KR101687459B1 - 저전압 전력 효율적인 엔벨로프 추적기 - Google Patents

저전압 전력 효율적인 엔벨로프 추적기 Download PDF

Info

Publication number
KR101687459B1
KR101687459B1 KR1020147001767A KR20147001767A KR101687459B1 KR 101687459 B1 KR101687459 B1 KR 101687459B1 KR 1020147001767 A KR1020147001767 A KR 1020147001767A KR 20147001767 A KR20147001767 A KR 20147001767A KR 101687459 B1 KR101687459 B1 KR 101687459B1
Authority
KR
South Korea
Prior art keywords
supply voltage
signal
envelope
current
supply
Prior art date
Application number
KR1020147001767A
Other languages
English (en)
Other versions
KR20140026626A (ko
Inventor
렌나르트 케이 마테
토마스 도미닉 마라
토드 알 서튼
Original Assignee
퀄컴 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46551856&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR101687459(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 퀄컴 인코포레이티드 filed Critical 퀄컴 인코포레이티드
Publication of KR20140026626A publication Critical patent/KR20140026626A/ko
Application granted granted Critical
Publication of KR101687459B1 publication Critical patent/KR101687459B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/432Two or more amplifiers of different type are coupled in parallel at the input or output, e.g. a class D and a linear amplifier, a class B and a class A amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/462Indexing scheme relating to amplifiers the current being sensed

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

파워 서플라이를 효율적으로 발생시키기 위한 기법들이 설명된다. 하나의 설계에서, 장치는 엔벨로프 증폭기 및 부스트 컨버터를 포함한다. 부스트 컨버터는 제 1 서플라이 전압 (예를 들어, 배터리 전압) 보다 더 높은 전압을 갖는 부스팅된 서플라이 전압을 발생시킨다. 엔벨로프 증폭기는 엔벨로프 신호 및 부스팅된 서플라이 전압 (그리고 또한 가능하게는 제 1 서플라이 전압) 에 기초하여 제 2 서플라이 전압을 발생시킨다. 전력 증폭기는 제 2 서플라이 전압에 기초하여 동작한다. 다른 설계에서, 장치는 스위처, 엔벨로프 증폭기, 및 전력 증폭기를 포함한다. 스위처는 제 1 서플라이 전압을 수신하고 제 1 서플라이 전류를 제공한다. 엔벨로프 증폭기는 엔벨로프 신호에 기초하여 제 2 서플라이 전류를 제공한다. 전력 증폭기는 제 1 및 제 2 서플라이 전류들을 포함하는 총 서플라이 전류를 수신한다. 하나의 설계에서, 스위처는 제 2 서플라이 전류를 검출하고 오프셋을 부가하여 오프셋이 없는 것보다 더 큰 제 1 서플라이 전류를 발생시킨다.

Description

저전압 전력 효율적인 엔벨로프 추적기{LOW-VOLTAGE POWER-EFFICIENT ENVELOPE TRACKER}
본 개시물은 일반적으로 전자 장치에 관한 것으로, 보다 구체적으로 증폭기 및/또는 다른 회로들을 위해 파워 서플라이를 발생시키기 위한 기법들에 관한 것이다.
통신 시스템에서, 송신기는 데이터를 프로세싱 (예를 들어, 인코딩 및 변조) 하여 출력 샘플들을 발생시킬 수도 있다. 송신기는 출력 샘플들을 추가로 컨디셔닝 (예를 들어, 아날로그로의 컨버팅, 필터링, 주파수 업컨버팅, 및 증폭) 하여 출력 무선 주파수 (RF) 신호를 발생시킬 수도 있다. 송신기는 그 후 출력 RF 신호를 통신 채널을 통해 수신기에 송신할 수도 있다. 수신기는 송신된 RF 신호를 수신하고 수신된 RF 신호에 대해 상보적 프로세싱을 수행하여 송신된 데이터를 복구할 수도 있다.
송신기는 통상 출력 RF 신호에 대해 높은 송신 전력을 제공하기 위해 전력 증폭기 (PA) 를 포함한다. 전력 증폭기는 높은 출력 전력을 제공하고 높은 전력 부가 효율 (power-added efficiency; PAE) 을 갖는 것이 가능해야 한다. 더욱이, 전력 증폭기는 낮은 배터리 전압에도 불구하고 양호한 성능 및 높은 PAE 를 갖도록 요구될 수도 있다.
전력 증폭기 및/또는 다른 회로들을 위해 파워 서플라이를 효율적으로 발생시키기 위한 기법들이 여기에 설명된다. 하나의 예시적인 설계에서, 장치 (예를 들어, 집적 회로, 무선 디바이스, 회로 모듈 등) 는 엔벨로프 (envelope) 증폭기 및 부스트 컨버터를 포함할 수도 있다. 부스트 컨버터는 제 1 서플라이 전압 (예를 들어, 배터리 전압) 을 수신하고 제 1 서플라이 전압보다 더 높은 전압을 갖는 부스팅된 서플라이 전압을 발생시킬 수도 있다. 엔벨로프 증폭기는 엔벨로프 신호 및 부스팅된 서플라이 전압을 수신할 수도 있고, 엔벨로프 신호 및 부스팅된 서플라이 전압에 기초하여 제 2 서플라이 전압을 발생시킬 수도 있다. 장치는 엔벨로프 증폭기로부터의 제 2 서플라이 전압에 기초하여 동작할 수도 있는 전력 증폭기를 더 포함할 수도 있다. 하나의 설계에서, 엔벨로프 증폭기는 제 1 서플라이 전압을 추가로 수신할 수도 있고, 제 1 서플라이 전압이나 또는 부스팅된 서플라이 전압 중 어느 하나에 기초하여 제 2 서플라이 전압을 발생시킬 수도 있다. 예를 들어, 엔벨로프 증폭기는, 엔벨로프 신호가 제 1 임계값을 초과하는 경우, 및/또는 제 1 서플라이 전압이 제 2 임계값보다 낮은 경우에 부스팅된 서플라이 전압에 기초하여, 또는 (ii) 그렇지 않다면 제 1 서플라이 전압에 기초하여 제 2 서플라이 전압을 발생시킬 수도 있다.
다른 예시적인 설계에서, 장치는 스위처, 엔벨로프 증폭기, 및 전력 증폭기를 포함할 수도 있다. 스위처는 제 1 서플라이 전압 (예를 들어, 배터리 전압) 을 수신하고 제 1 서플라이 전류를 제공할 수도 있다. 엔벨로프 증폭기는 엔벨로프 신호를 수신하고 엔벨로프 신호에 기초하여 제 2 서플라이 전류를 제공할 수도 있다. 전력 증폭기는 제 1 서플라이 전류 및 제 2 서플라이 전류를 포함하는 총 (total) 서플라이 전류를 수신할 수도 있다. 제 1 서플라이 전류는 직류 (DC) 및 낮은 주파수 성분들을 포함할 수도 있다. 제 2 서플라이 전류는 더 높은 주파수 성분들을 포함할 수도 있다. 장치는 제 1 서플라이 전압을 수신하고 부스팅된 서플라이 전압을 제공할 수도 있는 부스트 컨버터를 더 포함할 수도 있다. 엔벨로프 증폭기는 그 후 제 1 서플라이 전압이나 또는 부스팅된 서플라이 전압 중 어느 하나에 기초하여 동작할 수도 있다.
또 다른 예시적인 설계에서, 장치는 입력 전류를 감지하고 서플라이 전류를 제공하는 인덕터를 충전 및 방전하기 위한 스위칭 신호를 발생시킬 수도 있는 스위처를 포함할 수도 있다. 스위처는 입력 전류에 오프셋을 부가하여 그 오프셋이 없는 것보다 더 큰 서플라이 전류를 발생시킬 수도 있다. 장치는 상기 설명한 바와 같이 동작할 수도 있는 엔벨로프 증폭기, 부스트 컨버터, 및 전력 증폭기를 더 포함할 수도 있다.
본 개시물의 다양한 양태들 및 특징들이 이하 더 상세히 설명된다.
도 1 은 무선 통신 디바이스의 블록도를 도시한다.
도 2a, 도 2b 및 도 2c 는 각각 배터리 전압, 평균 전력 추적기, 및 엔벨로프 추적기에 기초하여 전력 증폭기를 동작시키는 도면들을 도시한다.
도 3 은 스위처 및 엔벨로프 증폭기의 개략도를 도시한다.
도 4a, 도 4b 및 도 4c 는 스위처 및 엔벨로프 증폭기에 대한 상이한 서플라이 전압들을 위한 PA 서플라이 전류 및 인덕터 전류 대 시간의 플롯들을 도시한다.
도 5 는 전류 감지 경로에서 오프셋을 가진 스위처의 개략도를 도시한다.
도 6 은 부스트 컨버터의 개략도를 도시한다.
단어 "예시적인" 은 여기서 "예, 경우 또는 예시로서 기능하는 것" 을 의미하는데 사용된다. 여기에 "예시적인" 것으로 설명된 임의의 설계가 반드시 다른 설계들에 비해 바람직하거나 또는 이로운 것으로 해석될 필요는 없다.
증폭기 및/또는 다른 회로들을 위해 파워 서플라이를 발생시키기 위한 기법들이 여기에 설명된다. 그 기법들은 전력 증폭기들, 드라이버 증폭기들 등과 같은 다양한 타입들의 증폭기들을 위해 이용될 수도 있다. 그 기법들은 또한 무선 통신 디바이스들, 셀룰러 폰들, 개인 휴대 정보 단말기 (PDA) 들, 핸드헬드 디바이스들, 무선 모뎀들, 랩톱 컴퓨터들, 코드리스 폰들, 블루투스 디바이스들, 소비자 전자 디바이스 (consumer electronic device) 들 등과 같은 다양한 전자 디바이스들을 위해 이용될 수도 있다. 명료함을 위해, 무선 통신 디바이스에서 전력 증폭기를 위해 파워 서플라이를 발생시키기 위한 기법들의 이용이 이하 설명된다.
도 1 은 무선 통신 디바이스 (100) 의 설계의 블록도를 도시한다. 명료함을 위해, 도 1 에는 무선 디바이스 (100) 의 송신기 부분만이 도시되며, 수신기 부분은 도시되지 않는다. 무선 디바이스 (100) 내에서, 데이터 프로세서 (110) 가 송신될 데이터를 수신하고, 그 데이터를 프로세싱 (예를 들어, 인코딩, 인터리빙, 및 심볼 맵핑) 하며, 데이터 심볼들을 제공할 수도 있다. 데이터 프로세서 (110) 는 또한 파일롯을 프로세싱하고 파일롯 심볼들을 제공할 수도 있다. 데이터 프로세서 (110) 는 또한 코드 분할 다중 액세스 (CDMA), 시분할 다중 액세스 (TDMA), 주파수 분할 다중 액세스 (FDMA), 직교 FDMA (OFDMA), 단일-캐리어 FDMA (SC-FDMA), 및/또는 일부 다른 멀티플렉싱 방식을 위해 데이터 심볼들 및 파일롯 심볼들을 프로세싱할 수도 있고 출력 심볼들을 제공할 수도 있다.
변조기 (112) 가 데이터 프로세서 (110) 로부터 출력 심볼들을 수신하고, 직교 변조, 극 변조 (polar modulation), 또는 일부 다른 타입의 변조를 수행하며, 출력 샘플들을 제공할 수도 있다. 변조기 (112) 는 또한 예를 들어, 각각의 출력 샘플의 매그니튜드를 컴퓨팅하고 출력 샘플들 전체에 걸쳐 매그니튜드를 평균화함으로써 출력 샘플들의 엔벨로프를 결정할 수도 있다. 변조기 (112) 는 출력 샘플들의 엔벨로프를 나타내는 엔벨로프 신호를 제공할 수도 있다.
RF 송신기 (120) 는 변조기 (112) 로부터의 출력 샘플들을 프로세싱 (예를 들어, 아날로그로의 컨버팅, 증폭, 필터링, 및 주파수 업컨버팅) 하고 입력 RF 신호 (RFin) 를 제공할 수도 있다. 전력 증폭기 (PA) (130) 는 입력 RF 신호를 증폭하여 원하는 출력 전력 레벨을 획득하고 출력 RF 신호 (RFout) 를 제공할 수도 있으며, 출력 RF 신호 (RFout) 는 안테나를 통해 송신될 수도 있다 (도 1 에는 미도시). RF 송신기 (120) 는 또한 엔벨로프 신호를 발생시키기 위해 변조기 (112) 를 이용하는 대신에, 엔벨로프 신호를 발생시키기 위한 회로들을 포함할 수도 있다.
PA 서플라이 발생기 (150) 가 변조기 (112) 로부터 엔벨로프 신호를 수신할 수도 있고, 전력 증폭기 (130) 를 위해 파워 서플라이 전압 (Vpa) 을 발생시킬 수도 있다. PA 서플라이 발생기 (150) 는 또한 엔벨로프 추적기 (envelope tracker) 로 지칭될 수도 있다. 도 1 에 도시된 설계에서, PA 서플라이 발생기 (150) 는 스위처 (160), 엔벨로프 증폭기 (Env Amp) (170), 부스트 컨버터 (180), 및 인덕터 (162) 를 포함한다. 스위처 (160) 는 또한 스위칭-모드 파워 서플라이 (switching-mode power supply; SMPS) 로 지칭될 수도 있다. 스위처 (160) 는 배터리 전압 (Vbat) 을 수신하고 노드 A 에서의 DC 및 낮은 주파수 성분들을 포함하는 제 1 서플라이 전류 (Iind) 를 제공한다. 인덕터 (162) 는 스위처 (160) 로부터의 전류를 저장하고 저장된 전류를 교번하는 사이클들 시에 노드 A 에 제공한다. 부스트 컨버터 (180) 는 Vbat 전압을 수신하고 Vbat 전압보다 더 높은 부스팅된 서플라이 전압 (Vboost) 을 발생시킨다. 엔벨로프 증폭기 (170) 는 그 신호 입력에서 엔벨로프 신호를 수신하고, 그 2 개의 파워 서플라이 입력들에서 Vbat 전압 및 Vboost 전압을 수신하며, 노드 A 에서의 높은 주파수 성분들을 포함하는 제 2 서플라이 전류 (Ienv) 를 제공한다. 전력 증폭기 (130) 에 제공된 PA 서플라이 전류 (Ipa) 는 스위처 (160) 로부터의 Iind 전류 및 엔벨로프 증폭기 (170) 로부터의 Ienv 전류를 포함한다. 엔벨로프 증폭기 (170) 는 또한 전력 증폭기 (130) 를 위해 노드 A 에서의 적절한 PA 서플라이 전압 (Vpa) 을 제공한다. PA 서플라이 발생기 (150) 내의 다양한 회로들이 이하 더 상세히 설명된다.
제어기 (140) 가 무선 디바이스 (100) 내의 다양한 유닛들의 동작을 제어할 수도 있다. 메모리 (142) 가 제어기 (140) 및/또는 무선 디바이스 (100) 내의 다른 유닛들에 대한 프로그램 코드들 및 데이터를 저장할 수도 있다. 데이터 프로세서 (110), 변조기 (112), 제어기 (140), 및 메모리 (142) 는 하나 이상의 주문형 집적 회로 (ASIC) 들 및/또는 다른 IC들 상에 구현될 수도 있다.
도 1 은 무선 디바이스 (100) 의 일 예시적인 설계를 도시한다. 무선 디바이스 (100) 는 또한 다른 방식들로 구현될 수도 있고 도 1 에 도시된 것들과는 상이한 회로들을 포함할 수도 있다. RF 송신기 (120), 전력 증폭기 (130), 및 PA 서플라이 발생기 (150) 의 전부 또는 일 부분은 하나 이상의 아날로그 집적 회로 (IC) 들, RF IC (RFIC) 들, 혼합-신호 (mixed-signal) IC들 등 상에 구현될 수도 있다.
전력 소비를 감소시키고, 배터리 수명을 연장시키며, 및/또는 다른 이점들을 획득하기 위하여 낮은 배터리 전압으로 무선 디바이스 (100) 를 동작시키는 것이 바람직할 수도 있다. 새로운 배터리 기술은 가까운 장래에 2.5 볼트 (V) 이하까지 내려간 에너지를 제공하는 것이 가능할 수도 있다. 그러나, 전력 증폭기는 그 배터리 전압보다 더 높은 PA 서플라이 전압 (예를 들어, 3.2V) 으로 동작해야 할 수도 있다. 부스트 컨버터가 더 높은 PA 서플라이 전압을 발생시키기 위해 배터리 전압을 부스팅하는데 이용될 수도 있다. 그러나, PA 서플라이 전압을 직접 공급하기 위한 부스트 컨버터의 이용은 비용 및 전력 소비를 증가시킬 수도 있으며, 이들 모두는 바람직하지 않다.
PA 서플라이 발생기 (150) 는 PA 서플라이 전압을 직접 제공하기 위해 부스트 컨버터를 이용하는 단점들을 회피하기 위해 엔벨로프 추적으로 PA 서플라이 전압을 효율적으로 발생시킬 수 있다. 스위처 (160) 는 전력 증폭기 (130) 에 대해 전력의 대부분을 제공할 수도 있고 배터리 전압에 직접 접속될 수도 있다. 부스트 컨버터 (180) 는 단지 엔벨로프 증폭기 (170) 에만 전력을 제공할 수도 있다. PA 서플라이 발생기 (150) 는 전력 증폭기 (130) 에 제공된 RFin 신호의 엔벨로프를 추적하도록 PA 서플라이 전압을 발생시킬 수 있어, 단지 적절한 양의 PA 서플라이 전압만이 전력 증폭기 (130) 에 공급된다.
도 2a 는 전력 증폭기 (210) 를 위해 배터리 전압을 이용하는 도면을 도시한다. (RFin 신호를 뒤따르는) RFout 신호는 시변 (time-varying) 엔벨로프를 갖고 플롯 (250) 에 의해 도시된다. 배터리 전압은 플롯 (260) 에 의해 도시되며, 전력 증폭기 (210) 로부터의 RFout 신호의 클립핑 (clipping) 을 회피하기 위하여 엔벨로프의 가장 큰 진폭보다 더 높다. 배터리 전압과 RFout 신호의 엔벨로프 간의 차이는 출력 로드에 전달되는 대신에 전력 증폭기 (210) 에 의해 소실되는 낭비된 전력을 나타낸다.
도 2b 는 평균 전력 추적기 (average power tracker; APT) (220) 로 전력 증폭기 (210) 를 위해 PA 서플라이 전압 (Vpa) 을 발생시키는 도면을 도시한다. APT (220) 는 각각의 시간 간격에서 RFout 신호의 엔벨로프의 가장 큰 진폭을 나타내는 전력 제어 신호를 수신한다. APT (220) 는 전력 제어 신호에 기초하여 전력 증폭기 (210) 를 위해 PA 서플라이 전압 (플롯 (270) 에 의해 도시됨) 을 발생시킨다. PA 서플라이 전압과 RFout 신호의 엔벨로프 간의 차이는 낭비된 전력을 나타낸다. APT (220) 는 그것이 각각의 시간 간격에서 엔벨로프의 가장 큰 진폭을 추적하도록 PA 서플라이 전압을 발생시킬 수 있기 때문에 낭비된 전력을 감소시킬 수 있다.
도 2c 는 엔벨로프 추적기 (230) 로 전력 증폭기 (210) 를 위해 PA 서플라이 전압을 발생시키는 도면을 도시한다. 엔벨로프 추적기 (230) 는 RFout 신호의 엔벨로프를 나타내는 엔벨로프 신호를 수신하고 엔벨로프 신호에 기초하여 전력 증폭기 (210) 를 위해 PA 서플라이 전압 (플롯 (280) 에 의해 도시됨) 을 발생시킨다. PA 서플라이 전압은 시간의 경과에 따라 RFout 신호의 엔벨로프를 밀접하게 추적한다. 따라서, PA 서플라이 전압과 RFout 신호의 엔벨로프 간의 차이는 작으며, 이는 덜 낭비된 전력을 초래한다. 전력 증폭기는 PA 효율을 최대화하기 위하여 모든 엔벨로프 진폭들에 대해 포화 상태에서 동작된다.
도 1 의 PA 서플라이 발생기 (150) 는 높은 효율을 가진 도 2c 의 엔벨로프 추적기 (230) 를 구현할 수 있다. 이것은 (i) 스위치 모드 파워 서플라이로 제 1 서플라이 전류 (Iind) 를 발생시키기 위한 효율적인 스위처 (160) 와 (ii) 제 2 서플라이 전류 (Ienv) 를 발생시키기 위한 선형 엔벨로프 증폭기 (170) 의 조합에 의해 달성된다.
도 3 은 도 1 에서의 각각 스위처 (160) 및 엔벨로프 증폭기 (170) 의 하나의 설계인 스위처 (160a) 및 엔벨로프 증폭기 (170a) 의 개략도를 도시한다. 엔벨로프 증폭기 (170a) 내에서, 연산 증폭기 (op-amp) (310) 가 엔벨로프 신호를 수신하는 비-반전 입력, 엔벨로프 증폭기 (170a) 의 출력 (노드 E) 에 커플링된 반전 입력, 및 클래스 AB 드라이버 (312) 의 입력에 커플된 출력을 갖는다. 드라이버 (312) 는 P-채널 금속 산화물 반도체 (PMOS) 트랜지스터 (314) 의 게이트에 커플링된 제 1 출력 (R1) 및 N-채널 MOS (NMOS) 트랜지스터 (316) 의 게이트에 커플링된 제 2 출력 (R2) 을 갖는다. NMOS 트랜지스터 (316) 는 노드 E 에 커플링된 드레인 및 회로 그라운드에 커플링된 소스를 갖는다. PMOS 트랜지스터 (314) 는 노드 E 에 커플링된 드레인 및 PMOS 트랜지스터들 (318 및 320) 의 드레인들에 커플링된 소스를 갖는다. PMOS 트랜지스터 (318) 는 C1 제어 신호를 수신하는 게이트 및 Vboost 전압을 수신하는 소스를 갖는다. PMOS 트랜지스터 (320) 는 C2 제어 신호를 수신하는 게이트 및 Vbat 전압을 수신하는 소스를 갖는다.
전류 센서 (164) 가 노드 E 와 노드 A 사이에 커플링되고 엔벨로프 증폭기 (170a) 에 의해 제공된 Ienv 전류를 감지한다. 센서 (164) 는 Ienv 전류의 대부분을 노드 A 에 전달하고 작은 감지된 전류 (Isen) 를 스위처 (160a) 에 제공한다. Isen 전류는 엔벨로프 증폭기 (170a) 로부터의 Ienv 전류의 소부분 (small fraction) 이다.
스위처 (160a) 내에서, 전류 감지 증폭기 (330) 가 전류 센서 (164) 에 커플링된 입력 및 스위처 드라이버 (332) 의 입력에 커플링된 출력을 갖는다. 드라이버 (332) 는 PMOS 트랜지스터 (334) 의 게이트에 커플링된 제 1 출력 (S1) 및 NMOS 트랜지스터 (336) 의 게이트에 커플링된 제 2 출력 (S2) 을 갖는다. NMOS 트랜지스터 (336) 는 스위처 (160a) 의 출력 (노드 B 임) 에 커플링된 드레인 및 회로 그라운드에 커플링된 소스를 갖는다. PMOS 트랜지스터 (334) 는 노드 B 에 커플링된 드레인 및 Vbat 전압을 수신하는 소스를 갖는다. 인덕터 (162) 는 노드 A 와 노드 B 사이에 커플링된다.
스위처 (160a) 는 다음과 같이 동작한다. 스위처 (160a) 는, 전류 센서 (164) 가 엔벨로프 증폭기 (170a) 로부터 높은 출력 전류를 감지하고 낮은 감지된 전압을 드라이버 (332) 에 제공할 때 온 (On) 상태에 있다. 드라이버 (332) 는 그 후 낮은 전압을 PMOS 트래지스터 (334) 의 게이트에 제공하고 낮은 전압을 NMOS 트랜지스터 (336) 의 게이트에 제공한다. PMOS 트랜지스터 (334) 는 턴 온되고 Vbat 전압을 인덕터 (162) 에 커플링하며, 인덕터 (162) 는 Vbat 전압으로부터의 에너지를 저장한다. 인덕터 (162) 를 통과한 전류는 온 상태 동안 상승하며, 그 상승률은 (i) Vbat 전압과 노드 A 에서의 Vpa 전압 간의 차이 및 (ii) 인덕터 (162) 의 인덕턴스에 의존한다. 반대로, 스위처 (160a) 는, 전류 센서 (164) 가 엔벨로프 증폭기 (170a) 로부터 낮은 출력 전류를 감지하고 높은 감지된 전압을 드라이버 (332) 에 제공할 때 오프 (Off) 상태에 있다. 드라이버 (332) 는 그 후 높은 전압을 PMOS 트랜지스터 (334) 의 게이트에 제공하고 높은 전압을 NMOS 트랜지스터 (336) 의 게이트에 제공한다. NMOS 트랜지스터 (336) 는 턴 온되고, 인덕터 (162) 는 노드 A 와 회로 그라운드 사이에 커플링된다. 인덕터 (162) 를 통과한 전류는 오프 상태 동안 하락하고, 그 하락률은 노드 A 에서의 Vpa 전압 및 인덕터 (162) 의 인덕턴스에 의존한다. Vbat 전압은 그 후 온 상태 동안 전류를 인덕터 (162) 를 통해 전력 증폭기 (130) 에 제공하고, 인덕터 (120) 는 오프 상태 동안 그 저장된 에너지를 전력 증폭기 (130) 에 제공한다.
하나의 설계에서, 엔벨로프 증폭기 (170a) 는 단지 필요할 때만 Vboost 전압에 기초하여 동작하고, 나머지 시간에는 Vbat 전압에 기초하여 동작하여 효율을 개선시킨다. 예를 들어, 엔벨로프 증폭기 (170a) 는 Vbat 전압에 기초하여 전력의 대략 85% 를 제공하고 Vboost 전압에 기초하여 단지 전력의 대략 15% 만을 제공할 수도 있다. RFout 신호에 대한 큰 엔벨로프로 인해 전력 증폭기 (130) 가 높은 Vpa 전압을 필요로 하는 경우, C1 제어 신호는 로직에서 낮고, C2 제어 신호는 로직에서 높다. 이 경우에, 부스트 컨버터 (180) 가 인에이블되고 Vboost 전압을 발생시키고, PMOS 트랜지스터 (318) 가 턴 온되고 Vboost 전압을 PMOS 트랜지스터 (314) 의 소스에 제공하며, PMOS 트랜지스터 (320) 가 턴 오프된다. 반대로, 전력 증폭기 (130) 가 높은 Vpa 전압을 필요로 하지 않는 경우, C1 제어 신호는 로직에서 높고, C2 제어 신호는 로직에서 낮다. 이 경우, 부스트 컨버터 (180) 가 디스에이블되고, PMOS 트랜지스터 (318) 가 턴 오프되며, PMOS 트랜지스터 (320) 가 턴 온되고 Vbat 전압을 PMOS 트랜지스터 (314) 의 소스에 제공한다.
엔벨로프 증폭기 (170a) 는 다음과 같이 동작한다. 엔벨로프 신호가 증가하는 경우, NMOS 트랜지스터 (316) 가 거의 턴 오프되고, 엔벨로프 증폭기 (170a) 의 출력이 증가할 때까지 op-amp (310) 의 출력은 증가하고, 드라이버 (312) 의 R1 출력은 감소하며, 드라이버 (312) 의 R2 출력은 감소한다. 엔벨로프 신호가 감소하는 경우에는 그 역에 해당한다. 엔벨로프 증폭기 (170a) 의 출력으로부터 op-amp (310) 의 반전 입력으로의 네거티브 피드백은 단위 이득 (unity gain) 을 갖는 엔벨로프 증폭기 (170a) 를 초래한다. 따라서, 엔벨로프 증폭기 (170a) 의 출력은 엔벨로프 신호를 뒤따르며, Vpa 전압은 엔벨로프 신호와 대략 동일하다. 드라이버 (312) 는 효율을 개선시키기 위해 클래스 AB 증폭기로 구현될 수도 있어, 트랜지스터들 (314 및 316) 의 바이어스 전류가 매우 낮지만 큰 출력 전류가 공급될 수 있다.
제어 신호 발생기 (190) 는 엔벨로프 신호 및 Vbat 전압을 수신하고 C1 제어 신호 및 C2 제어 신호를 발생시킨다. C1 제어 신호는 C2 제어 신호에 대해 상보적이다. 하나의 설계에서, 발생기 (190) 는 엔벨로프 신호의 매그니튜드가 제 1 임계값을 초과할 때 엔벨로프 증폭기 (170) 에 대한 Vboost 전압을 선택하기 위해 C1 제어 신호 및 C2 제어 신호를 발생시킨다. 제 1 임계값은 고정된 임계값일 수도 있고, 또는 Vbat 전압에 기초하여 결정될 수도 있다. 다른 설계에서, 발생기 (190) 는 엔벨로프 신호의 매그니튜드가 제 1 임계값을 초과하고 Vbat 전압이 제 2 임계값보다 낮을 때 엔벨로프 증폭기 (170) 에 대한 Vboost 전압을 선택하기 위해 C1 제어 신호 및 C2 제어 신호를 발생시킨다. 발생기 (190) 는 또한 다른 신호들, 다른 전압들, 및/또는 다른 기준에 기초하여 C1 제어 신호 및 C2 제어 신호를 발생시킬 수도 있다.
도 3 은 도 1 의 스위처 (160) 및 엔벨로프 증폭기 (170) 의 일 예시적인 설계를 도시한다. 스위처 (160) 및 엔벨로프 증폭기 (170) 는 또한 다른 방식들로 구현될 수도 있다. 예를 들어, 엔벨로프 증폭기 (170) 는 2001년 10월 9일자로 이슈된 발명의 명칭이 "Apparatus and Method for Efficiently Amplifying Wideband Envelope Signals" 인 미국 특허 제6,300,826호에 기재되어 있는 바와 같이 구현될 수도 있다.
스위처 (160a) 는 고효율을 갖고 전력 증폭기 (130) 를 위해 대부분의 서플라이 전류를 전달한다. 엔벨로프 증폭기 (170a) 는 선형 스테이지로서 동작하고 비교적 높은 대역폭 (예를 들어, MHz 범위) 을 갖는다. 스위처 (160a) 는 엔벨로프 증폭기 (170a) 로부터의 출력 전류를 감소시키도록 동작하며, 이는 전체 효율을 개선시킨다.
낮은 배터리 전압 (예를 들어, 2.5V 보다 낮음) 으로 무선 디바이스 (100) 의 동작을 지원하는 것이 바람직할 수도 있다. 이것은 Vbat 전압에 기초하여 스위처 (160) 를 동작시키고 더 높은 Vboost 전압에 기초하여 엔벨로프 증폭기 (170) 를 동작시킴으로써 달성될 수도 있다. 그러나, 효율은 도 3 에 도시하고 상기 설명한 바와 같이, 큰 진폭 엔벨로프를 필요로 할 때에만 Vboost 전압에 기초하여, 그리고 나머지 시간에는 Vbat 전압에 기초하여 엔벨로프 증폭기 (170) 를 동작시킴으로써 개선될 수도 있다.
도 4a 는 스위처 (160a) 가 3.7V 의 서플라이 전압 (Vsw) 을 갖고 엔벨로프 증폭기 (170a) 가 3.7V 의 서플라이 전압 (Venv) 을 갖는 경우에 PA 서플라이 전류 (Ipa) 및 인덕터 (162) 로부터의 인덕터 전류 (Iind) 대 시간의 일 예의 플롯들을 도시한다. Iind 전류는 인덕터 (162) 를 통과한 전류이고 플롯 (410) 에 의해 도시된다. Ipa 전류는 전력 증폭기 (130) 에 제공된 전류이고 플롯 (420) 에 의해 도시된다. Ipa 전류는 Iind 전류는 물론 엔벨로프 증폭기 (170a) 로부터의 Ienv 전류를 포함한다. 엔벨로프 증폭기 (170a) 는 Ipa 전류가 Iind 전류보다 더 높을 때마다 출력 전류를 제공한다. 스위처 (160a) 및 엔벨로프 증폭기 (170a) 의 효율은 하나의 예시적인 설계에서 대략 80% 이다.
도 4b 는 스위처 (160a) 가 2.3V 의 서플라이 전압을 갖고 엔벨로프 증폭기 (170a) 가 3.7V 의 서플라이 전압을 갖는 경우에 PA 서플라이 전류 (Ipa) 및 인덕터 전류 (Iind) 대 시간의 플롯들을 도시한다. Iind 전류는 플롯 (412) 에 의해 도시되고, Ipa 전류는 플롯 (420) 에 의해 도시된다. 스위처 (160a) 의 서플라이 전압이 2.3V 로 감소되는 경우, 인덕터 (162) 는 더 느리게 충전하며, 이는 스위처 (160a) 의 서플라이 전압이 도 4a 에서 3.7V 에 있는 경우와 비교하여 더 낮은 평균 Iind 전류를 초래한다. 더 낮은 Iind 전류는 엔벨로프 증폭기 (170a) 로 하여금 Ipa 전류를 좀 더 제공하게 한다. 이것은 엔벨로프 증폭기 (170a) 가 스위처 (160a) 보다 덜 효율적이기 때문에 하나의 예시적인 설계에서 전체 효율을 대략 65% 로 감소시킨다. 효율의 하락은 스위처로부터의 Iind 전류를 증가시킴으로써 개선될 수도 있다.
도 5 는 도 1 의 스위처 (160) 의 다른 설계인 스위처 (160b) 의 개략도를 도시한다. 스위처 (160b) 는 도 3 의 스위처 (160a) 에 대해 상기 설명한 바와 같이 커플링되는, 전류 감지 증폭기 (330), 드라이버 (332), 및 MOS 트랜지스터들 (334 및 336) 을 포함한다. 스위처 (160b) 는 전류 센서 (164) 에 커플링된 제 1 입력, 오프셋 (예를 들어, 오프셋 전류) 를 수신하는 제 2 입력, 및 전류 감지 증폭기 (330) 의 입력에 커플링된 출력을 갖는 전류 합산기 (328) 를 더 포함한다. 합산기 (328) 는 합산 회로 (예를 들어, 증폭기), 합산 노드 등으로 구현될 수도 있다.
스위처 (160b) 는 다음과 같이 동작한다. 합산기 (328) 는 전류 센서 (164) 로부터 Isen 전류를 수신하고, 오프셋 전류를 부가하며, 오프셋 전류만큼 Isen 전류보다 더 낮은 합산된 전류를 제공한다. 스위처 (160b) 내의 나머지 회로들은 도 3 의 스위처 (160a) 에 대해 상기 설명한 바와 같이 동작한다. 합산기 (328) 는 전류 감지 증폭기 (330) 에 제공된 Isen 전류를 의도적으로 감소시켜, 스위처 (160) 가 더 긴 시간 주기 동안 턴 온되고 전력 증폭기 (130) 에 제공된 Ipa 전류의 일부인 더 큰 Iind 전류를 제공할 수 있다. 합산기 (328) 에 제공된 오프셋은, 도 3 의 스위처 (160a) 에 의해 제공된 Iind 전류에 대하여 Iind 전류가 스위처 (160b) 에 의해 증가되는 양을 결정한다.
일반적으로, 오프셋이 없는 것보다 점차로 더 큰 인덕터 전류를 발생시키기 위해 점차로 더 큰 오프셋이 이용될 수도 있다. 하나의 설계에서, 오프셋은 양호한 성능, 예를 들어, 양호한 효율을 제공하기 위해 선택된 고정된 값일 수도 있다. 다른 설계에서, 오프셋은 배터리 전압에 기초하여 결정될 수도 있다. 예를 들어, 점차로 더 큰 오프셋은 점차로 더 낮은 배터리 전압을 위해 이용될 수도 있다. 오프셋은 또한 엔벨로프 신호 및/또는 다른 정보에 기초하여 결정될 수도 있다.
인덕터 전류를 증가시키기 위한 오프셋이 도 5 에 도시한 바와 같이 합산기 (328) 를 통해 부가될 수도 있다. 오프셋은 또한 임의의 적합한 메커니즘을 통해 전류 감지 증폭기로부터의 출력 신호의 펄스 폭을 증가시킴으로써 부가될 수도 있다.
도 4c 는 도 5 의 스위처 (160b) 가 2.3V 의 서플라이 전압을 갖고 엔벨로프 증폭기 (170a) 가 3.7V 의 서플라이 전압을 갖는 경우에 PA 서플라이 전류 (Ipa) 및 인덕터 전류 (Iind) 대 시간의 플롯들을 도시한다. Iind 전류는 플롯 (414) 에 의해 도시되며, Ipa 전류는 플롯 (420) 에 의해 도시된다. 스위처 (160b) 의 서플라이 전압이 2.3V 로 감소되는 경우, 인덕터 (162) 는 더 느리게 충전하며, 이는 도 4b 에 도시한 바와 같이 더 낮은 Iind 전류를 초래한다. 도 5 의 합산기 (328) 에 의해 부가된 오프셋은 전류 감지 증폭기 (330) 에 제공된 감지된 전류를 감소시키며, 스위처 (160b) 가 더 길게 턴 온되게 한다. 따라서, 도 5 의 오프셋을 가진 스위처 (160b) 는 도 3 의 오프셋이 없는 스위처 (160a) 보다 더 높은 Iind 전류를 제공할 수 있다. 스위처 (160b) 및 엔벨로프 증폭기 (170a) 에 대한 전체 효율은 하나의 예시적인 설계에서 대략 78% 로 개선된다.
도 6 은 도 1, 도 3 및 도 5 의 부스트 컨버터 (180) 의 설계의 개략도를 도시한다. 부스트 컨버터 (180) 내에서, 인덕터 (612) 가 Vbat 전압을 수신하는 일단 및 노드 D 에 커플링된 타단을 갖는다. NMOS 트랜지스터 (614) 는 회로 그라운드에 커플링된 소스, Cb 제어 신호를 수신하는 게이트, 및 노드 D 에 커플링된 드레인을 갖는다. 다이오드 (616) 는 노드 D 에 커플링된 애노드 및 부스트 컨버터 (180) 의 출력에 커플링된 캐소드를 갖는다. 커패시터 (618) 는 회로 그라운드에 커플링된 일단 및 부스트 컨버터 (180) 의 출력에 커플링된 타단을 갖는다.
부스트 컨버터 (180) 는 다음과 같이 동작한다. 온 상태에서, NMOS 트랜지스터 (614) 는 클로즈되고, 인덕터 (612) 는 Vbat 전압과 회로 그라운드 사이에 커플링되며, 인덕터 (612) 를 경유한 전류는 증가한다. 오프 상태에서, NMOS 트랜지스터 (614) 는 오픈되고, 인덕터 (612) 로부터의 전류는 다이오드 (616) 를 통하여 커패시터 (618) 및 부스트 컨버터 (180) 의 출력에서의 로드 (도 6 에는 미도시) 로 흐른다. Vboost 전압은 다음과 같이 표현될 수도 있으며 :
Figure 112014006617054-pct00001
여기서 Duty_Cycle 은 NMOS 트랜지스터 (614) 가 턴 온되는 듀티 사이클이다. 듀티 사이클은 원하는 Vboost 전압을 획득하고 부스트 컨버터 (180) 의 적절한 동작을 보장하기 위해 선택될 수도 있다.
여기에 설명된 기법들은 엔벨로프 추적기가 더 낮은 배터리 전압 (예를 들어, 2.5V 이하) 에서 동작할 수 있게 한다. 엔벨로프 추적기는 도 1 에 도시된 설계의 경우 스위처 (160) 및 엔벨로프 증폭기 (170) 를 포함한다. 더 낮은 배터리 전압으로 동작을 지원하는 하나의 설계에서, 도 3 에 도시한 바와 같이, 스위처 (160) 는 Vbat 전압에 접속되고 엔벨로프 증폭기 (170) 는 Vbat 전압이나 또는 Vboost 전압 중 어느 하나에 접속된다. 스위처 (160) 는 대부분의 시간에 전력을 제공하고, 엔벨로프 증폭기 (170) 는 RFout 신호의 엔벨로프의 피크들 동안 전력을 제공한다. 엔벨로프 추적기의 전체 효율은 단지 엔벨로프 증폭기 (170) 가 전력을 제공하는 시간 동안에만 부스트 컨버터 (180) 의 효율 (대략 85% 일 수도 있다) 만큼 감소된다.
더 낮은 배터리 전압으로 동작을 지원하는 다른 설계에서, 전체 엔벨로프 추적기는 부스트 컨버터 (180) 로부터의 Vboost 전압에 기초하여 동작된다. 이 설계에서, 부스트 컨버터 (180) 는 전력 증폭기 (130) 에 의해 요구되는 높은 전류 (1 암페어보다 더 클 수도 있다) 를 제공하고, 효율은 부스트 컨버터 (180) 의 효율 (대략 85% 일 수도 있다) 만큼 감소된다.
더 낮은 배터리 전압으로 동작을 지원하는 또 다른 설계에서, 전계 효과 트랜지스터 (field effect transistor; FET) 스위치는, 엔벨로프 추적기를, (i) Vbat 전압이 Vthresh 보다 더 클 때 Vbat 전압에 접속하거나, 또는 (ii) Vbat 전압이 Vthresh 전압보다 더 작을 때 Vboost 전압에 접속하는데 이용된다. 효율은 그 후 FET 스위치의 손실들만큼 감소될 것이다. 그러나, 더 나은 효율이 더 낮은 입력 전압으로 인해 엔벨로프 증폭기 (170) 를 위해 획득될 수도 있다.
하나의 예시적인 설계에서, 장치 (예를 들어, 집적 회로, 무선 디바이스, 회로 모듈 등) 는 예를 들어, 도 1 및 도 3 에 도시한 바와 같이, 엔벨로프 증폭기 및 부스트 컨버터를 포함할 수도 있다. 부스트 컨버터는 제 1 서플라이 전압을 수신하고 제 1 서플라이 전압보다 더 높은 전압을 갖는 부스팅된 서플라이 전압을 발생시킬 수도 있다. 제 1 서플라이 전압은 배터리 전압, 라인-인 (line-in) 전압, 또는 장치에 이용가능한 일부 다른 전압일 수도 있다. 엔벨로프 증폭기는 엔벨로프 신호 및 부스팅된 서프라이 전압을 수신할 수도 있고, 엔벨로프 신호 및 부스팅된 서플라이 전압에 기초하여 제 2 서플라이 전압 (예를 들어, 도 3 의 Vpa 전압) 을 발생시킬 수도 있다. 장치는 엔벨로프 증폭기로부터의 제 2 서플라이 전압에 기초하여 동작할 수도 있는 전력 증폭기를 더 포함할 수도 있다. 전력 증폭기는 입력 RF 신호를 수신 및 증폭하고 출력 RF 신호를 제공할 수도 있다.
하나의 설계에서, 엔벨로프 증폭기는 제 1 서플라이 전압을 추가로 수신할 수도 있고, 제 1 서플라이 전압 또는 부스팅된 서플라이 전압에 기초하여 제 2 서플라이 전압을 발생시킬 수도 있다. 예를 들어, 엔벨로프 증폭기는 (i) 엔벨로프 신호가 제 1 임계값을 초과한다면, 또는 제 1 서플라이 전압이 제 2 임계값보다 낮다면, 또는 양자의 경우에 부스팅된 서플라이 전압에 기초하여, 또는 (ii) 그렇지 않다면 제 1 서플라이 전압에 기초하여 제 2 서플라이 전압을 발생시킬 수도 있다.
하나의 설계에서, 엔벨로프 증폭기는 op-amp, 드라이버, PMOS 트랜지스터, 및 NMOS 트랜지스터, 예를 들어, 도 3 의 op-amp (310), 드라이버 (312), PMOS 트랜지스터 (314), 및 NMOS 트랜지스터 (316) 를 포함할 수도 있다. op-amp 는 엔벨로프 신호를 수신하고 증폭된 신호를 제공할 수도 있다. 드라이버는 증폭된 신호를 수신하고 제 1 제어 신호 (R1) 및 제 2 제어 신호 (R2) 를 제공할 수도 있다. PMOS 트랜지스터는 제 1 제어 신호를 수신하는 게이트, 부스팅된 서플라이 전압 또는 제 1 서플라이 전압을 수신하는 소스, 및 제 2 서플라이 전압을 제공하는 드레인을 가질 수도 있다. NMOS 트랜지스터는 제 2 제어 신호를 수신하는 게이트, 제 2 서플라이 전압을 제공하는 드레인, 및 회로 그라운드에 커플링된 소스를 가질 수도 있다. 엔벨로프 증폭기는 제 2 및 제 3 PMOS 트랜지스터들 (예를 들어, PMOS 트랜지스터들 (318 및 320)) 을 더 포함할 수도 있다. 제 2 PMOS 트랜지스터는 제 3 제어 신호 (C1) 를 수신하는 게이트, 부스팅된 서플라이 전압을 수신하는 소스, 및 PMOS 트랜지스터의 소스에 커플링된 드레인을 가질 수도 있다. 제 3 PMOS 트랜지스터는 제 4 제어 신호 (C2) 를 수신하는 게이트, 제 1 서플라이 전압을 수신하는 소스, 및 PMOS 트랜지스터의 소스에 커플링된 드레인을 가질 수도 있다.
다른 예시적인 설계에서, 장치 (예를 들어, 집적 회로, 무선 디바이스, 회로 모듈 등) 는 예를 들어, 도 1 및 도 3 에 도시한 바와 같이, 스위처, 엔벨로프 증폭기, 및 전력 증폭기를 포함할 수도 있다. 스위처는 제 1 서플라이 전압 (예를 들어, 배터리 전압) 을 수신하고 제 1 서플라이 전류 (예를 들어, 도 3 의 Iind 전류) 를 제공할 수도 있다. 엔벨로프 증폭기는 엔벨로프 신호를 수신하고 엔벨로프 신호에 기초하여 제 2 서플라이 전류 (예를 들어, Ienv 전류) 를 제공할 수도 있다. 전력 증폭기는 제 1 서플라이 전류 및 제 2 서플라이 전류를 포함하는 총 서플라이 전류 (예를 들어, Ipa 전류) 를 수신할 수도 있다. 제 1 서플라이 전류는 DC 및 낮은 주파수 성분들을 포함할 수도 있다. 제 2 서플라이 전류는 더 높은 주파수 성분들을 포함할 수도 있다. 장치는 부스트 컨버터를 더 포함할 수도 있으며, 부스트 컨버터는 제 1 서플라이 전압을 수신하고 제 1 서플라이 전압보다 더 높은 전압을 갖는 부스팅된 서플라이 전압을 제공할 수도 있다. 엔벨로프 증폭기는 제 1 서플라이 전압 또는 부스팅된 서플라이 전압에 기초하여 동작할 수도 있다.
하나의 설계에서, 스위처는 전류 감지 증폭기, 드라이버, PMOS 트랜지스터, 및 NMOS 트랜지스터, 예를 들어, 도 3 의 전류 감지 증폭기 (330), 드라이버 (332), PMOS 트랜지스터 (334), 및 NMOS 트랜지스터 (336) 를 포함할 수도 있다. 전류 감지 증폭기는 제 1 서플라이 전류, 또는 제 2 서플라이 전류 (예를 들어, 도 3 에 도시한 바와 같음), 또는 총 서플라이 전류를 감지할 수도 있고 감지된 신호를 제공할 수도 있다. 드라이버는 감지된 신호를 수신하고 제 1 제어 신호 (S1) 및 제 2 제어 신호 (S2) 를 제공할 수도 있다. PMOS 트랜지스터는 제 1 제어 신호를 수신하는 게이트, 제 1 서플라이 전압을 수신하는 소스, 및 제 1 서플라이 전류를 제공하는 인덕터를 위한 스위칭 신호를 제공하는 드레인을 가질 수도 있다. NMOS 트랜지스터는 제 2 제어 신호를 수신하는 게이트, 스위칭 신호를 제공하는 드레인, 및 회로 그라운드에 커플링된 소스를 가질 수도 있다. 인덕터 (예를 들어, 인덕터 (162)) 는 PMOS 트랜지스터 및 NMOS 트랜지스터의 드레인들에 커플링될 수도 있고, 일단에서 스위칭 신호를 수신할 수도 있으며, 타단에서 제 1 서플라이 전류를 제공할 수도 있다.
또 다른 예시적인 설계에서, 장치 (예를 들어, 집적 회로, 무선 디바이스, 회로 모듈 등) 는 스위처, 예를 들어, 도 5 의 스위처 (160b) 를 포함할 수도 있다. 스위처는 입력 전류 (예를 들어, 도 5 의 Ienv 전류) 를 감지하고 공급 전류 (예를 들어, Iind 전류) 를 제공하는 인덕터를 충전 및 방전하기 위한 스위칭 신호를 발생시킬 수도 있다. 스위처는 입력 전류에 오프셋을 부가하여 그 오프셋이 없는 것보다 더 큰 서플라이 전류를 발생시킬 수도 있다. 스위처는 제 1 서플라이 전압 (예를 들어, 배터리 전압) 에 기초하여 동작할 수도 있다. 하나의 설계에서, 오프셋은 제 1 서플라이 전압에 기초하여 결정될 수도 있다. 예를 들어, 더 큰 오프셋은 더 작은 제 1 서플라이 전압을 위해 이용될 수도 있고, 그 역 또한 마찬가지이다.
하나의 설계에서, 스위처는 합산기, 전류 감지 증폭기, 및 드라이버, 예를 들어, 도 5 의 합산기 (328), 전류 감지 증폭기 (330), 및 드라이버 (332) 를 포함할 수도 있다. 합산기는 입력 전류와 오프셋 전류를 합산하고 합산된 전류를 제공할 수도 있다. 전류 감지 증폭기는 합산된 전류를 수신하고 감지된 신호를 제공할 수도 있다. 드라이버는 감지된 신호를 수신하고 스위칭 신호를 발생시키는데 이용되는 적어도 하나의 제어 신호를 제공할 수도 있다. 하나의 설계에서, 적어도 하나의 제어 신호는 제 1 제어 신호 (S1) 및 제 2 제어 신호 (S2) 를 포함할 수도 있고, 스위처는 PMOS 트래지스터 및 NMOS 트랜지스터, 예를 들어, 도 5 의 PMOS 트랜지스터 (334) 및 NMOS 트랜지스터 (336) 를 더 포함할 수도 있다. PMOS 트랜지스터는 제 1 제어 신호를 수신하는 게이트, 제 1 서플라이 전압을 수신하는 소스, 및 스위칭 신호를 제공하는 드레인을 가질 수도 있다. NMOS 트랜지스터는 제 2 제어 신호를 수신하는 게이트, 스위칭 신호를 제공하는 드레인, 및 회로 그라운드에 커플링된 소스를 가질 수도 있다.
하나의 설계에서, 장치는 엔벨로프 증폭기, 부스트 컨버터, 및 전력 증폭기를 더 포함할 수도 있다. 엔벨로프 증폭기는 엔벨로프 신호를 수신하고 엔벨로프 신호에 기초하여 제 2 서플라이 전류 (예를 들어, 도 5 의 Ienv 전류) 를 제공할 수도 있다. 부스트 컨버터는 제 1 서플라이 전압을 수신하고 부스팅된 서플라이 전압을 제공할 수도 있다. 엔벨로프 증폭기는 제 1 서플라이 전압 또는 부스팅된 서플라이 전압에 기초하여 동작할 수도 있다. 전력 증폭기는 스위처로부터의 서플라이 전류 및 엔벨로프 증폭기로부터의 제 2 서플라이 전류를 포함하는 총 서플라이 전류 (예를 들어, Ipa 전류) 를 수신할 수도 있다.
여기에 설명된 회로들 (예를 들어, 엔벨로프 증폭기, 스위처, 부스트 컨버터 등) 은 IC, 아날로그 IC, RF IC (RFIC), 혼합-신호 IC, ASIC, 인쇄 회로 기판 (PCB), 전자 디바이스 등 상에 구현될 수도 있다. 회로들은 상보적 금속 산화물 반도체 (CMOS), NMOS, PMOS, 바이폴라 정션 트랜지스터 (BJT), 바이폴라-CMOS (BiCMOS), 실리콘 게르마늄 (SiGe), 갈륨 비소 (GaAs) 등과 같은 다양한 IC 프로세스 기술들로 제작될 수도 있다.
여기에 설명된 회로들 중 임의의 회로를 구현하는 장치는 스탠드 얼론 디바이스일 수도 있고, 또는 더 큰 디바이스의 일부일 수도 있다. 디바이스는 (i) 스탠드 얼론 IC, (ii) 데이터 및/또는 명령들을 저장하기 위한 메모리 IC들을 포함할 수도 있는 하나 이상의 IC들의 세트, (iii) RF 수신기 (RFR) 또는 RF 송신기/수신기 (RTR) 와 같은 RFIC, (iv) 이동국 모뎀 (MSM) 과 같은 ASIC, (v) 다른 디바이스들 내에 임베딩될 수도 있는 모듈, (vi) 수신기, 셀룰러 폰, 무선 디바이스, 핸드셋, 또는 모바일 유닛, (vii) 등등일 수도 있다.
본 개시물의 사전 설명은 당업자가 본 개시물을 실시 또는 이용할 수 있게 하기 위해 제공된다. 본 개시물에 대한 다양한 변경들은 당업자에게 쉽게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 개시물의 범위로부터 벗어남 없이 다른 변화들에 적용될 수도 있다. 따라서, 본 개시물은 여기에 설명된 예들 및 설계들에 제한되는 것으로 의도되지 않고 여기에 개시된 원리들 및 신규한 특징들에 부합하는 최광의 범위를 따르게 될 것이다.

Claims (26)

  1. 제 1 서플라이 전압을 수신하고 상기 제 1 서플라이 전압보다 더 높은 전압을 갖는 부스팅된 서플라이 전압을 발생시키도록 동작하는 부스트 컨버터; 및
    엔벨로프 신호 및 상기 부스팅된 서플라이 전압을 수신하고 상기 엔벨로프 신호 및 상기 부스팅된 서플라이 전압에 기초하여 제 2 서플라이 전압을 발생시키도록 동작하는 엔벨로프 증폭기를 포함하되,
    상기 엔벨로프 증폭기는 상기 제 1 서플라이 전압을 추가로 수신하고 상기 제 1 서플라이 전압 또는 상기 부스팅된 서플라이 전압에 기초하여 상기 제 2 서플라이 전압을 발생시키도록 동작하고,
    상기 엔벨로프 증폭기는,
    상기 엔벨로프 신호를 수신하고 증폭된 신호를 제공하도록 동작하는 연산 증폭기 (op-amp),
    상기 증폭된 신호를 수신하고 제 1 제어 신호 및 제 2 제어 신호를 제공하도록 동작하는 드라이버,
    상기 제 1 제어 신호를 수신하는 게이트, 상기 부스팅된 서플라이 전압 또는 상기 제 1 서플라이 전압을 수신하는 소스, 및 상기 제 2 서플라이 전압을 제공하는 드레인을 갖는 P-채널 금속 산화물 반도체 (PMOS) 트랜지스터, 및
    상기 제 2 제어 신호를 수신하는 게이트, 상기 제 2 서플라이 전압을 제공하는 드레인, 및 회로 그라운드에 커플링된 소스를 갖는 N-채널 금속 산화물 반도체 (NMOS) 트랜지스터를 포함하는, 장치.
  2. 삭제
  3. 제 1 항에 있어서,
    상기 엔벨로프 증폭기는, 상기 엔벨로프 신호가 제 1 임계값을 초과하는 경우, 또는 상기 제 1 서플라이 전압이 제 2 임계값보다 낮은 경우, 또는 양자의 경우에 상기 부스팅된 서플라이 전압에 기초하여 상기 제 2 서플라이 전압을 발생시키도록 동작하는, 장치.
  4. 삭제
  5. 제 1 항에 있어서,
    상기 엔벨로프 증폭기는,
    제 3 제어 신호를 수신하는 게이트, 상기 부스팅된 서플라이 전압을 수신하는 소스, 및 상기 PMOS 트랜지스터의 상기 소스에 커플링된 드레인을 갖는 제 2 PMOS 트랜지스터, 및
    제 4 제어 신호를 수신하는 게이트, 상기 제 1 서플라이 전압을 수신하는 소스, 및 상기 PMOS 트랜지스터의 상기 소스에 커플링된 드레인을 갖는 제 3 PMOS 트랜지스터를 더 포함하는, 장치.
  6. 제 1 항에 있어서,
    상기 엔벨로프 증폭기로부터 상기 제 2 서플라이 전압을 수신하고, 입력 무선 주파수 (RF) 신호를 수신 및 증폭하고 출력 RF 신호를 제공하도록 동작하는 전력 증폭기를 더 포함하는, 장치.
  7. 제 1 항에 있어서,
    상기 제 1 서플라이 전압은 상기 장치를 위한 배터리 전압인, 장치.
  8. 제 1 서플라이 전압을 수신하고 상기 제 1 서플라이 전압보다 더 높은 전압을 갖는 부스팅된 서플라이 전압을 발생시키도록 동작하는 부스트 컨버터; 및
    엔벨로프 신호 및 상기 부스팅된 서플라이 전압을 수신하고 상기 엔벨로프 신호 및 상기 부스팅된 서플라이 전압에 기초하여 제 2 서플라이 전압을 발생시키도록 동작하는 엔벨로프 증폭기를 포함하되,
    상기 엔벨로프 증폭기는 상기 제 1 서플라이 전압을 추가로 수신하고 상기 제 1 서플라이 전압 또는 상기 부스팅된 서플라이 전압에 기초하여 상기 제 2 서플라이 전압을 발생시키도록 동작하고,
    상기 엔벨로프 증폭기는,
    상기 엔벨로프 신호를 수신하고 증폭된 신호를 제공하도록 동작하는 연산 증폭기 (op-amp),
    상기 증폭된 신호를 수신하고 제 1 제어 신호 및 제 2 제어 신호를 제공하도록 동작하는 드라이버,
    상기 제 1 제어 신호를 수신하는 게이트, 상기 부스팅된 서플라이 전압 또는 상기 제 1 서플라이 전압을 수신하는 소스, 및 상기 제 2 서플라이 전압을 제공하는 드레인을 갖는 P-채널 금속 산화물 반도체 (PMOS) 트랜지스터, 및
    상기 제 2 제어 신호를 수신하는 게이트, 상기 제 2 서플라이 전압을 제공하는 드레인, 및 회로 그라운드에 커플링된 소스를 갖는 N-채널 금속 산화물 반도체 (NMOS) 트랜지스터를 포함하는, 집적회로.
  9. 삭제
  10. 입력 무선 주파수 (RF) 신호를 수신 및 증폭하고 출력 RF 신호를 제공하도록 동작하는 전력 증폭기; 및
    엔벨로프 신호 및 제 1 서플라이 전압을 수신하고, 상기 제 1 서플라이 전압보다 더 높은 전압을 갖는 부스팅된 서플라이 전압을 발생시키며, 상기 엔벨로프 신호 및 상기 부스팅된 서플라이 전압에 기초하여 상기 전력 증폭기를 위한 제 2 서플라이 전압을 발생시키도록 동작하는 서플라이 발생기를 포함하되,
    상기 서플라이 발생기는,
    상기 엔벨로프 신호를 수신하고 증폭된 신호를 제공하도록 동작하는 연산 증폭기 (op-amp),
    상기 증폭된 신호를 수신하고 제 1 제어 신호 및 제 2 제어 신호를 제공하도록 동작하는 드라이버,
    상기 제 1 제어 신호를 수신하는 게이트, 상기 부스팅된 서플라이 전압 또는 상기 제 1 서플라이 전압을 수신하는 소스, 및 상기 제 2 서플라이 전압을 제공하는 드레인을 갖는 P-채널 금속 산화물 반도체 (PMOS) 트랜지스터, 및
    상기 제 2 제어 신호를 수신하는 게이트, 상기 제 2 서플라이 전압을 제공하는 드레인, 및 회로 그라운드에 커플링된 소스를 갖는 N-채널 금속 산화물 반도체 (NMOS) 트랜지스터를 포함하는, 무선 통신을 위한 장치.
  11. 제 10 항에 있어서,
    상기 서플라이 발생기는 상기 엔벨로프 신호 및 상기 부스팅된 서플라이 전압이나 또는 상기 제 1 서플라이 전압 중 어느 하나에 기초하여 상기 제 2 서플라이 전압을 발생시키도록 동작하는, 무선 통신을 위한 장치.
  12. 서플라이 전압들을 발생시키는 방법으로서,
    제 1 서플라이 전압에 기초하여 부스팅된 서플라이 전압을 발생시키는 단계로서, 상기 부스팅된 서플라이 전압은 상기 제 1 서플라이 전압보다 더 높은 전압을 갖는, 상기 부스팅된 서플라이 전압을 발생시키는 단계; 및
    엔벨로프 신호 및 상기 부스팅된 서플라이 전압에 기초하여 제 2 서플라이 전압을 발생시키는 단계를 포함하되,
    상기 제 2 서플라이 전압은,
    상기 엔벨로프 신호를 수신하고 증폭된 신호를 제공하는 연산 증폭기 (op-amp),
    상기 증폭된 신호를 수신하고 제 1 제어 신호 및 제 2 제어 신호를 제공하는 드라이버,
    상기 제 1 제어 신호를 수신하는 P-채널 금속 산화물 반도체 (PMOS) 트랜지스터, 상기 부스팅된 서플라이 전압 또는 상기 제 1 서플라이 전압을 수신하는 소스, 및 상기 제 2 서플라이 전압을 제공하는 드레인, 및
    상기 제 2 제어 신호를 게이트에서 수신하고, 드레인을 통해 상기 제 2 서플라이 전압을 제공하는 N-채널 금속 산화물 반도체 (NMOS) 트랜지스터, 및 회로 그라운드를 위한 소스를 사용하여 상기 제 2 서플라이 전압을 생성하는,
    엔벨로프 증폭기에 의해서 생성되는, 서플라이 전압들을 발생시키는 방법.
  13. 제 12 항에 있어서,
    상기 제 2 서플라이 전압을 발생시키는 단계는, 상기 엔벨로프 신호 및 상기 부스팅된 서플라이 전압이나 또는 상기 제 1 서플라이 전압 중 어느 하나에 기초하여 상기 제 2 서플라이 전압을 발생시키는 단계를 포함하는, 서플라이 전압들을 발생시키는 방법.
  14. 서플라이 전압들을 발생시키는 장치로서,
    제 1 서플라이 전압에 기초하여 부스팅된 서플라이 전압을 발생시키는 수단으로서, 상기 부스팅된 서플라이 전압은 상기 제 1 서플라이 전압보다 더 높은 전압을 갖는, 상기 부스팅된 서플라이 전압을 발생시키는 수단; 및
    엔벨로프 신호 및 상기 부스팅된 서플라이 전압에 기초하여 제 2 서플라이 전압을 발생시키는 수단을 포함하되,
    상기 제 2 서플라이 전압을 발생시키는 수단은,
    상기 엔벨로프 신호를 수신하고 증폭된 신호를 제공하는 연산 증폭기 (op-amp),
    상기 증폭된 신호를 수신하고 제 1 제어 신호 및 제 2 제어 신호를 제공하는 드라이버,
    상기 제 1 제어 신호를 수신하는 P-채널 금속 산화물 반도체 (PMOS) 트랜지스터, 상기 부스팅된 서플라이 전압 또는 상기 제 1 서플라이 전압을 수신하는 소스, 및 상기 제 2 서플라이 전압을 제공하는 드레인, 및
    상기 제 2 제어 신호를 게이트에서 수신하고, 드레인을 통해 상기 제 2 서플라이 전압을 제공하는 N-채널 금속 산화물 반도체 (NMOS) 트랜지스터, 및 회로 그라운드를 위한 소스를 사용하여 상기 제 2 서플라이 전압을 생성하는,
    엔벨로프 증폭기를 포함하는, 서플라이 전압들을 발생시키는 장치.
  15. 제 14 항에 있어서,
    상기 제 2 서플라이 전압을 발생시키는 수단은, 상기 엔벨로프 신호 및 상기 부스팅된 서플라이 전압이나 또는 상기 제 1 서플라이 전압 중 어느 하나에 기초하여 상기 제 2 서플라이 전압을 발생시키는 수단을 포함하는, 서플라이 전압들을 발생시키는 장치.
  16. 제 1 서플라이 전압을 수신하고 제 1 서플라이 전류를 제공하도록 동작하는 스위처;
    엔벨로프 신호를 수신하고 상기 엔벨로프 신호에 기초하여 제 2 서플라이 전류를 제공하도록 동작하는 엔벨로프 증폭기; 및
    상기 제 1 서플라이 전류 및 상기 제 2 서플라이 전류를 포함하는 총 서플라이 전류를 수신하도록 동작하는 전력 증폭기를 포함하되,
    상기 스위처는,
    상기 제 1 서플라이 전류, 또는 상기 제 2 서플라이 전류, 또는 상기 총 서플라이 전류를 감지하고 감지된 신호를 제공하도록 동작하는 전류 감지 증폭기,
    상기 감지된 신호를 수신하고 제 1 제어 신호 및 제 2 제어 신호를 제공하도록 동작하는 드라이버,
    상기 제 1 제어 신호를 수신하는 게이트, 상기 제 1 서플라이 전압을 수신하는 소스, 및 상기 제 1 서플라이 전류를 제공하는 인덕터를 위한 스위칭 신호를 제공하는 드레인을 갖는 P-채널 금속 산화물 반도체 (PMOS) 트랜지스터, 및
    상기 제 2 제어 신호를 수신하는 게이트, 상기 스위칭 신호를 제공하는 드레인, 및 회로 그라운드에 커플링된 소스를 갖는 N-채널 금속 산화물 반도체 (NMOS) 트랜지스터를 포함하는, 장치.
  17. 제 16 항에 있어서,
    상기 제 1 서플라이 전압을 수신하고 상기 제 1 서플라이 전압보다 더 높은 전압을 갖는 부스팅된 서플라이 전압을 제공하도록 동작하는 부스트 컨버터를 더 포함하며,
    상기 엔벨로프 증폭기는 상기 제 1 서플라이 전압 또는 상기 부스팅된 서플라이 전압에 기초하여 동작하는, 장치.
  18. 삭제
  19. 제 16 항에 있어서,
    상기 제 1 서플라이 전류는 직류 (DC) 및 주파수 성분들을 포함하고, 상기 제 2 서플라이 전류는 상기 제 1 서플라이 전류의 주파수 성분들보다 더 높은 주파수 성분들을 포함하는, 장치.
  20. 스위칭 신호를 수신하고 서플라이 전류를 제공하도록 동작하는 인덕터; 및
    입력 전류를 감지하고 상기 서플라이 전류를 제공하는 상기 인덕터를 충전 및 방전하기 위한 상기 스위칭 신호를 발생시키도록 동작하는 스위처로서, 상기 스위처는 상기 입력 전류에 오프셋을 부가하여 상기 오프셋이 없는 것보다 더 큰 서플라이 전류를 상기 인덕터를 통해 발생시키는, 상기 스위처를 포함하되,
    상기 스위처는,
    상기 입력 전류와 오프셋 전류를 합산하고 합산된 전류를 제공하도록 동작하는 합산기,
    상기 합산된 전류를 수신하고 감지된 신호를 제공하도록 동작하는 전류 감지 증폭기, 및
    상기 감지된 신호를 수신하고 상기 인덕터를 위한 상기 스위칭 신호를 발생시키는데 이용되는 적어도 하나의 제어 신호를 제공하도록 동작하는 드라이버를 포함하는, 장치.
  21. 제 20 항에 있어서,
    상기 스위처는 제 1 서플라이 전압에 기초하여 동작하고, 상기 오프셋은 상기 제 1 서플라이 전압에 기초하여 결정되는, 장치.
  22. 삭제
  23. 제 20 항에 있어서,
    상기 적어도 하나의 제어 신호는 제 1 제어 신호 및 제 2 제어 신호를 포함하며,
    상기 스위처는,
    상기 제 1 제어 신호를 수신하는 게이트, 제 1 서플라이 전압을 수신하는 소스, 및 상기 스위칭 신호를 제공하는 드레인을 갖는 P-채널 금속 산화물 반도체 (PMOS) 트랜지스터, 및
    상기 제 2 제어 신호를 수신하는 게이트, 상기 스위칭 신호를 제공하는 드레인, 및 회로 그라운드에 커플링된 소스를 갖는 N-채널 금속 산화물 반도체 (NMOS) 트랜지스터를 더 포함하는, 장치.
  24. 제 20 항에 있어서,
    엔벨로프 신호를 수신하고 상기 엔벨로프 신호에 기초하여 제 2 서플라이 전류를 제공하도록 동작하는 엔벨로프 증폭기를 더 포함하며,
    총 서플라이 전류는 상기 스위처로부터의 상기 서플라이 전류 및 상기 엔벨로프 증폭기로부터의 상기 제 2 서플라이 전류를 포함하는, 장치.
  25. 제 24 항에 있어서,
    제 1 서플라이 전압을 수신하고 상기 제 1 서플라이 전압보다 더 높은 전압을 갖는 부스팅된 서플라이 전압을 제공하도록 동작하는 부스트 컨버터를 더 포함하며,
    상기 엔벨로프 증폭기는 상기 제 1 서플라이 전압 또는 상기 부스팅된 서플라이 전압에 기초하여 동작하는, 장치.
  26. 제 20 항에 있어서,
    상기 인덕터로부터 상기 서플라이 전류를 수신하고, 입력 무선 주파수 (RF) 신호를 수신 및 증폭하고 출력 RF 신호를 제공하도록 동작하는 전력 증폭기를 더 포함하는, 장치.
KR1020147001767A 2011-06-23 2012-06-24 저전압 전력 효율적인 엔벨로프 추적기 KR101687459B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/167,659 US8698558B2 (en) 2011-06-23 2011-06-23 Low-voltage power-efficient envelope tracker
US13/167,659 2011-06-23
PCT/US2012/043915 WO2012178138A1 (en) 2011-06-23 2012-06-24 Low-voltage power-efficient envelope tracker

Publications (2)

Publication Number Publication Date
KR20140026626A KR20140026626A (ko) 2014-03-05
KR101687459B1 true KR101687459B1 (ko) 2016-12-19

Family

ID=46551856

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147001767A KR101687459B1 (ko) 2011-06-23 2012-06-24 저전압 전력 효율적인 엔벨로프 추적기

Country Status (9)

Country Link
US (1) US8698558B2 (ko)
EP (2) EP2724461B1 (ko)
JP (2) JP5897705B2 (ko)
KR (1) KR101687459B1 (ko)
CN (2) CN103620951B (ko)
ES (2) ES2736156T3 (ko)
HU (1) HUE044356T2 (ko)
PL (1) PL2724461T3 (ko)
WO (1) WO2012178138A1 (ko)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012047738A1 (en) 2010-09-29 2012-04-12 Rf Micro Devices, Inc. SINGLE μC-BUCKBOOST CONVERTER WITH MULTIPLE REGULATED SUPPLY OUTPUTS
EP2709272A4 (en) * 2011-05-13 2014-12-17 Nec Corp POWER SUPPLY DEVICE, ITS OPERATING METHOD, AND TRANSMISSION DEVICE USING THE POWER SUPPLY DEVICE
JP5822683B2 (ja) * 2011-11-25 2015-11-24 株式会社日立国際電気 電源回路
KR101350731B1 (ko) * 2012-02-24 2014-01-13 한국과학기술원 이중 스위칭증폭기를 이용한 효율 향상된 포락선 증폭기 및 그 설계방법
US9225302B2 (en) * 2012-12-03 2015-12-29 Broadcom Corporation Controlled power boost for envelope tracker
US9372492B2 (en) * 2013-01-11 2016-06-21 Qualcomm Incorporated Programmable frequency range for boost converter clocks
US9929696B2 (en) 2013-01-24 2018-03-27 Qorvo Us, Inc. Communications based adjustments of an offset capacitive voltage
US20140210549A1 (en) * 2013-01-28 2014-07-31 Qualcomm Incorporated Method and apparatus for using a processor controlled switcher with a power amplifier
US8866547B2 (en) * 2013-01-28 2014-10-21 Qualcomm Incorporated Dynamic headroom for envelope tracking
US9306520B2 (en) * 2013-01-28 2016-04-05 Qualcomm Incorporated Reverse current prevention
GB2510393A (en) * 2013-02-01 2014-08-06 Nujira Ltd An envelope-tracking amplifier with a linear amplifier having an output offset current for improved efficiency
US9608675B2 (en) * 2013-02-11 2017-03-28 Qualcomm Incorporated Power tracker for multiple transmit signals sent simultaneously
US9337997B2 (en) 2013-03-07 2016-05-10 Qualcomm Incorporated Transcoding method for multi-wire signaling that embeds clock information in transition of signal state
US9374216B2 (en) * 2013-03-20 2016-06-21 Qualcomm Incorporated Multi-wire open-drain link with data symbol transition based clocking
CN107404226B (zh) * 2013-03-14 2019-07-19 匡坦斯公司 射频功率放大器系统、电源和供电方法
EP2797075B1 (de) * 2013-04-26 2018-09-12 Eberspächer Exhaust Technology GmbH & Co. KG System zur Beeinflussung von Abgasgeräuschen, Motorgeräuschen und/oder Ansauggeräuschen
KR101515930B1 (ko) * 2013-06-04 2015-05-04 포항공과대학교 산학협력단 스위치 전류의 조절을 이용한 고효율 포락선 증폭기를 위한 장치 및 방법.
US9837962B2 (en) * 2013-06-06 2017-12-05 Qualcomm Incorporated Envelope tracker with variable boosted supply voltage
US9583618B2 (en) * 2013-06-27 2017-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Metal oxide semiconductor field effect transistor having asymmetric lightly doped drain regions
US9917168B2 (en) 2013-06-27 2018-03-13 Taiwan Semiconductor Manufacturing Company, Ltd. Metal oxide semiconductor field effect transistor having variable thickness gate dielectric
WO2015010328A1 (en) * 2013-07-26 2015-01-29 Nokia Siemens Networks Oy Method, apparatus and system for envelope tracking
CN104426558B (zh) * 2013-09-06 2017-02-01 联想(北京)有限公司 一种射频发射器及电子设备
US9755818B2 (en) 2013-10-03 2017-09-05 Qualcomm Incorporated Method to enhance MIPI D-PHY link rate with minimal PHY changes and no protocol changes
US9735948B2 (en) 2013-10-03 2017-08-15 Qualcomm Incorporated Multi-lane N-factorial (N!) and other multi-wire communication systems
US9203599B2 (en) 2014-04-10 2015-12-01 Qualcomm Incorporated Multi-lane N-factorial (N!) and other multi-wire communication systems
KR101467230B1 (ko) * 2014-02-14 2014-12-01 성균관대학교산학협력단 멀티 모드 바이어스 변조기 및 이를 이용한 포락선 추적 전력 증폭 장치
KR101467231B1 (ko) * 2014-02-19 2014-12-01 성균관대학교산학협력단 포락선 추적 모드 또는 평균 전력 추적 모드로 동작하는 멀티 모드 바이어스 변조기 및 이를 이용한 포락선 추적 전력 증폭 장치
US9530719B2 (en) 2014-06-13 2016-12-27 Skyworks Solutions, Inc. Direct die solder of gallium arsenide integrated circuit dies and methods of manufacturing gallium arsenide wafers
TWI603579B (zh) * 2014-08-01 2017-10-21 酷星技術股份有限公司 用於加偏壓於射頻功率放大器之適應性包絡追蹤
US9445371B2 (en) 2014-08-13 2016-09-13 Skyworks Solutions, Inc. Apparatus and methods for wideband envelope tracking systems
US9692304B1 (en) * 2015-01-30 2017-06-27 Fairchild Semiconductor Corporation Integrated power stage device with offset monitor current for sensing a switch node output current
JP2016149743A (ja) * 2015-02-15 2016-08-18 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 整合ネットワークの排除によりサイズが低減された電力増幅器
EP3070842A1 (en) 2015-03-17 2016-09-21 Nokia Technologies OY Method and apparatus for supplying power to an amplifier
US9596110B2 (en) * 2015-04-02 2017-03-14 Futurewei Technologies, Inc. Open loop digital PWM envelope tracking system with dynamic boosting
CN104779922B (zh) * 2015-05-08 2018-05-22 宜确半导体(苏州)有限公司 用于优化射频功率放大器性能的高电压包络跟踪器
US9899970B2 (en) * 2015-06-18 2018-02-20 Eridan Communications, Inc. Current enhanced driver for high-power solid-state radio frequency power amplifiers
US9941844B2 (en) 2015-07-01 2018-04-10 Qorvo Us, Inc. Dual-mode envelope tracking power converter circuitry
US9912297B2 (en) 2015-07-01 2018-03-06 Qorvo Us, Inc. Envelope tracking power converter circuitry
US10103693B2 (en) 2015-09-30 2018-10-16 Skyworks Solutions, Inc. Power amplifier linearization system and method
US9614477B1 (en) * 2016-01-12 2017-04-04 Avago Technologies General Ip (Singapore) Pte. Ltd. Envelope tracking supply modulators for multiple power amplifiers
US9973147B2 (en) * 2016-05-10 2018-05-15 Qorvo Us, Inc. Envelope tracking power management circuit
US10340854B2 (en) 2016-07-29 2019-07-02 Qualcomm Incorporated Selecting between boosted supply and battery supply
US10110169B2 (en) 2016-09-14 2018-10-23 Skyworks Solutions, Inc. Apparatus and methods for envelope tracking systems with automatic mode selection
KR101922880B1 (ko) * 2017-05-10 2018-11-28 삼성전기 주식회사 부스트 기능을 갖는 전력 증폭 장치
US10236831B2 (en) 2017-05-12 2019-03-19 Skyworks Solutions, Inc. Envelope trackers providing compensation for power amplifier output load variation
US10615757B2 (en) 2017-06-21 2020-04-07 Skyworks Solutions, Inc. Wide bandwidth envelope trackers
US10516368B2 (en) 2017-06-21 2019-12-24 Skyworks Solutions, Inc. Fast envelope tracking systems for power amplifiers
US10673385B2 (en) 2017-11-08 2020-06-02 Mediatek Inc. Supply modulator, modulated power supply circuit, and associated control method
US10673400B2 (en) * 2017-11-14 2020-06-02 The Regents Of The University Of Colorado, A Body Gain stabilization for supply modulated RF and microwave integrated circuits
US10476437B2 (en) 2018-03-15 2019-11-12 Qorvo Us, Inc. Multimode voltage tracker circuit
US11218122B2 (en) * 2018-06-07 2022-01-04 Nanyang Technological University Supply modulator, power amplifier having the same, method for controlling the same, and method for controlling the power amplifier
KR102226814B1 (ko) * 2018-10-26 2021-03-11 삼성전자 주식회사 스위칭 레귤레이터를 이용하여 복수의 증폭기들에 선택적으로 전압을 공급하는 방법 및 장치
KR102466465B1 (ko) * 2018-10-26 2022-11-11 삼성전자 주식회사 스위칭 레귤레이터를 이용하여 복수의 증폭기들에 선택적으로 전압을 공급하는 방법 및 장치
GB2578926B (en) * 2018-11-14 2021-11-24 Iceye Oy Power supply and method of operating a power amplifier
US11088660B2 (en) 2019-01-25 2021-08-10 Mediatek Inc. Power supply with envelope tracking modulation
CN110138343A (zh) * 2019-05-27 2019-08-16 陕西亚成微电子股份有限公司 一种基于反馈的用于射频功率放大器的电源
EP3954030A2 (en) * 2019-09-20 2022-02-16 Huawei Digital Power Technologies Co., Ltd. Low noise power conversion system and method
CN112653400B (zh) * 2020-12-10 2023-04-14 Oppo(重庆)智能科技有限公司 放大电路及其控制方法、电子设备、存储介质
KR102534030B1 (ko) * 2021-03-05 2023-05-26 삼성전자 주식회사 스위칭 레귤레이터를 이용하여 복수의 증폭기들에 선택적으로 전압을 공급하는 방법 및 장치

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192196A (ja) * 1990-11-26 1992-07-10 Mitsubishi Electric Corp 不揮発性半導体記憶装置
US5905407A (en) * 1997-07-30 1999-05-18 Motorola, Inc. High efficiency power amplifier using combined linear and switching techniques with novel feedback system
US6084468A (en) * 1997-10-06 2000-07-04 Motorola, Inc. Method and apparatus for high efficiency wideband power amplification
JPH10313587A (ja) * 1998-04-20 1998-11-24 Nec Corp 増幅回路
JP2000306393A (ja) * 1999-02-15 2000-11-02 Seiko Instruments Inc メモリ回路
US7061313B2 (en) 2000-05-05 2006-06-13 Telefonaktiebolaget Lm Ericsson (Publ) Dual feedback linear amplifier
US6300826B1 (en) * 2000-05-05 2001-10-09 Ericsson Telefon Ab L M Apparatus and method for efficiently amplifying wideband envelope signals
US7068984B2 (en) 2001-06-15 2006-06-27 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for amplification of a communication signal
US6661217B2 (en) 2001-12-21 2003-12-09 Telefonaktiebolaget L.M. Ericsson Wideband precision current sensor
US6792252B2 (en) 2002-02-06 2004-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Wideband error amplifier
JP2004173249A (ja) * 2002-10-28 2004-06-17 Matsushita Electric Ind Co Ltd 送信機
KR20050053591A (ko) * 2002-10-28 2005-06-08 마츠시타 덴끼 산교 가부시키가이샤 송신기
US6801082B2 (en) * 2002-12-31 2004-10-05 Motorola, Inc. Power amplifier circuit and method using bandlimited signal component estimates
EP1499011A1 (en) * 2003-07-18 2005-01-19 Stichting Voor De Technische Wetenschappen Amplifying circuit comprising an envelope modulated limit cycles modulator circuit
JP4589665B2 (ja) * 2003-08-29 2010-12-01 ルネサスエレクトロニクス株式会社 増幅器及びそれを用いた高周波電力増幅器
JP4012165B2 (ja) 2004-03-23 2007-11-21 松下電器産業株式会社 送信機
US7113039B2 (en) * 2004-08-04 2006-09-26 Texas Instruments Incorporated Gain-boosted opamp with capacitor bridge connection
JP4497470B2 (ja) 2004-09-17 2010-07-07 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 高周波電力増幅装置および送信装置
GB2440702B (en) * 2005-05-20 2009-07-08 Paragon Comm Ltd Method for implementation and parameter settings of a voltage enhancement circuit for amplifiers as an integrated circuit (IC)
JP2007060616A (ja) * 2005-07-29 2007-03-08 Mitsubishi Electric Corp 高周波電力増幅器
GB2440772B (en) * 2006-08-08 2011-11-30 Asahi Chemical Micro Syst Envelope modulator
JP2010512705A (ja) * 2006-12-12 2010-04-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 高効率変調rf増幅器
FI20065865A0 (fi) * 2006-12-29 2006-12-29 Nokia Corp Usean toimitilan amplitudimodulaattorin ohjausmenetelmä
US7679433B1 (en) 2007-02-02 2010-03-16 National Semiconductor Corporation Circuit and method for RF power amplifier power regulation and modulation envelope tracking
FI20075322A0 (fi) 2007-05-07 2007-05-07 Nokia Corp Teholähteitä RF-tehovahvistimelle
US8552803B2 (en) * 2007-12-18 2013-10-08 Qualcomm Incorporated Amplifier with dynamic bias
KR101618119B1 (ko) * 2007-12-24 2016-05-09 삼성전자주식회사 포락선 제거 및 복원 기법 기반의 전력 증폭 장치
JP5131540B2 (ja) 2008-05-20 2013-01-30 株式会社村田製作所 Rf電力増幅器およびrf電力増幅装置
US8213142B2 (en) * 2008-10-29 2012-07-03 Qualcomm, Incorporated Amplifier with improved ESD protection circuitry
US8030995B2 (en) * 2008-12-25 2011-10-04 Hitachi Kokusai Electric Inc. Power circuit used for an amplifier
KR101580183B1 (ko) * 2008-12-29 2015-12-24 테세라 어드밴스드 테크놀로지스, 인크. 부스트 연산 증폭기
EP2395655A4 (en) * 2009-02-05 2014-07-23 Nec Corp POWER AMPLIFIERS AND POWER AMPLIFICATION PROCESS
US8847689B2 (en) * 2009-08-19 2014-09-30 Qualcomm Incorporated Stacked amplifier with diode-based biasing
US8509714B2 (en) 2009-09-04 2013-08-13 Electronics And Telecommunications Research Institute Bias modulation apparatus, and apparatus and method for transmitting signal for wideband mobile communication using the same
KR101559183B1 (ko) 2009-11-10 2015-10-13 삼성전자주식회사 고주파 신호의 포락선 변조를 위한 전력 증폭 장치 및 그 제어 방법
CN201623839U (zh) * 2010-01-06 2010-11-03 刘晓刚 功率放大器
EP2782246B1 (en) * 2010-04-19 2018-06-13 Qorvo US, Inc. Pseudo-envelope following power management system
US8237499B2 (en) * 2010-05-07 2012-08-07 Industrial Technology Research Institute Feedforward controlled envelope modulator and feedforward control circuit thereof
CN101867284B (zh) 2010-05-31 2012-11-21 华为技术有限公司 快速跟踪电源的控制方法、快速跟踪电源及系统
CN103477557B (zh) * 2010-12-09 2016-07-06 射频小型装置公司 具有高频波纹电流补偿的伪包络线跟随器功率管理系统

Also Published As

Publication number Publication date
ES2637764T3 (es) 2017-10-17
ES2736156T3 (es) 2019-12-26
EP3247039A2 (en) 2017-11-22
EP2724461B1 (en) 2017-08-09
HUE044356T2 (hu) 2019-10-28
CN107681982B (zh) 2021-03-16
WO2012178138A1 (en) 2012-12-27
CN107681982A (zh) 2018-02-09
US8698558B2 (en) 2014-04-15
KR20140026626A (ko) 2014-03-05
US20120326783A1 (en) 2012-12-27
PL2724461T3 (pl) 2017-11-30
EP3247039B1 (en) 2019-05-15
CN103620951B (zh) 2017-12-01
CN103620951A (zh) 2014-03-05
JP2015216670A (ja) 2015-12-03
JP5897705B2 (ja) 2016-03-30
JP2014517661A (ja) 2014-07-17
JP6121485B2 (ja) 2017-04-26
EP3247039A3 (en) 2018-01-24
EP2724461A1 (en) 2014-04-30

Similar Documents

Publication Publication Date Title
KR101687459B1 (ko) 저전압 전력 효율적인 엔벨로프 추적기
KR102296096B1 (ko) 가변 부스팅된 서플라이 전압을 갖는 엔벨로프 트래커
CN106549564B (zh) 具有供给调制的功率放大设备和方法
US7679433B1 (en) Circuit and method for RF power amplifier power regulation and modulation envelope tracking
US7808323B2 (en) High-efficiency envelope tracking systems and methods for radio frequency power amplifiers
US7949316B2 (en) High-efficiency envelope tracking systems and methods for radio frequency power amplifiers
Bondade et al. A linear-assisted DC-DC hybrid power converter for envelope tracking RF power amplifiers
US7728663B2 (en) Integrated implementation of a voltage boost follower and method therefor
JP2005102146A (ja) 増幅器及びそれを用いた高周波電力増幅器
US20110163822A1 (en) Power amplifier
US8688061B2 (en) System and method for biasing a power amplifier
CN102075088A (zh) 一种开关电压转换器和线性稳压器级联的方法
JP5743978B2 (ja) 電力増幅器および送信器
Shirmohammadli et al. An efficient CMOS LDO-assisted DC/DC buck regulator
Shirmohammadli et al. Integrated power management system based on efficient LDO-assisted DC/DC buck converter
JP2008193633A (ja) 電力増幅器
Lee et al. A 4-W Master–Slave Switching Amplitude Modulator for Class-E1 EDGE Polar Transmitters
Cha et al. High speed dynamic bias switching power amplifier for OFDM applications

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190924

Year of fee payment: 4