JP4028920B2 - Method for synthesizing lithium ion conductive solid electrolyte - Google Patents

Method for synthesizing lithium ion conductive solid electrolyte Download PDF

Info

Publication number
JP4028920B2
JP4028920B2 JP30397197A JP30397197A JP4028920B2 JP 4028920 B2 JP4028920 B2 JP 4028920B2 JP 30397197 A JP30397197 A JP 30397197A JP 30397197 A JP30397197 A JP 30397197A JP 4028920 B2 JP4028920 B2 JP 4028920B2
Authority
JP
Japan
Prior art keywords
lithium
mixture
sulfide
solid electrolyte
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30397197A
Other languages
Japanese (ja)
Other versions
JPH11144523A (en
Inventor
栄 吉田
Original Assignee
日本無機化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本無機化学工業株式会社 filed Critical 日本無機化学工業株式会社
Priority to JP30397197A priority Critical patent/JP4028920B2/en
Publication of JPH11144523A publication Critical patent/JPH11144523A/en
Application granted granted Critical
Publication of JP4028920B2 publication Critical patent/JP4028920B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は硫化物を主体とするリチウムイオン伝導性固体電解質の合成方法に関する。
【0002】
【従来の技術】
携帯情報端末に使用される二次電池は長時間の使用が可能で、小型・軽量の高エネルギー密度電池が強く要望されており、中でもリチウム二次電池の高エネルギー密度化の開発研究が活発化している。しかし、現在開発されているリチウム二次電池の多くは、その内部に可燃性の有機電解液や酸化剤として作用する正極活物質さらには還元剤として作用する負極活物質が共存している。そのため、例えば電池が過充電状態となると、負極に金属リチウムが析出し正極と負極が短絡するような不測の事態が起こる可能性を有している。このような事態が起こると、電池は発熱をおこし、甚だしい時には破裂爆発を引き起こす。こうしたことから、電池の高エネルギー密度化にともないリチウム二次電池の安全性を確保することが、現在重要な課題となって来ている。
【0003】
リチウム二次電池の安全性を高める方法の1つとして、可燃性の有機電解液の代わりに、不燃性のリチウムイオン伝導性固体電解質を用いた全固体リチウム二次電池を形成させる方法があり、広く研究が行われている。そのような電池の開発に関連して、これまで様々な無機の固体電解質が研究されてきたが、その多くはイオン伝導度が10-5〜10-6S/cmと有機電解液に比べ2〜3桁低く、実用化には至っていない。これに対し、硫化物系リチウムイオン伝導性固体電解質ガラスは、ガラス板の状態でのイオン伝導度が10-3S/cm(粉体化すると10-4S/cm程度)であって有機電解液と同程度のイオン伝導度を有することが知られている。従って、この固体電解質ガラスを用いる安全な全固体リチウム二次電池の開発の期待が高まっており、その実用化が望まれている。
【0004】
【発明が解決しようとする課題】
一般に、硫化リチウムを含んだリチウムイオン伝導性固体電解質ガラスの合成は、該ガラスを構成する複数の原材料からなる混合物(出発物質)を、カーボン坩堝に入れ、これを例えば850℃以上の温度(通常、1000℃近辺に加熱される)付近に加熱して溶融してガラス状態(非晶質状態)にし、しかる後、ガラス状態となった融液を液体窒素あるいは双ローラーに注ぎ、該ガラスの軟化温度(例えば300℃近辺)以下に急冷することでリチウムイオン伝導性固体電解質ガラスを合成する。
【0005】
この際、合成開始初期においては高温の硫化物ガスを発生させたり、あるいは該固体電解質を合成するための設備として、耐高温性・耐腐食性に富んだものが必要となる。又、発生する硫化物ガスは有害なものであるため、これを処理するための無公害化設備の導入なども必要となる。
従って本発明の課題は、このような不都合を伴うことなく、より低温条件でリチウムイオン伝導性の優れた固体電解質を合成する方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、前記請求項1に記載の構成要件を要旨とするもので、特に、硫化リチウムと他の硫化物やリチウム化合物の組合せ混合物を比較的低い温度領域で反応させることが特徴的である。
【0007】
【発明の実施の形態】
本発明は、硫化リチウムと他の硫化物やリチウム化合物を含んでなる混合物を、ある温度条件下に固相状態で反応させることにより、高いリチウムイオン伝導性を有する固体電解質が得られる事を見出したことに基づいている。更に、本発明においては、反応させる硫化リチウム含有混合物を、例えば、平均粒径が10μm以下に粉砕することが好ましく、そのような微細粒子からなる混合物を150℃から300℃付近の温度範囲で反応させることが重要である。温度が150℃未満では反応時間が非常に長くなるので好ましくなく、また350℃を超えると結晶化反応が起こるので不都合である。好ましい加熱溶融温度範囲は組合わされる化合物の種類と混合量によって多少変化するが、150〜300℃であり、特に好ましい温度は、250〜300℃である。
【0008】
本発明の方法において硫化リチウムと混合固相反応される化合物は、他の硫化リチウム以外の硫化物とリチウム化合物であって、硫化物としては例えば、硫化珪素、硫化リンおよび硫化ホウ素が代表的であり、また、リチウム化合物としては、ハロゲン化リチウムおよびリン酸リチウムを代表的に挙げることができる。硫化リチウムと混合される上記化合物との混合物の各微細粒子は接触界面で固相反応して固体電解質を形成し、従来のリチウムイオン伝導性固体電解質ガラス(非晶質状態)と同様なリチウムイオン伝導体に変化する。
【0009】
固体電解質を非晶質状態にすれば、非晶質固体電解質中ではイオンが移動するための伝導経路が無秩序で制約が無いので、高いリチウムイオン伝導性が得られるのに対し、ガラス状態となった融液を徐冷して結晶質の固体電解質とした場合、その結晶状態の固体電解質にはイオンが移動するための伝導経路が必要である。即ち、結晶質のイオン伝導体(固体電解質)にはイオンが移動するための伝導経路が存在しており、そのため結晶質固体電解質間でイオン伝導性を高めるには、各結晶粒子間におけるイオン伝導経路を揃える必要が生じる。しかし、結晶状体の固体電解質においては、各結晶中に存在する無数の伝導経路を揃えることは極めて困難であり、結晶質の固体電解質では、一般にイオン伝導性が非晶質固体電解質に比べて低いものとなる。
【0010】
従って、本発明の方法によりリチウムイオン伝導体を合成するには、原材料粉末混合物を微細にすることが望ましく、これは各粒子間でのリチウムイオン伝導性を付与させるための反応時間を短縮させるとともに、生成する電解質を全て非晶質に近い状態とすることが出来、その結果、高いイオン伝導度を有するリチウムイオン伝導性硫化物系固体電解質とする事が出来る。本発明の方法に好ましく用いられる混合物の平均粒径は10μm以下である。また、この反応を更に効率的に進行させるには、混合物中の各粒子の接触機会を多くさせることが望ましく、これら混合物を攪拌しながら加熱することは極めて望ましい。
【0011】
従来のリチウムイオン伝導性ガラスは、300℃付近に軟化点があり、350℃付近以上になると結晶化反応が起こり、850℃付近になるとガラスがガラス状態となって溶融し、このガラス状態の時にリチウムイオン伝導性が形成される。従って、融液を徐冷すると、その途中に結晶化温度領域があるため、これを避けるにはガラス状態となった融液を軟化温度以下に強急冷させる必要がある。
従って、本発明方法においては、混合物を300℃以下の温度で加熱することが重要で、かかる温度条件で得られた粉体状の反応物は殆ど非晶質状態が保たれ、優れたリチウム伝導性を有する。硫化リチウム含有混合物に組合わせて用いられる材料の他の1つとして、硫化珪素を用いると、従来のリチウムイオン伝導性ガラスと同様に分解電圧の高いイオン伝導度を有するリチウムイオン伝導性硫化物系固体電解質を得る事が出来る。
【0012】
また、本発明の方法においては、前記したように、硫化リチウム含有粉末混合物は、例えば、ボールミルによる混合、あるいは螺旋型、リボン型、スクリュー型、高速流動型、マラー型などの容器固定型混合機、あるいは円筒型、双子円筒型、水平円筒型、V型、2重円錐型などの複合型混合機などによる混合法、あるいは振動ボールミル、遊星型粉砕機などのボール媒体ミル、あるいは圧縮粉砕型、衝撃圧縮粉砕型、せん断粉砕型、摩擦粉砕型などの粉砕器なども用いて可及的均質組成に調製することが好ましい。
【0013】
【実施例】
(実施例1)
本実施例では,少なくとも硫化リチウムを含んでなる混合物として平均粒径35μmの硫化リチウム(Li2 S)と平均粒径50μmの硫化珪素(SiS2 )を用い、これらの混合物を一定の混合状態の下で、反応温度を種々変化させた場合の、反応時間と混合物のイオン伝導度の相関を調べた。
ここで用いた混合物はLi2 S,SiS2 を重量比で60:40になるように秤量し、乳鉢で予め軽く混合した後、恒温槽内でボールミルを用い毎分45回転のもとで、リチウムイオン伝導性を付与させるための反応を行わせた。
その際の反応時間は30分、1時間、2時間、3時間、4時間、6時間、8時間、10時間とし、恒温槽内の反応温度は20℃、100℃、150℃、200℃、250℃、300℃、350℃とした。
【0014】
反応処理後、混合物を300mg秤量し、φ=10mmのテフロン製の円筒状絶縁管を用い,プレス機で加圧しペレット化した。加圧成形して得たペレットの両端面に金属リチウム(Li箔)を配して測定セルを構成した。
構成した該セルについて、交流インピーダンス法を用いて、固体電解質のイオン伝導度を測定し,優れたイオン伝導性が得られる温度条件範囲を求めた。
その結果を図1に示した。20℃で反応させた場合、反応時間に関わらず混合物はイオン伝導性をほとんど示さなっかった。
これに対し100℃で反応させ場合、混合物は低いながらイオン伝導性を示すようになるが、高いイオン伝導性を得るためには極めて反応時間を長くする必要があり、実用性に問題を有することがわかった。この反応温度については、高い温度で反応させればさせるほど、短時間でイオン伝導性が発現し、又、より高いイオン伝導度が得られることがわかった。特に300℃では、0.024×10-3mS/cm のイオン伝導度が得られた。
しかし、350℃以上になると逆にイオン伝導性が急激に低下することが分かった。これは、この温度域で反応させた混合物は非晶質状態を保つことができず、結晶化反応が進むためと思われる。
以上、反応させる温度としては、150℃から350℃以下が望ましいことが判明した。
【0015】
(実施例2)
本実施例では、混合物を構成する原材料として、Li2 S、SiS2 を予め粉砕し、それらを平均粒径として、4μm,8μm,10μm,12μm,16μm,20μm,30μm以下に分級し、分級したこれらの混合物を300℃で6時間反応させた後、そのイオン伝導度を実施例1と同様に測定した。
その結果を図2に示した。図からわかるように、平均粒径が10μm以下になると急激にイオン伝導度が増加することが判明した。特に、300℃(6時間処理)で0.24×10-3mS/cm の高いイオン伝導度が得られることがわかった。この傾向は他の組成からなる混合物についても同様な傾向を示し、例えば、この条件と同じ処理条件の下で、例えば、実施例2の組成を平均粒径10μmの粉末を用い処理すると、0.27×10-3mS/cm のイオン伝導度が、また実施例3の組成のものについては、0.25×10-3mS/cm 、実施例4の組成のもについては、0.18×10-3mS/cm 、実施例5の組成のものについては、0.20×10-3mS/cm の値を示し、イオン伝導度が約1桁高い値が得られることが判明した。
【0016】
(実施例3)
本実施例では、実施例1で用いた混合物としてLi2 S、SiS2 に更にLi3 PO4 を加えたものを用い、それぞれの混合物の組成は重量比率で63:36:1としたものを用いた以外は実施例1と殆ど、同様の試験を行った。
その結果、実施例1と殆ど同様の結果を与えた。
即ち、20℃で反応させた場合、反応時間に関わらず混合物は、イオン伝導性をほとんど示さなかった。また、100℃では、混合物はイオン伝導性を低いながら示した。又、高い温度で反応させるほど、短時間でイオン伝導性が発現し、より高いイオン伝導度が得られることがわかった。
特に300℃(6時間処理)では、0.036×10-3mS/cm のイオン伝導度が得られることがわかった。
【0017】
(実施例4)
本実施例では、実施例1で用いた混合物(Li2 S,SiS2 )に更に、ヨウ化リチウム(LiI)を加えたものを用い、同様の試験を行った。その際の混合物の組成条件は、重量比率で36:24:40のものを用いた。
その結果、実施例1と殆ど同様の結果を示した。即ち、20℃で反応させた場合、反応時間に関わらず混合物はイオン伝導性を殆ど示さなかった。しかし、100℃以上で反応させると混合物はイオン伝導性を示すようになることがわかった。実施例1の結果と比較した場合、より短時間で高いイオン伝導性が得られることがわかった。特に300℃(5時間処理)では、0.031×10-3mS/cm のイオン伝導度が得られた。
【0018】
(実施例5)
本実施例では、実施例1で用いた混合物(Li2 S,SiS2 )の代わりに、硫化リチウム(Li2 S)、硫化リン(P25 )の混合物(重量比率で67:33)を用いた以外は実施例1と殆ど同様の試験を行った。その結果、実施例1と殆ど同様の結果を示した。即ち、20℃で反応させた場合、反応時間に関わらず混合物のイオン伝導性はほとんど示さなかった。さらに100℃以上で反応させた場合、混合物はイオン伝導性を示すようになることがわかった。また、実施例1と比較すると、より短時間で高いイオン伝導性が得られることがわかった。特に300℃(4時間処理)では、0.028×10-3mS/cm のイオン伝導度が得られることがわかった。
【0019】
(実施例6)
本実施例では、実施例1で用いた混合物(Li2 S,SiS2 )の代わりに、硫化リチウム(Li2 S)、硫化リン(B23 )の混合物(重量比率で50:50)を用いた以外は実施例1と殆ど同様の試験を行った。その結果、実施例1と殆ど同様の結果を示した。即ち、20℃で反応させた場合、反応時間に関わらず混合物はイオン伝導性を示さなかった。しかし、100℃以上で反応させると混合物は低いながらイオン伝導性を示すようになることがわかった。実施例1 の結果と比較すると、より短時間で高いイオン伝導性が得られることがわかった。特に300℃(4時間処理)では、0.030×10-3mS/cm のイオン伝導度が得られた。
【0020】
以上、本発明の実施例では、硫化物を含んでなる混合物として、0.6Li2 S- 0.4SiS2 、0.01Li3 PO4-0.63Li2 S- 0.36SiS2 、0.4LiI- 0.36Li2 S- 0.24SiS2 、0.67Li2 S- 0.33P25 、0.5Li2 S- 0.5B23 についての説明を行ったが、これら混合物の混合比率の異なったもの、あるいはLi2 SとGeS2 からなる他の混合物など、硫化リチウムと混ぜ合わす材料として、実施例では説明しなかった材料、例えば塩化リチウム(LiCl)、臭化リチウム(LiBr)などの他のハロゲン化リチウムや、LiI- Li2 S- SiS2-P25 、LiI- Li3 PO4-Li2 S- SiS2 などの4種類以上の異なる原材料粉末を含んでなる混合物を用いても同様な結果が得られることは当業者の容易に理解するところであり、本発明の範疇に含まれることは当然であり、実施例で説明を行ったものに限定されるものではない。
【0021】
また、本実施例において、反応を効率よく行わせるための混合方法として通常のボールミルを使用したが、他の混合手段、例えば遊星ボールミル、振動ボールミルなど、その他のボール媒体ミル、あるいは容器固定型混合機、複合型混合機など、実施例で説明しなかった他の混合方法においても同様の結果が得られることはいうまでもなく、これらは本発明を遂行するための1手段であり、本発明の範疇の含まれるものである。
【0022】
【発明の効果】
硫化リチウムを含んでなる粉末混合物を150℃以上、300℃以下の温度で反応させることにより、高いリチウムイオン伝導性を有する無機固体電解質を容易且つ効率よく製造することができる。その結果、硫化物ガスの発生も殆どないため、合成装置も耐食性に富んだ材料で構成する必要を特に要しない。
また、硫化珪素あるいは平均粒径の小さい出発物質を用いることにより、より高いイオン伝導度を有する無機固体電解質を合成することができる。
【図面の簡単な説明】
【図1】イオン伝導度と反応温度および反応時間の関係を示すグラフである。
使用混合物:{Li2 S: SiS2 (組成比=60:40)}
反応温度 :(20℃, 100℃, 150℃, 200℃,250℃,300℃,350℃)
【図2】イオン伝導度と粒径の関係を示すグラフである。
使用混合物:{Li2 S: SiS2 (組成比=60:40)}
反応条件 :300℃、6時間反応
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for synthesizing a lithium ion conductive solid electrolyte mainly composed of sulfide.
[0002]
[Prior art]
Secondary batteries used in personal digital assistants can be used for a long time, and there is a strong demand for compact and lightweight high-energy density batteries. In particular, research and development on increasing the energy density of lithium secondary batteries has become active. ing. However, many of the lithium secondary batteries currently being developed coexist with a flammable organic electrolyte, a positive electrode active material that acts as an oxidizing agent, and a negative electrode active material that acts as a reducing agent. Therefore, for example, when the battery is overcharged, there is a possibility that an unexpected situation may occur in which metallic lithium is deposited on the negative electrode and the positive electrode and the negative electrode are short-circuited. When this happens, the battery will generate heat and, in extreme cases, cause a burst explosion. For these reasons, as the energy density of batteries increases, securing the safety of lithium secondary batteries is now an important issue.
[0003]
As one of the methods for improving the safety of the lithium secondary battery, there is a method of forming an all solid lithium secondary battery using a nonflammable lithium ion conductive solid electrolyte instead of a flammable organic electrolyte, There is extensive research. In connection with the development of such batteries, various inorganic solid electrolytes have been studied so far, most of which have an ionic conductivity of 10 −5 to 10 −6 S / cm, which is 2% higher than that of organic electrolytes. ~ 3 orders of magnitude lower, not yet in practical use. In contrast, sulfide-based lithium ion conductive solid electrolyte glass has an ionic conductivity of 10 −3 S / cm (about 10 −4 S / cm when powdered) in the state of a glass plate, and is an organic electrolyte. It is known to have the same ionic conductivity as the liquid. Therefore, the expectation of the development of a safe all-solid lithium secondary battery using this solid electrolyte glass is increasing, and its practical application is desired.
[0004]
[Problems to be solved by the invention]
In general, synthesis of a lithium ion conductive solid electrolyte glass containing lithium sulfide is performed by putting a mixture (starting material) made of a plurality of raw materials constituting the glass into a carbon crucible, for example, at a temperature of 850 ° C. or higher (usually , Heated in the vicinity of 1000 ° C.) to melt into a glassy state (amorphous state), and then the glassy melt is poured into liquid nitrogen or twin rollers to soften the glass. The lithium ion conductive solid electrolyte glass is synthesized by rapidly cooling to a temperature (for example, around 300 ° C.) or lower.
[0005]
At this time, at the beginning of the synthesis, a high-temperature sulfide gas is required, or equipment having high temperature resistance and corrosion resistance is required as equipment for synthesizing the solid electrolyte. Moreover, since the generated sulfide gas is harmful, it is also necessary to introduce pollution-free equipment for treating it.
Accordingly, an object of the present invention is to provide a method for synthesizing a solid electrolyte having excellent lithium ion conductivity under a lower temperature condition without such disadvantages.
[0006]
[Means for Solving the Problems]
The gist of the present invention is the gist of the constituents described in claim 1, and is particularly characterized by reacting lithium sulfide with a combination mixture of other sulfides or lithium compounds in a relatively low temperature range. .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention has found that a solid electrolyte having high lithium ion conductivity can be obtained by reacting a mixture comprising lithium sulfide with another sulfide or lithium compound in a solid phase under a certain temperature condition. Is based on that. Furthermore, in the present invention, the lithium sulfide-containing mixture to be reacted is preferably pulverized, for example, to an average particle size of 10 μm or less, and the mixture comprising such fine particles is reacted in a temperature range of 150 ° C. to 300 ° C. It is important to let If the temperature is less than 150 ° C., the reaction time becomes very long, which is not preferable, and if it exceeds 350 ° C., a crystallization reaction occurs, which is inconvenient. The preferred heating and melting temperature range varies somewhat depending on the type of compound to be combined and the mixing amount, but is 150 to 300 ° C, and the particularly preferred temperature is 250 to 300 ° C.
[0008]
In the method of the present invention, the compound that undergoes a mixed solid phase reaction with lithium sulfide is a sulfide other than lithium sulfide and a lithium compound. Examples of the sulfide include silicon sulfide, phosphorus sulfide, and boron sulfide. In addition, typical examples of the lithium compound include lithium halide and lithium phosphate. Each fine particle of the mixture with the above compound mixed with lithium sulfide forms a solid electrolyte by solid-phase reaction at the contact interface, and lithium ions similar to conventional lithium ion conductive solid electrolyte glass (amorphous state) It turns into a conductor.
[0009]
If the solid electrolyte is in an amorphous state, the conduction path for the movement of ions in the amorphous solid electrolyte is disordered and unrestricted, so that high lithium ion conductivity can be obtained, but it becomes a glass state. When the melt is gradually cooled to form a crystalline solid electrolyte, the solid electrolyte in the crystalline state needs a conduction path for ions to move. In other words, a crystalline ion conductor (solid electrolyte) has a conduction path for ions to move. Therefore, in order to increase ion conductivity between crystalline solid electrolytes, ion conduction between crystal grains can be improved. It is necessary to align the route. However, in a solid electrolyte of a crystalline body, it is extremely difficult to align the infinite number of conduction paths existing in each crystal. In general, a crystalline solid electrolyte has lower ionic conductivity than an amorphous solid electrolyte. It will be a thing.
[0010]
Therefore, in order to synthesize lithium ion conductors by the method of the present invention, it is desirable to make the raw material powder mixture fine, which shortens the reaction time for imparting lithium ion conductivity between the particles. The generated electrolyte can be made almost amorphous, and as a result, a lithium ion conductive sulfide-based solid electrolyte having high ionic conductivity can be obtained. The average particle size of the mixture preferably used in the method of the present invention is 10 μm or less. Moreover, in order to advance this reaction more efficiently, it is desirable to increase the contact opportunity of each particle | grain in a mixture, and it is very desirable to heat these mixtures, stirring.
[0011]
The conventional lithium ion conductive glass has a softening point near 300 ° C., and a crystallization reaction occurs when the temperature is about 350 ° C. or higher. When the temperature is near 850 ° C., the glass becomes a glass state and melts. Lithium ion conductivity is formed. Therefore, when the melt is gradually cooled, there is a crystallization temperature region in the middle of the melt, and in order to avoid this, it is necessary to rapidly cool the melt in a glass state below the softening temperature.
Therefore, in the method of the present invention, it is important to heat the mixture at a temperature of 300 ° C. or less, and the powdery reaction product obtained under such temperature conditions is almost kept in an amorphous state and has excellent lithium conductivity. Have sex. As another material used in combination with a lithium sulfide-containing mixture, when silicon sulfide is used, a lithium ion conductive sulfide system having an ionic conductivity with a high decomposition voltage similar to that of conventional lithium ion conductive glass A solid electrolyte can be obtained.
[0012]
Further, in the method of the present invention, as described above, the lithium sulfide-containing powder mixture is mixed with a ball mill, or a container-fixed mixer such as a spiral type, ribbon type, screw type, high-speed fluid type, or muller type. Or a mixing method using a composite mixer such as a cylindrical type, a twin cylindrical type, a horizontal cylindrical type, a V type or a double cone type, or a ball medium mill such as a vibrating ball mill or a planetary type crusher, or a compression pulverizing type, It is preferable to prepare a homogeneous composition as much as possible using a pulverizer such as an impact compression pulverization mold, a shear pulverization mold, and a friction pulverization mold.
[0013]
【Example】
Example 1
In this embodiment, lithium sulfide (Li 2 S) having an average particle diameter of 35 μm and silicon sulfide (SiS 2 ) having an average particle diameter of 50 μm are used as a mixture containing at least lithium sulfide, and these mixtures are mixed in a certain mixed state. Below, the correlation between the reaction time and the ionic conductivity of the mixture when the reaction temperature was varied was investigated.
The mixture used here weighed Li 2 S and SiS 2 at a weight ratio of 60:40, mixed lightly in advance in a mortar, and then using a ball mill in a thermostatic chamber at 45 revolutions per minute, A reaction for imparting lithium ion conductivity was performed.
In this case, the reaction time is 30 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 6 hours, 8 hours, and 10 hours, and the reaction temperatures in the thermostatic bath are 20 ° C, 100 ° C, 150 ° C, 200 ° C, The temperature was 250 ° C, 300 ° C, and 350 ° C.
[0014]
After the reaction treatment, 300 mg of the mixture was weighed and pelletized by pressurizing with a press using a cylindrical insulating tube made of Teflon with φ = 10 mm. A measurement cell was constructed by arranging metallic lithium (Li foil) on both end faces of a pellet obtained by pressure molding.
About the comprised cell, the ionic conductivity of the solid electrolyte was measured using the alternating current impedance method, and the temperature condition range in which excellent ionic conductivity was obtained was obtained.
The results are shown in FIG. When reacted at 20 ° C., the mixture showed little ionic conductivity regardless of the reaction time.
On the other hand, when the reaction is performed at 100 ° C., the mixture shows low ionic conductivity, but in order to obtain high ionic conductivity, it is necessary to lengthen the reaction time extremely, which has a problem in practicality. I understood. As for this reaction temperature, it was found that the higher the temperature of the reaction, the shorter the ion conductivity, and the higher the ion conductivity. Particularly at 300 ° C., an ionic conductivity of 0.024 × 10 −3 mS / cm 2 was obtained.
However, it has been found that when the temperature is 350 ° C. or higher, the ionic conductivity rapidly decreases. This is probably because the mixture reacted in this temperature range cannot maintain an amorphous state, and the crystallization reaction proceeds.
As described above, it has been found that the reaction temperature is preferably 150 ° C. to 350 ° C. or less.
[0015]
(Example 2)
In this example, Li 2 S and SiS 2 were preliminarily pulverized as raw materials constituting the mixture, and the average particle diameter was classified into 4 μm, 8 μm, 10 μm, 12 μm, 16 μm, 20 μm, and 30 μm or less, and classified. After these mixtures were reacted at 300 ° C. for 6 hours, the ionic conductivity was measured in the same manner as in Example 1.
The results are shown in FIG. As can be seen from the figure, it has been found that the ionic conductivity increases rapidly when the average particle size is 10 μm or less. In particular, it was found that a high ionic conductivity of 0.24 × 10 −3 mS / cm 2 can be obtained at 300 ° C. (6 hours treatment). This tendency is similar to the mixture having other compositions. For example, when the composition of Example 2 is treated with a powder having an average particle size of 10 μm under the same processing conditions as these conditions, the ratio is 0. An ionic conductivity of 27 × 10 −3 mS / cm 2 is 0.25 × 10 −3 mS / cm 2 for the composition of Example 3, and 0.18 × for the composition of Example 4. The sample having a composition of 10 −3 mS / cm 2 and Example 5 showed a value of 0.20 × 10 −3 mS / cm 2, and the ionic conductivity was found to be about 1 digit higher.
[0016]
(Example 3)
In this example, Li 2 S, SiS 2 and Li 3 PO 4 added to the mixture used in Example 1 were used, and the composition of each mixture was 63: 36: 1 by weight. A test similar to Example 1 was performed except that it was used.
As a result, almost the same result as in Example 1 was given.
That is, when reacted at 20 ° C., the mixture showed almost no ionic conductivity regardless of the reaction time. At 100 ° C., the mixture showed low ionic conductivity. It was also found that the higher the temperature, the higher the ionic conductivity, and the higher the ionic conductivity.
In particular, it was found that an ionic conductivity of 0.036 × 10 −3 mS / cm 2 can be obtained at 300 ° C. (6 hours treatment).
[0017]
Example 4
In this example, the same test was performed using a mixture obtained by adding lithium iodide (LiI) to the mixture (Li 2 S, SiS 2 ) used in Example 1. The composition condition of the mixture at that time was 36:24:40 by weight.
As a result, almost the same result as in Example 1 was shown. That is, when reacted at 20 ° C., the mixture showed almost no ionic conductivity regardless of the reaction time. However, it was found that when the reaction was carried out at 100 ° C. or higher, the mixture showed ionic conductivity. When compared with the results of Example 1, it was found that high ionic conductivity was obtained in a shorter time. In particular, an ion conductivity of 0.031 × 10 −3 mS / cm 2 was obtained at 300 ° C. (5 hours treatment).
[0018]
(Example 5)
In this example, instead of the mixture (Li 2 S, SiS 2 ) used in Example 1, a mixture of lithium sulfide (Li 2 S) and phosphorus sulfide (P 2 S 5 ) (weight ratio 67:33) The test was performed in substantially the same manner as in Example 1 except that was used. As a result, almost the same result as in Example 1 was shown. That is, when reacted at 20 ° C., the ionic conductivity of the mixture was hardly shown regardless of the reaction time. Furthermore, when it was made to react at 100 degreeC or more, it turned out that a mixture comes to show ionic conductivity. Moreover, it turned out that high ion conductivity is obtained in a shorter time compared with Example 1. In particular, it was found that an ionic conductivity of 0.028 × 10 −3 mS / cm 2 can be obtained at 300 ° C. (4 hours treatment).
[0019]
(Example 6)
In this embodiment, the mixture used in Example 1 (Li 2 S, SiS 2 ) in place of lithium sulfide (Li 2 S), a mixture of phosphorus sulfide (B 2 S 3) (50:50 weight ratio) The test was performed in substantially the same manner as in Example 1 except that was used. As a result, almost the same result as in Example 1 was shown. That is, when reacted at 20 ° C., the mixture did not exhibit ionic conductivity regardless of the reaction time. However, it was found that when the reaction was carried out at 100 ° C. or higher, the mixture showed low ion conductivity. Compared with the results of Example 1, it was found that high ionic conductivity was obtained in a shorter time. In particular, at 300 ° C. (4 hours treatment), an ionic conductivity of 0.030 × 10 −3 mS / cm 2 was obtained.
[0020]
As described above, in the embodiment of the present invention, the mixture containing sulfide is 0.6Li 2 S-0.4SiS 2 , 0.01Li 3 PO 4 -0.63Li 2 S- 0.36SiS 2 , 0.4LiI. -0.36Li 2 S- 0.24 SiS 2 , 0.67Li 2 S- 0.33P 2 S 5 , 0.5Li 2 S- 0.5B 2 S 3 were explained, but the mixing ratio of these mixtures As materials to be mixed with lithium sulfide, such as different materials of Li 2 S and GeS 2 , materials not described in the examples, such as lithium chloride (LiCl), lithium bromide (LiBr), etc. other and lithium halide, a LiI- Li 2 S- SiS 2 -P 2 S 5, LiI- Li 3 PO 4 -Li 2 S- SiS 2 mixture comprising 4 or more different raw materials powders such as using But the same The results obtained are about to readily understood by those of skill in the art, to be included in the scope of the present invention is naturally not limited to that has been described in the Examples.
[0021]
In this example, a normal ball mill was used as a mixing method for efficiently carrying out the reaction, but other mixing means such as other ball medium mills such as a planetary ball mill and a vibrating ball mill, or a container-fixed mixing type. Needless to say, similar results can be obtained in other mixing methods not described in the examples, such as a mixer, a composite mixer, etc., and these are one means for carrying out the present invention. This category is included.
[0022]
【The invention's effect】
By reacting a powder mixture containing lithium sulfide at a temperature of 150 ° C. or higher and 300 ° C. or lower, an inorganic solid electrolyte having high lithium ion conductivity can be easily and efficiently produced. As a result, since there is almost no generation of sulfide gas, it is not particularly necessary to synthesize the synthesis apparatus with a material having a high corrosion resistance.
Moreover, an inorganic solid electrolyte having higher ionic conductivity can be synthesized by using silicon sulfide or a starting material having a small average particle diameter.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between ion conductivity, reaction temperature, and reaction time.
Mixture used: {Li 2 S: SiS 2 (composition ratio = 60: 40)}
Reaction temperature: (20 ° C, 100 ° C, 150 ° C, 200 ° C, 250 ° C, 300 ° C, 350 ° C)
FIG. 2 is a graph showing the relationship between ion conductivity and particle size.
Mixture used: {Li 2 S: SiS 2 (composition ratio = 60: 40)}
Reaction conditions: Reaction at 300 ° C. for 6 hours

Claims (3)

硫化リチウムと他の硫化物およびリチウム化合物から選択される少なくとも一種との混合物を150℃以上、300℃以下の温度で反応させることを特徴とするリチウムイオン伝導性固体電解質の合成方法。A method of synthesizing a lithium ion conductive solid electrolyte, comprising reacting a mixture of lithium sulfide with at least one selected from other sulfides and lithium compounds at a temperature of 150 ° C or higher and 300 ° C or lower. 前記他の硫化物が、硫化珪素、硫化リンおよび硫化ホウ素から選択され、前記リチウム化合物が、ハロゲン化リチウムおよびリン酸リチウムから選択される請求項1に記載のリチウムイオン伝導性固体電解質の合成方法。The method for synthesizing a lithium ion conductive solid electrolyte according to claim 1, wherein the other sulfide is selected from silicon sulfide, phosphorus sulfide, and boron sulfide, and the lithium compound is selected from lithium halide and lithium phosphate. . 前記混合物が平均粒径10μm以下の粉末に調整されることを特徴とする請求項1または請求項2に記載のリチウムイオン伝導性固体電解質の合成方法。The method for synthesizing a lithium ion conductive solid electrolyte according to claim 1 or 2, wherein the mixture is adjusted to a powder having an average particle size of 10 µm or less.
JP30397197A 1997-11-06 1997-11-06 Method for synthesizing lithium ion conductive solid electrolyte Expired - Lifetime JP4028920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30397197A JP4028920B2 (en) 1997-11-06 1997-11-06 Method for synthesizing lithium ion conductive solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30397197A JP4028920B2 (en) 1997-11-06 1997-11-06 Method for synthesizing lithium ion conductive solid electrolyte

Publications (2)

Publication Number Publication Date
JPH11144523A JPH11144523A (en) 1999-05-28
JP4028920B2 true JP4028920B2 (en) 2008-01-09

Family

ID=17927491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30397197A Expired - Lifetime JP4028920B2 (en) 1997-11-06 1997-11-06 Method for synthesizing lithium ion conductive solid electrolyte

Country Status (1)

Country Link
JP (1) JP4028920B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106199449A (en) * 2016-08-03 2016-12-07 湖北润阳新能源有限公司 Lead-acid accumulator resistance barrier test method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003208919A (en) * 2002-01-15 2003-07-25 Idemitsu Petrochem Co Ltd Manufacturing method of lithium ion conductive sulfide glass and glass ceramics as well as all solid-type battery using same glass ceramics
JP4621139B2 (en) * 2003-04-15 2011-01-26 出光興産株式会社 Method for producing lithium ion conductive solid electrolyte
JP4813767B2 (en) 2004-02-12 2011-11-09 出光興産株式会社 Lithium ion conductive sulfide crystallized glass and method for producing the same
CN101326673B (en) * 2005-12-09 2010-11-17 出光兴产株式会社 Lithium ion conductive sulfide solid electrolyte and all-solid-state lithium battery using same
JP5414143B2 (en) * 2006-06-21 2014-02-12 出光興産株式会社 Method for producing sulfide solid electrolyte
JP2008235227A (en) * 2007-03-23 2008-10-02 Toyota Motor Corp Solid battery and manufacturing method
JP5270563B2 (en) 2007-10-11 2013-08-21 出光興産株式会社 Method for producing lithium ion conductive solid electrolyte
JP5485716B2 (en) * 2009-01-15 2014-05-07 出光興産株式会社 Method for producing lithium ion conductive solid electrolyte
JP5287739B2 (en) 2009-05-01 2013-09-11 トヨタ自動車株式会社 Solid electrolyte material
JP5349427B2 (en) 2010-08-26 2013-11-20 トヨタ自動車株式会社 Sulfide solid electrolyte material, positive electrode body and lithium solid state battery
JP6683363B2 (en) * 2015-06-17 2020-04-22 出光興産株式会社 Method for producing solid electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106199449A (en) * 2016-08-03 2016-12-07 湖北润阳新能源有限公司 Lead-acid accumulator resistance barrier test method

Also Published As

Publication number Publication date
JPH11144523A (en) 1999-05-28

Similar Documents

Publication Publication Date Title
JP3510420B2 (en) Lithium ion conductive solid electrolyte and method for producing the same
Morimoto et al. Mechanochemical synthesis of new amorphous materials of 60Li2S· 40SiS2 with high lithium ion conductivity
Tatsumisago et al. New lithium ion conducting glass-ceramics prepared from mechanochemical Li2S–P2S5 glasses
JP3433173B2 (en) Sulfide-based crystallized glass, solid electrolyte and all-solid secondary battery
JP3233345B2 (en) Method for producing ion-conductive sulfide glass fine powder for all-solid-state battery, ion-conductive sulfide glass fine powder for all-solid-state battery, solid electrolyte, and all-solid-state secondary battery
JP5501105B2 (en) Method for preparing electroactive insertion compound and resulting electrode material
TWI284327B (en) Method for producing sulfide glass or sulfide glass ceramic capable of conducing lithium ion, and whole solid type cell using said glass ceramic
JP4028920B2 (en) Method for synthesizing lithium ion conductive solid electrolyte
CN112334999A (en) Method for producing solid electrolyte and electrolyte precursor
JPS60501731A (en) Glassy solid lithium cation conductive electrolyte
JP2001006674A (en) Electron-lithium ion mixed conductor and synthesis thereof and all solid lithium secondary battery
JP6118521B2 (en) Electrode layer including sulfide-based solid electrolyte, electrolyte layer including sulfide-based solid electrolyte, and all-solid-state battery using the same
JPH06275311A (en) Fibrous solid electrolyte, mold thereof, manufacture thereof, and battery using same
Jiang et al. In situ generated Li 2 S-LPS composite for all-solid-state lithium-sulfur battery
US20210184248A1 (en) Lithium ion conductor precursor glass and lithium ion conductor
CN111490286A (en) Method for producing sulfide-based solid electrolyte particles
JP2014028717A (en) Solid electrolyte
MORIMOTO et al. Mechanochemical synthesis of the high lithium ion conductive amorphous materials in the systems Li2S-SiS2 and Li2S-SiS2-Li4SiO4
JP3134595B2 (en) Sulfide-based lithium ion conductive solid electrolyte and its synthesis method
JP2011181495A (en) Inorganic electrolyte and lithium secondary battery using the same
Hayashi et al. Lithium Ion Conducting Glasses and Glass-Ceramics in the Systems Li2S-MxSy (M= Al, Si and P) Prepared by Mechanical Milling
JP7171896B2 (en) Method for producing sulfide-based inorganic solid electrolyte material
JP5652132B2 (en) Inorganic solid electrolyte and lithium secondary battery
JP7566484B2 (en) Method for producing sulfide-based inorganic solid electrolyte material
CN106785019B (en) A kind of lithium sulfide system solid electrolyte material and preparation method thereof containing silver bromide and silver chlorate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term