KR101317736B1 - 탄성 표면파를 사용하는 미스트 또는 미세 기포의 발생 방법 및 미스트 또는 미세 기포 발생 장치 - Google Patents

탄성 표면파를 사용하는 미스트 또는 미세 기포의 발생 방법 및 미스트 또는 미세 기포 발생 장치 Download PDF

Info

Publication number
KR101317736B1
KR101317736B1 KR1020117030559A KR20117030559A KR101317736B1 KR 101317736 B1 KR101317736 B1 KR 101317736B1 KR 1020117030559 A KR1020117030559 A KR 1020117030559A KR 20117030559 A KR20117030559 A KR 20117030559A KR 101317736 B1 KR101317736 B1 KR 101317736B1
Authority
KR
South Korea
Prior art keywords
mist
liquid
fine bubbles
piezoelectric substrate
generating
Prior art date
Application number
KR1020117030559A
Other languages
English (en)
Other versions
KR20120026558A (ko
Inventor
마사노리 오카노
시게키 후지와라
요헤이 이시가미
Original Assignee
파나소닉 전공 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 파나소닉 전공 주식회사 filed Critical 파나소닉 전공 주식회사
Publication of KR20120026558A publication Critical patent/KR20120026558A/ko
Application granted granted Critical
Publication of KR101317736B1 publication Critical patent/KR101317736B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/85Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations with a vibrating element inside the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0615Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced at the free surface of the liquid or other fluent material in a container and subjected to the vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2133Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using electric, sonic or ultrasonic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/238Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using vibrations, electrical or magnetic energy, radiations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Special Spraying Apparatus (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

미스트 또는 미세 기포의 발생 방법 및 미스트 또는 미세 기포 발생 장치에 있어서, 간단한 소형의 기기 구성이며, 광범위한 종류의 액체에 적용 가능하고, 미스트 또는 미세 기포의 한쪽 또는 양쪽을 안정적으로 발생시킬 수 있다. 본 장치(1)는, 복수의 빗살형 전극(21)을 표면(S)에 구비된 압전 기판(2)을, 그 표면(S)이 기체와 액체(10)의 상호의 계면(10a)에 교차하도록 압전 기판(2)의 일부분을 액체(10) 중에 넣어 배치하고, 전극(21)에 의해 표면(S)에 여진시킨 탄성 표면파 W가 계면(10a)의 상하에 존재하도록 표면(S)를 따라 전파시킨다. 탄성 표면파(W)가, 계면(10a)의 위쪽인 기체 측에서 미스트(M)를 발생시키고, 계면(10a)의 아래쪽인 액체(10) 측에서 미세 기포(B)를 발생시킨다. 선회류를 발생시키는 등의 기계적인 동작에 의하지 않고, 탄성 표면파(W)에 의해 미스트(M)와 미세 기포(B)를 발생시키므로, 간단한 소형의 기기 구성이며 미스트(M)와 미세 기포(B)를 안정적으로 발생시킬 수 있다.

Description

탄성 표면파를 사용하는 미스트 또는 미세 기포의 발생 방법 및 미스트 또는 미세 기포 발생 장치{GENERATING METHOD AND GENERATOR FOR GENERATING MIST OR FINE-BUBBLE BY USING SURFACE ACOUSTIC WAVES}
본 발명은 마이크로 미터 또는 나노미터 수준의 미스트(mist) 또는 미세 기포를 발생하는 방법 및 장치에 관한 것이다.
종래, 기포의 직경이 미크론 이하의 나노미터 수준의 미세한 기포를 발생시키기 위해, 기액(氣液) 혼합 유체에 선회류를 일으켜, 액 중에 생기는 전단력에 의해 액체에 포함되는 기체를 세분화하는 것이 행해지고 있다. 예를 들면, 와류 펌프로부터의 기액 혼합 유체를, 원통에 그 내주 접선 방향으로부터 공급하고, 원통 내에서의 선회 중에 기포를 미세화시키는 장치가 알려져 있다(예를 들면, 일본 특허 제4118939호 참조).
또한, 탄성 표면파가 전파되는 압전 재료 등으로 이루어지는 기판의 표면에 액체를 공급하면, 액체가 탄성 표면파의 에너지를 받아 유동하고 진동함으로써, 미소 입자로 되어 비상(飛翔)하는 현상이 알려져 있다. 이 현상을 이용하여 액체를 미스트로 발생시키는 장치가 여러 가지 제안되어 있는데, 잉크젯 유닛으로부터 배출시킨 액적(液滴)을 탄성 표면파의 전파면에 공급하여 미스트를 발생시키는 방법이 알려져 있다(예를 들면, 일본공개특허 1999-114467호 공보 참조).
그러나, 전술한 일본 특허 제4118939호에 나타난 바와 같은 미세 기포의 발생 방법에 있어서는, 액체를 고압화하기 위한 펌프 등이 필요하며 기기의 소형화가 곤란하다. 또한, 일본공개특허 1999-114467호 공보에 나타난 바와 같은 미스트 발생 방법에 있어서는, 미스트를 발생시키기 위한 액적을 양호한 정밀도로 안정적으로 공급할 필요가 있어 구성이 복잡하게 된다. 또한, 소형화할 수 있는 나노미터 수준의 미스트와 미세 기포를 동시에 발생시키거나, 원하는 한쪽만을 발생시킬 수 있는 방법이나 장치는 알려져 있지 않다.
본 발명은 상기 문제점을 해소하는 것으로서, 간단한 소형의 기기 구성이며, 광범위한 종류의 액체에 적용할 수 있고, 미스트 또는 미세 기포의 한쪽 또는 양쪽을 안정적으로 발생시킬 수 있는 미스트 또는 미세 기포의 발생 방법 및 미스트 또는 미세 기포 발생 장치를 제공하는 것을 목적으로 한다.
본 발명의 한 종류에 관한 미스트 또는 미세 기포의 발생 방법은, 탄성 표면파를 여진(勵振)하기 위한 복수의 전극으로 이루어지는 여진 수단을 표면에 구비한 압전 기판을, 그 표면이 기체와 액체의 상호의 계면에 교차하도록 압전 기판의 일부분을 액체 중에 넣어 배치하고, 여진 수단에 의해 표면에 탄성 표면파를 여진시키고, 여진된 탄성 표면파가 계면의 상하에 존재하도록 표면을 따라 탄성 표면파를 전파시켜, 탄성 표면파가, 계면의 위쪽인 기체 측에서 미스트를 발생시키거나, 또는 계면의 아래쪽인 액체 측에서 미세 기포를 발생시키도록 한 것이다.
이와 같은 구성에 의하면, 선회류를 발생하는 등의 기계적인 동작에 의하지 않고, 1개의 압전 기판에 의한 탄성 표면파에 의해 미스트의 발생과 미세 기포의 발생의 양쪽을 행하므로, 간단한 소형의 기기 구성에 의해, 공간 절약 및 저비용으로 미스트 또는 미세 기포를 발생시킬 수 있다. 또한, 구성이 간단하므로, 광범위한 종류의 액체에 적용할 수 있다.
본 발명의 한 양태에 관한 미세 기포 발생 장치는, 기액 계면 또는 액체 중에서 탄성 표면파를 사용하여 미스트 또는 미세 기포를 발생시키는 미스트 또는 미세 기포 발생 장치로서, 탄성 표면파를 여진시키기 위한 복수의 전극으로 이루어지는 여진 수단을 표면에 설치한 압전 기판과, 압전 기판의 일부분을 액체 중에 넣어 그 표면이 기체와 액체의 상호의 계면에 교차하고, 압전 기판의 표면에 여진되는 탄성 표면파가 계면의 상하에 존재하여 표면을 따라 기체 측 및 액체 측을 전파되도록 압전 기판을 지지하는 기판 지지부를 포함한다.
이와 같은 구성에 의하면, 기액 계면에 교차하도록 압전 기판을 구비하면 되므로, 간단한 소형의 기기 구성으로 미스트 또는 미세 기포 발생 장치를 제공할 수 있다. 또한, 구성이나 원리가 간단하므로, 액체 선택의 제약이 적고, 광범위한 종류의 액체에 적용할 수 있다.
도 1은 본 발명의 제1 실시예에 관한 미스트 또는 미세 기포의 발생 방법을 나타낸 미스트 또는 미세 기포 발생 장치의 단면도이다.
도 2는 동일한 장치의 사시도이다.
도 3은 동일 방법의 수순을 나타낸 플로우차트이다.
도 4는 동일한 장치의 변형예를 나타낸 사시도이다.
도 5a는 동일한 장치의 다른 변형예를 나타낸 사시도이며, 도 5b는 동 측면도이다.
도 6a 및 도 6b는 제1 실시예의 다른 변형예에 관한 미세 기포의 발생 방법을 나타낸 장치 단면도이다.
도 7은 제1 실시예의 또 다른 변형예에 관한 미세 기포의 발생 방법을 나타낸 장치 단면도이다.
도 8은 제1 실시예의 또 다른 변형예에 관한 미스트의 발생 방법을 나타낸 장치 단면도이다.
도 9는 제1 실시예의 또 다른 변형예에 관한 미스트와 미세 기포의 발생 방법을 나타낸 장치 단면도이다.
도 10a 및 도 10b는 제1 실시예의 또 다른 변형예에 관한 미스트와 미세 기포의 발생 방법을 나타낸 장치 단면도이다.
도 11은 제1 실시예의 또 다른 변형예에 관한 미스트와 미세 기포의 발생 방법을 나타낸 장치 단면도이다.
도 12는 동일 방법의 변형예를 나타낸 장치 단면도이다.
도 13은 동일 방법의 다른 변형예를 나타낸 장치 단면도이다.
도 14는 제1 실시예의 또 다른 변형예에 관한 미스트와 미세 기포의 발생 방법을 나타낸 장치 단면도이다.
도 15는 제1 실시예의 또 다른 변형예에 관한 미스트와 미세 기포의 발생 방법을 나타낸 장치 사시도이다.
도 16은 동일한 장치의 평면도이다.
도 17은 제1 실시예의 또 다른 변형예에 관한 미스트와 미세 기포의 발생 방법을 나타낸 장치 단면도이다.
도 18은 동일 방법의 변형예를 나타낸 장치 단면도이다.
도 19는 제1 실시예의 또 다른 변형예에 관한 미스트와 미세 기포의 발생 방법을 나타낸 장치 단면도이다.
도 20은 동일한 장치의 단면도이다.
도 21은 제1 실시예의 또 다른 변형예에 관한 미스트와 미세 기포의 발생 방법을 나타낸 장치 단면도이다.
도 22는 제1 실시예의 또 다른 변형예에 관한 미스트와 미세 기포의 발생 방법을 나타낸 장치 단면도이다.
도 23은 동일 방법의 변형예를 나타낸 장치 단면도이다.
도 24는 제2 실시예에 관한 미스트와 미세 기포의 발생 방법을 나타낸 장치 단면도이다.
도 25는 제2 실시예의 변형예에 관한 미스트와 미세 기포의 발생 방법을 나타낸 장치 단면도이다.
도 26은 동일 방법의 변형예를 나타낸 장치 단면도이다.
도 27은 동일 방법의 다른 변형예를 나타낸 장치 단면도이다.
도 28은 동일 방법의 또 다른 변형예를 나타낸 장치 단면도이다.
도 29는 제3 실시예에 관한 미스트와 미세 기포의 발생 방법을 나타낸 장치 단면도이다.
도 30은 제3 실시예의 변형예에 관한 미세 기포의 발생 방법을 나타낸 장치 단면도이다.
도 31은 동일 방법의 변형예를 나타낸 장치 단면도이다.
이하, 본 발명의 실시예에 따라 탄성 표면파를 사용하는 미스트 또는 미세 기포의 발생 방법 및 미스트 또는 미세 기포 발생 장치에 대하여, 도면을 참조하여 설명한다.
(제1 실시예)
도 1, 도 2, 도 3은 제1 실시예에 대하여 나타낸다. 도 1, 도 2에 나타낸 바와 같이, 미스트 또는 미세 기포 발생 장치(1)(이하, 본 장치(1)라고 함)에 있어서, 본 장치(1)는, 탄성 표면파 W를 여진하기 위한 여진 수단으로서 복수의 빗살형의 전극(21)을 표면 S에 구비한 압전 기판(2)을, 그 표면 S가 기체와 액체(10)의 상호의 계면(10a)(액면)에 교차하도록 압전 기판(2)의 일부분을 액체(10) 중에 넣어 배치한 장치이며, 전극(21)에 의해 표면 S에 탄성 표면파 W를 여진하고, 탄성 표면파 W가 계면(10a)의 상하에 존재하도록 표면 S를 따라 탄성 표면파 W를 전파시킴으로써, 탄성 표면파 W는, 계면(10a)의 위쪽인 기체 측에서 미스트 M을 발생시키고, 계면(10a)의 아래쪽인 액체(10) 측에서 미세 기포 B를 발생시킨다. 액체(10)는 액체 용기(11)에 넣어져 있다. 이하, 각각의 구성을 상세히 설명한다.
압전 기판(2)은, 직사각형의 판재로서, 그 길이 방향이 상하 방향이 되도록 기판 지지부(20)에 의해 액체(10) 중에 일부가 넣어져 수직으로 유지되어 있다. 압전 기판(2)은, 예를 들면, LiNbO3(니오브산 리튬)과 같은 압전체 그 자체로 이루어지는 기판이다. 또한, 압전 기판(2)은, 비압전 기판의 표면에 압전 박막, 예를 들면, PZT 박막(납, 지르코늄, 티탄 합금 박막)을 형성한 것이어도 되고, 그 표면의 압전체 박막의 표면 부분에서, 탄성 표면파 W가 여진된다. 따라서, 압전 기판(2)은, 탄성 표면파 W를 여진시키는 압전체 부분을 표면에 구비한 기판이면 된다. 또한, 본 장치(1)의 압전 기판(2)으로서, 그 형상은, 직사각형에 한정되지 않고, 임의의 형상으로 할 수 있다. 또한, 표면 S는 평면에 한정되지 않으며 임의의 곡면으로 할 수도 있다. 압전 기판(2)은, 일정 두께를 가지는 판형에 한정되지 않고, 임의의 형상이며, 탄성 표면파 W를 전파시키는 표면 S를 구비하는 것이면 된다.
빗살형의 전극(21)은, 압전 기판(2)의 표면 S에 서로 다른 극이 되는 2개의 빗살형 전극을 서로 맞물리게 해서 형성한 전극(교차 손가락 전극, IDT: 인터디지털 트랜스듀서)이다. 전극(21)의 서로 인접하는 빗살의 톱니는 서로 상이한 극성의 전극에 속하며, 여진하는 탄성 표면파 W의 파장의 절반의 길이의 피치로 배열되어 있다. 전극(21)의 서로 다른 극의 전극 간에, 고주파 전압 인가용의 전기 회로 E로부터 고주파(예를 들면, MHz대) 전압을 인가함으로써, 빗살형 전극에 의해 전기적 에너지가 파의 기계적 에너지로 전기 기계 변환되어, 압전 기판(2)의 표면 S에 탄성 표면파 W가 여진된다. 여진된 탄성 표면파 W의 진폭은, 전극(21)에 인가되는 전압의 크기로 정해진다. 여진된 탄성 표면파 W의 파속(波速)의 길이는, 전압의 인가 시간의 길이에 대응한다. 전극(21)에 의해 여진된 탄성 표면파 W는, 한 쌍의 빗살형 전극의 톱니가 교차한 폭에 대응하는 폭의 파로 되어, 빗살의 톱니에 수직인 방향 x로 전파된다. 이와 같은 탄성 표면파 W는, 표면 S에 존재하는 액체가 탄성 표면파 W의 전파 방향으로 이동하도록 상기 액체에 힘을 미치는 성질이 있다.
고체 표면에서 전파되는 탄성 표면파 W는, 초음파, 예를 들면, 피에조 소자 등을 사용하여 발생되어, 고체나 유체 중에서 3차원적으로 전파되는 초음파에 비하여, 용이하게 안정적으로 높은 주파수의 파동으로서 여진할 수 있다. 이러한 주파수가 높고 파장이 짧은 탄성 표면파 W를 액체(10)를 향해 전파시킴으로써, 탄성 표면파 W가 통과하는 기액 계면(10a)에 있어서, 직경이 미크론 수준이나 서브미크론 내지 나노미터 수준의 미세한 미스트 M을 기체 측에 발생하는 것이 가능하고, 또한 액체 측에 전파된 탄성 표면파 W에 의해, 직경이 미크론 수준이나 서브미크론 내지 나노 미터 수준의 미세 기포 B를 그 액체(10) 중에 발생시킬 수 있다. 본 장치(1)의 구성에 의하면, 미스트 M과 미세 기포 B를 동시에 발생시킬 수 있다.
미세 기포 B는, 액체(10) 중에 용해되어 있는 기체로부터 생성되는 것으로 생각된다. 그래서, 액체 중에 미세 기포가 되어야 할 기체를 미리 과포화로 용해시켜, 그 기체의 미세 기포를 용이하게 발생시켜도 된다. 기체의 용해 가능량을 증가시키기 위해, 냉방 장치를 구비하여 액체(10)를 냉방하고, 액체(10)의 온도를 낮게 유지하여도 된다. 또한, 탄성 표면파 W가, 기체 측으로부터 액체(10) 측에 전파되어 기액 계면(10a)을 통과할 때, 기체 측으로부터 액체 측에 기체를 끌어 들어간 것으로 생각되고, 미세 기포 B는, 그 끌어들인 기체로부터도 생성되는 것으로 생각된다.
액체(10)는, 수돗물이나 순수한 물 등의 물, 또한 알코올 등의 유기용제, 그 외의 임의의 액체를 사용할 수 있다. 단, 전극(21)에 절연 보호를 충분히 행하고 있지 않은 경우에는, 액체(10)는 전기 절연성의 액체에 한정된다. 그래서, 전극(21)의 전기 절연이나 압전 기판(2)의 부식 방지를 위해, 압전 기판(2) 표면에 절연층이나 보호층을 형성해도 된다. 이들이 탄성 표면파 W의 전파 손실을 일으키지 않게 하는 것이 바람직하다. 기체는, 대기중의 공기 외에, 산소나 오존 등과 같은 한 가지 가스나 원하는 임의의 가스를 사용할 수 있다.
도 3에 나타낸 바와 같이, 간단한 단계로 미스트 M과 미세 기포 B를 동시에 발생시킬 수 있다. 즉, 압전 기판(2)을, 그 일부를 액체(10) 중에 넣어 배치하고(#1), 탄성 표면파 W를 여진한다(#2). 압전 기판(2)에서의 기체 측의 표면 S, 및 액체(10) 측의 표면 S를 따라 탄성 표면파 W를 전파시킨다(#3). 그러면 기체 측에서 전파되는 탄성 표면파 W에 의해, 기액 계면(10a)에서 기체 측에 미스트 M이 발생하고, 액체(10) 중에서 전파되는 탄성 표면파 W에 의해, 액체(10) 중에 미세 기포 B가 발생한다(#5). 이하, 미스트 M과 미세 기포 B를 발생시키는 동안, 상기 단계(#1~#5)를 반복하면 된다.
본 실시예에 의하면, 1개의 압전 기판(2)에서 미스트 M의 발생과 미세 기포 B의 발생의 양쪽을 행하므로, 간단한 소형의 기기 구성, 공간절약, 저비용으로 미스트 M과 미세 기포 B를 발생시킬 수 있다. 또한, 구성이 간단하므로, 광범위한 종류의 액체에 적용할 수 있다.
도 4, 도 5는 제1 실시예의 변형예를 나타낸다. 도 4에 나타낸 바와 같이, 압전 기판(2)은, 전극(21)을 액체(10) 중에 넣어 설치할 수도 있다. 단, 전극(21)에 대하여, 전극(21)이 서로 전기 절연되어 있는지, 또는 액체(10)가 전기 절연성의 액체이고, 액체 중에 있어서 단락의 문제가 없는 것으로 한다. 본 변형예의 경우, 탄성 표면파 W는, 표면 S를 따라 액체(10)의 내부로부터, 기액 계면(10a)을 통과하여 기체 측에 전파된다. 기액 계면(10a)의 통과 시에, 전술한 기체가 끌어 들어지는 대신에, 기체 측으로 액체(10)가 끌어 올려지게 된다. 이와 같이 액체가 끌어 올려지는 것에 의해, 도 1의 경우와 비교하여, 미스트 M의 발생 효율이 향상된다.
또한, 도 5a 및 도 5b에 나타낸 바와 같이, 압전 기판(2)에서의 탄성 표면파 W의 진행 방향(x 방향)을 기액 계면(10a)에 평행하게 배치할 수도 있다. 이와 같은 구성에 있어서는, 미스트 M과 미세 기포 B는, 탄성 표면파 W에 의해, 그 전파 방향으로 구동력을 받기 때문에, 미스트 M과 미세 기포 B가 보다 안정적으로 발생된다. 왜냐하면, 미스트 M과 미세 기포 B는, 발생과 동시에 순차적으로 압전 기판(2) 주변으로부터 이탈하고, 각각 서로 신속하게 이격되므로, 예를 들면, 미세 기포 B끼리 결합하여 소멸하는 것이 억제되기 때문이다. 그리고, 탄성 표면파 W의 진행 방향(x 방향)과 기액 계면(10a)과의 각도(바꾸어 말하면, 표면 S에 수직인 축 주위의 회전 각도에 관한 압전 기판(2)의 자세)는, 전술한 바와 같은 직각 방향이나 평행 방향에 한정되지 않고, 임의의 각도로 할 수 있다. 또한, 이 각도는, 각도 변동 장치를 설치하여, 본 장치(1)의 사용 중에 적절히 변동시키도록 해도 된다. 이 각도 변동에 의해, 기체를 액체 중에 끌어들이거나 반대로 액체를 기체 중에 끌어 올려, 미스트 M과 미세 기포 B와의 발생 비율을 동적으로 변동시킬 수 있다.
도 6a 및 도 6b는 제1 실시예의 다른 변형예를 나타낸다. 도 6a에 나타낸 바와 같이, 본 변형예는, 전극(21)을 기체 측에 배치한 제1 실시예의 압전 기판(2)에 있어서, 표면 S에서의 적어도 계면(10a)과의 교차 영역을 포함하는 영역에, 표면 S에 밀착된 커버(22)를 설치한 것이다. 본 장치(1)는, 전극(21)에 의해 여진시킨 탄성 표면파 W를 표면 S를 따라 기체 측으로부터 액체(10) 중에 전파시킴으로써, 미스트 M을 발생시키지 않고, 계면(10a)으로부터 이격된 액체(10)의 내부 측에서 미세 기포 B를 발생시킬 수 있다. 커버(22)는, 계면(10a)을 통과할 때의 경계 조건 변동의 영향을 완화하고 탄성 표면파 W의 전파 손실을 억제하여, 미세 기포 B를 높은 효율로 발생시키기 위한 것이다. 그래서, 커버(22)는, 계면(10a)에서의 파의 감쇠를 억제하고 확실하게 액체(10) 중에서의 탄성 표면파 W의 진동 강도를 확보하기 위해, 탄성 표면파 W의 전파 손실을 일으키지 않는 것으로 할 필요가 있다. 커버(22)의 재료로서는, 어느 정도의 탄성을 가지고 압전 기판(2)의 진동을 방해하지 않는 것이나, 압전 기판(2)과 동등한 압전 재료를 사용할 수 있다.
본 변형예에 의하면, 기체 측으로부터 액체(10) 측에 탄성 표면파 W가 전파되어 계면(10a)을 통과할 때의 탄성 표면파 W의 전달 손실을 커버(22)에 의해 억제 가능하므로, 에너지 효율적으로 미세 기포 B를 발생시킬 수 있다. 또한, 탄성 표면파 W가, 계면(10a)으로부터 이격된 액체(10)의 내부 측에서 액체(10)에 접촉하므로, 미스트 M을 발생시키지 않고 미세 기포 B를 선택적으로 발생시킬 수 있다. 또한, 미세 기포 B가 계면(10a)으로부터 이격되어 발생하므로 기체 측으로 소실되는 것을 저감할 수 있다.
또한, 도 6b의 변형예에 나타낸 바와 같이, 커버(22)를, 전극(21)을 덮는 영역까지 설치해도 된다. 이 구성에서는, 탄성 표면파 W가 여진되는 시점으로부터 커버(22)에 의해 덮인 표면 S에서 전파되므로, 상기 도 6a의 경우와는 상이하게 되어, 기체와 커버(22) 사이의 경계를 탄성 표면파 W가 통과하지 않고, 그와 같은 경계를 통과할 때의 손실이 발생하지 않는다. 즉, 이 변형예에 의하면, 액체(10) 중으로 향해 탄성 표면파 W가 전파될 때의 경계 조건의 변화가, 커버(22)로부터의 출구측 단면에서의 1개소에만 있으므로, 탄성 표면파 W의 전달 손실이 더욱 억제된다.
도 7은 제1 실시예의 또 다른 변형예를 나타낸다. 본 변형예는, 제1 실시예에 있어서, 압전 기판(2)의 기체 측의 부분을 덮는 용기(12)를 설치하고, 용기(12)와 액체(10)에 의해 형성된 공간에 미스트 M을 가두는 것이다. 용기(12)는, 밀폐 공간을 형성할 필요는 없고, 적어도 미스트 M을 원하는 범위 내에 가둘 수 있는 것이면 되고, 예를 들면, 위쪽으로 개구를 가지는 용기이면 된다. 또한, 전극(21)이 충분히 절연 처리되어 있지 않은 경우에, 충만한 미스트 M에 의해 전극(21) 사이의 단락이 발생하지 않도록, 용기(12)에 배기구를 설치하거나, 강제적으로 배기하여도 된다. 본 변형예에 의하면, 발생한 미스트 M은 용기(12)가 구비되어 있으므로 외부로 나가지 않고, 미세 기포 B만을 이용하도록 할 수 있다.
도 8은 제1 실시예의 또 다른 변형예를 나타낸다. 본 변형예는, 제1 실시예에 있어서, 압전 기판(2)의 표면 S에 근접하여 대향하는 평판(13)을 계면(10a)과 교차하는 위치에 구비한 것이다. 평판(13)은, 예를 들면, 상변과 하변이 수평인 직사각형 판이다. 평판(13)은, 압전 기판(2)의 표면 S와의 사이에서, 액체(10)의 액면, 즉 기체와 액체(10)의 계면(10a)의 높이를 표면 장력에 의해 상승시킨다(액체(10)의 종류나 액체 접촉면 등의 상황에 따라서는, 액면을 하강시키는 액체도 있다). 여기서, 표면 S와 평판(13)과의 간격 d를 설정하기 위해, 평판(13)의 상변의 액면(10a)으로부터의 높이 H, 액체(10)의 표면 장력 T, 접촉각 φ, 및 밀도 ρ, 중력 가속도 g를 부여한다. 이들의 값으로부터 간격 d0=2Tcosφ/(ρgH)를 구하고, 압전 기판(2)과 평판(13)의 간격 d를, 간격 d0 미만(d<d0)으로 설정한다.
전술한 바와 같은 간격 d를 두고, 평판(13)을 표면 S에 대하여 배치함으로써, 미세 기포 B가 압전 기판(2)과 평판(13)과의 사이로부터 외부(하방)를 향해 발생하지 않게 된다. 이것은, 평판(13)의 상변의 높이 H가 특정의 일정값 이상으로 되면, 압전 기판(2)과 평판(13) 사이의 액체 공간에서 발생한 미세 기포 B가 서로 결합 합체해서 부상하므로, 아래쪽의 액체(10) 중에는 미세 기포 B가 나타나지 않게 된다는 현상에 기초한다. 높이 H는, 계면(10a)으로부터 위쪽의 높이로 하고 있으므로, 평판(13)을 계면(10a)으로부터 아래쪽으로 연장하면, 평판(13)의 높이가 전술한 높이 H보다 낮아도, 아래쪽에 미세 기포 B가 나타나지 않게 된다.
본 변형예에 의하면, 압전 기판(2)과 평판(13)과의 간극 d를 충분히 좁게 함으로써, 그 간극 d에 있어서 미세 기포 B의 이동 공간이 한정되어, 미세 기포 B끼리 결합 합체해서 부상하므로, 액체(10) 중에서의 미세 기포 B의 발생을 가압하여 미스트 M만을 외부로 발생시킬 수 있다. 이와 같은 간극 d에 있어서는, 액체(10)의 표면 장력에 의해 액면의 높이가 다른 부분보다 상승하여 유지되므로, 다른 부분의 액면의 높이가 변화하여도, 압전 기판(2)에 대해 동일한 높이 위치에서 미스트 M을 안정적으로 발생시키도록 할 수 있다.
도 9는 제1 실시예의 또 다른 변형예를 나타낸다. 본 변형예는, 제1 실시예에 있어서, 표면 S와 계면(10a)과의 교차 각도 θ를 변경함으로써, 미스트 M 또는 미세 기포 B의 발생 비율을 변경하는 것이다. 이와 같은 구성에 의하면, 교차 각도 θ를, 예를 들면, 0<θ<π의 범위에서 변경함으로써, 계면(10a)과 압전 기판(2)의 표면 S에 의해 에워싸인 공간을, 기체 측과 액체(10) 측의 각각에서 변화시킬 수 있으므로, 미스트 M과 미세 기포 B의 발생량 및 미스트 M과 미세 기포 B의 발생 비율을 변화시킬 수가 있다. 예를 들면, 도면 중의 각도 θ가 작아져 표면 S가 더 상향으로 되어 표면 S와 계면(10a)이 더 평행에 가깝게 되면, 액체(10) 측의 공간이 좁아지고, 미세 기포 B 사이의 결합 합체가 발생하기 쉬워져서, 결과적으로 미세 기포 B가 감소하게 된다. 이 경우, 기체 측의 공간이 넓어지고, 또한 액체(10)가 표면 S 상에 더 얇게 퍼져 미스트 M이 발생하기 쉽게 되므로, 미스트 M의 발생 효율이 높아지게 된다. 또한, 반대로, 도면 중의 각도 θ가 커지면 반대의 동작으로 된다. 각도 θ는, 본 장치(1)의 사용 전에 미리 수동으로 설정해도 되고, 사용 중에 사용상황에 따라 동적으로 자동 변화시켜도 된다. 각도 θ를 변화시키는 기구는, 원호형의 긴 구멍 등으로 가변하도록 하거나, 모터와 조합하여, 기판 지지부(20)에 용이하게 내장할 수 있다. 또한, 본 변형예에서는, 표면 S와 계면(10a)과의 교차 각도 θ에 대하여 나타내고 있으나, 표면 S에 수직인 축 주위의 회전 각도와 조합시켜 변화시키도록 해도 된다(도 5 및 그 설명을 참조).
도 10a 및 도 10b는 제1 실시예의 또 다른 변형예를 나타낸다. 도 10a에 나타낸 바와 같이, 본 변형예는, 제1 실시예에 있어서, 압전 기판(2)의 표면 S가, 적어도 전극(21)을 덮도록 절연체(23)에 의해 덮여 있는 것이다. 절연체(23)는, 단단한 재료, 즉 탄성 표면파 W가 흡수되지 않는 재료로 구성된다. 이와 같은 절연체(23)는, 압전 기판(2)과 동등한 압전 재료, 예를 들면, LiNbO3(니오브산 리튬)의 박판이나, 다른 절연 재료, 예를 들면, 실리콘 기판의 박판 등을, 표면 S와 접합하여 표면 S에 설치된다. 또한, 박판을 접합하는 대신에, 표면 S 상에 PZT 등의 압전 박막을 형성하여, 절연체(23)로 할 수도 있다. 절연체(23)의 두께는, 그 외표면을 따라 탄성 표면파 W가 전파될 수 있는 두께로 한다. 또한, 절연체(23)는, 표면 S의 전체 면을 덮을 필요는 없으며, 전극(21)의 부분만을 절연하는 경우에는, 절연체(23)의 두께를, 그 외표면을 따라 탄성 표면파 W가 전파될 수 있는 두께로 할 필요가 없다.
본 변형예에 의하면, 여진 수단을 구성하는 전극(21)이 절연되므로, 도전성의 액체라도, 미스트 M과 미세 기포 B를 안정적으로 발생시킬 수 있다. 또한, 전극(21)이 절연체(23)를 구비하고 있으므로, 전극 사이가 단락되어 버리는, 예측하지 못한 사태를 피할 수 있고, 조작성이 우수하고 미스트 M과 미세 기포 B를 용이하게 발생시킬 수 있다. 또한, 도 10b에 나타낸 바와 같이, 압전 기판(2)의 전극(21) 측을 도전성의 액체 중에 담근 상태로 압전 기판(2)을 배치할 수도 있다.
도 11, 도 12, 도 13은 제1 실시예의 또 다른 변형예를 나타낸다. 본 변형예는, 도 11에 나타낸 바와 같이, 제1 실시예에 있어서는, 압전 기판(2)의 판 두께를, 전극(21)에 의한 탄성 표면파 W가 표면 S를 따라 전파되는 동시에, 표면 S에 대향하는 배면 Sr을 따라 탄성 표면파 Wr가 전파되도록 얇은 판 두께로 한 것이다. 압전 기판(2)의 두께는, 예를 들면, 탄성 표면파 W의 파장의 1/4보다 얇게 하면 된다. 압전 기판(2)로서는, PZT 등의 압전 박막을 사용할 수 있다. 이와 같은 얇은 압전 기판(2)은, 그 주변을 액자 가장자리처럼 유지하는 주변 보강부를 구비함으로써, 안정하게 사용할 수 있는 장치로 할 수 있다. 이와 같은 다이어프램 구조로 형성된 압전 기판은, 실리콘 기판 등의 에칭 기술 등을 사용하여 형성할 수 있다. 본 변형예에 의하면, 표면 S와 배면 Sr의 양면에서 미스트 M과 미세 기포 B를 발생시킬 수 있어 미스트 M과 미세 기포 B를 효율적으로 많이 발생시킬 수 있다.
또한, 도 12에 나타낸 바와 같이, 압전 기판(2)은, 여진 수단으로서의 전극(21)을, 표면 S와 함께 표면 S에 대향하는 배면 Sr에 구비하고, 이들 양면 S, Sr에 탄성 표면파 W, Wr을 여진시키는 것으로 할 수 있다. 이 변형예는, 도 11에 나타낸 것과는 상이하며, 압전 기판(2)의 두께를 얇게 할 필요는 없고, 임의의 두께로 할 수 있다. 또한, 압전 기판(2)의 양면의 동일한 극성의 전극(21)을, 압전 기판(2)을 관통하는 스루홀(through hole)에 의해 접속함으로써, 고주파 전압 인가용의 전기 회로 E와의 접속 배선을 한쪽 면에 집약할 수 있다. 이와 같은 변형예에 의하면, 압전 기판 당 입력 전력의 상한값을 높임으로써, 더 많은 전력을 투입할 수 있으므로, 입력 전력의 상한값을 증가시켜, 미스트 M과 미세 기포 B를 더 많이 발생시킬 수 있다.
또한, 도 13에 나타낸 바와 같이, 압전 기판(2)의 양면 S, Sr에 각각 전극(21)을 설치하고, 양면 S, Sr에서의 탄성 표면파 W, Wr이 서로 동상으로 되도록 여진하는 것으로 할 수 있다. 이 변형예도, 도 11에 나타낸 것과는 상이하며, 압전 기판(2)의 두께를 얇게 할 필요는 없고, 얇게 하는 것이 바람직하지만 임의의 두께로 할 수 있다. 이와 같은 변형예에 의하면, 압전 기판(2)에서의 전계 분포가 표면 S와 배면 Sr에서 서로 대칭으로 되고, 전압 진동에 의한 압전 기판(2)의 압축과 신장이 표면 및 배면에 의해 협조해서 행해지므로, 전극(21)에 투입하는 전력을 효율적으로 파동의 기계 에너지로 전기 기계 변환할 수 있고 탄성 표면파 W, Wr을 효율적으로 더 강하게 여진할 수 있어, 미스트 M과 미세 기포 B를 더 많이 발생시킬 수 있다.
도 14는 제1 실시예의 또 다른 변형예를 나타낸다. 본 변형예는, 제1 실시예에 있어서, 압전 기판(2)의 표면 S에 대향하는 위치에 충격파 발생 장치(14)를 구비하는 것이며, 탄성 표면파 W에 의해 발생시킨 미스트 M과 미세 기포 B를, 충격파 발생 장치(14)로부터 발생되는 충격파 SW에 의해 압괴(壓壞)시켜 미스트 M보다 더 미세한 미스트 M1로 하고, 미세 기포 B보다 더 미세한 기포 B1로 한다. 충격파 발생 장치(14)는, 미스트 M과 미세 기포 B에 대하여 충격파 SW를 조사할 수 있는 장치이면 된다. 예를 들면, 압전 기판(2) 그 자체를 충격파 발생 장치(14)의 충격파 발신원으로 겸용해서 충격파 SW를 발생시켜, 표면 S의 전방에서의 기체 중에, 그리고 액체(10) 중에, 충격파 SW를 전파시키도록 해도 된다. 이 경우, 충격파 발신원을 별도로 설치하지 않아도 된다. 또한, 이 겸용에 따라 충격파 SW의 충분한 강도를 얻을 수 없는 경우에는, 또한 초음파 발신기 등을 사용하는 충격파 발생 장치(14)를 별도로 설치하여, 양자로부터의 충격파를 인가하도록 해도 된다. 본 변형예에 의하면, 선회류를 일으키는 유체 운동 발생기와 같은 기기 등을 필요로 하지 않고, 간단한 구성에 의해, 미세 기포 B를 더 미세한 기포 B1로 할 수 있다. 충격파 SW의 전파 방향은, 표면 S의 정면 방향에 한정되지 않고, 상하 좌우 경사의 임의의 방향으로서 미스트 M과 미세 기포 B에 충격파 SW를 조사할 수 있는 방향이면 된다. 또한, 미스트 M과 미세 기포 B 중 어느 한쪽에 충격파 SW를 조사하는 것이어도 된다. 또한, 충격파 SW를 특정 초점 위치에 집중시키도록 발신면을 곡면으로 형성하거나, 복수의 발신면마다 파의 위상 제어를 하도록 해도 된다.
도 15, 도 16은 제1 실시예의 또 다른 변형예를 나타낸다. 본 변형예는, 제1 실시예에 있어서, 액체(10)가 평면에서 볼 때 원 형상의 액체 용기(11)에 넣어져 있는 것이다. 액체 용기(11)는, 상면으로부터 보았을 때, 그 내주 벽이 완전한 원에 가까운 형상이 바람직하지만, 타원이나 직사각형으로 C면 처리, R면 처리를 행함으로써 각이 없는 회전류를 발생하기 쉬운 형상이어도 좋다. 압전 기판(2)은, 이와 같은 액체 용기(11)의 중심으로부터 편심된 위치에 배치되어 있다. 또한, 그 표면 S는, 액체 용기(11)의 직경 방향에 평행하게 되어 있고, 미스트 M과 미세 기포 B의 발생 방향(표면 S에 수직인 방향)이 원주 방향으로 되어 있다. 이와 같은 배치 구성 하에서 발생된 미세 기포 B는, 액체 용기(11)의 내벽 면을 따라 이동하고, 액체 용기(11) 내의 액체(10)가 내벽 면에 따른 방향의 운동량을 받아, 액체 용기(11) 내에, 원주 방향의 회전류(일종의 대류)가 발생한다. 또한, 원주 방향으로 액체(10)의 흐름이 발생함으로써, 액체 용기(11)의 중심부에서의 미세 기포 B를 액체(10)의 운동에 의해 압괴시켜, 더 미세한 기포로 만든다. 이와 같은 회전류를 적극적으로 촉진하기 위해, 외부의 모터에 의해 회전하는 스터러(stirrer) 등을 액체 용기(11) 내에 구비하고, 압전 기판(2) 그 자체를, 예를 들면, 액체 용기(11)의 원주 방향을 따라 회전이동시켜도 된다.
본 장치(1)는, 예를 들면, 액체 용기(11)의 하부 중앙으로부터 미세 기포 B를 포함하는 액체(10)를, 화살표 OUT로 나타낸 바와 같이 도출하여, 그 액체(10)를 세정 용도 등에 사용할 수 있다. 또한, 액체(10)의 유출을 보충하기 위해서, 화살표 IN으로 나타낸 바와 같이 액체 용기(11)의 위쪽으로부터 액체 보급을 적절히 행하면 된다. 이때, 액체(10) 중의 미세 기포 B가, 그 이용 목적에 따라 적절한 기포수밀도로 되도록, 미리 압전 기판(2)에서의 탄성 표면파의 여진 전력, 여진 주파수, 여진용 전극 수, 전파 면적, 압전 기판 그 자체의 수량 등, 미세 기포 B를 생성하는 성능과 관련된 제원을 설정하거나, 사용 중에 변경할 수 있다. 또한, 미세 기포 B가 적절한 입자수밀도로 되도록, 도출하는 액체(10)의 유량을 조절하여 변경해도 된다.
본 변형예에 의하면, 원 형상의 액체 용기(11)의 원주 방향의 액체(10)의 흐름에 의해, 압전 기판(2) 근방으로부터 미세 기포 B를 신속하게 이탈시키고, 또한 각 미세 기포 B를 서로 이격시키고 분산시킬 수 있으므로, 미세 기포 B 사이의 결합을 저지하고 결합 대형화에 의한 미세 기포 B의 소실을 억제하고, 효율적으로 미세 기포 B를 발생시킬 수 있다. 그리고, 압전 기판(2)을, 평면에서 볼 때 액체 용기(11)의 직경 방향으로부터 경사지게 해서, 액체의 회전류에 방해되지 않게 배치하면 된다.
도 17, 도 18은 제1 실시예의 또 다른 변형예를 나타낸다. 본 변형예는, 제1 실시예에 있어서, 도 17에 나타낸 바와 같이, 압전 기판(2)에 정전압을 인가하도록 한 것이다. 즉, 압전 기판(2)으로부터 이격된 기체 및 액체 중에 대향 전극(15)을 설치하고, 압전 기판(2)과 대향 전극(15) 사이에 직류 전원 V로부터의 전압을 인가하고, 압전 기판(2)에서의 미스트 M과 미세 기포 B가 발생하는 영역을, 그 주변에 대하여 양전위로 되도록 하고 있다. 대향 전극(15)(부전극)에 대하여, 압전 기판(2)과 그 주변에 정전압을 인가하기 위한 압전 기판(2) 측의 정전극(도시하지 않음)은, 금속 등의 일정한 전위를 가지는 도전성의 재질로 하는 것이 바람직하다. 또한, 탄성 표면파 W를 전파시키는 압전 기판(2)의 표면 S에 정전극용의 전극 패턴을 설치해도 된다. 이 경우, 부품수의 경감을 도모할 수 있다. 또한, 전극(21)을 정전극으로서 공용할 수 있다. 이 경우, 액체(10)에 대하여 전극(21)이 항상 양전위로 되도록 고주파 전압을 인가하면 된다. 또한, 액체(10)는, 예를 들면, 물의 경우, 순수한 물이 아닌 이온이 많이 포함되도록 한 수돗물이나 전해수가 바람직하다. 그리고, 본 실시예의 변형예로서, 전극(21) 측을 액체(10) 중에 넣어 압전 기판(2)을 배치하는 경우에는, 전극(21)은 절연 처리되어 있을 필요가 있다.
본 변형예에 의하면, 액체(10) 중의 음이온(예를 들면, OH-)을 압전 기판(2)과 미스트 M과 미세 기포 B의 표면에 부착시킴으로써, 그 동종의 전하 사이의 반발력에 의해, 압전 기판(2) 근방으로부터 미스트 M과 미세 기포 B를 신속하게 이탈시킬 수 있고, 또한 미스트 M과 미세 기포 B를 각각 서로 이격시켜 미스트 M 사이의 결합, 또는 미세 기포 B 사이의 결합을 저지할 수 있다. 따라서, 미스트 M과 미세 기포 B의 결합 대형화에 의한 미스트 M과 미세 기포 B의 소실을 억제할 수 있고, 효율적으로 미스트 M과 미세 기포 B를 발생시켜, 미스트 M과 미세 기포 B 상태를 안정적으로 유지시킬 수 있다.
또한, 도 18에 나타낸 바와 같이, 압전 기판(2)에 인가하는 전위를 음전위로 할 수도 있다. 이 경우, 기체 및 액체(10) 중 양이온에 의해, 전술한 바와 마찬가지의 효과를 거둘 수 있다. 압전 기판(2)을 양전위로 할 것인지 음전위로 할 것인지는, 액체(10)와 미스트 M과 미세 기포 B의 특성, 및 이들의 적용 분야(이용 분야 및 목적)에 따라 선택 결정하면 된다.
도 19, 도 20은 제1 실시예의 또 다른 변형예를 나타낸다. 본 변형예는, 제1 실시예에 있어서, 전극(21)에 의해 여진되어 서로 역방향의 2방향으로 전파되는 탄성 표면파의 한쪽을 반사시켜, 양쪽의 탄성 표면파를 일방향(도면 중 x 방향)으로 향하는 탄성 표면파 W로서 전파시키기 위해, 반사 수단으로서 반사 전극(24)을 압전 기판(2)의 표면 S에 구비하는 것이다. 반사 전극(24)은, 전극(21)과 마찬가지로 빗살형의 전극 등으로 구성할 수 있다.
본 변형예에 의하면, 탄성 표면파의 전파 방향을 1방향으로 한정하여 미스트 M과 미세 기포 B의 발생 위치를 한정할 수 있다. 또한, 여진 수단으로서의 전극(21)을 기체 측으로 해서 압전 기판(2)을 배치하고 있는 경우에, 기체 측의 기판 단부로 향해 전파되고 미스트나 미세 기포의 발생에 아무런 기여를 하지 않는 탄성 표면파를, 반사 전극(24)에 의해 반사시켜 액체(10) 측으로 향하게 하는 것으로, 그 에너지를 유효하게 이용할 수 있다.
도 21은 제1 실시예의 또 다른 변형예를 나타낸다. 본 변형예는, 제1 실시예에 있어서, 적하(滴下) 장치(16)를 구비하고, 그 적하 장치(16)에 의해, 미세 기포 B가 발생하는 영역에 계면활성 물질(17)을 적하하는 것이다. 계면활성 물질(17)은, 예를 들면, 가정용의 세제 등을 사용할 수 있다. 적하 장치(16)는, 계면활성 물질(17)을 파이프로부터 중력으로 적하시키거나 펌프로 강제 적하시키거나 스프레이 노즐로부터 분무하는 장치로서 구성된다. 이들의 파이프나 스프레이 노즐의 선단을, 압전 기판(2)의 표면 S와 계면(10a)과의 교선 가까이에 배치하여 계면활성 물질(17)을 적하하고 분무하여, 액체(10)에 공급하면 된다. 액체(10)는, 미세 기포 B와 함께 배관 등에 의해 소정 위치에 안내되어 세정이나 소독 등에 사용되고 소비된다. 그래서, 계면활성 물질(17)의 공급량은, 액체(10)의 유량이나 액체 용기의 용량, 액체(10)의 물성에 관한 요구 사양 등에 따라 설정하거나, 변경하거나 하면 된다.
본 변형예에 의하면, 계면활성 물질의 물리화학 작용에 의해, 미스트 M과 미세 기포 B의 발생 안정화를 도모할 수 있다. 또한, 예를 들면, 미스트 M과 액체(10)를 세정에 사용하는 경우에, 세정 효과를 향상시킬 수 있는 계면활성 물질을, 최소량으로 효율적으로 미스트 M과 미세 기포 B의 표면에 부착시킬 수 있다.
도 22, 도 23은 제1 실시예의 또 다른 변형예를 나타낸다. 본 변형예는, 관형의 구조재(5)의 내부를 그 관 방향을 따라 화살표 y 방향으로 흐르는 액체(10) 중에서 미세 기포 B를 발생시키는 것이다. 관형의 구조재(5)의 내부에는 기체가 존재하는 공간이 있고, 그 기체는, 액체(10)와 함께 화살표 y 방향으로 흐르고 있다. 이와 같은 관형의 구조재(5)의 내부에, 제1 실시예에서의 압전 기판(2)과 동일한 압전 기판(2)이 배치되어 있다. 압전 기판(2)에 있어서 발생하는 미스트 M 및 미세 기포 B는, 각각 압전 기판(2)으로부터 순차적으로 이탈해서 기체 및 액체(10)의 흐름에 따라 흘러 간다. y 방향의 액류(液流)는, 위치 에너지에 의해 발생하는 것이어도 되고, 별도의 펌프를 설치하여 펌프에 의해 발생하는 것이어도 된다. 또한, 기체의 흐름은, 액류에 이끌려 발생하는 흐름으로 해도 되고, 강제적으로 압력차를 만들어 발생시키는 것이어도 된다. 관형의 구조재(5)는, 단면이 원형의 파이프나 사각형의 파이프 외에, 임의의 단면의 파이프 등을 사용할 수 있고, 또한 통형의 것, 축 방향으로 슬릿을 가지는 것 등을 사용할 수 있다.
본 변형예에 의하면, 액체(10)의 흐름에 의해, 압전 기판(2) 근방으로부터 미세 기포 B를 신속하게 이탈시키고, 또한 각 미세 기포 B를 서로 이격시킬 수 있으므로, 미세 기포 B 사이의 결합을 저지하고 결합 대형화에 의한 미세 기포 B의 소실을 억제하여, 효율적으로 미세 기포 B를 발생시킬 수 있다. 또한, 액체(10) 중의 미세 기포수의 밀도가 균일해지도록 미세 기포 B를 발생시킬 수 있다. 이와 같은 미세 기포 B를 포함하는 액체(10)를, 관형의 구조재(5)에 의해 원하는 장소까지 보내고, 세정 등의 처리에 사용할 수 있다.
또한, 도 23에 나타낸 바와 같이, 관형의 구조재(5)의 내벽 면, 즉 액체(10)를 수용하는 액체 용기의 내벽 면에 압전 기판(2) 및 여진 수단으로서의 전극(21)을 설치하여도 된다. 압전 기판(2)은, 별도로 형성한 것을 구조재(5)의 내벽 면에 접착해도 되고, 또한 구조재(5)의 내벽 면에 압전성의 박막을 성막하고, 그 위에 전극(21)을 성막하여 형성하여도 된다. 본 도면에 나타낸 예에서는, 전극(21)의 각각의 빗살의 톱니의 길이 방향이 관형의 구조재(5)의 축 방향을 따라 형성되어 있고, 탄성 표면파는 구조재(5)의 원주 방향으로 전파된다. 전극(21)의 배치 구성은, 이 구성에 한정되지 않고, 구조재(5)의 내벽 면에서의 임의의 방향이나 구조로 할 수 있다. 예를 들면, 전극(21)의 각각의 빗살의 톱니의 길이 방향을 구조재(5)의 원주 방향으로 하면, 탄성 표면파는 구조재(5)의 축 방향을 따라 전파된다. 본 변형예에 의하면, 소형의 기기 구성이며, 기체와 액체를 흐르게 하면서 균일하고 대량의 미세 기포를 안정적으로 발생시킬 수 있다.
(제2 실시예)
도 24는 제2 실시예에 대하여 나타낸다. 본 변형예는, 제1 실시예에 있어서, 압전 기판(2)의 기체 측의 부분을 덮는 용기(3)를 설치하고, 용기(3)와 액체(10)에 의해 형성된 공간 내부에 임의의 기체 G를 충전하는 것이다. 용기(3)는, 천정부(30)와 천정부(30)로부터 적어도 계면(10a) 근처까지 수직으로 내려오는 측벽부(32)에 의해 대략의 밀폐 공간을 형성하고 있다. 측벽부(32)에는 기체 G를 도입하기 위한 도입관(31), 및 미스트 M을 용기(3)의 외부에 도출하기 위한 개구부(33)가 설치되어 있다. 압전 기판(2)은, 기판 지지부(20)에 의해, 천정부(30)에 유지되어 있다. 용기(3)에 의한 대략의 밀폐 공간에 기체 G를 밀봉함으로써, 액체(10)에서의 미세 기포 B가 발생되는 영역에 원하는 기체 G를 효과적으로 용해할 수 있고, 기체 G를 헛되이 소실하여 소비하는 것을 회피할 수 있다. 또한, 기체 측으로부터 액체(10) 측을 향해 전파되는 탄성 표면파 W에 의하면, 용기(3) 내의 기체 G가 액체(10) 내부에 끌어 들여짐으로써, 기체 G를 효과적으로 용해시킬 수 있다.
본 변형예에 의하면, 용이하면서 효율적으로, 원하는 기체의 미세 기포를 발생시킬 수 있다. 이것은, 미세 기포 B가 액체(10) 중에 용해되어 있는 기체로부터 생성되는 것으로 생각된다. 그리고, 개구부(33)를 설치하지 않고, 측벽부(32)를 계면(10a)으로부터 액체(10) 내부 측까지 수직으로 내려오게 하면, 미스트 M을 외부에 내보내지 않고, 또한 기체 G의 소산에 의한 소비를 방지하여, 기체 G에 의한 미세 기포 B를 포함하는 액체(10)만을 이용할 수 있다. 또한, 기체 G를 국부적으로 존재할 수 있게 하는 용기(3)를 사용함으로써 공간절약의 장치로 할 수 있고, 용기(3)를 압전 기판(2)와 그 주변을 밀폐하는 최소한의 체적으로 함으로써, 더욱 공간절약의 장치로 할 수 있다. 기체 G는 용해를 촉진하기 위해 용기(3) 내에서 압력을 높이도록 가압해도 된다. 기체 G는, 외부로부터 도입하지 않고, 용기(3) 내부에서 발생시키도록 해도 된다. 예를 들면, 공기를 통과시키는 것만으로 산소 농도를 높게 할 수 있는 산소 부화막에 의해 산소를 기체 G로서 발생시켜도 된다.
도 25, 도 26, 도 27, 도 28은 제2 실시예의 다른 변형예를 나타낸다. 본 변형예는, 도 25에 나타낸 바와 같이, 제1 실시예에 있어서, 압전 기판(2)이 부체(浮體)(4)에 의해 액면(10a)으로부터 일정 높이 위치에 지지되어 있는 것이다. 부체(4)는, 평면에서 볼 때 압전 기판(2)을 에워싸는 C자 형상을 가지며, C자 형상의 개부(開部)는 미스트 M이 이동하여 통과하도록 설치되어 있다. 압전 기판(2)은, 지지 부재(41)에 의해 부체(4)에 고정되어 있다. 그런데, 전술한 제1 실시예(도 1 참조)에 있어서는, 압전 기판(2)이 유지부(20)에 의해 액체 용기(11)에 고정되어 있으므로, 액체 용기(11) 내의 액체(10)의 액면(10a)의 높이가 상하로 변동하면, 미스트 M과 미세 기포 B의 발생 위치가 상하로 변동되어 버릴 문제가 있다.
본 변형예에 의하면, 액면(10a)의 높이가 변동하는 액체(10)에 대하여, 압전 기판(2)의 상하 방향의 위치를, 자동으로 안정적으로 일정 높이에 유지할 수 있으므로, 발생 조건을 일정하게 할 수 있어 미스트 M과 미세 기포 B를 안정적으로 발생시킬 수 있다. 또한, 압전 기판(2)이 떠있는 상태로 되어 있으므로, 액면(10a)에 따른 수평 방향의 위치 변경이나 위치 유지가 용이하다. 그리고, 부체(4)는, C자 형상으로 떠있는 것에 한정되지 않고, 임의의 형상으로 떠있는 복수의 조합으로 해서 사용할 수 있다. 또한, 부체(4)와 압전 기판(2)을 고정하는 지지 부재(41)는, 봉재, 판재, 커버 상태 부재 등, 임의의 형상의 것을 사용할 수 있고, 밀폐, 비밀폐 중 어느 것이어도 되고, 부체(4)와 지지 부재(41)를 일체의 구조로 해도 된다. 또한, 액체 용기에 대하여, 부체(4)와 이에 지지된 압전 기판(2) 등을, 원활하게 수직 또는 수평 이동시키기 위해, 액체 용기에 대한 이동 가이드나 스토퍼 등을 설치해도 된다.
또한, 도 26, 도 27에 나타낸 바와 같이, 지지 부재(41)에 의해, 압전 기판(2)에 더하여, 회로 기판(42)을 부체(4)에 의해 지지하고, 또한 전원(43)도 부체(4)에 의해 지지하도록 할 수 있다. 여기서, 회로 기판(42)은, 예를 들면, 전극(21)에 인가하는 고주파 전압을 제어하여 탄성 표면파 W의 여진을 제어하기 위한 회로를 포함하는 회로 기판이며, 전원(43)은, 회로 기판(42)을 제어하기 위한 전원이나 전극(21)에 인가하는 구동을 위한 전원을 포함한다. 전원(43)은, 전지나 배터리이어도 되고, 진동, 광, 수류(水流) 등의 에너지에 의해 발전하기 위한 장치나 회로이어도 된다. 또한, 지지 부재(41)와 부체(4)를, 도전성의 재료로 구성하고, 외부 노이즈 억제를 위한 전자파 차폐로서 사용하는 구성으로 해도 된다.
이와 같은 변형예에 의하면, 회로 기판(42)과 압전 기판(2)의 근접 배치가 가능하므로, 전력 손실이나 노이즈의 영향을 최소화할 수 있다. 또한, 전원(43)을 부체(4)로 유지함으로써, 외부 배선 등이 불필요해지므로, 압전 기판(2)에 더하여, 미스트 M과 미세 기포 B의 발생에 필요한 기기 종류를 독립된 유닛으로서 본 장치(1)를 구성할 수 있고, 그 유닛의 설치나 증감이 용이하며, 미스트 M과 미세 기포 B를 용이하게 발생시킬 수 있다.
또한, 도 28에 나타낸 바와 같이, 본 변형예에서의 부체(4)의 구성을, 전술한 제1 실시예에 조합시키는 것도 할 수 있다. 이와 같은 조합은, 전술한 도 26, 도 27의 각각의 변형예에 대해서도 적용할 수 있고, 각각의 조합에 대하여, 기체 G의 도입 효과와, 부체(4)에 의한 높이 유지의 효과를 거둘 수 있다.
(제3 실시예)
도 29는 제3 실시예에 대하여 나타낸다. 본 실시예는, 제1 실시예에 있어서, 기체 공급관(17)을 구비하고, 그 기체 공급관(17)에 의해, 표면 S를 따라 기체 측으로부터 액체(10) 측에 임의의 기체 G를 공급하는 것이다. 표면 S를 따라 액체(10) 측에 기체 G를 공급함으로써, 미세 기포 B가 발생하는 영역에, 직접적이면서 효과적으로 원하는 기체 G를 공급하여 액체 중에 용해시킬 수 있고, 원하는 기체 G로 이루어지는 미세 기포 B를 효율적으로 발생시킬 수 있다.
도 30, 도 31은 제3 실시예의 변형예를 나타낸다. 본 변형예는, 도 30에 나타낸 바와 같이, 전술한 도 29에 나타낸 제3 실시예에서의 기체 G의 공급을 적응적으로 행하도록 한 것이다. 액체(10)는, 일부에 개구(50)를 가지는 관형의 액체 용기(5) 안을 일방향(y 방향)으로 흐르고 있고, 압전 기판(2)은, 개구(50)에 근접하여 개구(50)의 하류측에서의 액체 용기(5)의 상부 벽면에, 그 표면 S를 액체(10)에 면하게 하여 설치되어 있다. 표면 S상의 전극(21)은, 개구(50) 측(상류 측)에 있고, 개구(50) 측으로부터 하류 방향으로 전파되는 탄성 표면파 W를 여진시킨다. 개구(50)에는, 액체(10)의 유속이 낮은 경우에는 개구(50)를 폐쇄하고, 유속 상승에 따라 개구(50)에 대한 개방 정도를 증가시키도록 개방 동작을 하는 기체 공급 밸브(51)가 설치되어 있다. 기체 공급 밸브(51)는, 유속 증가에 의한 압력 저하에 기초한 흡인력에 의해, 즉 유속에 적응적으로 개방 동작 R이 행해진다. 이 기체 공급 밸브(51)의 외부 측(액체(10)과는 반대측)에는, 원하는 기체 G가 접하고 있고, 기체 공급 밸브(51)가 동작하여 개구(50)가 개방되는 정도에 따라 기체 G가 액체(10)에 대하여 공급된다. 또한, 도 31에 나타낸 바와 같이, 기체 공급 밸브(51)는, 액체(10)의 유속 상승에 동반하여 증가하는 액체(10)의 운동 에너지에 의해 개방 동작 R이 수행되는 것으로 해도 된다.
이들의 변형예에 의하면, 액체(10)에 용해시켜 미세 기포 B에 포함시키기 위한 임의의 기체 G를, 액체(10)의 유량이나 유속에 따라 액체(10) 내에 적응적으로 공급할 수 있다. 따라서, 기체 G를 헛되이 소비하지 않고, 고가의 기체인 경우에, 장치를 저비용으로 가동시킬 수 있다. 액체(10)가 흐르지 않은 경우에 기체 공급 밸브(51)가 닫히도록 스프링이나 추를 사용해도 된다. 또한, 유속이 낮은 경우나 유량이 적은 경우라도 개방 동작에 의해 기체 G를 공급할 수 있도록, 흡인력이나 운동 에너지를 받는 부위의 면적을 넓게 해도 된다. 도 30 및 도 31에 나타낸 기체 공급 밸브(51)는, 액체(10)의 흐름에 의해 직접적으로 개폐되는 간단한 구조로 되어 있다. 이와 같은 구조 대신에, 흡인력이나 운동 에너지를 받는 부분과, 기체 G의 공급 제어를 하는 부분을 직접연결 하지 않고 역할 분담시켜, 양자 사이에 링크 기구나 신호 전달계 및 액츄에이터를 설치하여 원격 조정하는 구성으로 해도 된다.
그리고, 본 발명은, 상기 각각의 실시예 및 각각의 변형예의 구성에 한정되지 않고 각종 변형이 가능하다. 예를 들면, 전술한 각각의 실시예 및 각각의 변형예의 구성을 서로 조합한 구성으로 할 수 있다. 탄성 표면파를 사용하는 본 발명의 방법 및 장치는, 특히, 직경이 서브 미크론의 나노미터 수준의 미스트나 미세 기포를 발생시키는 것이며, 이와 같은 미스트나 미세 기포를 포함하는 기체 및 액체는, 각종 세정액, 가공이나 반응 촉진을 위한 화학반응액, 생리 작용액 등으로서 바람직하게 사용할 수 있다. 예를 들면, 가공 후의 기계 부품, 전자 회로 기판, 실리콘 기판 등의 각종 반도체 기판, 식기 등의 무중(霧中) 세정에 사용할 수 있다. 압전 기판(2)은 복수 조합으로 사용할 수 있다. 또한, 미스트나 미세 기포는, 더 작은 것을 더 안정적으로 효율적으로 발생시키기 위해, 미스트 입자 간이나 미세 기포 사이의 결합 대형화를 방지하는 것이 효과적이고, 그러므로 입자 결합 방지 수단으로서, 전술한 바와 같이 압전 기판(2)과 액체(10) 사이에 상대 유속을 발생시키거나 미스트나 기포에 대전시키거나 하는 수단이 바람직하게 사용된다.
본원은 일본 특허 출원 2009-148112에 기초하고 있고, 그 내용은, 상기 특허 출원의 명세서 및 도면을 참조함으로써 결과적으로 본원 발명에 합체될 것이다.

Claims (25)

  1. 탄성 표면파를 여진시키기 위한 복수의 전극으로 이루어지는 여진 수단을 표면에 구비한 압전 기판을, 상기 표면이 기체와 액체의 상호의 계면에 교차하도록 상기 압전 기판의 일부분을 액체 중에 넣어 배치하고,
    상기 여진 수단에 의해 상기 표면에 탄성 표면파를 여진시키고,
    상기 여진시킨 탄성 표면파가 상기 계면의 상하에 존재하도록 상기 표면을 따라 상기 탄성 표면파를 전파시켜, 상기 탄성 표면파가, 상기 계면의 위쪽인 기체 측에서 미스트를 발생시키거나, 또는 상기 계면의 아래쪽인 액체 측에서 미세 기포를 발생시키도록 하는, 미스트 또는 미세 기포의 발생 방법.
  2. 제1항에 있어서,
    상기 압전 기판을 상기 여진 수단이 기체 측에 위치하도록 배치하고, 상기 표면에서의 적어도 상기 계면과의 교차 영역을 포함하는 영역에, 상기 표면에 밀착된 커버를 설치하고, 상기 여진 수단에 의해 여진시킨 탄성 표면파를 상기 표면을 따라 기체 측으로부터 액체 중에 전파시킴으로써, 상기 계면으로부터 이격된 액체 내부 측에서 미세 기포를 발생시키도록 하는, 미스트 또는 미세 기포의 발생 방법.
  3. 제2항에 있어서,
    상기 커버가 상기 여진 수단을 덮는 영역까지 설치되어 있는, 미스트 또는 미세 기포의 발생 방법.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 압전 기판의 기체 측의 부분을 덮는 용기를 설치하고, 상기 용기와 액체에 의해 형성된 공간에 미스트를 가두는, 미스트 또는 미세 기포의 발생 방법.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 표면에 근접하여 대향하는 평판을 상기 계면과 교차하는 위치에 설치하는, 미스트 또는 미세 기포의 발생 방법.
  6. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 표면과 상기 계면과의 교차 각도를 변경함으로써, 미스트 또는 미세 기포의 발생 비율을 변경시키는, 미스트 또는 미세 기포의 발생 방법.
  7. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 표면이, 적어도 상기 여진 수단을 덮도록 절연체에 의해 덮여 있는, 미스트 또는 미세 기포의 발생 방법.
  8. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 압전 기판의 판 두께는, 상기 여진 수단에 의한 탄성 표면파가 상기 표면에 대향하는 배면을 따라 전파되는 판 두께로 되어 있는, 미스트 또는 미세 기포의 발생 방법.
  9. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 여진 수단을 상기 표면과 함께 상기 표면에 대향하는 배면에도 구비하고, 이들 양면에 탄성 표면파를 여진시키는, 미스트 또는 미세 기포의 발생 방법.
  10. 제9항에 있어서,
    상기 양면에서의 탄성 표면파는 서로의 위상이 동상으로 되도록 여진하는, 미스트 또는 미세 기포의 발생 방법.
  11. 제1항 내지 제3항 중 어느 한 항에 있어서,
    탄성 표면파에 의해 발생시킨 미세 기포를 충격파에 의해 압괴(壓壞)시켜, 더 미세한 기포로 만드는, 미스트 또는 미세 기포의 발생 방법.
  12. 제1항 내지 제3항 중 어느 한 항에 있어서,
    평면에서 볼 때 원 형상의 액체 용기에 액체가 넣어져 있는, 미스트 또는 미세 기포의 발생 방법.
  13. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 압전 기판에서의 미스트 또는 미세 기포가 발생하는 영역이 그 주변에 대하여 양전위로 되어 있는, 미스트 또는 미세 기포의 발생 방법.
  14. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 압전 기판에서의 미스트 또는 미세 기포가 발생하는 영역이 그 주변에 대하여 음전위로 되어 있는, 미스트 또는 미세 기포의 발생 방법.
  15. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 여진 수단은 탄성 표면파를 1방향으로 향해 전파시키기 위한 반사 수단을 상기 표면에 구비하고 있는, 미스트 또는 미세 기포의 발생 방법.
  16. 제1항 내지 제3항 중 어느 한 항에 있어서,
    미세 기포가 발생하는 영역에 계면활성 물질을 적하(滴下)하는, 미스트 또는 미세 기포의 발생 방법.
  17. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 압전 기판의 기체 측의 부분을 덮는 용기를 설치하고, 상기 용기와 액체에 의해 형성된 공간 내부에 임의의 기체를 충전하는, 미스트 또는 미세 기포의 발생 방법.
  18. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 압전 기판이 부체(浮體)에 의해 액면으로부터 일정 높이 위치에 지지되어 있는, 미스트 또는 미세 기포의 발생 방법.
  19. 제18항에 있어서,
    상기 여진 수단을 제어하기 위한 회로 기판이 상기 부체에 의해 지지되어 있는, 미스트 또는 미세 기포의 발생 방법.
  20. 제18항에 있어서,
    상기 여진 수단을 구동시키기 위한 전원이 상기 부체에 의해 지지되어 있는, 미스트 또는 미세 기포의 발생 방법.
  21. 제1항 내지 제3항 중 어느 한 항에 있어서,
    관형의 구조재의 내부를 흐르는 액체 중에 미세 기포를 발생시키는, 미스트 또는 미세 기포의 발생 방법.
  22. 제1항 내지 제3항 중 어느 한 항에 있어서,
    액체를 수용하는 액체 용기의 내벽 면에 상기 압전 기판 및 상기 여진 수단이 설치되어 있는, 미스트 또는 미세 기포의 발생 방법.
  23. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 표면을 따라 기체 측으로부터 액체 측에 임의의 기체를 공급하는, 미스트 또는 미세 기포의 발생 방법.
  24. 제23항에 있어서,
    상기 기체의 공급은, 액체에 유속을 부여하고, 상기 액체의 유속 상승에 동반하는 압력 저하에 기초한 흡인력에 의해, 또는 유속 상승에 동반하여 증가하는 액체의 운동 에너지에 의해 개방되는 밸브를 통하여 수행되는, 미스트 또는 미세 기포의 발생 방법.
  25. 기액(氣液) 계면 또는 액체 중에서 탄성 표면파를 사용하여 미스트 또는 미세 기포를 발생시키는 미스트 또는 미세 기포 발생 장치에 있어서,
    탄성 표면파를 여진시키기 위한 복수의 전극으로 이루어지는 여진 수단을 표면에 설치한 압전 기판과,
    상기 압전 기판의 일부분을 액체 중에 넣어 그 표면이 기체와 액체의 상호의 계면에 교차하고, 상기 압전 기판의 표면에 여진되는 탄성 표면파가 상기 계면의 상하에 존재하여 상기 표면을 따라 기체 측 및 액체 측으로 전파되도록 상기 압전 기판을 지지하는 기판 지지부
    를 포함하는 미스트 또는 미세 기포 발생 장치.
KR1020117030559A 2009-06-22 2010-06-02 탄성 표면파를 사용하는 미스트 또는 미세 기포의 발생 방법 및 미스트 또는 미세 기포 발생 장치 KR101317736B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2009-148112 2009-06-22
JP2009148112 2009-06-22
PCT/JP2010/059319 WO2010150629A1 (ja) 2009-06-22 2010-06-02 弾性表面波を用いる霧または微細気泡の発生方法および霧または微細気泡発生装置

Publications (2)

Publication Number Publication Date
KR20120026558A KR20120026558A (ko) 2012-03-19
KR101317736B1 true KR101317736B1 (ko) 2013-10-15

Family

ID=43386401

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117030559A KR101317736B1 (ko) 2009-06-22 2010-06-02 탄성 표면파를 사용하는 미스트 또는 미세 기포의 발생 방법 및 미스트 또는 미세 기포 발생 장치

Country Status (6)

Country Link
US (2) US20120097752A1 (ko)
EP (1) EP2446956A4 (ko)
JP (1) JP5253574B2 (ko)
KR (1) KR101317736B1 (ko)
CN (1) CN102458627B (ko)
WO (1) WO2010150629A1 (ko)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120097752A1 (en) * 2009-06-22 2012-04-26 Panasonic Electric Works Co., Ltd. Generating method and generator for generating mist or fine-bubble by using surface acoustic wave
CN103832963B (zh) * 2014-01-15 2015-12-09 华中科技大学 一种微气泡发生器的制备方法
FR3029816B1 (fr) * 2014-12-15 2016-12-30 Cedrat Tech Transducteur tubulaire ultrasonore modulaire et immersible
AU2016262132B2 (en) * 2015-05-13 2021-09-09 Royal Melbourne Institute Of Technology Acoustic wave microfluidic devices with increased acoustic wave energy utilisation
EP3331828A4 (en) * 2015-08-07 2019-03-06 Sanuwave, Inc. ACOUSTIC PRESSURE WAVE WAVE DEVICES AND METHODS OF TREATING FLUIDS
CN105148757B (zh) * 2015-09-07 2017-09-19 中国科学院声学研究所 一种利用气膜制备微泡的装置及方法
GB2548071B (en) 2015-12-18 2018-05-02 Thermo Fisher Scient Bremen Gmbh Liquid sample introduction system and method, for analytical plasma spectrometer
JP6720752B2 (ja) * 2016-07-25 2020-07-08 富士通株式会社 液浸冷却装置、液浸冷却システム、及び液浸冷却装置の制御方法
US10514019B2 (en) 2016-07-26 2019-12-24 Gaynor Dayson Floating piezoelectric assembly for generating energy from waves
DE102017111618B4 (de) 2017-05-29 2021-03-11 CURO GmbH Vorrichtung, System und Verfahren zur Trocknung einer Halbleiterscheibe
CN111601667B (zh) 2017-10-26 2022-09-16 皇家墨尔本理工大学 用于声介导的胞内递送的方法和装置
US11283373B2 (en) * 2018-01-22 2022-03-22 Edwin Steven Newman Piezoelectric power apparatus
WO2019198162A1 (ja) * 2018-04-10 2019-10-17 日本たばこ産業株式会社 霧化ユニット
GB2578105B (en) * 2018-10-15 2023-06-28 Univ College Dublin Nat Univ Ireland Dublin A system, method and generator for generating nanobubbles or nanodroplets
JP7277176B2 (ja) * 2019-02-28 2023-05-18 キヤノン株式会社 ウルトラファインバブル生成方法、およびウルトラファインバブル生成装置
CN110882874A (zh) * 2019-11-11 2020-03-17 咸威 双向反射式超声波雾化换能器
CN113293099B (zh) * 2021-06-01 2023-12-22 中国科学院重庆绿色智能技术研究院 研究微纳米气泡与细胞相互作用的方法
WO2024034377A1 (ja) * 2022-08-10 2024-02-15 キヤノン株式会社 ファインバブル含有液の製造方法及び製造装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232114A (ja) * 1994-02-21 1995-09-05 Kanagawa Kagaku Gijutsu Akad 弾性表面波を用いた超音波霧化器
JPH1163397A (ja) * 1997-08-26 1999-03-05 Ishikawajima Harima Heavy Ind Co Ltd 低温貯蔵タンクの超音波攪拌装置
JP2008104974A (ja) 2006-10-26 2008-05-08 Matsushita Electric Works Ltd 弾性表面波霧化装置

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2893707A (en) * 1955-08-29 1959-07-07 Leslie K Gulton Method of ultrasonic treatment and device
US3160138A (en) * 1961-09-26 1964-12-08 Ultrasonic Ind Inc High intensity sound generator
US3351539A (en) * 1965-04-06 1967-11-07 Branson Instr Sonic agitating method and apparatus
US3410765A (en) * 1966-08-29 1968-11-12 Albert G. Bodine Sonic distillation process and apparatus
US3433461A (en) * 1967-05-22 1969-03-18 Edison Instr Inc High-frequency ultrasonic generators
US3743523A (en) * 1971-08-04 1973-07-03 A Bodine Method for the sonic treating of food material
US3901443A (en) * 1973-02-06 1975-08-26 Tdk Electronics Co Ltd Ultrasonic wave nebulizer
CH566822A5 (ko) * 1973-06-20 1975-09-30 Stern Freres Sa
DE2445791C2 (de) * 1974-09-25 1984-04-19 Siemens AG, 1000 Berlin und 8000 München Ultraschall-Flüssigkeitszerstäuber
SE389972B (sv) * 1975-03-27 1976-11-29 Autochem Instrument Ab Anordning for dosering av en vetska till ett provror och for agitering av innehallet i provroret
US4001650A (en) * 1975-09-02 1977-01-04 Puritan-Bennett Corporation Method and apparatus for ultrasonic transducer protection
GB2069355B (en) * 1980-01-25 1983-03-23 Smiths Industries Ltd Vibratory agitating apparatus
JPS61221310A (ja) * 1985-03-26 1986-10-01 Agency Of Ind Science & Technol 金属或は合金等の微粉末製造方法とその装置
EP0480615B1 (en) * 1990-10-11 1996-02-14 Kohji Toda Ultrasonic atomizing device
DE4039385A1 (de) * 1990-12-10 1992-06-11 Bosch Siemens Hausgeraete Vorrichtung zum anreichern einer fluessigkeit mit kohlendioxid
EP0516565B1 (en) * 1991-05-27 1996-04-24 TDK Corporation An ultrasonic wave nebulizer
FR2686805A1 (fr) * 1992-02-04 1993-08-06 Kodak Pathe Dispositif permettant de dissoudre des bulles gazeuses contenues dans une composition liquide utilisable notamment pour les produits photographiques.
FR2690634B1 (fr) * 1992-04-29 1994-10-14 Chronotec Dispositif de micro-pulvérisation générée par ondes ultra-sonores.
US5657926A (en) * 1995-04-13 1997-08-19 Toda; Kohji Ultrasonic atomizing device
EP0844027B1 (en) * 1995-08-07 2005-09-21 Omron Healthcare Co., Ltd. Atomization apparatus and method utilizing surface acoustic waves
US5653852A (en) * 1995-11-08 1997-08-05 Meng; Ching Ping Distilling device
JPH11114467A (ja) 1997-10-13 1999-04-27 Sharp Corp 霧化装置及び霧化装置の駆動方法並びに霧化方法
US6102298A (en) * 1998-02-23 2000-08-15 The Procter & Gamble Company Ultrasonic spray coating application system
US6228273B1 (en) * 1998-08-21 2001-05-08 Hammonds Technical Services, Inc. Apparatus and method for control of rate of dissolution of solid chemical material into solution
EP1173265B1 (en) * 1999-01-29 2005-12-21 Bristol-Myers Squibb Company Sonic impinging jet crystallization apparatus and process
US6244576B1 (en) * 1999-11-09 2001-06-12 Kuo Lung Tsai Mist Humidifier
US8122880B2 (en) * 2000-12-18 2012-02-28 Palo Alto Research Center Incorporated Inhaler that uses focused acoustic waves to deliver a pharmaceutical product
US6732944B2 (en) * 2001-05-02 2004-05-11 Aerogen, Inc. Base isolated nebulizing device and methods
JP3448653B2 (ja) * 2001-05-07 2003-09-22 東京工業大学長 低過冷度の液体を凝固する方法および装置、並びに氷結液体を循環させる方法およびシステム
US20020194885A1 (en) * 2001-06-22 2002-12-26 Fanping Chen Cylinder anti-clockwise half-opened fabric dyeing machine structure
JP2003074919A (ja) * 2001-08-31 2003-03-12 Sunbow Precision Co Ltd 複合式加湿器
DE60217154T2 (de) * 2001-09-19 2007-10-18 Adiga, Kayyani C. Feuerlöschung unter verwendung von wassernebel mit tröpfchen ultrafeiner grösse
JP2003265939A (ja) * 2002-03-13 2003-09-24 Yasushi Takeda 気泡生成装置、気泡生成方法、微粒子生成装置、及び微粒子生成方法
US6736535B2 (en) * 2002-06-03 2004-05-18 Richard W. Halsall Method for continuous internal agitation of fluid within hot water heaters or other fluid containing vessels
TW532236U (en) * 2002-06-25 2003-05-11 Wen-Bin Chen Modular water mist generating device
US20050184168A1 (en) * 2002-11-15 2005-08-25 Pengs Group, Inc. Automatically refilling ultrasonic fog maker, recycling ultrasonic fog maker, and method of treating a medical condition using negative ions
US6883729B2 (en) * 2003-06-03 2005-04-26 Archimedes Technology Group, Inc. High frequency ultrasonic nebulizer for hot liquids
JP4769423B2 (ja) * 2004-03-10 2011-09-07 ベックマン コールター, インコーポレイテッド 液体攪拌デバイス
EP2258428B1 (en) * 2004-04-02 2019-11-27 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services Aerosol delivery systems
US7178741B2 (en) * 2004-08-11 2007-02-20 Industrial Technology Research Institute Micro droplet generator
CA2607747C (en) * 2005-05-25 2015-12-01 Aerogen, Inc. Vibration systems and methods
US20080245362A1 (en) * 2005-09-06 2008-10-09 George Moessis Nebuliser
GB2433708B (en) * 2005-12-29 2007-12-05 Kai Chih Ind Co Ltd High frequency atomization device
TW200724242A (en) * 2005-12-30 2007-07-01 Ind Tech Res Inst Method for modulating resonance frequency of a micro-spraying system and the device thereof
US20070169775A1 (en) * 2006-01-20 2007-07-26 Kai Chih Industrial Co., Ltd. Mechanism for the draft of a high frequency atomization device
GB0605001D0 (en) * 2006-03-13 2006-04-19 Basic Holdings Fuel and flame effect fires
JP4591386B2 (ja) * 2006-03-02 2010-12-01 株式会社ジェイテクト スラストころ軸受
US7959859B2 (en) * 2006-03-22 2011-06-14 Sparks David W Ultrasonic sanitation device and associated methods
CA2653001C (en) 2006-05-23 2011-02-15 Hideyasu Tsuji Fine bubble generating apparatus
US20080265052A1 (en) * 2007-04-30 2008-10-30 Ke-Ming Quan Method of using an ultrasonic spray apparatus to coat a substrate
US7810742B2 (en) * 2007-05-21 2010-10-12 Zvi Levi Ultrasonic fog generator
JP2009002918A (ja) * 2007-06-25 2009-01-08 Olympus Corp 音波発生体、攪拌装置及び自動分析装置
US7816415B2 (en) * 2007-07-17 2010-10-19 Inentec Llc Method and apparatus for synthesizing hydrocarbons using sonic mixing and solid catalysts
US20090054116A1 (en) * 2007-08-23 2009-02-26 Nokia Corporation Method and apparatus for scent dispensing
KR20110005805A (ko) * 2008-03-13 2011-01-19 보나도 에어, 엘엘씨 초음파 가습기
EP2294305B1 (en) * 2008-03-31 2015-07-29 Technion Research & Development Foundation Ltd. Sonic system and method for producing liquid-gas mixtures
US20090277971A1 (en) * 2008-05-12 2009-11-12 James Scott Economical, dripless, reciprocating atomizer
EP2408425A1 (en) * 2009-03-20 2012-01-25 Livia Tiba Method of creating salt aerosol for breathing by nebulizing an aqueous saline solution
US20120097752A1 (en) * 2009-06-22 2012-04-26 Panasonic Electric Works Co., Ltd. Generating method and generator for generating mist or fine-bubble by using surface acoustic wave
TWM385406U (en) * 2010-01-13 2010-08-01 Micro Base Technology Corp Atomization structure
US8797373B2 (en) * 2010-03-18 2014-08-05 Ricoh Company, Ltd. Liquid droplet ejecting method, liquid droplet ejection apparatus, inkjet recording apparatus, production method of fine particles, fine particle production apparatus, and toner
WO2012009706A1 (en) * 2010-07-15 2012-01-19 Corinthian Ophthalmic, Inc. Drop generating device
JP2014519397A (ja) * 2011-03-17 2014-08-14 コバリス,インコーポレイテッド 音響処理容器及び音響処理方法
JP5754225B2 (ja) * 2011-04-19 2015-07-29 株式会社リコー トナーの製造方法及びトナーの製造装置
MX2014013853A (es) * 2012-05-14 2015-08-06 Eyenovia Inc Dispositivo generador de gotas de flujo laminar y metodos de uso.
CA2840293A1 (en) * 2013-01-22 2014-07-22 Cenovus Energy Inc. Ultrasonic produced water dispersion device, system and method
US9126219B2 (en) * 2013-03-15 2015-09-08 Alcon Research, Ltd. Acoustic streaming fluid ejector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232114A (ja) * 1994-02-21 1995-09-05 Kanagawa Kagaku Gijutsu Akad 弾性表面波を用いた超音波霧化器
JPH1163397A (ja) * 1997-08-26 1999-03-05 Ishikawajima Harima Heavy Ind Co Ltd 低温貯蔵タンクの超音波攪拌装置
JP2008104974A (ja) 2006-10-26 2008-05-08 Matsushita Electric Works Ltd 弾性表面波霧化装置

Also Published As

Publication number Publication date
CN102458627A (zh) 2012-05-16
EP2446956A1 (en) 2012-05-02
KR20120026558A (ko) 2012-03-19
US10232329B2 (en) 2019-03-19
EP2446956A4 (en) 2015-10-14
CN102458627B (zh) 2016-04-06
JP5253574B2 (ja) 2013-07-31
US20170128898A1 (en) 2017-05-11
WO2010150629A1 (ja) 2010-12-29
US20120097752A1 (en) 2012-04-26
JPWO2010150629A1 (ja) 2012-12-10

Similar Documents

Publication Publication Date Title
KR101317736B1 (ko) 탄성 표면파를 사용하는 미스트 또는 미세 기포의 발생 방법 및 미스트 또는 미세 기포 발생 장치
Ahmed et al. A millisecond micromixer via single-bubble-based acoustic streaming
JP4915567B2 (ja) 弾性表面波霧化装置
CN108722326B (zh) 振动组件、具有该振动组件的美容装置及其使用方法
US9662686B2 (en) Ultrasonic cleaning method and apparatus
JP2017144428A (ja) 超音波霧化装置
Tuziuti Influence of sonication conditions on the efficiency of ultrasonic cleaning with flowing micrometer-sized air bubbles
JP2014198327A (ja) 微細気泡製造方法及び製造装置
JP2013221633A (ja) 超音波霧化装置
JP2003265939A (ja) 気泡生成装置、気泡生成方法、微粒子生成装置、及び微粒子生成方法
US8486199B2 (en) Ultrasonic cleaning method and apparatus
KR101639635B1 (ko) 메가소닉 세정 방법 및 세정 장치
JP2017196546A (ja) 気体導入装置および気体導入方法
CN108160601B (zh) 一种超声波清洗方法
JP5831128B2 (ja) マイクロバブル洗浄装置及び洗浄方法
JP2008238058A (ja) 弾性表面波霧化装置
KR101207591B1 (ko) 미세기포 발생장치 및 이를 포함하는 정련장치
US20150076245A1 (en) Device for nebulizing a liquid
JP2002113340A (ja) 超音波を利用した微小気泡発生法及び装置
WO2020179667A1 (ja) 微細気泡含有水生成装置
JP2011000579A (ja) 弾性表面波を用いる微細気泡の発生方法および微細気泡発生装置
Qi et al. Investigation of SAW atomization
JPS61153172A (ja) 液体噴射装置
JP2011131110A (ja) 微細気泡発生方法及び微細気泡発生装置
CN110711745A (zh) 一种超声波清洗工艺

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160922

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170920

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180905

Year of fee payment: 6