertical Alignment) 모드, TN(Twisted Nematic) 모드 또는 STN(Super Twisted Nematic) 모드 등의 액정 등을 포함하여 이루어지고, 구동 회로(도시하지 않음)로부터의 인가 전압에 의해 백라이트(1, 2)로부터의 사출광의 편광축의 방향을 화소마다 바꾸는 기능을 갖는다. 또한, 액정의 배열을 다단계에서 바꿈으로써 화소마다의 투과축의 방향이 다단계로 조정된다. 컬러 필터는, 액정층을 투과해 온 광을, 예를 들어 적색(R), 녹색(G) 및 청색(B)의 삼원색으로 각각 색 분리하거나, 또는 R, G, B 및 백색(W) 등의 4색으로 각각 색 분리하거나 하는 컬러 필터를 화소 전극의 배열과 대응시켜서 배열한 것이다. 필터 배열(화소 배열)로서는 일반적으로 스트라이프 배열이나, 대각선 배열, 델타 배열, 직사각형 배열과 같은 것이 있다.
편광자는 광학 셔터의 일종이며, 어떤 일정한 진동 방향의 광(편광)만을 통과시킨다. 또한, 편광자는 투과축 이외의 진동 방향의 광(편광)을 흡수하는 흡수형의 편광 소자이어도 되지만, 백라이트(1, 2)측에 반사하는 반사형의 편광 소자인 것이 휘도 향상의 관점에서 바람직하다. 편광자는 각각 편광축이 서로 90° 상이하도록 배치되어 있고, 이에 의해 백라이트(1, 2)로부터의 사출광이 액정층을 통하여 투과하고, 또는 차단되도록 되어 있다.
백라이트(1, 2)에 있어서, 복수의 부분 전극(32A)은 표시 패널(80)의 복수의 화소(또는 화소 전극)의 1개의 배열 방향(예를 들어 수직 방향)과 평행한 방향으로 배열되어 있다. 또한, 복수의 화소(또는 화소 전극)가 수평 방향으로도 배열되어 있는 경우에, 복수의 부분 전극(32A)은 수평 방향으로 연장하고 있는 것이 바람직하다. 각 부분 전극(32A)의 폭은 표시 패널(80)의 각 화소의 폭과 동일하게 되어 있어도 되지만, 그것보다도 넓어져 있는 것이 바람직하다. 백라이트(1, 2)에 있어서의 각 산란 영역(30B)의 스캔은 표시 패널(80)에 있어서의 각 화소의 스캔만큼 치밀할 필요는 없기 때문이다. 또한, 이하에서는, 각 부분 전극(32A)의 폭이 표시 패널(80)의 각 화소의 폭보다도 넓어져 있는 것으로 한다.
본 적용예에 있어서, 구동 회로(50)는 표시 패널(80)의 복수의 화소(또는 화소 전극)를 라인마다 순차 구동함으로써 백라이트(1, 2)로부터 출력된 광을 표시 패널(80)에서 변조하도록 되어 있다. 이에 의해, 구동 회로(50)는 표시 패널(80)에 영상을 표시시키도록 되어 있다. 또한, 구동 회로(50)는 백라이트(1, 2)의 복수의 부분 전극(32A)을 소정의 단위마다 순차 구동함으로써, 광 변조층(34, 64) 중 산란성을 나타내는 부분(산란 영역(30B))을 광 입사면(10A)과 직교하는 방향으로 주사하도록 되어 있다. 이에 의해, 구동 회로(50)는, 광원(20)으로부터 사출된 광이 도광판 내를 전파해 가는 과정에서 산란 영역(30B)으로 산란되고, 백라이트(1, 2)의 상면으로부터 표시 패널(80)의 배면에 사출되는 광을 광 입사면(10A)과 직교하는 방향으로 주사하도록 되어 있다.
구동 회로(50)는 또한 복수의 부분 전극(32A)을 표시 패널(80)의 복수의 화소의 구동과 동기하여 구동하도록 되어 있다. 예를 들어, 도 29의 (A), (B)에 도시한 바와 같이, 구동 회로(50)는 복수의 행(도에서는 135행)에 대응하는 복수의 화소를 1개의 블록으로 간주함과 함께, 그 블록과 대응하는 1개 또는 복수의 부분 전극(32A)을 1개의 블록으로 간주했을 때, 표시 패널(80)의 복수의 화소를 라인마다 순차 구동해 가는 과정에서 복수의 부분 전극(32A) 중 구동 대상의 화소를 포함하는 블록과 대응하는 블록에 포함되는 1개 또는 복수의 부분 전극(32A)을 구동하도록 되어 있다. 또한, 도 29의 (A)는 표시 패널(80)의 복수의 화소에의 전압 인가 타이밍의 일례를 개념적으로 도시한 것이며, 도 29의 (B)는 부분 전극(32A)에의 전압 인가 타이밍의 일례를 개념적으로 도시한 것이다.
도 29의 (A), (B)에는, 구동 회로(50)가 표시 패널(80)의 화소의 구동의 개시와 동시에 부분 전극(32A)의 구동을 개시하고 있는 경우가 예시되어 있지만, 구동 회로(50)가 표시 패널(80)의 화소의 구동의 개시 전에 부분 전극(32A)의 구동을 개시하도록 되어 있어도 된다. 또한, 액정이 전압 인가의 순간부터 지연되어 응답하는 성질을 고려하여 구동 회로(50)가 표시 패널(80)의 화소의 구동의 개시 직후에 부분 전극(32A)의 구동을 개시하도록 되어 있어도 된다.
또한, 구동 회로(50)는 표시 패널(80)의 복수의 화소를 라인마다 순차 구동해 가는 과정에서 복수의 부분 전극(32A) 중 구동 대상의 화소를 포함하는 블록과 대응하는 블록에 포함되는 1개 또는 복수의 부분 전극(32A)을 구동함과 함께, 광원(20)을 부분 전극(32A)의 구동 타이밍으로 동기하여 점멸시키도록 되어 있어도 된다. 구동 회로(50)는, 예를 들어 상기의 제2 변형예에서 설명한 바와 같이 광원(20)을 점등시키도록 되어 있어도 된다. 이와 같이 한 경우에는, 고휘도로, 게다가 동화상 응답성의 둔함이 개선된 표시가 가능해진다.
본 적용예에서는, 표시 패널(80)을 조명하는 광원으로서 상기 실시 형태의 백라이트(1, 2)가 사용되고 있다. 이에 의해, 스캔 방식에 있어서, 콘트라스트가 높고, 게다가 표시 휘도도 높은 화상을 저소비 전력으로 표시할 수 있다. 또한, 본 적용예에 있어서, 복수의 부분 전극(32A)을 표시 패널(80)의 복수의 화소의 구동과 동기하여 구동함과 함께, 광원(20)을 부분 전극(32A)의 소정의 단위마다의 순차 구동에 동기하여 점멸시키도록 한 경우에는, 고휘도로, 게다가 동화상 응답성의 둔함이 개선된 표시가 가능해진다.
[제2 적용예]
이어서, 상기 각 실시 형태 등의 백라이트(1, 2)의 다른 적용예에 대하여 설명한다.
도 30은 본 적용예에 관한 3차원 표시 장치(4)의 개략 구성의 일례를 도시한 것이다. 이 3차원 표시 장치(4)는 시분할 방식에 의해 입체 화상의 관찰이 가능한 것이며, 예를 들어 표시 장치(3)와 셔터 안경(5)을 구비하고 있다. 표시 장치(3)는, 관찰자(도시하지 않음)가 셔터 안경(5)을 사용하여 표시 장치(3)의 화상 표시면(3A)을 관찰함으로써 입체 영상을 시인하는 것이 가능한 표시 장치(3D 디스플레이)이다.
표시 장치(3)에 있어서, 구동 회로(50)는 예를 들어 도시하지는 않지만, 영상 신호 처리 회로, 타이밍 생성 회로, 신호선 구동 회로 및 주사선 구동 회로를 갖고 있다. 영상 신호 처리 회로는 외부로부터 입력된 디지털의 영상 신호에 대하여 소정의 보정을 행함과 함께, 보정한 후의 영상 신호를 신호선 구동 회로에 출력 하는 것이다. 영상 신호의 종류로서는, 예를 들어 우안용 화상용의 영상 신호, 좌안용 화상용의 영상 신호, 흑색 화상용의 영상 신호 등을 들 수 있다. 또한, 소정의 보정으로서는, 예를 들어 감마 보정이나 오버드라이브 보정 등을 들 수 있다.
