KR101601352B1 - 무선전력 송신장치 및 그의 전력 제어 방법 - Google Patents

무선전력 송신장치 및 그의 전력 제어 방법 Download PDF

Info

Publication number
KR101601352B1
KR101601352B1 KR1020120107450A KR20120107450A KR101601352B1 KR 101601352 B1 KR101601352 B1 KR 101601352B1 KR 1020120107450 A KR1020120107450 A KR 1020120107450A KR 20120107450 A KR20120107450 A KR 20120107450A KR 101601352 B1 KR101601352 B1 KR 101601352B1
Authority
KR
South Korea
Prior art keywords
power
wireless power
transmission
wireless
power transmission
Prior art date
Application number
KR1020120107450A
Other languages
English (en)
Other versions
KR20140040570A (ko
Inventor
배수호
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020120107450A priority Critical patent/KR101601352B1/ko
Priority to EP13184867.3A priority patent/EP2713475B1/en
Priority to CN201711205392.5A priority patent/CN107994660B/zh
Priority to CN201310445293.XA priority patent/CN103683527A/zh
Priority to CN201711208729.8A priority patent/CN108092416B/zh
Priority to US14/038,292 priority patent/US10163564B2/en
Priority to JP2013200196A priority patent/JP5744997B2/ja
Publication of KR20140040570A publication Critical patent/KR20140040570A/ko
Application granted granted Critical
Publication of KR101601352B1 publication Critical patent/KR101601352B1/ko
Priority to US16/191,782 priority patent/US10978246B2/en
Priority to US16/451,608 priority patent/US10672557B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • H04B5/79
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge

Abstract

본 발명의 실시 예에 무선전력 수신장치를 통해 부하에 전력을 전송하는 무선전력 송신장치는 교류 전력을 생성하는 전력 공급 장치와 상기 교류 전력을 공진을 이용하여 상기 무선전력 수신장치에 구비된 수신 코일에 전달하는 송신 코일 및 상기 송신 코일과 수신 코일의 결합상태를 검출하는 검출부를 포함하고, 상기 무선전력 송신장치는 상기 검출된 결합상태에 기초하여 상기 부하에 전송되는 송신 전력을 제어하는 것을 특징으로 한다.

Description

무선전력 송신장치 및 그의 전력 제어 방법{APPARATUS FOR TRANSMITTING WIRELESS POWER AND METHOD FOR CONTROLLING POWER THEREOF}
본 발명은 무선전력 전송 기술에 관한 것이다. 보다 상세하게는, 무선전력 송신장치와 무선전력 수신장치 간 결합상태에 따라 송신 전력을 제어하여 전력 전송 효율을 극대화시킬 수 있는 방법에 관한 것이다.
무선으로 전기 에너지를 원하는 기기로 전달하는 무선전력전송 기술(wireless power transmission 또는 wireless energy transfer)은 이미 1800년대에 전자기유도 원리를 이용한 전기 모터나 변압기가 사용되기 시작했고, 그 후로는 라디오파나 레이저와 같은 전자파를 방사해서 전기에너지를 전송하는 방법도 시도 되었다. 우리가 흔히 사용하는 전동칫솔이나 일부 무선면도기도 실상은 전자기유도 원리로 충전된다. 전자기 유도는 도체의 주변에서 자기장을 변화시켰을 때 전압이 유도되어 전류가 흐르는 현상을 말한다. 전자기 유도 방식은 소형 기기를 중심으로 상용화가 빠르게 진행되고 있으나, 전력의 전송 거리가 짧은 문제가 있다.
현재까지 무선 방식에 의한 에너지 전달 방식은 전자기 유도 이외에 자기 공진 및 단파장 무선 주파수를 이용한 원거리 송신 기술 등이 있다.
최근에는 이와 같은 무선 전력 전송 기술 중 공진을 이용한 에너지 전달 방식이 많이 사용되고 있다.
그러나, 기존의 공진을 이용한 에너지 전달 방식은 무선전력 송신장치와 무선전력 수신장치의 결합상태에 따라 전력 전송 효율이 달라질 수 있다.
따라서, 무선전력 송신장치와 무선전력 수신장치의 결합상태를 반영하여 전력 전송 효율을 극대화시킬 수 있는 방안이 필요하다.
본 발명은 무선전력 송신장치와 무선전력 수신장치의 결합상태에 따라 전력 전송 효율을 최대화시킬 수 있는 방법의 제공을 목적으로 한다.
본 발명은 무선전력 송신장치와 무선전력 수신장치의 결합계수를 검출하여 검출된 결합계수에 따라 송신 전력을 제어할 수 있는 방법의 제공을 목적으로 한다.
본 발명의 실시 예에 무선전력 수신장치를 통해 부하에 전력을 전송하는 무선전력 송신장치는 교류 전력을 생성하는 전력 공급 장치와 상기 교류 전력을 공진을 이용하여 상기 무선전력 수신장치에 구비된 수신 코일에 전달하는 송신 코일 및 상기 송신 코일과 수신 코일의 결합상태를 검출하는 검출부를 포함하고, 상기 무선전력 송신장치는 상기 검출된 결합상태에 기초하여 상기 부하에 전송되는 송신 전력을 제어하는 것을 특징으로 한다.
상기 무선전력 송신장치는 상기 검출된 결합상태에 대응하는 상기 부하의 제1 수신 전력을 결정하고, 상기 결정된 제1 수신 전력에 따라 상기 송신 전력을 제어하는 것을 특징으로 한다.
상기 무선전력 송신장치는 상기 부하가 현재 수신하고 있는 제2 수신 전력을 확인하고, 상기 제2 수신 전력이 상기 제1 수신 전력과 다를 경우, 상기 제1 수신 전력에 따라 상기 송신 전력을 제어하는 것을 특징으로 한다.
상기 무선전력 송신장치는 상기 무선전력 수신장치와 인밴드 또는 아웃 오브 밴드 통신을 통해 상기 제2 수신 전력을 확인하는 것을 특징으로 한다.
상기 무선전력 송신장치는 내부에 흐르는 전류의 세기를 측정하여 상기 제2 수신 전력을 확인하는 것을 특징으로 한다.
상기 무선전력 송신장치는 상기 송신 코일과 상기 수신 코일 간 결합계수에 따른 결합 상태를 검출하는 검출부를 더 포함하고, 상기 무선전력 송신장치는 상기 결합계수가 증가할수록 송신 전력을 증가시키는 것을 특징으로 한다.
상기 검출부는 상기 전력 공급 장치에서 상기 무선전력 송신장치를 바라본 입력 임피던스를 측정하여 측정된 입력 임피던스에 기초하여 상기 결합계수를 검출하는 것을 특징으로 한다.
상기 전력 공급 장치는 전원 공급 장치로부터 직류 전력을 공급받아 교류 전력을 생성하고, 상기 무선전력 송신장치는 상기 전력 공급 장치에서 출력되는 전력을 조절하여 상기 송신 전력을 제어하는 것을 특징으로 한다.
상기 전력 공급 장치는 전력선 통신을 이용하여 상기 전원 공급 장치에서 출력되는 직류 전력을 제어하기 위한 전력 제어 신호를 전송하는 것을 특징으로 한다.
상기 전력 공급 장치는 전원 공급 장치로부터 직류 전력을 수신하여 교류 전력을 생성하는 교류 전력 생성부를 더 포함하고, 상기 무선전력 송신장치는 상기 교류 전력 생성부에 입력되거나 또는 상기 교류 전력 생성부로부터 출력되는 전류의 세기에 기초하여 상기 송신 전력을 제어하는 것을 특징으로 한다.
상기 무선전력 송신장치는 상기 결합상태와 상기 송신 전력을 대응시켜 저장하는 저장부를 더 포함하는 것을 특징으로 한다.
상기 송신 코일은 상기 전력 공급 장치로부터 제공받은 전력을 통해 자기장을 발생하는 송신 유도 및 상기 송신 유도 코일과 커플링되어 전달받은 전력을 공진을 이용해 상기 수신 코일에 전송하는 송신 공진 코일을 포함하는 것을 특징으로 한다.
본 발명의 또 다른 실시 예에 따른 무선전력 수신장치를 통해 부하에 전력을 전송하는 무선전력 송신장치의 전력 제어 방법은 상기 무선전력 송신장치와 상기 무선전력 수신장치 간 결합상태를 검출하는 단계와 상기 검출된 결합상태에 기초하여 송신 전력을 결정하는 단계 및 상기 결정된 송신 전력을 공진을 이용하여 상기 부하에 전송하는 단계를 포함한다.
상기 송신 전력을 결정하는 단계는 상기 검출된 결합상태에 대응하여 상기 부하가 수신해야 하는 제1 수신 전력을 결정하는 단계와 상기 결정된 제1 수신 전력에 따라 상기 송신 전력을 결정하는 단계를 포함한다.
상기 결정된 제1 수신 전력에 따라 상기 송신 전력을 결정하는 단계는 상기 부하가 현재 수신하고 있는 제2 수신 전력을 확인하는 단계와 상기 제1 수신 전력과 상기 제2 수신 전력을 비교하는 단계와 상기 비교 결과, 상기 제1 수신 전력과 상기 제2 수신 전력이 다를 경우, 상기 제1 수신 전력에 따라 상기 송신 전력을 결정하는 단계를 포함한다.
상기 부하가 현재 수신하고 있는 제2 수신 전력을 확인하는 단계는 상기 무선전력 수신장치와 인밴드 또는 아웃 오브 밴드 통신을 통해 상기 제2 수신 전력을 확인하는 단계를 포함한다.
상기 부하가 현재 수신하고 있는 제2 수신 전력을 확인하는 단계는 상기 무선전력 송신장치의 내부에 흐르는 전류의 세기를 측정하여 상기 제2 수신 전력을 확인하는 단계를 포함한다.
상기 결합상태를 검출하는 단계는 상기 결합상태를 판단하기 위한 상기 결합계수를 검출하는 단계를 포함하며,상기 송신전력을 결정하는 단계는 상기 결합계수가 증가할수록 상기 송신전력을 증가시키는 단계를 포함하는 것을 특징으로 한다.
상기 송신 전력을 결정하는 단계는 상기 결합 상태와 이에 대응되는 송신 전력을 포함하는 룩업 테이블에 기초하여 상기 송신 전력을 결정하는 단계를 포함한다.
상기 결합 상태를 검출하는 단계는 상기 무선전력 송신장치의 내부에 흐르는 전류의 세기를 또는 상기 무선전력 송신장치의 입력 임피던스를 이용하여 상기 결합 상태를 검출하는 단계를 포함한다.
본 발명의 실시 예에 따르면, 무선전력 송신장치와 무선전력 수신장치의 결합상태에 따라 송신 전력을 제어하여 전력 전송 효율을 최대화시킬 수 있는 방법의 제공을 목적으로 한다.
본 발명은 무선전력 송신장치와 무선전력 수신장치의 결합계수를 검출하여 검출된 결합계수에 기초하여 최적의 수신 전력을 결정하고, 결정된 수신 전력에 따라 송신 전력을 제어하여 전력 전송 효율을 최대화시킬 수 있다.
한편 그 외의 다양한 효과는 후술될 본 발명의 실시 예에 따른 상세한 설명에서 직접적 또는 암시적으로 개시될 것이다.
도 1은 본 발명의 일 실시 예에 따른 무선전력 전송 시스템의 구성도이다.
도 2는 본 발명의 일 실시 예에 따른 무선전력 전송 시스템의 등가 회로도이다.
도 3은 본 발명의 일 실시 예에 따른 전력 제어 방법을 설명하기 위한 흐름도이다.
도 4는 최대 전력 전송 효율을 만족하기 위한 결합계수와 부하 임피던스의 관계를 보여주는 도면이다.
도 5는 부하가 배터리인 경우, 최대 전력 전송 효율을 만족하기 위한 결합계수와 부하 임피던스의 관계의 예를 보여주는 도면이다.
도 6은 부하가 배터리인 경우, 배터리에 인가되는 전압에 대한 전류의 관계를 보여주는 도면이다.
도 7은 부하가 배터리인 경우, 배터리에 인가되는 전력량과 부하 임피던스의 관계를 보여주는 도면이다.
도 8은 부하가 배터리인 경우, 최대 전력 전송 효율을 만족하기 위한 결합계수와 부하의 수신 전력의 관계를 보여주는 도면이다.
도 9는 본 발명의 또 다른 실시 예에 따른 무선전력 전송 시스템의 구성도이다.
도 10은 본 발명의 또 다른 실시 예에 따른 전력 제어 방법을 설명하기 위한 래더다이어 그램이다.
도 11은 본 발명의 또 다른 실시 예에 따른 전력 제어 방법을 설명하기 위한 흐름도이다.
도 12는 제1 출력 전압이 교류 전력 생성부에 인가 시 측정되는 전류 값, 결합계수, 제2 출력 전압, 적정 전류 범위를 대응시킨 룩업 테이블을 설명하기 위한 도면이다.
도 13은 본 발명의 또 다른 실시 예에 따른 결합계수의 검출 방법을 설명하기 위한 흐름도이다.
도 14는 출력 임피던스를 가변시키기 위해 스위치를 개방시킨 경우를 설명하기 위한 도면이다.
도 15는 출력 임피던스를 가변시키기 위해 스위치를 단락시킨 경우를 설명하기 위한 도면이다.
도 16은 본 발명의 또 다른 실시 예에 따른 전력 제어 방법을 설명하기 위한 흐름도이다.
도 17은 도 16의 실시 예에 따른 전력 제어 방법에 사용되는 룩업테이블을 설명하기 위한 도면이다.
이하에서는, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.
도 1은 본 발명의 일 실시 예에 따른 무선전력 전송 시스템(10)의 구성도이고, 도 2는 본 발명의 일 실시 예에 따른 무선전력 전송 시스템(10)의 등가 회로도이다.
도 1을 참조하면, 무선전력 전송 시스템(10은 전력 공급 장치(100), 무선전력 송신장치(200), 무선전력 수신장치(300) 및 부하(400)를 포함할 수 있다.
일 실시 예에서 전력 공급 장치(100)는 도 1과 같이 무선전력 송신장치(200)와 별도로 구비될 수 있고, 무선전력 송신장치(200)에 포함될 수도 있다.
도 1을 참고하면, 전력 공급 장치(100)는 전원 공급부(110), 스위치(120), 직류 직류 변환기(130), 전류 센서부(140), 발진기(150), 교류 전력 생성부(160), 제어부(170), 저장부(180)를 포함할 수 있다.
전원 공급부(110)는 전력 공급 장치(100)의 각 구성요소에 직류전원을 공급할 수 있다. 전원 공급부(110)는 전력 공급 장치(100)와 별도로 구비될 수도 있다.
일 실시 예에서 무선전력 송신장치(200)가 공진을 이용하여 무선전력 수신장치(300)에 전력을 전송하는 경우라면, 무선전력 송신장치(200)는 후술할 송신 유도 코일부(211) 및 송신 공진 코일부(212)를 포함하지만, 전자기 유도를 이용하여 무선전력 수신장치(300)에 전력을 전송하는 경우라면, 무선전력 송신장치(200)는 송신 공진 코일부(212)를 포함하지 않을 수 있다.
스위치(120)는 전원 공급부(110)와 직류 직류 변환기(130)를 연결하거나 분리시킬 수 있다. 스위치(120)는 제어부(180)의 개방 신호 또는 단락 신호에 의해 개방되거나 단락될 수 있다. 일 실시 예에서 스위치(120)는 무선전력 송신장치(200)와 무선전력 수신장치(300)간 전력 전송 상태에 따라 제어부(180)의 동작에 의해 개방 또는 단락될 수 있다.
직류 직류 변환기(DC-DC converter)(130)는 전원 공급부(110)로부터 공급받은 직류전압을 이용하여 소정의 전압 값을 갖는 직류전압으로 변환하여 출력할 수 있다.
직류 직류 변환기(DC-DC converter)(130)는 전원 공급부(110)에서 출력된 직류전압을 교류전압으로 변환한 다음, 변환된 교류전압을 승압 또는 강압하고 정류하여 소정의 전압 값을 갖는 직류전압을 출력할 수 있다.
직류-직류 변환기(DC-DC converter)(130)로 스위칭 레귤레이터(Switching regulator) 또는 리니어 레귤레이터(Linear regulator)가 사용될 수 있다.
리니어 레귤레이터(Linear regulator)는 입력전압을 받아 필요한 만큼 출력전압을 내보내고, 나머지 전압은 열로 방출하는 변환기이다.
스위칭 레귤레이터(Switching regulator)는 펄스 폭 변조(PWM: Pulse Width Modulation)를 이용하여 출력전압을 조절할 수 있는 변환기이다.
전류 센서부(140)는 전력 공급 장치(100)의 내부에 흐르는 전류를 감지하여 감지된 전류의 세기를 측정할 수 있다.
일 실시 예에서 전류 센서부(140)는 직류 직류 변환기(130)에서 출력된 직류전압이 교류 전력 생성부(160)에 인가될 때, 흐르는 전류의 세기를 측정할 수 있으나, 이에 한정될 필요는 없고, 교류 전력 생성부(160)에서 출력되는 전류의 세기를 측정할 수도 있다.
일 실시 예에서 전류 센서부(140)는 변류기(CT: Current Transformer)가 사용될 수 있다. 일 실시 예에서 교류 전력 생성부(160)에 인가되는 전류의 세기는 무선전력 송신장치(200)와 무선전력 수신장치(300)간 근접해 있는 근접거리를 알아내는데 사용될 수 있다. 일 실시 예에서 교류 전력 생성부(160)에 인가되는 전류의 세기는 무선전력 송신장치(200)와 무선전력 수신장치(300) 간 결합상태를 나타내는 척도가 될 수 있다. 상기 결합상태는 무선전력 송신장치(200)와 무선전력 수신장치(300)간 결합계수(Coupling Coefficient)를 알아내는데 사용될 수 있다.
전류 센서부(140)는 상기 감지된 전류의 세기에 대한 신호를 제어부(180)로 전달할 수 있다.
도 1에서 전류 센서부(140)는 제어부(180)와 별도의 구성요소로 도시되어 있지만, 제어부(180)안에 포함될 수도 있다.
발진기(Oscillator)(150)는 소정의 주파수를 갖는 교류신호를 생성하여 교류 전력 생성부(160)에 인가할 수 있다.
교류 전력 생성부(160)는 직류 직류 변환기(130)로부터 전달받은 직류전압과 상기 교류 신호를 이용하여 교류 전력을 생성할 수 있다.
교류 전력 생성부(160)는 발진기(150)에서 생성된 교류신호를 증폭할 수 있다. 교류신호의 증폭량은 직류-직류 변환기(DC-DC converter)(130)를 통해 인가되는 직류전압의 크기에 따라 가변될 수 있다.
일 실시 예에서 교류 전력 생성부(160)는 푸쉬 풀 타입(push-pull type)의 듀얼 모스펫(Dual MOSFET)이 사용될 수 있다.
제어부(180)는 전력 공급 장치(100)의 전반적인 동작을 제어할 수 있다.
제어부(180)는 미리 정해진 직류전압이 교류 전력 생성부(160)에 인가되도록 직류 직류 변환기(130)를 제어할 수 있다.
제어부(180)는 전류 센서부(140)로부터 직류 직류 변환기(130)에서 출력된 직류전압이 교류 전력 생성부(160)에 인가될 때, 흐르는 전류의 세기에 대한 신호를 수신하고, 수신된 전류의 세기에 대한 신호를 이용해 직류 직류 변환기(130)에서 출력되는 직류전압 및 발진기(150)에서 출력하는 교류신호의 주파수를 조절할 수 있다.
제어부(180)는 교류 전력 생성부(160)에 인가되는 전류의 세기에 대한 신호를 전류 센서부(140)로부터 수신하여 무선전력 수신장치(300)의 존재 여부를 판단할 수 있다. 즉, 제어부(180)는 교류 전력 생성부(160)에 인가되는 전류의 세기를 이용해 무선전력 송신장치(200)로부터 전력을 수신할 수 있는 무선전력 수신장치(300)의 존재 여부를 확인할 수 있다.
제어부(180)는 소정의 주파수를 갖는 교류신호를 생성하도록 발진기(150)를 제어할 수 있다. 소정의 주파수는 공진을 이용하여 전력 전송이 이루어지는 경우, 무선전력 송신장치(200)와 무선전력 수신장치(300)의 공진 주파수를 의미할 수 있다.
저장부(170)는 교류 전력 생성부(160)에 인가되는 전류의 세기, 무선전력 송신장치(200)와 무선전력 수신장치(300)의 결합계수 및 직류 직류 변환기(130)에서 출력하는 직류전압을 대응시켜 저장하고 있을 수 있다. 즉, 저장부(170)에는 상기 3가지 값이 룩업 테이블의 형태로 저장되어 있을 수 있다.
제어부(180)는 교류 전력 생성부(160)에 인가되는 전류의 세기와 대응되는 결합계수, 직류 직류 변환기(130)에서 출력하는 직류전압을 저장부(170)에서 검색하고, 검색된 직류전압을 출력하도록 직류 직류 변환기(130)를 제어할 수 있다.
무선전력 송신장치(200)는 교류 전력 생성부(160)로부터 교류전력을 공급받는다.
무선전력 송신장치(200)가 공진을 이용해 무선전력 수신장치(300)에 전력을 전송하는 경우, 무선전력 송신장치(200)는 후술할 도 2에 도시된 송신부(210)의 구성인 송신 유도 코일부(211) 및 송신 공진 코일부(212)를 포함할 수 있다.
무선전력 송신장치(200)가 전자기 유도를 이용해 무선전력 수신장치(300)에 전력을 전송하는 경우, 무선전력 송신장치(200)는 후술할 도 2에 도시된 송신부(210)의 구성 중 송신 유도 코일부(211)만을 포함할 수 있다.
송신 공진 코일부(212)는 송신 유도 코일부(211)로부터 수신한 교류전력을 공진을 이용해 무선전력 수신장치(300)에 전송한다. 이 때, 무선전력 수신장치(300)는 도 2에 도시된 수신 공진 코일(310) 및 수신 유도 코일(320)을 포함할 수 있다.
다음으로 도 2를 참조하면, 무선전력 전송 시스템(10)은 전력 공급 장치(100), 무선전력 송신장치(200), 무선전력 수신장치(300), 부하(400)를 포함할 수 있다.
전력 공급 장치(100)는 도 1에서 설명한 구성요소들을 모두 포함하고, 그 구성요소의 기능 또한, 도 1에서 설명한 내용을 본질적으로 포함한다.
무선전력 송신장치(200)는 송신부(210), 검출부(220)를 포함할 수 있다.
송신부(210)는 송신 유도 코일부(211), 송신 공진 코일부(212)를 포함할 수 있다.
전력 공급 장치(100)에서 생성된 교류전력은 무선전력 송신장치(200)로 전달되고, 무선전력 송신장치(200)와 공진을 이루는 무선전력 수신장치(300)로 전달된다. 무선전력 수신장치(300)로 전달된 전력은 정류부(320)를 거쳐 부하(400)로 전달된다.
부하(400)는 충전지 또는 기타 전력을 필요로 하는 임의의 장치를 의미할 수 있고, 본 발명의 실시 예에서는 부하(400)의 부하저항을 RL로 나타낸다. 일 실시 예에서 부하(400)는 무선전력 수신장치(300)에 포함될 수도 있다.
전력 공급 장치(100)는 소정 주파수를 갖는 교류 전력을 무선전력 송신장치(200)에 공급할 수 있다. 전력 공급 장치(100)는 무선전력 송신장치(200)와 무선전력 수신장치(300)간 공진 시의 공진주파수를 갖는 교류전력을 제공할 수 있다.
송신부(210)는 송신 유도 코일부(211)와 송신 공진 코일부(212)로 구성될 수 있다.
송신 유도 코일부(211)는 전력 공급 장치(100)와 연결되며, 전력 공급 장치(100)부터 제공받은 전력에 의해 교류 전류가 흐르게 된다. 송신 유도 코일부(211)에 교류 전류가 흐르면, 전자기 유도에 의해 물리적으로 이격되어 있는 송신 공진 코일부(212)에도 교류 전류가 유도되어 흐르게 된다. 송신 공진 코일부(212)로 전달된 전력은 공진에 의해 무선전력 송신장치(200)와 공진 회로를 이루는 무선전력 수신장치(300)로 전달된다.
임피던스가 매칭된 2개의 LC 회로 사이는 공진에 의해 전력이 전송될 수 있다. 이와 같은 공진에 의한 전력 전송은 전자기 유도에 의한 전력 전송보다 더 먼 거리까지 더 높은 효율로 전력 전달이 가능하게 한다.
무선전력 송신장치(200)의 송신 공진 코일부(212)는 자기장을 통해 무선전력 수신장치(300)의 수신 공진 코일부(311)에 전력을 전송할 수 있다.
구체적으로, 송신 공진 코일부(212)와 수신 공진 코일부(311)는 공진 주파수에서 동작하도록 자기적으로 공진 결합되어 있다.
송신 공진 코일부(212)와 수신 공진 코일부(311)의 공진 결합으로 인해 무선전력 송신장치(200)와 무선전력 수신장치(300)간 전력 전송의 효율은 크게 향상될 수 있다.
송신 유도 코일부(211)는 송신 유도 코일(L1)과 캐패시터(C1)를 포함할 수 있다. 여기서, 캐패시터(C1)의 캐패시턴스는 공진주파수에서 동작하도록 조절된 값이다.
캐패시터(C1)의 일단은 전력 공급 장치(100)의 일단에 연결되고, 캐패시터(C1)의 타단은 송신 유도 코일(L1)의 일단에 연결된다. 송신 유도 코일(L1)의 타단은 전력 공급 장치(100)의 타단에 연결된다.
송신 공진 코일부(212)는 송신 공진 코일(L2), 캐패시터(C2), 저항(R2)을 포함한다. 송신 공진 코일(L2)은 캐패시터(C2)의 일단에 연결된 일단과 저항(R2)의 일단에 연결된 타단을 포함한다. 저항(R2)의 타단은 캐패시터(C2)의 타단에 연결된다. R2는 송신 공진 코일(L2)에서 전력손실로 발생하는 양을 저항으로 나타낸 것이다. 캐패시터(C2)의 캐패시턴스는 공진주파수에서 동작하도록 조절된 값이다.
검출부(220)는 무선전력 송신장치(200)와 무선전력 수신장치(300)간 결합상태를 검출할 수 있다. 일 실시 예에서 결합상태는 송신 공진 코일부(212)와 수신 공진 코일부(311) 간 결합계수를 통해 파악될 수 있다. 여기서, 검출부(220)는 입력 임피던스를 측정하여 상기 결합계수를 검출할 수 있다. 이에 대해서는 후술한다.
무선전력 수신장치(300)는 수신부(310), 정류부(320)를 포함할 수 있다.
무선전력 수신장치(300)는 휴대폰, 마우스, 노트북, MP3 플레이어 등과 같은 전자기기에 내장될 수 있다.
수신부(310)는 수신 공진 코일부(311)와 수신 유도 코일부(312)를 포함할 수 있다.
수신 공진 코일부(311)는 수신 공진 코일(L3), 캐패시터(C3), 저항(R3)을 포함한다. 수신 공진 코일(L3)은 캐패시터(C3)의 일단에 연결된 일단과 저항(R3)의 일단에 연결된 타단을 포함한다. 저항(R3)의 타단은 캐패시터(C2)의 타단에 연결된다. 저항(R3)는 수신 공진 코일(L3)에서 전력손실로 발생하는 량을 저항으로 나타낸 것이다. 캐패시터(C3)의 캐패시턴스는 공진주파수에서 동작하도록 조절된 값이다.
수신 유도 코일부(312)는 수신 유도 코일(L4) 및 캐패시터(C4)를 포함할 수 있다. 수신 유도 코일(L4)의 일단은 캐패시터(C4)의 일단에 연결되고, 수신 유도 코일(L4)의 타단은 정류부(320)의 타단에 연결된다. 캐패시터(C4)의 타단은 정류뷰(320)의 일단에 연결된다.
수신 공진 코일부(311)는 송신 공진 코일부(212)와 공진주파수에서 공진 상태를 유지한다. 즉, 수신 공진 코일부(311)는 송신 공진 코일부(212)와 공진 결합되어 교류전류가 흐르게 되고, 이에 따라 비방사(Non-Radiative) 방식으로 무선전력 송신장치(200)로부터 전력을 수신할 수 있다.
수신 유도 코일부(312)는 수신 공진 코일부(311)로부터 전자기 유도에 의해 전력을 수신하고, 수신 유도 코일부(312)로 수신된 전력은 정류부(320)를 통해 정류되어 부하(400)로 전달된다.
정류부(320)는 수신 유도 코일부(312)로부터 교류전력을 전달받고, 전달받은 교류전력을 직류전력으로 변환시킬 수 있다.
정류부(320)는 정류회로(미도시)와 평활회로(미도시)를 포함할 수 있다.
정류회로는 다이오드와 캐패시터로 구성될 수 있으며, 수신 유도 코일부(312)로부터 전달받은 교류전력을 직류전력으로 변환하여, 부하(400)에 전달할 수 있다.
평활 회로는 정류 출력을 매끄럽게 하는 역할을 한다. 평활회로는 캐패시터로 구성될 수 있다.
부하(400)는 정류부(320)로부터 정류된 직류 전력을 전달받을 수 있다.
부하(400)는 직류 전력을 필요로 하는 임의의 충전지 또는 장치일 수 있다. 예를 들어, 부하(400)는 휴대용 단말기의 배터리일 수 있으나, 이에 한정될 필요는 없다.
일 실시 예에서 부하(400)는 무선전력 수신장치(300)에 포함될 수도 있다.
무선전력 전송에서 품질 지수(Quality Factor)와 결합계수(Coupling Coefficient)는 중요한 의미를 갖는다.
품질 지수(Quality Factor)는 무선전력 송신장치 또는 무선전력 수신장치 부근에 축척할 수 있는 에너지의 지표를 의미할 수 있다.
품질 지수(Quality Factor)는 동작 주파수(w), 코일의 형상, 치수, 소재 등에 따라 달라질 수 있다. 수식으로는 Q=w*L/R로 표현될 수 있다. L은 코일의 인덕턴스이고, R은 코일자체에서 발생하는 전력손실의 양에 해당하는 저항을 의미한다.
품질 지수(Quality Factor)는 0에서 무한대의 값을 가질 수 있다.
결합계수(Coupling Coefficient)는 송신 측 코일과 수신 측 코일 간 자기적 결합의 정도를 의미하는 것으로 0에서 1의 범위를 갖는다.
결합계수(Coupling Coefficient)는 송신 측 코일과 수신 측 코일의 상대적인 위치나 거리 등에 따라 달라질 수 있다.
무선전력 송신장치(200) 및 무선전력 수신장치(300)는 인밴드(In band) 또는 아웃 오브 밴드(out of band) 통신을 통해 무선전력 수신장치(300)와 정보를 교환할 수 있다.
인밴드(In band) 통신은 무선전력 전송에 사용되는 주파수를 갖는 신호를 이용하여 무선전력 송신장치(200)와 무선전력 수신장치(300)간 정보를 교환하는 통신을 의미할 수 있다. 무선전력 수신장치(300)는 스위칭 동작을 통해 무선전력 송신장치(200)에서 송신되는 전력을 수신하거나, 수신하지 않을 수 있다. 이에 따라, 무선전력 송신장치(200)는 무선전력 송신장치(200)에서 소모되는 전력량을 검출하여 무선전력 수신장치(300)의 온 또는 오프 신호를 인식할 수 있다.
구체적으로, 무선전력 수신장치(300)는 저항과 스위치를 이용해 저항에서 흡수하는 전력량을 변화시켜 무선전력 송신장치(200)에서 소모되는 전력을 변경시킬 수 있다. 무선전력 송신장치(200)는 상기 소모되는 전력의 변화를 감지하여 무선전력 수신장치(300)의 상태 정보를 획득할 수 있다. 스위치와 저항은 직렬로 연결될 수 있다. 일 실시 예에서 무선전력 수신장치(300)의 상태 정보는 무선전력 수신장치(300)의 현재 충전량, 충전량 추이에 대한 정보를 포함할 수 있다.
더 구체적으로 설명하면, 스위치가 개방되면, 저항이 흡수하는 전력은 0이 되고, 무선전력 송신장치(200)에서 소모되는 전력도 감소한다.
스위치가 단락되면, 저항이 흡수하는 전력은 0보다 크게 되고, 무선전력 송신장치(200)에서 소모되는 전력은 증가한다. 무선전력 수신장치는 이와 같은 동작을 반복하면, 무선전력 송신장치(200)는 무선전력 송신장치(200)에서 소모되는 전력을 검출하여 무선전력 수신장치(300)와 디지털 통신을 수행할 수 있다.
무선전력 송신장치(200)는 위와 같은 동작에 따라 무선전력 수신장치(300)의 상태 정보를 수신하고, 그에 적합한 전력을 송신할 수 있다.
이와는 반대로, 무선전력 송신장치(200) 측에 저항과 스위치를 구비하여 무선전력 송신장치(200)의 상태 정보를 무선전력 수신장치(300)에 전송하는 것도 가능하다. 일 실시 예에서 무선전력 송신장치(200)의 상태 정보는 무선전력 송신장치(200)가 전송할 수 있는 최대공급 전력량, 무선전력 송신장치(200)가 전력을 제공하고 있는 무선전력 수신장치(300)의 개수 및 무선전력 송신장치(200)의 가용 전력량에 대한 정보를 포함할 수 있다.
아웃 오브 밴드 통신은 공진 주파수 대역이 아닌 별도의 주파수 대역을 이용하여 전력 전송에 필요한 정보를 교환하는 통신을 말한다. 무선전력 송신장치(200)와 무선전력 수신장치(300)는 아웃 오브 밴드 통신 모듈을 장착하여 전력 전송에 필요한 정보를 교환할 수 있다. 상기 아웃 오브 밴드 통신 모듈은 전력 공급 장치에 장착될 수도 있다. 일 실시 예에서 아웃 오브 밴드 통신 모듈은 블루투스, 지그비, 무선랜, NFC와 같은 근거리 통신 방식을 사용할 수 있으나, 이에 한정될 필요는 없다.
다음으로 도 3 내지 도 8을 참조하여, 본 발명의 일 실시 예에 따른 전력 제어 방법을 상세히 설명한다.
도 3은 본 발명의 일 실시 예에 따른 전력 제어 방법을 설명하기 위한 흐름도이고, 도 4는 최대 전력 전송 효율을 만족하기 위한 결합계수와 부하 임피던스의 관계를 보여주는 도면이고, 도 5는 부하가 배터리인 경우, 최대 전력 전송 효율을 만족하기 위한 결합계수와 부하 임피던스의 관계의 예를 보여주는 도면이고, 도 6은 부하가 배터리인 경우, 배터리에 인가되는 전압에 대한 전류의 관계를 보여주는 도면이고, 도 7은 부하가 배터리인 경우, 배터리에 인가되는 전력량과 부하 임피던스의 관계를 보여주는 도면이고, 도 8은 부하가 배터리인 경우, 최대 전력 전송 효율을 만족하기 위한 결합계수와 부하의 수신 전력의 관계를 보여주는 도면이다.
먼저, 도 3에서 본 발명의 일 실시 예에 따른 전력 제어 방법을 도 1 및 도 12의 내용에 결부시켜 설명한다.
무선전력 송신장치(200)는 입력 임피던스를 측정한다(S101). 입력 임피던스는 제1 입력 임피던스(Z1)일 수 있다. 제1 입력 임피던스(Z1)는 도 2에서 보는 바와 같이, 전력 공급 장치(100)에서 무선전력 송신장치(200)를 바라보았을 때 측정되는 임피던스 일 수 있다. 일 실시 예에서 검출부(220)는 전력 공급 장치(100)에서 무선전력 송신장치(200)로 입력되는 전류와 전압을 이용하여 제1 입력 임피던스(Z1)를 측정할 수 있다.
다시 도 3을 설명하면, 검출부(220)는 측정된 입력 임피던스를 이용하여 결합계수를 검출한다(S103). 여기서, 결합계수(K2)는 송신 공진 코일(L2)와 수신 공진 코일(L3)간의 전자기적 결합의 정도를 표시하는 것으로, 무선전력 송신장치(200) 및 무선전력 수신장치(300) 간의 거리, 방향, 위치 중 적어도 어느 하나에 의해 달라질 수 있는 값이다.
상기 측정된 결합계수는 무선전력 송신장치(200)가 무선전력 수신장치(300)에 전송할 송신 전력을 제어하는데 사용될 수 있다. 일 실시 예에서 무선전력 송신장치(200)는 검출된 결합계수가 증가할수록 송신 전력을 증가시킬 수 있고, 검출된 결합계수가 감소할수록 송신 전력을 감소시킬 수 있다.
상기 결합계수를 검출하는 방법을 설명한다.
도 2를 참조하면, 제3 입력 임피던스(Z3)는 수신 공진 코일부(311)에서 수신 유도 코일부(312)를 바라보았을 때의 임피던스를 의미할 수 있고, [수학식 1]과 같이 표현될 수 있다.
[수학식 1]
Figure 112012078584278-pat00001
여기서, w는 송신 공진 코일(L2)와 수신 공진 코일(L3)이 공진할 때의 공진주파수이고, M3는 수신 공진 코일(L3)과 수신 유도 코일(L4)간 상호 인덕턴스를 의미한다. 또한, ZL은 출력 임피던스를 의미한다. 출력 임피던스(ZL)는 부하(400)의 임피던스인 RL과 같을 수 있다.
상호 인덕턴스(M3)는 다음의 [수학식 2]를 통해 계산될 수 있다.
[수학식 2]
Figure 112012078584278-pat00002
여기서, K3는 수신 공진 코일(L3)와 수신 유도 코일(L4)간 결합계수이고, 고정된 값이다. 수신 공진 코일(L3)의 인덕턴스 및 수신 유도 코일(L4)의 인덕턴스 또한 고정된 값이므로, 상호 인덕턴스(M3)도 고정된 값이다.
[수학식 1]에서 공진주파수(w), 상호 인덕턴스(M3), 부하 임피던스(ZL), 수신 유도 코일(L4)의 인덕턴스 및 캐패시터(C4)의 캐패시턴스는 고정된 값이므로, 제3 입력 임피던스(Z3)는 고정된 값을 갖는다.
[수학식 1]은 주파수 영역을 기준으로 한 수식이고, 이하의 수식들도 주파수 영역을 기준으로 하여 표현하기로 한다.
제2 입력 임피던스(Z2)는 무선전력 송신장치(200)에서 무선전력 수신장치(300)를 바라보았을 때 측정되는 임피던스를 의미하고, [수학식 3]과 같이 표현될 수 있다.
[수학식 3]
Figure 112012078584278-pat00003
여기서, M2는 송신 공진 코일(L2)와 수신 공진 코일(L3)간의 상호 인덕턴스를 의미하고, C3는 수신 공진 코일부(311)를 등가회로로 변환 시 표현되는 캐패시터를 의미한다. 또한, R3는 수신 공진 코일(L3)에서 전력손실로 발생하는 손실량을 저항으로 나타낸 것이다.
캐패시터(C3)의 캐패시턴스, 수신 공진 코일(L3)의 인덕턴스, 제3 입력 임피던스(Z3), 저항(R3)은 고정된 값이다.
상호 인덕턴스(M2)는 다음의 [수학식 4]를 통해 계산될 수 있다.
[수학식 4]
Figure 112012078584278-pat00004
여기서, 송신 공진 코일(L2)의 인덕턴스 및 수신 공진 코일(L3)의 인덕턴스는 고정된 값이므로, 상호 인덕턴스(M2)는 송신 공진 코일(L2)와 수신 공진 코일(L3)간의 결합계수(K2)에 따라 변화될 수 있다.
따라서, [수학식 1]의 제3 입력 임피던스(Z3)를 [수학식 3]에 대입하면, 제2 입력 임피던스(Z2)는 상호 인덕턴스(M2)에 관한 식으로 표현될 수 있고, 상호 인덕턴스(M2)에 의해 가변될 수 있다.
제1 입력 임피던스(Z1)는 전력 공급 장치(100)에서 무선전력 송신장치(200) 측을 바라보았을 때 측정되는 임피던스를 의미하고, [수학식 5]과 같이 표현될 수 있다.
[수학식 5]
Figure 112012078584278-pat00005
여기서, M1은 송신 유도 코일(L1)과 송신 공진 코일(L2)간 상호 인덕턴스이다.
상호 인덕턴스(M1)은 다음의 [수학식 6]을 통해 계산될 수 있다.
[수학식 6]
Figure 112012078584278-pat00006
여기서, 송신 공진 코일(L1)의 인덕턴스, 송신 유도 코일(L2)의 인덕턴스 및 송신 공진 코일(L1)과 송신 유도 코일(L2)의 결합계수(K1)은 고정된 값이므로, 상호 인덕턴스(M1)도 고정된 값을 갖는다.
송신 유도 코일(L1)의 인덕턴스, 캐패시터(C1)의 캐패시턴스, 상호 인덕턴스(M1), 송신 공진 코일(L2)의 인덕턴스, 캐패시터(C2), 저항(R2)는 모두 고정된 값이나, 제2 입력 임피던스(Z2)는 상호 인덕턴스(M2)에 의해 가변될 수 있는 값이다.
[수학식 2]를 [수학식 3]에 대입하면, 제1 입력 임피던스(Z1)는 상호 인덕턴스(M2)에 관한 식으로 표현될 수 있다.
검출부(220)는 단계(S101)에서 측정된 제1 입력 임피던스(Z1) 및 상기 상호 인덕턴스(M2)에 관한 식 제1 입력 임피던스(Z1)를 이용하여 상호 인덕턴스(M2)를 계산할 수 있고, 계산된 상호 인덕턴스(M2) 및 [수학식 4]를 통해 결합계수(K2)를 검출할 수 있다.
결합계수(K2)를 검출하는 또 다른 방법은 도 13에서 설명한다.
다시 도 3을 설명하면, 무선전력 송신장치(200)는 검출된 결합계수(K2)에 대응하는 수신 전력을 결정한다(S105). 여기서, 결정된 수신 전력은 무선전력 송신장치(200)와 부하(400)간 전력 전송 효율을 최대로 높이기 위해 부하(400)에서 수신되어야 하는 전력을 의미할 수 있다.
이하에서는, 결합계수(K2)를 검출하고, 검출된 결합계수(K2)에 따라 부하(400)에서 수신되어야 하는 수신 전력을 결정하는 방법을 설명한다.
도 2를 참조하면, 전력 전송 효율(Efficiency)은 다음의 [수학식 7]을 통해 계산될 수 있다.
[수학식 7]
Figure 112012078584278-pat00007
여기서, Pin은 전력 공급 장치(100)가 무선전력 송신장치(200)에 전달하는 송신 전력이고, Pout은 부하(400)에서 소모하는 소모 전력임과 동시에 부하(400)가 수신하는 수신 전력을 의미할 수 있다. IL은 부하(400)에 흐르는 전류이다.
전류(I1)는 무선전력 송신장치(200)에 입력되는 전류이고, 동시에 송신 유도 코일부(211)에 흐르는 전류이다.
전류(I1)는 다음과 같은 과정을 통해 계산될 수 있다.
먼저, 수신 공진 코일부(311)에 흐르는 전류를 I3라고 하면, I3는 다음의 [수학식 8]과 같이 표현될 수 있다.
[수학식 8]
Figure 112012078584278-pat00008
송신 공진 코일부(212)에 흐르는 전류를 I2라 하면, I2는 다음의 [수학식 9]와 같이 표현될 수 있다.
[수학식 9]
Figure 112012078584278-pat00009
송신 유도 코일부(211)에 흐르는 전류를 I1이라 하면, I1은 다음의 [수학식 10]과 같이 표현될 수 있다.
[수학식 10]
Figure 112012078584278-pat00010
[수학식 8]을 [수학식 9]에 대입하고, 대입한 식을 [수학식 10]에 대입한 식 및 위에서 계산된 상호 인덕턴스(M2)로 표현된 제1 입력 임피던스(Z1)를 [수학식 7]에 대입하면, 전력 전송 효율에 대한 다음의 [수학식 11]이 얻어진다.
[수학식 11]
Figure 112012078584278-pat00011
[수학식 11]는 다음의 [수학식 12]와 같이 정리된다.
[수학식 12]
Figure 112012078584278-pat00012
송신 공진 코일부(212)의 품질 지수(Q2)는 다음의 [수학식 13]과 같이 표현되고, 수신 공진 코일부(311)의 품질 지수(Q3)는 다음의 [수학식 14]와 같이 표현된다.
[수학식 13]
Figure 112012078584278-pat00013
[수학식 14]
Figure 112012078584278-pat00014
[수학식 13] 및 [수학식 14]를 [수학식 12]에 대입하면, 다음의 [수학식 15]와 같이 정리된다.
[수학식 15]
Figure 112012078584278-pat00015
계산의 편의를 위해, x는 다음의 [수학식 16], m은 다음의 [수학식 17]과 같이 치환한다.
[수학식 16]
Figure 112012078584278-pat00016
[수학식 17]
Figure 112012078584278-pat00017
[수학식 16] 및 [수학식 17]을 전력 전송 효율에 대한 식인 [수학식 15]에 대입하면, 전력 전송 효율은 다음의 [수학식 18]과 같이 정리될 수 있다.
[수학식 18]
Figure 112012078584278-pat00018
전력 전송 효율이 최대가 되는 조건을 얻기 위해 [수학식 18]을 x에 대해 미분하면, 다음의 [수학식 19]와 같이 정리될 수 있다.
[수학식 19]
Figure 112012078584278-pat00019
[수학식 19]에서 전력 전송 효율이 최대가 되는 조건은 x가 다음의 [수학식 20]과 같을 경우이다.
[수학식 20]
Figure 112012078584278-pat00020
[수학식 20]에서 [수학식 16]의 x와 [수학식 17]의 m을 대입하면, 다음의 [수학식 21]이 얻어진다.
[수학식 21]
Figure 112012078584278-pat00021
[수학식 21]을 RL에 대해 정리하면, 다음의 [수학식 22]가 얻어진다.
[수학식 22]
Figure 112012078584278-pat00022
즉, 부하(400)의 임피던스(RL)가 [수학식 22]와 같은 값을 가질 때, 전력 전송 효율은 최대가 된다. 이 때, 전력 전송 효율은 다음의 [수학식 23]과 같이 계산될 수 있다.
[수학식 23]
Figure 112012078584278-pat00023
즉, 부하(400)의 임피던스(RL)가 [수학식 22]와 같을 때, 최대 전력 전송 효율이 [수학식 23]과 같이 얻어질 수 있다.
[수학식 22]를 참조하면, 전력 전송 효율이 최대가 되는 조건을 만족하는 부하(400)의 임피던스(RL)는 결합계수(K)에 따라 달라질 수 있음을 보여준다.
구체적으로 [수학식 22]의 결합계수(K)와 부하(400)의 임피던스 간 관계를 그래프로 도시하면, 도 4와 같다.
도 4에서 x축은 결합계수(K)이고, y축은 부하 임피던스를 나타낸다.
도 4를 참조하면, 결합계수(K)가 증가함에 따라 부하 임피던스는 감소하고, 결합계수(K)가 감소함에 따라 부하 임피던스는 증가하는 경향을 확인할 수 있다. 즉, 결합계수(K)에 따라 부하 임피던스가 가변되어야 전력 전송 효율이 최대가 될 수 있다.
결합계수(K)는 무선전력 송신장치(200) 및 무선전력 수신장치(300)간의 거리, 서로 놓여있는 위치 중 어느 하나 이상에 따라 달라질 수 있으므로, 최대 전력 전송 효율을 얻기 위해서는 이에 따라, 부하(400)의 임피던스가 달라질 필요가 있다.
도 5는 결합계수(K)와 부하 임피던스 간의 관계를 구체적인 수치를 통해 나타낸 그래프이다.
결합계수(K)가 0.05일 때, 부하 임피던스는 13.3옴이고, 결합계수(K)가 0.10일 때, 부하 임피던스는 8옴이고, 결합계수(K)가 0.25일 때, 부하 임피던스는 5옴으로, 결합계수(K)가 증가함에 따라 부하 임피던스가 감소하면, 전력 전송 효율이 최대가 된다.
일반적으로 부하(400)에 사용되는 휴대용 단말기의 배터리가 있다. 배터리의 임피던스는 배터리에 인가되는 전력량에 따라 달라지는 경향이 있다. 여기서, 부하(400)의 예로 휴대용 단말기의 배터리를 들었으나, 이에 한정될 필요는 없고, 부하(400)에 인가되는 전력량에 따라 부하(400)의 임피던스가 달라지는 것이면 어느 것이든 상관없다.
도 6을 참조하면, 배터리에 인가되는 전압에 대한 전류의 관계가 그래프로 도시되어 있다.
배터리의 임피던스(RL)는 다음의 [수학식 24]와 같이 표현될 수 있다.
[수학식 24]
Figure 112012078584278-pat00024
여기서, V는 배터리에 인가되는 전압이고, I는 배터리에 흐르는 전류이다.
만약, 배터리에 4V가 인가되는 경우, 배터리에 인가되는 전력량은 1.2W(4V X 0.3A)가 되고, 이 때, 배터리의 임피던스는 13.3옴(4V/0.3A)가 된다.
만약, 배터리에 4.583V이 인가되는 경우, 배터리에 인가되는 전력량은 2.0W(4.583V X 0.437A)가 되고, 이 때, 배터리의 임피던스는 약 10.5옴(4.458V/0.437A)가 된다.
만약, 배터리에 5V가 인가되는 경우, 배터리에 인가되는 전력량은 5.0W(5V X 1.0A)가 되고, 이 때, 배터리의 임피던스는 5.0옴(5V/1A)가 된다.
즉, 이와 같이, 배터리에 인가되는 전력량에 따라 배터리의 임피던스가 달라질 수 있다.
또한, 이 결과를 이용하여 최대 전력 전송 효율을 만족하도록 배터리에 인가되는 전력량에 따른 부하 임피던스의 관계를 그래프로 도시하면, 도 7과 같다.
도 7에서 x축은 배터리에 인가되는 전력량이고, y축은 배터리(부하)의 임피던스이다.
도 7에서 보는 바와 같이, 배터리의 임피던스는 배터리에 인가되는 전력량에 따라 그 값이 달라짐을 확인할 수 있다.
여기서, 도 5와 도 7을 비교하면, 그래프의 형태가 유사함을 확인할 수 있다. 구체적으로, 도 5를 참조하면, 결합계수(K)가 증가함에 따라 부하 임피던스가 감소하고, 결합계수(K)가 감소함에 따라 부하 임피던스가 증가함을 확인할 수 있고, 도 7을 참조하면, 배터리에 인가되는 전력량이 증가함에 따라 배터리의 임피던스가 감소하고, 배터리에 인가되는 전력량이 감소함에 따라 배터리의 임피던스가 증가함을 확인할 수 있고, 도 5와 도 7에 도시된 그래프의 형태는 매우 유사함을 확인할 수 있다.
즉, 무선전력 전송 시스템(10)의 부하(400)를 배터리와 같이, 인가되는 전력량에 따라 임피던스가 달라질 수 있는 것을 채용하면, 결합계수(K)와 부하(400)의 수신 전력 간 특정한 대응관계가 성립됨을 확인할 수 있다. 이 경우, 결합계수(K)에 따라 부하(400)의 수신 전력이 상기 대응관계가 성립되도록 송신 전력을 조절된다면, 도 5에서 도시된 최대 전력 전송 효율을 얻기 위한 조건을 만족시킬 수 있다.
즉, 결합계수(K)에 따라 최대 전력 전송 효율을 얻기 위해 부하 임피던스를 조절해야 하는데, 이는 도 7에서 보는 바와 같이, 전력량을 제어함으로써 가능하다. 다시 말해, 결합계수(K)에 따라 배터리의 수신 전력이 결정될 수 있고, 배터리가 결정된 수신 전력을 수신하도록 송신 전력이 조절된다면, 도 5의 전력 전송 효율이 최대가 되는 조건이 만족되어 최대 전력 전송 효율을 얻을 수 있다.
상기 대응관계는 도 8의 그래프와 같이 나타낼 수 있다.
도 8을 참조하면, 결합계수(K)에 따라 배터리에서 수신하는 수신 전력 간 관계가 그래프로 도시되어 있다. 결합계수(K)가 0.05일 때, 배터리에서 수신하는 전력량이 1.2W이고, 결합계수(K)가 0.10일 때, 배터리에서 수신하는 전력량이 2.0W이고, 결합계수(K)가 0.25일 때, 배터리에서 수신하는 전력량이 5W이면, 도 5에서 도시된 최대 전력 전송 효율을 얻기 위한 조건을 만족한다.
결국, 최대 전력 전송 효율을 얻기 위해 결합계수(K)에 따라 부하(400)가 수신해야 하는 수신 전력을 결정해야 한다.
일 실시 예에서 무선전력 송신장치(200)는 결합계수(K2)에 대응하는 수신 전력을 저장하고 있는 저장부(미도시)를 더 포함할 수 있다. 무선전력 송신장치(200)는 저장부를 검색하여, 결합계수(K2)에 대응하는 수신 전력을 찾아 수신 전력을 결정할 수 있다.
다시 도 3을 설명하면, 무선전력 송신장치(200)는 부하(400)가 현재 수신하고 있는 수신 전력을 확인한다(S107). 무선전력 수신장치(300)는 무선전력 송신장치(200)로부터 수신한 전력을 부하(400)에 그대로 전달하므로, 무선전력 수신장치(300)가 수신하는 전력과 부하(400)가 수신하는 전력은 동일한 것으로 가정한다.
무선전력 송신장치(200)가 부하(400)에서 현재 수신하고 있는 전력을 확인하는 방법은 다양한 방법이 사용될 수 있다.
일 실시 예에서 무선전력 송신장치(200)는 도 2에서 설명된 아웃 오브 밴드 통신을 통해 부하(400)가 현재 수신하고 있는 수신 전력을 확인할 수 있다. 구체적으로, 무선전력 송신장치(200)는 아웃 오브 밴드 통신을 통해 무선전력 수신장치(300)가 현재 수신하고 있는 수신 전력에 대한 정보를 요청하고, 요청에 대한 응답을 수신하여 현재 수신 전력을 확인할 수 있다.
일 실시 예에서 무선전력 송신장치(200)는 무선전력 송신장치(200) 내부에 흐르는 전류의 세기 측정하여 부하(400)가 현재 수신하고 있는 수신 전력을 확인할 수 있다. 이 경우, 무선전력 송신장치(200)는 도 1에서 설명한 전력 공급 장치(100)를 포함할 수 있다. 일 예로, 무선전력 송신장치(200)의 내부에 흐르는 전류의 세기는 부하(400)가 현재 수신하고 있는 수신 전력과 연관될 수 있다. 구체적으로, 무선전력 송신장치(200)와 무선전력 수신장치(300)간 거리가 일정할 때, 부하(400)가 수신하고 있는 전력이 많을수록 무선전력 송신장치(200)의 내부에 흐르는 전류의 세기는 커질 수 있고, 부하(400)가 수신하고 있는 전력이 작을수록 무선전력 송신장치(200)의 내부에 흐르는 전류의 세기는 작아질 수 있다.
무선전력 송신장치(200)는 무선전력 송신장치(200)의 내부에 흐르는 전류의 세기와 부하(400)가 수신하고 있는 전력을 대응시켜 저장하고 있는 저장부(170)를 포함할 수 있고, 상기 저장부(170)를 검색하여 측정된 전류의 세기와 대응하는 수신 전력을 찾아 부하(400)가 현재 수신하고 있는 수신 전력을 확인할 수 있다.
그 후, 무선전력 송신장치(200)는 확인된 수신 전력이 상기 결정된 수신 전력과 동일한지 확인한다(S109).
만약, 확인된 수신 전력이 결정된 수신 전력과 다른 것으로 확인된 경우, 무선전력 송신장치(200)는 무선전력 수신장치(300)에 전송할 송신 전력을 결정한다(S111). 즉, 무선전력 송신장치(200)는 최대의 전력 전송 효율을 얻기 위해 상기 결정된 수신 전력에 대응하는 송신 전력을 결정할 수 있다.
무선전력 송신장치(200)는 결정된 송신 전력을 무선전력 수신장치(300)에 전송하기 위해 무선전력 수신장치(300)에 전송되는 송신 전력을 제어한다(S113). 일 실시 예에서 무선전력 송신장치(200)는 전력 공급 장치(100)에 전원을 공급하는 전원 공급부(110)를 제어하여 송신 전력을 제어하는 방법이 사용될 수 있고, 이에 대해서는 도 9 및 도 10에서 자세히 설명한다.
또 다른 실시 예에서 무선전력 송신장치(200)는 무선전력 송신장치(200)의 내부에 흐르는 전류를 측정하여 송신 전력을 제어할 수 있다. 이에 대해서는 도 11 및 도 12에서 자세히 후술한다.
무선전력 송신장치(200)는 전력 공급 장치(100)로부터 결정된 송신 전력을 공급받아 무선전력 수신장치(300)에 전송한다. 부하(400)는 무선전력 수신장치(300)로부터 최대의 전력 전송 효율을 만족하는 수신 전력을 전달받을 수 있다.
상기와 같이, 본 발명의 실시 예에 따르면, 무선전력 송신장치(200)는 전력 전송 효율이 최대가 되도록 하기 위한 송신 전력을 전송하고, 부하(400)는 전력 전송 효율이 최대가 되도록 하기 위한 수신 전력을 수신할 수 있어, 결과적으로, 전력 전송 효율을 최대화 시킬 수 있다.
다음으로 도 1 내지 도 8의 내용과 결부시켜 본 발명의 또 다른 실시 예에 따른 전력 제어 방법을 도 9 내지 도 10을 참조하여 설명한다. 도 9 내지 도 10은 도 3의 단계(S113)의 송신 전력을 제어하기 위한 방법에 관한 내용이다.
도 9는 본 발명의 또 다른 실시 예에 따른 무선전력 전송 시스템(20)의 구성도이고, 도 10은 본 발명의 또 다른 실시 예에 따른 전력 제어 방법을 설명하기 위한 흐름도이다.
먼저, 무선전력 전송 시스템(20)은 전원 공급 장치(500), 무선전력 송신장치(900), 무선전력 수신장치(300)를 포함할 수 있다.
무선전력 수신장치(300)는 도 1 내지 도 2에서 설명한 내용과 같다.
무선전력 송신장치(900)는 전원 공급 장치(500)로부터 직류 전력을 전달받을 수 있다. 구체적으로, 무선전력 송신장치(900)는 전원 공급 장치(500)에 전압 제어 신호를 전송하여, 조절된 직류 전압을 수신할 수 있다.
무선전력 송신장치(900)는 송신부(910), 전류 센싱부(930), 발진기(940), 교류 전력 생성부(950), 제어부(960), 저장부(970), 직류 차단부(980)를 더 포함할 수 있다.
전류 센싱부(930)는 전원 공급 장치(500)로부터 수신한 직류 전압이 교류 전력 생성부(950)에 인가될 때, 회로에 흐르는 전류를 감지하고 감지된 전류의 세기를 측정할 수 있다. 그러나, 전류 센싱부(930)가 측정하는 지점은 이에 한정될 필요는 없고, 후술할 교류 전력 생성부(950)에서 출력되는 지점도 포함될 수 있다.
무선전력 송신장치(900) 내부에 흐르는 전류의 세기는 무선전력 송신장치(900)와 무선전력 수신장치(300)간 전력 전송 상태에 따라 가변될 수 있다. 상기 전력 전송 상태에 대해서는 후술한다.
일 실시 예에서 전류 센싱부(930)는 변류기(CT: Current Transformer)가 사용될 수 있다.
발진기(940)(Oscillator)는 소정의 주파수를 갖는 교류신호를 생성할 수 있다. 후술할 송신부(910)가 공진을 이용하여 무선전력 수신장치(300)에 전력을 전송하는 경우, 발진기(940)는 송신부(910)에 포함된 송신 공진 코일이 공진 주파수에서 동작하도록 공진 주파수를 갖는 교류신호를 생성하여 교류 전력 생성부(950)에 전달할 수 있다. 발진기(940)에서 생성된 교류신호는 교류 전력 생성부(950)에 인가된다.
교류 전력 생성부(950)는 전원 공급 장치(500)의 교류 직류 변환기(510)로부터 수신한 직류 전력을 발진기(940)로부터 전달받은 교류신호를 이용하여 교류 전력을 생성할 수 있다.
교류 전력 생성부(950)는 발진기(940)로부터 인가된 교류신호를 증폭할 수 있다. 일 실시 예에서 상기 증폭의 정도는 교류 전력 생성부(950)에 인가되는 직류 전압의 크기에 따라 가변될 수 있다.
일 실시 예에서 교류 전력 생성부(950)는 푸쉬 풀 타입(push-pull type)의 듀얼 모스펫(Dual MOSFET)이 사용될 수 있다.
제어부(960)는 무선전력 송신장치(900)의 전반적인 동작을 제어할 수 있다.
제어부(960)는 무선전력 송신장치(900)와 무선전력 수신장치(300)간 전력 전송 상태 변화를 감지할 수 있다. 제어부(960)는 상기 전력 전송 상태 변화를 감지하여 전원 공급 장치(500)로부터 수신할 직류 전력을 결정할 수 있고, 결정된 직류 전력을 수신하기 위해 전원 공급 장치(500)에 전력 제어 신호를 전력선 통신을 이용해 전송할 수 있다. 일 실시 예에서 상기 전력 전송 상태는 무선전력 송신장치(900)와 무선전력 수신장치(300)간 떨어진 거리, 양 장치가 놓여있는 방향에 대한 것일 수 있다.
일 실시 예에서 상기 전력 전송 상태는 무선전력 수신장치(300)의 전력 수신 상태에 대한 것일 수 있다. 예를 들면, 무선전력 수신장치(300)의 충전량이 기준량보다 적은 경우, 무선전력 수신장치(300)는 아웃 오브 밴드(out-of-band)통신을 통해 현재 전송되는 전력보다 많은 전력을 전송하도록 무선전력 송신장치(200)에 요청할 수 있다. 그러면, 무선전력 송신장치(900)는 상기 요청에 대응하여 무선전력 수신장치(300)에 전송할 송신 전력을 결정할 수 있다. 무선전력 송신장치(900)는 상기 결정된 송신 전력에 대응하여 전원 공급 장치(500)로부터 수신할 직류 전력을 결정할 수 있고, 결정된 직류 전력을 수신하기 위해 전원 공급 장치(500)를 제어할 수 있다. 그 후, 무선전력 송신장치(900)는 상기 결정된 직류 전력을 전원 공급 장치(500)로부터 전달받고, 전달받은 직류 전력을 교류 전력으로 변환하여 무선전력 수신장치(300)에 전송할 수 있다.
제어부(960)는 전류 센싱부(930)가 측정한 전류의 세기를 수신하고, 상기 측정된 전류의 세기에 기초하여 무선전력 송신장치(900)와 무선전력 수신장치(300)간 떨어져 있는 근접거리를 확인할 수 있다.
제어부(960)는 확인된 근접거리를 이용하여, 전원 공급 장치(500)로부터 수신할 직류 전압을 결정할 수 있다. 제어부(960)는 결정된 직류 전압에 대한 정보가 포함되어 있는 전압 제어 신호를 전원 공급 장치(500)에 전송할 수 있다. 이 때, 무선전력 송신장치(900)와 전원 공급 장치(500) 간에는 전력선 통신을 이용하여 상기 전압 제어 신호를 전송할 수 있다. 전력선 통신은 전력을 공급하는 전력선을 매개체로 하여 데이터를 수백kHz에서 수십 MHz 이상의 고주파 신호에 실어 통신하는 기술을 말한다. 즉, 전력선 통신은 전용 통신 회선을 따로 설치하지 않고, 배선작업이 완료된 전력선을 이용하여 통신을 수행한다.
일 실시 예에서 제어부(960)는 상기 측정된 전류의 세기에 기초하여 무선전력 송신장치(900)와 무선전력 수신장치(300)간 떨어져 있는 거리인 근접거리를 확인할 수 있다.
일 실시 예에서 제어부(960)는 상기 확인된 근접 거리가 아닌 상기 측정된 전류의 세기에 기초하여 전원 공급 장치(500)로부터 수신할 직류 전압을 결정할 수도 있다.
저장부(970)는 전류 센싱부(930)에서 측정된 전류의 세기 및 무선전력 송신장치(900)와 무선전력 수신장치(300)간 근접 거리를 대응시켜 룩업테이블의 형태로 저장할 수 있다.
저장부(970)는 전류 센싱부(930)에서 측정된 전류의 세기 및 무선전력 송신장치(900)가 전원 공급 장치(500)로부터 수신할 직류 전압을 대응시켜 룩업테이블의 형태로 저장할 수 있다.
저장부(970)는 전류 센싱부(930)에서 측정된 전류의 세기, 무선전력 송신장치(900)와 무선전력 수신장치(300)간 근접 거리 및 무선전력 송신장치(900)가 전원 공급 장치(500)로부터 수신할 직류 전압을 대응시켜 룩업테이블의 형태로 저장할 수 있다.
직류 차단부(980)는 제어부(960)에 인가되는 직류 신호를 차단할 수 있다. 일 실시 예에서 직류 차단부(980)는 커패시터로 구성될 수 있다.
송신부(910)는 교류 전력 생성부(950)에서 출력된 교류전력을 무선전력 수신장치(300)에 무선으로 전송할 수 있다.
전원 공급 장치(500)는 교류 직류 변환기(510), 제어부(520), 직류 차단부(530)를 포함할 수 있다. 일 실시 예에서 전원 공급 장치(500)는 외부로부터 수신한 교류 전원을 직류 전원으로 변환할 수 있는 어댑터(adaptor)일 수 있다.
교류 직류 변환기(510)는 외부로부터 수신한 교류 전압을 소정의 크기를 갖는 직류 전압으로 변환할 수 있다. 이 때, 외부로부터 수신한 교류 전압은 그 크기가 220V이고, 주파수가 60Hz일 수 있으나, 이에 한정될 필요는 없다. 제어부(520)는 무선전력 송신장치(900)로부터 전압 제어 신호를 수신하여, 무선전력 송신장치(200)가 결정한 직류 전압을 출력하도록 교류 직류 변환기(510)를 제어할 수 있다. 즉, 제어부(520)는 무선전력 송신장치(900)에서 측정된 전류의 세기에 대응하는 직류 전압을 출력하도록 교류 직류 변환기(510)를 제어하는 전압 조절 신호를 생성하여 교류 직류 변환기(510)에 전송할 수 있다. 이 떼, 교류 직류 변환기(510)는 상기 전압 조절 신호를 수신하여 외부로부터 수신한 교류 전압을 소정의 크기의 직류 전압으로 변환하여 출력할 수 있다.
직류 차단부(530)는 제어부(520)로 인가되는 직류 신호를 차단할 수 있다. 일 실시 예에서 직류 차단부(530)는 커패시터로 구성될 수 있다.
도 10은 본 발명의 또 다른 실시 예에 따른 전력 제어 방법을 설명하기 위한 래더 다이어그램이다.
이하에서는, 도 9의 내용을 결부시켜 본 발명의 일 실시 예에 따른 전력 제어 방법을 설명한다.
도 10을 참조하면, 먼저, 전류 센싱부(930)는 무선전력 송신장치(900) 내부에 흐르는 전류의 세기를 측정할 수 있다(S201). 전류 센싱부(930)는 무선전력 송신장치(900)의 내부에 흐르는 전류를 감지하여 감지된 전류의 세기를 측정할 수 있다.
일 실시 예에서 전류 센싱부(930)는 도 9에서 도시된 교류 전력 생성부(950)에 입력되는 전류의 세기를 측정할 수 있다. 또 다른 실시 예에서 전류 센싱부(930)는 교류 전력 생성부(950)에서 출력되는 전류의 세기를 측정할 수도 있으나, 이에 한정될 필요는 없고, 무선전력 송신장치(900)의 내부에 흐르는 전류의 세기를 측정할 수 있다.
일 실시 예에서 전류 센싱부(930)는 변류기(CT: Current Transformer)가 사용될 수 있다. 변류기는 회로에 흐르는 높은 전류를 필요한 값의 낮은 전류로 낮추어 측정할 수 있는 장치이다. 즉, 변류기는 회로에 흐르는 임의의 전류에 대해 그에 비례하는 전류로 변성시켜 전류를 측정할 수 있다. 보다 구체적으로, 변류기는 1차권선, 2차권선과 철심으로 구성되어 있으며, 철심을 지나는 자속에 의해 전자기 유도 현상이 발생하면, 1차 전류를 변류비에 비례하여 2차 전류로 변성시킬 수 있고, 변성된 2차 전류를 측정할 수 있다.
일 실시 예에서 전류 센싱부(930)는 권선형, 봉형, 관통형, 3차 권선부형, 다심 철심형 중 어느 하나의 변류기가 사용될 수 있다.
일 실시 예에서 전류 센싱부(930)가 측정하는 전류의 세기는 무선전력 송신장치(900)와 무선전력 수신장치(300)간 떨어져 있는 근접 거리에 따라 가변될 수 있다. 즉, 전류 센싱부(930)에서 측정된 전류의 세기가 커질수록 무선전력 송신장치(900)와 무선전력 수신장치(300)간 거리가 가까워지는 것을 의미하고, 전류 센싱부(930)에서 측정된 전류의 세기가 작아질수록 무선전력 송신장치(900)와 무선전력 수신장치(300)간 거리가 멀어지는 것을 의미할 수 있다.
무선전력 송신장치(900)와 무선전력 수신장치(300)간의 근접거리는 상기 장치에 포함된 코일 사이의 거리를 의미할 수 있다.
제어부(960) 는 측정된 전류의 세기에 기초하여, 무선전력 송신장치(900)와 무선전력 수신장치(300)간 떨어져 있는 거리인 근접거리를 확인할 수 있다(S203). 무선전력 송신장치(900)는 제어부(960)를 통해 측정된 전류의 세기에 기초하여, 무선전력 송신장치(900)와 무선전력 수신장치(300)간 떨어져 있는 거리인 근접거리를 확인할 수 있다. 일 실시 예에서 저장부(970)는 상기 측정된 전류의 세기 및 상기 근접 거리를 대응시켜 룩업테이블의 형태로 저장할 수 있고, 제어부(960)는 저장부(970)를 검색하여, 측정된 전류의 세기에 대응하는 근접 거리를 확인할 수 있다.
제어부(960)는 확인된 근접 거리에 기초하여 전원 공급 장치(500)로부터 수신할 직류 전압을 결정한다(S205).
일 실시 예에서 제어부(960)는 상기 확인된 근접 거리가 아닌 상기 측정된 전류의 세기에 기초하여 전원 공급 장치(500)로부터 수신할 직류 전압을 결정할 수도 있다. 이때, 단계(S203)은 생략될 수도 있다. 즉, 저장부(970)가 상기 측정된 전류의 세기 및 무선전력 송신장치(900)가 수신할 직류 전압을 대응시켜 저장하고 있는 경우, 제어부(960)는 저장부(970)를 검색하여 측정된 전류의 세기에 대응하는 무선전력 송신장치(900)가 수신할 직류 전압을 결정할 수 있다.
또 다른 실시 예에서 저장부(970)는 전류 센싱부(930)가 측정한 전류의 세기, 무선전력 송신장치(900)와 무선전력 수신장치(300)간 근접 거리 및 전원 공급 장치(500)로부터 수신할 직류 전압을 대응시켜 저장하고 있을 수 있다.
무선전력 송신장치(900)는 상기 결정된 직류 전압에 기초한 전압 제어 신호를 전원 공급 장치(500)에 전송한다(S207). 일 실시 예에서 전압 제어 신호는 무선전력 송신장치(900)가 전원 공급 장치(500)로부터 상기 결정된 직류 전압을 수신하기 위해 전원 공급 장치(500)를 제어하는 신호일 수 있다.
일 실시 예에서 무선전력 송신장치(900)와 전원 공급 장치(500)는 전력선 통신(PLC: Power Line Communication) 방식을 사용하여 통신을 수행할 수 있다. 무선전력 송신장치(900)는 전원 공급 장치(500)에 전력선 통신을 이용하여 상기 전압 제어 신호를 전송할 수 있다. 전력선 통신은 전력을 공급하는 전력선을 매개체로 하여 데이터를 수백kHz에서 수십 MHz 이상의 고주파 신호에 실어 통신하는 기술을 말한다. 즉, 전력선 통신은 전용 통신 회선을 따로 설치하지 않고, 배선작업이 완료된 전력선을 이용하여 통신을 수행한다.
이와 같이, 본 발명의 실시 예에 따라 전력선 통신을 이용하여 전압 제어 신호를 전송할 경우, 별도로 전압 제어 신호를 전송할 전력선이 필요하지 않아, 비용절감의 효과를 얻을 수 있다. 즉, 본 발명의 실시 예에 따르면, 전원 공급 장치(500)와 무선전력 송신장치(900)간 전력을 전달하는 매개체인 전력선을 이용하여 상기 전압 제어 신호를 송수신하기 때문에 별도의 전력선을 필요로 하지 않는다.
또한, 본 발명의 실시 예에 따르면, 직류 전압을 소정의 전압으로 변환하는 직류 직류 변환기(DC-DC converter) 없이, 전원 공급 장치(500)로부터 수신하는 직류 전압을 전력선 통신을 이용해 조절할 수 있어 무선전력 송신장치(900)의 제조 비용을 크게 절감시킬 수 있다.
무선전력 송신장치(900)가 전원 공급 장치(500)에 전압 제어 신호를 전송하는 과정에서, 직류 차단부(980)는 제어부(960)에 인가되는 직류 신호를 차단할 수 있다. 무선전력 송신장치(900)는 전원 공급 장치(500)로부터 직류 전압을 수신하는데, 직류 전압이 제어부(960)에 인가되는 경우, 제어부(960)가 손상될 수 있으므로, 직류 차단부(980)는 직류 전압을 차단하여, 제어부(960)를 보호할 수 있다.
일 실시 예에서 직류 차단부(980)는 커패시터로 구성될 수 있다. 커패시터의 임피던스는 Xc=1/2ㅠfC로 표현될 수 있다. 커패시터에 직류 신호가 인가되면(주파수가 f=0), 그 임피던스가 무한대가 되어, 직류 신호가 차단될 수 있다.
무선전력 송신장치(900)가 전원 공급 장치(500)에 전송하는 전압 제어 신호는 교류 신호이므로, 제어부(960)는 직류 차단부(980)와 상관없이 전압 제어 신호를 전원 공급 장치(500)에 전송할 수 있다.
전원 공급 장치(500)는 무선전력 송신장치(900)로부터 전압 제어 신호를 수신하여 수신된 전압 제어 신호에 따라 무선전력 송신장치(900)로 전송할 직류 전압을 출력하기 위한 전압 조절 신호를 생성한다(S209). 전원 공급 장치(500)는 제어부(520)를 통해 무선전력 송신장치(900)로 전송할 직류 전압을 출력하기 위한 전압 조절 신호를 생성할 수 있다. 제어부(520)는 상기 전압 조절 신호를 교류 직류 변환기(510)에 전송할 수 있다.
전원 공급 장치(500)가 무선전력 송신장치(900)로부터 전압 제어 신호를 수신하는 과정에서, 전원 공급 장치(500)의 직류 차단부(530)는 제어부(520)로 인가되는 직류 신호를 차단할 수 있다. 전원 공급 장치(500)의 교류 직류 변환기(510)는 무선전력 송신장치(900)로 직류 전압을 전송하는데, 직류 전압이 제어부(520)로 인가되는 경우, 제어부(520)가 손상될 수 있으므로, 직류 차단부(530)는 직류 전압을 차단하여 제어부(520)를 보호할 수 있다.
일 실시 예에서 직류 차단부(530)는 커패시터로 구성될 수 있다. 커패시터의 임피던스는 Xc=1/2ㅠfC로 표현될 수 있다. 커패시터에 직류 신호가 인가되면(주파수가 f=0), 그 임피던스가 무한대가 되어, 직류 신호가 차단될 수 있다.
전원 공급 장치(500)는 제어부(520)로부터 전압 조절 신호를 수신하여 직류 전압을 조절한다(S211). 전원 공급 장치(500)는 교류 직류 변환기(510)를 통해 전압 조절 신호를 수신하여 무선전력 송신장치(200)에 전송할 직류 전압을 조절할 수 있다. 교류 직류 변환기(510)는 전압 조절 신호에 기초하여 외부에서 인가된 교류 전압을 소정의 직류 전압으로 변환하여 출력할 수 있다.
전원 공급 장치(500)는 조절된 직류 전압을 무선전력 송신장치(200)에 전송한다(S113). 전원 공급 장치(500)는 교류 직류 변환기(510)를 통해 조절된 직류 전압을 무선전력 송신장치(900)에 전송할 수 있다.
교류 전력 생성부(950)는 발진기(940)로부터 수신한 일정한 주파수를 갖는 교류 신호에 기초하여 상기 수신된 직류 전력을 교류 전력으로 변환한다(S215).
교류 전력 생성부(950)는 출력된 교류 전력을 송신부(910)에 전달한다(S217).
송신부(910)에 전달된 교류 전력은 공진에 의해 무선전력 수신장치(300)로 전송될 수 있다.
이와 같이, 본 발명의 실시 예에 따르면, 무선전력 송신장치와 무선전력 수신장치 간 전력 전송 환경에 따라 전원 공급 장치에서 제공하는 전력을 제어할 수 있어, 별도의 직류 직류 변환기가 필요하지 않게 된다. 이로 인해, 무선전력 송신장치의 제조 비용을 크게 절감되는 효과를 얻을 수 있다.
다음으로 도 11 내지 도 12를 참고하여, 본 발명의 또 다른 실시 예에 따른 전력 제어 방법을 도 1 내지 도 8의 내용과 결부시켜 설명한다. 도 11 내지 도 12는 도 3의 단계(S113)의 송신 전력을 제어하기 위한 방법에 관한 내용이다.
도 11은 본 발명의 또 다른 실시 예에 따른 전력 제어 방법을 설명하기 위한 흐름도이고, 도 12는 제1 출력 전압이 교류 전력 생성부에 인가 시 측정되는 전류 값, 결합계수, 제2 출력 전압, 적정 전류 범위를 대응시킨 룩업 테이블을 설명하기 위한 도면이다.
무선전력 송신장치(200)에 대한 설명은 도 1에서 설명한 것과 같고, 이 경우, 무선전력 송신장치(200)는 전력 공급 장치(100)의 구성을 모두 포함하는 것으로 가정한다.
먼저, 제어부(180)는 교류 전력 생성부(160)에 인가되는 전압이 제1 출력 전압으로 조절 되도록 직류 직류 변환기(130)를 제어한다(S301). 여기서, 제1 출력 전압은 미리 정해진 직류전압을 의미할 수 있다.
그 후, 전류 센서부(140)는 직류 직류 변환기(130)에서 출력된 직류전압이 교류 전력 생성부(160)에 인가될 때, 교류 전력 생성부(160)에 인가되는 전류의 세기를 측정할 수 있다(S303). 교류 전력 생성부(160)에 인가되는 전류의 세기는 무선전력 송신장치(200)와 무선전력 수신장치(300) 간 전력 전송 상태에 따라 가변될 수 있다. 일 실시 예에서 전력 전송 상태는 무선전력 송신장치(200)와 무선전력 수신장치(300) 간의 거리, 방향에 대한 것을 의미할 수 있다. 즉, 전력 전송 상태는 무선전력 송신장치(200)와 무선전력 수신장치(300)간 결합 상태를 의미할 수 있다.
본 발명에서 결합 상태라 함은 무선전력 송신장치(200)와 무선전력 수신장치(300) 간의 거리, 위치 관계 등에 의한 송신 코일과 수신 코일 간의 결합계수와 연관되는 지표를 통칭할 수 있다. 즉, 본 발명에서 결합 상태라 함은 무선전력 송신장치(200)에 흐르는 전류량, 무선전력 송신장치(200)의 입력 임피던스 등의 결합계수와 연관된 모든 지표를 통칭할 수 있다.
일 실시 예에서 전력 전송 상태는 무선전력 수신장치(300)의 전력 수신 상태에 대한 정보를 의미할 수 있다.
또한, 교류 전력 생성부(160)에 인가되는 전류의 세기는 무선전력 송신장치(200)의 송신 공진 코일부(212) 및 수신 공진 코일부(311) 간 결합계수와 연관될 수 있다. 결합계수는 송신 공진 코일부(212) 및 수신 공진 코일부(311) 간 전자기적 결합의 정도를 의미하는 것으로 0에서 1까지의 범위를 갖는다.
한편, 제어부(180)는 측정된 전류의 세기가 임계 치 이상인지 확인한다(S305). 일 실시 예에서 임계 치는 100mA일 수 있으나, 이는 예시에 불과하다. 임계 치는 무선전력 수신장치(300)가 검출되기에 필요한 최소의 전류 값을 의미할 수 있다. 즉, 상기 측정된 전류의 세기가 임계 치 이상이 되면, 무선전력 수신장치(300)가 검출된 것으로 볼 수 있고, 상기 측정된 전류의 세기가 임계 치 미만이 되면, 무선전력 수신장치(300)가 검출되지 않은 것으로 볼 수 있다.
만약, 측정된 전류의 세기가 임계 치 이상인 경우, 제어부(180)는 측정된 전류의 세기에 대응하는 제2 출력 전압을 결정한다(S307). 제어부(180)는 교류 전력 생성부(160)에 인가되는 전류의 세기에 대응하는 직류전압을 저장부(170)에서 검색하여 제2 출력 전압을 결정할 수 있다. 일 실시 예에서 제2 출력 전압은 검출된 무선전력 수신장치(300)에 전력을 전송하기에 필요한 전압을 의미할 수 있다.
그 후, 제어부(180)는 결정된 제2 출력 전압이 교류 전력 생성부(160)에 인가되도록 직류 직류 변환기(130)를 제어한다(S309). 직류 직류 변환기(130)는 제어부(180)의 제어에 의해 제2 출력 전압을 출력하여 교류 전력 생성부(160)에 전달한다.
그 후, 전류 센서(270)는 다시 교류 전력 생성부(160)에 인가되는 전류의 세기를 측정한다(S111).
그 후, 제어부(180)는 측정된 전류의 세기가 적정 전류 범위에 해당하는지 확인할 수 있다(S313). 여기서, 적정 전류 범위는 교류 전력 생성부(160)에 제2 출력 전압이 인가 시 제2 출력 전압에 대응하는 전류 범위를 의미할 수 있다. 적정 전류 범위는 제2 출력 전압이 증가함에 따라 그 값의 범위도 증가할 수 있고, 제2 출력 전압이 감소함에 따라 그 값의 범위도 감소할 수 있다.
제어부(180)는 제2 출력 전압에 대응하는 적정 전류 범위를 저장부(170)에서 검색하고, 측정된 전류의 세기가 적정 전류 범위에 해당하는지 확인할 수 있다.
만약, 측정된 전류의 세기가 적정 전류 범위에 해당하는 경우, 제어부(180)는 일정시간을 대기하고(S315), 단계(S311)로 돌아간다. 즉, 제어부(180)는 교류 전력 생성부(160)에 인가되는 전류의 세기를 측정하여 측정된 전류의 세기가 교류 전력 생성부(160)에 인가되는 제2 출력 전압에 대응하는지를 주기적으로 확인할 수 있다.
한편, 단계(S105)에서 측정된 전류의 세기가 임계 치 미만인 경우, 제어부(180)는 직류 직류 변환기(130)를 제어하여 제1 출력 전압이 0V가 되도록 조절한다(S317).
즉, 측정된 전류의 세기가 임계 치 미만인 경우, 제어부(180)는 무선전력 수신장치(300)를 검출하지 않은 것으로 판단하여 제1 출력 전압이 0V가 되도록 조절한다. 교류 전력 생성부(160)에 인가되는 전압이 0V가 되면, 무선전력 송신장치(200)는 무선전력 수신장치(300)에 전력을 송신하지 않는다.
이에 따라, 무선전력 수신장치(300)가 검출되지 않는 경우, 무선전력 송신장치(200)는 무의미한 전력 손실을 방지할 수 있다.
한편, 제1 출력 전압이 0V가 되도록 조절된 경우, 제어부(180)는 0.1초를 대기한다(S319). 여기서, 0.1초는 예시에 불과하다.
0.1초가 경과되면, 단계(S301)로 돌아가 제어부(180)는 교류 전력 생성부(160)에 인가되는 직류전압이 제1 출력 전압이 되도록 조절한다.
한편, 단계(S313)에서 측정된 전류의 세기가 적정 전류 범위에 해당하지 않는 경우, 단계(S307)로 돌아간다. 즉, 제어부(180)는 단계(S113)에서 측정된 전류의 세기에 대응한 제2 출력 전압이 교류 전력 생성부(160)에 인가되도록 직류 직류 변환기(130)를 제어할 수 있다. 단계(S313)에서 측정된 전류의 세기는 무선전력 수신장치(300)의 전력 수신 상태를 의미할 수 있다.
일 예로, 단계(S313)에서 측정된 전류의 세기가 적정 전류 범위보다 낮게 측정되는 경우, 무선전력 송신장치(200)와 무선전력 수신장치(300)간 거리가 더 가까워진 것으로 보고, 제어부(180)는 무선전력 수신장치(300)에 전송하는 송신 전력량을 줄이도록 한 단계 더 낮은 직류전압이 교류 전력 생성부(160)에 인가되도록 직류 직류 변환기(130)를 제어할 수 있다.
이와 같이, 본 발명의 실시 예에 따른 전력 제어 방법에 따르면, 교류 전력 생성부(160)에 인가되는 전류의 세기를 통해 무선전력 수신장치(300)의 전력 수신 상황을 파악하여 그에 대응한 전력을 전송하도록 송신 전력량을 조절할 수 있다. 이로 인해, 전력 전송 효율이 극대화되고, 전력 손실량을 줄일 수 있는 효과가 있다.
도 12는 제1 출력 전압이 교류 전력 생성부(160)에 인가 시 측정되는 전류 값, 결합계수, 제2 출력 전압, 적정 전류 범위를 대응시킨 룩업 테이블을 설명하기 위한 도면이다.
저장부(170)에는 도 12의 룩업 테이블이 저장되어 있다.
교류 전력 생성부(160)에 제1 출력 전압이 인가 시 전류 센서부(140)에 측정되는 전류가 100mA 이상인 경우, 무선전력 수신장치(300)가 검출된 것으로 볼 수 있다.
제1 출력 전압은 12V일 수 있으나, 이는 예시에 불과하다.
만약, 교류 전력 생성부(160)에 제1 출력 전압이 인가 시 전류 센서부(140)에 측정되는 전류가 120mA 인 경우, 무선전력 송신장치(200)의 송신 공진 코일부(212)과 무선전력 수신장치(300)의 수신 공진 코일부(311)의 결합계수는 0.05에 해당한다. 이 경우, 제어부(180)는 무선전력 수신장치(300)가 무선전력 송신장치(200)로부터 멀리 떨어져 있는 것으로 판단하고, 교류 전력 생성부(160)에 인가되는 직류전압을 28V(제2 출력 전압)가 되도록 직류 직류 변환기(130)를 제어한다.
그 후, 교류 전력 생성부(160)에 인가되는 직류전압이 28V로 유지되는 경우, 제어부(180)는 교류 전력 생성부(160)에 인가되는 전류가 적정 전류 범위(751~800mA)를 만족하는지 확인한다.
만약, 교류 전력 생성부(160)에 인가되는 전류가 적정 전류 범위를 벗어나는 경우, 제1 출력 전압(12V)를 교류 전력 생성부(160)에 인가하여 전류를 측정한다. 측정된 전류 값이 180mA 인 경우, 제어부(180)는 120mA 경우보다 무선전력 송신장치(200)와 무선전력 수신장치(300) 간 거리가 더 가까워 진 것으로 판단하고, 제2 출력 전압을 26V로 조절한다.
위 예에서는 무선전력 송신장치(200)와 무선전력 수신장치(300) 간 거리를 전류의 세기와 연관지어 설명하였지만, 이외에도 무선전력 송신장치(200)와 무선전력 수신장치(300)가 놓여있는 방향 등 다양한 전력 전송 상태가 고려될 수 있다.
이와 같이 무선전력 송신장치(200)는 무선전력 수신장치(300)와의 거리, 방향 등 다양한 전력 전송 상태를 고려하여 무선전력 수신장치(300)에 전달하는 전력을 조절함으로써, 전력 전송 효율을 극대화시킬 수 있고, 전력 손실을 방지할 수 있다.
다음으로 도 13 내지 도 15를 참조하여, 본 발명의 또 다른 실시 예에 따른 결합계수 검출방법을 도 1 내지 도 3의 내용에 결부시켜 설명한다.
도 13은 본 발명의 또 다른 실시 예에 따른 결합계수의 검출 방법을 설명하기 위한 흐름도이고, 도 14는 출력 임피던스(ZL)를 가변시키기 위해 스위치(SW)를 개방시킨 경우를 설명하기 위한 도면이고, 도 15는 출력 임피던스(ZL)를 가변시키기 위해 스위치(SW)를 단락시킨 경우를 설명하기 위한 도면이다.
먼저, 도 13을 참조하여 본 발명의 또 다른 실시 예에 따른 결합계수 검출 방법에 대해 설명한다.
먼저, 무선전력 수신장치(300)는 출력 임피던스를 가변시킨다(S401). 출력 임피던스(ZL)는 수신부(310)에서 부하(400)를 바라보았을 때, 측정되는 임피던스 일 수 있다. 무선전력 수신장치(300)는 스위치(SW)를 포함할 수 있고, 스위치(SW)를 통해 출력 임피던스를 가변시킬 수 있다. 스위치(SW)의 일단은 커패시터(C4)와 연결되고, 타단은 부하(400)의 일단에 연결된다. 캐피시터(C4)의 타단은 부하(400)의 일단과 연결된다.
도 14를 참조하면, 무선전력 수신장치(300)는 스위치(SW)에 개방신호를 전송하여 스위치(SW)를 개방시킬 수 있다. 스위치(SW)가 개방되면, 출력 임피던스(ZL)는 다음의 [수학식 25]와 같이 표현될 수 있다.
[수학식 25]
Figure 112012078584278-pat00025
[수학식 1], [수학식 3], [수학식 5]에서 R2, R3를 아주 작은 값을 가지는 것으로 가정하여 0옴으로 두고, 송신 유도 코일(L1)과 캐패시터(C1), 송신 공진 코일(L2)과 캐패시터(C2), 수신 공진 코일(L3)과 캐패시터(C3) 및 수신 유도 코일(L4)과 캐패시터(C4)가 모두 공진주파수(w)에서 공진하도록 값을 정하면 [수학식 5]의 제1 입력 임피던스(Z1)은 [수학식 26]과 같이 정리될 수 있다.
[수학식 26]
Figure 112012078584278-pat00026
또한, [수학식 2], [수학식 4], [수학식 6]을 이용하면, [수학식 26]은 다음의 [수학식 27]과 같이 정리될 수 있다.
[수학식 27]
Figure 112012078584278-pat00027
수신 유도 코일(L4)과 캐패시터(C4)가 공진주파수(w)에서 공진하도록 값을 정하고, [수학식 27]에 [수학식 25]의 출력 임피던스(ZL)을 대입하면, 제1 입력 임피던스(Z1)은 다음의 [수학식 28]과 같이 정리된다.
[수학식 28]
Figure 112012078584278-pat00028
도 15를 참조하면, 무선전력 수신장치(300)는 스위치(SW)에 단락신호를 전송하여 스위치(SW)를 단락시킬 수 있다. 스위치(SW)가 단락되면, 출력 임피던스(ZL)는 0이 되고, 제1 입력 임피던스(Z1)은 다음의 [수학식 29]와 같이 정리된다.
[수학식 29]
Figure 112012078584278-pat00029
무선전력 수신장치(300)는 스위치(SW)에 제어신호를 인가하여 스위치(SW)를 일정 주기로 일정 시간 동안 단락시킬 수 있다. 일정 주기는 1초 일 수 있고, 일정 시간은 100us일 수 있으나, 이는 예시에 불과하다.
그 후, 검출부(220)는 입력 임피던스를 측정한다(S403). 일 실시 예에서 검출부(220)는 전력 공급 장치(100)에서 무선전력 송신장치(200)로 입력되는 전류와 전압을 이용하여 제1 입력 임피던스(Z1)를 측정할 수 있다.
그 후, 검출부(220)는 측정된 입력 임피던스를 이용하여 송신부(210)의 송신 공진 코일(L2)과 수신부(310)의 수신 공진 코일(L3)간 결합계수를 검출할 수 있다(S405). 즉, [수학식 29] 및 [수학식 30]을 참조하면, 결합계수(K2)를 제외한 다른 변수는 모두 고정된 값이므로, 제1 입력 임피던스(Z1)을 측정하면, 결합계수(K2)가 검출될 수 있다.
다음으로 도 16 내지 도 17을 참조하여, 본 발명의 또 다른 실시 예에 따른 전력 제어 방법에 대해 설명한다.
도 16은 본 발명의 또 다른 실시 예에 따른 전력 제어 방법을 설명하기 위한 흐름도이고, 도 17은 도 16의 실시 예에 따른 전력 제어 방법에 사용되는 룩업테이블을 설명하기 위한 도면이다.
먼저, 도 16을 참조하면, 무선전력 송신장치(200)는 입력 임피던스를 측정한다(S501).
검출부(220)는 측정된 입력 임피던스를 이용하여 송신 공진 코일부(212)와 수신 공진 코일부(311)간의 결합계수를 검출한다(S503). 결합계수를 검출하는 방법은 도 3 및 도 13에서 설명한 것과 같으므로, 자세한 내용은 생략한다.
무선전력 송신장치(200)는 검출된 결합계수에 대응하는 송신 전력을 검색한다(S505). 무선전력 송신장치(200)의 저장부(170)는 결합계수에 따라 송신 전력을 대응시켜 놓은 룩업 테이블을 저장하고 있고, 무선전력 송신장치(200)는 저장부(170)를 검색하여, 검출된 결합계수에 대응된 송신 전력을 찾는다.
상기 룩업 테이블은 도 17을 참조하여 설명한다.
도 17을 참조하면, 거리, 입력 테스트 전류, 결합계수, 부하 임피던스, 수신 전력, 전력 전송 효율 및 송신 전력이 대응되어 있는 룩업테이블을 확인할 수 있다.
여기서, 거리는 무선전력 송신장치(200)와 무선전력 수신장치(300)간의 거리를 의미할 수 있고, 구체적으로, 무선전력 송신장치(200)와 무선전력 수신장치(300)간의 거리는 도 2에서 도시한 송신 공진 코일부(212)와 수신 공진 코일부(311)간의 거리일 수 있다. 도 17을 참조하면, 거리가 멀어짐에 따라 결합계수가 감소함을 확인할 수 있다.
입력 테스트 전류는 무선전력 송신장치(200)에 인가되는 전류이다.
전력 전송 효율은 무선전력 송신장치(200)와 무선전력 수신장치(300)간 또는 무선전력 송신장치(200)와 부하(400)간 전력 전송 효율을 의미한다.
부하 임피던스는 최대의 전력 전송 효율을 얻기 위해 부하(400)가 가져야 하는 임피던스를 의미한다. 부하 임피던스와 결합계수의 관계는 도 4에서 도시한 그래프의 경향과 같음을 확인할 수 있다.
수신 전력은 부하(400)가 수신하는 전력으로, 결합계수와 대응하여 최대의 전력 전송 효율을 얻기 위해 부하(400)가 수신해야 하는 전력을 나타낸다.
송신 전력은 최대의 전력 전송 효율을 얻기 위해 무선전력 송신장치(200)가 무선전력 수신장치(300)에 전송해야 하는 전력이다.
무선전력 송신장치(200)는 검출된 결합계수에 대응하는 송신 전력을 상기 룩업테이블을 통해 검색할 수 있다.
무선전력 송신장치(200)는 검색에 의해 얻어진 송신 전력을 부하(400)에 전송하기 위한 송신 전력으로 결정한다(S507). 즉, 무선전력 송신장치(200)는 최대의 전력 전송 효율을 얻기 위해 검출된 결합계수에 대응하는 송신 전력을 결정할 수 있다.
무선전력 송신장치(200)는 결정된 송신 전력을 부하(400)에 전송하기 위해 송신 전력을 제어한다(S509). 일 실시 예에서 무선전력 송신장치(200)는 전력 공급 장치(100)에 전원을 공급하는 전원 공급 장치(500)를 제어하여 송신 전력을 제어하는 방법이 사용될 수 있고, 이에 대해서는 도 9 및 도 10에서 설명한 것과 같다.
또 다른 실시 예에서 무선전력 송신장치(200)는 무선전력 송신장치(200)의 내부에 흐르는 전류를 측정하여 송신 전력을 제어할 수 있다. 이에 대해서는 도 11 및 도 12에서 설명한 것과 같다.
본 발명의 또 다른 실시 예에 따른 전력 제어 방법은 결합계수 검출 및 저장부의 검색 과정을 통해 송신 전력을 결정할 수 있으므로, 부품의 구성이 간단해지고, 전력 제어 과정이 단순해지는 장점이 있다.
상술한 본 발명의 실시 예에 따른 전력 제어 방법은 컴퓨터에서 실행되기 위한 프로그램으로 제작되어 컴퓨터가 읽을 수 있는 기록 매체에 저장될 수 있으며, 컴퓨터가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다.
컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고, 상기 방법을 구현하기 위한 기능적인(function) 프로그램, 코드 및 코드 세그먼트들은 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.
또한, 이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형 실시가 가능한 것은 물론이고, 이러한 변형 실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해 되어서는 안될 것이다.
100: 전력 공급 장치
200: 무선전력 송신장치
210: 송신부
211: 송신 유도 코일부
212: 송신 공진 코일부
220: 검출부
300: 무선전력 수신장치
310: 수신부
311: 수신 공진 코일부
312: 수신 유도 코일부
320: 정류부
400: 부하
500: 전원 공급 장치

Claims (20)

  1. 무선전력 수신장치를 통해 부하에 전력을 전송하는 무선전력 송신장치로서,
    교류 전력을 생성하는 전력 공급 장치; 및
    상기 교류 전력을 공진을 이용하여 상기 무선전력 수신장치에 구비된 수신 코일에 전달하는 송신 코일을 포함하며,
    상기 무선전력 송신장치는,
    상기 송신 코일과 상기 수신 코일의 결합상태에 기초하여 상기 무선전력 수신장치에 전송할 송신 전력을 제어하고,
    상기 결합상태에 따른 결합계수의 변화에 대응하여 상기 무선전력 수신장치의 수신 전력이 변하고,
    상기 결합계수에 따른 결합 상태를 검출하는 검출부를 더 포함하고,
    상기 무선전력 송신장치는,
    상기 결합계수가 증가할수록 상기 송신 전력을 증가시키는 것을 특징으로 하는
    무선전력 송신장치.
  2. 제1항에 있어서,
    상기 무선전력 송신장치는,
    상기 검출된 결합상태에 대응하는 상기 부하의 제1 수신 전력을 결정하고, 상기 결정된 제1 수신 전력에 따라 상기 송신 전력을 제어하는 것을 특징으로 하는
    무선전력 송신장치.
  3. 제2항에 있어서,
    상기 무선전력 송신장치는,
    상기 부하가 현재 수신하고 있는 제2 수신 전력을 확인하고, 상기 제2 수신 전력이 상기 제1 수신 전력과 다를 경우, 상기 제1 수신 전력에 따라 상기 송신 전력을 제어하는 것을 특징으로 하는
    무선전력 송신장치.
  4. 제3항에 있어서,
    상기 무선전력 송신장치는 상기 무선전력 수신장치와 인밴드 또는 아웃 오브 밴드 통신을 통해 상기 제2 수신 전력을 확인하는 것을 특징으로 하는
    무선전력 송신장치.
  5. 제3항에 있어서,
    상기 무선전력 송신장치는 내부에 흐르는 전류의 세기를 측정하여 상기 제2 수신 전력을 확인하는 것을 특징으로 하는
    무선전력 송신장치.
  6. 삭제
  7. 제1항에 있어서,
    상기 검출부는,
    상기 전력 공급 장치에서 상기 무선전력 송신장치를 바라본 입력 임피던스를 측정하여 측정된 입력 임피던스에 기초하여 상기 결합계수를 검출하는 것을 특징으로 하는
    무선전력 송신장치.
  8. 제1항에 있어서,
    상기 전력 공급 장치는 전원 공급 장치로부터 직류 전력을 공급받아 교류 전력을 생성하고,
    상기 무선전력 송신장치는
    상기 전력 공급 장치에서 출력되는 전력을 조절하여 상기 송신 전력을 제어하는 것을 특징으로 하는
    무선전력 송신장치.
  9. 제8항에 있어서,
    상기 전력 공급 장치는 전력선 통신을 이용하여 상기 전원 공급 장치에서 출력되는 직류 전력을 제어하기 위한 전력 제어 신호를 전송하는 것을 특징으로 하는
    무선전력 송신장치.
  10. 제1항에 있어서,
    상기 전력 공급 장치는
    전원 공급 장치로부터 직류 전력을 수신하여 교류 전력을 생성하는 교류 전력 생성부를 더 포함하고,
    상기 무선전력 송신장치는,
    상기 교류 전력 생성부에 입력되거나 또는 상기 교류 전력 생성부로부터 출력되는 전류의 세기에 기초하여 상기 송신 전력을 제어하는 것을 특징으로 하는
    무선전력 송신장치.
  11. 제1항에 있어서,
    상기 결합상태와 상기 송신 전력을 대응시켜 저장하는 저장부를 더 포함하는 것을 특징으로 하는
    무선전력 송신장치.
  12. 제1항에 있어서,
    상기 송신 코일은
    상기 전력 공급 장치로부터 제공받은 전력을 통해 자기장을 발생하는 송신 유도 코일; 및
    상기 송신 유도 코일과 커플링되어 전달받은 전력을 공진을 이용해 상기 수신 코일에 전송하는 송신 공진 코일을 포함하는 것을 특징으로 하는
    무선전력 송신장치.
  13. 무선전력 수신장치를 통해 부하에 전력을 전송하는 무선전력 송신장치의 전력 제어 방법에 있어서,
    상기 무선전력 송신장치와 상기 무선전력 수신장치 간 결합상태를 검출하는 단계;
    상기 검출된 결합상태에 기초하여 송신 전력을 결정하는 단계; 및
    상기 결정된 송신 전력을 공진을 이용하여 상기 부하에 전송하는 단계를 포함하고,
    상기 결합상태에 따른 결합계수의 변화에 대응하여 상기 무선전력 수신장치의 수신 전력이 변하고,
    상기 결합상태를 검출하는 단계는 상기 결합계수를 검출하는 단계를 포함하며,
    상기 송신전력을 결정하는 단계는 상기 결합계수가 증가할수록 상기 송신전력을 증가시키는 단계를 포함하는무선전력 송신장치의 전력 제어 방법.
  14. 제13항에 있어서,
    상기 송신 전력을 결정하는 단계는,
    상기 검출된 결합상태에 대응하여 상기 부하가 수신해야 하는 제1 수신 전력을 결정하는 단계와
    상기 결정된 제1 수신 전력에 따라 상기 송신 전력을 결정하는 단계를 포함하는
    무선전력 송신장치의 전력 제어 방법.
  15. 제14항에 있어서,
    상기 결정된 제1 수신 전력에 따라 상기 송신 전력을 결정하는 단계는
    상기 부하가 현재 수신하고 있는 제2 수신 전력을 확인하는 단계와
    상기 제1 수신 전력과 상기 제2 수신 전력을 비교하는 단계와
    상기 비교 결과, 상기 제1 수신 전력과 상기 제2 수신 전력이 다를 경우, 상기 제1 수신 전력에 따라 상기 송신 전력을 결정하는 단계를 포함하는
    무선전력 송신장치의 전력 제어 방법.
  16. 제15항에 있어서,
    상기 부하가 현재 수신하고 있는 제2 수신 전력을 확인하는 단계는
    상기 무선전력 수신장치와 인밴드 또는 아웃 오브 밴드 통신을 통해 상기 제2 수신 전력을 확인하는 단계를 포함하는
    무선전력 송신장치의 전력 제어 방법.
  17. 제15항에 있어서,
    상기 부하가 현재 수신하고 있는 제2 수신 전력을 확인하는 단계는
    상기 무선전력 송신장치의 내부에 흐르는 전류의 세기를 측정하여 상기 제2 수신 전력을 확인하는 단계를 포함하는
    무선전력 송신장치의 전력 제어 방법.
  18. 삭제
  19. 제13항에 있어서,
    상기 송신 전력을 결정하는 단계는,
    상기 결합 상태와 이에 대응되는 송신 전력을 포함하는 룩업 테이블에 기초하여 상기 송신 전력을 결정하는 단계를 포함하는
    무선전력 송신장치의 전력 제어 방법.
  20. 제13항에 있어서,
    상기 결합 상태를 검출하는 단계는
    상기 무선전력 송신장치의 내부에 흐르는 전류의 세기를 또는 상기 무선전력 송신장치의 입력 임피던스를 이용하여 상기 결합 상태를 검출하는 단계를 포함하는
    무선전력 송신장치의 전력 제어 방법.
KR1020120107450A 2012-09-26 2012-09-26 무선전력 송신장치 및 그의 전력 제어 방법 KR101601352B1 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020120107450A KR101601352B1 (ko) 2012-09-26 2012-09-26 무선전력 송신장치 및 그의 전력 제어 방법
EP13184867.3A EP2713475B1 (en) 2012-09-26 2013-09-18 Wireless power transmitter and method of controlling power thereof
CN201310445293.XA CN103683527A (zh) 2012-09-26 2013-09-26 无线电力传送器及其控制电力的方法
CN201711208729.8A CN108092416B (zh) 2012-09-26 2013-09-26 无线电力传送器及其控制电力的方法
CN201711205392.5A CN107994660B (zh) 2012-09-26 2013-09-26 无线电力传送器及其控制电力的方法
US14/038,292 US10163564B2 (en) 2012-09-26 2013-09-26 Wireless power transmitter and method of controlling power thereof
JP2013200196A JP5744997B2 (ja) 2012-09-26 2013-09-26 無線電力送信装置及びその電力制御方法
US16/191,782 US10978246B2 (en) 2012-09-26 2018-11-15 Wireless power transmitter and method of controlling power thereof
US16/451,608 US10672557B2 (en) 2012-09-26 2019-06-25 Wireless power transmitter and method of controlling power thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120107450A KR101601352B1 (ko) 2012-09-26 2012-09-26 무선전력 송신장치 및 그의 전력 제어 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020140035995A Division KR20140057506A (ko) 2014-03-27 2014-03-27 무선전력 송신장치 및 그의 전력 제어 방법

Publications (2)

Publication Number Publication Date
KR20140040570A KR20140040570A (ko) 2014-04-03
KR101601352B1 true KR101601352B1 (ko) 2016-03-08

Family

ID=49182160

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120107450A KR101601352B1 (ko) 2012-09-26 2012-09-26 무선전력 송신장치 및 그의 전력 제어 방법

Country Status (5)

Country Link
US (3) US10163564B2 (ko)
EP (1) EP2713475B1 (ko)
JP (1) JP5744997B2 (ko)
KR (1) KR101601352B1 (ko)
CN (3) CN108092416B (ko)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11131431B2 (en) 2014-09-28 2021-09-28 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
KR101601352B1 (ko) 2012-09-26 2016-03-08 엘지이노텍 주식회사 무선전력 송신장치 및 그의 전력 제어 방법
JP6202854B2 (ja) * 2013-03-29 2017-09-27 キヤノン株式会社 給電装置
WO2015018334A1 (en) * 2013-08-06 2015-02-12 The University Of Hong Kong Methods for parameter identification, load monitoring and output power control in wireless power transfer systems
JP6264843B2 (ja) * 2013-10-31 2018-01-24 船井電機株式会社 非接触給電装置および非接触給電システム
KR101943082B1 (ko) * 2014-01-23 2019-04-18 한국전자통신연구원 무선 전력 송신 장치, 무선 전력 수신 장치, 및 무선 전력 전송 시스템
WO2015173847A1 (ja) * 2014-05-14 2015-11-19 ネオテス株式会社 非接触電力伝送装置
US10074837B2 (en) * 2014-06-11 2018-09-11 Enovate Medical Llc Interference detection for a wireless transfer station
EP3127248B1 (en) * 2014-06-19 2019-08-07 Koninklijke Philips N.V. Wireless inductive power transfer
JP6418867B2 (ja) 2014-09-22 2018-11-07 キヤノン株式会社 給電装置
JP6494227B2 (ja) 2014-09-22 2019-04-03 キヤノン株式会社 給電装置、制御方法およびプログラム
JP2016067076A (ja) * 2014-09-22 2016-04-28 キヤノン株式会社 給電装置、制御方法及びプログラム
JP6376919B2 (ja) * 2014-09-22 2018-08-22 キヤノン株式会社 給電装置及び電子機器
JP6406955B2 (ja) 2014-09-22 2018-10-17 キヤノン株式会社 電子機器
US10560989B2 (en) 2014-09-28 2020-02-11 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
KR20160051497A (ko) * 2014-11-03 2016-05-11 주식회사 한림포스텍 무선 전력 전송 네트워크의 전력 전송 커버리지 제어 장치 및 방법
WO2016099032A1 (ko) 2014-12-16 2016-06-23 주식회사 한림포스텍 무선 전력 전송 네트워크의 전력 전송 커버리지 제어 장치 및 방법
WO2016073867A1 (en) 2014-11-07 2016-05-12 Murata Manufacturing Co., Ltd. Variable-distance wireless-power-transfer system with fixed tuning and power limiting
EP3223531B1 (en) * 2014-11-21 2019-08-14 Osaka City University Drive control device and drive control system comprising same
KR20160100755A (ko) * 2015-02-16 2016-08-24 엘지이노텍 주식회사 무선전력 송신장치 및 송신방법
CN104682576B (zh) * 2015-03-01 2017-08-29 华南理工大学 添加自适应双端阻抗变换网络的谐振式无线电能传输系统
US9897265B2 (en) 2015-03-10 2018-02-20 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp having LED light strip
US11519565B2 (en) 2015-03-10 2022-12-06 Jiaxing Super Lighting Electric Appliance Co., Ltd LED lamp and its power source module
JP6361818B2 (ja) * 2015-03-31 2018-07-25 Tdk株式会社 ワイヤレス受電装置及びワイヤレス電力伝送装置
KR101764974B1 (ko) * 2015-08-24 2017-08-03 엘지이노텍 주식회사 무전전력전송 시스템 및 이의 구동 방법.
US10224752B2 (en) * 2015-08-28 2019-03-05 Qualcomm Incorporated Method and apparatus for computer aided designing, tuning and matching of wireless power transfer systems
KR101847256B1 (ko) 2016-01-11 2018-05-28 한국전자통신연구원 무선전력 수신장치, 그를 포함하는 무선전력 전송 시스템 및 수신단의 유효부하저항 변환비율을 자동으로 제어하는 방법
KR102496136B1 (ko) 2016-05-16 2023-02-06 엘지이노텍 주식회사 무선 전력 제어 방법 및 장치
CN106130082A (zh) * 2016-08-09 2016-11-16 华南理工大学 一种应用于无线鼠标的无线输电装置
KR102609116B1 (ko) 2016-09-23 2023-12-04 주식회사 위츠 무선 전력 송신 장치
EP3306955B1 (en) * 2016-10-10 2019-05-29 Oticon Medical A/S Hearing device comprising an automatic power swtiching
JP6754669B2 (ja) * 2016-10-31 2020-09-16 株式会社ダイヘン 給電側装置および給電システム
DE102016121724A1 (de) * 2016-11-14 2018-05-17 Hamm Ag Baumaschine
JP6945188B2 (ja) * 2016-11-30 2021-10-06 パナソニックIpマネジメント株式会社 無線給電ユニット、送電モジュール、受電モジュールおよび無線電力伝送システム
WO2018125894A1 (en) * 2016-12-29 2018-07-05 Witricity Corporation Wireless power transmission system having power control
KR102605850B1 (ko) * 2017-02-06 2023-11-24 주식회사 위츠 무선전력 송신장치 및 무선전력 송신장치 제어 방법
US10749382B2 (en) * 2017-06-16 2020-08-18 Samsung Electronics Co., Ltd. Wireless power transmitter and method for operating the same based on external voltage and current
US11005298B2 (en) * 2018-08-29 2021-05-11 Integrated Device Technology, Inc. Wireless power maximum efficiency tracking by system control
EP4254724A1 (en) * 2022-03-29 2023-10-04 Koninklijke Philips N.V. Wireless power transfer
CN115864681B (zh) * 2023-02-22 2023-05-05 广东电网有限责任公司湛江供电局 一种供电系统的输出功率控制方法、系统、设备和介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014125A1 (ja) * 2007-07-23 2009-01-29 Universal Device Technology Co., Ltd. 充電池ユニットとそのための電力伝送システム及び電力伝送方法
JP2011166994A (ja) * 2010-02-12 2011-08-25 Toyota Motor Corp 給電装置および車両給電システム

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639714A (en) * 1984-12-21 1987-01-27 Ferranti Subsea Systems, Ltd. Combined power and control signal transmission system
US6661203B2 (en) * 2001-11-12 2003-12-09 Hewlett-Packard Development Company, L.P. Battery charging and discharging system optimized for high temperature environments
US7231193B2 (en) 2004-04-13 2007-06-12 Skyworks Solutions, Inc. Direct current offset correction systems and methods
JP4099597B2 (ja) * 2004-05-31 2008-06-11 ソニー株式会社 スイッチング電源回路
US7359730B2 (en) 2005-04-29 2008-04-15 Telecordia Technologies, Inc. Method and apparatus for reducing interference associated with wireless communication
US8169185B2 (en) * 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
KR100792308B1 (ko) * 2006-01-31 2008-01-07 엘에스전선 주식회사 코일 어레이를 구비한 무접점 충전장치, 무접점 충전시스템 및 충전 방법
US8729734B2 (en) * 2007-11-16 2014-05-20 Qualcomm Incorporated Wireless power bridge
JP2011514129A (ja) 2008-02-22 2011-04-28 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー バッテリ種別検出機能を有する誘導電源システム
US8855554B2 (en) 2008-03-05 2014-10-07 Qualcomm Incorporated Packaging and details of a wireless power device
JP4544339B2 (ja) * 2008-04-28 2010-09-15 ソニー株式会社 送電装置、送電方法、プログラム、および電力伝送システム
US8299652B2 (en) * 2008-08-20 2012-10-30 Intel Corporation Wireless power transfer apparatus and method thereof
JP5351499B2 (ja) 2008-11-28 2013-11-27 長野日本無線株式会社 非接触型電力伝送システム
US8803474B2 (en) * 2009-03-25 2014-08-12 Qualcomm Incorporated Optimization of wireless power devices
US7872527B2 (en) * 2009-03-31 2011-01-18 Qualcomm, Incorporated Power supply control system and method with variable post-regulation
JP4865001B2 (ja) * 2009-04-13 2012-02-01 株式会社日本自動車部品総合研究所 非接触給電設備、非接触受電装置および非接触給電システム
JP5510032B2 (ja) * 2009-05-14 2014-06-04 日産自動車株式会社 非接触給電装置
JP5478984B2 (ja) 2009-08-19 2014-04-23 長野日本無線株式会社 送電装置および非接触型電力伝送システム
WO2011042974A1 (ja) 2009-10-08 2011-04-14 株式会社日立製作所 無線電力伝送システムおよび無線電力伝送装置
US8729735B2 (en) 2009-11-30 2014-05-20 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
JP2011199975A (ja) 2010-03-18 2011-10-06 Nec Corp 非接触送電装置、非接触送電システムおよび非接触送電方法
US8716900B2 (en) * 2010-03-30 2014-05-06 Panasonic Corporation Wireless power transmission system
US10343535B2 (en) * 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
WO2012018268A1 (en) * 2010-08-05 2012-02-09 Auckland Uniservices Limited Inductive power transfer apparatus
KR101726195B1 (ko) * 2010-08-25 2017-04-13 삼성전자주식회사 공진 전력 전달 시스템에서 공진 임피던스 트래킹 장치 및 방법
CN102577026B (zh) * 2010-10-08 2015-08-12 松下电器产业株式会社 无线电力传输装置以及具备无线电力传输装置的发电装置
KR101753032B1 (ko) 2010-11-16 2017-06-30 엘지전자 주식회사 무선전력전송방법, 무선전력수신방법, 무선전력전송장치 및 무선전력수신장치
JP5564412B2 (ja) * 2010-12-10 2014-07-30 株式会社日立製作所 無線電力伝送システム、送電装置、及び受電装置
KR101222749B1 (ko) * 2010-12-14 2013-01-16 삼성전기주식회사 무선 전력 전송 장치 및 그 전송 방법
KR101739293B1 (ko) 2010-12-23 2017-05-24 삼성전자주식회사 인 밴드 통신을 이용한 무선 전력 송수신 시스템
EP2475206A1 (en) * 2011-01-07 2012-07-11 Mitsubishi Electric R&D Centre Europe B.V. Method and a device for adjusting the transmission power of signals transferred by plural mobile terminals
KR20120084659A (ko) 2011-01-20 2012-07-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 급전 장치 및 비접촉 급전 시스템
JP5703823B2 (ja) * 2011-02-21 2015-04-22 ソニー株式会社 送電装置、送電方法および電力伝送システム
KR20120097239A (ko) * 2011-02-24 2012-09-03 삼성전기주식회사 무선 전력 전송 시스템
CN103748764A (zh) 2011-05-13 2014-04-23 三星电子株式会社 无线电力传输系统中的发送器和接收器以及发送器和接收器无线发送/接收收发电力的方法
US9214151B2 (en) 2011-05-27 2015-12-15 uBeam Inc. Receiver controller for wireless power transfer
JP5071574B1 (ja) * 2011-07-05 2012-11-14 ソニー株式会社 検知装置、受電装置、非接触電力伝送システム及び検知方法
US9240270B2 (en) * 2011-10-07 2016-01-19 Utah State University Wireless power transfer magnetic couplers
US9001529B2 (en) 2012-01-17 2015-04-07 Texas Instruments Incorporated System and method for power transfer control based on available input power
WO2013109032A1 (en) 2012-01-17 2013-07-25 Samsung Electronics Co., Ltd. Wireless power transmitter, wireless power receiver, and control methods thereof
JP2013183497A (ja) 2012-02-29 2013-09-12 Equos Research Co Ltd 電力伝送システム
JP6024129B2 (ja) * 2012-03-13 2016-11-09 日産自動車株式会社 非接触給電装置
JP2013192391A (ja) * 2012-03-14 2013-09-26 Sony Corp 検知装置、受電装置、送電装置及び非接触給電システム
KR101428161B1 (ko) * 2012-04-26 2014-08-07 엘지이노텍 주식회사 무선전력 수신장치 및 그의 전력 제어 방법
WO2014018969A2 (en) * 2012-07-27 2014-01-30 Thoratec Corporation Resonant power transfer system and method of estimating system state
KR101601352B1 (ko) 2012-09-26 2016-03-08 엘지이노텍 주식회사 무선전력 송신장치 및 그의 전력 제어 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014125A1 (ja) * 2007-07-23 2009-01-29 Universal Device Technology Co., Ltd. 充電池ユニットとそのための電力伝送システム及び電力伝送方法
JP2011166994A (ja) * 2010-02-12 2011-08-25 Toyota Motor Corp 給電装置および車両給電システム

Also Published As

Publication number Publication date
EP2713475A2 (en) 2014-04-02
US20140084701A1 (en) 2014-03-27
KR20140040570A (ko) 2014-04-03
CN108092416A (zh) 2018-05-29
CN108092416B (zh) 2021-09-28
JP5744997B2 (ja) 2015-07-08
US10978246B2 (en) 2021-04-13
EP2713475B1 (en) 2020-11-04
US10672557B2 (en) 2020-06-02
US20190318869A1 (en) 2019-10-17
US10163564B2 (en) 2018-12-25
EP2713475A3 (en) 2016-01-13
JP2014068529A (ja) 2014-04-17
US20190088412A1 (en) 2019-03-21
CN103683527A (zh) 2014-03-26
CN107994660B (zh) 2023-08-29
CN107994660A (zh) 2018-05-04

Similar Documents

Publication Publication Date Title
KR101601352B1 (ko) 무선전력 송신장치 및 그의 전력 제어 방법
KR101543059B1 (ko) 무선전력 수신장치 및 그의 전력 제어 방법
KR101806592B1 (ko) 무선전력 송신장치 및 무선전력 전송 방법
US20170244286A1 (en) Wireless power repeater and method thereof
KR101438880B1 (ko) 무선전력 송신장치 및 무선전력 전송 방법
JP2013188127A (ja) 無線電力送信装置、無線電力受信装置、及び電力受信方法
KR20140057506A (ko) 무선전력 송신장치 및 그의 전력 제어 방법
KR102128487B1 (ko) 무선전력 송신장치 및 그의 전력 제어 방법
KR101993230B1 (ko) 무선전력 송신장치 및 그의 전력 제어 방법
KR101438883B1 (ko) 전력 공급 장치, 무선전력 송신장치 및 전력 제어 방법
KR101428162B1 (ko) 전력 공급 장치, 무선전력 송신장치 및 공진 주파수 검출 방법
KR101428181B1 (ko) 무선전력 송신장치, 전력 공급 장치 및 그의 전력 제어 방법, 전원 공급 장치 및 그의 전력 제어 방법
KR101896944B1 (ko) 무선전력 수신장치 및 그의 전력 제어 방법
KR101822213B1 (ko) 무선전력 송신장치, 무선전력 수신장치, 무선전력 전송 시스템 및 무선전력 전송 방법
KR101305828B1 (ko) 무선전력 송신장치, 무선전력 수신장치, 무선전력 전송 시스템 및 무선전력 전송 방법
KR20140077800A (ko) 무선 전력 송신 장치 및 방법
KR101875974B1 (ko) 무선 전력 송신 장치 및 그 방법
KR101393852B1 (ko) 전력 공급 장치, 무선전력 송신장치 및 전력 공급 방법
KR20130102511A (ko) 무선전력 송신장치, 무선전력 수신장치, 무선전력 전송 시스템 및 무선전력 전송 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20150508

Effective date: 20151201

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190213

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200211

Year of fee payment: 5