KR101181148B1 - Lithium ion conducting sulfide based crystallized glass and method for production thereof - Google Patents

Lithium ion conducting sulfide based crystallized glass and method for production thereof Download PDF

Info

Publication number
KR101181148B1
KR101181148B1 KR1020067016267A KR20067016267A KR101181148B1 KR 101181148 B1 KR101181148 B1 KR 101181148B1 KR 1020067016267 A KR1020067016267 A KR 1020067016267A KR 20067016267 A KR20067016267 A KR 20067016267A KR 101181148 B1 KR101181148 B1 KR 101181148B1
Authority
KR
South Korea
Prior art keywords
sulfide
crystallized glass
lithium ion
lithium
based crystallized
Prior art date
Application number
KR1020067016267A
Other languages
Korean (ko)
Other versions
KR20060103959A (en
Inventor
마사히로 다츠미사고
미노루 센가
요시카츠 세이노
아키토시 하야시
Original Assignee
마사히로 다츠미사고
이데미쓰 고산 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 마사히로 다츠미사고, 이데미쓰 고산 가부시키가이샤 filed Critical 마사히로 다츠미사고
Publication of KR20060103959A publication Critical patent/KR20060103959A/en
Application granted granted Critical
Publication of KR101181148B1 publication Critical patent/KR101181148B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/18Compositions for glass with special properties for ion-sensitive glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)
  • Secondary Cells (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 구성 성분으로서 리튬(Li), 인(P) 및 황(S) 원소를 함유하고, X선 회절(CuKα: λ=1.5418Å)에 있어서 2θ=17.8±0.3deg, 18.2±0.3deg, 19.8±0.3deg, 21.8±0.3deg, 23.8±0.3deg, 25.9±0.3deg, 29.5±0.3deg 및 30.0±0.3deg에 회절 피크를 갖는 리튬 이온 전도성 황화물계 결정화 유리에 관한 것이다.

Figure 112006057586797-pct00002

The present invention contains lithium (Li), phosphorus (P) and sulfur (S) elements as constituents, and 2θ = 17.8 ± 0.3deg, 18.2 ± 0.3deg, in X-ray diffraction (CuKα: λ = 1.5418 Hz). A lithium ion conductive sulfide-based crystallized glass having diffraction peaks at 19.8 ± 0.3deg, 21.8 ± 0.3deg, 23.8 ± 0.3deg, 25.9 ± 0.3deg, 29.5 ± 0.3deg and 30.0 ± 0.3deg.

Figure 112006057586797-pct00002

Description

리튬 이온 전도성 황화물계 결정화 유리 및 그의 제조방법{LITHIUM ION CONDUCTING SULFIDE BASED CRYSTALLIZED GLASS AND METHOD FOR PRODUCTION THEREOF}Lithium ion conductive sulfide-based crystallized glass and a method of manufacturing the same {LITHIUM ION CONDUCTING SULFIDE BASED CRYSTALLIZED GLASS AND METHOD FOR PRODUCTION THEREOF}

본 발명은 리튬 이온 전도성 황화물계 결정화 유리, 그의 제조방법, 및 이것을 이용한 고체형 전해질 및 전고체 전지에 관한 것이다. The present invention relates to a lithium ion conductive sulfide-based crystallized glass, a method for producing the same, and a solid electrolyte and an all-solid-state battery using the same.

종래에, 실온에서 높은 리튬 이온 전도성을 나타내는 전해질은 대부분 액체로 한정되어 있었다. 예를 들면, 실온에서 높은 리튬 이온 전도성을 나타내는 재료로서 유기계 전해액이 있다. In the past, electrolytes exhibiting high lithium ion conductivity at room temperature were mostly limited to liquids. For example, there is an organic electrolyte solution as a material exhibiting high lithium ion conductivity at room temperature.

또한, 실온에서 10-3Scm-1 이상의 높은 전도도를 나타내는, Li3N을 베이스로 하는 리튬 이온 전도성 세라믹이 알려져 있다. In addition, a lithium ion conductive ceramic based on Li 3 N, which exhibits high conductivity of 10 −3 Scm −1 or higher at room temperature, is known.

그러나, 종래의 유기계 전해액은 유기 용매를 포함하기 때문에 가연성이다. 따라서, 유기 용매를 포함하는 이온 전도성 재료를 전지의 전해질로서 실제로 이용하는 경우에는, 액체 누설의 우려나 발화의 위험성이 있다. However, the conventional organic electrolyte solution is flammable because it contains an organic solvent. Therefore, when the ion conductive material containing the organic solvent is actually used as the electrolyte of the battery, there is a risk of liquid leakage or a risk of ignition.

또한, 이러한 전해액은 액체이기 때문에, 리튬 이온이 전도될 뿐만 아니라 짝음이온이 전도되기 때문에, 리튬 이온 수율이 1이 아니다. In addition, since such an electrolyte solution is a liquid, lithium ion yield is not 1 because not only lithium ions are conducted but also counter ions are conducted.

종래의 Li3N을 베이스로 하는 리튬 이온 전도성 세라믹은 분해 전압이 낮기 때문에, 3V 이상에서 작동하는 전고체 전지를 구성하는 것이 곤란했다. Since a lithium ion conductive ceramic based on conventional Li 3 N has a low decomposition voltage, it is difficult to construct an all-solid-state battery that operates at 3 V or more.

이러한 과제에 관해서, Li2S 50 내지 92.5몰% 및 P2S5 7.5 내지 50몰%의 조성으로 30 내지 99%의 결정화율을 갖고 Li2S와 P2S5를 주성분으로 하는 유리상과, Li7PS6, Li4P2S6 및 Li3PS4로 이루어지는 군에서 선택된 1종 이상의 화합물을 함유하는 결정상이 존재하는 황화물계 결정화 유리가 개시되어 있다(예를 들면, 일본 특허공개 제2002-109955호 공보 참조). As for such a problem, Li 2 S 50 to 92.5 mol% and P 2 S 5 7.5 as to the composition of 50 mol% has a crystallization rate of 30 to 99% glass phase composed mainly of Li 2 S and P 2 S 5 and, Sulfide-based crystallized glass in which a crystal phase containing at least one compound selected from the group consisting of Li 7 PS 6 , Li 4 P 2 S 6 and Li 3 PS 4 is present is disclosed (for example, Japanese Patent Application Laid-Open No. 2002). -109955).

이 황화물계 결정성 유리는 실온에서도 높은 리튬 이온 전도성을 나타낸다. This sulfide-based crystalline glass shows high lithium ion conductivity even at room temperature.

그러나, 이 결정계 유리를 제조할 때에 열처리 온도는 500℃ 이상이어서, 공업적으로 생산하는 경우에는 특수한 설비가 필요하다. 또한, 높은 이온 전도도를 나타내는 영역은 80몰% Li2S 및 20몰% P2S5의 조성이어서, 고가의 Li원을 다량으로 사용한다.However, when manufacturing this crystal type glass, the heat processing temperature is 500 degreeC or more, and when manufacturing industrially, a special installation is needed. In addition, the region showing high ionic conductivity is composed of 80 mol% Li 2 S and 20 mol% P 2 S 5 , so that an expensive Li source is used in a large amount.

이 때문에, 재료의 제조비용이 비싸져서, 경제성에 있어서 반드시 만족할만한 것은 아니었다. For this reason, the manufacturing cost of a material became expensive and it was not necessarily satisfactory in economy.

또한, 황화물계 결정성 유리를 이용한 리튬 2차 전지의 효율을 향상시키기 위해서, 더욱 높은 리튬 이온 전도성을 갖는 재료가 요구되고 있다. Moreover, in order to improve the efficiency of the lithium secondary battery using sulfide system crystalline glass, the material which has higher lithium ion conductivity is calculated | required.

본 발명은 상술한 문제에 비추어 이루어진 것으로서, 실온에서도 극히 높은 리튬 이온 전도성을 나타내고, 열처리 온도의 저온화 및 Li원 사용량의 저감을 도모함으로써 공업 생산이 가능하고, 또한 경제성이 우수한 황화물계 결정성 유리를 제공하는 것을 목적으로 한다. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and exhibits extremely high lithium ion conductivity even at room temperature, and enables industrial production by lowering the heat treatment temperature and reducing the amount of Li source used. The purpose is to provide.

발명의 개시DISCLOSURE OF INVENTION

이러한 과제를 해결하기 위해서, 본 발명자들은 상기 일본 특허공개 제2002-109955호 공보에 기재된 기술에 대하여 보다 상세히 연구를 거듭한 결과, 열처리 온도가 낮고 Li원 사용량이 비교적 적은 조성에서 황화물계 결정성 유리가 신규한 결정구조를 발현하고, 이 결정구조를 가질 때에 리튬 이온 전도성이 현저히 우수한 것을 발견하고, 본 발명을 완성시켰다. In order to solve this problem, the present inventors have studied in detail the technique described in Japanese Patent Laid-Open No. 2002-109955, and as a result, sulfide-based crystalline glass in a composition having a low heat treatment temperature and a relatively low amount of Li source is used. Discovered a novel crystal structure and found that lithium ion conductivity was remarkably excellent when it had this crystal structure, and completed this invention.

즉, 본 발명에 따르면, 이하에 나타낸 리튬 이온 전도성 황화물계 결정화 유리, 그의 제조방법, 및 이것을 이용한 고체형 전해질 및 전고체 전지가 제공된다. That is, according to this invention, the lithium ion conductive sulfide type crystallized glass shown below, its manufacturing method, and the solid electrolyte and all-solid-state battery using the same are provided.

1. 구성성분으로서 리튬(Li), 인(P) 및 황(S) 원소를 함유하고, X선 회절(CuKα: λ=1.5418Å)에 있어서 2θ=17.8±0.3deg, 18.2±0.3deg, 19.8±0.3deg, 21.8±0.3deg, 23.8±0.3deg, 25.9±0.3deg, 29.5±0.3deg 및 30.0±0.3deg에 회절 피크를 갖는 리튬 이온 전도성 황화물계 결정화 유리. 1.Contains lithium (Li), phosphorus (P) and sulfur (S) elements as constituents, and 2θ = 17.8 ± 0.3deg, 18.2 ± 0.3deg, 19.8 in X-ray diffraction (CuKα: λ = 1.5418 Hz) Lithium ion conductive sulfide-based crystallized glass having diffraction peaks at ± 0.3deg, 21.8 ± 0.3deg, 23.8 ± 0.3deg, 25.9 ± 0.3deg, 29.5 ± 0.3deg and 30.0 ± 0.3deg.

2. Li2S: 68 내지 74몰% 및 P2S5: 26 내지 32몰%의 조성으로 이루어지는 황화물계 유리를 150 내지 360℃에서 소성처리하는 리튬 이온 전도성 황화물계 결정화 유리 의 제조방법. 2. Li 2 S: 68 to 74 mol% and P 2 S 5 : 26 to 32 mol% A method for producing a lithium ion conductive sulfide-based crystallized glass by calcining at 150 to 360 ° C.

3. 상기 Li2S가, 비프로톤성 유기 용매중에서 수산화리튬과 황화수소를 반응시켜 얻은 Li2S를, 유기 용매를 이용하여 100℃ 이상의 온도에서 세정하여 정제한 것인 상기 2에 기재된 리튬 이온 전도성 황화물계 결정화 유리의 제조방법. 3. The Li 2 S is, aprotic lithium ion conductivity according to Li 2 S obtained by reacting lithium hydroxide with hydrogen sulfide in an organic solvent, the 2 by using an organic solvent that was purified by washing at least 100 ℃ temperature Method for producing sulfide-based crystallized glass.

4. 상기 Li2S에 포함되는 황산화물의 총량이 0.15질량% 이하이며, N-메틸아미노부티르산리튬(LMAB)이 0.1질량% 이하인 상기 2 또는 3에 기재된 리튬 이온 전도성 황화물계 결정화 유리의 제조방법. 4. The method for producing a lithium ion conductive sulfide-based crystallized glass according to 2 or 3, wherein the total amount of sulfur oxide contained in Li 2 S is 0.15% by mass or less, and lithium N-methylaminobutyrate (LMAB) is 0.1% by mass or less. .

5. 상기 P2S5 대신에, 상당하는 몰비의 단체 인(P) 및 단체 황(S)을 이용하는 상기 2 내지 4중 어느 하나에 기재된 리튬 이온 전도성 황화물계 결정화 유리의 제조방법. 5. The method for producing a lithium ion conductive sulfide-based crystallized glass according to any one of the above 2 to 4, using single phosphorus (P) and single sulfur (S) in a corresponding molar ratio instead of P 2 S 5 .

6. 상기 Li2S 및 P2S5 또는 단체 인(P) 및 단체 황(S)을 기계적 분쇄법(mechanical milling)에 의해 상기 황화물계 유리로 하는 상기 2 내지 5중 어느 하나에 기재된 황화물계 결정화 유리의 제조방법. 6. The sulfide system according to any one of the above 2 to 5, wherein the Li 2 S and P 2 S 5 or single phosphorus (P) and single sulfur (S) are made into the sulfide-based glass by mechanical milling. Method for producing crystallized glass.

7. 상기 2 내지 6중 어느 하나에 기재된 제조방법에 의해 제조된 리튬 이온 전도성 황화물계 결정화 유리. 7. Lithium ion conductive sulfide type crystallized glass manufactured by the manufacturing method in any one of said 2-6.

8. 상기 1 또는 7에 기재된 리튬 이온 전도성 황화물계 결정화 유리를 원료로 하는 리튬 2차 전지용 고체 전해질. 8. Solid electrolyte for lithium secondary batteries which use the lithium ion conductive sulfide system crystallization glass of 1 or 7 as a raw material.

9. 상기 8에 기재된 리튬 2차 전지용 고체 전해질을 사용한 전고체 전지. 9. The all-solid-state battery using the solid electrolyte for lithium secondary batteries of said 8.

본 발명의 황화물계 결정성 유리 및 그의 제조방법은, 소성 온도가 150℃ 내지 360℃로 저온영역이며, 또한 Li원의 사용량을 저감할 수 있기 때문에, 공업 생산이 가능하고, 경제성도 우수하다. The sulfide-based crystalline glass of the present invention and the method for producing the same have a low temperature region with a firing temperature of 150 ° C to 360 ° C, and the amount of Li source used can be reduced, so that industrial production is possible and the economy is excellent.

또한, 실온에서도 극히 높은 리튬 이온 전도성을 나타내기 때문에, 이 황화물계 결정성 유리를 사용한 리튬 2차 전지의 성능을 향상시킬 수 있다. Moreover, since extremely high lithium ion conductivity is shown even at room temperature, the performance of the lithium secondary battery using this sulfide type crystalline glass can be improved.

도 1은 실시예 1 및 비교예 1 내지 3에서 제작한 황화물계 유리의 X선 회절 스펙트럼 챠트이다. 1 is an X-ray diffraction spectrum chart of sulfide-based glass prepared in Example 1 and Comparative Examples 1 to 3. FIG.

도 2는 실시예 1 및 비교예 1 내지 4에서 제작한 황화물계 결정화 유리의 X선 회절 스펙트럼 챠트이다. 2 is an X-ray diffraction spectrum chart of sulfide-based crystallized glass prepared in Example 1 and Comparative Examples 1 to 4. FIG.

도 3은 실시예 2에서 제작한 황화물계 결정화 유리의 이온 전도도의 측정 결과를 도시하는 도면이다. It is a figure which shows the measurement result of the ion conductivity of the sulfide system crystallized glass produced in Example 2. FIG.

이하, 본 발명을 구체적으로 설명한다. Hereinafter, the present invention will be described in detail.

본 발명의 리튬 이온 전도성 황화물계 결정화 유리는, 구성 성분으로서 리튬, 인 및 황 원소를 함유하고, X선 회절(CuKα: λ=1.5418Å)에 있어서 2θ=17.8±0.3deg, 18.2±0.3deg, 19.8±0.3deg, 21.8±0.3deg, 23.8±0.3deg, 25.9±0.3deg, 29.5±0.3deg 및 30.0±0.3deg에 회절 피크를 갖는다. The lithium ion conductive sulfide-based crystallized glass of the present invention contains lithium, phosphorus and sulfur elements as constituents, and 2θ = 17.8 ± 0.3deg, 18.2 ± 0.3deg, in X-ray diffraction (CuKα: λ = 1.5418 Hz). It has diffraction peaks at 19.8 ± 0.3deg, 21.8 ± 0.3deg, 23.8 ± 0.3deg, 25.9 ± 0.3deg, 29.5 ± 0.3deg and 30.0 ± 0.3deg.

상기의 8개 영역에서 회절 피크를 갖는 결정구조는 과거에는 관측되지 않아서, 이 황화물계 결정화 유리가 신규한 결정구조를 갖고 있다는 것을 나타낸다. 본 발명은 이러한 결정구조를 갖는 황화물계 결정화 유리가 극히 높은 리튬 이온 전도성을 갖는다는 것을 밝혀낸 것이다. Crystal structures having diffraction peaks in the above eight regions have not been observed in the past, indicating that the sulfide-based crystallized glass has a novel crystal structure. The present invention finds that sulfide-based crystallized glass having such a crystal structure has extremely high lithium ion conductivity.

이 결정구조는 출발원료가 Li2S: 68 내지 74몰% 및 P2S5: 26 내지 32몰%의 조성으로 이루어지는 황화물계 유리를 150 내지 360℃에서 소성처리함으로써 발현할 수 있다. This crystal structure can be expressed by calcining a sulfide-based glass having a starting material of a composition of Li 2 S: 68 to 74 mol% and P 2 S 5 : 26 to 32 mol% at 150 to 360 ° C.

출발원료인 Li2S로서는, 예를 들면, 비프로톤성 유기 용매중에서 수산화리튬과 황화수소를 반응시켜 얻은 Li2S를, 유기 용매를 이용하여 100℃ 이상의 온도에서 세정하여 정제한 것을 사용할 수 있다. As the starting material Li 2 S, for example, one obtained by washing Li 2 S obtained by reacting lithium hydroxide and hydrogen sulfide in an aprotic organic solvent at a temperature of 100 ° C. or higher using an organic solvent can be used.

구체적으로는, 일본 특허공개 제1995-330312호 공보에 개시된 제조방법으로 Li2S를 제조하는 것이 바람직하고, 이 Li2S를 일본 특허출원 제2003-363403호에 기재된 방법으로 정제한 것이 바람직하다. Specifically, it is preferable to manufacture Li 2 S by the production method disclosed in Japanese Patent Application Laid-Open No. 195-330312, and it is preferable that the Li 2 S is purified by the method described in Japanese Patent Application No. 2003-363403. .

이 Li2S의 제조방법은 간단한 수단에 의해서 고순도의 황화리튬을 얻을 수 있기 때문에, 황화물계 결정화 유리의 원료 비용을 삭감할 수 있다. 또한, 상기의 정제방법은 간편한 처리에 의해, Li2S에 포함되는 불순물인 황산화물이나 N-메틸아미노부티르산리튬(이하, LMAB라고 함) 등을 제거할 수 있기 때문에, 경제적으로 유리함과 동시에, 얻어진 고순도의 황화리튬을 이용한 리튬 2차 전지용 고체 전해질은 순도에 기인하는 성능 저하가 억제되고, 그 결과 우수한 리튬 2차 전지(고체 전지)를 얻을 수 있다. In this method for producing Li 2 S, since high purity lithium sulfide can be obtained by simple means, the raw material cost of the sulfide-based crystallized glass can be reduced. In addition, since the above purification method can remove sulfur oxides, lithium N-methylaminobutyrate (hereinafter referred to as LMAB) and the like which are impurities contained in Li 2 S by a simple treatment, it is economically advantageous, In the solid electrolyte for lithium secondary batteries using the obtained high purity lithium sulfide, the performance fall due to purity is suppressed, and as a result, an excellent lithium secondary battery (solid battery) can be obtained.

또한, Li2S에 포함되는 황산화물의 총량은 0.15질량% 이하인 것이 바람직하고, LMAB는 0.1질량% 이하인 것이 바람직하다. In addition, the total amount of sulfur oxides contained in the Li 2 S is preferably not more than 0.15 mass%, LMAB is preferably 0.1 mass% or less.

P2S5는 공업적으로 제조되어 판매되는 것이면, 특별히 한정하지 않고 사용할 수 있다. P 2 S 5 can be used without particular limitation as long as it is industrially produced and sold.

또한, P2S5 대신에, 상당하는 몰비의 단체 인(P) 및 단체 황(S)을 이용할 수 있다. 이에 따라, 입수가 용이하고, 또한 저렴한 재료로부터 본 발명의 황화물계 결정화 유리를 제조할 수 있다. 단체 인(P) 및 단체 황(S)은 공업적으로 생산되어 판매되는 것이면, 특별히 한정하지 않고 사용할 수 있다. In addition, instead of P 2 S 5 , equivalent molar ratios of single phosphorus (P) and single sulfur (S) can be used. Thereby, the sulfide-type crystallized glass of this invention can be manufactured from a material which is easy to obtain and inexpensive. Single phosphorus (P) and single sulfur (S) are industrially produced and sold, and can be used without particular limitation.

본 발명의 황화물계 결정화 유리의 출발원료의 조성은 Li2S: 68 내지 74몰% 및 P2S5: 32 내지 26몰%로 한다. 이 배합비의 범위를 벗어나면, 본 발명 특유의 결정구조가 발현되지 않아서, 이온 전도도가 작아지고, 고체 전해질로서 충분한 성능을 발휘하지 않는다. 특히 Li2S의 배합량을 68 내지 73몰%로 하고, P2S5의 배합량을 32 내지 27몰%로 하는 것이 바람직하다.The starting material of the sulfide-based crystallized glass of the present invention is composed of Li 2 S: 68 to 74 mol% and P 2 S 5 : 32 to 26 mol%. If it is out of the range of this compounding ratio, the crystal structure peculiar to this invention will not be expressed, ionic conductivity will become small and it will not exhibit sufficient performance as a solid electrolyte. In particular, the amount of the Li 2 S to 68 to 73 mol%, it is preferable that the compounding amount of the P 2 S 5 in 32 to 27 mol%.

또한, 본 발명의 결정화 유리가 갖는 결정구조를 발현할 수 있는 범위에서, 상기 P2S5 및 Li2S 외에 출발원료로서 Al2S3, B2S3, GeS2 및 SiS2로 이루어지는 군에서 선택된 1종 이상의 황화물을 포함시킬 수 있다. 이러한 황화물을 첨가하면, 황화물계 유리를 형성할 때에 보다 안정한 유리를 생성시킬 수 있다. Further, in a range capable of expressing a crystal structure having the crystallized glass of the present invention, the P 2 S 5 and Li the group consisting of Al 2 S 3, B 2 S 3, GeS 2 and SiS 2 as the starting material in addition to 2 S One or more sulfides selected from may be included. When such sulfide is added, more stable glass can be produced when forming sulfide type glass.

마찬가지로, Li2S 및 P2S5에 더하여, Li3PO4, Li4SiO4, Li4GeO4, Li3BO3 및 Li3AlO3로 이루어지는 군에서 선택된 1종 이상의 오르쏘 옥소산리튬을 포함시킬 수 있다. 이러한 오르쏘 옥소산리튬을 포함시키면, 결정화 유리중의 유리를 안정화시킬 수 있다. Similarly, in addition to Li 2 S and P 2 S 5 , at least one lithium ortho oxate selected from the group consisting of Li 3 PO 4 , Li 4 SiO 4 , Li 4 GeO 4 , Li 3 BO 3, and Li 3 AlO 3 It may include. Inclusion of such lithium ortho lithium oxate can stabilize the glass in the crystallized glass.

또한, Li2S 및 P2S5에 더하여, 상술한 황화물을 적어도 1종 이상 포함시키고, 또한, 상술한 오르쏘 옥소산리튬을 적어도 1종 이상 포함시킬 수 있다. Further, in addition to Li 2 S and P 2 S 5, it may be included to include the above-described sulfide at least one or more, also, at least one or more of ortho-oxo lithium described above.

상기 출발원료의 혼합물을 사용하여 황화물계 유리로 제조하는 방법으로서는, 예를 들면 기계적 분쇄처리(이하, MM 처리로 표시하는 경우가 있다) 또는 용융급냉법(melt-quenching method)이 있다. As a method for producing sulfide-based glass using the mixture of the above starting materials, for example, mechanical grinding treatment (hereinafter sometimes referred to as MM treatment) or a melt-quenching method is used.

MM 처리를 이용하여 황화물계 유리를 형성하면, 유리 생성 영역을 확대할 수 있으므로 바람직하다. 또한, 용융급냉법에서 수행하는 가열처리가 불필요해져서 실온에서 수행할 수 있기 때문에, 제조공정의 간략화도 가능해진다. It is preferable to form a sulfide-based glass using the MM treatment because the glass generation region can be enlarged. In addition, since the heat treatment performed by the melt quenching method is unnecessary and can be performed at room temperature, the manufacturing process can be simplified.

용융급냉법이나 MM 처리에 의해 황화물계 유리를 형성할 때, 질소 등의 불활성 가스의 분위기를 이용하는 것이 바람직하다. 수증기나 산소 등은 출발물질과 반응하기 쉽기 때문이다. When forming a sulfide type glass by melt quenching or MM treatment, it is preferable to use an atmosphere of inert gas such as nitrogen. This is because steam or oxygen easily reacts with the starting materials.

MM 처리에서는, 볼 밀(ball mill)을 사용하는 것이 바람직하다. 큰 기계적 에너지를 얻을 수 있기 때문이다. In the MM treatment, it is preferable to use a ball mill. This is because a large mechanical energy can be obtained.

볼 밀로서는, 유성형 볼 밀기를 사용하는 것이 바람직하다. 유성형 볼 밀에서는, 포트가 자전 회전하면서 플레이트가 공전 회전하기 때문에, 매우 높은 충격에너지를 효율적으로 발생시킬 수 있다. As the ball mill, it is preferable to use a planetary ball mill. In the planetary ball mill, since the plate rotates while the port rotates, very high impact energy can be generated efficiently.

MM 처리 조건은 사용하는 기기 등에 의해 적절히 조정할 수 있는데, 회전 속도가 빠를수록 황화물계 유리의 생성 속도는 빠르게 되고, 회전 시간이 길수록 황화물계 유리로의 원료 전환율은 높게 된다. 예를 들면, 일반적인 유성형 볼 밀기를 사용하는 경우는, 회전 속도를 수십 내지 수백 회전/분으로 하고, 0.5시간 내지 1100시간 처리하면 좋다. The conditions for the MM treatment can be appropriately adjusted by an apparatus to be used. The faster the rotational speed, the faster the formation rate of the sulfide-based glass, and the longer the rotational time, the higher the raw material conversion rate into the sulfide-based glass. For example, in the case of using a general planetary ball mill, the rotational speed may be set to several tens to several hundred revolutions / minute, and may be treated for 0.5 to 1100 hours.

얻어진 황화물계 유리를 소성처리하여 결정화시켜, 본 발명의 리튬 이온 전도성 황화물계 결정화 유리로 한다. 이 때의 소성 온도는 150℃ 내지 360℃로 한다. 150℃ 미만에서는 황화물계 유리의 유리 전이점 이하의 온도이기 때문에 결정화가 진행하지 않는다. 한편, 360℃를 넘으면, 상술한 본 발명 특유의 결정구조를 갖는 결정 유리가 생성되지 않고, 상기 일본 특허공개 제2002-109955호 공보에 기재된 결정구조로 변화해 버린다. 소성 온도는 200℃ 내지 350℃의 범위가 특히 바람직하다. 소성 시간은 결정이 생성되는 조건이면 특별히 한정하지 않고, 순간이거나 장시간이더라도 상관없다. 또한, 소성 온도까지의 승온 패턴에 관해서도 특별한 한정은 없다. The obtained sulfide-based glass is calcined to crystallize to obtain the lithium ion conductive sulfide-based crystallized glass of the present invention. The baking temperature at this time is 150 to 360 degreeC. If it is less than 150 degreeC, since it is the temperature below the glass transition point of sulfide type glass, crystallization does not advance. On the other hand, when it exceeds 360 degreeC, the crystal glass which has the crystal structure peculiar to this invention mentioned above is not produced | generated, and will change to the crystal structure of Unexamined-Japanese-Patent No. 2002-109955. The firing temperature is particularly preferably in the range of 200 ° C to 350 ° C. The firing time is not particularly limited as long as it is a condition under which crystals are formed, and may be instant or long time. Moreover, there is no special limitation also regarding the temperature rising pattern to baking temperature.

본 발명의 황화물계 결정화 유리는, 적어도 5V 이상의 분해전압을 갖고, 불연성 무기 고체이며 리튬 이온 수율이 1이라고 하는 특성을 유지하면서, 실온에 있어서 10-3Scm-1대라고 하는 지금까지는 없는 극히 높은 리튬 이온 전도성을 나타낸다. 따라서, 리튬 전지의 고체 전해질용 재료로서 극히 적합하다. The sulfide-based crystallized glass of the present invention has a decomposition voltage of at least 5 V or more, is a non-flammable inorganic solid, and maintains a property of lithium ion yield of 1, while being extremely high at 10 −3 Scm −1 at room temperature. It exhibits lithium ion conductivity. Therefore, it is extremely suitable as a material for solid electrolytes of lithium batteries.

또한, 상기의 특성을 갖는 본 발명의 고체 전해질을 사용한 전고체 전지는 에너지 밀도가 높고, 안전성 및 충방전 사이클 특성이 우수하다. In addition, the all-solid-state battery using the solid electrolyte of the present invention having the above characteristics has high energy density, and is excellent in safety and charge / discharge cycle characteristics.

이하, 본 발명을 실시예에 의해서 더욱 구체적으로 설명한다. Hereinafter, the present invention will be described in more detail with reference to Examples.

제조예Manufacturing example

(1) 황화리튬(Li2S)의 제조(1) Preparation of Lithium Sulfide (Li 2 S)

황화리튬은 일본 특허공개 제1995-330312호 공보의 제 1 양태(2 공정법)의 방법에 따라서 제조했다. 구체적으로는, 교반 날개가 장착된 10리터 오토클레이브에 N-메틸-2-피롤리돈(NMP) 3326.4g(33.6몰) 및 수산화리튬 287.4g(12몰)을 채우고, 300rpm에서 130℃로 승온했다. 승온 후, 용액중에 황화수소를 3리터/분의 공급속도에서 2시간 취입하였다. 계속해서 이 반응액을 질소기류하(200cc/분)에서 승온하여, 반응한 황화수소의 일부를 탈황화수소화하였다. 승온함에 따라 상기 황화수소와 수산화리튬의 반응에 의해 부생된 물이 증발하기 시작했지만, 이 물은 콘덴서에 의해 응축하여 계밖으로 뽑아 내었다. 물을 계밖으로 증류 제거함과 동시에 반응액의 온도는 상승하지만, 180℃에 도달한 시점에서 승온을 정지하고, 일정 온도로 유지했다. 탈황화수소반응이 종료된 후(약 80분), 반응을 종료하여 황화리튬을 얻었다. Lithium sulfide was manufactured according to the method of the 1st aspect (two process method) of Unexamined-Japanese-Patent No. 195-330312. Specifically, 3326.4 g (33.6 mol) of N-methyl-2-pyrrolidone (NMP) and 287.4 g (12 mol) of lithium hydroxide were filled in a 10 liter autoclave equipped with a stirring blade, and the temperature was raised to 130 ° C. at 300 rpm. did. After the temperature was raised, hydrogen sulfide was blown into the solution at a feed rate of 3 liters / minute for 2 hours. Subsequently, the reaction solution was heated up under a nitrogen stream (200 cc / min), and a part of the hydrogen sulfide reacted was dehydrogenated. As the temperature was raised, the by-product water began to evaporate due to the reaction of the hydrogen sulfide and lithium hydroxide, but the water was condensed by a condenser and drawn out of the system. While distilling water out of the system and raising the temperature of the reaction solution, the temperature was stopped when the temperature reached 180 ° C and maintained at a constant temperature. After the desulfurization reaction was completed (about 80 minutes), the reaction was terminated to obtain lithium sulfide.

(2) 황화리튬의 정제(2) purification of lithium sulfide

상기 (1)에서 얻어진 500mL의 슬러리 반응 용액(NMP-황화리튬 슬러리)중의 NMP를 디켄테이션(decantation)한 후, 탈수한 NMP 100mL를 첨가하고, 105℃에서 약 1시간 교반했다. 그 온도 그대로 NMP를 디켄테이션하였다. 또한, NMP 100mL를 첨가하고, 105℃에서 약 1시간 교반하고, 그 온도 그대로 NMP를 디켄테이션하고, 동일한 조작을 총 4회 반복했다. 디켄테이션 종료 후, 질소기류하에 230℃(NMP의 비점 이상의 온도)에서 황화리튬을 상압하에서 3시간 건조했다. 얻어진 황화리튬중의 불순물 함유량을 측정했다. After decantation of NMP in the 500 mL slurry reaction solution (NMP-lithium sulfide slurry) obtained in the above (1), 100 mL of dehydrated NMP was added and stirred at 105 ° C for about 1 hour. NMP was decanted as it was at this temperature. Furthermore, 100 mL of NMP was added, it stirred at 105 degreeC for about 1 hour, NMP was decanted as it was, and the same operation was repeated 4 times in total. After completion of the decantation, the lithium sulfide was dried at atmospheric pressure for 3 hours at 230 ° C. (temperature above the boiling point of NMP) under a nitrogen stream. The impurity content in the obtained lithium sulfide was measured.

또한, 아황산리튬(Li2SO3), 황산리튬(Li2SO4) 및 티오황산리튬(Li2S2O3)의 각각의 황산화물, 및 N-메틸아미노부티르산리튬(LMAB)의 함유량은 이온 크로마토그래피법에 의해 정량했다. 그 결과, 황산화물의 총 함유량은 0.13질량%이며, LMAB는 0.07질량%였다. In addition, the contents of the respective sulfur oxides of lithium sulfite (Li 2 SO 3 ), lithium sulfate (Li 2 SO 4 ) and lithium thiosulfate (Li 2 S 2 O 3 ), and lithium N-methylaminobutyrate (LMAB) Quantification was carried out by ion chromatography. As a result, the total content of sulfur oxides was 0.13 mass%, and LMAB was 0.07 mass%.

이렇게 하여 정제한 Li2S를 이하의 실시예 및 비교예에서 사용했다. Thus purified Li 2 S was used in the following Examples and Comparative Examples.

실시예Example 1 One

상기 제조예에서 제조한 Li2S와 P2S5(알드리치에서 제조함)를 출발원료로 이용했다. 이들을 70 대 30의 몰비로 조제한 혼합물 약 1g과 입경 10mmΦ의 알루미나제 볼 10개를 45mL의 알루미나제 용기에 넣고, 유성형 볼 밀(프리츄(Fritsch)사에서 제조함: 유형번호 P-7)을 사용하여, 질소중 실온(25℃)에서 회전속도를 370rpm으로 하여 20시간 기계적 분쇄처리함으로써 백황색의 분말인 황화물계 유리를 얻었다. Li 2 S and P 2 S 5 (manufactured by Aldrich) prepared in Preparation Example were used as starting materials. About 1 g of the mixture prepared at a molar ratio of 70 to 30 and 10 alumina balls having a particle diameter of 10 mmΦ were placed in a 45 mL alumina container, and a planetary ball mill (manufactured by Frisch: Type No. P-7) was prepared. It was used to obtain a sulfide-based glass as a white-yellow powder by mechanical grinding treatment for 20 hours at a rotational speed of 370 rpm at room temperature (25 ° C.) in nitrogen.

얻어진 분말에 대하여, 분말 X선 회절 측정을 하였다(CuKα: λ=1.5418Å). 이 X선 회절 스펙트럼을 도 1에 나타낸다. 또한, 도 1에는 후술하는 비교예 1 내지 3의 스펙트럼도 나타내었다.Powder X-ray diffraction measurement was performed on the obtained powder (CuKα: λ = 1.5418 Hz). This X-ray diffraction spectrum is shown in FIG. 1, the spectrum of Comparative Examples 1-3 mentioned later is also shown.

이 챠트가 비정질체 특유의 브로드한 형태를 나타내고 있는 것으로부터, 이 분말이 유리화(비정질화)되어 있는 것을 확인할 수 있었다. Since this chart showed the broad form peculiar to an amorphous body, it was confirmed that this powder was vitrified (amorphized).

이 분말(황화물계 유리)을 질소중에서 상온(25℃) 내지 260℃까지의 온도범위에서 소성처리를 하여 황화물계 결정화 유리를 제작했다. 또한, 소성처리와 동시에 시차열분석을 했다. The powder (sulfide-based glass) was calcined in nitrogen in a temperature range from room temperature (25 ° C.) to 260 ° C. to produce sulfide-based crystallized glass. In addition, differential thermal analysis was performed simultaneously with the firing treatment.

이 때의 승온?강온(降溫) 속도를 10℃/분으로 하고, 260℃까지 승온한 후 실온까지 냉각했다. The temperature rising rate and temperature decreasing rate at this time were made into 10 degreeC / min, and it heated up to 260 degreeC, and cooled to room temperature.

시차열분석의 결과, 230 내지 240℃에서 비정질체의 결정화에 동반하는 발열 피크가 관찰되었다. 이에 따라, 230 내지 240℃에서 비정질체가 결정성 유리로 변화하는 것을 알 수 있었다. As a result of the differential thermal analysis, an exothermic peak accompanied by crystallization of the amorphous body was observed at 230 to 240 ° C. Thereby, it turned out that an amorphous body turns into crystalline glass at 230-240 degreeC.

상기에서 제작한 황화물계 결정화 유리에 대하여 분말 X선 회절 측정을 수행하였다(CuKα: λ=1.5418Å). 도 2에 이 황화물계 결정화 유리의 X선 회절 스펙트럼 챠트를 나타낸다. 또한, 도 2에는 후술하는 비교예 1 내지 4의 스펙트럼도 나타낸다.Powder X-ray diffraction measurement was performed on the sulfide-based crystallized glass prepared above (CuKα: λ = 1.5418 Hz). 2 shows an X-ray diffraction spectrum chart of the sulfide-based crystallized glass. 2, the spectrum of Comparative Examples 1-4 mentioned later is also shown.

도 2로부터, 얻어진 결정화 유리는 2θ=17.8deg, 18.2deg, 19.8deg, 21.8deg, 23.8deg, 25.9deg, 29.5deg 및 30.0deg에 회절 피크를 갖는 것이 확인되었고, 종래부터 알려져 있는 Li7PS6, Li4P2S6, Li3PS4와는 다른 결정상을 갖는 것을 확인할 수 있었다. From Fig. 2, it was confirmed that the obtained crystallized glass had diffraction peaks at 2θ = 17.8 deg, 18.2 deg, 19.8 deg, 21.8 deg, 23.8 deg, 25.9 deg, 29.5 deg, and 30.0 deg, and Li 7 PS 6 known in the art. It was confirmed that the crystal phase was different from that of Li 4 P 2 S 6 and Li 3 PS 4 .

실시예 2Example 2

실시예 1에 있어서 제작한 황화물계 유리(소성처리전 분말)을 펠렛 형상(직경 약 10mm, 두께 약 1mm)의 성형체로 가공했다. The sulfide-based glass (powder before firing) produced in Example 1 was processed into a pellet-shaped product (about 10 mm in diameter and about 1 mm in thickness).

이 성형체에 대하여, 소성처리를 실시하면서 이온 전도도를 측정했다. 측정은 성형체에 전극으로서 카본 페이스트를 도포한 것에 대하여 교류이단자법에 의해 수행했다. About this molded object, ion conductivity was measured, carrying out baking process. The measurement was performed by the alternating current two-terminal method for applying the carbon paste as an electrode to the molded body.

소성(측정)은 실온(25℃)에서 개시하여 25℃ 부근까지 승온하고, 그 후, 실온까지 강온하는 것으로 수행했다. 이 때의 승온?강온에는 각각 약 3시간이 필요했다. Firing (measurement) was performed by starting at room temperature (25 degreeC), heating up to 25 degreeC vicinity, and then heating to room temperature. At this time, about 3 hours were required for the temperature increase and the temperature.

도 3은 이 황화물계 결정화 유리의 이온 전도도의 측정 결과를 아레니우스 플롯으로 나타낸 도면이다. Fig. 3 is a diagram showing the results of measurement of the ion conductivity of the sulfide-based crystallized glass in an Arrhenius plot.

이 처리에 의해 얻어진 황화물계 결정화 유리의, 실온(25℃)에 있어서의 이온 전도도는 2.1×10-3Scm-1였다. 이 값은 본 원소계(Li, P, S)의 전해질에서는 과거 최대의 값이었다. The ion conductivity of the sulfide-based crystallized glass obtained by this treatment at room temperature (25 ° C.) was 2.1 × 10 −3 Scm −1 . This value was the largest value in the past in the electrolyte of the present element type (Li, P, S).

측정 후의 시료에 대하여 X선 회절 측정을 한 결과, 실시예 1과 마찬가지인 회절 피크 패턴으로 되어 있는 것을 확인할 수 있었다. As a result of performing X-ray diffraction measurement on the sample after the measurement, it was confirmed that the same diffraction peak pattern as in Example 1 was obtained.

실시예 2 및 이하에 나타내는 실시예와 비교예의 소성 온도, 각 예에서 제작 한 황화물계 결정화 유리의 X선 회절 피크, 결정 및 이온 전도도를 표 1에 나타낸다. The baking temperature of Example 2 and the comparative example shown below, and the X-ray-diffraction peak, crystal | crystallization, and ion conductivity of the sulfide system crystallized glass produced by each example are shown in Table 1.

Figure 112006057586797-pct00001
Figure 112006057586797-pct00001

실시예 3Example 3

Li2S와 P2S5의 몰비를 68:32로 변경한 것 이외에는 실시예 1과 같이 하여 결정화 유리를 제작했다. Crystallized glass was produced in the same manner as in Example 1 except that the molar ratio of Li 2 S and P 2 S 5 was changed to 68:32.

얻어진 결정화 유리는 실시예 1과 마찬가지인 X선 회절 피크가 관찰되었다. 또한, 실시예 2와 같은 방법으로 이온 전도도를 측정한 결과, 1.0×10-3S/cm였다. In the obtained crystallized glass, X-ray diffraction peaks similar to those of Example 1 were observed. In addition, the ion conductivity was measured in the same manner as in Example 2, and the result was 1.0 × 10 −3 S / cm.

실시예 4Example 4

Li2S와 P2S5의 몰비를 73:27로 변경한 것 이외에는 실시예 1과 같이 하여 결정화 유리를 제작했다. Crystallized glass was produced in the same manner as in Example 1 except that the molar ratio of Li 2 S and P 2 S 5 was changed to 73:27.

얻어진 결정화 유리는 실시예 1과 마찬가지인 X선 회절 피크가 관찰되었다. 또한, 실시예 2와 같은 방법으로 이온 전도도를 측정한 결과, 1.3×10-3S/cm였다. In the obtained crystallized glass, X-ray diffraction peaks similar to those of Example 1 were observed. Moreover, it was 1.3x10 <-3> S / cm when the ion conductivity was measured by the method similar to Example 2.

비교예 1Comparative Example 1

Li2S와 P2S5의 몰비를 67:33으로 변경한 것 이외에는 실시예 1과 같이 하여 황화물계 결정화 유리를 제작했다. 또한, 실시예 2와 같은 방법으로 이온 전도도를 측정했다. A sulfide-based crystallized glass was produced in the same manner as in Example 1 except that the molar ratio of Li 2 S and P 2 S 5 was changed to 67:33. In addition, the ion conductivity was measured in the same manner as in Example 2.

비교예 2Comparative Example 2

Li2S와 P2S5의 몰비를 75:25로 변경한 것 이외에는 실시예 1과 같이 하여 황화물계 결정화 유리를 제작했다. 또한, 실시예 2와 같은 방법으로 이온 전도도를 측정했다. A sulfide-based crystallized glass was produced in the same manner as in Example 1 except that the molar ratio of Li 2 S and P 2 S 5 was changed to 75:25. In addition, the ion conductivity was measured in the same manner as in Example 2.

비교예 3Comparative Example 3

Li2S와 P2S5의 몰비를 80:20으로 변경한 것 이외에는 실시예 1과 같이 하여 황화물계 결정화 유리를 제작했다. 또한, 실시예 2와 같은 방법으로 이온 전도도를 측정했다. A sulfide-based crystallized glass was produced in the same manner as in Example 1 except that the molar ratio of Li 2 S and P 2 S 5 was changed to 80:20. In addition, the ion conductivity was measured in the same manner as in Example 2.

비교예 4Comparative Example 4

소성처리에 있어서, 최고 온도를 250℃에서 550℃로 변경한 것 이외에는 실시예 1, 2와 같이 하여 황화물계 결정화 유리를 제작하고, 이온 전도도를 측정했다. In the firing process, sulfide-based crystallized glass was produced in the same manner as in Examples 1 and 2 except that the maximum temperature was changed from 250 ° C. to 550 ° C., and the ion conductivity was measured.

도 2에 도시하는 바와 같이, 비교예 1 내지 4에서 제작한 황화물계 결정화 유리는 본 발명의 결정화 유리가 갖는 특유의 회절 피크가 출현하지 않는 것을 확인할 수 있었다. As shown in FIG. 2, it was confirmed that the sulfide-based crystallized glass produced in Comparative Examples 1 to 4 did not show a diffraction peak peculiar to that of the crystallized glass of the present invention.

또한, 표 1에 기재한 실시예 및 비교예의 이온 전도도의 측정 결과로부터, 본 발명의 황화물계 결정화 유리가 종래의 것에 비해 극히 높은 이온 전도도를 나타내는 것을 확인할 수 있었다. Moreover, it was confirmed from the measurement result of the ion conductivity of the Example and comparative example which are shown in Table 1 that the sulfide type crystallized glass of this invention shows the extremely high ion conductivity compared with the conventional thing.

본 발명의 리튬 이온 전도성 황화물계 결정화 유리는 적어도 5V 이상의 분해전압을 갖고, 불연성 무기 고체이며 리튬 이온 수율이 1이라고 하는 특성을 유지하 면서, 실온에 있어서 10-3Scm-1대라고 하는 지금까지는 없는 극히 높은 리튬 이온 전도성을 나타낸다. 따라서, 리튬 전지의 고체 전해질용 재료로서 극히 적합하다. The lithium ion conductive sulfide-based crystallized glass of the present invention has a decomposition voltage of at least 5 V or more, is a non-flammable inorganic solid and maintains a property of lithium ion yield of 1, and has not been described as 10 −3 Scm −1 at room temperature. It exhibits extremely high lithium ion conductivity. Therefore, it is extremely suitable as a material for solid electrolytes of lithium batteries.

또한, 본 발명의 제조방법은 소성 온도가 150℃ 내지 360℃로 저온영역이며, 또한 Li원의 사용량을 저감할 수 있기 때문에, 공업 생산이 가능하고, 경제성도 우수하다. Moreover, since the manufacturing method of this invention is a low temperature area | region with a baking temperature of 150 degreeC-360 degreeC, and the usage-amount of Li source can be reduced, industrial production is possible and it is excellent also in economic efficiency.

또한, 상기의 특성을 갖는 본 발명의 고체 전해질을 사용한 전고체 전지는 에너지 밀도가 높고, 안전성 및 충방전 사이클 특성이 우수하다. In addition, the all-solid-state battery using the solid electrolyte of the present invention having the above characteristics has high energy density, and is excellent in safety and charge / discharge cycle characteristics.

Claims (11)

구성 성분으로서 리튬(Li), 인(P) 및 황(S) 원소를 함유하고, X선 회절(CuKα: λ=1.5418Å)에 있어서 2θ=17.8±0.3deg, 18.2±0.3deg, 19.8±0.3deg, 21.8±0.3deg, 23.8±0.3deg, 25.9±0.3deg, 29.5±0.3deg 및 30.0±0.3deg에 회절 피크를 갖는 리튬 이온 전도성 황화물계 결정화 유리. Containing lithium (Li), phosphorus (P) and sulfur (S) elements as constituents, 2θ = 17.8 ± 0.3deg, 18.2 ± 0.3deg, 19.8 ± 0.3 in X-ray diffraction (CuKα: λ = 1.5418 Hz) Lithium ion conductive sulfide-based crystallized glass having diffraction peaks at deg, 21.8 ± 0.3deg, 23.8 ± 0.3deg, 25.9 ± 0.3deg, 29.5 ± 0.3deg and 30.0 ± 0.3deg. 출발원료가 Li2S: 68 내지 74몰% 및 P2S5: 26 내지 32몰%의 조성으로 이루어지는 황화물계 유리를 150 내지 360℃에서 소성처리하는 리튬 이온 전도성 황화물계 결정화 유리의 제조방법. A method of producing a lithium ion conductive sulfide-based crystallized glass, wherein the starting material is calcined at 150 to 360 ° C. for a sulfide-based glass having a composition of Li 2 S: 68 to 74 mol% and P 2 S 5 : 26 to 32 mol%. 제 2 항에 있어서, The method of claim 2, 상기 Li2S가, 비프로톤성 유기 용매중에서 수산화리튬과 황화수소를 반응시켜 얻은 Li2S를, 유기 용매를 이용하여 100℃ 이상의 온도에서 세정하여 정제한 것인 리튬 이온 전도성 황화물계 결정화 유리의 제조방법. The Li 2 S is, aprotic for producing a lithium ion conductive sulfide-based crystallized glass of Li 2 S obtained by reacting lithium hydroxide with hydrogen sulfide in an organic solvent, it was purified by using an organic solvent, washing with more than 100 ℃ temperature Way. 제 2 항에 있어서,The method of claim 2, 상기 Li2S에 포함되는 황산화물의 총량이 0.15질량% 이하이며, N-메틸아미노부티르산리튬(LMAB)이 0.1질량% 이하인 리튬 이온 전도성 황화물계 결정화 유리의 제조방법. The method of the sulfuric acid and the total amount of cargo than 0.15% by weight, N- methyl amino acid lithium (LMAB) is 0.1 mass% or less of lithium ion conductive sulfide-based crystallized glass is included in the Li 2 S. 제 2 항에 있어서, The method of claim 2, 상기 P2S5 대신에, 이에 상당하는 몰비의 단체 인(P) 및 단체 황(S)을 이용하는 리튬 이온 전도성 황화물계 결정화 유리의 제조방법. A method for producing a lithium ion conductive sulfide-based crystallized glass using single phosphorus (P) and single sulfur (S) in equivalent molar ratios instead of the P 2 S 5 . 제 2 항 또는 제 5 항에 있어서, The method according to claim 2 or 5, 상기 Li2S 및 P2S5 또는 단체 인(P) 및 단체 황(S)을 기계적 분쇄법에 의해 상기 황화물계 유리로 하는 황화물계 결정화 유리의 제조방법. A method for producing sulfide-based crystallized glass, wherein the Li 2 S and P 2 S 5 or single phosphorus (P) and single sulfur (S) are the sulfide-based glass by mechanical grinding. 제 2 항 또는 제 5 항에 따른 제조방법에 의해 제조된 리튬 이온 전도성 황화물계 결정화 유리. A lithium ion conductive sulfide-based crystallized glass produced by the manufacturing method according to claim 2. 제 1 항에 따른 리튬 이온 전도성 황화물계 결정화 유리를 원료로 하는 리튬 2차 전지용 고체 전해질. A solid electrolyte for a lithium secondary battery using the lithium ion conductive sulfide-based crystallized glass according to claim 1 as a raw material. 제 7 항에 따른 리튬 이온 전도성 황화물계 결정화 유리를 원료로 하는 리튬 2차 전지용 고체 전해질. A solid electrolyte for a lithium secondary battery using the lithium ion conductive sulfide-based crystallized glass according to claim 7 as a raw material. 제 8 항에 따른 리튬 2차 전지용 고체 전해질을 사용한 전고체 전지. The all-solid-state battery using the solid electrolyte for lithium secondary batteries of Claim 8. 제 9 항에 따른 리튬 2차 전지용 고체 전해질을 사용한 전고체 전지. The all-solid-state battery using the solid electrolyte for lithium secondary batteries of Claim 9.
KR1020067016267A 2004-02-12 2005-01-31 Lithium ion conducting sulfide based crystallized glass and method for production thereof KR101181148B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004035380A JP4813767B2 (en) 2004-02-12 2004-02-12 Lithium ion conductive sulfide crystallized glass and method for producing the same
JPJP-P-2004-00035380 2004-02-12
PCT/JP2005/001323 WO2005078740A1 (en) 2004-02-12 2005-01-31 Lithium ion conducting sulfide based crystallized glass and method for production thereof

Publications (2)

Publication Number Publication Date
KR20060103959A KR20060103959A (en) 2006-10-04
KR101181148B1 true KR101181148B1 (en) 2012-09-17

Family

ID=34857681

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067016267A KR101181148B1 (en) 2004-02-12 2005-01-31 Lithium ion conducting sulfide based crystallized glass and method for production thereof

Country Status (7)

Country Link
US (1) US8962194B2 (en)
JP (1) JP4813767B2 (en)
KR (1) KR101181148B1 (en)
CN (1) CN1918668B (en)
DE (1) DE112005000120B4 (en)
TW (1) TW200529247A (en)
WO (1) WO2005078740A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160074318A (en) 2014-12-18 2016-06-28 현대자동차주식회사 A sulfide based crystallized glass including a lithium borate for all-solid secondary battery and a method for production

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4800589B2 (en) * 2004-05-13 2011-10-26 三洋電機株式会社 Solid electrolyte-containing electrode for lithium secondary battery
DE112006001971T5 (en) * 2005-08-02 2008-06-12 Idemitsu Kosan Co., Ltd. Solid electrolyte film
US8012631B2 (en) * 2005-12-09 2011-09-06 Idemitsu Kosan Co., Ltd Lithium ion conductive sulfide-based solid electrolyte and all-solid lithium battery using same
JP4834442B2 (en) * 2006-03-31 2011-12-14 出光興産株式会社 Solid electrolyte, method for producing the same, and all-solid-state secondary battery
JP4996120B2 (en) * 2006-03-31 2012-08-08 出光興産株式会社 Solid electrolyte, method for producing the same, and all-solid-state secondary battery
JP4392618B2 (en) 2006-05-15 2010-01-06 住友電気工業株式会社 Method for forming solid electrolyte
JP5414143B2 (en) * 2006-06-21 2014-02-12 出光興産株式会社 Method for producing sulfide solid electrolyte
JP5189304B2 (en) * 2006-10-17 2013-04-24 出光興産株式会社 Glass ceramic and method for producing the same
JP5848801B2 (en) * 2006-10-19 2016-01-27 出光興産株式会社 Lithium ion conductive solid electrolyte sheet and method for producing the same
JP4989181B2 (en) * 2006-10-19 2012-08-01 出光興産株式会社 Lithium sulfide solid electrolyte
JP2008103285A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd All solid bipolar battery
JP5348853B2 (en) * 2007-05-18 2013-11-20 出光興産株式会社 Sulfide-based electrolyte molded body and all-solid battery comprising the same
DE102007048289A1 (en) * 2007-10-08 2009-04-09 Universität Siegen Lithium argyrodites
JP5395346B2 (en) * 2007-10-11 2014-01-22 出光興産株式会社 Sulfide-based solid electrolyte for lithium ion secondary battery
US8518585B2 (en) * 2007-10-11 2013-08-27 Idemitsu Kosan Co., Ltd. Method for producing lithium ion conductive solid electrolyte
JP2009266575A (en) * 2008-04-24 2009-11-12 Idemitsu Kosan Co Ltd Manufacturing method of sulfide-based electrolyte, and ball mill
US8349498B2 (en) * 2010-01-12 2013-01-08 Sisom Thin Films, Llc Method of forming solid state electrolyte having high lithium ion conduction and battery incorporating same
JP5187703B2 (en) 2008-05-13 2013-04-24 国立大学法人東北大学 SOLID ELECTROLYTE, ITS MANUFACTURING METHOD, AND SECONDARY BATTERY HAVING SOLID ELECTROLYTE
JP5536996B2 (en) * 2008-07-29 2014-07-02 株式会社オハラ Method for producing lithium ion conductive glass ceramics
JP5577028B2 (en) * 2008-10-09 2014-08-20 出光興産株式会社 Method for producing sulfide solid electrolyte
JP4948510B2 (en) 2008-12-02 2012-06-06 トヨタ自動車株式会社 All solid battery
JP5485716B2 (en) * 2009-01-15 2014-05-07 出光興産株式会社 Method for producing lithium ion conductive solid electrolyte
JP5448038B2 (en) 2009-02-27 2014-03-19 公立大学法人大阪府立大学 Sulfide solid electrolyte material
WO2010107084A1 (en) * 2009-03-18 2010-09-23 株式会社三徳 All-solid-state lithium battery
JP5599573B2 (en) * 2009-04-10 2014-10-01 出光興産株式会社 Glass and lithium battery comprising solid electrolyte particles
JP5158008B2 (en) * 2009-04-28 2013-03-06 トヨタ自動車株式会社 All solid battery
JP5287739B2 (en) 2009-05-01 2013-09-11 トヨタ自動車株式会社 Solid electrolyte material
JP5590836B2 (en) 2009-09-09 2014-09-17 公立大学法人大阪府立大学 Sulfide solid electrolyte
JP5168269B2 (en) * 2009-11-25 2013-03-21 トヨタ自動車株式会社 Li ion conductive material and lithium battery
JP5552802B2 (en) * 2009-12-04 2014-07-16 トヨタ自動車株式会社 Method for producing sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery
JP5141675B2 (en) 2009-12-16 2013-02-13 トヨタ自動車株式会社 Method for producing sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery
EP2339674B1 (en) * 2009-12-23 2018-05-30 Robert Bosch GmbH Lithium-sulphur cell and method for manufacturing
JP5625351B2 (en) * 2009-12-25 2014-11-19 トヨタ自動車株式会社 Electrode layer, solid electrolyte layer, and all-solid secondary battery
CN102823049B (en) * 2010-03-26 2015-04-01 国立大学法人东京工业大学 Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
JP5455766B2 (en) 2010-04-23 2014-03-26 トヨタ自動車株式会社 Composite positive electrode active material, all solid state battery, and production method thereof
WO2011156392A1 (en) 2010-06-07 2011-12-15 Infinite Power Solutions, Inc. Rechargeable, high-density electrochemical device
WO2012001773A1 (en) * 2010-06-29 2012-01-05 トヨタ自動車株式会社 Process for production of sulfide solid electrolyte material, and process for production of lithium solid-state battery
EP2602795B1 (en) * 2010-08-05 2019-01-30 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte glass, lithium solid-state battery, and method for producing sulfide solid electrolyte glass
JP5729940B2 (en) * 2010-08-13 2015-06-03 出光興産株式会社 Solid electrolyte glass and method for producing the same
JP2012043654A (en) * 2010-08-19 2012-03-01 Nippon Electric Glass Co Ltd Manufacturing method of lithium ion conductive material
JP5349427B2 (en) 2010-08-26 2013-11-20 トヨタ自動車株式会社 Sulfide solid electrolyte material, positive electrode body and lithium solid state battery
JP5521899B2 (en) 2010-08-26 2014-06-18 トヨタ自動車株式会社 Sulfide solid electrolyte material and lithium solid state battery
EP2669974A4 (en) 2011-01-27 2016-03-02 Idemitsu Kosan Co Composite material of alkali metal sulfide and conducting agent
JPWO2012157120A1 (en) * 2011-05-19 2014-07-31 トヨタ自動車株式会社 Sulfide-based solid battery module
JP5842918B2 (en) * 2011-06-20 2016-01-13 トヨタ自動車株式会社 Method for producing solid electrolyte fine particles
WO2012176267A1 (en) * 2011-06-20 2012-12-27 トヨタ自動車株式会社 Electrode layer for secondary cell, solid electrolyte layer, and all-solid state secondary cell
JP5443445B2 (en) * 2011-07-06 2014-03-19 トヨタ自動車株式会社 Sulfide solid electrolyte material, lithium solid battery, and method for producing sulfide solid electrolyte material
JP5787291B2 (en) * 2011-07-29 2015-09-30 国立大学法人東京工業大学 Solid electrolyte and lithium battery
JP6055770B2 (en) * 2011-09-22 2016-12-27 出光興産株式会社 Glass particles
JP6234665B2 (en) 2011-11-07 2017-11-22 出光興産株式会社 Solid electrolyte
JP6203474B2 (en) 2011-11-24 2017-09-27 出光興産株式会社 Electrode material, electrode and lithium ion battery using the same
JP2013114966A (en) * 2011-11-30 2013-06-10 Idemitsu Kosan Co Ltd Electrolyte sheet
JP5888610B2 (en) * 2011-12-22 2016-03-22 国立大学法人東京工業大学 Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
CN104081577B (en) * 2012-02-06 2017-06-27 丰田自动车株式会社 The manufacture method of sulfide solid electrolyte material, battery and sulfide solid electrolyte material
JP5888609B2 (en) 2012-02-06 2016-03-22 国立大学法人東京工業大学 Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
JP6243103B2 (en) 2012-06-29 2017-12-06 出光興産株式会社 Positive electrode composite
WO2014010172A1 (en) 2012-07-10 2014-01-16 出光興産株式会社 Sulfide glass, and method for producing sulfide glass ceramic
EP2919313A4 (en) 2012-11-06 2016-03-30 Idemitsu Kosan Co Solid electrolyte
US9761906B2 (en) 2012-12-27 2017-09-12 Toyota Jidosha Kabushiki Kaisha Method for manufacturing sulfide solid electrolyte
JP6037444B2 (en) * 2013-01-17 2016-12-07 国立大学法人東京工業大学 Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
JP5785574B2 (en) * 2013-02-22 2015-09-30 出光興産株式会社 Solid electrolyte sheet for lithium battery, method for producing the same, and all-solid secondary battery using the same
EP2983231A4 (en) 2013-04-02 2017-04-12 Idemitsu Kosan Co., Ltd. Composite material
WO2014171483A1 (en) 2013-04-16 2014-10-23 トヨタ自動車株式会社 Sulfide solid electrolyte material, cell, and method for manufacturing sulfide solid electrolyte material
JP6259617B2 (en) 2013-04-24 2018-01-10 出光興産株式会社 Method for producing solid electrolyte
EP2997611A4 (en) * 2013-05-15 2016-12-14 Quantumscape Corp Solid state catholyte or electrolyte for battery
JP2014234212A (en) * 2013-06-03 2014-12-15 出光興産株式会社 Production method of sulfide compound storage container
US9761861B1 (en) 2013-06-25 2017-09-12 Quantumscape Corporation Pulse plating of lithium material in electrochemical devices
JP6003831B2 (en) 2013-06-28 2016-10-05 トヨタ自動車株式会社 Sulfide solid electrolyte material, sulfide glass, lithium solid battery, and method for producing sulfide solid electrolyte material
JP6077403B2 (en) 2013-06-28 2017-02-08 トヨタ自動車株式会社 Method for producing sulfide solid electrolyte material
US9231275B2 (en) 2013-07-22 2016-01-05 Electronics And Telecommunications Research Institute Method for manufacturing sulfide-based solid electrolyte
US9466834B2 (en) 2013-08-23 2016-10-11 Ut-Battelle, Llc Lithium-conducting sulfur compound cathode for lithium-sulfur batteries
JP5741653B2 (en) * 2013-09-02 2015-07-01 トヨタ自動車株式会社 Method for producing sulfide solid electrolyte
JP2014013772A (en) * 2013-09-11 2014-01-23 Idemitsu Kosan Co Ltd Sulfide-based solid electrolyte for lithium ion secondary battery
CN103515654B (en) * 2013-09-13 2016-06-01 四川川为电子有限公司 The manufacture method of a kind of copolymer solid electrolyte
US9853323B2 (en) 2013-10-31 2017-12-26 Samsung Electronics Co., Ltd. Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2014089971A (en) * 2013-12-18 2014-05-15 Toyota Motor Corp Sulfide solid electrolytic material, lithium solid battery, and manufacturing method of sulfide solid electrolytic material
JP2015137218A (en) 2014-01-24 2015-07-30 トヨタ自動車株式会社 Method for manufacturing sulfide solid electrolyte
JP6310713B2 (en) * 2014-02-03 2018-04-11 古河機械金属株式会社 Solid electrolyte material, lithium ion battery, and method for producing solid electrolyte material
JP6309344B2 (en) * 2014-03-19 2018-04-11 出光興産株式会社 Solid electrolyte and battery
JP6186296B2 (en) * 2014-03-20 2017-08-23 出光興産株式会社 Method for producing crystallized sulfide solid electrolyte
JP6044588B2 (en) * 2014-05-15 2016-12-14 トヨタ自動車株式会社 Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
JP6044587B2 (en) * 2014-05-15 2016-12-14 トヨタ自動車株式会社 Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
KR102689418B1 (en) 2014-06-04 2024-07-30 퀀텀스케이프 배터리, 인코포레이티드 Electrode materials with mixed particle sizes
JP6288716B2 (en) 2014-06-25 2018-03-07 国立大学法人東京工業大学 Method for producing sulfide solid electrolyte material
US10147968B2 (en) 2014-12-02 2018-12-04 Polyplus Battery Company Standalone sulfide based lithium ion-conducting glass solid electrolyte and associated structures, cells and methods
US11984553B2 (en) 2014-12-02 2024-05-14 Polyplus Battery Company Lithium ion conducting sulfide glass fabrication
US10164289B2 (en) 2014-12-02 2018-12-25 Polyplus Battery Company Vitreous solid electrolyte sheets of Li ion conducting sulfur-based glass and associated structures, cells and methods
US11749834B2 (en) 2014-12-02 2023-09-05 Polyplus Battery Company Methods of making lithium ion conducting sulfide glass
JP6761928B2 (en) * 2014-12-05 2020-09-30 国立大学法人豊橋技術科学大学 Solid electrolyte glass and its manufacturing method, precursor for solid electrolyte glass, suspension, electrode for lithium ion battery, and lithium ion battery
CN107112065B (en) * 2014-12-22 2019-07-23 三菱瓦斯化学株式会社 Ion conductor and its manufacturing method
US10116003B2 (en) 2015-02-03 2018-10-30 Quantumscape Corporation Metal sulfide anolytes for electrochemical cells
CN104752759B (en) * 2015-04-23 2017-02-01 中南大学 Preparation method of crystalline state Li-Sn-S series inorganic lithium ion solid electrolyte
US10411296B2 (en) 2015-05-07 2019-09-10 Kabushiki Kaisha Toyota Jidoshokki Structural body containing garnet-type ionic conductor
US10374254B2 (en) 2015-06-24 2019-08-06 Quantumscape Corporation Composite electrolytes
JP6877084B2 (en) 2015-07-31 2021-05-26 国立大学法人東京工業大学 α-Lithium solid electrolyte
JP2016006798A (en) * 2015-10-07 2016-01-14 出光興産株式会社 Sulfide-based solid electrolyte for lithium ion secondary battery
KR20180090293A (en) 2015-12-04 2018-08-10 콴텀스케이프 코포레이션 An electrolyte and a catholyte composition comprising lithium, phosphorus, sulfur and iodine, an electrolyte membrane for electrochemical devices, and an annealing method for producing these electrolytes and catholyte.
CN105609870A (en) * 2015-12-23 2016-05-25 山东玉皇新能源科技有限公司 Preparation method of amorphous sulfide solid electrolyte
JP6719202B2 (en) * 2015-12-24 2020-07-08 出光興産株式会社 Sulfide solid electrolyte, sulfide glass, electrode mixture and lithium ion battery
US11245131B2 (en) 2015-12-25 2022-02-08 Samsung Electronics Co., Ltd. Solid electrolyte and lithium battery including the same
KR101930992B1 (en) * 2016-02-15 2018-12-19 한양대학교 산학협력단 Method for preparing sulfide-based solid electrolyte, the solid electrolyte prepared therefrom, and an all solid lithium secondary battery including the solid electrolyte
US10910669B2 (en) 2016-03-14 2021-02-02 Idemitsu Kosan Co., Ltd. Alkali metal halide production method, and sulfide solid electrolyte production method
JP6761024B2 (en) 2016-03-14 2020-09-23 出光興産株式会社 Solid electrolyte and method for producing solid electrolyte
US10707536B2 (en) 2016-05-10 2020-07-07 Polyplus Battery Company Solid-state laminate electrode assemblies and methods of making
JP6257698B2 (en) * 2016-05-23 2018-01-10 出光興産株式会社 Method for producing laminate having electrode material layer and electrolyte layer
WO2018044952A1 (en) 2016-08-29 2018-03-08 Quantumscape Corporation Catholytes for solid state rechargeable batteries, battery architectures suitable for use with these catholytes, and methods of making and using the same
US11011796B2 (en) 2016-10-21 2021-05-18 Quantumscape Battery, Inc. Electrolyte separators including lithium borohydride and composite electrolyte separators of lithium-stuffed garnet and lithium borohydride
WO2018079831A1 (en) 2016-10-31 2018-05-03 国立研究開発法人科学技術振興機構 Ionic solid
JP6686860B2 (en) * 2016-12-09 2020-04-22 トヨタ自動車株式会社 Method for producing sulfide solid electrolyte
US11735780B2 (en) 2017-03-10 2023-08-22 Quantumscape Battery, Inc. Metal negative electrode ultrasonic charging
JP6763808B2 (en) 2017-03-14 2020-09-30 出光興産株式会社 Method for manufacturing solid electrolyte
US10868293B2 (en) 2017-07-07 2020-12-15 Polyplus Battery Company Treating sulfide glass surfaces and making solid state laminate electrode assemblies
US10629950B2 (en) 2017-07-07 2020-04-21 Polyplus Battery Company Encapsulated sulfide glass solid electrolytes and solid-state laminate electrode assemblies
KR20190050034A (en) * 2017-11-02 2019-05-10 한양대학교 산학협력단 Li2S-P2S5-B2S3 glass ceramic and all-solid-state secondary battery
US10811726B2 (en) 2017-11-14 2020-10-20 Samsung Electronics Co., Ltd. Solid electrolyte for all-solid lithium secondary battery, all-solid lithium secondary battery, and method of preparing the solid electrolyte
JP6943985B2 (en) 2018-02-02 2021-10-06 本田技研工業株式会社 Positive electrode for solid-state battery, solid-state battery, and method for manufacturing solid-state battery
JP6595031B2 (en) * 2018-03-19 2019-10-23 古河機械金属株式会社 Solid electrolyte material, lithium ion battery, and method for producing solid electrolyte material
US11127974B2 (en) 2018-05-14 2021-09-21 Samsung Electronics Co., Ltd. Method of preparing sulfide-based solid electrolyte, sulfide-based solid electrolyte prepared therefrom, and solid secondary battery including the sulfide electrolyte
JP6877648B2 (en) 2018-07-17 2021-05-26 出光興産株式会社 Method for manufacturing solid electrolyte
CN116812887A (en) * 2019-03-29 2023-09-29 古河机械金属株式会社 Method for producing sulfide-based inorganic solid electrolyte material
JP7221114B2 (en) * 2019-03-29 2023-02-13 古河機械金属株式会社 Inorganic material manufacturing method
US11799126B2 (en) 2019-05-31 2023-10-24 Samsung Electronics Co., Ltd. Method of preparing solid electrolyte and all-solid battery including solid electrolyte prepared by the method
WO2021044042A1 (en) * 2019-09-06 2021-03-11 Rhodia Operations New method for the preparation of a li-p-s product and corresponding products
WO2021049415A1 (en) * 2019-09-11 2021-03-18 三井金属鉱業株式会社 Sulfide solid electrolyte
KR102414948B1 (en) * 2019-09-11 2022-07-01 미쓰이금속광업주식회사 sulfide solid electrolyte
KR20230163595A (en) * 2019-10-02 2023-11-30 후루카와 기카이 긴조쿠 가부시키가이샤 Device for producing inorganic material and method for producing inorganic material
US11631889B2 (en) 2020-01-15 2023-04-18 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes
US12051824B2 (en) 2020-07-10 2024-07-30 Polyplus Battery Company Methods of making glass constructs
US12034116B2 (en) 2020-08-04 2024-07-09 Polyplus Battery Company Glass solid electrolyte layer, methods of making glass solid electrolyte layer and electrodes and battery cells thereof
US12021187B2 (en) 2020-08-04 2024-06-25 Polyplus Battery Company Surface treatment of a sulfide glass solid electrolyte layer
US12021238B2 (en) 2020-08-04 2024-06-25 Polyplus Battery Company Glassy embedded solid-state electrode assemblies, solid-state batteries and methods of making electrode assemblies and solid-state batteries
EP4201902A1 (en) * 2020-08-21 2023-06-28 Agc Inc. Chemically strengthened glass and crystallized glass, and manufacturing methods therefor
CN113363568B (en) * 2021-06-29 2022-04-19 深圳高能时代科技有限公司 Method for preparing sulfide solid electrolyte

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002109955A (en) * 2000-10-02 2002-04-12 Osaka Prefecture Sulfide crystallized glass, solid electrolyte, and fully solid secondary cell
JP2003208919A (en) * 2002-01-15 2003-07-25 Idemitsu Petrochem Co Ltd Manufacturing method of lithium ion conductive sulfide glass and glass ceramics as well as all solid-type battery using same glass ceramics

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3528866B2 (en) * 1994-06-03 2004-05-24 出光石油化学株式会社 Method for producing lithium sulfide
US5834138A (en) * 1995-03-06 1998-11-10 Sony Corporation Negative electrode material for non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte secondary cell employing same
JP4028920B2 (en) * 1997-11-06 2008-01-09 日本無機化学工業株式会社 Method for synthesizing lithium ion conductive solid electrolyte
JP4174816B2 (en) * 2001-02-28 2008-11-05 住友電気工業株式会社 Inorganic solid electrolyte and lithium battery member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002109955A (en) * 2000-10-02 2002-04-12 Osaka Prefecture Sulfide crystallized glass, solid electrolyte, and fully solid secondary cell
JP2003208919A (en) * 2002-01-15 2003-07-25 Idemitsu Petrochem Co Ltd Manufacturing method of lithium ion conductive sulfide glass and glass ceramics as well as all solid-type battery using same glass ceramics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160074318A (en) 2014-12-18 2016-06-28 현대자동차주식회사 A sulfide based crystallized glass including a lithium borate for all-solid secondary battery and a method for production
US10008741B2 (en) 2014-12-18 2018-06-26 Hyundai Motor Company Sulfide-based crystallized glass for all-solid secondary battery and a method for manufacturing the same

Also Published As

Publication number Publication date
JP4813767B2 (en) 2011-11-09
US8962194B2 (en) 2015-02-24
DE112005000120B4 (en) 2016-09-15
CN1918668B (en) 2010-12-08
KR20060103959A (en) 2006-10-04
CN1918668A (en) 2007-02-21
DE112005000120T5 (en) 2007-01-18
US20070160911A1 (en) 2007-07-12
WO2005078740A1 (en) 2005-08-25
TWI370461B (en) 2012-08-11
JP2005228570A (en) 2005-08-25
TW200529247A (en) 2005-09-01

Similar Documents

Publication Publication Date Title
KR101181148B1 (en) Lithium ion conducting sulfide based crystallized glass and method for production thereof
JP5311169B2 (en) Lithium ion conductive solid electrolyte, method for producing the same, solid electrolyte for lithium secondary battery using the solid electrolyte, and all solid lithium battery using the solid electrolyte for secondary battery
JP4996120B2 (en) Solid electrolyte, method for producing the same, and all-solid-state secondary battery
JP5414143B2 (en) Method for producing sulfide solid electrolyte
JP4873479B2 (en) High performance all solid lithium battery
JP4834442B2 (en) Solid electrolyte, method for producing the same, and all-solid-state secondary battery
US10280109B2 (en) Sulfide glass and crystalline solid electrolyte production method, crystalline solid electrolyte, sulfide glass and solid-state battery
JP5590836B2 (en) Sulfide solid electrolyte
JP5690365B2 (en) Method for producing lithium sulfide powder
JP5189304B2 (en) Glass ceramic and method for producing the same
WO2014174829A1 (en) Method for producing solid electrolyte
JP2010030889A (en) Production method for lithium ion-conductive sulfide glass, production method for lithium ion-conductive sulfide glass ceramic, and mechanical milling apparatus for sulfide glass production
JP2011084438A (en) Lithium sulfide and method for producing the same
JP5270825B2 (en) Glass composition and method for producing glass ceramic
JP2014029796A (en) Lithium ion conductive crystallized solid electrolyte, and method for manufacturing the same
KR20220071194A (en) Sulfide Solid Electrolyte and its Precursor II
KR102688814B1 (en) Lithium secondary battery solid electrolytes and method of preparing the same
JP2016027554A (en) Solid electrolyte
CN115732751A (en) Halide solid electrolyte material, preparation method thereof and lithium ion battery
JP2014091664A (en) Solid electrolyte glass particles and lithium ion battery
JP2015076284A (en) Method for manufacturing solid electrolyte

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
A107 Divisional application of patent
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150731

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160728

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170725

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee