KR101773444B1 - 용광로 노상의 세라믹 바닥 라이닝 - Google Patents

용광로 노상의 세라믹 바닥 라이닝 Download PDF

Info

Publication number
KR101773444B1
KR101773444B1 KR1020137018811A KR20137018811A KR101773444B1 KR 101773444 B1 KR101773444 B1 KR 101773444B1 KR 1020137018811 A KR1020137018811 A KR 1020137018811A KR 20137018811 A KR20137018811 A KR 20137018811A KR 101773444 B1 KR101773444 B1 KR 101773444B1
Authority
KR
South Korea
Prior art keywords
ceramic
block
granular
refractory
blocks
Prior art date
Application number
KR1020137018811A
Other languages
English (en)
Other versions
KR20130132927A (ko
Inventor
자크 피렛
질 카스
Original Assignee
풀 부르스 에스.에이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44246998&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR101773444(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 풀 부르스 에스.에이. filed Critical 풀 부르스 에스.에이.
Publication of KR20130132927A publication Critical patent/KR20130132927A/ko
Application granted granted Critical
Publication of KR101773444B1 publication Critical patent/KR101773444B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/04Blast furnaces with special refractories
    • C21B7/06Linings for furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/003Linings or walls comprising porous bricks
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/44Refractory linings

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Ceramic Engineering (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Blast Furnaces (AREA)

Abstract

본 발명은 야금로를 위한 노상(10; 210), 특히 용광로를 위한 노상과 관련이 있다. 노상(10; 210)은 용융 금속을 함유하기 위한 용탕을 포함하기 위한 내화 물질로 제조된 벽 라이닝(12; 212)과 바닥 라이닝(14; 214)을 포함한다. 바닥 라이닝(14; 214)은 하부 영역(20; 220)과, 하부 영역(20; 220)의 상부를 덮기 위해 배치되고 세라믹 엘리먼트로 지어진 상부 영역(22; 222)을 포함한다. 상부 영역(22; 222)의 세라믹 엘리먼트(24; 224)는 높은 알루미나함량 과립 물질의 규질-알루미나로 제조된 과립상과 상기 과립 물질의 과립을 결합하기 위한 결합상으로 구성된 미세 기공 세라믹 물질로 제조되며, 상기 미세 기공 세라믹 물질은 7W/m.°K, 바람직하게는 5W/m.°K 미만의 열 전도도를 영구히 유지하는 것을 가진다.
본 발명은 또한 질소 분위기에서 구워짐으로써 세라믹 엘리먼트(300)에 미세기공을 부여하는 과정을 제안하고, 바닥 라이닝의 세라믹 엘리먼트의 특정한 배열을 제안한다.

Description

용광로 노상의 세라믹 바닥 라이닝{ceramic bottom lining of a blast furnace hearth}
본 발명은 일반적으로 야금용기, 예를 들어 선철(pig iron) 제조를 위한 용광로의 화로의 내화 라이닝(refractory lining)과 관련되어 있다. 더욱 상세하게는, 본 발명은 작동 중에 고온의 용융 금속을 포함하는 노상의 바닥 라이닝의 상부 영역 안의 세라믹 물질의 사용과 관련이 있다.
용광로 설계 분야에서, 노상의 바닥 라이닝을 건설하는 데 있어서, 탄소 블록과 같은 내화물질을 사용하는 것은 알려져 있다. 노상은 고온의 용융 금속을 포함하기 때문에, 고온, 기계적 마멸, 화학적 공격 그리고 고온의 액화 금속의 침투의 관점에서 봤을 때 노상 라이닝의 작업 조건은 심각하다. 용광로의 생산율을 높이기 위한 최근 경향은 작업 조건을 더욱더 심각하게 만들었다. 종래의 해결책은 바닥 라이닝의 작업 수명을 늘리기 위해 특히, 소성 벽돌(fired brick)과 같은 세라믹 물질의 최상부층을 제공하는 것으로 이루어져 있고, 예를 들어 주된 내화층의 최상부에, 일반적으로 열전도성 탄소 내화 블록으로 제조된 멀라이트 결합이 있는 홍주석 벽돌과 같은 것을 제공하는 것이다.
세라믹 물질의 상부 층은, 때때로 세라믹 패드라고 불리며, 바닥 냉각 시스템의 이로운 효과를 다른 것들 가운데 높여준다. 바닥 냉각 시스템은 열평형을 달성하기 위해 바닥 라이닝의 열전도성 내화 성분들을 냉각시키고, 그 열평형은 바닥 라이닝에서 가능한 한 높은 곳에 위치한 응고 등온선(어는 수준) 즉, 선철이 응고하는 수준에 있다. 결과적으로는 바닥 라이닝 내로 이동되고, 가능한 높은 위치에서, 바람직하게는 세라믹 부분(세라믹 패드)의 가능한 가장 상부에서 응고되는 어떠한 용융된 주철을 달성하는데 궁극적인 목적이 있다. 세라믹 엘리먼트의 부가적인 열 차단 층을 용탕과 바닥의 주된 내화 사이에 제공하는 것은 후자의 목표를 달성하는데 명백히 기여한다. 세라믹층의 열전도성이 가능한 낮아야 한다는 것은 쉽게 이해될 수 있다. 결과적으로, 세라믹 가장 상부층의 주된 기능은 바로 하부층의 내화물을 부식으로부터 보호하는 것 및 일반적으로는 마모를 감소시키는 것으로 알려진 작업온도를 낮추는 것이다.
그러나 보호 세라믹 내화물의 최상부층을 제공하는 접근은 여전히 결점이 나타난다는 것이 최근에 관찰되었다. 사실, 불가피한 세라믹층의 장기간의 부식 외에도, 응고 등온선은 심지어 세라믹층 두께가 눈에 띄게 감소되기 전에도 바닥 라이닝의 탄소 부분 내로 계속해서 감소하는 것이 관찰되었다.
앞서 언급한 논의의 관점에서, 본 발명의 목적은 바닥 라이닝의 상부 영역을 위해 개선된 세라믹 층을 제공하는 것이며, 상기 층은 하부 영역에서 더욱 내구성 있는 보호 효과를 가진다.
상기 목적을 달성하기 위하여, 본 발명은,
야금로, 특히 용광로를 위한 노상(hearth)(10; 210)에 있어서,
상기 노상은(10; 210),
용융 금속을 포함하는 용탕(bath)을 함유하기 위한 내화 물질로 제조된 벽 라이닝(12; 212) 및 바닥 라이닝(14; 214)을 포함하고,
상기 바닥 라이닝(14; 214)은 하부 영역(20; 220)과,
상기 하부 영역(20; 220)을 덮기 위해 배치된 세라믹 엘리먼트(element) 층(24; 224)을 포함하는 상부 영역(22; 222)을 가지며,
상기 상부 영역(22; 222)의 상기 세라믹 엘리먼트(24; 224)는 높은 알루미나함량 과립 물질인 규질-알루미나(silico-aluminous)로 제조된 과립상 및 상기 과립 물질의 과립을 결합하기 위한 결합상으로 이루어진 상기 미세 기공 세라믹 물질로 제조되며,
상기 미세 기공 세라믹 물질은 7W/m.°K, 바람직하게는 5W/m.°K 미만의 열 전도도를 가지는 것을 특징으로 하는 노상을 제공한다.
또한, 본 발명은,
상기 노상을 포함하는 용광로를 제공한다.
나아가, 본 발명은,
과립형 홍주석 또는 과립형 샤모트 또는 과립형 강옥 또는 과립의 합성 멀라이트, 및 하나 또는 하나 이상의 실리콘, 알루미늄, 산소 그리고 질소를 포함하는 결합 상으로 제조된 조립식 블록(300)을 제공하는 단계; 및
질소 분위기에서 상기 블록을 굽는 단계;를 포함하는 제1항의 점토(earth)의 바닥 라이닝의 상부 영역(22; 222)에서 사용가능한 미세기공 세라믹 엘리먼트의 제조 방법를 제공한다.
또한, 본 발명은,
높은 알루미나 함량 골재 또는 홍주석 또는 내화점토 합성 멀라이트 골재를 포함하는 조립식 블록을 제공하는 단계; 및
상기 조립식 블록을 수경 결합하는 단계;를 포함하는 제1항의 점토의 바닥 라이닝의 상부 영역(22; 222)에서 사용가능한 미세기공 세라믹 엘리먼트의 제조 방법을 제공한다.
나아가, 본 발명은,
바람직하게는 과립형 홍주석 또는 샤모트 또는 강옥 또는 합성 멀라이트를 기반으로 하며, 굽지 않은 세라믹 엘리먼트의 결합상 성분인 실리콘, 알루미늄, 산소 그리고 질소를 포함하는 굽지 않은 세라믹 엘리먼트(300)를 제공하는 단계; 및
바람직하게는 2나노펌 이하의 투과도를 갖는 미세기공 세라믹 결합 상을 포함하는 세라믹 엘리먼트 속으로 상기 굽지 않은(그린) 세라믹 엘리먼트(300)를 질소 분위기에서 굽는 단계;를 포함하는 높은 알루미나함량 과립 물질의 규질-알루미나(silico-aluminous)로 제조된 과립상 및 상기 과립 물질의 과립을 결합하기 위한 결합상으로 이루어진 세라믹 내화 물질의 불투과 방법을 제공한다.
본 발명은 야금로를 위한 노상은 내화 물질로 제조된 벽 라이닝과 바닥 라이닝을 제공하여 용융 금속을 함유하기 위한 용탕을 포함할 수 있다. 특히, 바닥 라이닝의 상부영역은 높은 알루미나함량 과립 물질의 규질-알루미나로 제조된 과립상과 상기 과립 물질의 과립을 결합하기 위한 결합상으로 구성된 미세 기공 세라믹 물질로 제조되어 낮은 열 전도도와 투과도를 영구히 유지하는 효과를 가진다.
또한, 본 발명은 또한 질소 분위기에서 구워짐으로써 세라믹 엘리먼트에 미세기공을 부여할 수 있으며, 바닥 라이닝의 세라믹 엘리먼트의 특정한 배열을 제안하여 더욱 안정하고 견고한 내구성을 가지는 효과가 있다.
본 발명의 바람직한 실시예는, 하기 첨부된 도면을 참조하여 실시예들에 의하여 설명될 것이다.
도 1은 미세기공 벽돌 또는 비교적 작은 블록으로 구성된 상부 영역의 세라믹 엘리먼트가 있는 바닥 라이닝을 나타낸 용광로 노상의 수직 단면도이다.
도 2는 미세기공 대형 블록으로 구성된 상부 영역의 세라믹 엘리먼트가 있는 바닥 라이닝을 나타낸 용광로 노상의 수직 단면도이다.
도 3A 및 3B는 대형 내화 블록의 저면도와 수직 단면도를 각각 나타내며, 이 블록은 도 2의 실시예에서 사용된 대형 블록의 제조에 특별히 적용된다.
도 4는 바닥 라이닝의 첫번째 실시예의 평면도이며, 바닥 라이닝은 동심원으로 배치된 대형 세라믹 블록으로 제조되었다.
도 5는 바닥 라이닝의 두번째 실시예의 평면도이며, 바닥 라이닝은 헤링본 패턴으로 배치된 대형 세라믹 블록으로 제조되어 있으며, 벽 라이닝의 블록은 원형으로 배치된다.
도 6은 헤링본 패턴으로 배치된 대형 세라믹 블록으로 제조된 바닥 라이닝의 세번째 실시예의 평면도이며, 벽 라이닝의 블록은 계단 모양에 매칭되게 배치된다.
도 7은 도 4의 바닥 라이닝의 반지름 방향의 단면도이며, 세라믹 블록 사이의 수직 접합부의 다른 예들을 공유한다.
본 발명은 야금 산업에서의 용기를 위한 노상을 제안하며, 특히 저점도 용융금속을 포함하는 화로, 특히 용광로를 위한 노상을 제안한다. 노상은 용융 금속 용탕을 함유하는 내화 물질로 제조된 벽 라이닝과 바닥 라이닝을 포함한다. 상기 바닥 라이닝은 하부 영역 및, 세라믹 엘리먼트 층, 예를 들어 벽돌, 더욱 바람직하게는 대형 블록과 같은 개개의 건축 구성단위의 벽돌 포장 건설의 형식의 층을 포함하는 상부 영역을 가진다. 세라믹 엘리먼트 층은 하부 영역을 덮기 위해 위치한다.