타이밍 생성 회로는 신호선 구동 회로, 주사선 구동 회로 및 셔터 안경(5)이 연동하여 동작하도록 제어하는 것이다. 타이밍 생성 회로는, 예를 들어 외부로부터 입력된 동기 신호에 따라서(동기하여) 이들에 대하여 제어 신호를 출력하도록 되어 있다.
신호선 구동 회로는 상술한 제어 신호의 입력에 따라서(동기하여) 영상 신호 처리 회로로부터 입력된 영상 신호에 대응하는 아날로그의 영상 신호를 표시 패널(80) 내의 각 신호선(도시하지 않음)에 인가하여 아날로그의 영상 신호 또는 그것에 대응하는 신호를 선택 대상의 화소에 기입하는 것이다. 신호선 구동 회로는, 예를 들어 1프레임 기간마다 흑색 화상용의 영상 신호에 대응하는 신호 전압과, 우안용 화상용의 영상 신호에 대응하는 신호 전압과, 흑색 화상용의 영상 신호에 대응하는 신호 전압과, 좌안용 화상용의 영상 신호에 대응하는 신호 전압을, 이 순서로 각 신호선에 인가하여 선택 대상의 화소에의 기입을 행하는 것이다.
주사선 구동 회로는 상술한 제어 신호의 입력에 따라서(동기하여) 표시 패널(80) 내의 복수의 주사선(도시하지 않음)에 선택 펄스를 차례로 인가하여 복수의 화소를 라인마다 차례로 선택하는 것이다.
셔터 안경(5)은 관찰자(도시하지 않음)의 안구의 앞에 장착되는 것이며, 표시 장치(3)의 화상 표시면(3A)에 투영되는 화상을 관찰할 때 관찰자에 의해 사용되는 것이다. 셔터 안경(5)은, 예를 들어 우안용 셔터(51)와 좌안용 셔터(52)와 우안용 셔터(51)의 개폐 및 좌안용 셔터(52)의 개폐를 제어하는 제어 신호를 인가하는 제어선(도시하지 않음)을 갖고 있다. 셔터 제어용의 제어선은 표시 장치(3)의 구동 회로(50)에 직접 접속되어 있어도 되고, 표시 장치(3)의 구동 회로(50)와 통신 가능한 무선 장치(도시하지 않음)에 접속되어 있어도 된다. 우안용 셔터(51) 및 좌안용 셔터(52)은 화상 표시면(3A)으로부터 출력되는 화상의 투과 및 차단을 제어 신호에 기초하여 행하는 것이다. 우안용 셔터(51)는 화상 표시면(3A)으로부터 우안용 화상이 출력되어 있을 때 셔터가 개방되도록 되어 있다. 한편, 좌안용 셔터(52)는 화상 표시면(3A)으로부터 좌안용 화상이 출력되어 있을 때 셔터가 개방되도록 되어 있다.
이하에서는, 우안용 화상의 적어도 일부가 화상 표시면(3A)에 표시되어 있는 기간을, 우안용 화상을 표시하는 기간(우안용 화상 표시 기간)이라고 칭하기로 한다. 마찬가지로, 좌안용 화상의 적어도 일부가 화상 표시면(3A)에 표시되어 있는 기간을, 좌안용 화상을 표시하는 기간(좌안용 화상 표시 기간)이라고 칭하기로 한다. 또한, 화상 표시면(3A) 전체에 흑색 화상이 표시되어 있는 기간을, 흑색 화상을 표시하는 기간(흑색 화상 표시 기간)이라고 칭하기로 한다.
구동 회로(50)는, 예를 들어 흑색 화상 표시 기간, 우안용 화상 표시 기간, 흑색 화상 표시 기간, 좌안용 화상 표시 기간을 프레임 기간마다 반복한다. 이 때, 시청자는 셔터 안경(5)을 쓴 상태에서 좌안용 화상을 좌안만으로 시인하고, 우안용 화상을 우안만으로 시인한다. 구동 회로(50)는, 예를 들어 좌안용 화상 표시 기간에 좌안용 셔터(52)를 개방하는(좌안용 안경을 투과 상태로 함) 제어 신호를 출력하고, 그 이외의 기간에 좌안용 셔터(52)를 폐쇄하는(좌안용 안경을 비투과 상태로 함) 제어 신호를 출력한다. 또한, 구동 회로(50)는, 예를 들어 우안용 화상 표시 기간에 우안용 셔터를 개방하는(우안용 안경을 투과 상태로 함) 제어 신호를 출력하고, 그 이외의 기간에 우안용 셔터를 폐쇄하는(우안용 안경을 비투과 상태로 함) 제어 신호를 출력한다. 이에 의해, 좌안용 화상이 좌안만으로 시인되고, 우안용 화상이 우안만으로 시인되므로, 좌안용 화상과 우안용 화상이 관찰자의 망막에서 결상된다. 그 결과, 시청자는 입체 영상을 관찰할 수 있다.
구동 회로(50)는 복수의 부분 전극(32A)을 소정의 단위마다 순차 구동함으로써, 광 변조층(34, 64) 중 산란성을 나타내는 부분(산란 영역(30B))을 광 입사면(10A)과 직교하는 방향으로 주사하도록 되어 있다. 이에 의해, 구동 회로(50)는 광원(20)으로부터 사출된 광이 도광판 내를 전파해 가는 과정에서 산란 영역(30B)에서 산란되고, 백라이트(1, 2)의 상면으로부터 외부에 사출되는 광을 광 입사면(10A)과 직교하는 방향으로 주사하도록 되어 있다. 구동 회로(50)는 상기한 제1 적용예와 마찬가지로 복수의 부분 전극(32A)을 표시 패널(80)의 복수의 화소의 구동과 동기하여 구동하도록 되어 있다. 또한, 구동 회로(50)는 상기한 제1 적용예와 마찬가지로 복수의 부분 전극(32A)을 표시 패널(80)의 복수의 화소의 구동과 동기하여 구동함과 함께, 광원(20)을 부분 전극(32A)의 소정의 단위마다의 순차 구동에 동기하여 점멸시키도록 되어 있어도 된다.
본 적용예에서는, 표시 패널(80)을 조명하는 광원으로서 상기 실시 형태의 백라이트(1, 2)가 사용되고 있다. 이에 의해, 스캔 방식에 있어서, 콘트라스트가 높고, 게다가 표시 휘도도 높은 화상을 저소비 전력으로 표시할 수 있다. 또한, 본 적용예에 있어서, 복수의 부분 전극(32A)을 표시 패널(80)의 복수의 화소의 구동과 동기하여 구동함과 함께, 광원(20)을 부분 전극(32A)의 순차 구동에 동기하여 점멸시키도록 한 경우에는, 고휘도로, 게다가 동화상 응답성의 둔함이 개선된 표시가 가능해지고, 또한, 좌안용 화상과 우안용 화상 사이에서 크로스 토크가 발생하는 것을 저감시킬 수 있다.

Claims (16)

  1. 표시 장치로서,
    조명광을 출력하는 조명 장치와,
    상기 조명광을 변조하여 영상을 출력하는 표시 패널과,
    상기 조명 장치 및 상기 표시 패널을 구동하는 구동 회로를 구비하고,
    상기 조명 장치는,
    도광판과,
    상기 도광판의 측면에 배치된 광원과,
    상기 도광판의 표면 또는 내부에 배치됨과 함께 상기 도광판과 접착된 광 변조 소자를 갖고,
    상기 광 변조 소자는,
    이격하여 서로 대향 배치된 한 쌍의 투명 기판과,
    상기 한 쌍의 투명 기판 각각의 표면에 설치된 한 쌍의 전극과,
    상기 한 쌍의 투명 기판의 간극에 설치된 광 변조층을 갖고,
    상기 한 쌍의 전극 중 적어도 한쪽 전극이, 상기 도광판의 측면 중 상기 광원으로부터의 광이 입사되는 광 입사면과 직교하는 방향으로 배열된 복수의 부분 전극을 갖고,
    상기 광 변조층은, 상기 전극에 의해 발생하는 전기장의 크기에 따라서 상기 광원으로부터의 광에 대하여 전체적 또는 부분적으로 산란성 또는 투명성을 나타내고,
    상기 구동 회로는, 상기 복수의 부분 전극을 소정의 단위마다 순차 구동함으로써 상기 광 변조층 중 산란성을 나타내는 부분을 상기 광 입사면과 직교하는 방향으로 주사하고, 상기 복수의 부분 전극 중 구동 대상의 부분 전극의 상기 광원으로부터의 거리에 따라서 상기 광원의 광량을 조정하는, 표시 장치.
  2. 제1항에 있어서,
    상기 표시 패널은 2차원 배치된 복수의 화소를 갖고,
    상기 복수의 부분 전극은 상기 복수의 화소의 1개의 배열 방향과 평행한 제1 방향으로 배열되어 있고,
    상기 구동 회로는, 상기 복수의 화소를 소정의 단위마다 상기 제1 방향으로 순차 구동함과 함께, 상기 복수의 부분 전극을 상기 복수의 화소의 구동과 동기하여 구동하는, 표시 장치.
  3. 제2항에 있어서,
    상기 광 변조층은, 상기 전극에 전압이 인가되고 있지 않을 때 투명성을 나타내고, 상기 전극에 전압이 인가되고 있을 때 산란성을 나타내는, 표시 장치.
  4. 제3항에 있어서,
    상기 광 변조층은, 상기 전극에 의해 발생하는 전기장에 대한 응답 속도가 상대적으로 빠른 액정 분자와, 상기 전극에 의해 발생하는 전기장에 대한 응답 속도가 상대적으로 느린 고분자를 포함하여 구성되어 있는, 표시 장치.
  5. 제4항에 있어서,
    상기 액정 분자 및 상기 고분자는, 상기 전극에 전압이 인가되고 있지 않을 때 상기 광 입사면 및 상기 투명 기판과 평행하거나 거의 평행한 방향으로 배향하고 있는, 표시 장치.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 구동 회로는 항상 상기 광원을 점등시키는, 표시 장치.
  7. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 구동 회로는, 상기 광 변조층이 산란성을 나타내고 있을 때 상기 광원을 점등시키고, 상기 광 변조층이 전체적으로 투명성을 나타내고 있을 때 상기 광원을 소등시키는, 표시 장치.
  8. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 광원은 상기 도광판의 측면 중 서로 대향하는 제1 측면 및 제2 측면에 각각 배치되고,
    상기 구동 회로는, 상기 복수의 부분 전극을 소정의 단위마다 순차 구동함과 함께, 구동 대상의 부분 전극이 상기 제1 측면 근처에 위치하고 있을 때에는 상기 제1 측면에 배치된 광원을 상기 제2 측면에 배치된 광원보다도 밝게 하고, 구동 대상의 부분 전극이 상기 제2 측면 근처에 위치하고 있을 때에는 상기 제2 측면에 배치된 광원을 상기 제1 측면에 배치된 광원보다도 밝게 하는, 표시 장치.
  9. 삭제
  10. 제1항 내지 제5항 중 어느 한 항에 있어서,
    각 부분 전극은 복수의 세선 전극 등을 포함하여 이루어지고,
    상기 구동 회로는, 상기 복수의 부분 전극을 소정의 단위마다 순차 구동할 때에, 구동 대상의 부분 전극에 포함되는 복수의 세선 전극에 대하여 상기 광원으로부터의 거리에 따라서 변조된 전압을 인가하는, 표시 장치.
  11. 제1항 내지 제5항 중 어느 한 항에 있어서,
    각 부분 전극은 패터닝된 것이며,
    각 부분 전극의 패턴 밀도가 상기 광원으로부터의 거리에 따라서 상이한, 표시 장치.
  12. 제11항에 있어서,
    각 부분 전극은 복수의 개구를 갖고,
    상기 개구의 직경은 상기 광원으로부터의 거리에 상관없이 일정하고,
    상기 개구의 밀도가 상기 광원으로부터의 거리에 따라서 상이한, 표시 장치.
  13. 제11항에 있어서,
    각 부분 전극은 복수의 개구를 갖고,
    상기 개구의 직경이 상기 광원으로부터의 거리에 따라서 상이하고,
    상기 개구의 밀도가 상기 광원으로부터의 거리에 따라서 상이한, 표시 장치.
  14. 제1항 내지 제5항 중 어느 한 항에 있어서,
    각 부분 전극은 상기 광 입사면과 평행한 방향으로 연장되는 띠 형상의 형상으로 되어 있고,
    상기 광 변조 소자는 상기 광 입사면과 평행한 방향으로 연장됨과 함께, 각 부분 전극에 1개씩 전기적으로 접속된 복수의 금속 배선을 갖는, 표시 장치.
  15. 3차원 표시 장치로서,
    영상 및 제어 신호를 출력하는 표시 장치와,
    상기 영상의 투과 및 차단을 상기 제어 신호에 기초하여 행하는 우안용 셔터 및 좌안용 셔터를 갖는 셔터 안경을 구비하고,
    상기 표시 장치는,
    조명광을 출력하는 조명 장치와,
    상기 조명광을 변조하여 상기 영상을 출력하는 표시 패널과,
    상기 제어 신호를 출력하는 출력 회로와,
    상기 조명 장치, 상기 표시 패널 및 상기 출력 회로를 구동하는 구동 회로를 갖고,
    상기 조명 장치는,
    도광판과,
    상기 도광판의 측면에 배치된 광원과,
    상기 도광판의 표면 또는 내부에 배치됨과 함께 상기 도광판과 접착된 광 변조 소자를 갖고,
    상기 광 변조 소자는,
    이격하여 서로 대향 배치된 한 쌍의 투명 기판과,
    상기 한 쌍의 투명 기판 각각의 표면에 설치된 한 쌍의 전극과,
    상기 한 쌍의 투명 기판의 간극에 설치된 광 변조층을 갖고,
    상기 한 쌍의 전극 중 적어도 한쪽 전극이, 상기 도광판의 측면 중 상기 광원으로부터의 광이 입사되는 광 입사면과 직교하는 방향으로 배열된 복수의 부분 전극을 갖고,
    상기 광 변조층은, 상기 전극에 의해 발생하는 전기장의 크기에 따라서 상기 광원으로부터의 광에 대하여 전체적 또는 부분적으로 산란성 또는 투명성을 나타내고,
    상기 구동 회로는, 상기 복수의 부분 전극을 소정의 단위마다 순차 구동함으로써 상기 광 변조층 중 산란성을 나타내는 부분을 상기 광 입사면과 직교하는 방향으로 주사하고, 상기 복수의 부분 전극 중 구동 대상의 부분 전극의 상기 광원으로부터의 거리에 따라서 상기 광원의 광량을 조정하는, 3차원 표시 장치.
  16. 조명 장치로서,
    도광판과,
    상기 도광판의 측면에 배치된 광원과,
    상기 도광판의 표면 또는 내부에 배치됨과 함께 상기 도광판과 접착된 광 변조 소자와,
    상기 광원 및 상기 광 변조 소자를 구동하는 구동 회로를 구비하고,
    상기 광 변조 소자는,
    이격하여 서로 대향 배치된 한 쌍의 투명 기판과,
    상기 한 쌍의 투명 기판 각각의 표면에 설치된 한 쌍의 전극과,
    상기 한 쌍의 투명 기판의 간극에 설치된 광 변조층을 갖고,
    상기 한 쌍의 전극 중 적어도 한쪽 전극이, 상기 도광판의 측면 중 상기 광원으로부터의 광이 입사되는 광 입사면과 직교하는 방향으로 배열된 복수의 부분 전극을 갖고,
    상기 광 변조층은, 상기 전극에 의해 발생하는 전기장의 크기에 따라서 상기 광원으로부터의 광에 대하여 전체적 또는 부분적으로 산란성 또는 투명성을 나타내고,
    상기 구동 회로는, 상기 복수의 부분 전극을 소정의 단위마다 순차 구동함으로써 상기 광 변조층 중 산란성을 나타내는 부분을 상기 광 입사면과 직교하는 방향으로 주사하고, 상기 복수의 부분 전극 중 구동 대상의 부분 전극의 상기 광원으로부터의 거리에 따라서 상기 광원의 광량을 조정하는, 조명 장치.
KR1020137014635A 2010-12-17 2011-12-08 조명 장치, 표시 장치 및 3차원 표시 장치 KR101908746B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2010-282191 2010-12-17
JP2010282191 2010-12-17
PCT/JP2011/078445 WO2012081497A1 (ja) 2010-12-17 2011-12-08 照明装置、表示装置および3次元表示装置

Publications (2)

Publication Number Publication Date
KR20130128409A KR20130128409A (ko) 2013-11-26
KR101908746B1 true KR101908746B1 (ko) 2018-10-16

Family

ID=46244602

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137014635A KR101908746B1 (ko) 2010-12-17 2011-12-08 조명 장치, 표시 장치 및 3차원 표시 장치

Country Status (6)

Country Link
US (1) US9581749B2 (ko)
EP (1) EP2653913B1 (ko)
KR (1) KR101908746B1 (ko)
CN (1) CN103250090B (ko)
RU (1) RU2013126534A (ko)
WO (1) WO2012081497A1 (ko)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102295A (ja) 2012-11-16 2014-06-05 Sony Corp 表示装置、表示方法及び記録媒体
US20160154291A1 (en) * 2013-07-30 2016-06-02 Hewlett-Packard Development Company L.P. Liquid crystal coupled light modulation
JP2016057338A (ja) 2014-09-05 2016-04-21 株式会社ジャパンディスプレイ 表示装置及び光源装置
TWI599818B (zh) 2014-10-22 2017-09-21 日本顯示器股份有限公司 顯示裝置
JP6364335B2 (ja) 2014-12-04 2018-07-25 株式会社ジャパンディスプレイ 表示装置
US9804317B2 (en) * 2015-02-06 2017-10-31 Japan Display Inc. Display apparatus
WO2016201422A1 (en) * 2015-06-12 2016-12-15 Kent State University Frequency-controlled electro-optical device
CN107924095A (zh) * 2015-06-12 2018-04-17 肯特州立大学 频率可控的电光装置
JP2017076006A (ja) 2015-10-13 2017-04-20 株式会社ジャパンディスプレイ 表示装置
JP2017134256A (ja) 2016-01-28 2017-08-03 株式会社ジャパンディスプレイ 光学装置及び表示装置
CN205374943U (zh) * 2016-02-03 2016-07-06 北京京东方显示技术有限公司 一种背光模组及显示装置
JP6602695B2 (ja) * 2016-03-01 2019-11-06 株式会社ジャパンディスプレイ 表示装置
JP6720008B2 (ja) * 2016-07-22 2020-07-08 株式会社ジャパンディスプレイ 表示装置および表示装置の駆動方法
JP6800641B2 (ja) 2016-07-22 2020-12-16 株式会社ジャパンディスプレイ 表示装置
US10788681B2 (en) 2016-11-09 2020-09-29 Samsung Electronics Co., Ltd. Backlight unit for 3D image display and method of manufacturing the backlight unit
KR20180052356A (ko) 2016-11-10 2018-05-18 삼성전자주식회사 액정 광 편향기 및 디스플레이 장치
CN107037623A (zh) * 2017-06-12 2017-08-11 深圳市华星光电技术有限公司 快门眼镜、显示系统及快门式显示方法
JP2019114921A (ja) 2017-12-22 2019-07-11 株式会社ジャパンディスプレイ 表示装置及び制御方法
JP7289675B2 (ja) * 2019-03-11 2023-06-12 株式会社ジャパンディスプレイ 表示装置
JP7222835B2 (ja) * 2019-07-10 2023-02-15 株式会社ジャパンディスプレイ 表示装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092682A (ja) * 2008-10-07 2010-04-22 Sony Corp 照明装置、表示装置および光変調素子の製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482019A (en) 1987-09-25 1989-03-28 Citizen Watch Co Ltd Matrix liquid crystal display device
JP2974564B2 (ja) * 1993-12-20 1999-11-10 シャープ株式会社 液晶電子装置およびその駆動方法
JP4083271B2 (ja) * 1998-01-23 2008-04-30 東芝松下ディスプレイテクノロジー株式会社 液晶表示装置
JP2001092370A (ja) 1999-09-21 2001-04-06 Matsushita Electric Ind Co Ltd 照明装置とそれを用いた表示装置および表示装置の駆動方法と液晶表示パネル
JP3900805B2 (ja) * 2000-08-03 2007-04-04 株式会社日立製作所 照明装置及びそれを用いた液晶表示装置
JP4476505B2 (ja) * 2001-02-09 2010-06-09 シャープ株式会社 液晶表示装置
JP4357413B2 (ja) * 2002-04-26 2009-11-04 東芝モバイルディスプレイ株式会社 El表示装置
US7090664B2 (en) 2003-10-02 2006-08-15 Dwight Jerome Holter Ostomy tools, and systems and processes for their use
KR100579195B1 (ko) * 2004-01-05 2006-05-11 삼성에스디아이 주식회사 유기전계발광표시장치
JP4442492B2 (ja) * 2005-04-04 2010-03-31 日本電気株式会社 面状光源装置、表示装置、端末装置及び面状光源装置の駆動方法
JP4735028B2 (ja) * 2005-05-02 2011-07-27 富士ゼロックス株式会社 多階調光書込み装置
US8106853B2 (en) * 2005-12-12 2012-01-31 Nupix, LLC Wire-based flat panel displays
US7973749B2 (en) * 2006-01-31 2011-07-05 Nec Lcd Technologies, Ltd. Display device, terminal device, and display panel
US20070290960A1 (en) * 2006-06-19 2007-12-20 Samsung Electronics Co.; Ltd Light source driving circuit and method
US20090103053A1 (en) * 2007-10-02 2009-04-23 Hirotoshi Ichikawa Projection apparatus comprising spatial light modulator
US8022939B2 (en) * 2007-10-12 2011-09-20 Epson Imaging Devices Corporation Touch panel, electro optical device, and electronic apparatus
JP2009134204A (ja) 2007-12-03 2009-06-18 Victor Co Of Japan Ltd 液晶表示装置
JP4586868B2 (ja) * 2008-03-13 2010-11-24 富士ゼロックス株式会社 液晶デバイスの駆動方法、および液晶デバイスの駆動装置
JP2009283383A (ja) 2008-05-26 2009-12-03 Panasonic Corp 面状照明装置および映像表示装置
KR101074574B1 (ko) * 2008-10-08 2011-10-17 하이디스 테크놀로지 주식회사 입체 영상 디스플레이 장치 및 그 제조 방법
KR101279120B1 (ko) * 2009-05-15 2013-06-26 엘지디스플레이 주식회사 영상표시장치
JP5436050B2 (ja) 2009-05-29 2014-03-05 株式会社ジャパンディスプレイ 立体映像表示装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010092682A (ja) * 2008-10-07 2010-04-22 Sony Corp 照明装置、表示装置および光変調素子の製造方法

Also Published As

Publication number Publication date
US9581749B2 (en) 2017-02-28
CN103250090B (zh) 2016-01-06
EP2653913A1 (en) 2013-10-23
EP2653913B1 (en) 2018-08-15
CN103250090A (zh) 2013-08-14
US20130258711A1 (en) 2013-10-03
KR20130128409A (ko) 2013-11-26
RU2013126534A (ru) 2014-12-20
WO2012081497A1 (ja) 2012-06-21
EP2653913A4 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
KR101908746B1 (ko) 조명 장치, 표시 장치 및 3차원 표시 장치
JP6112108B2 (ja) 照明装置および表示装置
TWI582742B (zh) Lighting device and display device
JP5756931B2 (ja) 照明装置および表示装置
TWI477818B (zh) Lighting device and display device
JP5263593B2 (ja) 照明装置および表示装置
US9618790B2 (en) Display and illumination unit
JP4752911B2 (ja) 照明装置、表示装置、およびエッジライト方式のバックライトに用いる光変調素子の製造方法
JP5991053B2 (ja) 表示装置および照明装置
WO2011125392A1 (ja) 表示装置および照明装置
WO2012053411A1 (ja) 照明装置および表示装置
WO2013018560A1 (ja) 照明装置および表示装置
KR20150013423A (ko) 조명 장치 및 표시 장치
JP2011222199A (ja) 照明装置および表示装置
JP2012234725A (ja) 表示装置および照明装置
JP2014077932A (ja) 表示装置
CN115097669B (zh) 一种显示装置及其工作方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant