KR101688679B1 - 안정한 표면파 플라즈마 소스 - Google Patents

안정한 표면파 플라즈마 소스 Download PDF

Info

Publication number
KR101688679B1
KR101688679B1 KR1020127009034A KR20127009034A KR101688679B1 KR 101688679 B1 KR101688679 B1 KR 101688679B1 KR 1020127009034 A KR1020127009034 A KR 1020127009034A KR 20127009034 A KR20127009034 A KR 20127009034A KR 101688679 B1 KR101688679 B1 KR 101688679B1
Authority
KR
South Korea
Prior art keywords
recess
plasma
depth
slots
channel
Prior art date
Application number
KR1020127009034A
Other languages
English (en)
Other versions
KR20120091063A (ko
Inventor
리 첸
젠핑 자오
로날드 브이. 브라베넥
메리트 펑크
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20120091063A publication Critical patent/KR20120091063A/ko
Application granted granted Critical
Publication of KR101688679B1 publication Critical patent/KR101688679B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/30Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

표면파 플라즈마(surface wave plasma, SWP) 소스가 제시된다. 표면파 플라즈마 소스는 플라즈마에 인접한 전자기(electromagnetic, EM)파 방사부의 플라즈마 표면 위에 표면파를 발생시켜 전자기에너지를 원하는 전자기파 모드로 상기 플라즈마에 커플링시키도록 구성된다. 전자기파 방사부는 복수의 슬롯을 구비한 슬롯 안테나를 포함한다. 표면 플라즈마(SWP) 소스는 상기 플라즈마 표면에 형성되는 제1리세스 배열을 더 포함하고, 상기 제1리세스 배열은 실질적으로 상기 복수의 슬롯의 제1슬롯배열에 맞추어 정렬되며, 상기 플라즈마 표면에 형성되는 제2리세스 배열은 상기 복수의 슬롯의 제2슬롯배열에 부분적으로 맞추어 정렬되거나 상기 복수의 슬롯의 제2슬롯배열에 맞추어 정렬되지 않는다.

Description

안정한 표면파 플라즈마 소스{STABLE SURFACE WAVE PLASMA SOURCE}
본 발명은 표면파 플라즈마(surface wave plasma, SWP) 소스에 관한 것이고, 더 구체적으로는 안정하고/하거나 균일한 표면파 플라즈마 소스에 관한 것이다.
일반적으로, 반도체 공정에서는, 미세 라인(fine line)을 따라서 있는 물질 또는 반도체 기판 위에 패터닝된 비아(via)나 콘택(contact) 내의 물질을 제거하거나 식각하기 위해 (건식) 플라즈마 식각 공정이 이용된다. 플라즈마 식각 공정은 일반적으로 기판 위에 패턴, 보호층(예를 들어, 포토레지스트(photoresist)층)이 형성된 반도체 기판을 공정 챔버(chamber) 내에 배치하는 단계를 포함한다.
기판이 챔버 내에 배치되면, 주위 공정 압력(ambient process pressure)을 얻기 위해 진공펌프가 스로틀링(throttled) 되는 동안 이온성(ionizable), 해리성(dissociative) 혼합가스가 기지정된 유량에 따라 챔버 내로 주입된다. 그 후, 내재하는 가스 종(gas species)의 일부가 고에너지 전자(energetic electron)와의 충돌에 따라 이온화될 때 플라즈마가 형성된다. 또한, 가열된 전자는 혼합가스 종의 일부 종을 해리시키고 노출 표면 식각 화학에 적합한 반응물 종을 생성한다. 플라즈마가 형성되면 기판의 노출된 표면들은 플라즈마에 의해 식각된다. 이 공정은 기판의 노출된 영역에서 여러 가지 피쳐(feature)(예를 들어, 트렌치(trench), 비아, 콘택 등)를 식각하기 위해 원하는 반응물의 적당한 농도 및 이온 밀도(population)를 포함하는 최적조건들을 얻기 위해 조정된다. 식각이 요구되는 이러한 기판의 재질에는 예를 들어 실리콘 다이옥사이드(Si02), 폴리실리콘, 그리고 실리콘 나이트라이드가 포함된다.
전통적으로, 상술한 것과 같이 반도체 소자를 제작하는 동안의 기판의 처리(treatment)를 위해 가스를 플라즈마로 천이(exciting)시키기 위한 다양한 기술들이 적용되어 왔다. 특히, (“평판”)축전 결합 플라즈마(capacitively coupled plasma, CCP) 공정 시스템 또는 유도 결합 플라즈마(inductively coupled plasma, ICP) 공정 시스템이 플라즈마 천이에 통상적으로 이용되어 왔다. 다른 종류의 플라즈마 소스 중에는 마이크로파 플라즈마 소스(전자-사이클로트론 공명(electron-cyclotron resonance, ECR)을 이용하는 것을 포함하여), 표면파 플라즈마(SWP) 소스, 그리고 헬리콘(helicon) 플라즈마 소스가 있다.
표면파 플라즈마 소스가 CCP 시스템, ICP 시스템 및 공진가열(resonantly heated) 시스템보다 특히 식각 공정에서 개선된 플라즈마 공정 성능을 제공한다는 것이 일반상식화되고 있다. 표면파 플라즈마 소스는 비교적 낮은 볼츠만 전자 온도(Te)에서 높은 이온화도(degree of ionization)를 만들어낸다. 게다가, 표면파 플라즈마 소스는 일반적으로 분자 해리는 감소되면서 전자적으로 활성화된 분자 종은 풍부한 플라즈마를 만들어낸다. 그러나 표면파 플라즈마 소스를 실제로 이용하는데 있어서는 플라즈마의 안정성 및 균일성의 결핍 등과 같은 어려움들이 여전히 존재하고 있다.
본 발명의 목적은 표면파 플라즈마(surface wave plasma, SWP) 소스를 제공하는 것에 있고, 더 구체적으로는 안정하고/하거나 균일한 표면파 플라즈마 소스를 제공하는 것에 있다.
일실시예에 따라 표면파 플라즈마(SWP) 소스가 설명된다. 표면파 플라즈마 소스는 전자기(electromagnetic, EM)파 방사부(launcher)를 포함하고, 상기 전자기파 방사부는 플라즈마에 인접한 전자기파 방사부의 플라즈마 표면 위에 표면파를 발생키는 것을 통하여 전자기 에너지를 원하는 전자기파 모드로 플라즈마에 커플링시키도록 구성된다. 전자기파 방사부는 복수의 슬롯(slot)을 구비하는 슬롯 안테나를 포함한다. 복수의 슬롯은 전자기에너지를 슬롯 안테나 위의 제1영역에서 슬롯 안테나 아래의 제2영역으로 커플링시키도록 구성된다. 공진판(resonator plate)은 제2영역 내에 위치하고, 전자기파 방사부의 플라즈마 표면을 포함하는 하면(lower surface of resonator plate)을 구비한다. 표면파 플라즈마 소스는 플라즈마 표면에 형성된 제1리세스(recess) 배열을 더 포함하고, 상기 제1리세스 배열은 실질적으로 복수의 슬롯의 제1슬롯배열(first arrangement of slot)에 맞추어 정렬된다. 플라즈마 표면에 형성된 제2리세스 배열은 복수의 슬롯의 제2슬롯배열(second arrangement of slot)에 부분적으로 맞추어 정렬되거나, 또는 복수의 슬롯의 제2슬롯배열에 맞추어 정렬되지 않는다. 파워 커플링 시스템(power coupling system)은 전자기파 방사부에 커플링되고, 플라즈마를 형성하기 위해 전자기파 방사부에 전자기에너지를 제공하도록 구성된다.
다른 일실시예에 따라 표면파 플라즈마(SWP) 소스가 설명된다. 표면파 플라즈마 소스는 전자기(electromagnetic, 전자기)파 방사부(launcher)를 포함하고, 상기 전자기파 방사부는 플라즈마에 인접한 전자기파 방사부의 플라즈마 표면 위에 표면파를 발생키는 것을 통하여 전자기 에너지를 원하는 전자기파 모드로 플라즈마에 커플링시키도록 구성된다. 전자기파 방사부는 슬롯 안테나를 포함하고, 슬롯 안테나는 이를 관통하여 형성되는 복수의 슬롯을 구비한다. 복수의 슬롯은 전자기에너지를 슬롯 안테나 위의 제1영역에서 슬롯 안테나 아래의 제2영역으로 커플링시키도록 구성된다. 공진판(resonator plate)은 제2영역 내에 위치하고, 전자기파 방사부의 플라즈마 표면을 포함하는 하면(lower surface)을 구비한다. 제1리세스 배열은 실질적으로 복수의 슬롯의 제1슬롯배열에 맞추어 정렬된다. 추가적으로, 약 10 mtorr 에서 약 1 torr 의 범위의 공정 공간의 압력에서 플라즈마를 안정화시키는 수단이 제공되고, 상기 플라즈마를 안정화시키는 수단은 공진판의 플라즈마 표면에 형성되며, 상기 공정 공간에서 플라즈마를 균일하게 발생시키는 수단도 제공된다. 이에 더하여, 표면파 플라즈마 소스는 파워 커플링 시스템을 포함하고, 이는 전자기파 방사부에 커플링되고, 플라즈마를 형성하기 위해 전자기파 방사부에 전자기에너지를 제공하도록 구성된다.
또 다른 일실시예에 따라 표면파 플라즈마(SWP) 소스가 설명된다. 표면파 플라즈마 소스는 전자기(electromagnetic, EM)파 방사부(launcher)를 포함하고, 상기 전자기파 방사부는 플라즈마에 인접한 전자기파 방사부의 플라즈마 표면 위에 표면파를 발생키는 것을 통하여 전자기 에너지를 원하는 전자기파 모드로 플라즈마에 커플링시키도록 구성된다. 전자기파 방사부는 복수의 슬롯(slot)을 구비하고 실질적으로 원형의 기하형상을 가진 슬롯 안테나를 포함한다. 슬롯 안테나를 관통하여 형성되는 복수의 슬롯은 전자기에너지를 슬롯 안테나 위의 제1영역에서 슬롯 안테나 아래의 제2영역으로 커플링시키도록 구성되고, 실질적으로 슬롯 안테나의 외주(peripheral) 영역에 위치한 제1복수의 슬롯과 슬롯 안테나의 중앙 및/또는 중간방사(mid-radius) 영역에 위치한 제2복수의 슬롯을 포함한다. 추가적으로, 표면파 플라즈마 소스는 제2영역 내에 위치하는 공진판을 포함하고, 전자기파 방사부의 플라즈마 표면을 포함하는 공진판의 하면(lower surface)을 구비한다. 제1리세스 배열은 플라즈마 표면에 형성되고 실질적으로 제1복수의 슬롯에 맞추어 정렬된다. 제2리세스 배열은 완전히 제2복수의 슬롯에 맞추어 정렬되거나, 부분적으로 맞추어 정렬되거나, 맞추어 정렬되지 않는다. 이에 더하여, 표면파 플라즈마 소스는 파워 커플링 시스템을 포함하고, 이는 전자기파 방사부에 커플링되고, 플라즈마를 형성하기 위해 전자기파 방사부에 전자기에너지를 제공하도록 구성된다.
위와 같이 구성되어, 본 발명에 따르면, 표면파 플라즈마(surface wave plasma, SWP) 소스를 제공할 수 있고, 더 구체적으로는 안정하고/하거나 균일한 표면파 플라즈마 소스를 제공할 수 있다.
도 1a는 일실시예에 따른 플라즈마 공정 시스템의 개략도이다.
도 1b는 다른 일실시예에 따른 플라즈마 공정 시스템의 개략도이다.
도 2는 도 1a 및 도 1b에 도시된 플라즈마 공정 시스템에 사용될 수 있는 표면파 플라즈마(SWP) 소스의 일실시예의 개략도이다.
도 3은 일실시예에 따른 전자기(EM)파 방사부의 개략적인 단면도이다.
도 4는 도 3에 도시된 전자기파 방사부의 저면도이다.
도 5a는 다른 일실시예에 따른 전자기파 방사부의 저면도이다.
도 5b는 도 5a에 도시된 전자기파 방사부의 일부분의 개략적인 단면도이다.
도 6a는 또 다른 일실시예에 따른 전자기파 방사부의 저면도이다.
도 6b는 도 6a에 도시된 전자기파 방사부의 일부분의 개략적인 단면도이다.
도 7a는 또 다른 일실시예에 따른 전자기파 방사부의 저면도이다.
도 7b는 도 7a에 도시된 전자기파 방사부의 일부분의 개략적인 단면도이다.
도 8a는 또 다른 일실시예에 따른 전자기파 방사부의 저면도이다.
도 8b는 도 8a에 도시된 전자기파 방사부의 일부분의 개략적인 단면도이다.
도 9a는 또 다른 일실시예에 따른 전자기파 방사부의 저면도이다.
도 9b는 도 9a에 도시된 전자기파 방사부의 일부분의 개략적인 단면도이다.
도 9c는 또 다른 일실시예에 따른 전자기파 방사부의 저면도이다.
도 9d는 도 9c에 도시된 전자기파 방사부의 일부분의 개략적인 단면도이다.
도 9e는 또 다른 일실시예에 따른 전자기파 방사부의 저면도이다.
도 10a는 또 다른 일실시예에 따른 전자기파 방사부의 저면도이다.
도 10b는 도 10a에 도시된 전자기파 방사부의 일부분의 개략적인 단면도이다.
도 11a는 또 다른 일실시예에 따른 전자기파 방사부의 저면도이다.
도 11b는 도 11a에 도시된 전자기파 방사부의 일부분의 개략적인 단면도이다.
도 11c는 또 다른 일실시예에 따른 전자기파 방사부의 저면도이다.
도 12a는 또 다른 일실시예에 따른 전자기파 방사부의 저면도이다.
도 12b는 도 12a에 도시된 전자기파 방사부의 일부분의 개략적인 단면도이다.
도 13a는 또 다른 일실시예에 따른 전자기파 방사부의 저면도이다.
도 13b는 도 13a에 도시된 전자기파 방사부의 일부분의 개략적인 단면도이다.
도 14a 및 14b는 표면파 플라즈마 소스의 모범적(exemplary) 데이터이다.
표면파 플라즈마 소스가 다양한 실시예에 나타나있다. 그러나, 본 기술분야의 통상의 기술자로서는 상기 다양한 실시예는 1이상의 특정 세부 구성이 생략된 채 실시되거나 다른 구성으로의 치환 및/또는 부가적인 방법, 재료, 구성요소와 함께 실시될 수 있다는 것을 알 수 있을 것이다. 본 발명의 다양한 실시예가 불명료해지지 않도록 잘 알려진 구조, 재료 또는 작동은 자세하게 도시되지 않거나 자세하게 설명되지 않는다.
마찬가지로, 설명의 목적으로, 본 발명에 대한 명확한 이해를 위해 특정 숫자, 재료 및 구성이 제시된다. 그럼에도 불구하고, 본 발명은 특정 세부 구성이 생략된 채 실시될 수 있다. 또한, 도면에 도시된 다양한 실시예는 본 발명을 명백하게 설명하기 위한 표시이고, 반드시 일정 비율의 축척으로 그려진 것은 아니다.
본 명세서에 기재되어 있는 “일실시예” 또는 “어떠한 실시예” 또는 이것들의 변형은, 그 실시예와 관련되어 설명된 특별한 특성, 구조, 재료 또는 특징이 적어도 본 발명의 일실시예에는 포함된다는 것을 의미하나, 그것들이 모든 실시예에 존재한다는 것을 의미하지는 않는다. 따라서, 본 명세서에 기재된 “일실시예에서” 또는 “어떠한 실시예에서” 등의 문구는 반드시 본 발명의 동일 실시예를 언급하는 것은 아니다. 또한, 특별한 특성, 구조, 재료 또는 특징은 1이상의 실시예에서 적당한 방법을 통해 결합될 수 있다.
그러나, 설명되는 일반개념의 발명의 본질에도 불구하고, 설명에 포함되어 있는 것들 또한 발명의 본질의 특성이다.
도면과 관련하여서, 참조번호는 몇몇의 도면에 걸쳐 동일하거나 일치하는 파트를 가리키고, 도 1a에는 일실시예에 따른 플라즈마 공정 시스템(100)이 도시되어 있다. 플라즈마 공정 시스템(100)은 건식 플라즈마 식각 시스템 또는 플라즈마 증착(plasma enhanced deposition) 시스템을 포함할 수 있다.
플라즈마 공정 시스템(100)은 공정 공간(115)을 정의하도록 구성된 공정 챔버(110)를 포함한다. 공정 챔버(110)는 기판(125)를 지지하도록 구성된 기판홀더(120)를 포함한다. 기판(125)은 공정 공간(115) 내의 플라즈마 또는 공정 화학물(process chemistry)에 노출된다. 또한, 플라즈마 공정 시스템(100)은 공정 챔버(110)에 커플링되고 공정 공간(115) 내에서 플라즈마를 형성하도록 구성된 플라즈마 소스(130)를 포함한다. 플라즈마 소스(130)는 RLSA(radial line slot antenna)처럼 표면파 플라즈마(SWP) 소스를 포함하고, 이는 아래에서 논의될 것이다.
도 1a에서 볼 수 있듯이, 플라즈마 공정 시스템(100)은 공정 챔버(110)에 커플링되고 공정 공간(115) 내부로 공정 가스를 주입시키도록 구성된 가스 공급 시스템(135)를 포함한다. 건식 플라즈마 식각 과정 동안 공정 가스는 부식액(etchant), 불활성제(passivant), 불활성 가스(inert gas), 또는 이들의 2이상의 조합을 포함할 수 있다. 예를 들어, 실리콘 옥사이드(SiOx) 또는 실리콘 나이트라이드(SixNy)와 같은 유전필름(dielectric film)을 플라즈마 식각할 때 플라즈마 식각 가스 조성은 일반적으로 CF8, C5F8, C3F6, C F6, CF4 등 중 적어도 하나와 같이 플루오르카본(fluorocarbon) 기반의 화학물(CxFy)을 포함하고/하거나 CHF3, CH2F2 등 중 적어도 하나와 같이 플루오르하이드로카본(fluorohydrocarbon) 기반의 화학물(CxHyFz)을 포함할 수 있으며, 불활성 가스, 산소, CO 또는 C02 중 적어도 하나를 가질 수 있다. 추가적으로, 예를 들어, 다결정 실리콘(polycrystalline silicon, polysilicon)을 식각할 때 플라즈마 식각 가스 조성은 일반적으로 HBr, Cl2, NF3, SF6, 또는 이들의 2이상의 조합과 같이 할로젠 함유 가스를 포함하고, CHF3, CH2F2 등 중 적어도 하나와 같이 플루오르하이드로카본 기반의 화학물(CxHyFz)을 포함할 수 있으며, 불활성 가스, 산소, CO, C02 또는 이들의 2이상의 조합 중 적어도 하나를 포함할 수 있다. 플라즈마 증착 과정 동안 공정 가스는 전구체(precursor)를 형성하는 필름, 환원 가스(reduction gas), 불활성 가스, 또는 이들의 2이상의 조합을 포함할 수 있다.
또한, 플라즈마 공정 시스템(100)은 공정 챔버(110)에 커플링되고 공정 챔버(110)를 배기시키며 공정 챔버(110) 내의 압력을 제어하도록 구성된 펌핑 시스템(180)을 포함한다. 선택적으로, 플라즈마 공정 시스템(100)은 공정 챔버(110), 기판홀더(120), 플라즈마 소스(130), 가스 공급 시스템(135) 및 펌핑 시스템(180)에 커플링되는 제어(control) 시스템(190)을 더 포함한다. 제어 시스템(190)은 플라즈마 공정 시스템(100) 내에서 식각 공정 및 증착 공정 중 적어도 하나를 수행하기 위한 공정 레시피(recipe)를 실행하도록 구성될 수 있다.
도 1a를 참조하면, 플라즈마 공정 시스템(100)은 200mm 기판, 300mm 기판 또는 더 큰 사이즈의 기판을 처리하도록 구성될 수 있다. 사실, 통상의 기술자 입장에서 플라즈마 공정 시스템은 기판, 웨이퍼(wafer) 또는 LCD를 그 사이즈에 관계 없이 처리하도록 구성될 수 있다. 따라서, 반도체 기판의 처리공정과 관련되어 본 발명의 다양한 실시예가 설명될 것이지만, 본 발명은 이에 한정되는 것은 아니다.
상술하였듯이, 공정 챔버(110)는 공정 공간(115)에서의 플라즈마 발생을 수월하게 하도록 구성되고, 기판(125)의 표면에 인접한 공정 공간(115) 내에 공정 화학물을 발생시키도록 구성된다. 예를 들어, 식각 공정에서, 공정 가스는 해리되면 기판 표면의 식각되는 물질과 반응하는 분자 성분을 포함할 수 있다. 공정 공간(115) 내에서 플라즈마가 형성되면 가열된 전자는 공정 가스의 분자와 충돌하여 해리를 일으키고 반응성 라디칼(radical)을 형성시켜, 예를 들어 식각 공정을 수행한다.
도 1b를 참조하면, 플라즈마 공정 시스템(100')은 다른 일실시예에 따라 도시되어 있다. 플라즈마 공정 시스템(100')은 플라즈마 공간(116)을 정의하도록 구성된 챔버 상부(112)(즉, 제1챔버부)와 공정 공간(118)을 정의하도록 구성된 챔버 하부(114)(즉, 제2챔버부)를 구비하는 공정 챔버(110')를 포함한다. 챔버 하부(114)에서, 공정 챔버(110')는 기판(125)을 지지하도록 구성된 기판홀더(120)를 포함한다. 기판(125)은 공정 공간(118) 내의 공정 화학물에 노출된다. 또한, 플라즈마 공정 시스템(100')은 챔버 상부(112)와 커플링되고 플라즈마 공간(116)에 플라즈마를 형성하도록 구성된 플라즈마 소스(130)을 포함한다. 플라즈마 소스(130)는 RLSA(radial line slot antenna)처럼 표면파 플라즈마(SWP) 소스를 포함하고, 이는 아래에서 논의될 것이다.
도 1b에서 볼 수 있듯이, 플라즈마 공정 시스템(100')은 챔버 상부(112) 및 챔버 하부(114)에 커플링되고 플라즈마 공간(116)과 공정 공간(118) 사이에 위치하는 가스 주입 그리드(grid)(140)를 포함한다. 도 1b에서, 가스 주입 그리드(140)가 공정 챔버 중앙을 나누도록 배치되어 챔버 상부(112)는 챔버 하부(114)와 그 크기가 실질적으로 같지만 본 발명은 이러한 구성에 한정되는 것은 아니다. 예를 들어, 가스 주입 그리드(140)는 기판(125)의 상면으로부터 200mm 이내에 위치할 수 있고, 바람직하게는 기판(125)의 상면으로부터 약 10mm에서 약 150mm 사이에 배치된다.
도 1b의 실시예에서, 챔버 상부(112)를 챔버 하부(114)로부터 분리시키는 가스 주입 그리드(140)는 플라즈마를 형성시키기 위해 플라즈마 공간(116)으로 제1가스(142)를 주입하고, 공정 화학물을 형성시키기 위해 공정 공간(118)으로 제2가스(144)를 주입하도록 구성된다. 그러나, 각 챔버부로 주입되는 제1 및 2가스(142, 144)는 반드시 가스 주입 그리드(140)에 의해 주입될 필요는 없다. 예를 들어, 플라즈마 소스(130)가 플라즈마 공간(116)에 제1가스(142)를 공급하도록 구성될 수 있다. 더욱 일반적으로, 가스 주입 그리드(140)는 공정 챔버(110')로 가스를 공급하지 않거나 제1및 2가스(142, 144) 중 어느 하나 또는 둘 다를 공급할 수 있다.
도 1b의 실시예에서, 제1가스 공급 시스템(150)은 가스 주입 그리드(140)에 커플링되어 있고, 제1가스(142)를 공급하도록 구성된다. 또한, 제2가스 공급 시스템(160)은 가스 주입 그리드(140)에 커플링되고 제2가스(144)를 공급하도록 구성된다. 가스 주입 그리드(140)의 온도는 온도 제어 시스템(170)을 이용하여 제어할 수 있고, 가스 주입 그리드(140)의 전위(electric potential)은 전기 바이어스(electric bias) 제어 시스템(175)을 이용하여 제어할 수 있다.
또한, 플라즈마 공정 시스템(100')은 공정 챔버(110')에 커플링되고 공정 챔버(110')를 배기시키며 공정 챔버(110') 내의 압력을 제어하도록 구성된 펌핑 시스템(180)을 포함한다. 선택적으로, 플라즈마 공정 시스템(100')은 공정 챔버(110'), 기판홀더(120), 플라즈마 소스(130), 가스 주입 그리드(140), 제1가스 공급 시스템(150), 제2가스 공급 시스템(160), 온도 제어 시스템(170), 전기 바이어스 제어 시스템(175) 및 펌핑 시스템(180)에 커플링되는 제어 시스템(190)을 더 포함한다. 제어 시스템(190)은 플라즈마 공정 시스템(100) 내에서 식각 공정 및 증착 공정 중 적어도 하나를 수행하기 위한 공정 레시피(recipe)를 실행하도록 구성될 수 있다.
도 1b를 참조하면, 플라즈마 공정 시스템(100')은 200mm 기판, 300mm 기판 또는 더 큰 사이즈의 기판을 처리하도록 구성될 수 있다. 사실, 통상의 기술자 입장에서 플라즈마 공정 시스템은 기판, 웨이퍼(wafer) 또는 LCD를 그 사이즈에 관계 없이 처리하도록 구성될 수 있다. 따라서, 반도체 기판의 처리공정과 관련되어 본 발명의 다양한 실시예가 설명될 것이지만, 본 발명은 이에 한정되는 것은 아니다.
상술하였듯이, 공정 챔버(110')는 플라즈마 공간(116)에서의 플라즈마 발생을 수월하게 하도록 구성되고, 기판(125)의 표면에 인접한 공정 공간(118) 내에 공정 화학물을 발생시키도록 구성된다. 플라즈마 공간(116)에 주입되는 제1가스(142)는 플라즈마 형성 가스, 이온화성 가스 또는 혼합가스를 포함한다. 제1가스(142)는 희가스(Noble gas)와 같은 불활성 가스를 포함할 수 있다. 공정 공간(118)에 주입되는 제2가스(144)는 공정 가스, 혼합공정가스를 포함한다. 예를 들어, 식각 공정에서, 공정 가스는 해리되면 기판 표면의 식각되는 물질과 반응하는 분자 성분을 포함할 수 있다. 플라즈마 공간(116) 내에서 플라즈마가 형성되면 플라즈마의 일부는 가스 주입 그리드(140)를 통해 공정 공간(118) 내부로 확산될 수 있다. 공정 공간(118) 내부로 확산된 가열된 전자는 공정 가스의 분자와 충돌하여 해리를 일으키고 반응성 라디칼을 형성시켜, 예를 들어 식각 공정을 수행한다.
도 1b의 모범적인 플라즈마 공정 시스템(100')에 도시된 것과 같이, 분리된 플라즈마 및 공정 공간들은 기존의 플라즈마 공정 시스템에 비해 개선된 공정 제어를 제공할 수 있다. 구체적으로, 상술한 바와 같이, 예를 들어 가스 주입 그리드(140)의 사용은 조밀하고 낮은(또는 보통의) 온도(즉, 전자 온도Te)의 플라즈마를 플라즈마 공간(116) 내에 형성하고, 덜 조밀하고 더 낮은 온도의 플라즈마를 공정 공간(118) 내에 형성하는데 영향을 끼친다. 이렇게 하여, 제1및 2가스의 2단 주입 구조(split injection sch전자기e)는 제2가스 분자 조성 내의 해리에서 공정 화학물을 형성하는데 이용되는 추가적인 환원(reduction)에 영향을 끼쳐 기판 표면에서의 공정에 더 좋은 제어를 제공한다.
추가적으로, 도 1b에 도시된 모범적인 플라즈마 공정 시스템(100')의 구성은 공정 가스가 플라즈마 공간(116)에 유입되지 않게 막음으로써 플라즈마 소스(130)와 같은 챔버 요소의 손상을 감소시킬 수 있다. 예를 들어, 아르곤(Ar)과 같은 불활성 가스(즉, 제1가스(142))가 플라즈마 공간(116)에 주입되면 플라즈마가 형성되고 중성 Ar 원자가 가열된다. 가열된 Ar 중성 원자는 가스 주입 그리드(140)을 통해 아래쪽으로 확산되고 기판(125)에 가깝고 더 시원한 공정 공간(예를 들어, 더 낮은 온도의 플라즈마의 영역)으로 유입된다. 이러한 Ar 중성 가스의 확산은 공정 공간(118) 내부로의 가스 유동을 일으켜 공정 가스(즉, 제2가스(144)) 분자 조성의 역확산을 제거하거나 감소시킨다.
이에 더하여, 도 1b에 도시된 모범적인 플라즈마 공정 시스템(100')의 구성은 이온, 그리고 기판(125)과 상호작용하는 전자에 의해 발생되는 기판의 손상을 추가적으로 감소시킬 수 있다. 구체적으로, 가스 주입 그리드(140)를 통한 이온과 전자의 공정 공간(118)으로의 확산은 도 1a에 도시된 공정 시스템(100)에 비해, 이 공간에 더 적은 전자 및 이온을 제공한다. 또한, 이러한 전자 및 이온의 다수는 에너지를 공정 가스의 해리에 내준다. 따라서, 더 적은 전자 및 이온이 기판(125)과 상호작용이 가능하고 기판에 손상을 준다. 기판(125)의 손상은 낮은 온도의 공정에서 요구되는 공정 온도에 의해서는 어닐링(annealed)되지 않을 수 있기 때문에 낮은 온도의 공정에 있어서는 특히나 중요하다.
도 2을 참조하면, 일실시예에 따른 표면파 플라즈마 소스(230)의 개략도가 제공되어 있다. 표면파 플라즈마 소스(230)는 플라즈마에 인접한 전자기방사부(232)의 플라즈마 표면(260) 위에 표면파를 발생시켜 전자기에너지를 원하는 전자기파 모드로 플라즈마에 커플링시키도록 구성된 전자기(EM)파 방사부(232)를 포함한다. 또한, 표면파 플라즈마 소스(230)는 전자기파 방사부(232)와 커플링되고 플라즈마를 형성하기 위해 전자기에너지를 전자기파 방사부(232)에 제공하도록 구성된 파워 커플링 시스템(290)을 포함한다.
전자기파 방사부(232)는 마이크로파 파워를 공정 공간(115)에 방사(도 1a 참조)하거나 플라즈마 공간(116)에 방사(도 1b 참조)하도록 구성되는 마이크로파 방사부를 포함한다. 전자기파 방사부(232)는 마이크로파 에너지가 전달되는 동축 피드(coaxial feed, 238)를 통해 파워 커플링 시스템(290)과 커플링된다. 파워 커플링 시스템(290)은 2.45 GHz 마이크로파 파워 소스와 같은 마이크로파 소스(292)를 포함한다. 마이크로파 소스(292)로 반사되어 돌아가는 마이크로파 에너지를 흡수하기 위하여 마이크로파 소스(292)에서 발생된 마이크로파 에너지는 도파관(waveguide, 294)을 통해 아이솔레이터(isolator, 296)로 유도된다. 그런 다음, 마이크로파 에너지는 동축 컨버터(298)를 통해 동축 T전자기(transverse electromagnetic) 모드로 변환된다. 임피던스 매칭(impedance matching) 및 개선된 파워 전달을 위해 튜너(tuner)가 사용될 수 있다. 마이크로파 에너지는 동축 피드(238)를 통해 전자기파 방사부(232)에 커플링되고, 동축 피드(238)에서의 T전자기모드에서 TM(transverse magnetic) 모드로의 또 다른 모드 변화가 일어난다. 동축 피드(238)와 전자기파 방사부(232)의 디자인에 관한 추가적인 세부사항은 “식각, 애싱(ashing) 및 필름-형성을 위한 플라즈마 공정 장치”에 관한 미국 특허 5024716에서 확인할 수 있고, 여기에 기재된 내용은 전부 참고문헌에 포함되는 것이다.
도 3 및 4를 참조하면, 일실시예에 따른 전자기파 방사부(232)의 개략적인 단면도 및 저면도가 제시되어 있다. 전자기파 방사부(232)는 동축 피드(238)를 포함하고, 동축 피드(238)는 내부 도체(conductor, 240), 외부 도체(242), 부도체(insulator, 241) 및 슬롯 안테나(246)를 구비하며, 슬롯 안테나(246)는 도 3에 도시된 것처럼 내부 도체(240)와 외부 도체(242) 사이에서 커플링되는 복수의 슬롯(248)을 구비한다. 복수의 슬롯(248)은 전자기에너지가 슬롯 안테나(246) 위의 제1영역에서 슬롯 안테나(246) 아래의 제2영역으로 커플링되는 것을 가능케 한다. 전자기파 방사부(232)는 지파판(slow wave plate, 244) 및 공진판(resonator plate, 250)을 더 포함할 수 있다.
슬롯(248)의 개수, 기하형상, 크기 및 분포는 모두 공정 공간(115, 도1a 참조) 또는 플라즈마 공간(116, 도1b 참조)에 형성되는 플라즈마의 공간적 균일성에 기여할 수 있는 요인들이다. 따라서, 슬롯 안테나(246)의 디자인은 공정 공간(115, 도1a 참조) 또는 플라즈마 공간(116, 도1b 참조) 내의 플라즈마의 공간적 균일성을 제어하기 위해 이용될 수 있다.
도 3에 도시되어 있듯이, 전자기파 방사부(232)는 전자기파 방사부(232)의 온도 제어를 위한 온도 제어 유체를 유동시키는 유체 채널(channel, 256)을 포함할 수 있다. 도시되지는 않았으나, 전자기파 방사부(232)는 공정 가스를 플라즈마 표면(260)을 통해 플라즈마로 주입하도록 구성될 수 있다.
계속 도 3을 참조하면, 전자기파 방사부(232)는 플라즈마 공정 시스템의 챔버 상부와 커플링될 수 있고, 밀봉(sealing) 장치(254)를 이용하여 챔버 상부 벽(252)과 전자기파 방사부(232) 사이에 진공실(vacuum seal)이 형성될 수 있다. 밀봉 장치(254)는 엘라스토머 오링(elastomer O-ring)을 포함할 수 있다. 그러나, 다른 공지된 밀봉 메커니즘이 사용될 수도 있다.
일반적으로, 동축 피드(238)의 내부 도체(240) 및 외부 도체(242)는 금속과 같은 전도성 물질을 포함하는데 반해, 지파판(244) 및 공진판(250)은 유전(dielectric) 물질을 포함한다. 후자의 경우, 지파판(244) 및 공진판(250)은 같은 물질을 포함하는 것이 바람직하나, 다른 물질이 사용될 수도 있다. 지파판(244) 및 공진판(250)의 제작에 사용되는 물질은 전파되는 전자기(EM)파의 파장을 그와 대응되는(corresponding) 자유공간(free-space) 파장에 비해 감소시키도록 선정된다. 지파판(244) 및 공진판(250)의 치수는 전자기에너지를 공정 공간(115, 도 1a 참조) 또는 플라즈마 공간(116, 도 1b 참조) 내부로 방사하는데 효과적인 정상파(standing wave)의 형성을 담보하도록 선정된다.
지지판(244) 및 공진판(250)은 석영(quartz, 실리콘 다이옥사이드)과 같은 실리콘 함유 물질을 포함하는 유전 물질이나 고유전상수(high dielectric constat, high-k)의 물질로 제작될 수 있다. 예를 들어, 고유전상수 물질은 4보다 큰 유전상수를 가질 수 있다. 특히, 플라즈마 공정 시스템이 식각 공정에 이용되는 경우 식각 공정과의 호환성을 위해 보통 석영이 이용된다.
예를 들어, 고유전상수 물질은 진성(intrinsic) 결정(crystal) 실리콘, 알루미나 세라믹, 알루미늄 질화물 및 사파이어를 포함할 수 있다. 그러나, 다른 고유전상수 물질이 사용될 수도 있다. 또한, 특정 공정의 파라미터에 따라 특정 고유전상수 물질이 선택될 수도 있다. 예를 들어, 공진판(250)이 진성 결정 실리콘으로 제작되는 경우 플라즈마 주파수는 45℃ 에서 2.45 GHz를 초과한다. 따라서, 진성 결정 실리콘은 낮은 온도의 공정(즉, 45℃ 미만의 공정)에 적합하다. 더 높은 온도의 공정에서는, 공진판(250)은 알루미나(Al203) 또는 사파이어로 제작될 수 있다.
상술한 바와 같이 표면파 플라즈마 소스를 실제로 이용하는데 있어서 플라즈마의 균일성과 플라즈마의 안정성은 여전히 숙제로 남아있다. 후자의 경우, 공진판-플라즈마 인터페이스(즉, 플라즈마 표면(260))의 정상파는 플라즈마 파라미터가 쉬프트(shift)할 때 모드 점프(mode jump)하는 경향을 보일 수 있다.
도 3 및 4에 도시되었듯이, 전자기파 방사부(232)는 일실시예에 따라 플라즈마 표면(260)에 형성된 제1리세스 배열(262) 및 플라즈마 표면(260)에 형성된 제2리세스 배열(264)과 함께 제작된다.
제1리세스 배열(262)은 제1복수의 리세스를 포함할 수 있다. 제1리세스 배열(262)의 각 리세스는 플라즈마 표면(260)에 형성된 독특한 자국(indentation) 또는 딤플(dimple)을 포함할 수 있다. 예를 들어, 제1리세스 배열(262)의 어떠한 리세스는 원통형, 원추형, 원추 절단형, 구형, 비구형(aspherical), 직사각형, 피라미드형 또는 어떠한 임의의 기하형상을 포함할 수 있다. 제1리세스 분포(262)는 제1크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 리세스를 포함할 수 있다.
제2리세스 배열(264)는 복수의 리세스를 포함할 수 있다. 제2리세스 배열(264)의 각 리세스는 플라즈마 표면(260)에 형성된 독특한 자국 또는 딤플을 포함할 수 있다. 예를 들어, 제2리세스 배열(262)의 어떠한 리세스는 원통형, 원추형, 원추 절단형, 구형, 비구형, 직사각형, 피라미드형 또는 어떠한 임의의 기하형상을 포함할 수 있다. 제2리세스 분포(262)는 제2크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 리세스를 포함할 수 있다. 제1리세스 배열(262) 내의 리세스의 제1크기는 제2리세스 배열(264) 내의 리세스의 제2크기와 같을 수도 있고, 같지 않을 수도 있다. 예를 들어, 제2크기는 제1크기보다 작을 수 있다.
도 3 및 4에 도시된 것처럼, 공진판(250)은 직경과 두께를 갖는 유전판(dielectric plate)을 포함한다. 공진판(250) 위의 플라즈마 표면(260)은 평탄면(266)을 포함하고, 평탄면(266) 내에 제1리세스 배열(262) 및 제2리세스 배열(264)이 형성된다. 선택적으로, 공진판(250)은 어떠한 기하형상도 가질 수 있다. 플라즈마 표면(260)은 비평탄면을 포함할 수 있고, 비평탄면 내에 제1리세스 배열 및 제2리세스 배열이 형성된다(미도시). 예를 들어, 비평탄면은 오목하거나 볼록하거나 또는 양자의 조합일 수 있다.
공진판(250)에서의 전자기에너지의 전파는 공진판(250)에서의 전자기에너지의 주어진 주파수와 유전상수 하의 유효파장(effective wavelength, λ)을 특징으로 할 수 있다. 판 두께는 n이 0보다 큰 정수(integer)일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)일 수 있다. 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 클 수 있다(>λ/2). 선택적으로, 판 두께는 유효파장의 비정수 분수(non-integral fraction)(즉, 1/2 또는 1/4 파장의 정수배가 아닌)일 수 있다. 또한, 판 두께는 약 25 mm에서 약 45 mm 범위일 수도 있다.
예를 든 것과 같이, 제1리세스 배열(262)은 제1복수의 원통형 리세스를 포함할 수 있고, 제1복수의 원통형 리세스의 각각은 제1깊이 및 제1직경을 특징으로 한다. 도 4에 도시된 바와 같이, 제1리세스 배열(262)은 플라즈마 표면(260)의 외측 영역 가까이에 위치한다.
제1직경은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제1깊이 간의 제1차(first difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제1직경은 유효파장의 약 절반(λ/2)이고, 판 두께와 제1깊이 간의 제1차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제1직경은 약 25 mm에서 약 35 mm 범위일 수 있고, 판 두께와 제1깊이 간의 제1차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제1직경은 약 30mm에서 약 35mm 범위일 수 있고, 제1차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제1직경 및/또는 제1깊이는 판 두께의 분수(fraction)일 수 있다.
제1리세스 배열(262)에서, 챔퍼(chamfer), 라운드(round) 및/또는 필렛(fillet)(즉, 표면/코너 반경 또는 사면(bevel))은 인접하는 표면들 사이의 부드러운 표면 천이(smooth surface transition)에 영향을 주기 위해 이용될 수 있다. 원통형 리세스에서, 표면 반경은 원통 측벽과 리세스 바닥 사이의 코너에 배치될 수 있다. 또한, 원통형 리세스에서, 표면 반경은 원통 측벽과 플라즈마 표면(260) 사이의 코너에 배치될 수 있다. 예를 들어, 표면 반경은 약 1mm에서 약 3mm 범위일 수 있다.
다른 예처럼, 제2리세스 배열(264)은 제2복수의 원통형 리세스를 포함할 수 있고, 제2복수의 원통형 리세스의 각각은 제2깊이 및 제2직경을 특징으로 한다. 도 4에 도시된 바와 같이, 제2리세스 배열(264)은 플라즈마 표면(260)의 내측 영역 가까이에 위치한다.
제2직경은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제2깊이 간의 제2차(second difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제2직경은 유효파장의 약 절반(λ/2)이고, 판 두께와 제2깊이 간의 제2차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제2직경은 약 25 mm에서 약 35 mm 범위일 수 있고, 판 두께와 제2깊이 간의 제2차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제2직경은 약 30mm에서 약 35mm 범위일 수 있고, 제2차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제2직경 및/또는 제2깊이는 판 두께의 분수일 수 있다.
제2리세스 배열(264)에서, 챔퍼, 라운드 및/또는 필렛(즉, 표면/코너 반경 또는 사면(bevel))은 인접하는 표면들 사이의 부드러운 표면 천이에 영향을 주기 위해 이용될 수 있다. 원통형 리세스에서, 표면 반경은 원통 측벽과 리세스 바닥 사이의 코너에 배치될 수 있다. 또한, 원통형 리세스에서, 표면 반경은 원통 측벽과 플라즈마 표면(260) 사이의 코너에 배치될 수 있다. 예를 들어, 표면 반경은 약 1mm에서 약 3mm 범위일 수 있다.
다시 도 4를 참조하면, 도 3에 도시되었던 전자기파 방사부(232)의 저면도가 제공된다. 슬롯 안테나(246)의 복수의 슬롯(248)은 공진판(250)을 통해 슬롯 안테나(246)까지 볼 수 있는 것처럼 도시되었다. 도 4에 도시된 것과 같이, 복수의 슬롯(248)은 쌍(pair)으로 배열되어 있고, 각 슬롯 쌍은 제2슬롯에 직교방향인 제1슬롯을 포함한다. 그러나, 복수의 슬롯(248)에서 슬롯의 방향은 임의적일 수 있다. 예를 들어, 복수의 슬롯(248)에서 슬롯의 방향은 플라즈마의 균일성 및/또는 안정성을 위한 기설정된 패턴을 따를 수 있다.
제1리세스 배열(262)은 실질적으로 복수의 슬롯(248)의 제1슬롯배열(first arrangement of slot)에 맞추어 정렬된다. 제1리세스 배열(262)의 적어도 하나의 리세스는 복수의 슬롯(248) 중 1이상의 슬롯에 맞추어 정렬된다. 제2리세스 배열(264)은 복수의 슬롯(248)의 제2슬롯배열(second arrangement of slot)에 부분적으로 맞추어 정렬되거나, 복수의 슬롯(248)의 제2슬롯배열에 맞추어 정렬되지 않는다. 도 4에 도시된 것처럼, 제2리세스 배열(264)은 복수의 슬롯(248)의 제2슬롯배열에 맞추어 정렬되지 않는다.
그 결과, 제1리세스 배열(262)이 플라즈마 발생을 지배하고, 전자기파 방사부(232)와 커플링된 파워의 범위 및 플라즈마 표면(260) 근처에서 플라즈마가 형성된 공간 내의 압력의 범위에 걸쳐 비교적 “최고로 밝은(full bright)” 글로(glow)를 보인다는 것이 밝혀졌다. 또한, 제2리세스 배열(264)은 플라즈마 발생에 일정치 않게 기여하고, 파워 및/또는 압력에 따라 비교적 “흐릿한(dim)” 글로부터 “밝은” 글로까지 보인다는 것이 밝혀졌다. 평탄면(266) 부근의 영역은 더 적은 파워를 받고, 일반적으로, 비교적 높은 파워를 받는 경우를 제외하면 “어둡게(dark)” 남아있다.
또한, 제1리세스 배열(262)에(즉, 복수의 슬롯(248)에 맞추어 정렬된) 형성된 플라즈마는 낮은 파워에서 안정하다는 것이 밝혀졌다. 플라즈마는 이러한 (더 큰) 딤플(dimple) 근처(proximate)에서 이온화를 통해 형성되고, 제1리세스 배열(262)의 리세스로부터 제2리세스 배열(264)의 리세스(즉, 복수의 슬롯(248)에 맞추어 정렬되지 않거나/부분적으로 맞추어 정렬된)로 유동한다. 그 결과, 제2리세스 배열(264)의 리세스가 제1리세스 배열(262)의 리세스로부터 플라즈마의 “오버플로우(overflow)”를 수용하고 제1리세스 배열(262)의 리세스 근처에서의 플라즈마 발생의 변동(fluctuation)을 보정하면서, 제1리세스 배열(262)의 리세스 근처에 형성된 플라즈마는 넓은 범위의 파워 및 압력에 걸쳐 안정하다.
플라즈마의 균일성의 개선된 제어를 위해서는 평탄면(266)에 인접한 영역이 비교적 “어둡게(dark)” 남아서 모드 패턴(mode-pattern)이 발달할 위험(risk)이 감소되어야 한다. 따라서, 도 4에 도시되었듯이, 제1리세스 배열(262) 및 제2리세스 배열(264)의 최적의 배치는, 예를 들어 슬롯 안테나(246)의 복수의 슬롯(248)에 맞추어 정렬된 (제1리세스 배열(262)의) 비교적 다수의 리세스 및 복수의 슬롯(248)에 맞추어 정렬되지 않은 (제2리세스 배열(264)의) 비교적 다수의 리세스가 공간적으로(spatially) 일괄적으로(collectively) 배열(arrange)되는 것일 수 있다. 비록 리세스의 배치는 플라즈마의 균일성을 얻기 위해 선택되는 것이기는 하나, 플라즈마에 의해 처리(process)되는 기판의 표면에서 균일한 공정(process)을 얻기 위해 다른 공정 파라미터와 협력(cooperate)하는 비균일한 플라즈마를 얻는 것 또한 바람직하다.
도 5a 및 5b를 참조하면, 또 다른 실시예에 따른 전자기파 방사부(332)의 저면도 및 단면도가 각각 도시되어 있다. 전자기파 방사부(332)는 플라즈마 표면(360)을 구비한 공진판(350)을 포함한다. 전자기파 방사부(332)는 제1복수의 슬롯(348)과 제2복수의 슬롯(349)을 구비한 슬롯 안테나를 더 포함한다. 제1복수의 슬롯(348)과 제2복수의 슬롯(349)은 전자기에너지가 슬롯 안테나 위의 제1영역에서 공진판(350)이 위치한 슬롯 안테나 아래의 제2영역으로 커플링 되도록 한다.
슬롯(348,349)의 개수, 기하형상, 크기 및 분포는 모두 공정 공간(115, 도1a 참조) 또는 플라즈마 공간(116, 도1b 참조)에 형성되는 플라즈마의 공간적 균일성에 기여할 수 있는 요인들이다. 따라서, 슬롯 안테나의 디자인은 공정 공간(115, 도1a 참조) 또는 플라즈마 공간(116, 도1b 참조) 내의 플라즈마의 공간적 균일성을 제어하기 위해 이용될 수 있다.
도 5a 및 5b에 도시되었듯이, 전자기파 방사부(332)는 일실시예에 따라 플라즈마 표면(360)에 형성된 제1리세스 배열(362) 및 플라즈마 표면(360)에 형성된 제2리세스 배열(364)을 구비하도록 제작된다.
제1리세스 배열(362)은 제1복수의 리세스를 포함할 수 있다. 제1리세스 배열(362)의 각 리세스는 플라즈마 표면(360)에 형성된 독특한 자국(indentation) 또는 딤플(dimple)을 포함할 수 있다. 예를 들어, 제1리세스 배열(362)의 어떠한 리세스는 원통형, 원추형, 원추 절단형, 구형, 비구형(aspherical), 직사각형, 피라미드형 또는 어떠한 임의의 기하형상을 포함할 수 있다. 제1리세스 분포(362)는 제1크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 리세스를 포함할 수 있다.
제2리세스 배열(364)는 복수의 리세스를 포함할 수 있다. 제2리세스 배열(364)의 각 리세스는 플라즈마 표면(360)에 형성된 독특한 자국 또는 딤플을 포함할 수 있다. 예를 들어, 제2리세스 배열(364)의 어떠한 리세스는 원통형, 원추형, 원추 절단형, 구형, 비구형, 직사각형, 피라미드형 또는 어떠한 임의의 기하형상을 포함할 수 있다. 제2리세스 분포(364)는 제2크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 리세스를 포함할 수 있다. 제1리세스 배열(362) 내의 리세스의 제1크기는 제2리세스 배열(364) 내의 리세스의 제2크기와 같을 수도 있고, 같지 않을 수도 있다. 예를 들어, 제2크기는 제1크기보다 작을 수 있다.
도 5a 및 5b에 도시된 것처럼, 공진판(350)은 직경과 두께를 갖는 유전판(dielectric plate)을 포함한다. 공진판(350) 위의 플라즈마 표면(360)은 평탄면(366)을 포함하고, 평탄면(366) 내에 제1리세스 배열(362) 및 제2리세스 배열(364)이 형성된다. 선택적으로, 공진판(350)은 어떠한 기하형상도 가질 수 있다. 플라즈마 표면(360)은 비평탄면을 포함할 수 있고, 비평탄면 내에 제1리세스 배열 및 제2리세스 배열이 형성된다(미도시). 예를 들어, 비평탄면은 오목하거나 볼록하거나 또는 양자의 조합일 수 있다.
공진판(350)에서의 전자기에너지의 전파는 공진판(350)에서의 전자기에너지의 주어진 주파수와 유전상수 하의 유효파장(effective wavelength, λ)을 특징으로 할 수 있다. 판 두께는 n이 0보다 큰 정수(integer)일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)일 수 있다. 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 클 수 있다(>λ/2). 선택적으로, 판 두께는 유효파장의 비정수 분수(non-integral fraction)(즉, 1/2 또는 1/4 파장의 정수배가 아닌)일 수 있다. 또한, 판 두께는 약 25 mm에서 약 45 mm 범위일 수도 있다.
예를 든 것과 같이, 제1리세스 배열(362)은 제1복수의 원통형 리세스를 포함할 수 있고, 제1복수의 원통형 리세스의 각각은 제1깊이 및 제1직경을 특징으로 한다. 도 5a에 도시된 바와 같이, 제1리세스 배열(362)은 플라즈마 표면(360)의 외측 영역 가까이에 위치한다.
제1직경은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제1깊이 간의 제1차(first difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제1직경은 유효파장의 약 절반(λ/2)이고, 판 두께와 제1깊이 간의 제1차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제1직경은 약 25 mm에서 약 35 mm 범위일 수 있고, 판 두께와 제1깊이 간의 제1차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제1직경은 약 30mm에서 약 35mm 범위일 수 있고, 제1차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제1직경 및/또는 제1깊이는 판 두께의 분수일 수 있다.
제1리세스 배열(362)에서, 챔퍼(chamfer), 라운드(round) 및/또는 필렛(fillet)(즉, 표면/코너 반경 또는 사면(bevel))은 인접하는 표면들 사이의 부드러운 표면 천이(smooth surface transition)에 영향을 주기 위해 이용될 수 있다. 원통형 리세스에서, 표면 반경은 원통 측벽과 리세스 바닥 사이의 코너에 배치될 수 있다. 또한, 원통형 리세스에서, 표면 반경은 원통 측벽과 플라즈마 표면(360) 사이의 코너에 배치될 수 있다. 예를 들어, 표면 반경은 약 1mm에서 약 3mm 범위일 수 있다.
다른 예처럼, 제2리세스 배열(364)은 제2복수의 원통형 리세스를 포함할 수 있고, 제2복수의 원통형 리세스의 각각은 제2깊이 및 제2직경을 특징으로 한다. 도 5a에 도시된 바와 같이, 제2리세스 배열(364)은 플라즈마 표면(360)의 내측 영역 가까이에 위치한다.
제2직경은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제2깊이 간의 제2차(second difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제2직경은 유효파장의 약 절반(λ/2)이고, 판 두께와 제2깊이 간의 제2차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제2직경은 약 25 mm에서 약 35 mm 범위일 수 있고, 판 두께와 제2깊이 간의 제2차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제2직경은 약 30mm에서 약 35mm 범위일 수 있고, 제2차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제2직경 및/또는 제2깊이는 판 두께의 분수일 수 있다.
제2리세스 배열(364)에서, 챔퍼, 라운드 및/또는 필렛(즉, 표면/코너 반경 또는 사면(bevel))은 인접하는 표면들 사이의 부드러운 표면 천이에 영향을 주기 위해 이용될 수 있다. 원통형 리세스에서, 표면 반경은 원통 측벽과 리세스 바닥 사이의 코너에 배치될 수 있다. 또한, 원통형 리세스에서, 표면 반경은 원통 측벽과 플라즈마 표면(360) 사이의 코너에 배치될 수 있다. 예를 들어, 표면 반경은 약 1mm에서 약 3mm 범위일 수 있다.
슬롯 안테나의 제1복수의 슬롯(348) 및 제2복수의 슬롯(349)은 공진판(350)을 통해 슬롯 안테나까지 볼 수 있는 것처럼 도시되었다. 도 5a에 도시된 것과 같이, 제1복수의 슬롯(348) 및 제2복수의 슬롯(349)은 쌍(pair)으로 배열되어 있고, 각 슬롯 쌍은 제2슬롯에 직교방향인 제1슬롯을 포함한다. 그러나, 제1복수의 슬롯(348) 및 제2복수의 슬롯(349)에서 슬롯의 방향은 임의적일 수 있다. 예를 들어, 제1복수의 슬롯(348) 및 제2복수의 슬롯(349)에서 슬롯의 방향은 플라즈마의 균일성 및/또는 안정성을 위한 기설정된 패턴을 따를 수 있다.
제1리세스 배열(362)은 실질적으로 제1복수의 슬롯(348)에 맞추어 정렬된다. 제1리세스 배열(362)의 적어도 하나의 리세스는 제1복수의 슬롯(348) 중 1이상의 슬롯에 맞추어 정렬된다. 제2리세스 배열(364)은 제2복수의 슬롯(349) 에 부분적으로 맞추어 정렬되거나, 제2복수의 슬롯(349)에 맞추어 정렬되지 않는다. 도 5a에 도시된 것처럼, 제2리세스 배열(364)은 제2복수의 슬롯(349)에 부분적으로 맞추어 정렬되고, 제2리세스 배열(364)은 부분적으로 슬롯과 직접 오버랩(overlap)된다(예를 들어, 슬롯의 일부는 리세스를 직접 볼 수 있도록 위치한다).
도 6a 및 6b를 참조하면, 또 다른 실시예에 따른 전자기파 방사부(432)의 저면도 및 단면도가 각각 도시되어 있다. 전자기파 방사부(432)는 플라즈마 표면(460)을 구비한 공진판(450)을 포함한다. 전자기파 방사부(432)는 제1복수의 슬롯(448)과 제2복수의 슬롯(449)을 구비한 슬롯 안테나를 더 포함한다. 제1복수의 슬롯(448)과 제2복수의 슬롯(449)은 전자기에너지가 슬롯 안테나 위의 제1영역에서 공진판(450)이 위치한 슬롯 안테나 아래의 제2영역으로 커플링 되도록 한다.
슬롯(448,449)의 개수, 기하형상, 크기 및 분포는 모두 공정 공간(115, 도1a 참조) 또는 플라즈마 공간(116, 도1b 참조)에 형성되는 플라즈마의 공간적 균일성에 기여할 수 있는 요인들이다. 따라서, 슬롯 안테나의 디자인은 공정 공간(115, 도1a 참조) 또는 플라즈마 공간(116, 도1b 참조) 내의 플라즈마의 공간적 균일성을 제어하기 위해 이용될 수 있다.
도 6a 및 6b에 도시되었듯이, 전자기파 방사부(432)는 일실시예에 따라 플라즈마 표면(460)에 형성된 제1리세스 배열(462) 및 플라즈마 표면(460)에 형성된 제2리세스 배열(464)을 구비하도록 제작된다.
제1리세스 배열(462)은 선반(shelf)을 포함할 수 있다. 제1리세스 배열(462)의 선반은, 예를 들어 원통형, 원추형, 원추 절단형, 구형, 비구형(aspherical), 직사각형, 피라미드형 또는 어떠한 임의의 기하형상을 포함하는 임의의 기하형상을 포함할 수 있다. 제1리세스 분포(462)는 제1크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 선반을 포함할 수 있다.
제2리세스 배열(464)는 복수의 리세스를 포함할 수 있다. 제2리세스 배열(464)의 각 리세스는 플라즈마 표면(460)에 형성된 독특한 자국 또는 딤플을 포함할 수 있다. 예를 들어, 제2리세스 배열(464)의 어떠한 리세스는 원통형, 원추형, 원추 절단형, 구형, 비구형, 직사각형, 피라미드형 또는 어떠한 임의의 기하형상을 포함할 수 있다. 제2리세스 분포(464)는 제2크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 리세스를 포함할 수 있다. 제1리세스 배열(462) 내의 선반의 제1크기는 제2리세스 배열(464) 내의 리세스의 제2크기와 같을 수도 있고, 같지 않을 수도 있다. 예를 들어, 제2크기는 제1크기보다 작을 수 있다.
도 6a 및 6b에 도시된 것처럼, 공진판(450)은 직경과 두께를 갖는 유전판(dielectric plate)을 포함한다. 공진판(450) 위의 플라즈마 표면(460)은 평탄면(466)을 포함하고, 평탄면(466) 내에 제1리세스 배열(462) 및 제2리세스 배열(464)이 형성된다. 선택적으로, 공진판(450)은 어떠한 기하형상도 가질 수 있다. 플라즈마 표면(460)은 비평탄면을 포함할 수 있고, 비평탄면 내에 제1리세스 배열 및 제2리세스 배열이 형성된다(미도시). 예를 들어, 비평탄면은 오목하거나 볼록하거나 또는 양자의 조합일 수 있다.
공진판(450)에서의 전자기에너지의 전파는 공진판(450)에서의 전자기에너지의 주어진 주파수와 유전상수 하의 유효파장(effective wavelength, λ)을 특징으로 할 수 있다. 판 두께는 n이 0보다 큰 정수(integer)일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)일 수 있다. 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 클 수 있다(>λ/2). 선택적으로, 판 두께는 유효파장의 비정수 분수(non-integral fraction)(즉, 1/2 또는 1/4 파장의 정수배가 아닌)일 수 있다. 또한, 판 두께는 약 25 mm에서 약 45 mm 범위일 수도 있다.
예를 든 것과 같이, 제1리세스 배열(462)은 환상(annular) 선반을 포함할 수 있고, 환상 선반은 제1선반 깊이 및 제1선반 폭(또는 제1 내측 선반 반경 및 제1외측 선반 반경)을 특징으로 한다. 도 6a에 도시된 바와 같이, 제1리세스 배열(462)은 플라즈마 표면(460)의 외주 에지(peripheral edge)에 위치한다.
제1선반 폭은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제1선반 깊이 간의 제1차(first difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제1선반 폭은 유효파장의 약 절반(λ/2)이고, 판 두께와 제1선반 깊이 간의 제1차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제1선반 폭은 약 25 mm에서 약 75 mm 범위일 수 있고, 판 두께와 제1선반 깊이 간의 제1차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제1선반 폭은 약 55mm에서 약 65mm 범위일 수 있고, 제1차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제1선반 폭 및/또는 제1선반 깊이는 판 두께의 분수(fraction)일 수 있다.
제1리세스 배열(462)에서, 챔퍼(chamfer), 라운드(round) 및/또는 필렛(fillet)(즉, 표면/코너 반경 또는 사면(bevel))은 인접하는 표면들 사이의 부드러운 표면 천이(smooth surface transition)에 영향을 주기 위해 이용될 수 있다. 환상 선반 리세스에서, 표면 반경은 원통 측벽과 리세스 바닥 사이의 코너에 배치될 수 있다. 또한, 환상 선반 리세스에서, 표면 반경은 원통 측벽과 플라즈마 표면(460) 사이의 코너에 배치될 수 있다. 예를 들어, 표면 반경은 약 1mm에서 약 3mm 범위일 수 있다.
다른 예처럼, 제2리세스 배열(464)은 제2복수의 원통형 리세스를 포함할 수 있고, 제2복수의 원통형 리세스의 각각은 제2깊이 및 제2직경을 특징으로 한다. 도 6a에 도시된 바와 같이, 제2리세스 배열(464)은 플라즈마 표면(460)의 내측 영역 가까이에 위치한다. 도시되지는 않았으나, 제2리세스 배열(464)은 제2선반 깊이 및 제2선반 폭(또는 제2 내측 선반 반경 및 제2외측 선반 반경)을 특징으로 하는 제2환상 선반을 포함할 수 있다.
제2직경은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제2깊이 간의 제2차(second difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제2직경은 유효파장의 약 절반(λ/2)이고, 판 두께와 제2깊이 간의 제2차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제2직경은 약 25 mm에서 약 35 mm 범위일 수 있고, 판 두께와 제2깊이 간의 제2차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제2직경은 약 30mm에서 약 35mm 범위일 수 있고, 제2차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제2직경 및/또는 제2깊이는 판 두께의 분수일 수 있다.
제2리세스 배열(464)에서, 챔퍼, 라운드 및/또는 필렛(즉, 표면/코너 반경 또는 사면(bevel))은 인접하는 표면들 사이의 부드러운 표면 천이에 영향을 주기 위해 이용될 수 있다. 원통형 리세스에서, 표면 반경은 원통 측벽과 리세스 바닥 사이의 코너에 배치될 수 있다. 또한, 원통형 리세스에서, 표면 반경은 원통 측벽과 플라즈마 표면(460) 사이의 코너에 배치될 수 있다. 예를 들어, 표면 반경은 약 1mm에서 약 3mm 범위일 수 있다.
슬롯 안테나의 제1복수의 슬롯(448) 및 제2복수의 슬롯(449)은 공진판(450)을 통해 슬롯 안테나까지 볼 수 있는 것처럼 도시되었다. 도 6a에 도시된 것과 같이, 제1복수의 슬롯(448) 및 제2복수의 슬롯(449)은 쌍(pair)으로 배열되어 있고, 각 슬롯 쌍은 제2슬롯에 직교방향인 제1슬롯을 포함한다. 그러나, 제1복수의 슬롯(448) 및 제2복수의 슬롯(449)에서 슬롯의 방향은 임의적일 수 있다. 예를 들어, 제1복수의 슬롯(448) 및 제2복수의 슬롯(449)에서 슬롯의 방향은 플라즈마의 균일성 및/또는 안정성을 위한 기설정된 패턴을 따를 수 있다.
제1리세스 배열(462)은 실질적으로 제1복수의 슬롯(448)에 맞추어 정렬된다. 제2리세스 배열(464)은 제2복수의 슬롯(449) 에 부분적으로 맞추어 정렬되거나, 제2복수의 슬롯(449)에 맞추어 정렬되지 않는다. 도 6a에 도시된 것처럼, 제2리세스 배열(464)은 제2복수의 슬롯(449)에 부분적으로 맞추어 정렬되고, 제2리세스 배열(464)은 부분적으로 슬롯과 직접 오버랩(overlap)된다.
도 7a 및 7b를 참조하면, 또 다른 실시예에 따른 전자기파 방사부(532)의 저면도 및 단면도가 각각 도시되어 있다. 전자기파 방사부(532)는 플라즈마 표면(560)을 구비한 공진판(550)을 포함한다. 전자기파 방사부(532)는 제1복수의 슬롯(548)과 제2복수의 슬롯(549)을 구비한 슬롯 안테나를 더 포함한다. 제1복수의 슬롯(548)과 제2복수의 슬롯(549)은 전자기에너지가 슬롯 안테나 위의 제1영역에서 공진판(550)이 위치한 슬롯 안테나 아래의 제2영역으로 커플링 되도록 한다.
슬롯(548,549)의 개수, 기하형상, 크기 및 분포는 모두 공정 공간(115, 도1a 참조) 또는 플라즈마 공간(116, 도1b 참조)에 형성되는 플라즈마의 공간적 균일성에 기여할 수 있는 요인들이다. 따라서, 슬롯 안테나의 디자인은 공정 공간(115, 도1a 참조) 또는 플라즈마 공간(116, 도1b 참조) 내의 플라즈마의 공간적 균일성을 제어하기 위해 이용될 수 있다.
도 7a 및 7b에 도시되었듯이, 전자기파 방사부(532)는 일실시예에 따라 플라즈마 표면(560)에 형성된 제1리세스 배열(562) 및 플라즈마 표면(560)에 형성된 제2리세스 배열(564)을 구비하도록 제작된다.
제1리세스 배열(562)은 선반(shelf)을 포함할 수 있다. 제1리세스 배열(562)의 선반은, 예를 들어 원통형, 원추형, 원추 절단형, 구형, 비구형(aspherical), 직사각형, 피라미드형 또는 어떠한 임의의 기하형상을 포함하는 임의의 기하형상을 포함할 수 있다. 제1리세스 분포(562)는 제1크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 선반을 포함할 수 있다.
제2리세스 배열(564)는 복수의 리세스를 포함할 수 있다. 제2리세스 배열(564)의 각 리세스는 플라즈마 표면(560)에 형성된 독특한 자국 또는 딤플을 포함할 수 있다. 예를 들어, 제2리세스 배열(564)의 어떠한 리세스는 원통형, 원추형, 원추 절단형, 구형, 비구형, 직사각형, 피라미드형 또는 어떠한 임의의 기하형상을 포함할 수 있다. 제2리세스 분포(564)는 제2크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 리세스를 포함할 수 있다. 제1리세스 배열(562) 내의 선반의 제1크기는 제2리세스 배열(564) 내의 리세스의 제2크기와 같을 수도 있고, 같지 않을 수도 있다. 예를 들어, 제2크기는 제1크기보다 작을 수 있다.
도 7a 및 7b에 도시된 것처럼, 공진판(550)은 직경과 두께를 갖는 유전판(dielectric plate)을 포함한다. 공진판(550) 위의 플라즈마 표면(560)은 평탄면(566)을 포함하고, 평탄면(566) 내에 제1리세스 배열(562) 및 제2리세스 배열(564)이 형성된다. 선택적으로, 공진판(550)은 어떠한 기하형상도 가질 수 있다. 플라즈마 표면(560)은 비평탄면을 포함할 수 있고, 비평탄면 내에 제1리세스 배열 및 제2리세스 배열이 형성된다(미도시). 예를 들어, 비평탄면은 오목하거나 볼록하거나 또는 양자의 조합일 수 있다.
공진판(550)에서의 전자기에너지의 전파는 공진판(550)에서의 전자기에너지의 주어진 주파수와 유전상수 하의 유효파장(effective wavelength, λ)을 특징으로 할 수 있다. 판 두께는 n이 0보다 큰 정수(integer)일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)일 수 있다. 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 클 수 있다(>λ/2). 선택적으로, 판 두께는 유효파장의 비정수 분수(non-integral fraction)(즉, 1/2 또는 1/4 파장의 정수배가 아닌)일 수 있다. 또한, 판 두께는 약 25 mm에서 약 45 mm 범위일 수도 있다.
예를 든 것과 같이, 제1리세스 배열(562)은 환상(annular) 선반을 포함할 수 있고, 환상 선반은 제1선반 깊이 및 제1선반 폭(또는 제1 내측 선반 반경 및 제1외측 선반 반경)을 특징으로 한다. 도 7a에 도시된 바와 같이, 제1리세스 배열(562)은 플라즈마 표면(560)의 외주 에지(peripheral edge)에 위치한다.
제1선반 폭은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제1선반 깊이 간의 제1차(first difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제1선반 폭은 유효파장의 약 절반(λ/2)이고, 판 두께와 제1선반 깊이 간의 제1차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제1선반 폭은 약 25 mm에서 약 75 mm 범위일 수 있고, 판 두께와 제1선반 깊이 간의 제1차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제1선반 폭은 약 55mm에서 약 65mm 범위일 수 있고, 제1차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제1선반 폭 및/또는 제1선반 깊이는 판 두께의 분수(fraction)일 수 있다.
제1리세스 배열(562)에서, 챔퍼(chamfer), 라운드(round) 및/또는 필렛(fillet)(즉, 표면/코너 반경 또는 사면(bevel))은 인접하는 표면들 사이의 부드러운 표면 천이(smooth surface transition)에 영향을 주기 위해 이용될 수 있다. 환상 선반 리세스에서, 표면 반경은 원통 측벽과 리세스 바닥 사이의 코너에 배치될 수 있다. 또한, 환상 선반 리세스에서, 표면 반경은 원통 측벽과 플라즈마 표면(560) 사이의 코너에 배치될 수 있다. 예를 들어, 표면 반경은 약 1mm에서 약 3mm 범위일 수 있다.
다른 예처럼, 제2리세스 배열(564)은 제2복수의 원통형 리세스를 포함할 수 있고, 제2복수의 원통형 리세스의 각각은 제2깊이 및 제2직경을 특징으로 한다. 도 7a에 도시된 바와 같이, 제2리세스 배열(564)은 플라즈마 표면(560)의 내측 영역 가까이에 위치한다. 도시되지는 않았으나, 제2리세스 배열(564)은 제2선반 깊이 및 제2선반 폭(또는 제2 내측 선반 반경 및 제2외측 선반 반경)을 특징으로 하는 제2환상 선반을 포함할 수 있다.
제2직경은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제2깊이 간의 제2차(second difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제2직경은 유효파장의 약 절반(λ/2)이고, 판 두께와 제2깊이 간의 제2차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제2직경은 약 25 mm에서 약 35 mm 범위일 수 있고, 판 두께와 제2깊이 간의 제2차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제2직경은 약 30mm에서 약 35mm 범위일 수 있고, 제2차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제2직경 및/또는 제2깊이는 판 두께의 분수일 수 있다.
제2리세스 배열(564)에서, 챔퍼, 라운드 및/또는 필렛(즉, 표면/코너 반경 또는 사면(bevel))은 인접하는 표면들 사이의 부드러운 표면 천이에 영향을 주기 위해 이용될 수 있다. 원통형 리세스에서, 표면 반경은 원통 측벽과 리세스 바닥 사이의 코너에 배치될 수 있다. 또한, 원통형 리세스에서, 표면 반경은 원통 측벽과 플라즈마 표면(560) 사이의 코너에 배치될 수 있다. 예를 들어, 표면 반경은 약 1mm에서 약 3mm 범위일 수 있다.
슬롯 안테나의 제1복수의 슬롯(548) 및 제2복수의 슬롯(549)은 공진판(550)을 통해 슬롯 안테나까지 볼 수 있는 것처럼 도시되었다. 도 7a에 도시된 것과 같이, 제1복수의 슬롯(548) 및 제2복수의 슬롯(549)은 쌍(pair)으로 배열되어 있고, 각 슬롯 쌍은 제2슬롯에 직교방향인 제1슬롯을 포함한다. 그러나, 제1복수의 슬롯(548) 및 제2복수의 슬롯(549)에서 슬롯의 방향은 임의적일 수 있다. 예를 들어, 제1복수의 슬롯(548) 및 제2복수의 슬롯(549)에서 슬롯의 방향은 플라즈마의 균일성 및/또는 안정성을 위한 기설정된 패턴을 따를 수 있다.
제1리세스 배열(562)은 실질적으로 제1복수의 슬롯(548)에 맞추어 정렬된다. 제2리세스 배열(564)은 제2복수의 슬롯(549) 에 맞추어 정렬되거나, 부분적으로 맞추어 정렬되거나, 제2복수의 슬롯(549)에 맞추어 정렬되지 않는다. 도 7a에 도시된 것처럼, 제2리세스 배열(564)은 실질적으로 제2복수의 슬롯(549)에 맞추어 정렬된다.
도 8a 및 8b를 참조하면, 또 다른 실시예에 따른 전자기파 방사부(632)의 저면도 및 단면도가 각각 도시되어 있다. 전자기파 방사부(632)는 플라즈마 표면(660)을 구비한 공진판(650)을 포함한다. 전자기파 방사부(632)는 제1복수의 슬롯(648)과 제2복수의 슬롯(649)을 구비한 슬롯 안테나를 더 포함한다. 제1복수의 슬롯(648)과 제2복수의 슬롯(649)은 전자기에너지가 슬롯 안테나 위의 제1영역에서 공진판(650)이 위치한 슬롯 안테나 아래의 제2영역으로 커플링 되도록 한다.
슬롯(648,649)의 개수, 기하형상, 크기 및 분포는 모두 공정 공간(115, 도1a 참조) 또는 플라즈마 공간(116, 도1b 참조)에 형성되는 플라즈마의 공간적 균일성에 기여할 수 있는 요인들이다. 따라서, 슬롯 안테나의 디자인은 공정 공간(115, 도1a 참조) 또는 플라즈마 공간(116, 도1b 참조) 내의 플라즈마의 공간적 균일성을 제어하기 위해 이용될 수 있다.
도 8a 및 8b에 도시되었듯이, 전자기파 방사부(632)는 일실시예에 따라 플라즈마 표면(660)에 형성된 제1리세스 배열(662) 및 플라즈마 표면(660)에 형성된 제2리세스 배열(664)을 구비하도록 제작된다.
제1리세스 배열(662)은 선반(shelf)을 포함할 수 있다. 제1리세스 배열(662)의 선반은, 예를 들어 원통형, 원추형, 원추 절단형, 구형, 비구형(aspherical), 직사각형, 피라미드형 또는 어떠한 임의의 형상을 포함하는 임의의 기하형상을 포함할 수 있다. 제1리세스 분포(662)는 제1크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 선반을 포함할 수 있다.
제2리세스 배열(664)는 복수의 리세스를 포함할 수 있다. 제2리세스 배열(664)의 각 리세스는 플라즈마 표면(660)에 형성된 독특한 자국 또는 딤플을 포함할 수 있다. 예를 들어, 제2리세스 배열(664)의 어떠한 리세스는 원통형, 원추형, 원추 절단형, 구형, 비구형, 직사각형, 피라미드형 또는 어떠한 임의의 형상을 포함할 수 있다. 제2리세스 분포(664)는 제2크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 리세스를 포함할 수 있다. 제1리세스 배열(662) 내의 선반의 제1크기는 제2리세스 배열(664) 내의 리세스의 제2크기와 같을 수도 있고, 같지 않을 수도 있다. 예를 들어, 제2크기는 제1크기보다 작을 수 있다.
도 8a 및 8b에 도시된 것처럼, 공진판(650)은 직경과 두께를 갖는 유전판(dielectric plate)을 포함한다. 공진판(650) 위의 플라즈마 표면(660)은 평탄면(666)을 포함하고, 평탄면(666) 내에 제1리세스 배열(662) 및 제2리세스 배열(664)이 형성된다. 선택적으로, 공진판(650)은 어떠한 기하형상도 가질 수 있다. 플라즈마 표면(660)은 비평탄면을 포함할 수 있고, 비평탄면 내에 제1리세스 배열 및 제2리세스 배열이 형성된다(미도시). 예를 들어, 비평탄면은 오목하거나 볼록하거나 또는 양자의 조합일 수 있다.
공진판(650)에서의 전자기에너지의 전파는 공진판(650)에서의 전자기에너지의 주어진 주파수와 유전상수 하의 유효파장(effective wavelength, λ)을 특징으로 할 수 있다. 판 두께는 n이 0보다 큰 정수(integer)일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)일 수 있다. 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 클 수 있다(>λ/2). 선택적으로, 판 두께는 유효파장의 비정수 분수(non-integral fraction)(즉, 1/2 또는 1/4 파장의 정수배가 아닌)일 수 있다. 또한, 판 두께는 약 25 mm에서 약 45 mm 범위일 수도 있다.
예를 든 것과 같이, 제1리세스 배열(662)은 환상(annular) 선반을 포함할 수 있고, 환상 선반은 제1선반 깊이 및 제1선반 폭(또는 제1 내측 선반 반경 및 제1외측 선반 반경)을 특징으로 한다. 도 8a에 도시된 바와 같이, 제1리세스 배열(662)은 플라즈마 표면(660)의 외주 에지(peripheral edge)에 위치한다.
제1선반 폭은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제1선반 깊이 간의 제1차(first difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제1선반 폭은 유효파장의 약 절반(λ/2)이고, 판 두께와 제1선반 깊이 간의 제1차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제1선반 폭은 약 25 mm에서 약 75 mm 범위일 수 있고, 판 두께와 제1선반 깊이 간의 제1차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제1선반 폭은 약 55mm에서 약 65mm 범위일 수 있고, 제1차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제1선반 폭 및/또는 제1선반 깊이는 판 두께의 분수(fraction)일 수 있다.
제1리세스 배열(662)에서, 챔퍼(chamfer), 라운드(round) 및/또는 필렛(fillet)(즉, 표면/코너 반경 또는 사면(bevel))은 인접하는 표면들 사이의 부드러운 표면 천이(smooth surface transition)에 영향을 주기 위해 이용될 수 있다. 환상 선반 리세스에서, 표면 반경은 원통 측벽과 리세스 바닥 사이의 코너에 배치될 수 있다. 또한, 환상 선반 리세스에서, 표면 반경은 원통 측벽과 플라즈마 표면(660) 사이의 코너에 배치될 수 있다. 예를 들어, 표면 반경은 약 1mm에서 약 3mm 범위일 수 있다.
다른 예처럼, 제2리세스 배열(664)은 제2복수의 원통형 리세스를 포함할 수 있고, 제2복수의 원통형 리세스의 각각은 제2깊이 및 제2직경을 특징으로 한다. 도 8a에 도시된 바와 같이, 제2리세스 배열(664)은 플라즈마 표면(660)의 내측 영역 가까이에 위치한다. 도시되지는 않았으나, 제2리세스 배열(664)은 제2선반 깊이 및 제2선반 폭(또는 제2 내측 선반 반경 및 제2외측 선반 반경)을 특징으로 하는 제2환상 선반을 포함할 수 있다.
제2직경은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제2깊이 간의 제2차(second difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제2직경은 유효파장의 약 절반(λ/2)이고, 판 두께와 제2깊이 간의 제2차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제2직경은 약 25 mm에서 약 35 mm 범위일 수 있고, 판 두께와 제2깊이 간의 제2차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제2직경은 약 30mm에서 약 35mm 범위일 수 있고, 제2차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제2직경 및/또는 제2깊이는 판 두께의 분수일 수 있다.
제2리세스 배열(664)에서, 챔퍼, 라운드 및/또는 필렛(즉, 표면/코너 반경 또는 사면(bevel))은 인접하는 표면들 사이의 부드러운 표면 천이에 영향을 주기 위해 이용될 수 있다. 원통형 리세스에서, 표면 반경은 원통 측벽과 리세스 바닥 사이의 코너에 배치될 수 있다. 또한, 원통형 리세스에서, 표면 반경은 원통 측벽과 플라즈마 표면(660) 사이의 코너에 배치될 수 있다. 예를 들어, 표면 반경은 약 1mm에서 약 3mm 범위일 수 있다.
슬롯 안테나의 제1복수의 슬롯(648) 및 제2복수의 슬롯(649)은 공진판(650)을 통해 슬롯 안테나까지 볼 수 있는 것처럼 도시되었다. 도 8a에 도시된 것과 같이, 제1복수의 슬롯(648) 및 제2복수의 슬롯(649)은 쌍(pair)으로 배열되어 있고, 각 슬롯 쌍은 제2슬롯에 직교방향인 제1슬롯을 포함한다. 그러나, 제1복수의 슬롯(648) 및 제2복수의 슬롯(649)에서 슬롯의 방향은 임의적일 수 있다. 예를 들어, 제1복수의 슬롯(648) 및 제2복수의 슬롯(649)에서 슬롯의 방향은 플라즈마의 균일성 및/또는 안정성을 위한 기설정된 패턴을 따를 수 있다.
제1리세스 배열(662)은 실질적으로 제1복수의 슬롯(648)에 맞추어 정렬된다. 제2리세스 배열(664)은 제2복수의 슬롯(649) 에 부분적으로 맞추어 정렬되거나, 제2복수의 슬롯(649)에 맞추어 정렬되지 않는다. 도 8a에 도시된 것처럼, 제2리세스 배열(664)은 제2복수의 슬롯(649)에 부분적으로 맞추어 정렬되고, 제2리세스 배열(664)은 슬롯과 직접 오버랩(overlap)되지 않는다.
도 9a 및 9b를 참조하면, 또 다른 실시예에 따른 전자기파 방사부(732)의 저면도 및 단면도가 각각 도시되어 있다. 전자기파 방사부(732)는 플라즈마 표면(760)을 구비한 공진판(750)을 포함한다. 전자기파 방사부(732)는 제1복수의 슬롯(748)과 제2복수의 슬롯(749)을 구비한 슬롯 안테나를 더 포함한다. 제1복수의 슬롯(748)과 제2복수의 슬롯(749)은 전자기에너지가 슬롯 안테나 위의 제1영역에서 공진판(750)이 위치한 슬롯 안테나 아래의 제2영역으로 커플링 되도록 한다.
슬롯(748,749)의 개수, 기하형상, 크기 및 분포는 모두 공정 공간(115, 도1a 참조) 또는 플라즈마 공간(116, 도1b 참조)에 형성되는 플라즈마의 공간적 균일성에 기여할 수 있는 요인들이다. 따라서, 슬롯 안테나의 디자인은 공정 공간(115, 도1a 참조) 또는 플라즈마 공간(116, 도1b 참조) 내의 플라즈마의 공간적 균일성을 제어하기 위해 이용될 수 있다.
도 9a 및 9b에 도시되었듯이, 전자기파 방사부(732)는 일실시예에 따라 플라즈마 표면(760)에 형성된 제1리세스 배열(762) 및 플라즈마 표면(760)에 형성된 제2리세스 배열(764)을 구비하도록 제작된다. 그러나, 다른 실시예에서는 제2리세스 배열(764)이 제외된다. 도 9c 및 9d에 도시된 바와 같이 전자기파 방사부(732')는 제2리세스 배열(764)을 제외한 플라즈마 표면(760')을 구비하는 것으로 표현되었다.
제1리세스 배열(762)은 채널(channel)을 포함할 수 있다. 제1리세스 배열(762)의 채널은, 예를 들어 원통형, 원추형, 원추 절단형, 구형, 비구형(aspherical), 직사각형, 피라미드형 또는 어떠한 임의의 형상을 포함하는 임의의 기하형상을 포함할 수 있다. 제1리세스 분포(762)는 제1크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 채널을 포함할 수 있다.
제2리세스 배열(764)는 복수의 리세스를 포함할 수 있다. 제2리세스 배열(764)의 각 리세스는 플라즈마 표면(760)에 형성된 독특한 자국 또는 딤플을 포함할 수 있다. 예를 들어, 제2리세스 배열(764)의 어떠한 리세스는 원통형, 원추형, 원추 절단형, 구형, 비구형, 직사각형, 피라미드형 또는 어떠한 임의의 형상을 포함할 수 있다. 제2리세스 분포(764)는 제2크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 리세스를 포함할 수 있다. 제1리세스 배열(762) 내의 채널의 제1크기는 제2리세스 배열(764) 내의 리세스의 제2크기와 같을 수도 있고, 같지 않을 수도 있다. 예를 들어, 제2크기는 제1크기보다 작을 수 있다.
도 9a 및 9b에 도시된 것처럼, 공진판(750)은 직경과 두께를 갖는 유전판(dielectric plate)을 포함한다. 공진판(750) 위의 플라즈마 표면(760)은 평탄면(766)을 포함하고, 평탄면(766) 내에 제1리세스 배열(762) 및 제2리세스 배열(764)이 형성된다. 선택적으로, 공진판(750)은 어떠한 기하형상도 가질 수 있다. 플라즈마 표면(760)은 비평탄면을 포함할 수 있고, 비평탄면 내에 제1리세스 배열 및 제2리세스 배열이 형성된다(미도시). 예를 들어, 비평탄면은 오목하거나 볼록하거나 또는 양자의 조합일 수 있다.
공진판(750)에서의 전자기에너지의 전파는 공진판(750)에서의 전자기에너지의 주어진 주파수와 유전상수 하의 유효파장(effective wavelength, λ)을 특징으로 할 수 있다. 판 두께는 n이 0보다 큰 정수(integer)일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)일 수 있다. 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 클 수 있다(>λ/2). 선택적으로, 판 두께는 유효파장의 비정수 분수(non-integral fraction)(즉, 1/2 또는 1/4 파장의 정수배가 아닌)일 수 있다. 또한, 판 두께는 약 25 mm에서 약 45 mm 범위일 수도 있다.
예를 든 것과 같이, 제1리세스 배열(762)은 환상(annular) 채널을 포함할 수 있고, 환상 채널은 제1채널 깊이 및 제1채널 폭(또는 제1 내측 채널 반경 및 제1외측 채널 반경)을 특징으로 한다. 도 9a에 도시된 바와 같이, 제1리세스 배열(762)은 플라즈마 표면(760)의 외주 에지(peripheral edge)에 위치한다.
제1채널 폭은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제1채널 깊이 간의 제1차(first difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제1채널 폭은 유효파장의 약 절반(λ/2)이고, 판 두께와 제1채널 깊이 간의 제1차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제1채널 폭은 약 25 mm에서 약 75 mm 범위일 수 있고, 판 두께와 제1채널 깊이 간의 제1차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제1채널 폭은 약 55mm에서 약 65mm 범위일 수 있고, 제1차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제1채널 폭 및/또는 제1채널 깊이는 판 두께의 분수(fraction)일 수 있다.
제1리세스 배열(762)에서, 챔퍼(chamfer), 라운드(round) 및/또는 필렛(fillet)(즉, 표면/코너 반경 또는 사면(bevel))은 인접하는 표면들 사이의 부드러운 표면 천이(smooth surface transition)에 영향을 주기 위해 이용될 수 있다. 환상 채널 리세스에서, 표면 반경은 원통 측벽과 리세스 바닥 사이의 코너에 배치될 수 있다. 또한, 환상 채널 리세스에서, 표면 반경은 원통 측벽과 플라즈마 표면(760) 사이의 코너에 배치될 수 있다. 예를 들어, 표면 반경은 약 1mm에서 약 3mm 범위일 수 있다.
다른 예처럼, 제2리세스 배열(764)은 제2복수의 원통형 리세스를 포함할 수 있고, 제2복수의 원통형 리세스의 각각은 제2깊이 및 제2직경을 특징으로 한다. 도 9a에 도시된 바와 같이, 제2리세스 배열(764)은 플라즈마 표면(760)의 내측 영역 가까이에 위치한다. 도시되지는 않았으나, 제2리세스 배열(764)은 제2채널 깊이 및 제2채널 폭(또는 제2 내측 채널 반경 및 제2외측 채널 반경)을 특징으로 하는 제2환상 채널을 포함할 수 있다.
제2직경은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제2깊이 간의 제2차(second difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제2직경은 유효파장의 약 절반(λ/2)이고, 판 두께와 제2깊이 간의 제2차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제2직경은 약 25 mm에서 약 35 mm 범위일 수 있고, 판 두께와 제2깊이 간의 제2차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제2직경은 약 30mm에서 약 35mm 범위일 수 있고, 제2차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제2직경 및/또는 제2깊이는 판 두께의 분수일 수 있다.
제2리세스 배열(764)에서, 챔퍼, 라운드 및/또는 필렛(즉, 표면/코너 반경 또는 사면(bevel))은 인접하는 표면들 사이의 부드러운 표면 천이에 영향을 주기 위해 이용될 수 있다. 원통형 리세스에서, 표면 반경은 원통 측벽과 리세스 바닥 사이의 코너에 배치될 수 있다. 또한, 원통형 리세스에서, 표면 반경은 원통 측벽과 플라즈마 표면(760) 사이의 코너에 배치될 수 있다. 예를 들어, 표면 반경은 약 1mm에서 약 3mm 범위일 수 있다.
슬롯 안테나의 제1복수의 슬롯(748) 및 제2복수의 슬롯(749)은 공진판(750)을 통해 슬롯 안테나까지 볼 수 있는 것처럼 도시되었다. 도 9a에 도시된 것과 같이, 제1복수의 슬롯(748) 및 제2복수의 슬롯(749)은 쌍(pair)으로 배열되어 있고, 각 슬롯 쌍은 제2슬롯에 직교방향인 제1슬롯을 포함한다. 그러나, 제1복수의 슬롯(748) 및 제2복수의 슬롯(749)에서 슬롯의 방향은 임의적일 수 있다. 예를 들어, 제1복수의 슬롯(748) 및 제2복수의 슬롯(749)에서 슬롯의 방향은 플라즈마의 균일성 및/또는 안정성을 위한 기설정된 패턴을 따를 수 있다.
제1리세스 배열(762)은 실질적으로 제1복수의 슬롯(748)에 맞추어 정렬된다. 제2리세스 배열(764)은 제2복수의 슬롯(749) 에 부분적으로 맞추어 정렬되거나, 제2복수의 슬롯(749)에 맞추어 정렬되지 않는다. 도 9a에 도시된 것처럼, 제2리세스 배열(764)은 제2복수의 슬롯(749)에 부분적으로 맞추어 정렬되고, 제2리세스 배열(764)은 부분적으로 슬롯과 직접 오버랩(overlap)된다.
도 9e에는 전자기파 방사부(732)의 저면도가 제공되었고, 슬롯 안테나는 공진판(750)에 대하여 회전한다. 제1복수의 슬롯(748)과 제2복수의 슬롯(749)을 포함하여, 슬롯 안테나의 최초의 방향은 실선으로 도시되었다. 제1복수의 슬롯(748')과 제2복수의 슬롯(749')을 포함하여, 슬롯 안테나의 회전 방향은 점선으로 도시되었다(분명히 보여주기 위한 목적으로 제1복수의 슬롯(748')은 최초의 제1복수의 슬롯(748)배열에 다소 오정렬(mis-align)되도록 도시되었다). 제1리세스 배열(762) 및 제2리세스 배열(764)을 포함하여, 공진판(750)에 대한 슬롯 안테나의 방향(즉, 회전)은 플라즈마의 균일성 및/또는 안정성을 조정하기 위해 변할 수 있다. 예를 들어, 최초의 배열에서, 제1복수의 슬롯(748)은 제1리세스 배열(762)에 맞추어 정렬되고, 제2복수의 슬롯(749)은 제2리세스 배열(764)에 맞추어 정렬된다. 또한, 예를 들어, 회전 배열에서, 제1복수의 슬롯(748')은 제1리세스 배열(762')에 맞추어 정렬되고, 제2복수의 슬롯(749')은 제2리세스 배열(764)에 맞추어 정렬되지 않는다.
도 10a 및 10b를 참조하면, 또 다른 실시예에 따른 전자기파 방사부(832)의 저면도 및 단면도가 각각 도시되어 있다. 전자기파 방사부(832)는 플라즈마 표면(860)을 구비한 공진판(850)을 포함한다. 전자기파 방사부(832)는 제1복수의 슬롯(848)과 제2복수의 슬롯(849)을 구비한 슬롯 안테나를 더 포함한다. 제1복수의 슬롯(848)과 제2복수의 슬롯(849)은 전자기에너지가 슬롯 안테나 위의 제1영역에서 공진판(850)이 위치한 슬롯 안테나 아래의 제2영역으로 커플링 되도록 한다.
슬롯(848,849)의 개수, 기하형상, 크기 및 분포는 모두 공정 공간(115, 도1a 참조) 또는 플라즈마 공간(116, 도1b 참조)에 형성되는 플라즈마의 공간적 균일성에 기여할 수 있는 요인들이다. 따라서, 슬롯 안테나의 디자인은 공정 공간(115, 도1a 참조) 또는 플라즈마 공간(116, 도1b 참조) 내의 플라즈마의 공간적 균일성을 제어하기 위해 이용될 수 있다.
도 10a 및 10b에 도시되었듯이, 전자기파 방사부(832)는 일실시예에 따라 플라즈마 표면(860)에 형성된 제1리세스 배열(862) 및 플라즈마 표면(860)에 형성된 제2리세스 배열(864)을 구비하도록 제작된다.
제1리세스 배열(862)은 채널을 포함할 수 있다. 제1리세스 배열(862)의 채널은, 예를 들어 원통형, 원추형, 원추 절단형, 구형, 비구형(aspherical), 직사각형, 피라미드형 또는 어떠한 임의의 형상을 포함하는 임의의 기하형상을 포함할 수 있다. 제1리세스 분포(862)는 제1크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 채널을 포함할 수 있다.
제2리세스 배열(864)는 복수의 리세스를 포함할 수 있다. 제2리세스 배열(864)의 각 리세스는 플라즈마 표면(860)에 형성된 독특한 자국 또는 딤플을 포함할 수 있다. 예를 들어, 제2리세스 배열(864)의 어떠한 리세스는 원통형, 원추형, 원추 절단형, 구형, 비구형, 직사각형, 피라미드형 또는 어떠한 임의의 형상을 포함할 수 있다. 제2리세스 분포(864)는 제2크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 리세스를 포함할 수 있다. 제1리세스 배열(862) 내의 채널의 제1크기는 제2리세스 배열(864) 내의 리세스의 제2크기와 같을 수도 있고, 같지 않을 수도 있다. 예를 들어, 제2크기는 제1크기보다 작을 수 있다.
도 10a 및 10b에 도시된 것처럼, 공진판(850)은 직경과 두께를 갖는 유전판(dielectric plate)을 포함한다. 공진판(850) 위의 플라즈마 표면(860)은 평탄면(866)을 포함하고, 평탄면(866) 내에 제1리세스 배열(862) 및 제2리세스 배열(864)이 형성된다. 선택적으로, 공진판(850)은 어떠한 기하형상도 가질 수 있다. 플라즈마 표면(860)은 비평탄면을 포함할 수 있고, 비평탄면 내에 제1리세스 배열 및 제2리세스 배열이 형성된다(미도시). 예를 들어, 비평탄면은 오목하거나 볼록하거나 또는 양자의 조합일 수 있다.
공진판(850)에서의 전자기에너지의 전파는 공진판(850)에서의 전자기에너지의 주어진 주파수와 유전상수 하의 유효파장(effective wavelength, λ)을 특징으로 할 수 있다. 판 두께는 n이 0보다 큰 정수(integer)일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)일 수 있다. 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 클 수 있다(>λ/2). 선택적으로, 판 두께는 유효파장의 비정수 분수(non-integral fraction)(즉, 1/2 또는 1/4 파장의 정수배가 아닌)일 수 있다. 또한, 판 두께는 약 25 mm에서 약 45 mm 범위일 수도 있다.
예를 든 것과 같이, 제1리세스 배열(862)은 환상(annular) 채널을 포함할 수 있고, 환상 채널은 제1채널 깊이 및 제1채널 폭(또는 제1 내측 채널 반경 및 제1외측 채널 반경)을 특징으로 한다. 도 10a에 도시된 바와 같이, 제1리세스 배열(862)은 플라즈마 표면(860)의 외주 에지(peripheral edge)에 위치한다.
제1채널 폭은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제1채널 깊이 간의 제1차(first difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제1채널 폭은 유효파장의 약 절반(λ/2)이고, 판 두께와 제1채널 깊이 간의 제1차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제1채널 폭은 약 25 mm에서 약 75 mm 범위일 수 있고, 판 두께와 제1채널 깊이 간의 제1차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제1채널 폭은 약 55mm에서 약 65mm 범위일 수 있고, 제1차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제1채널 폭 및/또는 제1채널 깊이는 판 두께의 분수(fraction)일 수 있다.
또한, 제1리세스 배열(862)은 제1환상 채널의 바닥에 형성되는 제3복수의 원통형 리세스(863)를 포함할 수 있고, 제3복수의 원통형 리세스 각각은 제3깊이 및 제3직경을 특징으로 할 수 있다. 또한, 환상 채널은 환상 선반(shelf)일 수 있고, 제3복수의 원통형 리세스는 환상 선반의 바닥에 형성될 수 있다. 또한, 제1리세스 배열(862)은 제1환상 채널의 바닥에 형성되는 제3채널을 포함할 수 있고, 제3채널은 제3채널 깊이 및 제3채널 폭을 특징으로 할 수 있다.
제3직경은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제3깊이 간의 제3차(third difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제3직경은 유효파장의 약 절반(λ/2)이고, 판 두께와 제3깊이 간의 제3차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제3직경은 약 25 mm에서 약 75 mm 범위일 수 있고, 판 두께와 제3깊이 간의 제3차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제3직경은 약 55mm에서 약 65mm 범위일 수 있고, 제3차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제3직경 및/또는 제3깊이는 판 두께의 분수일 수 있다.
제1리세스 배열(862)에서, 챔퍼(chamfer), 라운드(round) 및/또는 필렛(fillet)(즉, 표면/코너 반경 또는 사면(bevel))은 인접하는 표면들 사이의 부드러운 표면 천이(smooth surface transition)에 영향을 주기 위해 이용될 수 있다. 환상 채널 리세스 또는 원통형 리세스에서, 표면 반경은 원통 측벽과 리세스 바닥 사이의 코너에 배치될 수 있다. 또한, 환상 채널 리세스 또는 원통형 리세스에서, 표면 반경은 원통 측벽과 플라즈마 표면(860) 사이의 코너에 배치될 수 있다. 예를 들어, 표면 반경은 약 1mm에서 약 3mm 범위일 수 있다.
다른 예처럼, 제2리세스 배열(864)은 제2복수의 원통형 리세스를 포함할 수 있고, 제2복수의 원통형 리세스의 각각은 제2깊이 및 제2직경을 특징으로 한다. 도 10a에 도시된 바와 같이, 제2리세스 배열(864)은 플라즈마 표면(860)의 내측 영역 가까이에 위치한다. 도시되지는 않았으나, 제2리세스 배열(864)은 제2채널 깊이 및 제2채널 폭(또는 제2 내측 채널 반경 및 제2외측 채널 반경)을 특징으로 하는 제2환상 채널을 포함할 수 있다.
제2직경은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제2깊이 간의 제2차(second difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제2직경은 유효파장의 약 절반(λ/2)이고, 판 두께와 제2깊이 간의 제2차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제2직경은 약 25 mm에서 약 35 mm 범위일 수 있고, 판 두께와 제2깊이 간의 제2차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제2직경은 약 30mm에서 약 35mm 범위일 수 있고, 제2차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제2직경 및/또는 제2깊이는 판 두께의 분수일 수 있다.
제2리세스 배열(864)에서, 챔퍼, 라운드 및/또는 필렛(즉, 표면/코너 반경 또는 사면(bevel))은 인접하는 표면들 사이의 부드러운 표면 천이에 영향을 주기 위해 이용될 수 있다. 원통형 리세스에서, 표면 반경은 원통 측벽과 리세스 바닥 사이의 코너에 배치될 수 있다. 또한, 원통형 리세스에서, 표면 반경은 원통 측벽과 플라즈마 표면(860) 사이의 코너에 배치될 수 있다. 예를 들어, 표면 반경은 약 1mm에서 약 3mm 범위일 수 있다.
슬롯 안테나의 제1복수의 슬롯(848) 및 제2복수의 슬롯(849)은 공진판(850)을 통해 슬롯 안테나까지 볼 수 있는 것처럼 도시되었다. 도 10a에 도시된 것과 같이, 제1복수의 슬롯(848) 및 제2복수의 슬롯(849)은 쌍(pair)으로 배열되어 있고, 각 슬롯 쌍은 제2슬롯에 직교방향인 제1슬롯을 포함한다. 그러나, 제1복수의 슬롯(848) 및 제2복수의 슬롯(849)에서 슬롯의 방향은 임의적일 수 있다. 예를 들어, 제1복수의 슬롯(848) 및 제2복수의 슬롯(849)에서 슬롯의 방향은 플라즈마의 균일성 및/또는 안정성을 위한 기설정된 패턴을 따를 수 있다.
제1리세스 배열(862)은 실질적으로 제1복수의 슬롯(848)에 맞추어 정렬된다. 제2리세스 배열(864)은 제2복수의 슬롯(849) 에 부분적으로 맞추어 정렬되거나, 제2복수의 슬롯(849)에 맞추어 정렬되지 않는다. 도 10a에 도시된 것처럼, 제2리세스 배열(864)은 제2복수의 슬롯(849)에 부분적으로 맞추어 정렬되고, 제2리세스 배열(864)은 부분적으로 슬롯과 직접 오버랩(overlap)된다.
도 11a 및 11b를 참조하면, 또 다른 실시예에 따른 전자기파 방사부(932)의 저면도 및 단면도가 각각 도시되어 있다. 전자기파 방사부(932)는 플라즈마 표면(960)을 구비한 공진판(950)을 포함한다. 전자기파 방사부(932)는 제1복수의 슬롯(948)과 제2복수의 슬롯(949)을 구비한 슬롯 안테나를 더 포함한다. 제1복수의 슬롯(948)과 제2복수의 슬롯(949)은 전자기에너지가 슬롯 안테나 위의 제1영역에서 공진판(950)이 위치한 슬롯 안테나 아래의 제2영역으로 커플링 되도록 한다.
슬롯(948,949)의 개수, 기하형상, 크기 및 분포는 모두 공정 공간(115, 도1a 참조) 또는 플라즈마 공간(116, 도1b 참조)에 형성되는 플라즈마의 공간적 균일성에 기여할 수 있는 요인들이다. 따라서, 슬롯 안테나의 디자인은 공정 공간(115, 도1a 참조) 또는 플라즈마 공간(116, 도1b 참조) 내의 플라즈마의 공간적 균일성을 제어하기 위해 이용될 수 있다.
도 11a 및 11b에 도시되었듯이, 전자기파 방사부(932)는 일실시예에 따라 플라즈마 표면(960)에 형성된 제1리세스 배열(962), 플라즈마 표면(960)에 형성된 제2리세스 배열(964), 플라즈마 표면(960)에 형성된 제3리세스 배열(965)을 구비하도록 제작된다.
제1리세스 배열(962)은 채널을 포함할 수 있다. 제1리세스 배열(962)의 채널은, 예를 들어 원통형, 원추형, 원추 절단형, 구형, 비구형(aspherical), 직사각형, 피라미드형 또는 어떠한 임의의 형상을 포함하는 임의의 기하형상을 포함할 수 있다. 제1리세스 분포(962)는 제1크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 채널을 포함할 수 있다.
제2리세스 배열(964)는 복수의 리세스를 포함할 수 있다. 제2리세스 배열(964)의 각 리세스는 플라즈마 표면(960)에 형성된 독특한 자국 또는 딤플을 포함할 수 있다. 예를 들어, 제2리세스 배열(964)의 어떠한 리세스는 원통형, 원추형, 원추 절단형, 구형, 비구형, 직사각형, 피라미드형 또는 어떠한 임의의 형상을 포함할 수 있다. 제2리세스 분포(964)는 제2크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 리세스를 포함할 수 있다. 제1리세스 배열(962) 내의 채널의 제1크기는 제2리세스 배열(964) 내의 리세스의 제2크기와 같을 수도 있고, 같지 않을 수도 있다. 예를 들어, 제2크기는 제1크기보다 작을 수 있다.
제3리세스 배열(965)는 복수의 리세스를 포함할 수 있다. 제3리세스 배열(965)의 각 리세스는 플라즈마 표면(960)에 형성된 독특한 자국 또는 딤플을 포함할 수 있다. 예를 들어, 제3리세스 배열(965)의 어떠한 리세스는 원통형, 원추형, 원추 절단형, 구형, 비구형, 직사각형, 피라미드형 또는 어떠한 임의의 형상을 포함할 수 있다. 제3리세스 분포(965)는 제3크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 리세스를 포함할 수 있다. 제1리세스 배열(962) 내의 채널의 제1크기는 제3리세스 배열(965) 내의 리세스의 제3크기와 같을 수도 있고, 같지 않을 수도 있다. 예를 들어, 제3크기는 제1크기 및/또는 제2크기보다 작을 수 있다.
도 11a 및 11b에 도시된 것처럼, 공진판(950)은 직경과 두께를 갖는 유전판(dielectric plate)을 포함한다. 공진판(950) 위의 플라즈마 표면(960)은 평탄면(966)을 포함하고, 평탄면(966) 내에 제1리세스 배열(962), 제2리세스 배열(964) 및 제3리세스 배열(965)이 형성된다. 선택적으로, 공진판(950)은 어떠한 기하형상도 가질 수 있다. 플라즈마 표면(960)은 비평탄면을 포함할 수 있고, 비평탄면 내에 제1리세스 배열 및 제2리세스 배열이 형성된다(미도시). 예를 들어, 비평탄면은 오목하거나 볼록하거나 또는 양자의 조합일 수 있다.
공진판(950)에서의 전자기에너지의 전파는 공진판(950)에서의 전자기에너지의 주어진 주파수와 유전상수 하의 유효파장(effective wavelength, λ)을 특징으로 할 수 있다. 판 두께는 n이 0보다 큰 정수(integer)일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)일 수 있다. 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 클 수 있다(>λ/2). 선택적으로, 판 두께는 유효파장의 비정수 분수(non-integral fraction)(즉, 1/2 또는 1/4 파장의 정수배가 아닌)일 수 있다. 또한, 판 두께는 약 25 mm에서 약 45 mm 범위일 수도 있다.
예를 든 것과 같이, 제1리세스 배열(962)은 환상(annular) 채널을 포함할 수 있고, 환상 채널은 제1채널 깊이 및 제1채널 폭(또는 제1 내측 채널 반경 및 제1외측 채널 반경)을 특징으로 한다. 도 11a에 도시된 바와 같이, 제1리세스 배열(962)은 플라즈마 표면(960)의 외주 에지(peripheral edge)에 위치한다.
제1채널 폭은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제1채널 깊이 간의 제1차(first difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제1채널 폭은 유효파장의 약 절반(λ/2)이고, 판 두께와 제1채널 깊이 간의 제1차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제1채널 폭은 약 25 mm에서 약 75 mm 범위일 수 있고, 판 두께와 제1채널 깊이 간의 제1차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제1채널 폭은 약 55mm에서 약 65mm 범위일 수 있고, 제1차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제1채널 폭 및/또는 제1채널 깊이는 판 두께의 분수(fraction)일 수 있다.
또한, 제1리세스 배열(962)은 제1환상 채널의 바닥에 형성되는 제4복수의 원통형 리세스(963)를 포함할 수 있고, 제4복수의 원통형 리세스 각각은 제4깊이 및 제4직경을 특징으로 할 수 있다. 또한, 환상 채널은 환상 선반(shelf)일 수 있고, 제4복수의 원통형 리세스는 환상 선반의 바닥에 형성될 수 있다. 또한, 제1리세스 배열(962)은 제1환상 채널의 바닥에 형성되는 제4채널을 포함할 수 있고, 제4채널은 제4채널 깊이 및 제4채널 폭을 특징으로 할 수 있다.
제4직경은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제4깊이 간의 제4차(fourth difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제4직경은 유효파장의 약 절반(λ/2)이고, 판 두께와 제4깊이 간의 제4차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제4직경은 약 25 mm에서 약 75 mm 범위일 수 있고, 판 두께와 제4깊이 간의 제4차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제4직경은 약 55mm에서 약 65mm 범위일 수 있고, 제4차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제4직경 및/또는 제4깊이는 판 두께의 분수일 수 있다.
제1리세스 배열(962)에서, 챔퍼(chamfer), 라운드(round) 및/또는 필렛(fillet)(즉, 표면/코너 반경 또는 사면(bevel))은 인접하는 표면들 사이의 부드러운 표면 천이(smooth surface transition)에 영향을 주기 위해 이용될 수 있다. 환상 채널 리세스 또는 원통형 리세스에서, 표면 반경은 원통 측벽과 리세스 바닥 사이의 코너에 배치될 수 있다. 또한, 환상 채널 리세스 또는 원통형 리세스에서, 표면 반경은 원통 측벽과 플라즈마 표면(960) 사이의 코너에 배치될 수 있다. 예를 들어, 표면 반경은 약 1mm에서 약 3mm 범위일 수 있다.
다른 예처럼, 제2리세스 배열(964)은 제2복수의 원통형 리세스를 포함할 수 있고, 제2복수의 원통형 리세스의 각각은 제2깊이 및 제2직경을 특징으로 한다. 도 11a에 도시된 바와 같이, 제2리세스 배열(964)은 플라즈마 표면(960)의 내측 영역 가까이에 위치한다. 도시되지는 않았으나, 제2리세스 배열(964)은 제2채널 깊이 및 제2채널 폭(또는 제2 내측 채널 반경 및 제2외측 채널 반경)을 특징으로 하는 제2환상 채널을 포함할 수 있다.
제2직경은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제2깊이 간의 제2차(second difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제2직경은 유효파장의 약 절반(λ/2)이고, 판 두께와 제2깊이 간의 제2차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제2직경은 약 25 mm에서 약 35 mm 범위일 수 있고, 판 두께와 제2깊이 간의 제2차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제2직경은 약 30mm에서 약 35mm 범위일 수 있고, 제2차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제2직경 및/또는 제2깊이는 판 두께의 분수일 수 있다.
제2리세스 배열(964)에서, 챔퍼, 라운드 및/또는 필렛(즉, 표면/코너 반경 또는 사면(bevel))은 인접하는 표면들 사이의 부드러운 표면 천이에 영향을 주기 위해 이용될 수 있다. 원통형 리세스에서, 표면 반경은 원통 측벽과 리세스 바닥 사이의 코너에 배치될 수 있다. 또한, 원통형 리세스에서, 표면 반경은 원통 측벽과 플라즈마 표면(460) 사이의 코너에 배치될 수 있다. 예를 들어, 표면 반경은 약 1mm에서 약 3mm 범위일 수 있다.
또 다른 예처럼, 제3리세스 배열(965)는 제3복수의 원통형 리세스를 포함할 수 있고, 제3복수의 원통형 리세스의 각각은 제3깊이 및 제3직경을 특징으로 한다. 도 11a에 도시된 바와 같이 제3리세스 배열(965)은 플라즈마 표면(960)의 내측 영역에 위치한다. 도시되지는 않았으나, 제3리세스 배열(965)은 제3채널 깊이 및 제3채널 폭(또는 제3내측 채널 반경 및 제3외측 채널 반경)을 특징으로 하는 제3환상 채널을 포함할 수 있다.
제3직경은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제3깊이 간의 제3차(third difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제3직경은 유효파장의 약 절반(λ/2)이고, 판 두께와 제3깊이 간의 제3차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제3직경은 약 25 mm에서 약 35 mm 범위일 수 있고, 판 두께와 제3깊이 간의 제3차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제3직경은 약 30mm에서 약 35mm 범위일 수 있고, 제3차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제3직경 및/또는 제3깊이는 판 두께의 분수일 수 있다.
제3리세스 배열(965)에서, 챔퍼, 라운드 및/또는 필렛(즉, 표면/코너 반경 또는 사면(bevel))은 인접하는 표면들 사이의 부드러운 표면 천이에 영향을 주기 위해 이용될 수 있다. 원통형 리세스에서, 표면 반경은 원통 측벽과 리세스 바닥 사이의 코너에 배치될 수 있다. 또한, 원통형 리세스에서, 표면 반경은 원통 측벽과 플라즈마 표면(460) 사이의 코너에 배치될 수 있다. 예를 들어, 표면 반경은 약 1mm에서 약 3mm 범위일 수 있다.
슬롯 안테나의 제1복수의 슬롯(948) 및 제2복수의 슬롯(949)은 공진판(950)을 통해 슬롯 안테나까지 볼 수 있는 것처럼 도시되었다. 도 11a에 도시된 것과 같이, 제1복수의 슬롯(948) 및 제2복수의 슬롯(949)은 쌍(pair)으로 배열되어 있고, 각 슬롯 쌍은 제2슬롯에 직교방향인 제1슬롯을 포함한다. 그러나, 제1복수의 슬롯(948) 및 제2복수의 슬롯(949)에서 슬롯의 방향은 임의적일 수 있다. 예를 들어, 제1복수의 슬롯(948) 및 제2복수의 슬롯(949)에서 슬롯의 방향은 플라즈마의 균일성 및/또는 안정성을 위한 기설정된 패턴을 따를 수 있다.
제1리세스 배열(962)은 실질적으로 제1복수의 슬롯(948)에 맞추어 정렬된다. 제2리세스 배열(964)은 제2복수의 슬롯(949) 에 부분적으로 맞추어 정렬되거나, 제2복수의 슬롯(949)에 맞추어 정렬되지 않는다. 제3리세스 배열(965)은 제1복수의 슬롯(948) 또는 제2복수의 슬롯(949)에 맞추어 정렬되지 않는다. 도 11a에 도시된 것처럼, 제2리세스 배열(464)은 제2복수의 슬롯(449)에 부분적으로 맞추어 정렬되고, 제2리세스 배열(464)은 슬롯과 직접 오버랩(overlap)되지 않는다.
도 11c에는 전자기파 방사부(932)의 저면도가 제공되었고, 슬롯 안테나는 공진판(950)에 대하여 회전한다. 제1복수의 슬롯(948)과 제2복수의 슬롯(949)을 포함하여, 슬롯 안테나의 최초의 방향은 실선으로 도시되었다. 제1복수의 슬롯(948')과 제2복수의 슬롯(949')을 포함하여, 슬롯 안테나의 회전 방향은 점선으로 도시되었다(분명히 보여주기 위한 목적으로 제1복수의 슬롯(948')은 최초의 제1복수의 슬롯(948)배열에 다소 오정렬(mis-align)되도록 도시되었다). 제1리세스 배열(962) 및 제2리세스 배열(964)을 포함하여, 공진판(950)에 대한 슬롯 안테나의 방향(즉, 회전)은 플라즈마의 균일성 및/또는 안정성을 조정하기 위해 변할 수 있다. 예를 들어, 최초의 배열에서, 제1복수의 슬롯(948)은 제1리세스 배열(962)에 맞추어 정렬되고, 제2복수의 슬롯(949)은 제2리세스 배열(964)에 맞추어 정렬된다. 또한, 예를 들어, 회전 배열에서, 제1복수의 슬롯(948')은 제1리세스 배열(962')에 맞추어 정렬되고, 제2복수의 슬롯(949')은 제2리세스 배열(964)에 맞추어 정렬되지 않는다.
도 12a 및 12b를 참조하면, 또 다른 실시예에 따른 전자기파 방사부(1032)의 저면도 및 단면도가 각각 도시되어 있다. 전자기파 방사부(1032)는 플라즈마 표면(1060)을 구비한 공진판(1050)을 포함한다. 전자기파 방사부(1032)는 제1복수의 슬롯(1048)과 제2복수의 슬롯(1049)을 구비한 슬롯 안테나를 더 포함한다. 제1복수의 슬롯(1048)과 제2복수의 슬롯(1049)은 전자기에너지가 슬롯 안테나 위의 제1영역에서 공진판(1050)이 위치한 슬롯 안테나 아래의 제2영역으로 커플링 되도록 한다.
슬롯(1048,1049)의 개수, 기하형상, 크기 및 분포는 모두 공정 공간(115, 도1a 참조) 또는 플라즈마 공간(116, 도1b 참조)에 형성되는 플라즈마의 공간적 균일성에 기여할 수 있는 요인들이다. 따라서, 슬롯 안테나의 디자인은 공정 공간(115, 도1a 참조) 또는 플라즈마 공간(116, 도1b 참조) 내의 플라즈마의 공간적 균일성을 제어하기 위해 이용될 수 있다.
도 12a 및 12b에 도시되었듯이, 전자기파 방사부(1032)는 일실시예에 따라 플라즈마 표면(1060)에 형성된 제1리세스 배열(1062), 플라즈마 표면(1060)에 형성된 제2리세스 배열(464) 및 플라즈마 표면(1060)에 형성된 제3리세스 배열(1065)을 구비하도록 제작된다.
제1리세스 배열(1062)은 채널을 포함할 수 있다. 제1리세스 배열(1062)의 채널은, 예를 들어 원통형, 원추형, 원추 절단형, 구형, 비구형(aspherical), 직사각형, 피라미드형 또는 어떠한 임의의 형상을 포함하는 임의의 기하형상을 포함할 수 있다. 제1리세스 분포(1062)는 제1크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 채널을 포함할 수 있다.
제2리세스 배열(1064)는 복수의 리세스를 포함할 수 있다. 제2리세스 배열(1064)의 각 리세스는 플라즈마 표면(1060)에 형성된 독특한 자국 또는 딤플을 포함할 수 있다. 예를 들어, 제2리세스 배열(1064)의 어떠한 리세스는 원통형, 원추형, 원추 절단형, 구형, 비구형, 직사각형, 피라미드형 또는 어떠한 임의의 형상을 포함할 수 있다. 제2리세스 분포(1064)는 제2크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 리세스를 포함할 수 있다. 제1리세스 배열(1062) 내의 채널의 제1크기는 제2리세스 배열(1064) 내의 리세스의 제2크기와 같을 수도 있고, 같지 않을 수도 있다. 예를 들어, 제2크기는 제1크기보다 작을 수 있다.
제3리세스 배열(1065)는 복수의 리세스를 포함할 수 있다. 제3리세스 배열(1065)의 각 리세스는 플라즈마 표면(1060)에 형성된 독특한 자국 또는 딤플을 포함할 수 있다. 예를 들어, 제3리세스 배열(1065)의 어떠한 리세스는 원통형, 원추형, 원추 절단형, 구형, 비구형, 직사각형, 피라미드형 또는 어떠한 임의의 형상을 포함할 수 있다. 제3리세스 분포(1065)는 제3크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 리세스를 포함할 수 있다. 제1리세스 배열(1062) 내의 채널의 제1크기는 제3리세스 배열(1065) 내의 리세스의 제3크기와 같을 수도 있고, 같지 않을 수도 있다. 예를 들어, 제3크기는 제1크기 및/또는 제2크기보다 작을 수 있다.
도 12a 및 12b에 도시된 것처럼, 공진판(1050)은 직경과 두께를 갖는 유전판(dielectric plate)을 포함한다. 공진판(1050) 위의 플라즈마 표면(1060)은 평탄면(1066)을 포함하고, 평탄면(1066) 내에 제1리세스 배열(1062) 및 제2리세스 배열(1064)이 형성된다. 선택적으로, 공진판(1050)은 어떠한 기하형상도 가질 수 있다. 플라즈마 표면(1060)은 비평탄면을 포함할 수 있고, 비평탄면 내에 제1리세스 배열 및 제2리세스 배열이 형성된다(미도시). 예를 들어, 비평탄면은 오목하거나 볼록하거나 또는 양자의 조합일 수 있다.
공진판(1050)에서의 전자기에너지의 전파는 공진판(1050)에서의 전자기에너지의 주어진 주파수와 유전상수 하의 유효파장(effective wavelength, λ)을 특징으로 할 수 있다. 판 두께는 n이 0보다 큰 정수(integer)일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)일 수 있다. 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 클 수 있다(>λ/2). 선택적으로, 판 두께는 유효파장의 비정수 분수(non-integral fraction)(즉, 1/2 또는 1/4 파장의 정수배가 아닌)일 수 있다. 또한, 판 두께는 약 25 mm에서 약 45 mm 범위일 수도 있다.
예를 든 것과 같이, 제1리세스 배열(1062)은 환상(annular) 채널을 포함할 수 있고, 환상 채널은 제1채널 깊이 및 제1채널 폭(또는 제1 내측 채널 반경 및 제1외측 채널 반경)을 특징으로 한다. 도 11a에 도시된 바와 같이, 제1리세스 배열(1062)은 플라즈마 표면(1060)의 외주 에지(peripheral edge)에 위치한다.
제1채널 폭은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제1채널 깊이 간의 제1차(first difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제1채널 폭은 유효파장의 약 절반(λ/2)이고, 판 두께와 제1채널 깊이 간의 제1차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제1채널 폭은 약 25 mm에서 약 75 mm 범위일 수 있고, 판 두께와 제1채널 깊이 간의 제1차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제1채널 폭은 약 55mm에서 약 65mm 범위일 수 있고, 제1차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제1채널 폭 및/또는 제1채널 깊이는 판 두께의 분수(fraction)일 수 있다.
제1리세스 배열(1062)에서, 챔퍼(chamfer), 라운드(round) 및/또는 필렛(fillet)(즉, 표면/코너 반경 또는 사면(bevel))은 인접하는 표면들 사이의 부드러운 표면 천이(smooth surface transition)에 영향을 주기 위해 이용될 수 있다. 환상 채널 리세스에서, 표면 반경은 원통 측벽과 리세스 바닥 사이의 코너에 배치될 수 있다. 또한, 환상 채널 리세스에서, 표면 반경은 원통 측벽과 플라즈마 표면(460) 사이의 코너에 배치될 수 있다. 예를 들어, 표면 반경은 약 1mm에서 약 3mm 범위일 수 있다.
다른 예처럼, 제2리세스 배열(1064)은 제2복수의 원통형 리세스를 포함할 수 있고, 제2복수의 원통형 리세스의 각각은 제2깊이 및 제2직경을 특징으로 한다. 도 12a에 도시된 바와 같이, 제2리세스 배열(1064)은 플라즈마 표면(1060)의 내측 영역 가까이에 위치한다. 도시되지는 않았으나, 제2리세스 배열(1064)은 제2채널 깊이 및 제2채널 폭(또는 제2 내측 채널 반경 및 제2외측 채널 반경)을 특징으로 하는 제2환상 채널을 포함할 수 있다.
제2직경은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제2깊이 간의 제2차(second difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제2직경은 유효파장의 약 절반(λ/2)이고, 판 두께와 제2깊이 간의 제2차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제2직경은 약 25 mm에서 약 35 mm 범위일 수 있고, 판 두께와 제2깊이 간의 제2차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제2직경은 약 30mm에서 약 35mm 범위일 수 있고, 제2차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제2직경 및/또는 제2깊이는 판 두께의 분수일 수 있다.
제2리세스 배열(1064)에서, 챔퍼, 라운드 및/또는 필렛(즉, 표면/코너 반경 또는 사면(bevel))은 인접하는 표면들 사이의 부드러운 표면 천이에 영향을 주기 위해 이용될 수 있다. 원통형 리세스에서, 표면 반경은 원통 측벽과 리세스 바닥 사이의 코너에 배치될 수 있다. 또한, 원통형 리세스에서, 표면 반경은 원통 측벽과 플라즈마 표면(460) 사이의 코너에 배치될 수 있다. 예를 들어, 표면 반경은 약 1mm에서 약 3mm 범위일 수 있다.
또 다른 예처럼, 제3리세스 배열(1065)는 제3복수의 원통형 리세스를 포함할 수 있고, 제3복수의 원통형 리세스의 각각은 제3깊이 및 제3직경을 특징으로 한다. 도 12a에 도시된 바와 같이 제3리세스 배열(1065)은 플라즈마 표면(1060)의 내측 영역에 위치한다. 도시되지는 않았으나, 제3리세스 배열(1065)은 제3채널 깊이 및 제3채널 폭(또는 제3내측 채널 반경 및 제3외측 채널 반경)을 특징으로 하는 제3환상 채널을 포함할 수 있다.
제3직경은 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 또한, 판 두께와 제3깊이 간의 제3차(third difference)는 n이 0보다 큰 정수일 때 1/4 파장의 정수배(nλ/4)이거나, m이 0보다 큰 정수일 때 1/2 파장의 정수배(mλ/2)이거나, 유효파장의 비정수 분수일 수 있다. 예를 들어, 제3직경은 유효파장의 약 절반(λ/2)이고, 판 두께와 제3깊이 간의 제3차는 유효파장의 약 절반(λ/2)이거나 약 1/4(λ/4)일 수 있다. 또한, 예를 들어, 판 두께는 유효파장의 약 절반(λ/2)이거나 절반보다 더 클 수 있다(>λ/2).
선택적으로, 제3직경은 약 25 mm에서 약 35 mm 범위일 수 있고, 판 두께와 제3깊이 간의 제3차는 약 10mm 에서 약 35mm 범위일 수 있다. 또한, 제3직경은 약 30mm에서 약 35mm 범위일 수 있고, 제3차는 약 10mm 에서 약 20mm 사이일 수 있다. 또한, 제3직경 및/또는 제3깊이는 판 두께의 분수일 수 있다.
제3리세스 배열(1065)에서, 챔퍼, 라운드 및/또는 필렛(즉, 표면/코너 반경 또는 사면(bevel))은 인접하는 표면들 사이의 부드러운 표면 천이에 영향을 주기 위해 이용될 수 있다. 원통형 리세스에서, 표면 반경은 원통 측벽과 리세스 바닥 사이의 코너에 배치될 수 있다. 또한, 원통형 리세스에서, 표면 반경은 원통 측벽과 플라즈마 표면(460) 사이의 코너에 배치될 수 있다. 예를 들어, 표면 반경은 약 1mm에서 약 3mm 범위일 수 있다.
슬롯 안테나의 제1복수의 슬롯(1048) 및 제2복수의 슬롯(1049)은 공진판(1050)을 통해 슬롯 안테나까지 볼 수 있는 것처럼 도시되었다. 도 12a에 도시된 것과 같이, 제1복수의 슬롯(1048) 및 제2복수의 슬롯(1049)은 쌍(pair)으로 배열되어 있고, 각 슬롯 쌍은 제2슬롯에 직교방향인 제1슬롯을 포함한다. 그러나, 제1복수의 슬롯(1048) 및 제2복수의 슬롯(1049)에서 슬롯의 방향은 임의적일 수 있다. 예를 들어, 제1복수의 슬롯(1048) 및 제2복수의 슬롯(1049)에서 슬롯의 방향은 플라즈마의 균일성 및/또는 안정성을 위한 기설정된 패턴을 따를 수 있다.
제1리세스 배열(1062)은 실질적으로 제1복수의 슬롯(1048)에 맞추어 정렬된다. 제2리세스 배열(1064)은 제2복수의 슬롯(1049) 에 부분적으로 맞추어 정렬되거나, 제2복수의 슬롯(1049)에 맞추어 정렬되지 않는다. 제3리세스 배열(1065)은 제1리세스 배열(1062) 또는 제2리세스 배열(1064)에 맞추어 정렬되지 않는다. 도 12a에 도시된 것처럼, 제2리세스 배열(1064)은 제2복수의 슬롯(1049)에 부분적으로 맞추어 정렬되고, 제2리세스 배열(1064)은 슬롯과 직접 오버랩(overlap)되지 않는다.
도 13a 및 13b를 참조하면, 또 다른 실시예에 따른 전자기파 방사부(1132)의 단면도가 도시되어 있다. 전자기파 방사부(1132)는 플라즈마 표면(1160)을 구비한 공진판(1150)을 포함한다. 전자기파 방사부는 제1복수의 슬롯(1148)을 구비하고 선택적으로 제2복수의 슬롯(1149)을 구비하는 슬롯 안테나를 더 포함한다. 제1복수의 슬롯(1148)과 제2복수의 슬롯(1149)은 전자기에너지가 슬롯 안테나 위의 제1영역에서 공진판(1150)이 위치한 슬롯 안테나 아래의 제2영역으로 커플링 되도록 한다.
도 13a 및 13b에 도시되었듯이, 전자기파 방사부(1132)는 일실시예에 따라 플라즈마 표면(1160)에 형성된 제1리세스 배열(1162) 및 플라즈마 표면(1160)에 형성된 제2리세스 배열(1164)을 구비하도록 제작된다.
제1리세스 배열(1162)은 사다리꼴(trapezoidal) 또는 절두삼각형(frusto-triangular) 단면을 가지는 채널을 포함할 수 있다. 그러나 제1리세스 배열(1162)의 채널은, 예를 들어 원통형, 원추형, 원추 절단형, 구형, 비구형(aspherical), 직사각형, 피라미드형 또는 어떠한 임의의 형상을 포함하는 임의의 기하형상을 포함할 수 있다. 제1리세스 분포(1162)는 제1크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 채널을 포함할 수 있다.
제2리세스 배열(1164)는 복수의 리세스를 포함할 수 있다. 제2리세스 배열(1164)의 각 리세스는 플라즈마 표면(1160)에 형성된 독특한 자국 또는 딤플을 포함할 수 있다. 예를 들어, 제2리세스 배열(1164)의 어떠한 리세스는 원통형(도시된 바와 같이), 원추형, 원추 절단형, 구형, 비구형, 직사각형, 피라미드형 또는 어떠한 임의의 형상을 포함할 수 있다. 제2리세스 분포(1164)는 제2크기(예를 들어, 가로방향 치수(또는 폭) 및/또는 세로방향 치수(또는 깊이))를 특징으로 하는 리세스를 포함할 수 있다. 제1리세스 배열(1162) 내의 채널의 제1크기는 제2리세스 배열(1164) 내의 리세스의 제2크기와 같을 수도 있고, 같지 않을 수도 있다. 예를 들어, 제2크기는 제1크기보다 작을 수 있다.
도 3 내지 도 12b에서 설명된 리세스 배열 중 어느 하나의 리세스는 도 13a 및 13b에 도시된 단면 형상 중 어느 하나를 가질 수 있다.
또한, 도 13a 및 13b에 도시된 바와 같이 전자기파 방사부(1132)는 제1결합면(mating surface, 1152) 및 제2결합면(1154)을 구비하는 계단형 결합면(stepped mating surface)을 구비하도록 제작될 수 있다. 계단형 결합면은 슬롯 안테나와 커플링되도록 구성될 수 있다. 전자기파 방사부(1132)는 공진판(1150)의 외주(periphery) 가까이에 위치하고 공정 챔버 벽과 커플링되도록 구성된 에지 벽 연장부(edge wall extension, 1156)를 포함할 수 있다. 또한, 전자기파 방사부(1132)는 개구(1058) 및 가스통로(1159)를 포함할 수 있다. 가스 라인(gas line)을 전자기파 방사부(1132)의 내부 도체(inner conductor)를 통하여 공진판(1150)의 가스통로(1159)에 고정시키기 위해 개구(1058)는 체결 장치(fastening device)를 수용하도록 구성될 수 있다. 하나의 가스통로가 도시되었으나 공진판(1150)에는 추가적인 가스통로가 제작될 수 있다. 또한, 가스통로의 형상은 원통형 단면을 가지는 직선형이나, 이는 임의적일 수 있다. 예를 들어, 임의의 단면을 가지는 나선형일 수 있다. 도 13a 및 13b에서 설명된 특징들 중 어느 하나 또는 그 이상은 도 3 내지 12b에서 설명된 실시예 중 어느 하나에서 실시될 수 있다.
도3 내지 13에서 설명된 실시예들에 제시된 설계기준(design criteria)을 이용하여, 이러한 실시예들과 이들의 조합은 2 mtorr에서 1 torr까지의 압력 및 5kW까지의 파워(예를 들어, 0.5 kW에서 5kW)의 공정 범위(process window)에서 안정하고 균일한 플라즈마를 생산하도록 설계될 수 있다. 기판 평면에서 얻어지는 전자 온도는 약 1eV이다. 비교적 작은 리세스는 비교적 높은 압력에서 쉽게 방전(discharge)될 수 있는 반면, 비교적 큰 리세스는 비교적 낮은 압력에서 쉽게 방전될 수 있다. 또한, 비교적 큰 리세스가 포화될 때 비교적 작은 리세스는 초과 파워(excess power)를 흡수할 수 있다. 이러한 구성에서, 고유 전자기 모드(natural 전자기 mode)가 락 및/또는 브레이크업(lock and/or break up) 하는 동안 플라즈마 방전(discharge)은 안정화될 수 있다. 따라서 상술한 공정 범위 내에서 안정한 방전은 전자기파 방사부 근처에서 관찰될 수 있고 균일한 플라즈마 특성은 기판 평면 근처에서 관찰될 수 있다.
도 3 내지 13에 제공된 실시예 중 어느 하나에 도시되지는 않았으나 어떠한 리세스 배열의 1이상의 리세스는 상호연결될 수 있다. 또한, 어떠한 리세스 배열의 1이상의 리세스는 다른 리세스 배열의 1이상의 리세스와 상호연결될 수 있다. 예를 들어, 1이상의 리세스는 그루브(groove) 또는 채널에 의해 상호연결되거나 연관(linked)될 수 있다.
도 14a 및 14b를 참조하면, 표면파 플라즈마 소스의 모범적인 데이터가 제공되어 있다. 표면파 플라즈마 소스는 전자기파 방사부를 포함하고, 전자기파 방사부는 제1리세스 배열, 제2리세스 배열 및 제3리세스 배열을 구비한 평탄면으로 구성된 플라즈마 표면을 구비한다. 제1리세스 배열은 플라즈마 표면의 외측 영역 근처에 위치한 복수의 원통형 리세스를 포함한다. 제2리세스 배열은 플라즈마 표면의 중간방사(mid-radius) 영역 근처에 위치한 복수의 원통형 리세스를 포함한다. 제3리세스 배열은 플라즈마 표면의 내측 영역 근처에 위치한 복수의 원통형 리세스를 포함한다.
제1리세스 배열은 실질적으로 제1복수의 슬롯에 맞추어 정렬되고, 제2리세스 배열은 제2복수의 슬롯에 부분적으로 맞추어 정렬되고, 제3리세스 배열은 제1복수의 리세스 또는 제2복수의 리세스에 맞추어 정렬되지 않는다. 제1복수의 슬롯 및 제2복수의 슬롯은 쌍으로 배열될 수 있고, 각 슬롯 쌍은 제2슬롯에 직교방향인 제1슬롯을 포함한다.
도 14a 및 14b에 도시되었듯이, 플라즈마 이온 밀도()는 평탄면(z=0에서 “FLAT”으로 표기)에서 기판(z=130 mm에서 “SUBSTRATE”으로 표기)까지의 플라즈마 공간에서의 위치에 따라 세 영역에 대하여 측정되었다. 리세스가 존재했던 위치에 대하여는 약 z=-15(“RECESS”로 표기)로 측정하였다. 제1데이터 세트(빈 사각형)는 제2리세스 배열의 리세스(예를 들어, 슬롯 안테나의 슬롯에 부분적으로 맞추어 정렬된)로부터 기판까지인 제1영역을 측정하여 얻어진 것이다. 제2데이터 세트(빈 원)는 제3리세스 배열의 리세스(예를 들어, 슬롯 안테나의 슬롯에 맞추어 정렬되지 않은)로부터 기판까지의 제2영역을 측정하여 얻어진 것이다. 제3데이터 세트(x표 사각형)는 평탄면에서 기판까지의 제3영역을 측정하여 얻어진 것이다. 플라즈마 이온 밀도의 측정에는 랭뮤어 탐침(Langmuir probe)이 이용되었다.
도 14a에서, 세가지 데이터 세트는 500 mtorr(millitorr)의 압력, 2000W(Watts)의 파워, 700 sccm(standard cubic centimeters per minute)의 유량 하에서 얻어졌다. 도 14b에서, 세가지 데이터 세트는 40 mtorr(millitorr)의 압력, 2000W(Watts)의 파워, 700 sccm(standard cubic centimeters per minute)의 유량 하에서 얻어졌다. 500 mtorr (도 14a)인 경우, 제2 및 3리세스 배열 모두에서 플라즈마 이온 밀도는 탐침(probe)이 각 리세스 내부로 연장될수록 증가하였다. 40 mtorr(도 14b)인 경우, 제2리세스 배열에서는 탐침이 리세스 내부로 연장될수록 이온 밀도가 증가하였고, 제3리세스 배열에서는 탐침이 리세스 내부로 연장될수록 감소하였다.
제1리세스 배열의 리세스는 파워의 범위와 압력의 범위(즉, 40mtorr에서 500mtorr)에 걸쳐 비교적 “최고로 밝은(full bright)” 글로(glow)를 보인다. 제2리세스 배열의 리세스는 파워의 범위와 압력의 범위(즉, 40mtorr에서 500mtorr)에 걸쳐 비교적 “밝은(bright)” 글로(glow)를 보인다. 제3리세스 배열의 리세스는 파워와 압력(즉, 40mtorr에서 500mtorr)에 따라 비교적 “흐릿한(dim)” 글로(glow)부터 “밝은” 글로까지 변화를 보인다. 후자의 경우, 플라즈마 이온 밀도(및 플라즈마 “휘도(brightness)”)는 압력이 증가하면 함께 증가하고, 제1리세스 배열과 관련된 “최고로 밝은” 글로를 안정화시킨다. 이와는 반대로, 평탄면의 “FLAT” 영역은 비교적 “어둡게(dark)” 남아 있고, 측정이 플라즈마 공간 내부로 연장될수록 플라즈마 이온 밀도는 증가한다. 세가지 데이터 세트는 플라즈마 공간 내부 약 30에서 50 mm에서 합쳐지고, 기판까지 일률적으로 소멸한다.
플라즈마 표면에서 기판까지의 플라즈마 공간에서의 위치에 따른 전자 온도(Te) 및 전자 에너지 확률 분포 함수(electron energy probability distribution function, EEPf)의 변화를 측정하기 위해 각 세 영역에 대한 측정 및 시뮬레이션(미도시)이 수행되었다. 플라즈마의 EEPf는, 플라즈마 표면에 인접한 플라즈마 발생 존(zone)의 전자빔(electron beam) 성분(component) 및 싱글 맥스웰(single Maxwellian) 성분을 특징으로 하는 플라즈마에서, 전자빔 성분 및 바이맥스웰(bi-Maxwellian) 성분을 특징으로 하는 플라즈마로, 바이맥스웰 성분을 특징으로 하는 플라즈마로, 기판에 인접한 싱글 맥스웰 성분으로 공간적으로 발달한다. 세 영역 모두에 있어서, 플라즈마는 낮은 전자 온도를 특징으로 하는 싱글 맥스웰 성분을 구비하는 조용한(quiescent) 플라즈마로 발달한다.
본 발명의 오직 특정 실시예들만이 위에서 자세히 설명되었으나, 통상의 기술자로서는 본 발명의 이점과 신규한 교시(novel teaching)를 실질적으로 벗어나지 않는 범위 내에서 많은 변경이 가능하다는 것을 쉽게 인식할 수 있을 것이다. 따라서, 그러한 모든 변경은 본 발명의 범위 안에 포함되는 것으로 보아야 한다.

Claims (20)

  1. 플라즈마에 인접한 전자기(electromagnetic, EM)파 방사부의 플라즈마 표면 위에 표면파를 발생시켜 전자기에너지를 원하는 전자기파 모드로 상기 플라즈마에 커플링시키도록 구성되고, 슬롯 안테나를 포함하며, 상기 슬롯 안테나는 상기 슬롯 안테나를 관통하여 형성되고 상기 전자기에너지를 상기 슬롯 안테나 위의 제1영역에서 상기 슬롯 안테나 아래의 제2영역으로 커플링시키도록 구성되는 복수의 슬롯을 구비한 전자기파 방사부;
    상기 제2영역 내에 위치하고 상기 전자기파 방사부의 상기 플라즈마 표면을 포함하는 하면(lower surface of resonator plate)을 구비하고, 판 직경 및 판 두께를 가지는 유전판을 포함하는 공진판;
    상기 플라즈마 표면에 형성되고, 제1형상 및 제1크기를 특징으로 하는 적어도 하나의 제1리세스를 구비하는 제1리세스 배열;
    상기 플라즈마 표면에 형성되고, 제2형상 및 제2크기를 특징으로 하는 적어도 하나의 제2리세스를 구비하는 제2리세스 배열; 및
    상기 전자기파 방사부에 커플링되고 상기 플라즈마를 형성하기 위해 상기 전자기에너지를 상기 전자기파 방사부에 제공하도록 구성되는 파워 커플링 시스템;
    을 포함하고,
    상기 전자기에너지는 상기 공진판에서 전파 유효파장(λ)(effective wavelength of propagation)을 포함하고,
    상기 적어도 하나의 제1리세스는 상기 적어도 하나의 제2리세스와 크기, 또는 형상, 또는 크기와 형상이 다르고, 상기 제1크기는 제1폭 및 제1깊이를 특징으로 하고, 상기 제1폭 및 상기 제1깊이의 크기는 상기 유효파장의 1/4(λ/4)로부터 상기 유효파장의 1/2(λ/2)까지의 범위 내이고, 상기 제2 크기는 제2폭 및 제2깊이를 특징으로 하고, 상기 제2폭 및 상기 제2깊이의 크기는 상기 유효파장의 1/4(λ/4)로부터 상기 유효파장의 1/2(λ/2)까지의 범위 내인 표면파 플라즈마(surface wave plasma, SWP) 소스.
  2. 제1항에 있어서,
    상기 파워 커플링 시스템은 상기 전자기에너지를 상기 전자기파 방사부에 커플링시키기 위한 동축 피드를 포함하고,
    상기 슬롯 안테나는 상기 동축 피드의 내부 도체에 커플링되는 일단 및 상기 동축 피드의 외부 도체에 커플링되는 타단을 포함하는 표면파 플라즈마 소스.
  3. 제1항에 있어서,
    상기 전자기파 방사부는 상기 제1영역에 위치하고 상기 전자기에너지의 유효파장을 자유공간에서의 상기 전자기에너지의 파장에 비해 감소시키도록 구성되는 지파판을 더 포함하는 표면파 플라즈마 소스.
  4. 제3항에 있어서,
    상기 지파판 및 상기 공진판은 본질적으로(essentially) 석영(quartz) 또는 고유전상수(high-k) 물질로 구성되고, 상기 고유전상수 물질은 4보다 큰 유전상수를 가지는 표면파 플라즈마 소스.
  5. 제2항에 있어서,
    상기 파워 커플링 시스템은,
    2.45 GHz에서 마이크로파 에너지를 생산하도록 구성되는 마이크로파 소스;
    상기 마이크로파 소스의 배출구(outlet)에 커플링되는 도파관;
    상기 도파관에 커플링되고 상기 마이크로파 에너지가 상기 마이크로파 소스로 역(逆)전파되는 것을 방지하도록 구성되는 아이솔레이터; 및
    상기 아이솔레이터에 커플링되고, 전자기에너지를 상기 전자기파 방사부에 커플링시키기 위한 동축 피드에 상기 마이크로파 에너지를 커플링시키도록 구성되는 동축 컨버터;
    를 포함하고,
    상기 동축 피드는 상기 전자기파 방사부에도 커플링되는 표면파 플라즈마 소스.
  6. 제1항에 있어서,
    상기 복수의 슬롯은 쌍(pair)으로 배열되고, 각 슬롯 쌍은 제2슬롯에 직교방향인 제1슬롯을 포함하는 표면파 플라즈마 소스.
  7. 제1항에 있어서,
    상기 제1리세스 배열은,
    원통형, 원추형, 원추 절단형, 구형, 비구형, 직사각형, 또는 피라미드형 기하형상을 가지고, 제1깊이 및 제1폭을 특징으로 하는 제1복수의 리세스; 또는
    제1선반 깊이 및 제1선반 폭을 특징으로 하는 제1환상 선반; 또는
    제1채널 깊이, 제1내측 채널 반경 및 제1외측 채널 반경을 특징으로 하는 제1환상 채널; 또는
    상기 제1복수의 원통형 리세스, 제1환상 선반 및 제1환상 채널의 2이상의 조합을 포함하는 표면파 플라즈마 소스.
  8. 제7항에 있어서,
    상기 제1리세스 배열은 상기 플라즈마 표면에 평행한 방향으로 상기 플라즈마 표면의 외측 영역 가까이에 위치하는 표면파 플라즈마 소스.
  9. 제7항에 있어서,
    상기 제2리세스 배열은,
    원통형, 원추형, 원추 절단형, 구형, 비구형, 직사각형, 또는 피라미드형 기하형상을 가지고, 제2깊이 및 제2폭을 특징으로 하는 제2복수의 리세스; 또는
    제2선반 깊이 및 제2선반 폭을 특징으로 하는 제2환상 선반; 또는
    제2채널 깊이, 제2내측 채널 반경 및 제2외측 채널 반경을 특징으로 하는 제2환상 채널; 또는
    상기 제2복수의 원통형 리세스, 제2환상 선반 및 제2환상 채널의 2이상의 조합을 포함하는 표면파 플라즈마 소스.
  10. 제9항에 있어서,
    상기 제2리세스 배열은 상기 플라즈마 표면에 평행한 방향으로 상기 플라즈마 표면의 내측 영역 가까이에 위치하는 표면파 플라즈마 소스.
  11. 제9항에 있어서,
    상기 제1환상 선반의 바닥 또는 상기 제1환상 채널의 바닥에 형성되고, 각 리세스가 제3깊이 및 제3폭을 특징으로 하는 제3복수의 리세스를 더 포함하는 표면파 플라즈마 소스.
  12. 제11항에 있어서,
    상기 판 두께와 상기 제3깊이 간의 제3차는 상기 유효파장의 1/4(λ/4)인 표면파 플라즈마 소스.
  13. 제1항에 있어서,
    상기 판 두께는 상기 유효파장의 절반(λ/2)인 표면파 플라즈마 소스.
  14. 플라즈마에 인접한 전자기파 방사부의 플라즈마 표면 위에 표면파를 발생시켜 전자기에너지를 플라즈마에 커플링시키도록 구성되고, 슬롯 안테나를 포함하며, 상기 슬롯 안테나는 상기 슬롯 안테나를 관통하여 형성되고 상기 전자기에너지를 상기 슬롯 안테나 위의 제1영역에서 상기 슬롯 안테나 아래의 제2영역으로 커플링시키도록 구성되는 복수의 슬롯을 구비한 전자기파 방사부;
    상기 제2영역 내에 위치하고 상기 전자기파 방사부의 상기 플라즈마 표면을 포함하는 하면을 구비하고, 판 직경 및 판 두께를 가지는 유전판을 포함하는 공진판;
    상기 플라즈마 표면 내에 형성되고,
    제1형상, 제1크기, 제1폭 및 제1깊이를 특징으로 하고, 원통형, 원추형, 원추 절단형, 구형, 비구형, 직사각형 또는 피라미드형 기하형상을 가지는 적어도 하나의 제1리세스; 또는
    제1선반 깊이 및 제1선반 폭을 특징으로 하는 제1환상 선반; 또는
    제1채널 깊이, 제1내측 채널 반경 및 제1외측 채널 반경을 특징으로 하는 제1환상 채널; 또는
    상기 제1리세스, 제1환상 선반, 및 제1환상 채널 중 두 개 이상의 조합;
    을 가지는 제1리세스 배열;
    상기 플라즈마 표면 내에 형성되고,
    제2형상, 제2크기, 제2폭 및 제2깊이를 특징으로 하고, 원통형, 원추형, 원추 절단형, 구형, 비구형, 직사각형, 피라미드형 기하형상을 가지는 적어도 하나의 제2리세스; 또는
    제2선반 깊이 및 제2선반 폭을 특징으로 하는 제2환상 선반; 또는
    제2채널 깊이, 제2내측 채널 반경 및 제2외측 채널 반경을 특징으로 하는 제2환상 채널; 또는
    상기 제2리세스, 제2환상 선반, 및 제2환상 채널 중 두 개 이상의 조합;
    을 가지는 제2리세스 배열; 및
    상기 전자기파 방사부에 커플링되고 상기 플라즈마를 형성하기 위해 상기 전자기에너지를 상기 전자기파 방사부에 제공하도록 구성되는 파워 커플링 시스템;
    을 포함하고,
    상기 적어도 하나의 제1리세스는 상기 적어도 하나의 제2리세스와 크기, 또는 형상, 또는 크기와 형상이 다르고,
    상기 판 두께는 25mm에서 45mm의 범위,
    상기 제1리세스의 제1직경은 25mm에서 35mm의 범위,
    상기 제2리세스의 제2직경은 25mm에서 35mm의 범위,
    상기 판 두께와 상기 제1깊이, 상기 제1선반 깊이 또는 상기 제1채널 깊이 간의 제1차는 10mm에서 35mm의 범위이고,
    상기 판 두께와 상기 제2깊이, 상기 제2선반 깊이 또는 상기 제2채널 깊이 간의 제2차는 10mm에서 35mm의 범위인 표면파 플라즈마(surface wave plasma, SWP) 소스.
  15. 제14항에 있어서,
    상기 제2직경은 상기 제1직경 보다 작은 표면파 플라즈마(surface wave plasma, SWP) 소스.
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
KR1020127009034A 2009-09-08 2010-08-30 안정한 표면파 플라즈마 소스 KR101688679B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/555,080 2009-09-08
US12/555,080 US8415884B2 (en) 2009-09-08 2009-09-08 Stable surface wave plasma source
PCT/US2010/047092 WO2011031571A1 (en) 2009-09-08 2010-08-30 Stable surface wave plasma source

Publications (2)

Publication Number Publication Date
KR20120091063A KR20120091063A (ko) 2012-08-17
KR101688679B1 true KR101688679B1 (ko) 2016-12-21

Family

ID=43647178

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127009034A KR101688679B1 (ko) 2009-09-08 2010-08-30 안정한 표면파 플라즈마 소스

Country Status (6)

Country Link
US (2) US8415884B2 (ko)
JP (1) JP5750107B2 (ko)
KR (1) KR101688679B1 (ko)
CN (1) CN102597305B (ko)
TW (1) TWI461114B (ko)
WO (1) WO2011031571A1 (ko)

Families Citing this family (205)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5377587B2 (ja) * 2011-07-06 2013-12-25 東京エレクトロン株式会社 アンテナ、プラズマ処理装置及びプラズマ処理方法
US9396955B2 (en) 2011-09-30 2016-07-19 Tokyo Electron Limited Plasma tuning rods in microwave resonator processing systems
US9728416B2 (en) 2011-09-30 2017-08-08 Tokyo Electron Limited Plasma tuning rods in microwave resonator plasma sources
US8808496B2 (en) 2011-09-30 2014-08-19 Tokyo Electron Limited Plasma tuning rods in microwave processing systems
US9111727B2 (en) 2011-09-30 2015-08-18 Tokyo Electron Limited Plasma tuning rods in microwave resonator plasma sources
US8664125B2 (en) * 2011-12-23 2014-03-04 Tokyo Electron Limited Highly selective spacer etch process with reduced sidewall spacer slimming
DE102012103425A1 (de) * 2012-04-19 2013-10-24 Roth & Rau Ag Mikrowellenplasmaerzeugungsvorrichtung und Verfahren zu deren Betrieb
US9059038B2 (en) 2012-07-18 2015-06-16 Tokyo Electron Limited System for in-situ film stack measurement during etching and etch control method
US9101042B2 (en) 2012-07-24 2015-08-04 Tokyo Electron Limited Control of uniformity in a surface wave plasma source
US9155183B2 (en) * 2012-07-24 2015-10-06 Tokyo Electron Limited Adjustable slot antenna for control of uniformity in a surface wave plasma source
JP2014026773A (ja) * 2012-07-25 2014-02-06 Tokyo Electron Ltd プラズマ処理装置
JP6033453B2 (ja) 2012-10-17 2016-11-30 東京エレクトロン株式会社 多変量解析を用いたプラズマエンドポイント検出
JP2014112644A (ja) * 2012-11-06 2014-06-19 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
JP2014160557A (ja) * 2013-02-19 2014-09-04 Tokyo Electron Ltd プラズマ処理装置
WO2014146008A2 (en) * 2013-03-15 2014-09-18 Starfire Industries Llc Scalable multi-role surface-wave plasma generator
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
JP2015018685A (ja) * 2013-07-10 2015-01-29 東京エレクトロン株式会社 マイクロ波プラズマ処理装置
GB201319438D0 (en) * 2013-11-04 2013-12-18 Univ Lancaster Waveguide
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
JP2015130325A (ja) * 2013-12-03 2015-07-16 東京エレクトロン株式会社 誘電体窓、アンテナ、及びプラズマ処理装置
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
JP2015201567A (ja) * 2014-04-09 2015-11-12 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
US9947516B2 (en) * 2014-06-03 2018-04-17 Tokyo Electron Limited Top dielectric quartz plate and slot antenna concept
JP6225837B2 (ja) 2014-06-04 2017-11-08 東京エレクトロン株式会社 成膜装置、成膜方法、記憶媒体
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
JP6354539B2 (ja) * 2014-11-25 2018-07-11 東京エレクトロン株式会社 基板処理装置、基板処理方法、記憶媒体
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9673059B2 (en) 2015-02-02 2017-06-06 Tokyo Electron Limited Method for increasing pattern density in self-aligned patterning integration schemes
US9443731B1 (en) 2015-02-20 2016-09-13 Tokyo Electron Limited Material processing to achieve sub-10nm patterning
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
MX2017012720A (es) 2015-05-18 2018-02-09 Nerre Therapeutics Ltd Antagonistas duales de receptores de neurocinina-1 (nk-1) / neurocinina-3 (nk-3) para el tratamiento de enfermedades dependientes de hormonas sexuales.
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
JP2017004665A (ja) * 2015-06-08 2017-01-05 東京エレクトロン株式会社 プラズマ処理装置
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
KR102334378B1 (ko) * 2015-09-23 2021-12-02 삼성전자 주식회사 유전체 윈도우, 그 윈도우를 포함한 플라즈마 공정 시스템, 및 그 시스템을 이용한 반도체 소자 제조방법
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US10692705B2 (en) 2015-11-16 2020-06-23 Tokyo Electron Limited Advanced optical sensor and method for detecting an optical event in a light emission signal in a plasma chamber
WO2017172536A1 (en) 2016-03-31 2017-10-05 Tokyo Electron Limited Controlling dry etch process characteristics using waferless dry clean optical emission spectroscopy
US10651017B2 (en) 2016-06-30 2020-05-12 Tokyo Electron Limited Method for operation instability detection in a surface wave plasma source
KR101820242B1 (ko) * 2016-08-02 2018-01-18 한국기초과학지원연구원 수냉식 표면파 플라즈마 발생장치
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10453653B2 (en) 2016-09-02 2019-10-22 Tokyo Electron Limited Endpoint detection algorithm for atomic layer etching (ALE)
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10438828B2 (en) 2016-10-03 2019-10-08 Applied Materials, Inc. Methods and apparatus to prevent interference between processing chambers
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10083820B2 (en) * 2016-11-14 2018-09-25 Tokyo Electron Limited Dual-frequency surface wave plasma source
US10436717B2 (en) 2016-11-18 2019-10-08 Tokyo Electron Limited Compositional optical emission spectroscopy for detection of particle induced arcs in a fabrication process
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
CN110431655A (zh) 2017-03-17 2019-11-08 东京毅力科创株式会社 用于蚀刻度量改进的表面改性控制
WO2018183243A1 (en) * 2017-03-31 2018-10-04 Mattson Technology, Inc. Pedestal assembly for plasma processing apparatus
CN108735567B (zh) * 2017-04-20 2019-11-29 北京北方华创微电子装备有限公司 表面波等离子体加工设备
CN110769585B (zh) * 2018-07-27 2023-08-18 北京北方华创微电子装备有限公司 表面波等离子体装置
US10978278B2 (en) 2018-07-31 2021-04-13 Tokyo Electron Limited Normal-incident in-situ process monitor sensor
KR102604289B1 (ko) * 2018-11-28 2023-11-20 삼성전자주식회사 전자 장치 및 그의 안테나 구조
US11538723B2 (en) 2019-05-23 2022-12-27 Tokyo Electron Limited Optical diagnostics of semiconductor process using hyperspectral imaging
US10910201B1 (en) 2019-08-22 2021-02-02 Tokyo Electron Limited Synthetic wavelengths for endpoint detection in plasma etching
KR102340564B1 (ko) * 2021-02-19 2021-12-20 한국표준과학연구원 플라즈마 이온 밀도 측정 장치와 이를 이용한 플라즈마 진단 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188722A (ja) * 2006-01-12 2007-07-26 Tokyo Electron Ltd プラズマ処理装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024716A (en) * 1988-01-20 1991-06-18 Canon Kabushiki Kaisha Plasma processing apparatus for etching, ashing and film-formation
US5234526A (en) * 1991-05-24 1993-08-10 Lam Research Corporation Window for microwave plasma processing device
TW328617B (en) * 1996-03-28 1998-03-21 Sumitomo Metal Ind Plasma processing device and plasma processing method
AUPO425096A0 (en) 1996-12-18 1997-01-16 University Of Queensland, The Radial line slot antenna
US6026762A (en) * 1997-04-23 2000-02-22 Applied Materials, Inc. Apparatus for improved remote microwave plasma source for use with substrate processing systems
US6230651B1 (en) * 1998-12-30 2001-05-15 Lam Research Corporation Gas injection system for plasma processing
JP3430959B2 (ja) * 1999-03-04 2003-07-28 東京エレクトロン株式会社 平面アンテナ部材、これを用いたプラズマ処理装置及びプラズマ処理方法
JP3625197B2 (ja) * 2001-01-18 2005-03-02 東京エレクトロン株式会社 プラズマ装置およびプラズマ生成方法
KR100501778B1 (ko) * 2001-03-28 2005-07-20 동경 엘렉트론 주식회사 플라즈마 처리 장치
JP2003168681A (ja) * 2001-12-03 2003-06-13 Ulvac Japan Ltd マイクロ波プラズマ処理装置および処理方法
JP4008728B2 (ja) * 2002-03-20 2007-11-14 株式会社 液晶先端技術開発センター プラズマ処理装置
JP2005033055A (ja) 2003-07-08 2005-02-03 Canon Inc 放射状スロットに円弧状スロットを併設したマルチスロットアンテナを用いた表面波プラズマ処理装置
JP4563729B2 (ja) * 2003-09-04 2010-10-13 東京エレクトロン株式会社 プラズマ処理装置
JP4315859B2 (ja) * 2004-05-19 2009-08-19 富士通株式会社 超伝導フィルタ
US7584714B2 (en) * 2004-09-30 2009-09-08 Tokyo Electron Limited Method and system for improving coupling between a surface wave plasma source and a plasma space
US7138767B2 (en) * 2004-09-30 2006-11-21 Tokyo Electron Limited Surface wave plasma processing system and method of using
JP2008182102A (ja) * 2007-01-25 2008-08-07 Tokyo Electron Ltd 天板部材及びこれを用いたプラズマ処理装置
JP4606508B2 (ja) * 2007-08-28 2011-01-05 東京エレクトロン株式会社 天板及びプラズマ処理装置
KR101157143B1 (ko) * 2008-02-13 2012-06-22 도쿄엘렉트론가부시키가이샤 마이크로파 플라즈마 처리 장치의 천판, 플라즈마 처리 장치 및 플라즈마 처리 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188722A (ja) * 2006-01-12 2007-07-26 Tokyo Electron Ltd プラズマ処理装置

Also Published As

Publication number Publication date
JP2013504176A (ja) 2013-02-04
TWI461114B (zh) 2014-11-11
US8415884B2 (en) 2013-04-09
US20110057562A1 (en) 2011-03-10
CN102597305A (zh) 2012-07-18
US8669705B2 (en) 2014-03-11
JP5750107B2 (ja) 2015-07-15
CN102597305B (zh) 2014-09-17
US20130264938A1 (en) 2013-10-10
KR20120091063A (ko) 2012-08-17
TW201134316A (en) 2011-10-01
WO2011031571A1 (en) 2011-03-17

Similar Documents

Publication Publication Date Title
KR101688679B1 (ko) 안정한 표면파 플라즈마 소스
US8323521B2 (en) Plasma generation controlled by gravity-induced gas-diffusion separation (GIGDS) techniques
US8968588B2 (en) Low electron temperature microwave surface-wave plasma (SWP) processing method and apparatus
JP5122966B2 (ja) 表面波プラズマソース
JP4861329B2 (ja) 基板を処理するためのプラズマ処理システム
US10375812B2 (en) Low electron temperature, edge-density enhanced, surface-wave plasma (SWP) processing method and apparatus
US8808562B2 (en) Dry metal etching method
US7998307B2 (en) Electron beam enhanced surface wave plasma source
US10354841B2 (en) Plasma generation and control using a DC ring
JP2008515221A (ja) 基板を処理するための方法
KR102279533B1 (ko) 유전체창, 안테나, 및 플라즈마 처리 장치
US9111727B2 (en) Plasma tuning rods in microwave resonator plasma sources
US7938081B2 (en) Radial line slot antenna having a conductive layer
KR20020074372A (ko) 플라즈마 처리 장치 및 그 장치를 이용한 반도체 장치의제조 방법
US20130084706A1 (en) Plasma-Tuning Rods in Surface Wave Antenna (SWA) Sources
US20060005769A1 (en) Plasma processing device
TWI539484B (zh) 使用電漿處理用電漿調整桿之系統
WO2008033928A2 (en) Electron beam enhanced surface wave plasma source
KR20020016490A (ko) 플라즈마 처리 장치
US9728416B2 (en) Plasma tuning rods in microwave resonator plasma sources
JP2004328004A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
FPAY Annual fee payment

Payment date: 20191202

Year of fee payment: 4