"세라믹 물질"로부터, 내화 세라믹 물질을 위해 공통적으로 합의된 정의, 즉, 내화물질, 및 과립상을 위한 세라믹 산화물을 기반으로 하며, 과립 사이의 결합상으로써 세라믹 산화물 또는 비산화물 조성이 더욱 고려된다. 주로 탄소, 또는 탄화 규소와 같은 비산화 재료로 제조된 과립상을 가지는 내화물질들은 본 발명에서는 이 문서의 전개에 따라 나타날 기술적 이유 때문에 고려하지 않는다.
본 발명에 따르면, 상기 언급된 목적은 높은 알루미나함량 과립 물질의 규질-알루미나(silico-aluminous)로 제조된 과립상 및 상기 과립 물질의 과립을 결합하기 위한 결합상으로 이루어진 미세 다공성 세라믹 물질로 제조된 세라믹 엘리먼트를 제공함으로써 성취된다. 상기 미세다공성 세라믹 물질은 일반적으로 7W/m.°K 미만, 바람직하게는 5W/m.°K 미만의 열전도율을 갖는다.
과립상은 홍주석, 샤모트, 강옥, 합성 멀라이트 중 하나 또는 그 이상을 포함한다. 상기 결합상은 질화 결합(a nitrided bond), 바람직하게는 사이알론(SiAlON) 결합을 포함한다.
본 발명에 따른 미세다공성 세라믹 엘리먼트는 관습적으로 설계된 바닥 라이닝의 하부 영역을 완벽히 덮는 보호층 또는 계면을 형성한다. 전체적으로 나타나는 바닥 라이닝의 다공도에 있어서 약간의 불균질성은 알려진 열적-기계적 이유로 인해 요구되는 블록 사이 또는 벽돌 사이의 접합부에 의해 형성된 적은 비-미세기공 영역에 의한 결과일 수 있다. 하지만, 바닥 라이닝의 다공도에 있어서 그러한 약간의 불균질성은 용인될 수 있다. 어떤 경우에도 기술적으로 가능한 한도까지 상기 엘리먼트 그 자체는 독점적으로 미세기공 세라믹 물질로 구성되어 있다.
미세-기공의 배경을 결정하는 것의 더 나은 이해를 위해, 물질이 미세기공이거나 아닌 것을 표명하는 것을 허용하는 기지상의 속성을 기억해야 한다; 과립상 그 자체는 물질의 약 80 %를 대표하며, 굉장히 다공성이거나 미미한 기공이 아니고, 만약 있다면 대부분의 밀폐된 기공이며, 물질의 미세다공 거동에 방해를 주지 않는다; 그럼에도 불구하고, 주어진 물질이 미세기공이라고 하면, 전체로써 활용되기 때문에, 그 표현은 전체로써의 그 재료를 의미한다.
본 발명에 따른 발전의 과정에서, 사용 기간이 진행하는 동안, 세라믹 내화 엘리먼트 그들 스스로 용융 주철에 의해 점진적으로 침투되는 것이 관찰되었다. 이 현상은 증가하는 철정 헤드(ferrostatic head)와 더 높은 화로 작동 압력으로 더 확연하게 되었다. 이 현상이 종래 세라믹의 내재된 다공도와 투과도에 기인한다는 것은 이론화되었다. 그래서, 상부 세라믹 층의 열전도도는 선철 함유량의 증가에 기인하는 시간에 따라 증가한다. 결과적으로, 응고 등온선은 시간에 따라 바닥 라이닝 내로 불리하게 진행한다. 이러한 단점을 극복하기 위해서, 본 발명은 상부층에 사용되는 세라믹 엘리먼트의 투과도를 상당히 감소시키는 것, 더 구체적으로 미세기공 세라믹을 사용하는 것을 제안한다. 투과도는 반드시 필수적으로 또는 항상 다공도에 따라 상승하는 기능인 것은 아니다. 특정한 상황하에서는 투과도를 감소시키기 위해 다공도를 증가해야만 하는 것도 알려진다.
다공성 재료는 그것의 투과도(고유 투과도), 즉, 어떤 물질이 유동 물질(침투를 허락하는)을 전송할 수 있는 정도에 의해 특정된다. 투과도는 메트릭 펌(metric perm) 또는 US 펌(US perm)(약 0.659 메트릭 펌)으로 기재될 수 있다. 이하, 투과도는 메트릭 펌으로 기재된다.
본 발명의 일측면에 따르면, 보호층의 미세기공 세라믹 물질은 2나노펌(nanoperm) 이하, 더 바람직하게는 1나노펌과 이하의 투과도를 갖는다. 이러한 낮은 투과도는 선철에 의한 침투를 눈에 띄게 줄이거나 심지어 완벽히 방지한다. 적합한 투과도 측정 방법은 ISO 8841(버젼 1991) 표준에 정의되어 있다.
잘 알려진 바와 같이, 다공성 재료는 기공의 평균 너비의 방법에 의해 또한 분류된다. 본 발명(그리고 정반대되는, 예를들어 IUPAC 정의)에서는, 내화 물질이 2㎛ 미만의 평균 너비를 나타내는 기공을 가질 때, 내화 물질은 "미세기공"으로 고려된다. 본 발명의 일측면에 따르면, 세라믹 엘리먼트는 이와 같이 바람직하게는 2㎛ 이하, 더욱 바람직하게는 1㎛ 이하의 평균 기공 너비를 갖는다.
하나의 실시예에 따르면, 보호층은 하나의 부품, 예를 들어 포장과 비슷한 조적 구조(masonry)과 같은 건설이며, 그것은 하부 영역의 모든 자유 표면, 즉, 벽 라이닝에 의해 원주로 한정된 하부 영역의 일반적으로 수평인 상부 표면을 완전히 덮는다. 이론적으로, 보호층은 비교적 작은 벽돌의 종래 방식으로 지어질 수 있다. 벽돌은 전형적으로 20 dm3(0.02m3)미만의 부피, 예를 들어 100x250x500 mm와 같거나 작은 크기, 그리고 대략 40kg 또는 미만의 무게를 가진다. 그러나 본 발명의 바람직한 실시예에 따르면, 층은 비교적 큰 블록의 큰 크기로 지어진 부품이다. 경계 지역에 인접한 벽 라이닝에서, 더 작은 엘리먼트가 층(course)에 사용될 수 있다. 본문에서, 벽돌과는 대조적으로, 표현된 블록은 적어도 20dm3(0.02m3) 부피, 예를 들어, 세라믹 바닥 층(또는 패드)의 높이 또는 두께에 대응하는 400mm 또는 심지어 500mm의 높이를 초과하고, 너비(화로 축 주변의 원주 방향으로)가 200mm를 초과하며, 500mm 초과의 길이(반지름 방향으로), 그리고 50kg을 크게 초과할 수 있는 무게를 갖는 엘리먼트로 나타난다.
노상의 벽 라이닝은 반지름 방향의 가장 내부의 추가 부품, 예를 들어 벽돌 원주 벽, 용융된 주철이 포함된 세라믹 엘리먼트 층과 함께 세라믹 컵을 형성하는 세라믹 엘리먼트의 부품을 포함할 수 있다. 용어 "가장 내부의" 는 이하 "반지름방향으로 가장 내부의"를 말한다. 추가 부품은 벽돌 또는, 바람직하게는 블록으로 제조될 수 있다. 세라믹 컵의 바람직한 실시예에서, 추가 부품의 세라믹 엘리먼트는 미세기공 재료에 의해 전체 세라믹 컵을 형성하기 위해서 미세기공 세라믹 물질을 또한 기반으로 한다.
종래의 세라믹 내화 물질은 일반적으로 메조기공(mesoporous) 그리고 상대적으로 투과성(10나노펌 이상의)이 있다. 세라믹 물질의 투과도를 줄임으로써 미세기공을 얻는 다양한 알려진 과정이 있다.
세라믹 엘리먼트는 바람직하게는 조립식 엘리먼트, 예를 들어 종래 방식으로 주조된 세라믹 블록으로부터 얻는다. 원칙적으로는, 미세기공은 수경 결합(예를 들어 수경성 칼슘 알루미네이트 시멘트)에 의해 성취될 수 있다. 수경 결합을 사용할 때, 조립식 세라믹 엘리먼트는 예를 들어 높은 알루미나 함량 과립 물질인 규질-알알루미나(silico-aluminous), 예를 들어 강옥(철, 티타늄, 크롬과 일치하는 알루미늄 산화물 Al2O3의 결정 형성)또는 샤모트 또는 홍주석 과립형 물질 또는 내화점토 합성 멀라이트를 기반으로 할 수 있다. 어떤 경우에도, 과립 사이에 있는 미세한 입자는 높은 온도에 노출되었을 때 안정하게 남아있는 미세기공 성질을 부여한다.
하지만 보다 바람직하게는, 나아간 측면에 따라, 세라믹 엘리먼트는 질소분위기("질소 파이어링(firing)" 또는 "질화 경화")에서 구워짐으로써 한번 처리된 고온 저항성 영구 미세기공을 제공하는 적합하며 좋은 첨가제를 포함한다. 기공의 평균 자유 너비를 감소시키는 것과 그렇게 함으로써 "불투과성" 물질이 되고, 이 처리는 화학적 공격, 예를 들어 알칼리와 같은 공격에 비질화 세라믹 물질보다 더 나은 저항성을 갖는 세라믹 물질, 특히, 사이알론 세라믹을 제공할 수 있다. 큰 미세기공 세라믹 엘리먼트는 바람직하며, 조립식 블록을 질소 분위기에서 구움으로써 얻을 수 있다. 적합한 조립식 블록은 높은 알루미나 함량 과립 물질을 기반으로 할 수 있다. 그러나 보다 바람직하게, 가격과 열전도성을 감소시키는 관점에서는, 블록은 홍주석 또는 샤모트 과립형 물질, 예를 들어 55 내지 65중량 %, 바람직하게는 60 내지 63 중량 %의 Al2O3 함량을 갖는 샤모트, 또는 또한 합성 멀라이트를 기반으로 할 수 있다. 이러한 다양한 대안은 1400℃를 초과하는 높은 온도에서 확실하게 안정되게 남아있는 미세다공성을 부여하는 것으로 간주된다. 바람직하게는, 조립식 블록은 미세다공성 사이알론 결합된 세라믹을 얻기 위해 구성되어 있으며, 즉 실리콘(Si), 알루미늄(Al), 산소(O), 질소(N) 엘리먼트를 기반으로 하는 세라믹 합금으로 제조된 매트릭스(결합상)의 종류는 그로그(grog, 굽기 전의 초기 혼합물) 속으로 적절히 도입되고, 그것은 질소 분위기에서 나중에 구워진다. 사이알론 결합된 세라믹이 용융된 비철 금속에 의한 젖음이나 부식에 대한 저항성으로 알려져 있는 반면, 그들은 또한 철 금속, 예를 들어 용광로에서 생산되는 선철의 경우에도 또한 유익한 것으로 발견되었다.
또 다른 관점에 따르면, 세라믹 엘리먼트의 실제적 사용과는 독립적으로, 상부 영역의 세라믹 엘리먼트는 질소 분위기에서 구워진 세라믹 물질로 제조되며 상기 상부 측과 하부 측을 가지고, 상기 하부측에 제조된 적어도 하나의 블라인드 홀을 포함하는 제1부분 및 상기 블라인드에 삽입된 내화 물질로 제조된 제2부분을 가지는 대형 블록을 포함할 수 있다. 제1부분의 세라믹 물질 내에 위치한 어떤 지점에 배치된 블라인드 홀은 상기 블록을 생산하기 위한 굽기 공정에 의해 성취될 수 있는 불투과성의 최대 침투 깊이 보다 낮은 상기 제1부분의 표면으로부터 거리에 위치한다. 사실, 이러한 블라인드 홀은 굽는 동안 블록 안으로 질소의 더욱 철저한 침투나 확산을 허용하며, 이 특별한 설계는 질소 분위기에서 구워짐으로써 미세기공 대형 블록, 예를 들어 200x400x500 mm 이상 측정되는 대형 블록을 생산하게 하며, 그 다음 블라인드 홀이 래밍재에 의해 채워진다.
알려진 방식으로, 바닥 라이닝의 하부 영역은 탄소 내화 구조를 주로 포함한다. 전형적으로, 하부 영역은 바닥에서부터 상부까지, 래밍 물질, 안전한 그라파이트(graphite) 층과 열전도성 탄소 내화 층을 포함한다.
이해될 바와 같이, 본 발명은 특히 용광로의 노상의 건설, 특히 그것의 바닥 라이닝에 적용가능하다.
또 다른 관점에 따르면, 세라믹 엘리먼트는 헤링본 패턴으로 배치된 대형 세라믹 블록이다.
첫번째 실시예에 따르면, 벽 라이닝은, 상기 상부 영역과 같은 수준에서, 상기 헤링본 패턴의 상기 대형 세라믹 블록과 매칭되는 내화 블록을 포함하며, 각각의 세라믹 블록의 정렬 또는 그룹의 정렬은 하나의 상기 내화 블록에 의해 벽 라이닝의 주변부를 향해 연장된다.
두번째 실시예에 따르면, 벽 라이닝은, 상부 영역과 같은 수준에서, 원주로 나란히 배열된 내화 블록의 첫번째 환형 열 및 내화 블록의 첫번째 환형 열과 헤링본 패턴으로 배열된 대형 세라믹 블록 사이에 배열되며, 원주로 나란히 배열된 미세기공 세라믹 블록의 두번째 환형 열로 구성된다.
세라믹 엘리먼트는 동심 환형 열로 배열된 대형 세라믹 블록 또한 될 수 있고, 각각의 상기 환형 열이 원주로 나란히 배열된 미세기공 세라믹 블록으로 구성되는 곳에 있는 벽 라이닝은 상기 상부 영역과 같은 수준에서, 원주로 나란히 배열된 내화 블록의 환형 열과, 래밍 재료에 의해 벽 라이닝의 상기 환형 열과 연결되는 세라믹 블록의 바깥 환형 열로 구성된다.
상기 실시예 중 어느 것에서도, 벽 라이닝의 내화 블록은 바람직하게는 탄소 블록이다.
다른 실시예에 따르면, 인접한 세라믹 블록 사이의 접합면은 중심으로부터 바닥 라이닝의 주변부를 향해 점진적으로 더욱 전체적으로 경사지며, 어떤 블록은 부분적으로 내부로 인접한 블록 위로 얹힌다(surmounting). 바람직하게는, 접합면은 내부 링에서는 평평한 경사 계면이고, 바깥 링에서는 계단 계면 또는 곡선 경사 계면이다.
바닥 라이닝에서 대형 세라믹 블록을 사용하는 모든 대안의 틀에서, 이 블록 사이의 접합부에서 특별한 주의가 요구된다. 열적-기계적 손실을 피하기 위해서, 이 블록 사이의 접합부의 두께는, 세라믹 모르타르로 채워지기 위해, 고려된 블록 크기, 즉, 고려된 접합부 배치(joint plan)에서 수직 방향으로 취해진 인접한 블록 크기의 0.7 내지 1.5%, 바람직하게는 0.8 내지 1.2% 사이이다.
마지막으로, 본 발명은 또한 세라믹 엘리먼트를 제조하는 방법을 제안하며, 이것은 본 발명의 독립항이다.
높은 알루미나함량 과립 물질의 규질-알루미나(silico-aluminous)로 제조된 과립상 및 상기 과립 물질의 과립을 결합하기 위한 결합상으로 이루어진 세라믹 내화 물질의 불투과 방법은, 예비 단계로써, 굽지 않은(그린,green) 세라믹 엘리먼트를 제공하는 것, 즉, 사이알론 결합을 형성할 수 있는 비율의 적절한 범위 내에서 매트릭스에 실리콘, 알루미늄, 산소, 그리고 질소 원소를 포함하는 과립형 홍주석 또는 샤모트, 또는 합성 멀라이트를 기반으로 하는 세라믹 엘리먼트를 제공하는 것으로 구성된다.
다음으로, 불투과성은 바람직하게는 2나노펌 이하의 투과도를 갖는 미세기공 세라믹 결합상 또는 매트릭스(과립 사이의 상)로 이루어진 세라믹 조성안으로 상기 굽지 않은(그린) 세라믹 엘리먼트를 순수한 질소 분위기("질소 파이어링(firing)")에서 구움으로써 성취된다.
제안된 질소 분위기 굽기 처리는 높은 온도 저항성 미세다공도와 또한, 이에 따른 용융된 선철에 대하여 실질적인 불투과성을 달성할 수 있다.
특히 비교적 큰 블록에서, 상기 불투과 방법으로 생산된 엘리먼트, 즉, 용융된 선철이 실질적으로 불침투하게 하는 엘리먼트는 야금학적 노상, 특히 용광로에서의 내화 라이닝에 사용되는데 특히 더 적합하다.
질소 분위기에서 굽는 것과 관련된 상기 언급된 특징은 이 독립청구 방법에 똑같이 적용할 수 있다. 특히, 상기 일반적 방법은 이전에 정의된 점토(earth)의 바닥 라이닝의 상부 영역에 사용할 수 있는 미세기공 세라믹 엘리먼트의 생산에 사용될 수 있으며, 과립형 홍주석 또는 과립형 샤모트 또는 과립형 강옥 또는 과립형 합성 멀라이트 그리고 하나 또는 이상의 실리콘, 알루미늄, 산소 그리고 질소를 포함하는 결합상으로 제조된 조립식 블록을 제공하는 단계; 및 상기 블록을 질소 분위기에서 굽는 단계;를 포함하는 방법이다.
대형 미세기공 세라믹 블록을 생산하기 위해, 조립식 블록은 상부 측과 하부 측을 가지고, 상기 하부 측에 제조된 적어도 하나의 블라인드 홀을 포함하며, 상기 블라인드 홀은 세라믹 물질 내의 대부분의 어떤 지점이 블록의 자유 표면으로부터 상기 굽기에 의해 성취되는 불투과성의 최대 침투 깊이 보다 낮은 특정 거리에 위치하도록 한다.
특히 하나 또는 이상의 블라인드 홀의 공급은 특히 굽지 않은 엘리먼트에 있어서, 대형 블록의 제조하는데 이점으로 고려된다.
도 1은 전체적으로 원통형인 용광로(전체가 도시되지 않음)의 노상(10)이 나타나 있고, 더욱 상세하게는 송풍구(도시되지 않음) 아래의 하부 노상 영역이 나타나 있다. 노상(10)은 측면의 벽 라이닝(12)과 용광로 과정에 의해 생산되는 용융된 선철의 용탕이 함유되기 위한 1500℃ 이상의 매우 높은 온도에 저항하는 내화 물질로 제조된 하부의 바닥 라이닝(14)을 포함한다. 벽 라이닝(12)은 가장 내부의 추가 라이닝(16)을 포함한다. 일반적인 방식으로, 주변의 바깥 쉘(18), 예를 들어 원통형의 쉘은 벽 라이닝(12)와 바닥 라이닝(14)를 기계적으로 유지하고 포함하기 위한 강철로 제조되어 있다. 벽 라이닝(12)와 바닥 라이닝(14)는 노상(10)의 유용한 부피의 측면 경계와 하부 경계를 각각 형성한다. 또한, 도 1에 도시한 바와 같이, 바닥 라이닝(14)은 하부 영역(20)과, 상기 하부 영역(20)의 상부를 덮기 위해 배치된 상부 영역(22)을 포함한다. 세라믹 물질로 제조될 때, 상부 영역(22)은 종종 "세라믹 패드"로 불린다.
비록, 도 1에 상세하게 나타나지는 않았지만, 하부 영역(20)은 모든 기존의 탄소 기반 구조를 포함한다. 하부 영역(20)은 예를 들어 바닥 라이닝의 바닥 판을 시작으로 해서, 래밍 재료와, 100 내지 200mm의 두께를 가진 안전한 그라파이트 층 및 약 1m 두께이며 열전도성 탄소질의 내화 블록 층이 두 개 혹은 세 개 덮여진 탄소층으로 건설될 수 있다.
하지만, 바닥 라이닝(14)의 상부 영역(22)은 본 발명에 따라 특정한 배열을 가진다. 도 1에서 볼 수 있듯이, 상부 영역(22)은 관습적으로 설정된 하부 영역(20)의 상부 표면(26), 즉, 상부 영역(22)이 없는 노상(10)의 용탕으로부터 노출될 수 있는 상부 표면(26)을 완전히 덮는 세라믹 엘리먼트(24) 복수 개의 연속된 수평 층을 포함한다. 따라서, 상부 영역(22)에 의해 덮여진 표면은 하부 영역(20)의 벽 라이닝(12)에 의해 원주모양으로 한정된 디스크(disc) 모양의 지역에 해당한다. 도 1의 실시예에서, 세라믹 엘리먼트(24)의 층은 수직 방향으로 위치한 세로 축으로 일반적으로 배치된 블록과 함께, 대부분 비교적 작은 블록으로 제조된 벽돌 포장과 같은 부품으로 지어지며, 예를 들어 벽돌 또는 블록은 100x250x500 mm를 초과하는 크기를 가진다. 벽 라이닝(12)에 인접한 경계 영역에서는, 더 작은 엘리먼트들이 사용될 수 있다. 더 구체적으로, 상부 영역(20)은 엇갈리게 배열된 블록의 두 개의 중첩된 수평 층(28, 30)(즉, 평면 지층)을 포함한다. 층(28, 30) 안의 엘리먼트(24)의 기하학적 배치는 알려진 모든 적합한 타입, 예를 들어, 기존의 "헤링본" 배치를 지닌다. 그러한 세라믹 엘리먼트(24) 외에도, 상부 영역(22)은 기존의 물질과 배치의 엘리먼트(24)의 사이의 수직 접합부(34, 36)와 층(28, 30) 사이 안과 그리고 하부 층(30)과 하부 영역(20) 사이의 수평의 시멘트 접합부로 이루어진다. 층(30)의 엘리먼트에 대하여 층(28)의 엘리먼트(24)를 엇갈리게 하는 것은 더 안정한 조립을 가능하게 하고, 용융 선철에 대항하는 견고함을 증가시킨다. 상기에서 알 수 있는 바와 같이, 상부 영역(22)는 노상(10)에 포함될 수 있는 용탕과 기존의 배열된 하부 영역(20) 사이에 일관된 연속적 장벽(barrier) 또는 분리를 형성한다. 따라서, 상부 영역(22)은 상부 영역(22)(즉, 패드 안의) 안의 선철 응고 등온선의 견고하게 유지된 위치를 보장한다. 게다가, 상부 영역(22)의 세라믹 장벽은 하부 영역(20)의 탄소 내화의 침탄 용해에 대항하는 추가적인 보호를 제공하며, 특히 노상(10) 안의 용탕의 경우에는 탄소(예를 들어, 탄소 산화물 방출이 감소하는 관점에서)가 포화 되지 않는다.
상기한 바와 같이, 세라믹 엘리먼트(24)의 각각은 미세기공 세라믹 물질을 기반으로 하며, 즉, 2나노펌 이하, 바람직하게는 1나노펌 이하의(ISO 8841: 1991"조밀하고, 모양을 가진 내화 생산품-가스 투과도의 결정"에 따른 방법을 사용하여 측정된 메트릭) 투과도를 갖는 물질이다. 더욱 바람직하게는, 세라믹 엘리먼트(24)는 기본적으로 미세기공 재료로 이루어지며, 평균 기공 너비 2mm이하의(DIN 66133:"수은 침입에 따른 고체의 비표면적과 기공의 부피 분포의 결정"에 따른 방법을 사용하여 측정된) 평균 기공을 가진다.
내화 엘리먼트(24)의 보호층은 선철 응고 등온선의 수준(예를 들어, 1150℃에서)을 이상적으로는 전체의 화로의 운동(campaign) 중에 상부 영역(22) 안에서 장기간 유지할 수 있게 해준다. 게다가, 상기한 바와 같이, 기존의 세라믹으로 제조된 보호층과 비교하여, 미세기공 세라믹 물질의 덮는 층의 제안된 상부 영역(22)은 상기 방법을 수행하면서 언급된 응고 등온선의 견고하게 상승한 수준을 제공한다. 게다가, 미세기공 내화 엘리먼트(24)는 더 적게 마모될 것이고, 그러므로 향상된 저항성, 예를 들어 알칼리로부터의 화학적 공격에 대한 저항성 때문에 더 긴 사용 기간을 갖는 것은 이론화되어있다. 결과적으로, 하부 영역(20)의 사용 기간은 본 발명에 따르면 상부 영역(22)의 미세기공 엘리먼트(24)의 장점에 의해 눈에 띄게 증가한다.
또한, 도 1에서 볼 수 있듯이, 벽 라이닝(12)은 또한 미세기공 세라믹으로 제조될 수 있는 세라믹 엘리먼트(38)의 가장 내부의 추가적 부품이 구비된다. 세라믹 엘리먼트(24)와 함께, 세라믹 엘리먼트(38)는 노상(10)의 벽 라이닝(12)과 바닥(14)의 모두의 주요 내화 구조를 보호하는 "인공의 고품질의 스컬(Skull)"을 제공하는 세라믹 컵(32)을 형성할 수 있다. 기존의 내화에 비해서 열 손실을 또한 최소화하는 세라믹 물질을 주목해야하며, 그리하여 세라믹 컵(32)을 제공할 때 더 많은 에너지-효율 작동이 가능한 것이다. 세라믹 엘리먼트(24)의 미세기공 품질은 기존의 세라믹 내화와 비교하여 장기간의 열전도도를 눈에 띄게 감소시키는 것으로 예상된다.
낮은 투과도의 적합한 미세기공 세라믹 물질(24)는 모든 알려진 방법, 예를 들어, 과립형 홍주석(알루미늄 네소규산염(nesosilicate) 미네랄 Al2SiO5) 또는 합성 멀라이트를 기반으로 한 조립식 주조 블록의 기존의 수경성 결합을 사용하여 생산될 수 있다.
하지만 바람직하게는, 열적으로 안정한 매우 낮은 투과도, 예를 들어 1나노펌 미만 만큼 낮은 열전도도의 세라믹 엘리먼트(24)는 질소 분위기에서 구움으로써 얻어진다.
세라믹 엘리먼트(24)는 바람직하게는 적합한 미세 첨가제를 사용하여 제조되며, 질소 분위기("질소 파이어링(firing)" 또는 "질화 경화")에서의 굽기 후에는 고온 저항성 영구 미세기공을 제공한다. 기공의 평균 자유 너비를 감소시키는 것과 그렇게 함으로써 "불투과성" 물질이 되고, 이 처리는 화학적 공격, 예를 들어 알칼리와 같은 공격에 비질화 세라믹 물질보다 더 나은 저항성을 갖는 세라믹 물질, 특히, 사이알론 세라믹을 제공할 수 있다. 거대 미세기공 세라믹 엘리먼트(24)는 선호되며, 조립식 블록을 질소 분위기에서 구움으로써 얻어질 수 있다. 적합한 조립식(그린) 블록은 높은 알루미나 함량 과립 물질을 기반으로 할 수 있다. 하지만 더욱 바람직하게는 비용의 감소와 열전도도의 감소의 측면에서는, 블록은 홍주석, 합성 멀라이트 또는 샤모트 과립형 물질, 예를 들어 55 내지 65 중량 %, 바람직하게는 60 내지 63 중량 %의 Al2O3 함량의 샤모트를 기반으로 할 수 있다. 이 세가지 대안은 노상에 발생할 수도 있는 1400°C를 초과하는 높은 온도에서 신뢰할 수 있게 안정하게 남아있도록 미세기공을 부여하는 것으로 간주된다. 바람직하게는, 조립식 블록은 미세기공 사이알론 결합된 세라믹을 얻기 위해 구성되며, 즉, "세라믹 합금"으로 제조된 매트릭스의 종류(결합 상)는 실리콘(Si), 알루미늄(Al), 산소(O) 그리고 질소(N) 성분을 기반으로 하며, 그로그(grog, 굽기 전의 초기 혼합물) 속으로 적절히 도입되고, 그것은 후에 질소 분위기에서 구워진다. 사이알론 결합된 세라믹이 용융된 비철 금속으로부터 젖음 또는 부식에 대한 저항성으로 알려져 있는 반면에, 그들은 또한 철 금속의 경우, 예를 들어 용광로에서 생산되는 선철의 경우에도 이점을 찾을 수 있다.
도 1에서, 세라믹 엘리먼트(24)는 예를 들어 55 내지 65 중량%, 바람직하게는 60 내지 63 중량 %의 Al2O3 함량을 가진 홍주석 기반의 조립식 블록으로 제조되며, 질소 분위기에서 구워짐으로써 불침투되고, 즉, 사이알론 결합상이 과립 재료의 과립을 둘러쌈으로써 불침투된다.
도 2는 노상(210)의 대안의 실시예를 나타내며, 여기에서 바닥 라이닝(214)의 상부(222)의 배열만이 상기 서술한 노상과 다르다. 도 2에서, 하부 영역(220)은 모든 기존의 탄소 기반의 구조를 포함하고, 세라믹 엘리먼트(224)는 예를 들어 과립형 홍주석, 샤모트, 강옥을 기반으로 하는 조립식 블록으로 제조되며, 또한, 질소 분위기에서 구워짐으로써 미세기공 사이알론 결합된 세라믹으로 변형된다. 투과도 측정은 또한 2나노펌 미만의 투과도로 나타났다.
상기한 바와 같이, 개략적으로 도 2에 나타낸 내화 엘리먼트(224)의 층은 두 개의 층으로 제조되어 있고, 일반적으로 20dm3를 초과하는 부피, 일반적으로 적어도 400x200x500mm(높이x너비x길이)의 크기, 하지만, 200mm를 크게 초과하는 크기를 적어도 하나 갖는 비교적 대형 블록으로 지어진다. 일반적으로, 층(224)은 400mm의 수직의 규모로 배열된 블록의 두 개의 층, 또는 심지어 500mm의 수직의 규모의 두 개의 층으로 제조되어 있다. 그 조언을 고려하는 것은 500mm보다 큰 전체 두께를 갖는 것이며, 내화 층은 큰 블록의 오직 하나의 층으로 또한 제조될 수 있다.
상기와는 독립적으로, 본 발명은 구성 엘리먼트 물질을 통한 높은 동질의 미세기공을 갖는 대형 블록(224)을 생산하기 위한 배열 및 불침투 방법 또한 제안한다.
도 3A 및 3B는 적합한 굽지 않은(그린) 블록(300), 예를 들어 삽입 혹은 진동 주형함으로써 형성된 과립형 홍주석을 기반으로 하는 블록(300)을 도시한다. 설치될 때 이의 방향과 관련하여, 일반적으로 평행육면체 블록(300)은 상부 측(302)과 반대의 하부 측(304)(바닥)을 가진다. 도 3A의 단면도에서 볼 수 있듯이, 블록(300)은 바람직하게는 주형 목적의 약간의 원뿔모양인 블라인드 홀(306)을 갖기 위해 주형된다. 블라인드 홀(306)은 하부 측(304)으로 열려 있고, 상부 측(302)의 d의 거리에서 멈춘다. 게다가, 도 3B의 배면도에서 볼 수 있듯이, 대형 블록은 네개(또는 크기와 모양에 의존하는 어떤 다른 적합한 숫자)의 블라인드 홀(306)을 가지며, 블라인드 홀은 예를 들어 10 내지 50mm, 일반적으로는 약 20mm의 반지름을 갖는다. 블라인드 홀(306)은 바깥 면으로부터 그리고 서로로부터의 보통의 최대 거리 d(예를 들어 사각형의 하부 측(304)의 대각선으로)에서 분리되기 위하여 규칙적으로 배열된다. 거리 d는 선정된 불침투 과정의 최대 성취가능한 침투 깊이의 두 배 보다 약간 더 작게 선정되었다. 질화 경화를 사용할 때, d는 일반적으로 100 내지 200mm이다. 블라인드 홀(306) 덕분에, 대형 블록의 질소 분위기에서 균질한 굽기가 가능하다. 대형 블록(300)의 질소 분위기 굽기 후에, 약간의 원뿔 모양의 블라인드 홀(306)은 바람직하게는 삽입에 의해 닫힌다. 선호되는 래밍 재료로써, 구워지지 않은 블록의 세라믹 물질와 유사한 과립 재료, 바람직하게는 인산 경화(매트릭스 구성과 함께 인산 반응에 의한 경화)에 적합한 과립 재료가 사용된다. 그러한 래밍 재료는 고온 저항성과 내구성을 부여한다. 리프팅 홀(lifting hole)은 종래 기술에서 잘 알려져 있고, 블록의 상부 측에 제조되며, 이는 또한 효율적인 질화 경화에 참여한다.
도 4에서 6은 본 발명에 따른 바닥 라이닝의 세 가지 대안 설계를 나타낸 것이고, 대형 세라믹 블록으로 제조된다.
도 4에 나타낸 첫번째 바람직한 설계에서, 세라믹 블록(224)은, 예를 들어 원주 방향으로 평균 너비 500mm를 가지며, 벽 라이닝의 둘러싼 탄소 블록(2)의 원과 평행한 동심 원으로 설계된다. 세라믹 블록, 바람직하게는 같은 조성의 세라믹 블록의 바깥 링(4)은 둘러싼 탄소 블록(2)과 함께 적절한 수용공간을 얻기 위해, 예를 들어 50mm의 두께를 가지는 두꺼운 접합부(3)에 의해 설계된다.
도 5 및 도 6에 나타난 설계에서, 세라믹 블록(224a)은 두 개의 수직 방향으로 줄지어 있다. 이 설계는, 종종 "헤링본 설계"로 불리며, 많은 블록들로 동일한 사각형 모양과 크기를 유리하게 부여할 수 있고, 그리하여 거푸집 가격을 감소시킨다.
둘러싼 탄소 블록(2)이 원형 디자인일 때, 도 5에 나타냈듯이, 원형 설계의 중간 링(5)은 "헤링본" 블록(224a)과 상기 탄소 블록 사이에 추천된다. 오직 중간 링(5)에 인접한 주변에 위치한 블록(224a) 만이, 특정한 모양으로 주어질 필요가 있다. 바람직하게는, 링(5)의 세라믹 블록은 블록(224a)와 같은 조성이거나, 또는 가능한 더 나은 조성이다.
대조적으로, 도 6에 나타낸 바와 같이, " 계단 모양의 평행한 빔들" 이라고 불리는 것에 따라, 탄소 블록(2a)이 설계될 때, 만약, 세라믹 블록(224a)의 너비가 탄소 블록의 너비에 따라 조정된다면, 필요한 두꺼운 접합부(3a)를 포함한 탄소 블록을 직접 수용할 수 있다. 그러나, 다른 너비를 갖는 세라믹 블록, 예를 들어 절반 너비의 세라믹 블록(224b)은 필요하다면 또한 사용될 수 있다.
오직 몇몇 세라믹 블록(224a")의 길이는 두꺼운 접합부(3a)를 사용하여, 둘러싼 탄소 블록(2a)의 수용을 보장하기 위해 조정되어야 할 필요가 있다.
이미 언급된 바와 같이, 상기 예들의 대형 세라믹 블록 사이의 접합부를 위해 특별한 주의가 요구된다. 예를 들어, 도 4의 동심 원의 설계의 경우에 있어서, 반지름 방향의 블록 길이는 600mm이다. 그리고, 두 개의 연속되는 링 사이의 접합부(234, 236)의 접합부 두께는 상기 길이의 1%이고, 즉, 6mm이다.
접합부의 접합면은 도 7에 나타낸 바와 같이, 평평한 경사 표면(31a) 또는 곡선 경사 표면(31c) 또는 계단형 표면(31b) 중 하나가 될 수 있다. 바람직하게는 이 접합부는 바닥 라이닝의 주변을 향해 중심으로부터 점진적으로 더욱 전체적으로 경사지고, 중심으로부터 외부의 링까지 다른 링을 성공적으로 막음으로써 블록의 더 나은 유지를 위해 유리한 일종의 아치 효과를 얻기 위해, 축 A를 향해 진행된 어떤 블록의 경계면도 인접한 블록의 인접한 경계면에 얹고 있는 중요한 면이다. 모든 접합부는 상기 언급된 것과 같은 형식을 갖는다. 도 7은 한정되지 않은 방법으로, 탄소 라이닝의 하부 영역(20)의 위에 배치된 동심 원안의 라이닝의 다른 원 사이의 접합부위의 예를 보여준다. 노상의 축 A는 도면의 왼쪽에 있다. 접합부의 점진적 경사는 내부 링(4a)들의 블록 사이의 접합부 표면(31a)에 의하여 그곳에 상당히 평평하게 얻어진다; 중간 링(4c)의 블록 사이의 접합부(31c)는 경사진 곡선의 예를 준다; 그리고 바깥 링(4b)의 블록 사이의 접합부(31b)는 계단형 계면의 예를 준다. 실제로, 경사 곡선 또는 계단형 계면 중 하나는, 둘 다는 아니지만, 주어진 바닥에서 사용될 것이다.
<도 1>
10: 노상
12: 벽 라이닝
14: 바닥 라이닝
16: 가장 내부의 라이닝
18: 바깥 쉘
20: 하부 영역
22: 상부 영역
24: 세라믹 엘리먼트
26: 상부 표면
28: 첫번째 층
30: 두번째 층
32: 세라믹 컵
34: 첫번째 접합부
36: 두번째 접합부
38: 가장 내부의 세라믹 엘리먼트
<도 2>
210: 노상
212: 벽 라이닝
214: 바닥 라이닝
216: 가장 내부의 라이닝
218: 바깥 쉘
220: 하부 영역
222: 상부 영역
224: 세라믹 엘리먼트
226: 상부 표면
228: 첫번째 층
230: 두번째 층
232: 세라믹 컵
234: 첫번째 접합부
236: 두번째 접합부
238: 가장 내부의 세라믹 엘리먼트
<도 3>
300: 굽지 않은 세라믹 블록
302: 상부 측
304: 하부 측
306: 블라인드 홀
d: 거리(distance) (< 2x 투수 깊이)
<도 4>
2: 탄소 블록
3: 두꺼운 접합부
4: 바깥 링
236: 세라믹 엘리먼트
224: 세라믹 블록
<도 5>
224a: 세라믹 블록
2: 탄소 블록
3: 두꺼운 접합부
5: 바깥 링
224a´: 세라믹 블록의 주변부
<도 6>
224a: 세라믹 블록
2a: 탄소 블록
3a: 두꺼운 접합부
5: 바깥 링
224a˝: 세라믹 블록의 주변부
224b: 세라믹 블록의 중간 너비
<도 7>
4a: 내부 링
4b: 바깥 링
4c: 중간 링
31a: 평평한 경사 표면
31b: 계단형 표면
31c: 곡선 경사 표면

Claims (23)

  1. 야금로, 용광로를 위한 노상(hearth)(10; 210)에 있어서,
    상기 노상은(10; 210),
    용융 금속을 포함하는 용탕(bath)을 함유하기 위한 내화 물질로 제조된 벽 라이닝(12; 212) 및 바닥 라이닝(14; 214)을 포함하고,
    상기 바닥 라이닝(14; 214)은 탄소 내화 층을 포함하는 하부 영역(20; 220)과,
    상기 하부 영역(20; 220)을 덮기 위해 배치된 세라믹 엘리먼트(element) 층(24; 224)을 포함하는 상부 영역(22; 222)을 가지며,
    상기 상부 영역(22; 222)의 상기 세라믹 엘리먼트(24; 224)는 알루미나함량 과립 물질인 규질-알루미나(silico-aluminous)로 제조된 과립상 및 상기 과립 물질의 과립을 결합하기 위한 결합상으로 이루어진 미세 기공 세라믹 물질로 제조되며,
    상기 미세 기공 세라믹 물질은 7W/m.°K 미만의 열 전도도, 2나노펌(nanoperm) 이하의 투과도, 2㎛ 이하의 평균 기공을 가지고,
    상기 세라믹 엘리먼트는,
    질소 분위기에서 구워진 세라믹 물질로 제조되고, 상부 측(302)과 하부 측(304)을 가지며, 상기 하부 측에 제조된 적어도 하나의 블라인드 홀(306)을 포함하는 제1부분(300)과,
    상기 블라인드 홀의 안에 넣어진 내화 물질로 제조된 제2부분을 가지는 대형 블록(224)인 것을 특징으로 하는 노상(10; 210).
  2. 제1항에 있어서,
    상기 벽 라이닝은 수평인 상기 하부 영역의 상부 표면을 한정하고, 상기 세라믹 엘리먼트 층(24; 224)은 벽돌 또는 블록을 포함하고 상기 상부 표면을 완전히 덮는 하나의 부품인 것을 특징으로 하는 노상(10; 210).
  3. 제1항에 있어서,
    상기 미세 기공 세라믹 물질은 1나노펌 이하의 투과도를 가지는 것을 특징으로 하는 노상(10; 210).
  4. 제1항에 있어서,
    상기 미세 기공 세라믹 물질은 1㎛ 이하의 평균 기공을 갖는 것을 특징으로 하는 노상(10; 210).
  5. 제1항에 있어서,
    과립상은 홍주석(andalusite), 샤모트(chamotte), 강옥(corundum), 합성 멀라이트(synthetic mullite)를 포함하는 군으로부터 선택되는 1종 또는 그 이상을 포함하는 것을 특징으로 하는 노상(10; 210).
  6. 제5항에 있어서,
    과립상은 55 내지 65중량 %의 Al2O3 함량인 과립형 홍주석을 포함하는 것을 특징으로 하는 노상(10; 210).
  7. 제1항에 있어서,
    상기 결합상은 질화 결합(a nitrided bond)을 포함하는 것을 특징으로 하는 노상(10; 210).
  8. 제7항에 있어서,
    상기 결합상은 사이알론(SiAlON)결합을 형성할 수 있는 비율의 범위로 실리콘, 알루미늄, 산소 및 질소를 기반으로 한 것을 특징으로 하는 노상(10; 210).
  9. 제2항에 있어서,
    상기 대형 블록(224)은 200×400×500mm 이상으로 측정되고,
    상기 블라인드 홀은, 상기 제1부분의 세라믹 물질 내에 위치한 임의의 지점이 상기 블록을 생산하는데 사용되는 굽기 과정에 의해 달성될 수 있는 불투과성의 최대 침투 깊이보다 낮은 상기 제1부분의 표면으로부터의 거리(d)에 배치되는 것을 특징으로 하는 노상(10; 210).
  10. 제2항에 있어서,
    상기 세라믹 엘리먼트는 헤링본 패턴으로 배치되며, 200×400×500mm 이상으로 측정되는 대형 세라믹 블록(224a)인 것을 특징으로 하는 노상(10; 210).
  11. 제10항에 있어서,
    벽 라이닝은,
    상기 상부 영역과 동일한 수준에서, 상기 헤링본 패턴의 상기 대형 세라믹 블록(224a)과 매칭되는 내화 블록(2a)을 포함하고,
    세라믹 블록의 각각의 정렬 또는 그룹의 정렬은 하나의 상기 내화 블록(2a)에 의한 벽 라이닝의 주변을 향해 연장되는 것을 특징으로 하는 노상(10; 210).
  12. 제10항에 있어서,
    벽 라이닝은,
    상기 상부 영역과 동일한 수준에서, 원형으로 나란히 배치된 내화 블록(2)의 첫번째 환형 열 및 원형으로 나란히 배치된 미세 기공 세라믹 블록의 두번째 환형 열(5)을 포함하고,
    상기 두번째 환형 열은 내화 블록의 첫번째 환형 열과 헤링본 패턴으로 배치된 대형 세라믹 블록(224a) 사이에 배치된 것을 특징으로 하는 노상(10; 210).
  13. 제2항에 있어서,
    벽 라이닝은,
    상기 상부 영역과 동일한 수준에서, 원형으로 나란히 배치된 내화 블록(2a)의 첫번째 환형 열로 구성되고,
    세라믹 엘리먼트는 동심의 환형 열로 배열된 대형 세라믹 블록(224)이며,
    각각의 상기 환형 열은 원형으로 나란히 배치된 미세 기공 세라믹 블록으로 이루어지고,
    세라믹 블록의 바깥 환형 열(4)은 래밍 재료(3)에 의해 첫번째 환형 열에 결합된 것을 특징으로 하는 노상(10; 210).
  14. 제11항 내지 제13항 중 어느 한 항에 있어서,
    상기 내화 블록(2a)은 탄소 블록인 것을 특징으로 하는 노상(10; 210).
  15. 제13항에 있어서,
    인접한 세라믹 블록 사이의 접합면(the junction surface)(31a, 31b, 31c)은 점진적으로 더욱 전체적으로 중심으로부터 바닥 라이닝의 주변을 향해 기울고, 어떤 블록은 부분적으로 내부로 인접한 블록 위로 얹히는 것을 특징으로 하는 노상(10; 210).
  16. 제13항 또는 제15항에 있어서,
    접합면은 평평한 경사 표면(31a) 또는 곡선 경사 표면(31c) 또는 계단형 표면(31b)인 것을 특징으로 하는 노상(10; 210).
  17. 제2항에 있어서,
    세라믹 엘리먼트(24; 224)는 세라믹 모르타르(mortar)로 채워진 접합부(234, 236) 사이에 결정되며, 200×400×500mm 이상으로 측정되는 대형 세라믹 블록이고,
    어떠한 인접 블록들 사이의 접합부는 접합부의 너비에 수직 방향으로 취해진 인접한 블록 크기의 0.7 에서 1.5 %의 너비를 갖는 것을 특징으로 하는 노상(10; 210).
  18. 제1항에 따른 노상(10; 210)을 포함하는 용광로.
  19. 과립형 홍주석 또는 과립형 샤모트 또는 과립형 강옥 또는 과립의 합성 멀라이트, 및 하나 또는 하나 이상의 실리콘, 알루미늄, 산소 그리고 질소를 포함하는 결합 상으로 제조된 조립식 블록(300)을 제공하는 단계; 및
    질소 분위기에서 상기 블록을 굽는 단계;를 포함하는 제1항의 점토(earth)의 바닥 라이닝의 상부 영역(22; 222)에서 사용가능한 미세기공 세라믹 엘리먼트의 제조 방법.
  20. 제19항에 있어서,
    상기 조립식 블록은 상부 측(302)과 하부 측(304)을 가지며 상기 하부 측에 만들어진 적어도 하나의 블라인드 홀(306)을 포함하는 대형 조립식 블록(300)이고,
    세라믹 물질 내의 어떤 지점에 있는 상기 블라인드 홀은 상기 굽는 단계에 의해 성취될 수 있는 불투과성의 최대 침투 깊이보다 낮은 블록의 자유 표면으로부터의 거리(d)에 위치하는 것을 특징으로 하는 방법.
  21. 알루미나 함량 골재 또는 홍주석 또는 내화점토 합성 멀라이트 골재를 포함하는 조립식 블록을 제공하는 단계; 및
    상기 조립식 블록을 수경 결합하는 단계;를 포함하는 제1항의 점토의 바닥 라이닝의 상부 영역(22; 222)에서 사용가능한 미세기공 세라믹 엘리먼트의 제조 방법.
  22. 과립형 홍주석 또는 샤모트 또는 강옥 또는 합성 멀라이트를 기반으로 하며, 굽지 않은 세라믹 엘리먼트의 결합상 성분인 실리콘, 알루미늄, 산소 그리고 질소를 포함하는 굽지 않은 세라믹 엘리먼트(300)를 제공하는 단계; 및
    2나노펌 이하의 투과도를 갖는 미세기공 세라믹 결합 상을 포함하는 세라믹 엘리먼트 속으로 상기 굽지 않은 세라믹 엘리먼트(300)를 질소 분위기에서 굽는 단계;를 포함하는 알루미나함량 과립 물질의 규질-알루미나(silico-aluminous)로 제조된 과립상 및 상기 과립 물질의 과립을 결합하기 위한 결합상으로 이루어진 세라믹 내화 물질의 불투과 방법.
  23. 제2항에 있어서,
    세라믹 엘리먼트(24; 224)는 세라믹 모르타르(mortar)로 채워진 접합부(234, 236) 사이에 결정되며, 200×400×500mm 이상으로 측정되는 대형 세라믹 블록이고,
    어떠한 인접 블록들 사이의 접합부는 접합부의 너비에 수직 방향으로 취해진 인접한 블록 크기의 0.8 에서 1.2 %의 너비를 갖는 것을 특징으로 하는 노상(10; 210).

KR1020137018811A 2010-12-17 2011-12-16 용광로 노상의 세라믹 바닥 라이닝 KR101773444B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
LU91767A LU91767B1 (en) 2010-12-17 2010-12-17 Ceramic bottom lining of a blast furnace hearth
LU91767 2010-12-17
PCT/EP2011/073119 WO2012080496A1 (en) 2010-12-17 2011-12-16 Ceramic bottom lining of a blast furnace hearth

Publications (2)

Publication Number Publication Date
KR20130132927A KR20130132927A (ko) 2013-12-05
KR101773444B1 true KR101773444B1 (ko) 2017-08-31

Family

ID=44246998

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137018811A KR101773444B1 (ko) 2010-12-17 2011-12-16 용광로 노상의 세라믹 바닥 라이닝

Country Status (10)

Country Link
US (1) US9835331B2 (ko)
EP (1) EP2652158B2 (ko)
JP (1) JP5832549B2 (ko)
KR (1) KR101773444B1 (ko)
CN (1) CN103261444B (ko)
BR (1) BR112013015077A2 (ko)
LU (1) LU91767B1 (ko)
RU (1) RU2570859C2 (ko)
UA (1) UA108913C2 (ko)
WO (1) WO2012080496A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6482961B2 (ja) * 2015-06-11 2019-03-13 新日鉄住金エンジニアリング株式会社 高炉朝顔部の耐火材構造および耐火材施工方法
IT201800010817A1 (it) * 2018-12-05 2020-06-05 Danieli Off Mecc Recipiente per contenere ferro di riduzione diretta (dri)
CN110736350B (zh) * 2019-10-29 2021-05-07 贵州遵义金山磨料有限公司 一种电炉高纯氧化铝炉膛的加工工艺
CN114074373B (zh) * 2020-08-11 2023-12-01 香港科技大学 多孔陶瓷制品、其制备方法以及固态制冷系统
KR102191730B1 (ko) * 2020-11-09 2020-12-16 조선내화 주식회사 개선된 구조의 진공탈가스 설비(rh-ob) 및 이의 시공방법
CN114621776B (zh) * 2022-03-24 2023-05-16 武汉钢铁有限公司 一种与高温陶瓷件复合的焦罐底闸门衬板及制备方法
US11851730B2 (en) 2022-04-05 2023-12-26 Doggone Investment Co. LLC Apparatus and method for production of high purify copper-based alloys

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4360506A (en) 1979-08-03 1982-11-23 Societe Europeenne Des Produits Refractaires Method of preparing sialon products
CN2263655Y (zh) * 1996-05-23 1997-10-01 首钢总公司 高炉炉缸炉底内衬结构
CN1405119A (zh) * 2002-11-06 2003-03-26 巩义市第五耐火材料总厂 微孔刚玉砖及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2379784A1 (fr) 1977-02-08 1978-09-01 Savoie Electrodes Refract Nouveau garnissage refractaire pour fours
JPS597667B2 (ja) * 1978-12-18 1984-02-20 新日本製鐵株式会社 高炉炉床構造
SU1290052A1 (ru) * 1985-06-10 1987-02-15 Специализированная Проектно-Конструкторская И Наладочная Организация "Росоргтехстром" Футеровка пода печи
DE3715178C2 (de) * 1987-05-07 1998-04-09 Vaw Ver Aluminium Werke Ag Verfahren zur Herstellung eines feuerfesten, eisen- und schlackenresistenten Oxid-Kohlenstoff-Steins
JP3339348B2 (ja) * 1997-01-29 2002-10-28 住友金属工業株式会社 高炉の炉底煉瓦築炉方法
CN1326801C (zh) 2005-03-29 2007-07-18 郑州大学 矾土基β-Sialon结合刚玉复合材料的制备方法
CN2853801Y (zh) * 2005-06-29 2007-01-03 宝山钢铁股份有限公司 一种适合于铬铁冶炼的熔化-还原高炉炉缸内衬结构
UA13856U (en) * 2005-11-07 2006-04-17 Mariupol I Metallurgical Works A blast furnace bottom lining
TW200938509A (en) 2007-12-07 2009-09-16 Krosaki Harima Corp Aluminum compound-bonded brick for furnace hearth
JP2009242122A (ja) * 2008-03-28 2009-10-22 Kurosaki Harima Corp 高炉炉床用れんが及びこれをライニングした高炉炉床
CN201265017Y (zh) * 2008-09-16 2009-07-01 河北省首钢迁安钢铁有限责任公司 一种高炉炉缸炉底内衬结构
CN201485477U (zh) 2009-09-04 2010-05-26 河北省首钢迁安钢铁有限责任公司 一种高炉炉缸炉底内衬结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4360506A (en) 1979-08-03 1982-11-23 Societe Europeenne Des Produits Refractaires Method of preparing sialon products
CN2263655Y (zh) * 1996-05-23 1997-10-01 首钢总公司 高炉炉缸炉底内衬结构
CN1405119A (zh) * 2002-11-06 2003-03-26 巩义市第五耐火材料总厂 微孔刚玉砖及其制备方法

Also Published As

Publication number Publication date
CN103261444B (zh) 2015-10-07
RU2570859C2 (ru) 2015-12-10
LU91767B1 (en) 2012-06-18
EP2652158B1 (en) 2014-11-19
US20130276680A1 (en) 2013-10-24
JP2014501328A (ja) 2014-01-20
RU2013132827A (ru) 2015-01-27
UA108913C2 (uk) 2015-06-25
JP5832549B2 (ja) 2015-12-16
KR20130132927A (ko) 2013-12-05
BR112013015077A2 (pt) 2016-08-09
US9835331B2 (en) 2017-12-05
EP2652158A1 (en) 2013-10-23
CN103261444A (zh) 2013-08-21
WO2012080496A1 (en) 2012-06-21
EP2652158B2 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
KR101773444B1 (ko) 용광로 노상의 세라믹 바닥 라이닝
JP7218300B2 (ja) 多孔質耐火材、その使用及び製造
AU2012283408C1 (en) Composite refractory for an inner lining of a blast furnace
JP5919271B2 (ja) 炉壁ライニングの改善された冶金炉用炉床
CN213570558U (zh) 一种高炉炉缸冷却壁热面砌筑石墨安全墙的结构
CN1950313A (zh) 陶瓷配料及适于耐火应用的相关产品
CN109798773A (zh) 一种悬挂缸缸体外侧耐材保护衬混合砌筑方法
CN106595314A (zh) 一种回转窑窑衬结构及砌筑方法
CN102183146A (zh) 一种立式石灰窑工作衬的整体浇注技术
US4350325A (en) Prefabricated multiple density blast furnace runner
US20090020927A1 (en) Insulating refractory lining
Chandra et al. Refractories and failures
US4191528A (en) Tank block
KR100660414B1 (ko) 슬라이딩 플레이트와 그에 상응하는 슬라이딩 플레이트를위한 고리형 삽입물
US4130391A (en) Tank block
JP2010139100A (ja) 熱処理炉用耐火材
CN113646274B (zh) 大拱顶棚构造及其制造方法
RU2255118C1 (ru) Устройство для донной продувки металла газом, способ изготовления продувочного моноблока и огнеупорный материал для изготовления моноблока
CN115875978A (zh) 一种200kg以上石灰质组合坩埚及制备方法
US20090020926A1 (en) Insulating refractory lining
JP2004323865A (ja) 一体型高炉鋳床樋
JPS61269968A (ja) 取鍋の内張り構造
JPH02280958A (ja) 取鍋底部の内張り構造
JPH0571880A (ja) カーボンブロツク
JPS6234546B2 (ko)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant