WO2004093099A1 - Method for producing lithium ion conductive solid electrolyte and totally solid type secondary using solid electrolyte produced thereby - Google Patents

Method for producing lithium ion conductive solid electrolyte and totally solid type secondary using solid electrolyte produced thereby Download PDF

Info

Publication number
WO2004093099A1
WO2004093099A1 PCT/JP2004/005248 JP2004005248W WO2004093099A1 WO 2004093099 A1 WO2004093099 A1 WO 2004093099A1 JP 2004005248 W JP2004005248 W JP 2004005248W WO 2004093099 A1 WO2004093099 A1 WO 2004093099A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
solid electrolyte
ion conductive
conductive solid
sulfide
Prior art date
Application number
PCT/JP2004/005248
Other languages
French (fr)
Japanese (ja)
Inventor
Minoru Senga
Yoshikatsu Seino
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to JP2005505406A priority Critical patent/JP4621139B2/en
Publication of WO2004093099A1 publication Critical patent/WO2004093099A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a lithium ion conductive solid electrolyte and an all-solid-state secondary battery using the same. More specifically, the present invention provides a method for industrially advantageously producing a lithium ion conductive solid electrolyte by applying a reaction in an organic solvent at a relatively low temperature without requiring special equipment, and The present invention relates to an all-solid-state secondary battery using the same. Background art
  • Lithium batteries are being actively studied in various fields as batteries that can obtain high energy density, but most solid electrolytes currently used in lithium batteries contain flammable organic substances. Therefore, if an abnormality occurs in the battery, there is a risk of fire, etc., and it is desired to ensure the safety of the battery.
  • solid electrolytes composed of non-combustible solid materials have been developed due to the strong social demands for improved reliability against shock and vibration, higher energy density, and a clean and highly efficient energy conversion system for the global environment. The development of an all-solid-state lithium secondary pond using methane is desired.
  • a method is also known in which a raw material is put in a carbon-coated silica tube, vacuum-sealed, and reacted at 700 ° C. for 8 hours (Japanese Patent Laid-Open No. 11-176326). I have. However, this method is also unsuitable for mass production because it requires special equipment for performing high-temperature reactions under vacuum.
  • the present invention has been made in view of the above problems, and can easily mass-produce a lithium-ion conductive solid electrolyte at a relatively low reaction temperature without requiring special equipment.
  • the purpose is to provide an industrially advantageous method.
  • Another object is to provide an all-solid-state lithium secondary battery using the same. Disclosure of the invention
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, have found that the object can be achieved by applying an organic solvent reaction, thereby completing the present invention.
  • the present invention (1) Reacting a lithium component, a sulfur component, and one or more components selected from the group consisting of a simple phosphorus, a simple silicon, a single boron, and a simple germane in an organic solvent.
  • a method for producing a lithium ion conductive solid electrolyte A method for producing a lithium ion conductive solid electrolyte,
  • the sulfur component and one or two or more components selected from the group consisting of a simple phosphorus, a simple silicon, a simple boron and a simple germanium are selected from the group consisting of sulfur nitride, silicon sulfide,
  • a method for producing a lithium ion conductive solid electrolyte characterized by reacting one or more compounds selected from the group consisting of:
  • the lithium compound having basicity is one or more compounds selected from the group consisting of n-butyllithium, sec-butyllithium, tert-butyllithium, hexyllithium, and lithium alkoxide.
  • the raw material is a lithium component, a sulfur component, and one selected from the group consisting of a simple phosphorus, a simple silicon, a simple boron, and a simple germanium.
  • a lithium component a sulfur component
  • two or more types of 'components are used, and these components are reacted in an organic solvent to produce a lithium ion conductive solid electrolyte.
  • lithium hydrosulfide is used as the first component, and elemental sulfur, phosphorus, silicon, boron, germanium, phosphorus sulfide, silicon sulfide, silicon sulfide, and boron sulfide are used as the second component.
  • a lithium ion conductive solid electrolyte is produced by reacting one or two or more compounds selected from the group consisting of manganese and germanium sulfide in an organic solvent.
  • the lithium component used as a raw material in the method of the present invention is not particularly limited, but it is preferable to use a high-purity product. Particularly preferred are lithium sulfide and lithium hydrosulfide.
  • lithium hydrosulfide As a method for producing lithium hydrosulfide, a method in which hydrogen sulfide is blown into lithium hydroxide in a non-protonic organic solvent to cause a reaction (Japanese Patent Application Laid-Open No. 7-33012) can be employed. Specifically, in N-methyl-2-pyrrolidone, lithium hydroxide / hydrogen sulfide (molar ratio) is supplied in the range of 1.8 to 3.00, preferably 1.95 to 3.00, 0 to 150 ° C, Preferably, the reaction can be carried out at 120 to 140 ° C.
  • the sulfur component as a raw material of the method of the present invention and one or more components selected from the group consisting of simple phosphorus, simple silicon, single boron, and simple germanium may be used as separate components, respectively. It may be used as one or more compounds selected from the group consisting of phosphorus sulfide, silicon sulfide, boron sulfide and germanium sulfide. Commercial products can be used for these separate components or compounds as long as they are highly pure.
  • the method of the present invention is characterized in that the raw materials are reacted in an organic solvent.
  • the organic solvent is not particularly limited, but a non-protonic organic solvent is particularly preferred.
  • Non-protonic organic solvents generally include non-protonic polar organic compounds (for example, amide compounds, lactam compounds, urea compounds, organic compounds, cyclic organic phosphorus compounds, etc.). It can be suitably used as a single solvent or as a mixed solvent.
  • non-protonic polar organic compounds for example, amide compounds, lactam compounds, urea compounds, organic compounds, cyclic organic phosphorus compounds, etc.
  • examples of the amide compound include N, N-dimethylformamide, N, N-dimethylaminoformamide, N, N-dimethylacetamide , N, N-diethylacetamide, N, N-dipropylacetamide, N, N-dimethylbenzoic acid amide and the like.
  • lactam compound examples include hydrprolactam, N-methylol lactam, N-ethylcaprolactam, N-isopropylcap latatum, N-soptylcaprolactam, N-n-propyl lactam, N-alkyl prolactams such as normal butylcaprolactam and N-cyclohexylcaprolactam, N-methyl-1-pyrrolidone (NMP), N-ethyl-12-pyrrolidone, N-isopropyl-12-pyrrolidone Ridone, N-isobutyl-2-pyrrolidone, N-norma Norepropynole 2-N-pyrrolin, N-Noremalbutyl-2-pyrrolidone, N-cyclohexyl 2-pyrrolidone, N-methyl-3-methyl 2-pyrrolidone, N-ethyl 3- Methyl-2-pyrrolidone, N-methyl-34,5—tri
  • urea compound examples include tetramethylurea, N, N'-dimethylethyleneurea, N, N'-dimethylpropyleneurea and the like.
  • organic compound examples include dimethyl sulfoxide, ethynolenolesoxide, diphenylsnolephone, 1-methinole-one-oxo-snoleforane, 1-ethinole-one-oxo-snole-holan, and one-feno-nore-one. 1 oxosulfolane and the like.
  • Examples of the cyclic organic phosphorus compound include 1-methyl-11-oxophosphorane, 1-n-propyl-11-oxophosphorane, and 1-phenyl-1-oxophosphorane.
  • Each of these various non-protonic polar organic compounds can be used alone or in combination of two or more, and further mixed with other solvent components which do not interfere with the object of the present invention. They can be mixed and used as the non-protonic organic solvent.
  • N-alkylcaprolactam and N-alkylpyrrolidone preferred are N-alkylcaprolactam and N-alkylpyrrolidone, and particularly preferred is N-methyl_2-pyrrolidone.
  • the first component is lithium hydrosulfide
  • the second component is elementary sulfur, elemental phosphorus, elemental silicon, elemental boron, elemental germanium.
  • One or more compounds selected from the group consisting of luma, phosphorus sulfide, silicon sulfide, boron sulfide, and germanium sulfide are an organic solvent, preferably the above-mentioned non-protonic organic solvent, more preferably Is to react in N-methyl-2-pyrrolidone.
  • a lithium compound exhibiting basicity can be further present as a third component.
  • the lithium compound is not particularly limited, but preferably does not produce water as a by-product during the reaction.
  • Particularly preferred compounds include n-butyllithium, sec-butynolelithium, tert-putinolelithium, hexyllithium, and lithium alkoxide. Each of these compounds can be used alone or in combination of two or more.
  • one or more selected from the group consisting of lithium phosphate, lithium borate, lithium silicate and lithium sulfate are further used. Can be present. By the presence of these compounds, the crystallization can be further facilitated.
  • a polymer component can be further present at the time of the reaction in the methods of the first and second inventions.
  • the processability of the obtained lithium ion conductive solid electrolyte can be improved. If the processability can be improved, it becomes easier to form the solid electrolyte into a thin sheet. As a result, the electrode spacing of the applied battery can be reduced, so that a lithium-ion secondary battery with further increased energy density can be configured.
  • thermoplastic resin Either a thermoplastic resin or a thermosetting resin can be used as the polymer component.
  • Preferred polymer components are, for example, polyethylene, polypropylene Len, polytetrafluoroethylene (PTFE), polyvinylidene polyfluoride (PVDF).
  • Tetrafluoroethylene-hexafluoroethylene copolymer Tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP) , Tetrafluoroethylene-perfluoroalkylbutylether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride monochloro trifluoroethylene copolymer, ethylene-tetra Fluoroethylene copolymer (ETFE resin), Polyethylene trifluoroethylene (PCTFE), Vinylidene fluoride-pentafluoropropylene copolymer, Pyrene-tetrafluoronoreloethylene copolymer, Ethylene-chloro trif Fluoroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropyl N-tetrafluoro
  • reaction raw materials can be appropriately adjusted and supplied according to the composition of the desired type of solid electrolyte.
  • the general formula L i 2 S- P 2 S 5 , L i 2 S- S i S 2, L i 2 S- B 2 S 3, L i 2 S - Ge S 2 ho represented ones are in Kaka L i 2 S- P 2 S 5 - S i S 2, L i 2 S- P 2 S 5 - , and the like as represented by G e S 2 and the like.
  • lithium sulfide / 5 phosphorus pentasulfide (molar ratio) is preferably 0.2 to 10 and more preferably 0.2 to 10.
  • the reaction is carried out in an organic solvent, but the reaction can be advanced by applying a conventional method.
  • a lithium component, a sulfur component, and one or more components selected from the group consisting of phosphorus, silicon, boron, and germanium are described.
  • the reaction can be carried out at a temperature of 50 ° C. to 300 ° C., preferably 80 ° C. to 250 ° C., more preferably 100 ° C. to 200 ° C., with stirring. it can. If the temperature is lower than 80 ° C, the reaction rate becomes extremely slow, so that the time required for the synthesis becomes longer and the process becomes uneconomical. On the other hand, when the temperature exceeds 300 ° C., the boiling point of the solvent may be exceeded.
  • the reaction pressure may be normal pressure or pressurization.
  • the reaction time may be generally 0.1 to 10 hours, preferably 1 to 5 hours.
  • a precipitant is added to the reaction product, and the reaction solvent is distilled off to precipitate a solid.After washing and drying, a solid electrolyte having a uniform particle size can be obtained. A powder can be obtained.
  • the solid electrolyte of the present invention thus obtained has a high ionic conductivity of 1 to 1 O-ss Z cm at room temperature, a low ionic conductivity, and an oxidative decomposition voltage of 3 V or more. It exhibits excellent electrochemical properties of preferably 5 V or more '. Further, by changing the composition of the raw materials, lithium ion conductive solid electrolytes having various compositions as described above can be obtained. When the solid electrolyte obtained by the method of the present invention is incorporated in an all-solid-state lithium secondary battery, there is no particular limitation, and the solid electrolyte can be applied to known embodiments.
  • sealing plate for example, sealing plate, insulating packing, electrode plate, positive electrode plate,
  • the solid electrolyte can be formed into a sheet and used in a battery case.
  • any of coin type, button type, sheet type, stacked type, cylindrical type, flat type, square type, large type used for electric vehicles, and the like can be applied.
  • the solid electrolyte obtained according to the method of the present invention can be used for all types of portable information terminals, portable electronic devices, small household electric power storage devices, motorcycles using a motor as a power source, electric vehicles, hybrid electric vehicles, and the like. It can be suitably used for a solid-type lithium ion secondary battery, but is not particularly limited to these uses.
  • the obtained solid was subjected to thermal analysis, X-ray diffraction, and ionic conductivity measurement.
  • thermal analysis a crystallization peak was observed at 210 ° C.
  • X-ray diffraction showed no peak of lithium sulfide, and it was confirmed that lithium sulfide had completely disappeared by the reaction.
  • the ionic conductivity at room temperature was measured. As a result, it was 4 ⁇ 10 4 S / cm after heat treatment at 8 ⁇ 10—s sZcrn 230 ° C. before heat treatment. From this, it was found that the obtained solid can be effectively used as a lithium ion conductive solid electrolyte.
  • N-methyl-2-pyrrolidone solution in which 3.942 g of lithium hydrosulfide was dissolved 2.10 g, diline pentasulfide 5.47 g was added and mixed well with stirring.
  • the reaction was heated to a liquid temperature of 150 ° C. and reacted at 150 ° C. for 3 hours. The reaction became a green homogeneous solution.
  • 1.6 mol / 1 of n-butyllithium hexane solution (63 ml) was added, and the temperature was raised to 150 ° C again.
  • An all-solid-state lithium secondary battery was manufactured using the pellet-shaped solid electrolyte obtained in Example 1. Lithium cobaltate was used for the positive electrode, and indium metal was used for the negative electrode. When a constant current charge / discharge measurement was performed at a current density of 50 AZ cm 2 , charge / discharge was possible. In addition, the charge / discharge efficiency was 100%, indicating that excellent cycle characteristics were exhibited. Industrial potential
  • lithium ion conductivity can be efficiently achieved at a relatively low temperature of 300 ° C or lower using equipment such as a reaction tank commonly used in ordinary chemical plants without using special equipment.
  • the solid electrolyte can be mass-produced.
  • the resulting solid electrolyte the particle size of the composition is homogeneous powder becomes a uniform excellent solid electrolyte material, the ionic conductivity at room temperature 1 0 5 to 1 0 over 3 S / cm, oxidative decomposition voltage Is 3 V or more, preferably 5 V or more. Therefore, the solid electrolyte obtained by the method of the present invention can be suitably used as a high-performance solid electrolyte for various products such as an all-solid lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

A method for producing a lithium ion conductive solid electrolyte, characterized in that it comprises reacting a lithium component, a sulfur component, and one or more components selected from the group consisting of phosphorus, silicon, boron and germanium in an organic solvent, preferably an aprotic organic solvent, more preferably N-methyl-2-pyroridone; and a totally solid type secondary cell using a solid electrolyte produced by the method. The method allows the production of a lithium ion conductive solid electrolyte without the use of a special apparatus, at a relatively low temperature, with ease, on a large scale, and thus, is commercially advantageous.

Description

明 細 書 リチウムイオン導電性固体電解質の製造方法及びそれを用いた全固体型 二次電池 技術分野  Description Method for producing lithium ion conductive solid electrolyte and all-solid-state secondary battery using the same
本発明は、 リチウムイオン導電性固体電解質の製造方法及びそれを用 いた全固体型二次電池に関する。 さらに詳しくは、 本発明は、 有機溶媒 中の反応を適用することにより、 比較的低温で、 特殊設備を必要とせず に、 リチウムイオン.導電性固体電解質を工業的に有利に製造し得る方法 及びそれを用いた全固体型二次電池に関するものである。 背景技術  The present invention relates to a method for producing a lithium ion conductive solid electrolyte and an all-solid-state secondary battery using the same. More specifically, the present invention provides a method for industrially advantageously producing a lithium ion conductive solid electrolyte by applying a reaction in an organic solvent at a relatively low temperature without requiring special equipment, and The present invention relates to an all-solid-state secondary battery using the same. Background art
近年、 携帯情報端末、 携帯電子機器、 家庭用小型電力貯蔵装置、 モー ターを電力源とする自動二輪車、 ハイプリ ッ ド電気自動車等の主電源と して利用されているリチウム電池の需要が増大している。 リチウム電池 は、 高エネルギー密度を得ることができる電池として各方面で盛んに研 究が行われているが、 現在リチウム電池に用いられている固体電解質の 多くは可燃性の有機物が含まれていることから、 電池に異常が生じた際 には発火する等の恐れがあり、 電池の安全性の確保が望まれている。 更 に、衝撃や振動に対する信頼性の向上、エネルギー密度のより一層の向上 及び地球環境に対するクリーンで高効率なエネルギー変換システムへの 強い社会的要請から、 不燃性の固体材料で構成される固体電解質を用い た全固体型リチウム二次 池の開発が望まれている。  In recent years, the demand for lithium batteries used as main power sources for personal digital assistants, portable electronic devices, small household power storage devices, motorcycles using electric motors, and hybrid electric vehicles has increased. ing. Lithium batteries are being actively studied in various fields as batteries that can obtain high energy density, but most solid electrolytes currently used in lithium batteries contain flammable organic substances. Therefore, if an abnormality occurs in the battery, there is a risk of fire, etc., and it is desired to ensure the safety of the battery. In addition, solid electrolytes composed of non-combustible solid materials have been developed due to the strong social demands for improved reliability against shock and vibration, higher energy density, and a clean and highly efficient energy conversion system for the global environment. The development of an all-solid-state lithium secondary pond using methane is desired.
リチウムニ次電池に用いる硫化物系固体電解質の製造方法としては、 従来、 原料である硫化リチウムと硫化リン等を、 るつぼ內で乾燥窒素又 はアルゴン雰囲気中で 1 0 0 o °cで加熱溶融し、 急冷することにより固 体電解質ガラスを製造する方法 (特開 2 0 0 0— 1 7 3 5 8 8号公報、 特開平 9 - 2 8 3 1 5 6号公報) が知られている。 しかし、 これらの方 法では、 乾燥窒素又はアルゴン雰囲気下で 1 0 0 0 °Cという高温が必要 であり、 特殊設備が必要となるため、 量産化に適していない。 As a method for producing a sulfide-based solid electrolyte used in a lithium secondary battery, conventionally, lithium sulfide and phosphorus sulfide, which are raw materials, are dried in a crucible using dry nitrogen or nitrogen. Is a method for producing a solid electrolyte glass by heating and melting at 100 ° C. in an argon atmosphere and quenching (Japanese Unexamined Patent Application Publication No. 2000-175358, Japanese Unexamined Patent Application Publication No. No. 8 3156) is known. However, these methods require a high temperature of 100 ° C. in a dry nitrogen or argon atmosphere and require special equipment, which is not suitable for mass production.
また、 炭素コーティングされたシリカチューブに原料を入れて真空封 入し、 7 0 0 °C、 8'時間で反応させる方法 (特開平 1 1— 1 7 6 2 3 6 号公報) も知られている。 しかし、 この方法も、 真空下で高温反応を行 うための特殊設備が必要となるため、 量産化に適していない。  A method is also known in which a raw material is put in a carbon-coated silica tube, vacuum-sealed, and reacted at 700 ° C. for 8 hours (Japanese Patent Laid-Open No. 11-176326). I have. However, this method is also unsuitable for mass production because it requires special equipment for performing high-temperature reactions under vacuum.
さらに、 原料である硫化リチウムと硫化リン等を、 室温で遊星型ボー ノレミルを用いてメカ二カルミリングすることにより固体電解質ガラスを 製造する方法 (特開.平 1 1一 1 3 4 9 3 7号公報) も知られている。 し かし、 この方法は、 強度なエネルギーを必要とする遊星型ボールミルと いう特殊設備が必要である点、 及び反応に 2 0時間以上要する点におい て工業的に有利な方法ではない。  Furthermore, a method for producing solid electrolyte glass by mechanically milling raw materials such as lithium sulfide and phosphorus sulfide at room temperature using a planetary-type Borno mill (Japanese Patent Application Laid-Open No. Is also known. However, this method is not industrially advantageous in that it requires special equipment such as a planetary ball mill that requires strong energy, and that it requires more than 20 hours for the reaction.
本発明は、 上記の問題点に鑑みてなされたものであり、 特殊設備を必 要とせずに、 比較的低い反応温度で容易にリチウムイオン導電性固体電 解質を量産化することができる、 工業的に有利な方法を提供することを 目的とする。 またそれを用いた全固体型リチウムニ次電池を提供するこ とを目的とする。 発明の開示  The present invention has been made in view of the above problems, and can easily mass-produce a lithium-ion conductive solid electrolyte at a relatively low reaction temperature without requiring special equipment. The purpose is to provide an industrially advantageous method. Another object is to provide an all-solid-state lithium secondary battery using the same. Disclosure of the invention
本発明者は、 前記目的を達成するために鋭意研究を重ねた結果、 有機 溶媒反応を適用することにより、 その目的を達成し得ることを見出し、 本発明を完成するに至った。  The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that the object can be achieved by applying an organic solvent reaction, thereby completing the present invention.
すなわち、 本発明は、 ( 1 ) リチウム成分、 硫黄成分、 及び単体リ ン、 単体ケィ素、 単体ホウ 素及び単体ゲルマエ'ゥムからなる群より選ばれる 1種又は 2種以上の成 分を有機溶媒中で反応させることを特徴とするリチウムイオン導電性固 体電解質の製造方法、 That is, the present invention (1) Reacting a lithium component, a sulfur component, and one or more components selected from the group consisting of a simple phosphorus, a simple silicon, a single boron, and a simple germane in an organic solvent. A method for producing a lithium ion conductive solid electrolyte,
(2) 前記有機溶媒が非プロ トン性有機溶媒である前記 ( 1 ) に記載の リチウムイオン導電性固体電解質の製造方法、  (2) The method for producing a lithium ion conductive solid electrolyte according to (1), wherein the organic solvent is a non-protonic organic solvent.
( 3) 前記非プロ ト'ン性有機溶媒が N—メチルー 2—ピロリ ドンである 前記 (2) に記載のリチウムイオン導電性固体電解質の製造方法。  (3) The method for producing a lithium ion conductive solid electrolyte according to (2), wherein the non-protonic organic solvent is N-methyl-2-pyrrolidone.
(4) 前記リチウム成分が硫化リチウムである前記 ( 1 ) 〜 ( 3) のい ずれかに記載のリチウムイオン導電性固体電解質の製造方法、  (4) The method for producing a lithium ion conductive solid electrolyte according to any one of the above (1) to (3), wherein the lithium component is lithium sulfide.
( 5) 前記の硫黄成分、 及び単体リ ン、 単体ケィ素、 単体ホウ素及ぴ単 体ゲルマニウムからなる群より選ばれる 1種又は 2種以上の成分が、 硫 ィ匕リ ン、 硫化ケィ素、 硫化ホウ素および硫化ゲルマニウムからなる群よ り選ばれる 1種又は 2種以上の化合物である前記 ( 1 ) 〜 (4) のいず れかに記載のリチヴムイオン導電性固体電解質の製造方法、  (5) The sulfur component and one or two or more components selected from the group consisting of a simple phosphorus, a simple silicon, a simple boron and a simple germanium are selected from the group consisting of sulfur nitride, silicon sulfide, The method for producing a lithium ion conductive solid electrolyte according to any one of the above (1) to (4), which is one or more compounds selected from the group consisting of boron sulfide and germanium sulfide;
( 6 ) 第 1成分として水硫化リチウム、 及び第 2成分として単体硫黄、 単体リ ン、 単体ケィ素、 単体ホウ素、 単体ゲルマニウム、 硫化リ ン、 硫 化ケィ素、 硫化ホウ素及び硫化ゲルマニウムからなる群より選ばれる 1 種又は 2種以上の化合物を有機溶媒中で反応させることを特徴とするリ チゥムイオン導電性固体電解質の製造方法、  (6) A group consisting of lithium hydrosulfide as the first component, and elemental sulfur, phosphorus, silicon, boron, germanium, phosphorus sulfide, silicon sulfide, boron sulfide, and germanium sulfide as the second component A method for producing a lithium ion conductive solid electrolyte, characterized by reacting one or more compounds selected from the group consisting of:
( 7) 前記反応時に、 更に第 3成分と して塩基性を示すリチウム化合物 を存在させる前記 (6 ) に記載のリチウムイオン導電性固体電解質の製 造方法、  (7) The method for producing a lithium ion conductive solid electrolyte according to (6), wherein a lithium compound showing basicity is further present as a third component during the reaction.
( 8) 前記塩基性を示すリチウム化合物が、 n—プチルリチウム、 s e c—プチルリチウム、 t e r t—ブチルリチウム、 へキシルリチウム、 リチウムアルコキシドからなる群より選ばれる 1種又は 2種以上の化合 物である前記 ( 7) に記載のリチウムイオン導電性固体電解質の製造方 法、 (8) The lithium compound having basicity is one or more compounds selected from the group consisting of n-butyllithium, sec-butyllithium, tert-butyllithium, hexyllithium, and lithium alkoxide. The method for producing a lithium ion conductive solid electrolyte according to the above (7), wherein
(9) 前記反応時に、 更にリン酸リチウム、 ほう酸リチウム、 けい酸リ チウム及び硫酸リチウムからなる群より選ばれる 1種又は 2種以上の化 合物を存在させる前記 (1) 〜 (8) のいずれかに記載のリチウムィォ ン導電性固体電解質の製造方法、  (9) The method according to (1) to (8), wherein one or two or more compounds selected from the group consisting of lithium phosphate, lithium borate, lithium silicate and lithium sulfate are further present during the reaction. A method for producing a lithium ion conductive solid electrolyte according to any of the above,
( 1 0)前記反応時に、更にポリマー成分を存在させる前記( 1 )〜( 9 ) のいずれかに記載のリチウムイオン導電性固体電解質の製造方法、  (10) The method for producing a lithium ion conductive solid electrolyte according to any one of (1) to (9), wherein a polymer component is further present during the reaction.
( 1 1 ) 前記リチウムイオン導電性固体電解質の分解電圧が、 少なく と も 3 V以上である前記 ( 1 ) 〜 ( 1 0) のいずれかに記載のリチウムィ オン導電性固体電解質の製造方法、  (11) The method for producing a lithium ion conductive solid electrolyte according to any one of (1) to (10), wherein the decomposition voltage of the lithium ion conductive solid electrolyte is at least 3 V or more.
( 1 2) 前記 ( 1 ) '〜 ( 1 1 ) のいずれかに記載のリチウムイオン導電 性固体電解質を使用することを特徴とする全固体型二次電池、  (12) An all-solid-state secondary battery characterized by using the lithium ion conductive solid electrolyte according to any one of (1) ′ to (11).
を提供するものである。 発明を実施するための最良の形態 Is provided. BEST MODE FOR CARRYING OUT THE INVENTION
本発明のリチウムイオン導電性固体電解質の製造方法において、 第 1 発明の方法では、 原料としてリチウム成分、 硫黄成分、 及び単体リン、 単体ケィ素、 単体ホウ素及び単体ゲルマニウムからなる群より選ばれる 1種又は 2種以上の'成分が用いられ、 これらの成分を有機溶媒中で反応 させることにより、 リチウムイオン導電性固体電解質を製造する。  In the method for producing a lithium ion conductive solid electrolyte according to the present invention, in the method according to the first invention, the raw material is a lithium component, a sulfur component, and one selected from the group consisting of a simple phosphorus, a simple silicon, a simple boron, and a simple germanium. Alternatively, two or more types of 'components are used, and these components are reacted in an organic solvent to produce a lithium ion conductive solid electrolyte.
第 2発明の方法では、 第 1成分と して水硫化リチウム、 及び第 2成分 と して単体硫黄、 単体リン、 単体ケィ素、 単体ホウ素、 単体ゲルマニウ ム、 硫化リン、 硫化ケィ素、 硫化ホウ素及び硫化ゲルマニウムからなる 群より選ばれる 1種又は 2種以上の化合物を有機溶媒中で反応させるこ とにより、 リチウムイオン導電性固体電解質を製造する。 本発明方法の原料として用いるリチウム成分に特に制限はないが、 高 純度品を使用することが好ましい。 特に好ましいものは、 硫化リチウム 及び水硫化リチウムである。 In the method of the second invention, lithium hydrosulfide is used as the first component, and elemental sulfur, phosphorus, silicon, boron, germanium, phosphorus sulfide, silicon sulfide, silicon sulfide, and boron sulfide are used as the second component. A lithium ion conductive solid electrolyte is produced by reacting one or two or more compounds selected from the group consisting of manganese and germanium sulfide in an organic solvent. The lithium component used as a raw material in the method of the present invention is not particularly limited, but it is preferable to use a high-purity product. Particularly preferred are lithium sulfide and lithium hydrosulfide.
硫化リチウムの製造法と しては、 以下の (a ) 〜 ( f ) の方法が知ら れているが、 これら.の方法の中では、 特に (a ) 又は (b) の方法が好 ましい。  As methods for producing lithium sulfide, the following methods (a) to (f) are known, and among these methods, the method (a) or (b) is particularly preferable. .
( a ) 非プロ トン性有機溶媒中で水酸化リチウムと硫化水素とを 0〜 1 5 0°Cで反応させて水硫化リチウムを生成し、 次いでこの反応液を 1 5 0〜 2 00 °Cで脱硫化水素化する方法 (特開平 7— 3 303 1 2号公 報) 。 ( a ) Lithium hydroxide and hydrogen sulfide are reacted at 0 to 150 ° C in a non-protonic organic solvent to produce lithium hydrosulfide, and then the reaction solution is heated to 150 to 200 ° C. (Japanese Unexamined Patent Publication No. Hei 7-330312).
(b) 非プロ トン性有機溶媒中で水酸化リチウムと硫化水素とを 1 5 0〜 20 0°Cで反応させ、 直接硫化リチウムを生成する方法 (特開平 7 (b) A method for producing lithium sulfide directly by reacting lithium hydroxide and hydrogen sulfide in a non-protonic organic solvent at 150 to 200 ° C.
- 3 30 3 1 2号公報) 。 -3 30 3 1 2 publication).
( c ) 水酸化リチウムとガス状硫黄源を 1 3 0〜44 5 °Cの温度で反 応させる方法 (特開平 9 - 2 8 3 1 56号公報) 。  (c) A method of reacting lithium hydroxide with a gaseous sulfur source at a temperature of 130 to 445 ° C (Japanese Patent Application Laid-Open No. 9-283156).
( d) 不活性ガス雰囲気あるいは減圧下で硫酸リチウムをカーボンブ ラックゃ黒鉛粉末で加熱還元する方法。  (d) A method of heating and reducing lithium sulfate with carbon black and graphite powder in an inert gas atmosphere or under reduced pressure.
( e ) 硫化水素リチウムエタノール化物を水素気流中で加熱分解する 方法。  (e) A method of thermally decomposing lithium hydrogen sulfide ethanolate in a stream of hydrogen.
( f )金属リチウムを、硫化水素や硫黄蒸気と常圧〜加圧下で加熱し、 直接反応させる方法。  (f) A method in which metallic lithium is heated and reacted with hydrogen sulfide or sulfur vapor at normal pressure or under pressure to directly react.
水硫化リチウムの製造法としては、 非プロ トン性有機溶媒中で水酸化 リチウムに硫化水素を吹き込んで反応させる方法 (特開平 7— 3 3 0 3 1 2号公報) を採用することができる。 具体的には、 N—メチルー 2— ピロ リ ドン中で、水酸化リチウム /硫化水素 (モル比) を 1. 8 0〜3. 0 0、好ましくは 1.9 5〜 3.00の範囲で供給し、温度 0〜 1 50 °C、 好ましく は 1 2 0〜1 4 0 °Cで反応させることができる。 As a method for producing lithium hydrosulfide, a method in which hydrogen sulfide is blown into lithium hydroxide in a non-protonic organic solvent to cause a reaction (Japanese Patent Application Laid-Open No. 7-33012) can be employed. Specifically, in N-methyl-2-pyrrolidone, lithium hydroxide / hydrogen sulfide (molar ratio) is supplied in the range of 1.8 to 3.00, preferably 1.95 to 3.00, 0 to 150 ° C, Preferably, the reaction can be carried out at 120 to 140 ° C.
本発明方法の原料である硫黄成分、 及び単体リン、 単体ケィ素、 単体 ホウ素及び単体ゲルマニウムからなる群より選ばれる 1種又は 2種以上 の成分は、 それぞれ別個の成分として用いてもよいし、 硫化リン、 硫化 ケィ素、 硫化ホウ素及ぴ硫化ゲルマニウムからなる群より選ばれる 1種 又は 2種以上の化合物として用いてもよい。 これらの別個の成分又は化 合物は、 高純度である限り市販の製品を使用することができる。  The sulfur component as a raw material of the method of the present invention, and one or more components selected from the group consisting of simple phosphorus, simple silicon, single boron, and simple germanium may be used as separate components, respectively. It may be used as one or more compounds selected from the group consisting of phosphorus sulfide, silicon sulfide, boron sulfide and germanium sulfide. Commercial products can be used for these separate components or compounds as long as they are highly pure.
本発明方法においては、 上記原料を有機溶媒中で反応させることが特 徴である。 有機溶媒と しては特に制限はないが、 非プロ トン性有機溶媒 が特に好ましい。  The method of the present invention is characterized in that the raw materials are reacted in an organic solvent. The organic solvent is not particularly limited, but a non-protonic organic solvent is particularly preferred.
非プロ トン性有機溶媒としては、 一般に、 非プロ トン性の極性有機化 合物 (たとえば、 アミ ド化合物, ラクタム化合物, 尿素化合物, 有機ィ ォゥ化合物, 環式有機リ ン化合物等) を、 単独溶媒と して、 または、 混 合溶媒と して、 好適に使用することができる。  Non-protonic organic solvents generally include non-protonic polar organic compounds (for example, amide compounds, lactam compounds, urea compounds, organic compounds, cyclic organic phosphorus compounds, etc.). It can be suitably used as a single solvent or as a mixed solvent.
これらの非プロ トン性の極性有機化合物のうち、 前記アミ ド化合物と しては、 たとえば、 N , N—ジメチルホルムアミ ド, N, N—ジェチノレ ホルムアミ ド, N , N—ジメチルァセトアミ ド, N, N—ジェチルァセ トアミ ド, N, N—ジプロピルァセトアミ ド, N, N—ジメチル安息香 酸アミ ド等を挙げることができる。  Among these non-protonic polar organic compounds, examples of the amide compound include N, N-dimethylformamide, N, N-dimethylaminoformamide, N, N-dimethylacetamide , N, N-diethylacetamide, N, N-dipropylacetamide, N, N-dimethylbenzoic acid amide and the like.
前記ラクタム化合物としては、 たとえば、 力プロラタタム, N—メチ ノレ力プロラクタム, N—ェチルカプロラクタム, N—イソプロピルカプ 口ラタタム, N—ィ.ソプチルカプロラクタム, N—ノルマルプロピル力 プロラクタム, N—ノルマルブチルカプロラクタム, N—シクロへキシ ルカプロラクタム等の N—アルキル力プロラクタム類, N—メチル一 2 一ピロリ ドン (N M P ) , N—ェチル一 2—ピロリ ドン, N—イソプロ ピル一 2—ピロ リ ドン, N—イソブチルー 2 _ピロリ ドン, N—ノルマ ノレプロピノレー 2—ピロ リ ン, N—ノノレマルブチルー 2—ピロ リ ドン, N—シク口へキシルー 2—ピロ リ ドン, N—メチルー 3—メチル 2—ピ ロ リ ドン, N—ェチルー 3—メチル一 2—ピロ リ ドン, N—メチルー 3 4 , 5 — ト リ メチルー 2—ピロ リ ドン, N—メチル一 2—ピぺリ ドン, N—ェチルー 2—ピぺリ ドン, N—イソプロピル一 2—ピペリ ドン, N ーメチノレー 6—メチルー 2—ピペリ ドン, N—メチノレー 3—ェチノレー 2 ーピペリ ドン等を挙げることができる。 Examples of the lactam compound include hydrprolactam, N-methylol lactam, N-ethylcaprolactam, N-isopropylcap latatum, N-soptylcaprolactam, N-n-propyl lactam, N-alkyl prolactams such as normal butylcaprolactam and N-cyclohexylcaprolactam, N-methyl-1-pyrrolidone (NMP), N-ethyl-12-pyrrolidone, N-isopropyl-12-pyrrolidone Ridone, N-isobutyl-2-pyrrolidone, N-norma Norepropynole 2-N-pyrrolin, N-Noremalbutyl-2-pyrrolidone, N-cyclohexyl 2-pyrrolidone, N-methyl-3-methyl 2-pyrrolidone, N-ethyl 3- Methyl-2-pyrrolidone, N-methyl-34,5—trimethyl-2-pyrrolidone, N-methyl-1-pyridone, N-ethyl-2-pyridone, N-isopropyl Examples thereof include 2-piperidone, N-methinolae 6-methyl-2-piperidone, N-methinolei 3-ethinolay 2-piperidone, and the like.
前記尿素化合物と しては、 たとえば、 テトラメチル尿素, N , N '—ジ メチルエチレン尿素, N , N '—ジメチルプロ ピレン尿素等を挙げること ができる。 .  Examples of the urea compound include tetramethylurea, N, N'-dimethylethyleneurea, N, N'-dimethylpropyleneurea and the like. .
前記有機ィォゥ化合物と しては、 たとえば、 ジメチルスルホキシド, ジェチノレスノレホキシド, ジフエニルスノレホン, 1—メチノレ一 1 一ォキソ スノレホラン, 1ーェチノレー 1 ーォキソスノレホラン, 1 一フエ二ノレ一 1 一 ォキソスルホラン等を挙げることができる。  Examples of the organic compound include dimethyl sulfoxide, ethynolenolesoxide, diphenylsnolephone, 1-methinole-one-oxo-snoleforane, 1-ethinole-one-oxo-snole-holan, and one-feno-nore-one. 1 oxosulfolane and the like.
また、 前記環式有機リ ン化合物としては、 たとえば、 1—メチル一 1 一ォキソホスホラン, 1 一ノルマルプロピル一 1 一ォキソホスホラン, 1 一フエ二ルー 1 一ォキソホスホラン等を挙げることができる。  Examples of the cyclic organic phosphorus compound include 1-methyl-11-oxophosphorane, 1-n-propyl-11-oxophosphorane, and 1-phenyl-1-oxophosphorane.
これら各種の非プロ トン性極性有機化合物は、 それぞれ 1種単独で使 用することもできるし、 又は 2種以上を混合して、 さらには、 本発明の 目的に支障のない他の溶媒成分と混合して、 前記非プロ トン性有機溶媒 と して使用することができる。  Each of these various non-protonic polar organic compounds can be used alone or in combination of two or more, and further mixed with other solvent components which do not interfere with the object of the present invention. They can be mixed and used as the non-protonic organic solvent.
前記各種の非プロ トン性有機溶媒の中でも、 好ましいのは N—アルキ ルカプロラクタム及び N—アルキルピロリ ドンであり、 特に好ましいの は N—メチル _ 2—ピロリ ドンである。  Among the above various non-protonic organic solvents, preferred are N-alkylcaprolactam and N-alkylpyrrolidone, and particularly preferred is N-methyl_2-pyrrolidone.
本発明の好ましい実施形態は、 第 1成分と して水硫化リチウム、 及び 第 2成分として単体硫黄、 単体リ ン、 単体ケィ素、 単体ホウ素、 単体ゲ ルマ-ゥム、 硫化リン、 硫化ケィ素、 硫化ホウ素及び硫化ゲルマニウム からなる群より選ばれる 1種又は 2種以上の化合物を有機溶媒、 好まし くは上記の非プロ トン性有機溶媒、 更に好ましくは N—メチルー 2—ピ ロリ ドン中で反応させることである。 In a preferred embodiment of the present invention, the first component is lithium hydrosulfide, and the second component is elementary sulfur, elemental phosphorus, elemental silicon, elemental boron, elemental germanium. One or more compounds selected from the group consisting of luma, phosphorus sulfide, silicon sulfide, boron sulfide, and germanium sulfide are an organic solvent, preferably the above-mentioned non-protonic organic solvent, more preferably Is to react in N-methyl-2-pyrrolidone.
本発明においては、 前記の第 1発明及び第 2発明の方法における反応 時に、 更に第 3成分として塩基性を示すリチウム化合物を存在させるこ とができる。 リチウム化合物と しては特に制限はないが、 反応時に水が 副生しないものが好ましい。 特に好ましい化合物としては、 n _ブチル リチウム、 s e c—ブチノレリチウム、 t e r t —プチノレリチウム、 へキ シルリチウム、 リチウムアルコキシドを挙げることができる。 これらの 化合物はそれぞれ 1種単独で使用することもできるし、 又は 2種以上を 混合して使用することもできる。  In the present invention, at the time of the reaction in the methods of the first and second inventions, a lithium compound exhibiting basicity can be further present as a third component. The lithium compound is not particularly limited, but preferably does not produce water as a by-product during the reaction. Particularly preferred compounds include n-butyllithium, sec-butynolelithium, tert-putinolelithium, hexyllithium, and lithium alkoxide. Each of these compounds can be used alone or in combination of two or more.
本発明においては、 前記の第 1発明及び第 2発明の方法における反応 時に、 更にリ ン酸リ.チウム、 ほう酸リチウム、 けい酸リチウム及ぴ硫酸 リチウムからなる群より選ばれる 1種又は 2種以上の化合物を存在させ ることができる。 これらの化合物を存在させることにより、 非晶化をよ り一層容易に進めることができる。  In the present invention, at the time of the reaction in the method of the first and second inventions, one or more selected from the group consisting of lithium phosphate, lithium borate, lithium silicate and lithium sulfate are further used. Can be present. By the presence of these compounds, the crystallization can be further facilitated.
本発明においては、 前記の第 1発明及び第 2発明の方法における反応 時に、 更にポリマー成分を存在させることができる。 ポリマー成分を存 在させることにより、 得られるリチウムイオン導電性固体電解質の加工 性を向上させることができる。 加工性が向上できれば、 固体電解質を薄 いシートに成形することが容易となる。 その結果、 適用する電池の電極 間隔を狭くできるため、 エネルギー密度をより一層高めたリチウムィォ ン二次電池を構成することができる。  In the present invention, a polymer component can be further present at the time of the reaction in the methods of the first and second inventions. By the presence of the polymer component, the processability of the obtained lithium ion conductive solid electrolyte can be improved. If the processability can be improved, it becomes easier to form the solid electrolyte into a thin sheet. As a result, the electrode spacing of the applied battery can be reduced, so that a lithium-ion secondary battery with further increased energy density can be configured.
ポリマー成分としては、 熱可塑性樹脂、 熱硬化性樹脂のいずれも利用 できる。 好ましいポリマー成分は、 例えば、 ポリエチレン、 ポリプロピ レン、ポリテ トラフルォロエチレン(PTFE)、ポリ ッ化ビユリデン(PVDF) . テ トラフルォ口エチレン一へキサフルォロエチレン共重合体、 テ トラフ ノレォロエチレン一へキサフルォロプロピレン共重合体 (FEP) 、 テトラフ ルォロェチレン—パーフルォロアルキルビュルエーテル共重合体(PFA)、 フッ化ビニリデン一へキサフルォロプロピレン共重合体、 フッ化ビニリ デシ一クロ口 トリフルォロエチレン共重合体、 エチレンーテトラフルォ ロェチレン共重合体 (ETFE 樹脂) 、 ポリ クロ口 トリ フルォロエチレン (PCTFE) 、 フッ化ビニリデン一ペンタフルォロプロピレン共重合体、 プ 口ピレン一テトラフノレオロェチレン共重合体、 エチレン一クロロ トリフ ルォロエチレン共重合体 (ECTFE) 、 フッ化ビニリデン一へキサフルォロ プロピレンーテ トラフルォロエチレン共重合体、 フッ化ビニリデンーパ 一フルォロメチルビニルエーテル一テ トラフルォロエチレン共重合体、 エチレン一アク リル酸共重合体または前記材料の (Na+) イオン架橋体、 エチレン一メタクリル酸共重合体または前記材料の(Na+)イオン架橋体、 エチレン一アクリル酸メチル共重合体または前記材料の (Na+) イオン架 橋体、 エチレンーメタクリル酸メチル共重合体または前記材料の (Na+) ィオン架橋体を挙げることができる。 この中でも特に好ましいのはポリ フッ化ビニリデン (PVDF) 、 ポリテトラフルォロエチレン (PTFE) であ る。 Either a thermoplastic resin or a thermosetting resin can be used as the polymer component. Preferred polymer components are, for example, polyethylene, polypropylene Len, polytetrafluoroethylene (PTFE), polyvinylidene polyfluoride (PVDF). Tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP) , Tetrafluoroethylene-perfluoroalkylbutylether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride monochloro trifluoroethylene copolymer, ethylene-tetra Fluoroethylene copolymer (ETFE resin), Polyethylene trifluoroethylene (PCTFE), Vinylidene fluoride-pentafluoropropylene copolymer, Pyrene-tetrafluoronoreloethylene copolymer, Ethylene-chloro trif Fluoroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropyl N-tetrafluoroethylene copolymer, vinylidene fluoride monofluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer or (Na + ) ion cross-linked product of the above-mentioned material, ethylene mono- Methacrylic acid copolymer or (Na +) ion crosslinked product of the above material, ethylene-methyl acrylate copolymer or (Na +) ion bridge of the above material, ethylene-methyl methacrylate copolymer or (Na + + ) Zion crosslinked product. Among them, particularly preferred are polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE).
上記の反応原料は、 目的とするタイプの固体電解質の組成に応じて適 宜調整し、 供給することができる。 リチウムイオン伝導性固体電解質の タイプと しては、 一般式 L i 2S— P2S5、 L i 2S— S i S2、 L i 2S— B2S3、 L i 2S -G.e S2で表されるもののほカヽ L i 2S— P2S5— S i S2、 L i 2S— P2S5— G e S2等で表されるものなどがある。 従って、 たとえば、 一般式 L i 2S— P2S5で表される固体電解質を製造する場合 は、 硫化リチウム / 5硫化 2 リン (モル比) を 0. 2〜1 0、 好ましく は 0 . 5〜 7、 更に好ましくは 1〜 5の範囲で供給、 混合し、 反応させ ることができる。 The above-mentioned reaction raw materials can be appropriately adjusted and supplied according to the composition of the desired type of solid electrolyte. Is a type of lithium ion conductive solid electrolyte, the general formula L i 2 S- P 2 S 5 , L i 2 S- S i S 2, L i 2 S- B 2 S 3, L i 2 S - Ge S 2 ho represented ones are in Kaka L i 2 S- P 2 S 5 - S i S 2, L i 2 S- P 2 S 5 - , and the like as represented by G e S 2 and the like. Therefore, for example, when manufacturing a solid electrolyte represented by the general formula Li 2 S—P 2 S 5 , lithium sulfide / 5 phosphorus pentasulfide (molar ratio) is preferably 0.2 to 10 and more preferably 0.2 to 10. Can be supplied, mixed and reacted in the range of 0.5 to 7, more preferably 1 to 5.
反応は、 有機溶媒中で行うが、 常法を適用することにより反応を進行 させることができる。 たとえば、 第 1発明の方法においては、 有機溶媒 中で、 リチウム成分、 硫黄成分、 及び単体リン、 単体ケィ素、 単体ホウ 素及ぴ単体ゲルマニウムからなる群より選ばれる 1種又は 2種以上の成 分を、 攪拌しながら 5 0 °C〜 3 0 0 °C、 好ましくは 8 0 °C〜 2 5 0 °C、 更に好ましくは 1 0 0 °C〜 2 0 0 °Cの温度で行うことができる。 8 0 °C 未満であると反応速度が著しく遅ぐなるため、 合成にかかる時間が長く なりプロセス上不経済となる。 また、 3 0 0 °Cを超えると溶媒の沸点を 超える場合があり、 .合成に圧力容器の使用が必要となり不経済となる。 反応圧力は、 常圧でも加圧してもよい。 反応時間は、 通常 0 . 1〜 1 0時間、 好ましくは 1〜 5時間で行うことができる。  The reaction is carried out in an organic solvent, but the reaction can be advanced by applying a conventional method. For example, in the method of the first invention, in an organic solvent, a lithium component, a sulfur component, and one or more components selected from the group consisting of phosphorus, silicon, boron, and germanium are described. The reaction can be carried out at a temperature of 50 ° C. to 300 ° C., preferably 80 ° C. to 250 ° C., more preferably 100 ° C. to 200 ° C., with stirring. it can. If the temperature is lower than 80 ° C, the reaction rate becomes extremely slow, so that the time required for the synthesis becomes longer and the process becomes uneconomical. On the other hand, when the temperature exceeds 300 ° C., the boiling point of the solvent may be exceeded. The reaction pressure may be normal pressure or pressurization. The reaction time may be generally 0.1 to 10 hours, preferably 1 to 5 hours.
第 2発明の方法に'おいても、 上記と同様の温度、 圧力、 反応時間を適 用することができる。  In the method of the second invention, the same temperature, pressure and reaction time as described above can be applied.
反応が終了した後、 反応生成物に沈殿剤を投入したり、 また反応溶媒 を留去したり して、 固形物を析出させた後、 洗浄、 乾燥すれば、 粒径の 均一な固体電解質の粉末を得ることができる。  After the reaction is completed, a precipitant is added to the reaction product, and the reaction solvent is distilled off to precipitate a solid.After washing and drying, a solid electrolyte having a uniform particle size can be obtained. A powder can be obtained.
このようにして得られる本発明の固体電解質は、 常温でのイオン伝導 度が 1 〜 1 O - s s Z c mという高いイオン伝導性と、 低い電子伝 導性、 及び酸化分解電圧が 3 V以上、 好ましくは 5 V以上という優れた 電気化学特性を示す'。 また、 原料の組成を変えることにより、 上記のよ うな各種組成のリチウムイオン伝導性固体電解質を得ることができる。 本発明の方法によ り得られた固体電解質を全固体型リチウムニ次電 池に組み込む場合は、 特に制限はなく、 公知の態様に適用して使用する ことができる。 たとえば、 封口板、 絶縁パッキング、. 極板群、 正極板、 正極リード、 負極板、 負極リード、 固体電解質、 絶縁リ ングにより構成 する二次電池において、 固体電解質をシート状に成形して、 電池ケース 内に組み込んで使用することができる。 . The solid electrolyte of the present invention thus obtained has a high ionic conductivity of 1 to 1 O-ss Z cm at room temperature, a low ionic conductivity, and an oxidative decomposition voltage of 3 V or more. It exhibits excellent electrochemical properties of preferably 5 V or more '. Further, by changing the composition of the raw materials, lithium ion conductive solid electrolytes having various compositions as described above can be obtained. When the solid electrolyte obtained by the method of the present invention is incorporated in an all-solid-state lithium secondary battery, there is no particular limitation, and the solid electrolyte can be applied to known embodiments. For example, sealing plate, insulating packing, electrode plate, positive electrode plate, In a secondary battery composed of a positive electrode lead, a negative electrode plate, a negative electrode lead, a solid electrolyte, and an insulating ring, the solid electrolyte can be formed into a sheet and used in a battery case. .
二次電池の形状としては、 コイン型、 ボタン型、 シート型、 積層型、 円筒型、 偏平型、 角型、 電気自動車等に用いる大型のものなどいずれに も適用できる。  As the shape of the secondary battery, any of coin type, button type, sheet type, stacked type, cylindrical type, flat type, square type, large type used for electric vehicles, and the like can be applied.
本発明の方法によ.り得られた固体電解質は、 携帯情報端末、 携帯電子 機器、 家庭用小型電力貯蔵装置、 モーターを電力源とする自動二輪車、 電気自動車、 ハイプリ ッ ド電気自動車等の全固体型リチウムイオン二次 電池に好適に用いる'ことができるが、 特にこれらの用途に限定されるも のではなレ、。 実施例  The solid electrolyte obtained according to the method of the present invention can be used for all types of portable information terminals, portable electronic devices, small household electric power storage devices, motorcycles using a motor as a power source, electric vehicles, hybrid electric vehicles, and the like. It can be suitably used for a solid-type lithium ion secondary battery, but is not particularly limited to these uses. Example
次に、 本発明を実施例によりさらに詳細に説明するが、 本発明は、 こ れらの実施例によってなんら限定されるものではない。  Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(硫化リチウムの製造)  (Production of lithium sulfide)
撹拌翼付きの 1 0 リ ツ トルオートクレーブに N—メチルー 2—ピロ リ ドン (NMP ) 3 3 2 6. 4 g ( 3 3 . 6モル) と水酸化リチウム 2 8 7 . 4 g ( 1 2モル) を仕込み、 3 0 0 r p m、 1 3 0 °Cに昇温した。 昇温後、 液中に硫化水素を 3 リ ッ トル 分の供給速度で 2時間吹き込ん だ結果' (硫黄ノ L i (モル比) = 0. 9 9 6 ) 、 高純度の水硫化リチウ ム (L i S H) が得られた。 続いて、 この反応液を窒素気流下 (2 0 0 c cノ分) で昇温し、 反応した硫化水素の一部を脱硫化水素化した。 昇 温するにつれ、 上記硫化水素と水酸化リチウムの反応により副生した水 が蒸発を始めたが、この水はコンデンサにより凝縮し系外に抜き出した。 水を系外に留去するとともに反応液の温度は上昇するが、 1 8 0 °Cに達 した時点で昇温を停止し、 一定温度に保持した。 この結果、 約 5 0〜8 0分間で、 脱硫化水素反応が終了し、 高純度の硫化リチウム (L i 2S) が固体として溶媒中に析出した。 冷却後、 減圧濾過、 NMP 3回洗浄、 さらにアセ トン 2回洗浄して乾燥した結果、 純度 99. 8 %以上の白色 粉末状の硫化リチウムが得られた (収量: 9 2%) 。 N-methyl-2-pyrrolidone (NMP) 332.6.4 g (33.6 mol) and lithium hydroxide 287.4 g (12 mol) were added to a 10-liter autoclave equipped with stirring blades. ), And the temperature was raised to 300 rpm and 130 ° C. After the temperature was raised, hydrogen sulfide was blown into the liquid at a supply rate of 3 liters for 2 hours' (sulfur ratio Li (molar ratio) = 0.996). Li SH) was obtained. Subsequently, the temperature of the reaction solution was raised under a nitrogen stream (200 cc), and a part of the reacted hydrogen sulfide was dehydrosulfided. As the temperature rose, water produced as a by-product of the reaction between the hydrogen sulfide and lithium hydroxide began to evaporate. This water was condensed by the condenser and extracted out of the system. As the water distills out of the system, the temperature of the reaction solution rises, but reaches 180 ° C. At this point, the heating was stopped and the temperature was kept constant. As a result, the hydrogen sulfide reaction was completed in about 50 to 80 minutes, and high-purity lithium sulfide (Li 2 S) was precipitated as a solid in the solvent. After cooling, the mixture was filtered under reduced pressure, washed three times with NMP, further washed twice with acetone, and dried to obtain white powdery lithium sulfide having a purity of 99.8% or more (yield: 92%).
実施例 1 Example 1
撹拌機付き 3 00m lセパラブルフラスコに、 窒素雰囲気下にて、 硫 ィ匕リチウム 4. 526 g (0. 0 98モル) 、 五硫化二リン (アルドリ ツチ社製) 5. 474 g (0. 0 25モル) 、 N—メチル _ 2 _ピロリ ドン (三菱化学株式会社製) 200m l を入れ、 よく撹拌混合した。 反 応物を加熱して、 液温が 1 5 0°Cになるまで昇温し、 1 5 0°Cにて 3時 間反応させた。 反応物は緑色の均一溶液となった。 反応物 66 gをシリ ンジで抜き出し、 窒素を充満したシュレンク瓶に移した。 この溶液にト ルェン 1 50 m 1 を注入し、 固形物を析出させた。 固形分をトルエンで 繰り返し洗浄した後、 1 50°Cにて 5時間真空乾燥し、 灰色粉末の固体 In a 300 ml separable flask with a stirrer, under a nitrogen atmosphere, 4.526 g (0.098 mol) of lithium sulfate and 5.474 g of diphosphorus pentasulfide (manufactured by Aldrich) were added. 0 25 mol) and 200 ml of N-methyl_2-pyrrolidone (manufactured by Mitsubishi Chemical Corporation) were added and mixed well with stirring. The reaction product was heated and heated until the liquid temperature reached 150 ° C, and the reaction was performed at 150 ° C for 3 hours. The reaction became a green homogeneous solution. 66 g of the reaction product was withdrawn with a syringe, and transferred to a Schlenk bottle filled with nitrogen. 150 ml of toluene was injected into this solution to precipitate a solid. After repeatedly washing the solid content with toluene, vacuum-dry at 150 ° C for 5 hours.
3. 0 5 gを得た。 . 3.05 g were obtained. .
得られた固体の熱分析、 X線回析、 イオン伝導度測定を行った。 熱分 析においては、 2 1 0°Cに結晶化ピークが見られた。 また、 X線回折よ り硫化リチウムのピークは見られず、 硫化リチウムは反応により完全に 消失していることが確認できた。 また、 常温でのイオン伝導度を測定し た結果、 熱処理前で 8 X 1 0— s sZc rn 23 0 °C熱処理後で 4 X 1 0 _4 S/c mであった。 このことから、 得られた固体は、 リチウムイオン 導電性固体電解質として有効に利用できることが判つた。 The obtained solid was subjected to thermal analysis, X-ray diffraction, and ionic conductivity measurement. In the thermal analysis, a crystallization peak was observed at 210 ° C. X-ray diffraction showed no peak of lithium sulfide, and it was confirmed that lithium sulfide had completely disappeared by the reaction. The ionic conductivity at room temperature was measured. As a result, it was 4 × 10 4 S / cm after heat treatment at 8 × 10—s sZcrn 230 ° C. before heat treatment. From this, it was found that the obtained solid can be effectively used as a lithium ion conductive solid electrolyte.
実施例 2 Example 2
実施例 1において硫化リチウムを 3. 2 54 g (0. 0 7 1モル) 、 五硫化二リ ンを 6. 746 g ( 0. 0 30モル) にした以外は同じ方法 で製造した。 結果、 灰色粉末 2. 9 8 gを得た。 熱分析においては、 2 1 0°Cに結晶化ピークが見られた。 又、 X線回折より硫化リチウムのピ ークは見られず、 硫化リチウムは反応により完全に消失していることが 確認できた。 また、 .常温でのイオン伝導度を測定した結果、 熱処理前で 7. 9 X 1 0— 5 S/c m、 2 3 0 °C熱処理後で 3 X 1 0— 4 S/c mであ つた。 このことから、 得られた固体は、 リチウムイオン導電性固体電解 質として有効に利用できることが判った。 Same procedure as in Example 1 except that lithium sulfide was changed to 3.254 g (0.071 mol) and diphosphorus pentasulfide to 6.746 g (0.030 mol). Manufactured by. As a result, 2.98 g of a gray powder was obtained. In the thermal analysis, a crystallization peak was observed at 210 ° C. X-ray diffraction did not show any peak of lithium sulfide, and it was confirmed that lithium sulfide had completely disappeared by the reaction. Also,. A result of measuring the ionic conductivity at room temperature, before the heat treatment 7. 9 X 1 0- 5 S / cm, 2 3 0 ° C after heat treatment at 3 X 1 0- 4 S / cm der ivy. This indicates that the obtained solid can be effectively used as a lithium ion conductive solid electrolyte.
実施例 3 Example 3
実施例 1 において硫化リチウムを 2. 3 6 6 g (0. 0 5 1モル) 、 五硫化二リ ンを 7. 6 3 3 g (0. 0 3 4モル) にした以外は同じ方法 で製造した。 結果、 灰色粉末 2. 8 8 gを得た。 熱分析においては、 2 Produced in the same manner as in Example 1, except that lithium sulfide was changed to 2.366 g (0.051 mol) and diphosphorus pentasulfide to 7.633 g (0.034 mol). did. As a result, 2.88 g of a gray powder was obtained. In thermal analysis, 2
1 0°Cに結晶化ピークが見られた。 又、 X線回折より硫化リチウムのピ ークは見られず、 硫化リチウムは反応により完全に消失していることが 確認できた。又、常温でのイオン伝導度を測定した結果、熱処理前で 7.A crystallization peak was observed at 10 ° C. X-ray diffraction did not show any peak of lithium sulfide, and it was confirmed that lithium sulfide had completely disappeared by the reaction. Also, as a result of measuring the ionic conductivity at room temperature, it was confirmed that the ionic conductivity was 7.
9 X 1 0— 5 SZ c m、 2 3 0 °C熱処理後で 1. 6 X 1 0 _4 S/ c mであ つた。 このことから、 得られた固体は、 リチウムイオン導電性固体電解 質として有効に利用できることが判った。 9 X 1 0- 5 SZ cm, 2 3 0 ° C after the heat treatment 1. 6 X 1 0 _4 S / cm der ivy. This indicates that the obtained solid can be effectively used as a lithium ion conductive solid electrolyte.
実施例 4 Example 4
撹拌機付き 3 0 Om 1セパラブルフラスコに、 窒素雰囲気下にて、 水 硫化リチウム 3. 94 2 gが溶解した N—メチルー 2—ピロリ ドン溶液 2 1 0 g、 五硫化ニリン 5. 4 7 4 gを入れ、 よく撹拌混合した。 反応 物を加熱して、 液温が 1 5 0°Cになるまで昇温し、 1 5 0°Cにて 3時間 反応させた。 反応物は緑色の均一溶液となった。 反応物を 5 0 °Cまで冷 却した後、 1. 6モル / 1の n—プチルリチウムへキサン溶液 6 3 m 1 を加え、再度 1 5 0°Cに昇温した。反応物 8 0 gをシリンジで抜き出し、 窒素を充満したシュレンク瓶に移した。 この溶液にトルエン 1 5 0 m l を注入し、 固形物を析出させた。 固形分をトルエンで繰り返し洗浄した 後、 1 50°Cにて 5時間寘空乾燥し、灰色粉末の固体 3. 1 2 gを得た。 得られた固体の熱分析、 イオン伝導度測定を行った。 熱分析において は、 204°Cに結晶化ピークが見られた。 また、 常温でのイオン伝導度 を測定した結果、 熱処理前で 6 X 1 0— 5 SZc m、 2 3 0°C熱処理後で 2 X 1 0— 4 S/c mであった。 このことから、 得られた固体は、 リチウ ムイオン導電性固体電解質として有効に利用できることが判つた。 In a 30 Om 1 separable flask equipped with a stirrer, under nitrogen atmosphere, N-methyl-2-pyrrolidone solution in which 3.942 g of lithium hydrosulfide was dissolved 2.10 g, diline pentasulfide 5.47 g was added and mixed well with stirring. The reaction was heated to a liquid temperature of 150 ° C. and reacted at 150 ° C. for 3 hours. The reaction became a green homogeneous solution. After the reaction product was cooled to 50 ° C, 1.6 mol / 1 of n-butyllithium hexane solution (63 ml) was added, and the temperature was raised to 150 ° C again. 80 g of the reaction product was withdrawn with a syringe, and transferred to a Schlenk bottle filled with nitrogen. 150 ml of toluene was added to this solution. And solids were precipitated. After repeatedly washing the solid content with toluene, it was air-dried at 150 ° C. for 5 hours to give 3.12 g of a gray powdery solid. The obtained solid was subjected to thermal analysis and ionic conductivity measurement. Thermal analysis showed a crystallization peak at 204 ° C. As a result of measurement of ion conductivity at room temperature was 2 X 1 0- 4 S / cm after 6 X 1 0- 5 SZc m, 2 3 0 ° C heat treatment before heat treatment. From this, it was found that the obtained solid can be effectively used as a lithium ion conductive solid electrolyte.
実施例 5 Example 5
実施例 1で得られたペレツ ト状の固体電解質を用いて全固体型リチウ ムニ次電池を作製した。 正極にコバルト酸リチウム、 負極にはインジゥ ム金属を使用した。 電流密度 5 0 AZ c m2で、 定電流充放電測定を 行ったところ、 充放電が可能であった。 また、 充放電効率も 1 00%で あり、 優れたサイクル特性を示すことが判った。 産業上の利用の可能性 An all-solid-state lithium secondary battery was manufactured using the pellet-shaped solid electrolyte obtained in Example 1. Lithium cobaltate was used for the positive electrode, and indium metal was used for the negative electrode. When a constant current charge / discharge measurement was performed at a current density of 50 AZ cm 2 , charge / discharge was possible. In addition, the charge / discharge efficiency was 100%, indicating that excellent cycle characteristics were exhibited. Industrial potential
本発明の方法によれば、 特殊設備を使用せずに、 通常の化学プラント で汎用する反応槽などの機器を用いて、 3 00 °C以下という比較的低温 で、 効率的にリチウムイオン導電性固体電解質を量産化することができ る。  According to the method of the present invention, lithium ion conductivity can be efficiently achieved at a relatively low temperature of 300 ° C or lower using equipment such as a reaction tank commonly used in ordinary chemical plants without using special equipment. The solid electrolyte can be mass-produced.
また、 得られる固体電解質は、 その組成が均質で粉末の粒径も均一な 優れた固体電解質材料となり、 常温でのイオン伝導度は 1 0-5〜 1 0ー 3 S/ c m, 酸化分解電圧が 3 V以上、 好ましくは 5 V以上の高性能固 体電解質とすることができる。 従って、 本発明の方法により得られる固 体電解質は、 全固体型リチウム二次電池等の種々の製品に高性能固体電 解質として好適に用いることができる。 Further, the resulting solid electrolyte, the particle size of the composition is homogeneous powder becomes a uniform excellent solid electrolyte material, the ionic conductivity at room temperature 1 0 5 to 1 0 over 3 S / cm, oxidative decomposition voltage Is 3 V or more, preferably 5 V or more. Therefore, the solid electrolyte obtained by the method of the present invention can be suitably used as a high-performance solid electrolyte for various products such as an all-solid lithium secondary battery.

Claims

請求の範囲 The scope of the claims
1 . リチウム成分、 硫黄成分、 及び単体リン、 単体ケィ素、 単体ホ ゥ素及び単体ゲルマニウムからなる群より選ばれる 1種又は 2種以上の 成分を有機溶媒中で反応させることを特徴とするリチウムイオン導電性 固体電解質の製造方法。 1. Lithium, characterized by reacting a lithium component, a sulfur component, and one or more components selected from the group consisting of simple phosphorus, simple silicon, simple boron and single germanium in an organic solvent. A method for producing an ion-conductive solid electrolyte.
2 . 前記有機溶媒が非プロ トン性有機溶媒である請求項 1に記載の リチウムイオン導電性固体電解質の製造方法。  2. The method for producing a lithium ion conductive solid electrolyte according to claim 1, wherein the organic solvent is a non-protonic organic solvent.
3 . 前記非プロ トン性有機溶媒が N—メチル _ 2 —ピロリ ドンであ る請求項 2に記載のリチウムイオン導電性固体電解質の製造方法。  3. The method for producing a lithium ion conductive solid electrolyte according to claim 2, wherein the non-protonic organic solvent is N-methyl_2-pyrrolidone.
4 . 前記リチウム成分が硫化リチウムである請求項 1〜 3のいずれ かに記載のリチウムイオン導電性固体電解質の製造方法。  4. The method for producing a lithium ion conductive solid electrolyte according to any one of claims 1 to 3, wherein the lithium component is lithium sulfide.
5 . 前記の硫黄成分、 及び単体リン、 単体ケィ素、 単体ホウ素及び 単体ゲルマニウムからなる群より選ばれる 1種又は 2種以上の成分が、 硫化リ ン、 硫化ケィ素、 硫化ホウ素および硫化ゲルマニウムからなる群 より選ばれる 1種又は 2種以上の化合物である請求項 1〜4のいずれか に記載のリチウムイオン導電性固体電解質の製造方法。  5. The sulfur component and one or two or more components selected from the group consisting of elemental phosphorus, elemental silicon, elemental boron, and elemental germanium are selected from the group consisting of phosphorus sulfide, silicon sulfide, boron sulfide, and germanium sulfide. The method for producing a lithium ion conductive solid electrolyte according to any one of claims 1 to 4, wherein the method is one or two or more compounds selected from the group consisting of:
6 . 第 1成分として水硫化リチウム、及び第 2成分として単体硫黄、 単体.リン、 単体ケィ素、 単体ホウ素、 単体ゲルマニウム、 硫化リン、 硫 化ケィ素、 硫化ホウ素及ぴ硫化ゲルマニウムからなる群より選ばれる 1 種又は 2種以上の化合物を有機溶媒中で反応させることを特徴とするリ チウムイオン導電性固体電解質の製造方法。  6. Lithium hydrosulfide as the first component, elemental sulfur and elemental as the second component, from the group consisting of phosphorus, elemental silicon, elemental boron, elemental germanium, phosphorus sulfide, silicon sulfide, boron sulfide and germanium sulfide A method for producing a lithium ion conductive solid electrolyte, comprising reacting one or more selected compounds in an organic solvent.
7 . 前記反応時に、 更に第 3成分として塩基性を示すリチウム化合 物を存在させる請求項 6に記載のリチウムイオン導電性固体電解質の製 造方法。  7. The method for producing a lithium ion conductive solid electrolyte according to claim 6, wherein a lithium compound exhibiting basicity is further present as the third component during the reaction.
8 . 前記塩基性を示すリチウム化合物が、 n —プチルリチウム、 s e c—ブチノレリチウム、 t e r t —プチノレリチウム、へキシルリチウム、 リチウムアルコキシドからなる群より選ばれる 1種又は 2種以上の化合 物である請求項 7に記載のリチウムイオン導電性固体電解質の製造方法 ( 8. The lithium compound showing basicity is n-butyllithium, s 8. The method for producing a lithium ion conductive solid electrolyte according to claim 7, wherein the compound is one or more compounds selected from the group consisting of ec-butynolelithium, tert-ptynolelithium, hexyllithium, and lithium alkoxide. (
9 . 前記反応時に、 更にリン酸リチウム、 ほう酸リチウム、 けい酸 リチウム及び硫酸リ.チウムからなる群より選ばれる 1種又は 2種以上の 化合物を存在させる請求項 1〜 8のいずれかに記載のリチウムイオン導 電性固体電解質の製造方法。 9. The method according to any one of claims 1 to 8, wherein at the time of the reaction, one or more compounds selected from the group consisting of lithium phosphate, lithium borate, lithium silicate and lithium sulfate are further present. A method for producing a lithium ion conductive solid electrolyte.
1 0 . 前記反応時に、 更にポリマー成分を存在させる請求項 1〜 9 のいずれかに記載のリチウムイオン導電性固体電解質の製造方法。  10. The method for producing a lithium ion conductive solid electrolyte according to any one of claims 1 to 9, wherein a polymer component is further present during the reaction.
1 1 . 前記リチウムイオン導電性固体電解質の分解電圧が、 少なく とも 3 V以上である請求項 1〜 1 0のいずれかに記載のリチウムイオン 導電性固体電解質の製造方法。  11. The method for producing a lithium ion conductive solid electrolyte according to any one of claims 1 to 10, wherein a decomposition voltage of the lithium ion conductive solid electrolyte is at least 3 V or more.
1 2 . 請求項 l .〜 l 1のいずれかに記載のリチウムイオン導電性固 体電解質を使用することを特徴とする全固体型二次電池。  12. An all-solid-state secondary battery using the lithium-ion conductive solid electrolyte according to any one of claims l to l1.
PCT/JP2004/005248 2003-04-15 2004-04-13 Method for producing lithium ion conductive solid electrolyte and totally solid type secondary using solid electrolyte produced thereby WO2004093099A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005505406A JP4621139B2 (en) 2003-04-15 2004-04-13 Method for producing lithium ion conductive solid electrolyte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003109841 2003-04-15
JP2003-109841 2003-04-15

Publications (1)

Publication Number Publication Date
WO2004093099A1 true WO2004093099A1 (en) 2004-10-28

Family

ID=33295932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005248 WO2004093099A1 (en) 2003-04-15 2004-04-13 Method for producing lithium ion conductive solid electrolyte and totally solid type secondary using solid electrolyte produced thereby

Country Status (3)

Country Link
JP (1) JP4621139B2 (en)
TW (1) TW200428691A (en)
WO (1) WO2004093099A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103285A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd All solid bipolar battery
WO2009047977A1 (en) 2007-10-11 2009-04-16 Idemitsu Kosan Co., Ltd. Method for producing lithium ion conductive solid electrolyte
WO2010116732A1 (en) * 2009-04-10 2010-10-14 出光興産株式会社 Glass comprising solid electrolyte particles and lithium battery
JP2010241643A (en) * 2009-04-07 2010-10-28 Toyota Motor Corp Method for producing lithium ion conductive sulfide-based crystallized glass and method for producing formed body of lithium ion conductive sulfide-based crystallized glass
JP2012041207A (en) * 2010-08-13 2012-03-01 Idemitsu Kosan Co Ltd Solid electrolyte glass and method of producing the same
JP2012212652A (en) * 2011-03-18 2012-11-01 Toyota Motor Corp Slurry, method for forming solid electrolyte layer, method for forming electrode active material layer, and method for manufacturing all-solid battery
WO2012176266A1 (en) * 2011-06-20 2012-12-27 トヨタ自動車株式会社 Solid electrolyte microparticle production method
WO2013069243A1 (en) 2011-11-07 2013-05-16 出光興産株式会社 Solid electrolyte
WO2014002483A1 (en) 2012-06-29 2014-01-03 出光興産株式会社 Positive electrode mix
US20140084224A1 (en) * 2011-05-27 2014-03-27 Chemetall Gmbh Process for preparing lithium sulfide
WO2014073197A1 (en) 2012-11-06 2014-05-15 出光興産株式会社 Solid electrolyte
JP2014179265A (en) * 2013-03-15 2014-09-25 Toyota Motor Corp Method for manufacturing sulfide solid electrolytic material
JP2014220051A (en) * 2013-05-02 2014-11-20 出光興産株式会社 Process of manufacturing sulfide solid electrolyte
WO2014192309A1 (en) 2013-05-31 2014-12-04 出光興産株式会社 Production method of solid electrolyte
KR20150039573A (en) 2013-10-02 2015-04-10 삼성전자주식회사 Sulfide-based solid electrolytes, preparing methods thereof, and solid state batteries containing the same
JP2015232965A (en) * 2014-06-10 2015-12-24 三星電子株式会社Samsung Electronics Co.,Ltd. Sulfide solid electrolyte, and method of producing sulfide solid electrolyte
JP2016006798A (en) * 2015-10-07 2016-01-14 出光興産株式会社 Sulfide-based solid electrolyte for lithium ion secondary battery
US9793574B2 (en) 2013-04-24 2017-10-17 Idemitsu Kosan Co., Ltd. Method for producing solid electrolyte
US10020535B2 (en) 2015-12-01 2018-07-10 Idemitsu Kosan Co., Ltd. Method for producing sulfide solid electrolyte
US20220123359A1 (en) * 2019-01-25 2022-04-21 Solid Power, Inc. Solid electrolyte material synthesis method
KR20220089899A (en) 2020-12-22 2022-06-29 울산대학교 산학협력단 Method for preparing solid electrolyte and solid electrolyte prepared therefrom

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101506045B1 (en) 2007-05-11 2015-03-25 나믹스 코포레이션 Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245828A (en) * 1996-03-13 1997-09-19 Matsushita Electric Ind Co Ltd Lithium ion conductive solid electrolyte and totally solid lithium secondary battery
JPH09283156A (en) * 1996-04-16 1997-10-31 Matsushita Electric Ind Co Ltd Lithium ion conductive solid electrolyte and its manufacture
JPH11144523A (en) * 1997-11-06 1999-05-28 Nippon Muki Kagaku Kogyo Kk Method for synthesizing lithium-ion-conductive solid electrolyte
JP2002109955A (en) * 2000-10-02 2002-04-12 Osaka Prefecture Sulfide crystallized glass, solid electrolyte, and fully solid secondary cell
JP2002329524A (en) * 2001-02-28 2002-11-15 Sumitomo Electric Ind Ltd Inorganic solid electrolyte and lithium battery member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245828A (en) * 1996-03-13 1997-09-19 Matsushita Electric Ind Co Ltd Lithium ion conductive solid electrolyte and totally solid lithium secondary battery
JPH09283156A (en) * 1996-04-16 1997-10-31 Matsushita Electric Ind Co Ltd Lithium ion conductive solid electrolyte and its manufacture
JPH11144523A (en) * 1997-11-06 1999-05-28 Nippon Muki Kagaku Kogyo Kk Method for synthesizing lithium-ion-conductive solid electrolyte
JP2002109955A (en) * 2000-10-02 2002-04-12 Osaka Prefecture Sulfide crystallized glass, solid electrolyte, and fully solid secondary cell
JP2002329524A (en) * 2001-02-28 2002-11-15 Sumitomo Electric Ind Ltd Inorganic solid electrolyte and lithium battery member

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103285A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd All solid bipolar battery
JP2013232418A (en) * 2007-10-11 2013-11-14 Idemitsu Kosan Co Ltd Method for producing lithium ion conductive solid electrolyte
JP5270563B2 (en) * 2007-10-11 2013-08-21 出光興産株式会社 Method for producing lithium ion conductive solid electrolyte
WO2009047977A1 (en) 2007-10-11 2009-04-16 Idemitsu Kosan Co., Ltd. Method for producing lithium ion conductive solid electrolyte
US8518585B2 (en) 2007-10-11 2013-08-27 Idemitsu Kosan Co., Ltd. Method for producing lithium ion conductive solid electrolyte
JP2010241643A (en) * 2009-04-07 2010-10-28 Toyota Motor Corp Method for producing lithium ion conductive sulfide-based crystallized glass and method for producing formed body of lithium ion conductive sulfide-based crystallized glass
CN102388420A (en) * 2009-04-10 2012-03-21 出光兴产株式会社 Glass containing solid electrolyte particles and lithium battery
WO2010116732A1 (en) * 2009-04-10 2010-10-14 出光興産株式会社 Glass comprising solid electrolyte particles and lithium battery
US9051201B2 (en) 2009-04-10 2015-06-09 Idemitsu Kosan Co., Ltd. Glass comprising solid electrolyte particles and lithium battery
KR101532469B1 (en) * 2009-04-10 2015-06-29 이데미쓰 고산 가부시키가이샤 Glass comprising solid electrolyte particles and lithium battery
JP2010250981A (en) * 2009-04-10 2010-11-04 Idemitsu Kosan Co Ltd Glass comprising solid electrolyte particles and lithium battery
US11075404B2 (en) 2009-04-10 2021-07-27 Idemitsu Kosan Co., Ltd. Glass comprising solid electrolyte particles and lithium battery
US11431024B2 (en) 2009-04-10 2022-08-30 Idemitsu Kosan Co., Ltd. Glass comprising solid electrolyte particles and lithium battery
JP2012041207A (en) * 2010-08-13 2012-03-01 Idemitsu Kosan Co Ltd Solid electrolyte glass and method of producing the same
JP2012212652A (en) * 2011-03-18 2012-11-01 Toyota Motor Corp Slurry, method for forming solid electrolyte layer, method for forming electrode active material layer, and method for manufacturing all-solid battery
US9236158B2 (en) 2011-03-18 2016-01-12 Toyota Jidosha Kabushiki Kaisha Slurry, production method for solid electrolyte layer, production method for electrode active material layer, and production method for all-solid-state battery
US20140084224A1 (en) * 2011-05-27 2014-03-27 Chemetall Gmbh Process for preparing lithium sulfide
US9017582B2 (en) * 2011-05-27 2015-04-28 Chemetall Gmbh Process for preparing lithium sulfide
WO2012176266A1 (en) * 2011-06-20 2012-12-27 トヨタ自動車株式会社 Solid electrolyte microparticle production method
JPWO2012176266A1 (en) * 2011-06-20 2015-02-23 トヨタ自動車株式会社 Method for producing solid electrolyte fine particles
CN103597546A (en) * 2011-06-20 2014-02-19 丰田自动车株式会社 Solid electrolyte microparticle production method
WO2013069243A1 (en) 2011-11-07 2013-05-16 出光興産株式会社 Solid electrolyte
EP3361545A1 (en) 2011-11-07 2018-08-15 Idemitsu Kosan Co., Ltd. Solid electrolyte
WO2014002483A1 (en) 2012-06-29 2014-01-03 出光興産株式会社 Positive electrode mix
WO2014073197A1 (en) 2012-11-06 2014-05-15 出光興産株式会社 Solid electrolyte
JP2014179265A (en) * 2013-03-15 2014-09-25 Toyota Motor Corp Method for manufacturing sulfide solid electrolytic material
US9793574B2 (en) 2013-04-24 2017-10-17 Idemitsu Kosan Co., Ltd. Method for producing solid electrolyte
JP2014220051A (en) * 2013-05-02 2014-11-20 出光興産株式会社 Process of manufacturing sulfide solid electrolyte
US10116002B2 (en) 2013-05-31 2018-10-30 Idemitsu Kosan Co., Ltd. Production method of solid electrolyte
US20190036160A1 (en) * 2013-05-31 2019-01-31 Idemitsu Kosan Co., Ltd. Production method of solid electrolyte
WO2014192309A1 (en) 2013-05-31 2014-12-04 出光興産株式会社 Production method of solid electrolyte
KR20150039573A (en) 2013-10-02 2015-04-10 삼성전자주식회사 Sulfide-based solid electrolytes, preparing methods thereof, and solid state batteries containing the same
JP2015232965A (en) * 2014-06-10 2015-12-24 三星電子株式会社Samsung Electronics Co.,Ltd. Sulfide solid electrolyte, and method of producing sulfide solid electrolyte
JP2016006798A (en) * 2015-10-07 2016-01-14 出光興産株式会社 Sulfide-based solid electrolyte for lithium ion secondary battery
US10020535B2 (en) 2015-12-01 2018-07-10 Idemitsu Kosan Co., Ltd. Method for producing sulfide solid electrolyte
US20220123359A1 (en) * 2019-01-25 2022-04-21 Solid Power, Inc. Solid electrolyte material synthesis method
KR20220089899A (en) 2020-12-22 2022-06-29 울산대학교 산학협력단 Method for preparing solid electrolyte and solid electrolyte prepared therefrom

Also Published As

Publication number Publication date
JP4621139B2 (en) 2011-01-26
TW200428691A (en) 2004-12-16
JPWO2004093099A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
WO2004093099A1 (en) Method for producing lithium ion conductive solid electrolyte and totally solid type secondary using solid electrolyte produced thereby
JP4873479B2 (en) High performance all solid lithium battery
JP5311169B2 (en) Lithium ion conductive solid electrolyte, method for producing the same, solid electrolyte for lithium secondary battery using the solid electrolyte, and all solid lithium battery using the solid electrolyte for secondary battery
JP5303428B2 (en) Lithium sulfide and method for producing the same
US9859562B2 (en) Positive electrode mix
JP5368711B2 (en) Solid electrolyte membrane, positive electrode membrane, or negative electrode membrane for all solid lithium secondary battery, method for producing the same, and all solid lithium secondary battery
JP5414143B2 (en) Method for producing sulfide solid electrolyte
EP2919313A1 (en) Solid electrolyte
JP2010033732A (en) Coated solid electrolyte for lithium battery, and all-solid secondary battery using the same
WO2005078740A1 (en) Lithium ion conducting sulfide based crystallized glass and method for production thereof
JP2008103146A (en) Solid electrolyte and secondary battery using it
JP2008103204A (en) Cathode active material and secondary battery using it
JP2008103280A (en) Positive electrode plied timber and all-solid secondary battery using it
JP2006277997A (en) High-performance all-solid state lithium battery
JP2008027581A (en) Electrode material, electrode, and all-solid secondary battery
JP2007273214A (en) Solid electrolyte, its manufacturing method and all solid secondary battery
JP2008103288A (en) All-solid battery
JP2008103282A (en) Electrode material, and solid secondary battery using it
JP2010186744A (en) Method of manufacturing lithium ion conductive solid electrolyte
JP2008103203A (en) Solid electrolyte and all-solid secondary battery using it
JPWO2009038037A1 (en) Heat-resistant positive electrode mixture and all-solid lithium secondary battery using the same
JP5096722B2 (en) Battery material manufacturing method and all solid state battery
JP2014192093A (en) Negative electrode mixture
JP2014093261A (en) Solid electrolyte
JP2008103281A (en) Solid electrolyte and solid secondary battery using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005505406

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase