KR101896740B1 - 은 태양 전지 접점 - Google Patents

은 태양 전지 접점 Download PDF

Info

Publication number
KR101896740B1
KR101896740B1 KR1020147009320A KR20147009320A KR101896740B1 KR 101896740 B1 KR101896740 B1 KR 101896740B1 KR 1020147009320 A KR1020147009320 A KR 1020147009320A KR 20147009320 A KR20147009320 A KR 20147009320A KR 101896740 B1 KR101896740 B1 KR 101896740B1
Authority
KR
South Korea
Prior art keywords
solar cell
microns
paste
particle size
weight
Prior art date
Application number
KR1020147009320A
Other languages
English (en)
Other versions
KR20140069114A (ko
Inventor
샤흐람 세이드모하마디
히말 캬트리
스린바산 스리댜란
아지즈 에스. 샤이크
Original Assignee
헤레우스 프레셔스 메탈즈 노스 아메리카 콘쇼호켄 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 헤레우스 프레셔스 메탈즈 노스 아메리카 콘쇼호켄 엘엘씨 filed Critical 헤레우스 프레셔스 메탈즈 노스 아메리카 콘쇼호켄 엘엘씨
Publication of KR20140069114A publication Critical patent/KR20140069114A/ko
Application granted granted Critical
Publication of KR101896740B1 publication Critical patent/KR101896740B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/02245Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/022458Electrode arrangements specially adapted for back-contact solar cells for emitter wrap-through [EWT] type solar cells, e.g. interdigitated emitter-base back-contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

태양 전지 전도체 제제는, 입자 크기 분포가 다른 2종의 은 분말, 알루미늄 분말 및 연화점이 250 내지 700℃ 범위이고 연화점이 적어도 10℃ 다른 2종의 프릿 유리 조성물로부터 제조된다.

Description

은 태양 전지 접점{SILVER SOLAR CELL CONTACTS}
본 발명은 입자 크기 분포가 다른 2종의 은 분말, 알루미늄 분말 및 연화점이 250 내지 700℃ 범위이고 연화점이 적어도 10℃ 다른 2종의 프릿 유리 조성물로부터 제조된 태양 전지 전도체 제제에 관한 것이다. 상기 제제는 유기 시스템 내에 분산된 페이스트이다. 상기 제제는 부동태화 층(들)을 관통 소성하여 실리콘 웨이퍼계 광전지의 양면에서 부동태화 층이 이용되게 한다. 상기 제제는 스크린 인쇄 가능하고, 광전변환 장치, 특히 n형 이미터를 갖거나 금속 투과형(metal wrap through: MWT) 및 이미터 투과형(emitter wrap through: EWT)인 태양 전지를 제작하는 데 사용하기에 적합하다.
태양 전지는 일반적으로 일광을 유용한 전기 에너지로 변환하는 규소(Si)와 같은 반도체 재료로부터 제조된다. 종래 태양 전지는 일반적으로 n형 이미터 층을 생성하는 웨이퍼의 상부에 적합한 인 공급원으로부터 인(P)을 확산시켜 필요한 PN 접합부가 형성되는 얇은 p형 Si 웨이퍼로부터 제조된다. 일광이 입사하는 실리콘 웨이퍼 면은 일반적으로 일광의 반사 손실을 막기 위해 반사방지 코팅 (anti-reflective coating: ARC)으로 코팅된다. 이 ARC는 또한 표면 재조합으로 인해 전자/광학 손실을 감소시키는 표면을 부동태화시킨다. n형 이미터 층에 대한 낮은 저항의 접점이 공개되어 있다. 그러나, p형 이미터에 저 접촉 저항 접점을 만들 필요성이 존재한다. 본 발명의 페이스트는 이러한 필요성에 대한 것이다.
본 발명은 p형 이미터를 갖는 n형 실리콘계 재료를 사용하는 새로운 세대의 태양 전지에 관한 것이다. 이러한 태양 전지 유형은 23% 이상의 전위로 태양 전지 효율을 나타낼 수 있다. 이 목표에 도달하기 위해, 광유도된 전하 캐리어가 수집되는 금속 접점이 많은 기여를 한다. 그러나, p형 이미터가 종래 은 페이스트의 사용에 의해 낮은 접촉 저항을 가져야 한다는 것이 도전과제이다. 따라서, 부동태화된 실리콘 표면을 갖는 p형 이미터에 개선된 낮은 접촉 저항을 제공하도록 Ag-Al 페이스트가 개발되었다.
개발 중인 새로운 세대의 Si 태양 전지는 n형 Si 웨이퍼로부터 제조된다. 적합한 붕소 공급원으로부터 붕소(B)를 웨이퍼의 상부에 확산시켜 p형 이미터 층을 생성하여 장치 PN 접합부를 형성한다. 전면 접점(front contact)으로 공지된 2차원 전극 그리드 패턴은 실리콘의 p형 이미터에 접속한다. 2차원 전극 그리드 패턴 형상을 갖는 은 후면 접점(rear contact)으로 공지된 접점은 실리콘의 n면에 인쇄되고 소성된 은 페이스트로부터 제조된다. 이 접점은 PN 접합부로부터 외부 로드로의 콘센트이다. 이러한 전지는, 불투명 배경이 제공될 때 양면에서 광을 포획하거나 단지 일면(전면)에서 광을 포획하는 능력을 갖는 양면 태양 전지로서 사용될 수 있다.
도 1은 도식적으로 전면의 p형 이미터를 갖는 양면 n형 태양 전지를 나타낸 도면;
도 2는 도식적으로 금속 투과형(MWT) 태양 전지를 나타낸 도면;
도 3은 도식적으로 이미터 투과형(EWT) 태양 전지를 나타낸 도면;
도 4는 그래프로 실리콘 태양 전지에서 p형 이미터에 대한 Ag/Al 관통 소성 페이스트의 접촉 저항을 나타낸 도면;
도 5는 그래프로 실리콘 태양 전지에서 p형 이미터에 대한 Ag/Al 관통 소성 페이스트의 벌크 저항을 나타낸 도면.
본 발명은 p형 이미터를 갖는 n형 실리콘계 재료를 사용하는 새로운 세대의 태양 전지에 관한 것이다. 이러한 태양 전지 유형은 23% 이상의 전위로 태양 전지 효율을 나타낼 수 있다. 이 목표에 도달하기 위해, 광유도된 전하 캐리어가 수집되는 금속 접점이 많은 기여를 한다. 그러나, p형 이미터가 종래 은 페이스트의 사용에 의해 낮은 접촉 저항을 가져야 한다는 것이 도전과제이다. 따라서, 부동태화된 실리콘 표면을 갖는 p형 이미터에 개선된 낮은 접촉 저항을 제공하도록 Ag-Al 페이스트가 개발되었다. 본 발명자들은 도 4 및 도 5에 도시된 본 발명의 특정한 페이스트에 대해 p-이미터 실리콘에 대한 1.5mΩ(mOhm)-㎠ 미만의 접촉 저항 및 5 내지 6μΩ-㎝의 벌크 저항을 성취하였다. 컴포넌트 둘 다 태양 전지 직렬 저항을 유의적으로 감소시킨다. 또한, 이 페이스트는 이것이 p형 이미터에 접촉하는 SiNx 층을 통해 에칭한다는 것을 의미하는 관통 소성 거동을 갖는다. 화학식에서 Al의 존재에도 불구하고, 페이스트는 2개의 다이오드 I-V 모델에서 공간 전하 영역(J02)에서의 큰 Voc 및 성능지수로서의 낮은 누설 포화 전류 밀도에 의해 나타나는 고품질의 접합 전압을 유지하도록 설계된다.
대안적인 태양 전지 구성은 이미터 투과형(EWT) 이외에 금속 광각(metallization wrap around: MWA), 금속 투과형(MWT) 및 후면 접합 구조를 포함한다. MWA 및 MWT는 전면에 금속 전류 수집 그리드를 갖는다. 이 그리드는 각각 후면에 엣지 주위에 또는 홀을 통해 랩핑되어 후면 접촉 전지를 만든다. MWT 및 MWA 전지와 비교하여 EWT 전지의 독특한 특징은 전지의 전면에 금속 피복이 없다는 것이고, 이는 어떤 입사광도 차단되지 않아서 고효율을 생성시킨다는 것을 의미한다. EWT 전지는 실리콘 웨이퍼에서 전면으로부터 도핑된 전도성 채널을 거쳐 후면으로 전류 수집 접합부("이미터")를 랩핑한다. "이미터"는 반도체 장치에서 고도로 도핑된 영역을 의미한다. 예를 들면, 실리콘 기판에서의 홀을 레이저에 의해 드릴로 뚫고 이후 홀 내에 이미터를 형성함과 동시에 전면 및 후면 위의 이미터를 형성하여 이러한 전도성 채널을 만들 수 있다. 후면 접합 전지는 태양 전지의 후면 위에 음극성 및 양극성 수집 접합부 둘 다를 갖는다. 대부분의 광이 전면 주위에 흡광되고 따라서 대부분의 캐리어가 또한 광유도되므로, 전면으로부터 후면으로 후면 위의 수집 접합부에 의해 캐리어가 확산하기에 충분한 시간을 갖도록 후면 접합 전지는 매우 높은 재료 품질을 요한다. 비교하자면, EWT 전지는 높은 전류 수집 효율에 유리한 전면 위에 전류 수집 접합부를 유지한다. EWT 전지는 미국 특허 제5,468,652호(참조문헌으로 본 명세서에 포함됨)에 개시되어 있다. MWA 및 MWT 태양 전지에 대한 추가의 상세내용은 공동 소유의 계류중인 미국 특허 공개 제12/682,040호에서 확인할 수 있다.
본 발명자들은 1종의 은 분말로부터 다른 종의 한정된 비의 2개의 구별되는 입자 크기 범위에서 은 분말을 갖는 것이 미립화를 개선하고 우수한 전도도를 유지하면서 과도한 은의 소결을 방지한다는 발견하였다. 더구나 연화점이 더 낮은 유리의 유리 전이 온도(Tg)를 넘는 온도 증가로서, 이 유리 프릿은 부동태화 층을 통해 에칭하고 Si 표면을 습식시키기 시작한다. Ag(및 Al) 입자의 일부는 유리 중에 용해되고 Si 계면에서 침전하여, Al이 쇼트키(Schottky) 장벽인 장벽 폭을 감소(접촉 저항이 개선됨)시키는 금속-반도체 접촉을 개시하기 시작한다. 알루미늄의 비율 및 평균 입자 크기 분포는 접합부에 대한 임의의 손상을 방지하고 또한 단락 문제점의 생성을 피하기에 충분하다. 온도가 더 높은 연화점 프릿의 Tg를 초과하여 증가할 때, 더 높은 연화점 프릿은 (a) 공격적인 더 낮은 연화점 유리와 반응하고 실리콘으로의 이의 과도한 공격을 방지하여 PN 접합부의 파괴를 방지하고; (b) 이후의 굵은 은 분말의 소결로부터 은을 용해시켜 Ag-Si 섬이 연속하여 침전하게 한다. 따라서, 생성된 접점은 접합부를 단락시키지 않고 더 낮은 전체 접촉 저항 및 벌크 저항을 가질 수 있다.
따라서, 본 발명의 일 실시양태는 (a) n형 실리콘 웨이퍼, (b) p형 이미터, (c) 페이스트를 포함하는 접점을 포함하는 태양 전지로서, 상기 페이스트는 소성 전에 (ⅰ) 1종 이상의 은 분말, (ⅱ) 연화점이 250 내지 500℃ 범위이고 D50 입자 크기 범위가 0.2 내지 20마이크론인 제1 유리 프릿 및 (ⅲ) 연화점이 250 내지 500℃ 범위이고 D50 입자 크기 범위가 0.2 내지 20마이크론인 제2 유리 프릿을 포함하되, 제1 연화점 및 제2 연화점은 적어도 10℃ 다른 태양 전지이다.
본 발명의 일 실시양태에서, 다른 곳에 개시된 유리 프릿으로, 제1 은 분말은 D50 입자 크기 범위가 0.2 내지 1.7, 더 바람직하게는 0.5 내지 1.7마이크론이고, 제2 은 분말은 D50 입자 크기 범위가 1.72 내지 10마이크론, 더 바람직하게는 1.75 내지 5마이크론이다.
본 발명의 일 실시양태는 (a) n형 실리콘 웨이퍼, (b) p형 이미터, (c) 페이스트를 포함하는 접점을 포함하는 태양 전지로서, 상기 페이스트는 소성 전에 (ⅰ) 제1 평균 입자 크기(D1 50)를 갖는 제1 은 분말, (ⅱ) 제2 평균 입자 크기(D2 50)를 갖는 제2 은 분말, (ⅲ) 연화점이 250 내지 650℃ 범위이고, D50 입자 크기 범위가 0.2 내지 20마이크론인 제1 유리 프릿, (ⅳ) 연화점이 300 내지 700℃ 범위이고, D50 입자 크기 범위가 0.2 내지 20마이크론인 제2 유리 프릿을 포함하되, D1 50은 D2 50과는 2.5% 초과분, 바람직하게는 2.8% 초과분만큼 다르고, D2 50>D1 50이며, 제1 연화점과 제2 연화점이 적어도 10℃ 다른 태양 전지이다.
본 발명의 또 다른 실시양태는 p면과 관련된 n형 실리콘 웨이퍼를 포함하는 p형 이미터를 갖는 n형 Si 태양 전지로서, 페이스트는 소성 전에 (a) D50 평균 입자 크기가 0.2 내지 1.7마이크론, 바람직하게는 0.5 내지 1.7마이크론인 제1 은 분말 40 내지 60중량%, (b) D50 평균 입자 크기가 1.72 내지 10.0마이크론, 바람직하게는 1.75 내지 5.0마이크론인 제2 은 분말 25 내지 45중량%, (c) D50 평균 입자 크기가 0.2 내지 10마이크론인 (예컨대, 금속 또는 합금 또는 유기 금속 또는 규화물 또는 산화물 또는 붕화물 또는 질화물 형태의) 3가 금속 도펀트 0.01 내지 6중량%, (d) 연화점이 250 내지 650℃인 제1 유리 조성물 1 내지 5중량%, (e) 연화점이 300 내지 700℃인 제2 유리 조성물 1 내지 5중량%, 및 (f) 은 및 알루미늄 분말 및 유리 조성물들이 총 100중량%로 되도록 일정량의 유기 비히클을 포함하되, 제1 유리 조성물 및 제2 유리 조성물의 연화점은 적어도 10℃ 다른 n형 Si 태양 전지이다.
본 발명의 다른 실시양태는 태양 전지 접점의 제조 방법으로서, (a) (ⅰ) D50 평균 입자 크기가 0.2 내지 1.8마이크론인 은 분말 40 내지 60중량%, (ⅱ) D50 평균 입자 크기가 1.82 내지 10마이크론인 은 분말의 제2 부분 25 내지 45중량%, (ⅲ) D50 평균 입자 크기가 0.2 내지 10마이크론, 바람직하게는 0.5 내지 10마이크론인 알루미늄 또는 붕소 또는 인듐 또는 갈륨 분말 0.2 내지 6.0중량%, (ⅳ) 연화점이 250 내지 650℃인 제1 유리 조성물 1 내지 5중량% 및 (ⅴ) 연화점이 300 내지 700℃인 제2 유리 조성물 1 내지 5중량%, (ⅵ) 은 및 알루미늄 분말 및 유리 조성물들이 총 100중량%로 되도록 일정량의 유기 비히클을 포함하는 페이스트를 실리콘 웨이퍼의 p면에 도포하는 단계, 및 (b) 분말을 소결하고 유리를 퓨징하기에 충분한 시간 동안 및 온도에서 웨이퍼, 은 분말, 알루미늄 또는 붕소 또는 인듐 또는 갈륨 분말, 및 유리 조성물을 소성하는 단계를 포함하되, 제1 유리 및 제2 유리의 연화점은 적어도 10℃ 다른 방법이다.
본 발명의 다른 실시양태는 태양 전지 접점의 제조 방법으로서, (a) (ⅰ) D50 평균 입자 크기가 0.2 내지 1.8마이크론인 은 분말 40 내지 60중량%, (ⅱ) D50 평균 입자 크기가 1.82 내지 10마이크론인 은 분말의 제2 부분 25 내지 45중량%, (ⅲ) D50 평균 입자 크기가 0.2 내지 10마이크론, 바람직하게는 0.5 내지 10마이크론인 알루미늄 또는 알루미늄 합금 분말 0.2 내지 6.0중량%, (ⅳ) 연화점이 250 내지 650℃인 제1 유리 조성물 1 내지 5중량% 및 (ⅴ) 연화점이 300 내지 700℃인 제2 유리 조성물 1 내지 5중량%, (ⅵ) 은 및 알루미늄 분말 및 유리 조성물들이 총 100중량%로 되도록 일정량의 유기 비히클을 포함하는 페이스트를 실리콘 웨이퍼의 p면에 도포하는 단계, 및 (b) 분말을 소결하고 유리를 퓨징하기에 충분한 시간 동안 및 온도에서 웨이퍼, 은 분말, 알루미늄 또는 알루미늄 합금 분말, 및 유리 조성물을 소성하는 단계를 포함하되, 제1 유리 및 제2 유리의 연화점은 적어도 10℃ 다른 방법이다.
따라서, 본 발명의 일 실시양태는 (a) 입자 크기가 0.2 내지 1.8, 바람직하게는 0.5 내지 1.8, 더 바람직하게는 0.8 내지 1.5의 마이크론 단위인 제1 은 분말; (b) D50 평균 입자 크기가 1.82 초과 내지 10, 바람직하게는 1.9 내지 9.0, 더 바람직하게는 2 내지 8, 대안적으로 2 내지 7의 마이크론 단위인 제2 은 분말; (c) 연화점이 250 내지 600, 바람직하게는 300 내지 450, 가장 바람직하게는 325 내지 425의 ℃ 범위인 제1 유리 프릿, (d) 연화점이 300 내지 700, 바람직하게는 350 내지 575, 가장 바람직하게는 435 내지 475의 ℃ 범위인 제2 유리 프릿; (e) 알루미늄 분말 약 0.5 내지 6.0중량%, 바람직하게는 1.5 내지 3.5중량% 더 바람직하게는 2 내지 3중량%를 포함하는 페이스트 제제로서; 제1 은 분말 및 제2 은 분말은 1:10 내지 10:1, 바람직하게는 1:8 내지 8:1, 더 바람직하게는 1:5 내지 5:1, 가장 바람직하게는 1:2 내지 2:1의 중량비로 존재하고; 유리 프릿의 연화점은 적어도 10℃ 다르거나, 성공적으로 더 바람직하게는 적어도 20℃, 적어도 25℃, 적어도 30℃, 적어도 40℃, 적어도 50℃, 적어도 60℃, 적어도 70℃ 적어도 80℃, 적어도 90℃ 및 적어도 100℃ 다른 페이스트 제제이다. 유리 프릿이 또한 일반적으로 말해서 소정의 유리 조성물의 연화점보다 약 20℃ 내지 약 100℃ 낮은 유리 전이 온도(Tg)를 특징으로 할 수 있다는 것에 주목한다.
일반적으로 말해서, D50 입자 크기가 적어도 2.5% 다른 2종의 은 분말이 가장 바람직하지만, 2종의 유리 분말의 연화점이 적어도 10℃ 다른 한, D50 입자 크기가 0.2 내지 10마이크론, 더 바람직하게는 0.5 내지 7마이크론, 가장 바람직하게는 0.8 내지 3마이크론인 단일 은 분말로 본 발명과 유사한 페이스트를 설계할 수 있다.
유사하게 더 작고 입자 및 더 큰 은 입자(때때로 "I 은" 및 "II 은"이라 칭함)의 가장 바람직한 범위가 각각 0.5 내지 1.7마이크론 및 1.75 내지 5마이크론이지만, 이의 D50 입자 크기가 적어도 2.5% 다른 한, 은에 대해 0.2 내지 10마이크론 내인 I 은 및 II 은에 대한 대안적인 범위로 본 발명과 유사한 페이스트를 설계할 수 있다.
일반적으로 말해서, 본 발명의 페이스트는 유리 분말, 금속 분말, 다른 첨가제 및 유기 비히클의 여러 성분을 포함하고, 이들 각각 하기 기재되어 있다.
유리 성분. 태양 전지의 유리 성분은 저항, 충전율 및 효율을 비롯한 전지의 특성을 결정하기 위한 주요인자이다. 유리 함유 전도성 페이스트를 실리콘 기판에 도포하여 태양 전지 접점을 통상적으로 제작한다. 페이스트는 약 0.1 내지 약 10중량%, 바람직하게는 0.2 내지 약 7중량%의 유리 성분을 포함한다. 유리 성분은, 소성 전에, 1종 이상의 유리 분말을 포함한다. 페이스트를 제제화 시, 유리 프릿은 D50 평균 입자 크기가 통상적으로 약 0.2 내지 약 20마이크론, 바람직하게는 약 0.3 내지 약 20마이크론, 더 바람직하게는 0.5 내지 10마이크론, 훨씬 더 바람직하게는 약 0.8 내지 5마이크론, 가장 바람직하게는 0.8 내지 3.5마이크론이지만, 당해 분야에 공지된 바대로 다른 입자 크기를 이용할 수 있다.
본 명세서에서 사용되는 유리 프릿은 연화점이 250 내지 700, 바람직하게는 250 내지 650 또는 300 내지 700, 더 바람직하게는 300 내지 450 또는 350 내지 575; 더욱 가장 바람직하게는 325 내지 475℃의 온도 범위이다. 2종 이상의 프릿 조성물을 사용할 때, 상기 유리 프릿은 적어도 5℃ 내지 적어도 100℃, 바람직하게는 10℃ 내지 적어도 100℃ 다른 독립적인 연화점을 갖는다.
본 발명에서 2종의 유리 프릿이 바람직한 실시양태이지만, 2종 초과의 프릿, 즉 3종의 프릿 또는 4종의 프릿 조합을 사용할 수 있다. 본 발명에 교시된 바대로 2의 구별되는 연화점을 갖는 2종의 유리로 상 분리된 단일 유리를 사용할 수 있다는 것이 또한 고안되었다. 원래 유리로부터 연화점이 다른 잔류 유리 또는 2종의 상이한 유리 물질을 갖는 잔류 유리(유리-세라믹 및 잔류 유리)로 부분 결정화된 단일 유리가 또한 고안되었다.
각각의 유리 조성물은 산화물 프릿을 포함한다. 본 명세서에서 하기 실시양태가 유용하다: (a) PbO 및 SiO2를 포함하는 유리; (b) PbO 및 B2O3를 포함하는 유리; (c) PbO, Al2O3 및 SiO2를 포함하는 유리; (d) PbO, B2O3 및 SiO2를 포함하는 유리; (e) PbO, ZnO 및 SiO2를 포함하는 유리, (f) PbO, ZnO 및 B2O3를 포함하는 유리, (g) PbO, V2O5 및 P2O5를 포함하는 유리, (h) PbO 및 TeO2를 포함하는 유리, (ⅰ) PbO 및 P2O5를 포함하는 유리. 납 비함유 유리, 예를 들면 (j) Bi2O3, B2O3 및 SiO2를 포함하는 유리, (k) Bi2O3 및 B2O3를 포함하는 유리, (l) Bi2O3 및 SiO2를 포함하는 유리, (m) Bi2O3, Al2O3 및 SiO2를 포함하는 유리, (n) Bi2O3, B2O3 및 SiO2를 포함하는 유리; (o) Bi2O3, ZnO 및 SiO2를 포함하는 유리, (p) Bi2O3, ZnO 및 B2O3를 포함하는 유리가 또한 유용하다. 이 문단의 임의의 유리의 조합이 또한 고안된다. 또 다른 실시양태에서, 유리 조성물은 (q) ZnO, B2O3 및 SiO2, (r) ZnO, Al2O3 및 SiO2 또는 (s) ZnO 및 B2O3 및 이들의 조합을 포함한다. 더욱 또 다른 실시양태에서, 유리 조성물은 (t) 알칼리 산화물, TiO2 및 SiO2 또는 (u) 오직 알칼리 산화물 및 SiO2를 포함한다. 특히, 본 발명의 다양한 실시양태에서, 표 1 내지 표 6에서 유리 조성물을 확인할 수 있다. 하기 유리 표를 살펴보면, 1종 이상의 유리 조성물을 사용할 수 있고, 2종 이상의 유리의 연화점이 적어도 10℃ 다른 한, 동일한 표 또는 상이한 표에서의 상이한 열로부터의 양을 포함하는 조성물이 고안된다.
납 첨가 유리를 포함하는 실시양태에서, 유리 조성물은 PbO 및 SiO2를 포함하는 산화물 프릿을 포함한다. 산화아연(ZnO)은 내부 유리 성분에서 PbO의 부분을 대체할 수 있다. 유사하게 B2O3은 유리에서 SiO2를 완전 또는 부분 대체할 수 있다. 납 첨가 또는 납 비함유 실시양태에서, 유리에서의 SiO2의 전부 또는 일부는 특히 B2O3, V2O5, P2O5, TeO2, GeO2 또는 TiO2 중 1종 이상으로 대체될 수 있고, 본 발명의 다양한 실시양태에서, 유리 조성물은 임의의 표 1 내지 표 6의 성분을 포함한다.
Figure 112014033635122-pct00001
다른 실시양태는 Ta2O5 - 10몰% 이하, Sb2O5 - 10몰% 이하, ZrO2 - 10몰% 이하, P2O5 - 8몰% 이하, (In2O3+Ga2O3) - 10몰% 이하, (Y2O3+ Yb2O3) - 15몰% 이하를 추가로 포함할 수 있다. (Y2O3 + Yb2O3)과 같은 항목은 Y2O3 또는 Yb2O3 또는 2종의 조합이 특정량으로 존재한다는 것을 의미한다.
Figure 112014033635122-pct00002
적어도 2종의 유리 조성물이 존재할 때, 이의 구성 및 비율의 선택은 태양 전지 접점의 품질에 영향을 미친다. 예를 들면, 높은 비율의 ZnO(예를 들면, 약 35몰% 이하)를 포함하는 (제1) 유리 조성물의 사용은 실리콘으로의 최소 침투를 제공한다. 이러한 유리 조성물은 표 1 및 표 2에서 다양한 실시양태로 예시된다. 반면, 높은 비율의 PbO(예를 들면, 약 75몰% 이하)를 포함하는 (제2) 아연 비함유 유리 조성물의 사용은 실리콘으로의 더 많은 침투를 제공한다. 이러한 유리 조성물은 표 1 및 표 2에서 다양한 실시양태로 예시된다. 사용되는 유리 조성물의 수와 무관하게, 전체 유리 성분 내의 PbO의 총 함량은 약 15 내지 약 75몰%의 PbO 및 약 1 내지 약 50몰%의 SiO2의 범위 내이다. 실리콘으로의 침투 정도를 조절하고 이에 따라 생성된 태양 전지 특성을 조절하기 위해 태양 전지 접점을 형성하는 데 다양한 비율의 제1 유리 조성물 및 제2 유리 조성물을 사용할 수 있다. 예를 들면, 유리 성분 내에, 제1 유리 조성물 및 제2 유리 조성물은 약 1:20 내지 약 20:1, 바람직하게는 약 1:3 내지 약 3:1의 중량비로 존재할 수 있다. 유리 성분은 바람직하게는 카드뮴 또는 카드뮴 산화물을 포함하지 않는다. 추가로, PbO의 부분은 Bi2O3로 대체되어 본 발명의 범위 내의 태양 전지를 만드는 데 사용되는 유리 조성물을 제공할 수 있다. 예를 들면, 약 1 내지 약 30몰%의 Bi2O3를 사용할 수 있다.
납을 배제한 실시양태에서, 각각의 유리 조성물은 Bi2O3 및 SiO2를 포함하는 산화물 프릿을 포함할 수 있다. 특히, 본 발명의 다양한 실시양태에서, 표 3 및 표 4에서의 유리 조성물을 사용할 수 있다. 사용되는 유리 조성물의 수와 무관하게, 유리 성분 내의 Bi2O3 및 SiO2의 총 함량은 약 5 내지 약 85몰%의 Bi2O3 및 약 1 내지 약 70몰%의 SiO2의 범위 내일 수 있다. 제2 유리 조성물을 사용할 때, 페이스트와 실리콘과의 상호작용의 정도를 조절하고 이에 따라 생성된 태양 전지 특성을 조절하도록 유리 조성물의 비율을 변경할 수 있다. 예를 들면, 유리 성분 내에, 제1 유리 조성물 및 제2 유리 조성물은 약 1:20 내지 약 20:1, 대안적으로 약 1:3 내지 약 3:1의 중량비로 존재할 수 있다. 유리 성분은 바람직하게는 납 또는 납 산화물, 및 카드뮴 또는 카드뮴 산화물을 포함하지 않는다.
Figure 112014033635122-pct00003
Figure 112014033635122-pct00004
1종 이상의 유리 성분은 표 5에서 ZnO-B2O3-SiO2 유리 및 알칼리-TiO2-SiO2 유리로 예시되는 것처럼 납 비함유 및 비스무트 비함유 둘 다일 수 있다.
Figure 112014033635122-pct00005
표 6. 1종 이상의 유리 성분은 표 6에서처럼 인산염 유리, 예컨대 PbO-V2O5-P2O5를 포함할 수 있다.
Figure 112014033635122-pct00006
본 명세서에서, 특히 표 1 내지 표 6에서 개시된 유리 성분의 다양한 실시양태에서 20몰% 이하의 양의, Al2O3 또는 B2O3의 부가물, 다른 3가 원소의 산화물, 예컨대 In2O3, Ga2O3, Tl2O3, Sc2O3, Y2O3, La2O3, 또는 특정한 전이 원소의 산화물, 예컨대 Mn2O3, Cr2O3, Fe2O3, 또는 희토류 원소의 산화물, 예컨대 Ce2O3, Pr2O3, Nd2O3, Gd2O3, Tb2O3, Yb2O3의 부가물은 p형 이미터에 대한 접촉의 전기 성능을 증대시키기 위해 유리하다.
금속 성분. 태양 전지 접점에서, 금속은 통상적으로 은 및/또는 알루미늄이다. 본 발명의 경우 전면 접점에서, 금속 성분은 은 및 알루미늄 둘 다를 포함한다. 은 입자 크기는 원하는 특성을 갖는 태양 전지 접점을 제공하는 데 중요하다. 2종의 은 분말을 사용하고, 각각은 상이한 입자 크기 분포 및 평균을 갖는다. 따라서, 본 발명의 일 실시양태는 (a) D50 평균 입자 크기가 0.2 내지 1.7마이크론, 바람직하게는 0.5 내지 1.7마이크론의 마이크론 단위인 제1 은 분말, 및 D50 평균 입자 크기가 1.72 내지 10.0마이크론, 바람직하게는 1.75 내지 5.0마이크론의 마이크론 단위인 제2 은 분말을 포함하는 페이스트 제제이다. 일 실시양태에서, D1 50 및 D2 50으로 표시될 수 있는 제1 D50 값 및 제2 D50 값은 적어도 1%, 바람직하게는 적어도 2%, 더 바람직하게는 적어도 3%, 성공적으로 더 바람직하게는 적어도 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20% 및 25% 다를 수 있고, 백분율은 D1 50(D50 값 중 더 낮은 것)에 대해 계산한다.
제1 은 분말(더 가는 분말) 및 제2 은 분말(더 굵은 분말)은 1:10 내지 100:0, 바람직하게는 1:8 내지 8:1, 더 바람직하게는 1:6 내지 6:1, 훨씬 더 바람직하게는 1.5:1 내지 1:1.5의 중량비로 존재한다. 모든 범위 내의 모든 값이 고려된다. 제1 은 분말의 BET 표면적은 0.2 내지 1.2㎡/g, 바람직하게는 0.3 내지 1㎡/g, 더 바람직하게는 0.4 내지 0.9㎡/g, 예를 들면 0.5 내지 0.8㎡/g이다. 제2 은 분말의 BET 표면적은 0.05 내지 0.5㎡/g, 바람직하게는 0.1 내지 0.4㎡/g, 더 바람직하게는 0.15 내지 0.35㎡/g, 대안적으로 0.2 내지 0.3㎡/g, 예를 들면 0.2 내지 0.3㎡/g이다.
다양한 물리적 형태의 금속을 사용할 수 있다. 예를 들면, 페이스트의 고체 부분은 약 80 내지 약 99중량%의 구형 은 입자 또는 대안적으로 약 75 내지 약 90중량%의 은 입자 및 약 1 내지 약 10중량%의 은 플레이크를 포함할 수 있다. 대안적으로, 고체 부분은 약 75 내지 약 90중량%의 은 플레이크 및 약 1 내지 약 10중량%의 콜로이드성 은, 또는 약 60 내지 약 95중량%의 은 분말 또는 은 플레이크 및 약 0.1 내지 약 20중량%의 콜로이드성 은을 포함할 수 있다. 은 입자의 적합한 상업적인 예는 구형 은 분말 Ag3000-1, 은 플레이크 SF-29 및 SF-75 및 콜로이드성 은 현탁액 알다그콜브(RDAGCOLB)이고, 모두 미국 오하이오주 클리브랜드에 소재하는 페로 코포레이션(Ferro Corporation)으로부터 상업적으로 구입 가능하다.
본 발명의 많은 실시양태에서 알루미늄 또는 알루미늄 합금 분말을 또한 사용한다. 실리콘 웨이퍼에 도포된 페이스트는 0.2 내지 6중량%, 바람직하게는 1 내지 5중량%, 더 바람직하게는 1.5 내지 3.5중량%, 예를 들면 2 내지 3중량%를 포함할 수 있다. 알루미늄 입자는 D50 평균 입자 크기가 0.5 내지 10마이크론, 바람직하게는 2 내지 9마이크론, 더 바람직하게는 2 내지 8마이크론, 훨씬 더 바람직하게는 2 내지 6마이크론, 훨씬 더 바람직하게는 1.0 내지 4마이크론, 예를 들면 1 내지 3마이크론이다.
다른 첨가제. 약 30중량% 이하, 바람직하게는 약 25중량% 이하, 더 바람직하게는 약 20중량%이하의 다른 첨가제(즉, 무기 첨가제)를 필요한 대로 사용할 수 있다. 금속 또는 합금 또는 유기 금속 또는 산화물 또는 규화물 또는 붕화물 또는 질화물의 형태로 3가 첨가제, 즉 도펀트, 예컨대 B, Al, Ga, In, Tl, Sc, Y, La, Bi, 전이 원소, 예컨대 Mn, Cr, Co, Rh, Ir, Os, Fe 및 희토류 원소, 예컨대 Ce, Pr, Nd, Gd, Tb, Yb를 사용할 수 있다. 3가(III) 상태를 나타낼 수 있는 다른 전이 금속을 사용할 수 있다. 전기 및 접착 특성을 개선하기 위해 금속 또는 유기 금속 또는 산화물 또는 다른 무기 화합물에서 코발트, 구리, 아연 및/또는 철을 첨가하는 것, 예컨대 이 원소를 포함하는 안료가 또한 고안된다.
바람직한 도펀트는 a) 실리콘의 3가 도펀트, 예컨대 B, Al, Ga, In, Tl 및 (b) 3가 전이 원소, 예컨대 Cr, Mn, Co, Fe, Rh, Ir, Os 또는 희토류 원소, 예컨대 Ce, Pr, Nd, Tb, Yb의 규화물 또는 붕화물이다. 붕소, 인듐 및 갈륨 및/또는 이들의 화합물, 예를 들면 InSe, In2Se3, GaSe, Ga2Se3를 p+형 이미터에 대한 전면 접점 저항을 감소시키기 위해 다양한 방식으로 페이스트에 첨가할 수 있다. 바람직한 실시양태에서, 접점으로부터 알루미늄을 제거할 목적으로 이러한 첨가제를 사용한다. 예를 들면, 특정한 유리를 분말로 된 또는 프릿으로 된 산화물 형태의 붕소 산화물로 변경할 수 있거나, 붕화물 또는 다른 유기 붕소 화합물의 방식으로 페이스트에 붕소를 첨가할 수 있다. 또한 페이스트에서 붕소 규화물로서 붕소를 첨가할 수 있다. 추가로, 이 문단에서 다른 금속의 규화물이 유용할 수 있다.
예를 들면, 0.01 내지 10중량%의 다른 첨가제, 예컨대 미세한 실리콘 또는 탄소 분말, 또는 둘 다, 및 알루미늄 합금, 예컨대 Al-합금, 예컨대 Al-Si를 첨가하여 금속 성분과 실리콘과의 반응성을 조절할 수 있다. 예를 들면, 이 미세한 실리콘 또는 탄소 분말을 전면 접점 은 페이스트에 첨가하여 은 환원 및 침전 반응을 조절할 수 있다. 전면 접점 및 후면 접점 둘 다에서의 은 페이스트에 대해 Ag/Si 계면에서 또는 벌크 유리 내의 은 침전을 또한 조절하여 소성 분위기(예를 들면, 유동 N2 또는 N2/H2/H2O 혼합물에서의 소성)를 조정할 수 있다. 저융점 금속 첨가제(즉, 금속 산화물과 명확히 다른 원소 금속 첨가제), 예컨대 Pb, Bi, In, Ga, Sn 및 Zn 및 각각의 적어도 1종의 다른 금속의 합금의 약 0.01중량% 내지 약 10중량%의 미세한 입자는 첨가하여 더 낮은 온도에서 접점을 제공하거나, 소성 윈도우를 넓힐 수 있다. 아연은 바람직한 금속 첨가제이고, 아연-은 합금은 전면 접점에 가장 바람직하다.
알루미늄은 p형 이미터에 대한 이 관통 소성 페이스트에 필요하다. p형 이미터와의 낮은 저항 접점을 형성하기 위해 알루미늄을 사용한다. 그러나, Al 그 자체는 PN 접합부를 단락시키고 전지 효율을 저하시키므로 사용할 수 없다. 이는 또한 이러한 그리드 패턴 구성에서 전지의 직렬 저항을 강력히 저하시키는 페이스트의 벌크 저항을 감소시킨다.
태양 전지 전기 성능을 최대화하기 위해 적어도 99% 순도의 Al 및 다른 금속/합금을 갖는 것이 바람직하다. 순수한 Al 대신에, 사용될 수 있는 합금, 예컨대 Al-Si, Al-Ag 및 Al-Zn. Al-Si 공정 합금(12.2원자%의 Si 및 87.8원자%의 Al)에 의해 알루미늄이 제공된다. 일반적으로, 0.01 내지 30원자%의 Si를 갖는 Al-Si 합금을 사용할 수 있다. Al-B 합금, 예를 들면 68원자%의 B 및 32원자%의 Al을 사용할 수 있다. 대안적으로, 0.01 내지 50원자%의 Ag, 바람직하게는 0.01 내지 20원자%의 Ag를 갖는 Al-Ag 합금을 사용할 수 있다. Al-Zn 합금을 사용할 수 있다. 특히, 16.5원자%의 Zn, 또는 59원자%의 Zn 또는 88.7원자%의 Zn을 갖는 Al-Zn 합금이 유용하다. 더 일반적으로, 0.01 내지 30원자%의 Zn 또는 40 내지 70원자%의 Zn 또는 80 내지 90원자%의 Zn을 갖는 Al-Zn 합금이 유용하다.
실리콘 웨이퍼 위의 코팅으로서 1종 이상의 페이스트를 사용할 수 있다. 실제로, 본 발명의 일 실시양태는 p면 위의 페이스트와 적어도 부분적으로 동연(coextensive)으로 존재하는 제2 페이스트 층을 갖는 본 명세서의 임의의 태양 전지이고, 제2 페이스트는 높은 전도도 또는 낮은 벌크 저항, 예컨대 1x10-6 내지 4x10-6Ω-㎝의 벌크 저항을 갖는다.
본 명세서에서 모든 금속은 1 이상의 여러 물리적 및 화학적 형태로 제공될 수 있다. 일반적으로 말해서, 금속 분말, 플레이크, 염, 산화물, 유리, 콜로이드 및 유기 금속이 적합하다. 일반적으로, 금속 분말 크기는 약 0.1 내지 약 40마이크론, 바람직하게는 약 10마이크론 이하이다. 더 바람직하게는, 금속 입자 크기는 본 명세서에서의 알루미늄 및 은 입자의 크기에 따른다. 추가로, 일반적으로, 본 명세서에서 사용되는 임의의 금속은 관심 대상의 금속의 이온성 염, 예컨대 할로겐화물, 탄화물, 수소화물, 인산염, 질산염, 황산염 및 황화물 형태로 제공될 수 있다. 제한 없이, 아세테이트, 포르메이트, 카복실레이트, 프탈레이트, 이소프탈레이트, 테레프탈레이트, 퓨마레이트, 살리실레이트, 타르트레이트, 글루코네이트 또는 킬레이트, 예컨대 에틸렌다이아민(엔) 또는 에틸렌다이아민 테트라아세트산(EDTA)의 염을 비롯한 임의의 금속의 유기 금속 화합물을 또한 사용할 수 있다. 적어도 1종의 관련 금속을 포함하는 다른 적절한 분말, 염, 산화물, 유리, 콜로이드 및 유기 금속은 당해 분야의 당업자에게 용이하게 명확하다. 일반적으로, 은, 알루미늄 및 다른 금속은 금속 분말 또는 플레이크로서 제공된다.
예를 들면, 페이스트는 약 80 내지 약 99중량%의 구형 금속 입자 또는 대안적으로 약 35 내지 약 70중량%의 금속 입자 및 약 29 내지 약 55중량%의 금속 플레이크를 포함할 수 있다. 대안적으로, 페이스트는 약 75 내지 약 90중량%의 금속 플레이크 및 약 5 내지 약 9중량%의 콜로이드성 금속 또는 약 60 내지 약 95중량%의 금속 분말 또는 플레이크 및 약 4 내지 약 20중량%의 콜로이드성 금속을 포함할 수 있다.
유기 비히클 . 본 명세서에서의 페이스트는 통상적으로 용매 중에 용해된 수지 용액 및 흔히 수지 및 요변성제 둘 다를 포함하는 용매 용액인 비히클 또는 캐리어를 포함한다. 페이스트의 유기 부분은 (a) 적어도 약 80중량%의 유기 용매; (b) 약 15중량% 이하의 열가소성 수지; (c) 약 4중량% 이하의 요변성제; 및 (d) 약 2중량% 이하의 습윤제를 포함한다. 1종 이상의 용매, 수지, 요변성제 및/또는 습윤제의 사용이 또한 고안된다. 다양한 중량비의 고체 부분 대 유기 부분이 고안되지만, 일 실시양태는 약 20:1 내지 약 1:20, 바람직하게는 약 15:1 내지 약 1:15, 더 바람직하게는 약 10:1 내지 약 1:10의 고체 부분 대 유기 부분의 중량비를 포함한다.
에틸 셀룰로스는 보통 사용되는 수지이다. 그러나, 에틸 하이드록시에틸 셀룰로스, 우드 로진, 에틸 셀룰로스 및 페놀계 수지의 혼합물, 저급 알콜의 폴리메타크릴레이트 및 에틸렌 글라이콜 모노아세테이트의 모노뷰틸 에터와 같은 수지를 또한 사용할 수 있다. 비점(1atm)이 약 130℃ 내지 약 350℃인 용매가 적합하다. 널리 사용되는 용매는 테르펜, 예컨대 알파-테르피네올 또는 베타-테르피네올 또는 고비점 알콜, 예컨대 다우아놀(Dowanol)(등록상표)(다이에틸렌 글라이콜 모노에틸 에터), 또는 뷰틸 카르비톨(Carbitol)(등록상표)(다이에틸렌 글라이콜 모노뷰틸 에터)과 같은 다른 용매와의 이의 혼합물; 다이뷰틸 카르비톨(등록상표)(다이에틸렌 글라이콜 다이뷰틸 에터), 뷰틸 카르비톨(등록상표) 아세테이트(다이에틸렌 글라이콜 모노뷰틸 에터 아세테이트), 헥실렌 글라이콜, 텍산올(Texanol)(등록상표)(2,2,4-트라이메틸-1,3-펜탄다이올 모노아이소뷰티레이트), 및 다른 알콜 에스터, 등유 및 다이뷰틸 프탈레이트를 들 수 있다. 비히클은 유기 금속 화합물, 예를 들면 니켈, 인 또는 은에 기초한 것을 함유하여, 접점을 변경할 수 있다. 엔-디퓨졸(N-DIFFUSOL)(등록상표)은 확산 계수가 원소 인과 유사한 n형 확산물을 포함하는 안정화된 액체 제제이다. 이 용매 및 다른 용매의 다양한 조합을 제제화하여 각각의 용도를 위한 원하는 점도 및 휘발성 요건을 얻을 수 있다. 두꺼운 필름 페이스트 제제에 보통 사용되는 다른 분산제, 계면활성제 및 레올로지 개질제가 포함될 수 있다. 이러한 제품의 상업용 예는 텍산올(등록상표)(미국 테네시주 킹스포트에 소재하는 이스트만 케미컬 컴퍼니(Eastman Chemical Company)); 다우아놀(등록상표) 및 카르비톨(등록상표)(미국 미시간주 다우 케미컬 코포레이션(Dow Chemical Co.)); 트라이톤(Triton)(등록상표)(미국 미시간주 다우 케미컬 코포레이션의 유니온 카바이드 부서(Union Carbide Division)), 틱사트롤(Thixatrol)(등록상표)(미국 뉴저지주 하이츠타운에 소재하는 엘레멘티스 컴퍼니(Elementis Company)) 및 디퓨졸(등록상표)(미국 매사츄세츠주 댄버스에 소재하는 트랜젠 코포레이티드(Transene Co. Inc.)) 중 어느 하나의 상표 하에 시판되는 것을 들 수 있다. 오가닉 비히클(Organic Vehicle) 196, 215 및 618 및 산티사이저(Santicizer)(등록상표) 상표 하에 시판되는 가소제가 미국 오하이오주 클리브랜드에 소재하는 페로 코포레이션으로부터 상업적으로 구입 가능하다.
보통 사용되는 유기 요변성제 중에 소수화 캐스터유 및 이의 유도체가 있다. 임의의 현탁액에 고유한 전단 박하(shear thinning)와 커플링되는 용매가 요변성과 관련하여 단독으로 적합하므로, 요변성이 항상 필요한 것은 아니다. 더구나, 지방산 에스터, 예를 들면, N-탤로우-1,3-다이아미노프로판 다이올레에이트; N-탤로우 트라이메틸렌 다이아민 다이아세테이트; N-코코 트라이메틸렌 다이아민, 베타 다이아민; N-올레일 트라이메틸렌 다이아민; N-탤로우 트라이메틸렌 다이아민; N-탤로우 트라이메틸렌 다이아민 다이올레에이트, 및 이들의 조합과 같은 습윤제를 사용할 수 있다.
전면 접점 및 후면 접점의 생성 방법. 도 1을 참조하면, 태양 전지 등급 Si 웨이퍼에 은-알루미늄 페이스트 및 은계 페이스트를 도포하여 본 발명에 따른 일반적으로 태양 전지 전면 접점을 생성할 수 있다. 특히, 도 1은 광 반사를 감소시키는 텍스처링된 표면을 갖는 단일 결정 실리콘 또는 다중 결정 실리콘의 기판을 보여준다. 태양 전지의 경우, 풀링 또는 캐스팅 공정으로부터 형성된 잉곳으로부터의 슬라이스 형태의 기판을 대개 사용한다. KOH 또는 NaOH와 알칼리 수용액 또는 HF와 HNO3의 혼합물을 사용하여 기판 표면을 약 10 내지 20마이크론 에칭하여, 슬라이싱에서 사용되는 와이어 톱과 같은 도구 및 웨이퍼 슬라이싱 단계로부터의 오염에 의해 야기된 기판 표면 손상을 통상적으로 제거한다. 기판을 임의로 HC1 및 H2O2의 혼합물로 세척하여 기판 표면에 부착할 수 있는 철과 같은 중금속을 제거할 수 있다. 사용되는 기판이 n형 기판일 때, p-n 접합부를 생성하기 위해 p형 층(120)을 형성한다. 이 목적에 붕소를 사용할 수 있다. 확산 온도 및 시간을 조절하여, 일반적으로 1제곱미터당 약 40 내지 약 100Ω의 차수의 시트 저항을 제공하여 확산 층의 폭을 변경할 수 있다. 예를 들면, 수성 수산화칼륨 또는 수성 수산화나트륨과 같은 알칼리 수용액을 사용하여 이후 반사방지 텍스처링된 표면을 때때로 형성한다. 이는 통상적인 실리콘 웨이퍼가 170 내지 200마이크론 두께이면서 과장된 두께 치수를 갖는 것으로 도시된 기판(110)을 생성시킨다.
웨이퍼의 n면(이면)에, 인 확산 층이 제공된다. 확산 온도 및 시간을 조절하여, 일반적으로 1제곱미터당 약 40 내지 약 100Ω의 차수의 시트 저항을 제공하여 확산 층의 폭을 변경할 수 있다.
다음에, SiNx, TiO2, Al2O3, SiO2 또는 이들의 조합일 수 있는 반사방지 코팅(ARC)(부동태화 필름 또는 부동태화 코팅이라고도 칭함)(130 및 150)이 상기 기재된 p형 확산 층(120)(전면) 및 n형 확산 층(140) 위에 형성된다. 질화규소 필름은 수소에 의한 부동태화를 강조하기 위해 때때로 SiNx:H로 표시된다. ARC(130 및 150)는 입사광에 대한 태양 전지의 표면 반사율을 감소시켜 생성된 전기 전류를 증가시킨다. ARC(130 및 150)의 두께는 이의 굴절률에 따라 달라지지만, 약 1.9 내지 2.0의 굴절률에 약 700 내지 900Å의 두께가 적합하다. 저압 CVD, 플라스마 CVD 또는 열 CVD를 포함하는 다양한 절차에 의해 ARC를 형성할 수 있다. 열 CVD를 사용하여 SiNx 코팅을 형성할 때, 출발 물질은 대개 다이클로로실란(SiCl2H2) 및 암모니아(NH3) 가스이고, 적어도 700℃의 온도에서 필름 형성을 수행한다. 열 CVD를 수행할 때, 높은 온도에서의 출발 가스의 열분해는 질화규소 필름에서 실질적으로 수소 부재를 발생시켜, 규소와 질소 간의 실질적으로 화학량론적인 조성비를 발생시킨다 - Si3N4. ARC를 형성하는 다른 방법이 당해 분야에 공지되어 있다.
전면에서, 은-알루미늄 페이스트(160)를 부동태화 층(130) 위에 인쇄한다. 유사하게, 후면에, 은 페이스트(170)를 부동태화 층(150) 위에 인쇄한다. 인쇄된 페이스트는 본 명세서의 임의의 표로부터 1종 이상의 유리 프릿을 포함할 수 있다. 이후, 적외선 벨트 로(infrared belt furnace) 내에서 수 초 내지 수 분, 예컨대 1초 또는 5초 내지 5분 또는 10분의 기간 동안 대략 700℃ 내지 975℃의 온도 범위에서 소성을 수행한다.
소성 동안, 전면 전극 형성 은-알루미늄 페이스트(160)는 질화규소 필름(130)을 소결하고 침투(즉, 관통 소성)하고, 이에 의해 p형 층(120)과 전기 접촉할 수 있다. 전면 은-알루미늄 페이스트(160)와 실리콘 이미터 층(120) 사이의 경계는 합금 상태로 추정되고, 이는 전기 장벽 폭을 감소시켜 전기 접점을 형성한다. 후면 은 페이스트(170)가 전면과 동시에 소성되어, 은 후면 접점이 된다.
본 발명의 페이스트의 일차 요건은 n형계 실리콘 태양 전지 위의 p형 이미터에 대한 매우 낮은 접촉 저항을 성취하는 것이다. 본 발명의 페이스트는 또한 부동태화 층을 관통 소성하여 p형 이미터에 접촉해야 한다. 본 발명의 페이스트는 알루미늄 성분이 존재하더라도 단락 또는 접합부 누설 문제를 갖지 않으면서 낮은 벌크 저항을 유지한다.
저 접촉 저항 및 벌크 저항은 본 발명의 페이스트에 의해 만들어진 태양 전지 접점에서 직렬 저항을 감소시키는 데 역할을 하고, 충전율 증가를 통해 효율 개선을 돕는다.
본 발명의 페이스트는 Voc의 높은 값을 유지한다. 공간 전하 영역에서 누설 포화 전류 밀도(J02)의 낮은 값의 성취에 의해 이 유지가 또한 제시된다. 이는 보장된 장치 접합부에 대표적이다.
도 2를 참조하면, 태양 전지 등급 Si 웨이퍼에 은-알루미늄 플러그 페이스트 및 은계 페이스트를 도포하여 n-MWT 구성을 갖는 본 발명에 따른 태양 전지 접점을 일반적으로 생성할 수 있다. 특히, 도 2는 광 반사를 감소시키는 텍스처링된 표면을 갖는 단일 결정 실리콘 또는 다중 결정 실리콘(n형 Si)의 기판을 보여준다. 사용되는 기판이 n형 기판일 때, p-n 접합부를 생성하기 위해 p형 층(220)을 형성한다. 이 목적에 붕소를 사용할 수 있다. 확산 온도 및 시간을 조절하여, 일반적으로 1제곱미터당 약 40 내지 약 100Ω의 차수의 시트 저항을 제공하여 확산 층의 폭을 변경할 수 있다. 예를 들면, 수성 수산화칼륨 또는 수성 수산화나트륨과 같은 알칼리 수용액을 사용하여 이후 반사방지 텍스처링된 표면을 때때로 형성한다. 이는 통상적인 실리콘 웨이퍼가 170 내지 200마이크론 두께이면서 과장된 두께 치수를 갖는 것으로 도시된 기판(210)을 생성시킨다. MWT 전지의 경우, 통상적으로 레이저 소성에 의해 실리콘 웨이퍼 기판에 홀을 형성한다. 홀은 n형 Si 웨이퍼의 전체 두께를 횡단한다.
웨이퍼의 n면(이면)에, 인 확산 층이 제공된다. 이는 전기 단락을 방지하기 위해 플러그 페이스트로부터 예를 들면 레이저를 사용하여 분리될 필요가 있거나, 편재화된 도핑일 수 있다. 확산 온도 및 시간을 조절하여, 일반적으로 1제곱미터당 약 40 내지 약 100Ω의 차수의 시트 저항을 제공하여 확산 층의 폭을 변경할 수 있다.
다음에, SiNx, TiO2, Al2O3, SiO2 또는 이들의 조합일 수 있는 반사방지 코팅(ARC)(부동태화 필름 또는 부동태화 코팅이라고도 칭함)(230 및 250)이 상기 기재된 p형 확산 층(220)(전면) 및 n형 확산 층(240) 위에 형성된다. ARC(230 및 250)는 입사광에 대한 태양 전지의 표면 반사율을 감소시켜 생성된 전기 전류를 증가시킨다. ARC(230 및 250)의 두께는 이의 굴절률에 따라 달라지지만, 약 1.9 내지 2.0의 굴절률에 약 700 내지 900Å의 두께가 적합하다. 본 명세서의 다른 곳에 기재된 바대로 다양한 절차에 의해 ARC를 형성할 수 있다.
n형 Si 기판 내에 이전에 형성된 적어도 1개의 홀에 플러그 페이스트(280)를 도포한다. 적합한 플러그 페이스트는 공동 소유의 계류중인 미국 특허 출원 제61/635,255호(참조문헌으로 포함됨)에 개시된 것을 포함한다. 전면에, 은-알루미늄 페이스트(260)를 부동태화 층(230) 위에 인쇄하고, 여기서 이것은 또한 플러그 페이스트와 접속된다. 유사하게, 후면에, 은 페이스트(270)를 부동태화 층(250) 위에 인쇄한다.
이후, 적외선 벨트 로 내에서 수 초 내지 수 분, 예컨대 1초 또는 5초 내지 5분 또는 10분의 기간 동안 대략 700℃ 내지 975℃의 온도 범위에서 소성을 수행한다.
소성 동안, 전면 전극 형성 은-알루미늄 페이스트(260)는 질화규소 필름(230)을 소결하고 침투(즉, 관통 소성)하고, 이에 의해 p형 층(220)과 전기 접촉할 수 있다. 전면 은-알루미늄 페이스트(260)와 실리콘 이미터 층(220) 사이의 경계는 합금 상태로 추정되고, 이는 전기 장벽 폭을 감소시켜 전기 접점을 형성한다. 후면 은 페이스트(270) 및 플러그 페이스트(280)는 전면과 동시에 소성된다. 은 페이스트(270)는 은 후면 접점이 된다. 플러그 페이스트는 p-이미터에 대한 전면 접점과 후면 접점 간의 전기 접속이 된다.
이미터 투과형 태양 전지(EWT)의 경우, 도 3을 참조하면, 태양 전지 등급 Si 웨이퍼에 은-알루미늄 페이스트 및 은계 페이스트를 도포하여 EWT 구성을 갖는 본 발명에 따른 태양 전지 접점을 일반적으로 생성할 수 있다. 특히, 도 3은 광 반사를 감소시키는 텍스처링된 표면을 갖는 단일 결정 실리콘 또는 다중 결정 실리콘(n형 Si)의 기판을 보여준다. 사용되는 기판이 p형 기판일 때, p-n 접합부를 생성하기 위해 p형 층(320)을 형성한다. 이 목적에 붕소를 사용할 수 있다. 예를 들면, 수성 수산화칼륨 또는 수성 수산화나트륨과 같은 알칼리 수용액을 사용하여 이후 반사방지 텍스처링된 표면을 때때로 형성한다. 이는 통상적인 실리콘 웨이퍼가 170 내지 200마이크론 두께이면서 과장된 두께 치수를 갖는 것으로 도시된 기판(310)을 생성시킨다. EWT 전지의 경우, 통상적으로 레이저 소성에 의해 실리콘 웨이퍼 기판에 홀을 형성한다. 홀은 Si 웨이퍼의 전체 두께를 횡단한다.
웨이퍼의 n면(이면)에, n형 투과형 섬 및 깍지형 p섬이 있다. 다음에, SiNx, TiO2, Al2O3, SiO2 또는 이들의 조합일 수 있는 반사방지 코팅(ARC)(부동태화 필름 또는 부동태화 코팅)(330 및 350)이 n형 확산 층(320)(전면) 및 확산 층(340)을 포함하는 이면 위에 형성된다. ARC(330 및 350)는 입사광에 대한 태양 전지의 표면 반사율을 감소시켜 생성된 전기 전류를 증가시킨다. ARC(330 및 350)의 두께는 이의 굴절률에 따라 달라지지만, 약 1.9 내지 2.0의 굴절률에 약 700 내지 900Å의 두께가 적합하다. 본 명세서의 다른 곳에 기재된 바대로 다양한 절차에 의해 ARC를 형성할 수 있다.
이면에, 은/알루미늄 페이스트(370)는 부동태화 층(350) 밑의 p섬(340) 위에 인쇄된다. 적합한 은/알루미늄 페이스트는 본 명세서에 개시된 임의의 페이스트를 포함한다. Si 기판 내에 이전에 형성된 적어도 1개의 홀에 은 플러그 페이스트(380)를 도포한다. 적합한 플러그 페이스트는 본 명세서의 다른 곳에 개시된 임의의 페이스트를 포함한다. 미국 오하이오주 클리브랜드에 소재하는 페로 코포레이션으로부터 상업적으로 구입 가능한 페로 제품 NS3127과 같은 플러그 페이스트는 또한 후면 위의 n섬과 접촉한다.
이후, 적외선 벨트 로 내에서 수 초 내지 수 분, 예컨대 1초 또는 5초 내지 5분 또는 10분의 기간 동안 대략 700℃ 내지 975℃의 온도 범위에서 소성을 수행한다.
소성 동안, 후면 전극 형성 은-알루미늄 플러그 페이스트(380)는 p형 층(320)과 전기 접촉할 수 있다. 후면 은 페이스트(370) 및 플러그 페이스트(380)는 전면과 동시에 소성된다. 은 페이스트(370)는 은 후면 접점이 된다. 플러그 페이스트(380)는 p형 투과형 이미터에 대한 전기 접속이 된다.
페이스트 레올로지; 페이스트가 100마이크론 미만의 라인 개구로 좁은 선폭 스크린 인쇄 설계와 상용성이도록 보장하기 위해 탄성 모듈러스(G') 및 점성 모듈러스(G")가 조작된다. 낮은 접촉 저항(Rc)을 만드는 중요한 성분은 특정 범위의 입자 크기를 갖는 알루미늄 분말, 상이한 입자 크기를 갖는 2종의 Ag 분말 및 상이한 화학 및 연화점을 갖는 2종의 유리이다.
페이스트 제제. 3롤 밀에서 본 발명에 따른 페이스트를 편리하게 제조할 수 있다. 주로 원하는 최종 제제 점도, 페이스트의 분쇄의 섬도 및 원하는 습식 인쇄 두께에 의해 사용되는 캐리어의 양 및 유형을 결정한다. 본 발명에 따른 조성물을 제조 시, 미립자 무기 고체를 비히클과 혼합하고 3롤 밀과 같은 적합한 장비에 의해 분산시켜 현탁액을 형성하여, 브룩필드(Brookfield) 점도계 HBT, 스핀들 14에서 결정하고 25℃에서 측정할 때 9.6초-1의 전단 속도에서 점도가 약 100 내지 약 500kcp, 바람직하게는 약 300 내지 약 400kcp 범위인 조성물이 생성된다.
페이스트의 인쇄 및 소성. 원하는 패턴 형상으로 태양 전지 은-알루미늄 전면 접점 및 은 후면 접점 둘 다를 만드는 공정에서 상기 언급된 페이스트 조성물을 사용할 수 있다. 특히 n형 웨이퍼 및 n-MWT 전지에 접근 가능한, 부동태화된 붕소 이미터 표면 위의 단일 및 이중 인쇄 구성 둘 다에서 상기 언급된 페이스트를 사용할 수 있다. 이중 인쇄 구성에서, 제1 층에서 부동태화 층을 관통 소성하고 실리콘과 접촉을 형성하는 저 접촉 저항 페이스트(이 특허 하에 동일한 페이스트)를 사용한다. 제2 층의 경우, 관통 소성 조성물을 갖지 않는 고전도성 페이스트를 사용하고, 주요 특징은 낮은 페이스트 벌크 저항이다. 이러한 조합은 태양 전지의 직렬 저항(Rs)을 감소시킬 가능성을 갖는다.
제2 층은 또한 순수한 금속, 금속 및/또는 이의 산화물 또는 규화물 또는 탄화물 또는 질화물 또는 예를 들면 Zn, Pb, Sn, Bi, Sb, Mn, Cr, Cu, Rh, Ru, Pt, Au, Co, V, Cr, Ti, Ni의 합금을 포함하는 합금의 혼합물 형태의 첨가제를 포함할 수 있다. 제1 층 내의 유리가 소성 시 제2 층으로 최소로 흐르도록 첨가제를 설계한다.
n형 실리콘 태양 전지에서 p-이미터 유형에 대한 전면 접점 및 후면 접점을 만드는 본 발명의 방법은 (1) 은-알루미늄 함유 페이스트를 p형 이미터를 갖는 실리콘 기판의 전면에 도포하는 단계, (2) 페이스트를 건조시키는 단계, (3) n+ 베이스를 갖는 실리콘 기판의 후면에 은 함유 페이스트를 도포하는 단계; (4) 제2 페이스트를 건조시키는 단계, (5) 페이스트를 동시소성하여 금속을 소결하고, 양면에 부동태화 층을 관통 소성하고, 동시에 양면에 실리콘과 접촉시키는 단계를 포함한다. 적합한 온도, 예컨대 약 650 내지 1100℃의 노 설정 온도 또는 약 550 내지 850℃의 웨이퍼 온도에서 페이스트의 인쇄된 패턴을 소성한다. 바람직하게는, 노 설정 온도는 약 750 내지 930℃이고, 페이스트를 공기 중에 소성한다. 소성 동안, 반사방지 SiNx 층은 산화되고 유리에 의해 부식하고, 실리콘에 에피탁셀로 결합된 Si 기판과 반응 시 Ag/Si 섬이 형성된다. 실리콘/페이스트 계면에서 실리콘 웨이퍼 위에 충분한 밀도의 Al 함유 Ag/Si 섬을 생성하여, 낮은 저항, 높은 효율, 고충전율의 전면 접점 태양 전지를 생성하도록 소성 조건을 선택한다.
통상적인 ARC는 실리콘 화합물, 예컨대 질화규소, 일반적으로 SiNx, 예컨대 Si3N4, 가능하게는 Al2O3 또는 TiO2로 만든다. 이 ARC 층은 접촉 저항을 증가시키는 경향이 있는 절연체로서 작용한다. 그러므로, 유리 성분에 의한 이 ARC 층의 부식은 전면 접점 및 후면 접점 형성 둘 다에서 필요한 단계이다. 실리콘 웨이퍼와 페이스트 간의 저항을 감소시키는 것은 태양 전지 효율을 개선하고, 금속-실리콘 전도성 섬의 형성에 의해 수월해진다. 즉, 실리콘 위의 은-알루미늄 섬은 실리콘 기판에서 발견되는 것과 동일한 결정 구조로 추정된다. 페이스트 성분(은 및 알루미늄 금속, 유리, 첨가제, 유기물) 간의 상호작용 및 페이스트 성분과 실리콘 기판 간의 상호작용은 둘 다 복잡하고, 조절되어야 한다. 신속한 노 공정은 모든 반응이 동력학에 매우 의존적이게 만든다. 추가로, 실리콘의 매우 좁은 영역(<0.5마이크론) 내에 관심 대상의 반응을 수행하여 p-n 접합부를 보존해야 하다.
전면 접점의 생성 방법. 은 및 알루미늄 분말을 본 명세서에 개시된 유리와 혼합하여 제조된 임의의 Ag/Al 페이스트를 예를 들면 스크린 인쇄에 의해 실리콘 기판의 p면에 원하는 습식 두께로 도포하여 본 발명에 따른 태양 전지 전면 접점을 생성할 수 있다.
후면 접점의 생성 방법. 은 분말을 본 명세서에 개시된 납 첨가 또는 납 비함유 유리와 혼합하여 제조된 임의의 Ag 페이스트를 예를 들면 스크린 인쇄에 의해 실리콘 기판의 n면에 원하는 습식 두께로 도포하여 본 발명에 따른 태양 전지 은 후면 접점을 생성할 수 있다.
전면 및 후면 그리드 패턴 둘 다의 경우, 동일한 인쇄 상황이 적용될 수 있다. 200 내지 325메쉬 스크린을 사용하여 자동 스크린 인쇄 기법을 이용할 수 있다. 이후, 인쇄된 패턴을 소성 전에 약 5분 내지 15분 동안 200℃ 이하, 바람직하게는 약 120℃에서 건조시킨다. 공기 중에 벨트 컨베이어 노 내에서 피크 온도에서 1초 내지 약 5분 이하 동안 건조 인쇄된 패턴을 은 후면 그리드 접점 페이스트로 동시 소성할 수 있다.
질소(N2) 또는 다른 불활성 분위기를 필요한 경우 사용할 수 있지만, 반드시 필요한 것은 아니다. 약 1초 지속되는 약 650℃ 내지 약 1000℃의 피크 노 설정 온도에서 약 300℃ 내지 약 550℃에서 유기 물질의 연소를 허용하는 온도 프로필에 따라 일반적으로 소성하지만, 더 낮은 온도에서 소성 시 1분, 3분 또는 5분의 더 긴 소성 시간이 가능하다. 예를 들면, 1분당 약 1미터 내지 약 4미터(40인치 내지 160인치)의 벨트 속도로 3개 영역 소성 프로필을 사용할 수 있다. 물론, 4개, 5개, 6개 또는 7개 이상의 영역을 포함하는 3개 초과 영역을 갖는 소성 배정이 본 발명에 의해 고안되고, 각각 약 5인치 내지 약 20인치의 영역 길이 및 650 내지 1000℃의 소성 온도를 갖는다.
실시예, 접촉 저항 측정을 위해, 문헌[G. K. Reeves and H. B. Harrison, IEEE electron device Letters, Vol. EDL-3, No. 5 (1982)](본 명세서에 참조문헌으로 포함됨)에 개시된 바대로 부동태화된 붕소 도핑된 표면 위의 TLM 패턴(전송 라인 모델)으로서 페이스트 샘플을 스크린 인쇄한다. 이후, 6존 디스패치(dispatch) 노에서 웨이퍼를 소성한다. 생성된 접촉 저항 값(Rc)은 도 2에 기록되어 있고, 벌크 저항은 도 3에 기록되어 있다. 값은 출발 기준 페이스트와 비교하여 접촉 저항의 약 60% 감소를 나타낸다.
각각의 격자선의 평균 저항인 R 라인은 평균 라인 단면 프로필로서 전면 인쇄 품질을 나타내고, 사용되는 재료에 특징적인 페이스트의 벌크 저항에 의해 또한 영향을 받는다. 이 값은 표 6에 기록되어 있고, n-이미터를 갖는 종래 p형 Si 태양 전지에 대한 전면 Ag 페이스트에 대한 값의 필적하는 범위에 있다. 선행 기술 제제에서 Al이 때때로 기재된 매개변수로 저하되고, 본 발명의 제제는 이 해로운 효과를 피한다.
표 7에서, 특정한 성분은 하기에 정의되어 있다: 비히클 196은 80% 다우아놀(등록상표) 및 20% 에틸 셀룰로스이고; 비히클 215는 90.9%의 다우아놀(등록상표), 9.1%의 틱사트롤(등록상표) ST이고; 비히클 618은 68.8%의 다우아놀(등록상표), 11.2%의 에틸 셀룰로스, 20%의 틱사트롤(등록상표) ST이고; 비히클 473은 83.85%의 다우아놀(등록상표), 2.15%의 알파-테르피네올, 14%의 에틸 셀룰로스이다. 산티사이저(등록상표) 9100은 다이프로필렌 글라이콜 다이벤조에이트 및 산티사이저(등록상표) 2148이고, 가소제는 휘발성이 낮은 알킬 아릴 인산염 에스터 가소제이다. SF 75 은 플레이크는 BET 표면적이 약 1.2㎡/g이다. 상기는 미국 오하이오주 클리브랜드에 소재하는 페로 코포레이션으로부터 상업적으로 구입 가능하다. EG 9014 및 GQ Mod1은 페로 코포레이션으로부터 상업적으로 구입 가능한 유리 분말이다. EG 9014는 표 2의 2 내지 3의 조성, 395℃의 연화점, 6.28g/cc의 밀도 및 96x10-7/℃의 CTE의 범위인 제제를 갖는다. GQ Mod1은 표 2의 2 내지 6의 조성, 352℃의 연화점, 6.36g/cc의 밀도 및 103x10-7/℃의 CTE의 범위인 제제를 갖는다.
Figure 112014033635122-pct00007
용어 "포함하는"은 "로 실질적으로 이루어진" 및 "로 이루어진"의 지원을 제공한다. 임의의 형태로 본 명세서에 개시된, 예컨대 표로 제시된 매개변수, 온도, 중량, 백분율 등의 각각의 숫자값은 범위 종점으로서 이러한 값의 사용의 지원을 제공하는 것으로 고안된다. 이러한 2개의 값에 의해 범위는 경계를 이를 수 있다. 단일 실시양태에서, 1종 이상의 유리 조성물이 사용될 수 있고, 표 중 다른 열로부터의 양 및 범위를 포함하는 조성물이 또한 고안된다.
다른 값의 적어도 몇몇 백분율, 온도, 시간 및 범위의 전에 수식어 "약"이 오도록 본 발명의 특정한 실시양태가 고안된다. 모든 구성 백분율은 중량 단위이고 소성 전의 블렌드에 제공된다. 하한에서 0으로 경계를 이루는 산화물 또는 다른 성분의 숫자 범위(예를 들면, 0몰% 내지 10몰%의 ZnO)는 "[상한]까지", 예를 들면 "10몰% 이하의 ZrO2"의 개념 및 해당 성분이 상한을 초과하지 않는 양으로 존재한다는 분명한 언급의 지원을 제공하도록 의도된다.
0으로 경계를 이루는 본 명세서에 개시된 각각의 숫자 범위는, 대안적인 실시양태로서, 0 대신에 0.1%의 하한을 갖는다. 본 명세서에 개시된 모든 범위는 범위 값 및 임의의 및 그 내의 모든 하위범위의 시작 및 끝을 포함하는 것으로 이해된다. 예를 들면, "1 내지 10"의 기재된 범위는 1의 최소 값 및 10의 최대 값 사이의 임의의 및 모든 하위범위(및 경계 포함); 즉 1 이상의 최소 값에서 시작하여 10 이하의 최대 값으로 끝나는 모든 하위범위, 예를 들면 1.0 내지 2.7, 3.3 내지 8.9, 5.7 내지 10 또는 예를 들면 4.17, 7.53 또는 8.06과 같은 각각의 값을 포함하도록 생각되어야 한다. 즉, 범위 내에 있는 각각의 값 및 모든 값을 기술하기 위해 간단히 범위를 사용한다. 범위 내의 임의의 값은 범위 내의 하위범위의 종점으로서 선택될 수 있다.

Claims (44)

  1. 태양 전지로서,
    적어도 하나의 부동태화 코팅 및 상기 적어도 하나의 부동태화 코팅을 관통한 접점(contact)을 포함하며, 여기서, 상기 접점은 페이스트를 포함하며, 상기 페이스트는, 소성 전에,
    a. 0.5 내지 1.7마이크론 범위의 D50 입자 크기를 갖는 제1 은 분말 40 내지 60중량%, 및 1.75 내지 5마이크론 범위의 D50 입자 크기를 갖는 제2 은 분말 25 내지 45중량%,
    b. 제1 연화점이 300 내지 450℃ 범위이고, D50 입자 크기 범위가 0.2 내지 20마이크론인 제1 유리 프릿 1 내지 5중량%,
    c. 제2 연화점이 350 내지 575℃ 범위이고, D50 입자 크기 범위가 0.2 내지 20마이크론인 제2 유리 프릿 1 내지 5중량%, 및
    d. 원소 알루미늄 0.2 내지 6중량%를 포함하며,
    여기서, 상기 제1 연화점 및 제2 연화점은 적어도 10℃ 다르며, 여기서 상기 페이스트는 소성 동안 상기 태양 전지의 부동태화 코팅을 관통 소성하는 태양 전지.
  2. 제1항에 있어서, 상기 제1 은 분말의 D50 입자 크기는 상기 제2 은 분말의 D50 입자 크기와 2.5% 초과분만큼 다른 태양 전지.
  3. 삭제
  4. 제1항에 있어서, 상기 페이스트는 금속, 합금, 유기 금속 화합물, 규화물, 붕화물, 질화물, 산화물 및 이들의 조합 형태의 도펀트를 0.01 내지 6중량% 추가로 포함하고, 상기 도펀트는 적어도 1종의 3가 원소를 포함하는 태양 전지.
  5. 제4항에 있어서, 상기 도펀트는 B, Al, In, Ga, Tl 및 이들의 조합의 금속 또는 합금인 태양 전지.
  6. 제4항에 있어서, 상기 도펀트는 알루미늄 또는 알루미늄 합금 분말인 태양 전지.
  7. 제4항에 있어서, 상기 도펀트는 D50 입자 크기가 0.5 내지 10마이크론인 알루미늄 또는 알루미늄 합금 분말인 태양 전지.
  8. 제4항에 있어서, 상기 도펀트는 Cr, Mn, Fe, Co, Ni, Ru, Rh, Ir, Os, Sc, Y, La 및 이들의 조합으로 이루어진 군으로부터 선택되는 원소의 규화물인 태양 전지.
  9. 제4항에 있어서, 상기 도펀트는 Cr, Mn, Fe, Co, Ni, Ru, Rh, Ir, Os, Sc, Y, La 및 이들의 조합으로 이루어진 군으로부터 선택되는 원소의 붕화물인 태양 전지.
  10. 제4항에 있어서, 상기 도펀트는 Cr, Mn, Fe, Co, Ni, Ru, Rh, Ir, Os, Sc, Y, La 및 이들의 조합으로 이루어진 군으로부터 선택되는 원소의 질화물인 것인 태양 전지.
  11. 제4항에 있어서, 상기 도펀트는 Cr, Mn, Fe, Co, Ni, Ru, Rh, Ir, Os, Sc, Y, La 및 이들의 조합으로 이루어진 군으로부터 선택되는 원소의 산화물인 것인 태양 전지.
  12. 제4항에 있어서, 상기 도펀트는 원자번호 58의 희토류 원소(Ce)로부터 원자번호 71의 희토류 원소(Lu)로 이루어진 군으로부터 선택되는 것인 태양 전지.
  13. 삭제
  14. 제1항에 있어서, 상기 원소 알루미늄은 D50 입자 크기가 0.5 내지 10마이크론인 태양 전지.
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 제1항에 있어서, 상기 제1 유리 프릿 및 제2 유리 프릿은 연화점이 적어도 20℃ 다른 것인 태양 전지.
  23. 제1항에 있어서, 상기 제1 유리 프릿 및 제2 유리 프릿은 연화점이 적어도 30℃ 다른 것인 태양 전지.
  24. 제1항에 있어서, 상기 제1 유리 프릿 및 제2 유리 프릿은 연화점이 적어도 40℃ 다른 것인 태양 전지.
  25. 제1항에 있어서, 상기 제1 유리 프릿 및 제2 유리 프릿은 연화점이 적어도 60℃ 다른 것인 태양 전지.
  26. 제1항에 있어서, 상기 제1 유리 프릿 및 제2 유리 프릿은 연화점이 적어도 80℃ 다른 것인 태양 전지.
  27. 삭제
  28. 제1항에 있어서, 상기 페이스트는 소성 전에 적어도 1종의 Al-Si 합금 및 규소를 0.01 내지 10중량% 추가로 포함하는 것인 태양 전지.
  29. 제6항에 있어서, 상기 알루미늄은 Al-Si, Al-Ag 및 Al-Zn으로 이루어진 군으로부터 선택되는 적어도 1종의 합금에 의해 제공되는 것인 태양 전지.
  30. 제29항에 있어서, 상기 알루미늄은 0.01 내지 30원자%의 Si를 갖는 Al-Si 합금에 의해 제공되는 것인 태양 전지.
  31. 제29항에 있어서, 상기 알루미늄은 12.2원자%의 Si 및 87.8원자%의 Al을 갖는 Al-Si 공정 합금(eutectic alloy)에 의해 제공되는 것인 태양 전지.
  32. 제29항에 있어서, 상기 알루미늄은 0.01 내지 20원자%의 Ag를 갖는 Al-Ag 합금에 의해 제공되는 것인 태양 전지.
  33. 제29항에 있어서, 상기 알루미늄은 Al-Zn 합금에 의해 제공되는 것인 태양 전지.
  34. 제33항에 있어서, 상기 알루미늄은 16.5원자%의 Zn을 갖는 Al-Zn 합금에 의해 제공되는 것인 태양 전지.
  35. 제33항에 있어서, 상기 알루미늄은 59원자%의 Zn을 갖는 Al-Zn 합금에 의해 제공되는 것인 태양 전지.
  36. 제33항에 있어서, 상기 알루미늄은 88.7원자%의 Zn을 갖는 Al-Zn 합금에 의해 제공되는 것인 태양 전지.
  37. 제1항에 있어서, 상기 페이스트는 소성 전에 3가 전이 원소 또는 3가 희토류 원소로부터 선택되는 금속의 적어도 1종의 규화물을 추가로 포함하는 것인 태양 전지.
  38. 제1항에 있어서, 상기 페이스트는 소성 전에 3가 전이 원소 또는 3가 희토류 원소로부터 선택되는 금속의 적어도 1종의 붕화물을 추가로 포함하는 것인 태양 전지.
  39. 태양 전지로서,
    a. n형 실리콘 웨이퍼,
    b. p형 이미터,
    c. 적어도 하나의 부동태화 코팅, 및
    d. 상기 적어도 하나의 부동태화 코팅을 관통한 접점을 포함하며, 여기서 상기 접점은 페이스트를 포함하고, 상기 페이스트는, 소성 전에,
    i. 0.5 내지 1.7마이크론 범위의 D50 입자 크기를 갖는 제1 은 분말 40 내지 60중량%, 및 1.75 내지 5마이크론 범위의 D50 입자 크기를 갖는 제2 은 분말 25 내지 45중량%,
    ii. 제1 연화점이 300 내지 450℃ 범위이고, D50 입자 크기 범위가 0.2 내지 20마이크론인 제1 유리 프릿 1 내지 5중량%,
    iii. 제2 연화점이 350 내지 575℃ 범위이고, D50 입자 크기 범위가 0.2 내지 20마이크론인 제2 유리 프릿 1 내지 5중량%, 및
    iv. 원소 알루미늄 0.2 내지 6중량%를 포함하며,
    여기서, 상기 제1 연화점 및 제2 연화점은 적어도 10℃ 다르며, 여기서 상기 페이스트는 소성 동안 상기 태양 전지의 부동태화 코팅을 관통 소성하는 태양 전지.
  40. 제39항에 있어서, 상기 페이스트는 소성 전에 적어도 1종의 규소 및 규소-알루미늄 합금을 0.01 내지 10중량% 추가로 포함하는 것인 태양 전지.
  41. 삭제
  42. n형 Si 태양 전지로서,
    p면 상에 페이스트를 갖는 n형 실리콘 웨이퍼를 포함하는 p형 이미터를 가지며, 상기 페이스트는, 소성 전에,
    ⅰ. D50 입자 크기가 0.5 내지 1.7마이크론인 제1 은 분말 40 내지 60중량%,
    ⅱ. D50 입자 크기가 1.75 내지 5마이크론인 제2 은 분말 25 내지 45중량%,
    ⅲ. D50 입자 크기가 0.5 내지 10마이크론인 3가 금속 도펀트 0.01 내지 6중량%,
    ⅳ. 연화점이 300 내지 450℃이고, D50 입자 크기가 0.2 내지 20 마이크론인 제1 유리 조성물 1 내지 5중량%,
    ⅴ. 연화점이 350 내지 575℃인 제2 유리 조성물 1 내지 5중량%,
    ⅵ. 유기 비히클을 포함하며,
    여기서, 상기 제1 유리 조성물 및 제2 유리 조성물의 연화점은 적어도 10℃ 다른 것인 n형 Si 태양 전지.
  43. 금속 투과형(metal wrap through) 태양 전지로서,
    a. 적어도 1개의 홀이 내부에 천공된 n형 실리콘 웨이퍼,
    b. 상기 웨이퍼의 적어도 1면의 적어도 일부 위에 배치된 p형 이미터 층,
    c. 상기 웨이퍼의 n면 위에 배치된 n 섬(island)으로서의 인 확산 층,
    d. 양면 위에 배치된 부동태화 층,
    e. 이면 n 섬 위의 부동태화 층 위에 배치된 은 페이스트를 포함하는, 소성 전의 제1 층,
    f. 상기 실리콘 웨이퍼에서 적어도 1개의 홀 내에 배치된 제2 은 페이스를 포함하는, 소성 전의 제2 층,
    g. p형 이미터를 접촉시키기 위해 사용되는 페이스트를 포함하는 접점을 포함하며, 상기 접점에 포함된 페이스트는, 소성 전에,
    ⅰ. D50 입자 크기가 0.5 내지 1.7마이크론인 제1 은 분말 40 내지 60중량%,
    ⅱ. D50 입자 크기가 1.75 내지 5마이크론인 제2 은 분말 25 내지 45중량%,
    ⅲ. D50 입자 크기가 0.5 내지 10마이크론인 3가 금속 도펀트 0.01 내지 6중량%,
    ⅳ. 연화점이 300 내지 450℃이고, D50 입자 크기가 0.2 내지 20마이크론인 제1 유리 조성물 1 내지 5중량%,
    ⅴ. 연화점이 350 내지 575℃이고, D50 입자 크기가 0.2 내지 20마이크론인 제2 유리 조성물 1 내지 5중량%, 및
    ⅵ. 유기 비히클을 포함하며,
    여기서, 상기 제1 유리 조성물 및 제2 유리 조성물의 연화점은 적어도 10℃ 다른 금속 투과형 태양 전지.
  44. 이미터 투과형 태양 전지로서,
    a. 적어도 1개의 홀이 내부에 천공된 p형 실리콘 웨이퍼,
    b. 상기 웨이퍼의 적어도 1면의 적어도 일부 위에 배치된 n형 이미터 층,
    c. 상기 웨이퍼의 이면 위에 배치된 복수의 편재화된 p형 섬,
    d. 양면 위에 배치된 부동태화 층,
    e. 이면 위의 편재화된 p형 섬 위에 배치된 p-접점 페이스트를 포함하며, 상기 p-접점 페이스트는, 소성 전에,
    ⅰ. D50 입자 크기가 0.5 내지 1.7마이크론인 제1 은 분말 40 내지 60중량%,
    ⅱ. D50 입자 크기가 1.75 내지 5마이크론인 제2 은 분말 25 내지 45중량%,
    ⅲ. D50 입자 크기가 0.5 내지 10마이크론인 3가 금속 도펀트 0.01 내지 6중량%,
    ⅳ. 연화점이 250 내지 650℃인 제1 유리 조성물 1 내지 5중량%,
    ⅴ. 연화점이 300 내지 700℃인 제2 유리 조성물 1 내지 5중량%, 및
    ⅵ. 유기 비히클을 포함하며,
    여기서, 상기 제1 유리 조성물 및 제2 유리 조성물의 연화점은 적어도 10℃ 다르며, 상기 실리콘 웨이퍼 내의 적어도 1개의 홀에 도포된 n-접점 은 플러그 페이스트로서, n-섬과도 접촉하는 은 플러그 페이스트를 구비한 이미터 투과형 태양 전지.
KR1020147009320A 2011-09-09 2012-09-05 은 태양 전지 접점 KR101896740B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161532662P 2011-09-09 2011-09-09
US61/532,662 2011-09-09
PCT/US2012/053748 WO2013036510A1 (en) 2011-09-09 2012-09-05 Silver solar cell contacts

Publications (2)

Publication Number Publication Date
KR20140069114A KR20140069114A (ko) 2014-06-09
KR101896740B1 true KR101896740B1 (ko) 2018-09-07

Family

ID=47832521

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147009320A KR101896740B1 (ko) 2011-09-09 2012-09-05 은 태양 전지 접점

Country Status (5)

Country Link
US (1) US10038109B2 (ko)
EP (1) EP2754185A4 (ko)
JP (1) JP6068474B2 (ko)
KR (1) KR101896740B1 (ko)
WO (1) WO2013036510A1 (ko)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160284889A1 (en) * 2013-03-29 2016-09-29 Shoei Chemical Inc. Conductive paste for solar cell element surface electrodes and method for manufacturing solar cell element
EP2787510B1 (en) * 2013-04-02 2018-05-30 Heraeus Deutschland GmbH & Co. KG Particles comprising Al, Si and Mg in electro-conductive pastes and solar cell preparation
ES2685639T3 (es) * 2013-04-02 2018-10-10 Heraeus Deutschland GmbH & Co. KG Partículas que comprenden Al y Ag en pastas conductoras de la electricidad y preparación de una célula solar
TW201511296A (zh) 2013-06-20 2015-03-16 Plant PV 用於矽太陽能電池之核-殼型鎳粒子金屬化層
CN103559939A (zh) * 2013-09-22 2014-02-05 江苏瑞德新能源科技有限公司 一种适应高温烧结的太阳能电池正银浆料
US9331216B2 (en) 2013-09-23 2016-05-03 PLANT PV, Inc. Core-shell nickel alloy composite particle metallization layers for silicon solar cells
JP5903424B2 (ja) * 2013-12-21 2016-04-13 株式会社ノリタケカンパニーリミテド 太陽電池用導電性ペースト組成物およびその製造方法
KR101614190B1 (ko) * 2013-12-24 2016-04-20 엘지전자 주식회사 태양전지 및 이의 제조 방법
KR102306435B1 (ko) * 2014-08-25 2021-09-28 엘지전자 주식회사 태양 전지 전극용 페이스트 조성물 및 태양 전지
US20160133351A1 (en) * 2014-11-04 2016-05-12 E I Du Pont De Nemours And Company Conductive paste for a solar cell electrode
WO2016099562A1 (en) * 2014-12-19 2016-06-23 Plant Pv, Inc Silver nanoparticle based composite solar metallization paste
DE112016000610B4 (de) 2015-02-04 2022-12-08 Solar Paste, Llc Elektrisch leitfähige Pastenzusammensetzung, Verwendung dieser in einem Verfahren zur Bildung einer elektrisch leitfähigen Struktur, sowie Gegenstand, Photovoltaikzelle und Halbleitersubstrat, umfassend die Pastenzusammensetzung
JP2016164969A (ja) * 2015-02-26 2016-09-08 京セラ株式会社 太陽電池素子およびその製造方法
US10056508B2 (en) 2015-03-27 2018-08-21 Heraeus Deutschland GmbH & Co. KG Electro-conductive pastes comprising a metal compound
US10636540B2 (en) 2015-03-27 2020-04-28 Heraeus Deutschland GmbH & Co. KG Electro-conductive pastes comprising an oxide additive
US10784383B2 (en) 2015-08-07 2020-09-22 E I Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
WO2017035103A1 (en) 2015-08-25 2017-03-02 Plant Pv, Inc Core-shell, oxidation-resistant particles for low temperature conductive applications
WO2017035102A1 (en) 2015-08-26 2017-03-02 Plant Pv, Inc Silver-bismuth non-contact metallization pastes for silicon solar cells
DE102015115765B4 (de) * 2015-09-18 2019-06-27 Hanwha Q Cells Gmbh Solarzelle und Solarzellenherstellungsverfahren
US10000645B2 (en) 2015-11-24 2018-06-19 PLANT PV, Inc. Methods of forming solar cells with fired multilayer film stacks
KR101717508B1 (ko) * 2015-12-02 2017-03-27 주식회사 휘닉스소재 태양 전지 전극 형성용 유리 프릿 조성물, 및 이를 포함하는 페이스트 조성물
EP3387653A4 (en) * 2015-12-10 2019-07-17 Sun Chemical Corporation SILVER CONDUCTIVE PASTE COMPOSITION
CN108604610A (zh) * 2016-02-03 2018-09-28 三菱电机株式会社 太阳能电池模块及其制造方法
JP2017162636A (ja) * 2016-03-09 2017-09-14 ナミックス株式会社 導電性ペースト及び太陽電池
US10134925B2 (en) 2016-04-13 2018-11-20 E I Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US10741300B2 (en) 2016-10-07 2020-08-11 E I Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US10593439B2 (en) 2016-10-21 2020-03-17 Dupont Electronics, Inc. Conductive paste composition and semiconductor devices made therewith
KR101930283B1 (ko) * 2016-10-31 2018-12-19 엘에스니꼬동제련 주식회사 태양전지용 기판 및 이를 구비한 태양전지
JP6741626B2 (ja) * 2017-06-26 2020-08-19 信越化学工業株式会社 高効率裏面電極型太陽電池及びその製造方法
US20200211729A1 (en) * 2018-12-28 2020-07-02 Heraeus Precious Metals North America Conshohocken Llc Conductive pastes for pattern transfer printing
US11508862B2 (en) * 2019-05-29 2022-11-22 Changzhou Fusion New Material Co., Ltd. Thick-film conductive paste, and their use in the manufacture of solar cells
CN112777938B (zh) * 2019-11-11 2023-03-17 江西佳银科技有限公司 一种晶硅太阳能正银浆料用玻璃粉及其制备方法和用途
US11075308B1 (en) 2020-06-19 2021-07-27 Pharos Materials, Inc. Vanadium-containing electrodes and interconnects to transparent conductors
CN112562883B (zh) * 2020-12-01 2022-10-28 广州市儒兴科技开发有限公司 一种与N型太阳电池p+发射极接触的电极浆料
CN112768110B (zh) * 2020-12-23 2022-07-01 广东风华高新科技股份有限公司 一种铜浆及片式多层陶瓷电容器
CN114520068A (zh) * 2022-02-21 2022-05-20 广州市儒兴科技股份有限公司 一种与p+ poly硅接触的电极浆料及其制备方法
CN114783651A (zh) * 2022-04-14 2022-07-22 广州市儒兴科技股份有限公司 一种具有良好烧穿氮化硅层能力的铝浆及其制备方法
CN114822910B (zh) * 2022-05-20 2022-12-06 上海银浆科技有限公司 导电银铝浆、制备方法、电极及电池
CN115714034A (zh) * 2022-12-12 2023-02-24 上海银浆科技有限公司 一种导电银铝浆用有机载体、含有该有机载体的导电银铝浆及其制备方法
CN116403756A (zh) * 2023-04-21 2023-07-07 浙江奕成科技有限公司 一种n型太阳能电池正面银浆及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100269893A1 (en) 2009-04-23 2010-10-28 E. I. Du Pont De Nemours And Company Metal pastes and use thereof in the production of positive electrodes on p-type silicon surfaces
US20110143497A1 (en) * 2009-12-16 2011-06-16 E. I. Du Pont De Nemours And Company Thick film conductive composition used in conductors for photovoltaic cells
WO2011097606A2 (en) * 2010-02-08 2011-08-11 E. I. Du Pont De Nemours And Company Process for the production of a mwt silicon solar cell

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933867A (ja) * 1982-08-20 1984-02-23 Hitachi Ltd 半導体装置用電極材料
US5178685A (en) 1991-06-11 1993-01-12 Mobil Solar Energy Corporation Method for forming solar cell contacts and interconnecting solar cells
JP3297531B2 (ja) * 1994-06-27 2002-07-02 京セラ株式会社 導電性ペースト
US5928568A (en) * 1996-06-24 1999-07-27 Delco Electonics Corporation Thick film circuit having conductor composition with coated metallic particles
JP3419321B2 (ja) * 1998-09-24 2003-06-23 株式会社村田製作所 セラミック電子部品およびその製造方法
EP2251874B1 (en) * 2001-06-27 2011-12-07 Fujifilm Corporation Conductive film
US20050172996A1 (en) 2004-02-05 2005-08-11 Advent Solar, Inc. Contact fabrication of emitter wrap-through back contact silicon solar cells
JP4645594B2 (ja) * 2004-07-06 2011-03-09 株式会社村田製作所 導電性ペースト及びそれを用いたセラミック電子部品
JP4393938B2 (ja) * 2004-07-16 2010-01-06 信越化学工業株式会社 電極材料及び太陽電池、並びに太陽電池の製造方法
US20060102228A1 (en) * 2004-11-12 2006-05-18 Ferro Corporation Method of making solar cell contacts
US7462304B2 (en) * 2005-04-14 2008-12-09 E.I. Du Pont De Nemours And Company Conductive compositions used in the manufacture of semiconductor device
US7494607B2 (en) * 2005-04-14 2009-02-24 E.I. Du Pont De Nemours And Company Electroconductive thick film composition(s), electrode(s), and semiconductor device(s) formed therefrom
US7718092B2 (en) 2005-10-11 2010-05-18 E.I. Du Pont De Nemours And Company Aluminum thick film composition(s), electrode(s), semiconductor device(s) and methods of making thereof
US8721931B2 (en) * 2005-12-21 2014-05-13 E I Du Pont De Nemours And Company Paste for solar cell electrode, solar cell electrode manufacturing method, and solar cell
JP5323307B2 (ja) * 2005-12-21 2013-10-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 太陽電池電極用ペースト
JP2007194580A (ja) * 2005-12-21 2007-08-02 E I Du Pont De Nemours & Co 太陽電池電極用ペースト
KR101212198B1 (ko) * 2006-04-06 2012-12-13 삼성에스디아이 주식회사 태양 전지
US8309844B2 (en) * 2007-08-29 2012-11-13 Ferro Corporation Thick film pastes for fire through applications in solar cells
EP2068369A1 (en) * 2007-12-03 2009-06-10 Interuniversitair Microelektronica Centrum (IMEC) Photovoltaic cells having metal wrap through and improved passivation
US7976734B2 (en) * 2008-09-10 2011-07-12 E.I. Du Pont De Nemours And Company Solar cell electrodes
US8231934B2 (en) * 2008-11-26 2012-07-31 E. I. Du Pont De Nemours And Company Conductive paste for solar cell electrode
JP5414409B2 (ja) 2009-01-16 2014-02-12 日立粉末冶金株式会社 低融点ガラス組成物、それを用いた低温封着材料及び電子部品
KR101144810B1 (ko) * 2009-07-06 2012-05-11 엘지전자 주식회사 태양전지용 전극 페이스트, 이를 이용한 태양전지, 및 태양전지의 제조방법
EP2325848B1 (en) * 2009-11-11 2017-07-19 Samsung Electronics Co., Ltd. Conductive paste and solar cell
CN102667961A (zh) * 2009-11-25 2012-09-12 E·I·内穆尔杜邦公司 铝浆及其在钝化发射极以及背面接触硅太阳能电池生产中的用途
JP5746325B2 (ja) * 2010-05-04 2015-07-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 鉛−テルル−ホウ素−酸化物を含有する厚膜ペーストと半導体デバイスの製造においてのそれらの使用
SG188359A1 (en) * 2010-09-01 2013-04-30 Ferro Corp Via fill material for solar applications
US20110315217A1 (en) * 2010-10-05 2011-12-29 Applied Materials, Inc. Cu paste metallization for silicon solar cells
US8419981B2 (en) * 2010-11-15 2013-04-16 Cheil Industries, Inc. Conductive paste composition and electrode prepared using the same
KR20120078109A (ko) * 2010-12-31 2012-07-10 엘지이노텍 주식회사 태양 전지의 전극용 페이스트 조성물 및 태양 전지
WO2012111478A1 (ja) 2011-02-18 2012-08-23 株式会社 村田製作所 導電性ペースト及び太陽電池
US20120255605A1 (en) * 2011-04-06 2012-10-11 E. I. Du Pont De Nemours And Company Method of manufacturing solar cell electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100269893A1 (en) 2009-04-23 2010-10-28 E. I. Du Pont De Nemours And Company Metal pastes and use thereof in the production of positive electrodes on p-type silicon surfaces
US20110143497A1 (en) * 2009-12-16 2011-06-16 E. I. Du Pont De Nemours And Company Thick film conductive composition used in conductors for photovoltaic cells
WO2011097606A2 (en) * 2010-02-08 2011-08-11 E. I. Du Pont De Nemours And Company Process for the production of a mwt silicon solar cell

Also Published As

Publication number Publication date
JP2014530482A (ja) 2014-11-17
CN104170094A (zh) 2014-11-26
EP2754185A1 (en) 2014-07-16
US10038109B2 (en) 2018-07-31
KR20140069114A (ko) 2014-06-09
EP2754185A4 (en) 2015-06-03
WO2013036510A1 (en) 2013-03-14
JP6068474B2 (ja) 2017-01-25
US20150027524A1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
KR101896740B1 (ko) 은 태양 전지 접점
JP5570071B2 (ja) アルミニウムと、ホウ素、チタン、ニッケル、錫、銀、ガリウム、亜鉛、インジウム、及び銅のうち少なくとも1種とを含有する太陽電池コンタクト
US8236598B2 (en) Layered contact structure for solar cells
JP5530920B2 (ja) 銀及びニッケル、もしくは、銀及びニッケル合金からなる厚膜導電体形成、及びそれから作られる太陽電池
TWI570748B (zh) 電極用膠組成物及太陽電池
JP6242198B2 (ja) 半導体デバイスの導電膜形成用導電性ペースト、および半導体デバイス、並びに半導体デバイスの製造方法
TWI495125B (zh) 元件及太陽電池
JP6208747B2 (ja) ニッケル金属間組成物を有する太陽電池接点
KR20150000486A (ko) 태양전지 접촉부의 인쇄 방법
WO2012083291A1 (en) Conductive paste composition containing lithium, and articles made therefrom
JP6206491B2 (ja) 電極形成用組成物、太陽電池素子及び太陽電池
WO2011090213A1 (ja) 電極用ペースト組成物及び太陽電池
KR20180116424A (ko) 도전성 페이스트 및 태양 전지
WO2015084803A1 (en) Conductive paste composition and semiconductor devices made therewith
JP2016189443A (ja) 電極形成用組成物、電極、太陽電池素子及びその製造方法、並びに太陽電池
JP6246135B2 (ja) 有機亜鉛化合物を含有する太陽電池の金属化
JP6464669B2 (ja) 電極形成用組成物、電極、太陽電池素子並びに太陽電池及びその製造方法
JP2016115873A (ja) 太陽電池電極形成用導電性ペースト、並びに、これを用いた太陽電池素子および太陽電池モジュール
CN104170094B (zh) 银太阳能电池触点
JP2016189308A (ja) 電極形成用組成物、電極、太陽電池素子及びその製造方法、並びに太陽電池

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant