JPWO2009038037A1 - Heat-resistant positive electrode mixture and all-solid lithium secondary battery using the same - Google Patents

Heat-resistant positive electrode mixture and all-solid lithium secondary battery using the same Download PDF

Info

Publication number
JPWO2009038037A1
JPWO2009038037A1 JP2009533129A JP2009533129A JPWO2009038037A1 JP WO2009038037 A1 JPWO2009038037 A1 JP WO2009038037A1 JP 2009533129 A JP2009533129 A JP 2009533129A JP 2009533129 A JP2009533129 A JP 2009533129A JP WO2009038037 A1 JPWO2009038037 A1 JP WO2009038037A1
Authority
JP
Japan
Prior art keywords
positive electrode
sulfide
solid electrolyte
heat
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009533129A
Other languages
Japanese (ja)
Other versions
JP5615551B2 (en
Inventor
吉則 斉藤
吉則 斉藤
美勝 清野
美勝 清野
田村 裕之
裕之 田村
享子 杉山
享子 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2009533129A priority Critical patent/JP5615551B2/en
Publication of JPWO2009038037A1 publication Critical patent/JPWO2009038037A1/en
Application granted granted Critical
Publication of JP5615551B2 publication Critical patent/JP5615551B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

下記式(1)で表される化合物及び硫化物系固体電解質からなる耐熱性正極合材。LiNixM1−xO2(1)(式中、xは0.1<x<0.9を満たす数であり、MはFe,Co,Mn及びAlからなる群から選ばれる元素である。)A heat-resistant positive electrode mixture comprising a compound represented by the following formula (1) and a sulfide-based solid electrolyte. LiNixM1-xO2 (1) (wherein x is a number satisfying 0.1 <x <0.9, and M is an element selected from the group consisting of Fe, Co, Mn, and Al.)

Description

本発明は、耐熱性正極合材及びそれを用いた全固体リチウム二次電池に関する。   The present invention relates to a heat-resistant positive electrode mixture and an all-solid lithium secondary battery using the same.

近年、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、モーターを動力源とする自動二輪車、電気自動車、ハイブリッド電気自動車等に用いられるリチウムイオン二次電池の需要が増加している。   In recent years, there has been an increasing demand for lithium ion secondary batteries used in personal digital assistants, portable electronic devices, small household power storage devices, motorcycles powered by motors, electric vehicles, hybrid electric vehicles, and the like.

上記リチウムイオン二次電池には、電解質として有機系電解液が用いられている。有機系電解液は高いイオン伝導度を示すものの、液体でかつ可燃性であるため、漏洩、発火等の安全性が懸念されている。
リチウムイオン二次電池の安全性を確保する方法として、有機系電解液に代えて無機固体電解質を用いた全固体二次電池が研究されている。
In the lithium ion secondary battery, an organic electrolytic solution is used as an electrolyte. Although organic electrolytes exhibit high ionic conductivity, they are liquid and flammable, so there are concerns about safety such as leakage and ignition.
As a method for ensuring the safety of a lithium ion secondary battery, an all-solid secondary battery using an inorganic solid electrolyte instead of an organic electrolyte has been studied.

二次電池では、電解質−正極活物質界面での電子伝導、電子授受及びイオン伝導を十分確保する必要がある。
有機系電解液を用いた二次電池の場合、有機系電解液は正極中に浸透し、正極活物質の電子伝導及び電解液のイオン伝導が十分起こり、電子伝導、電子授受及びイオン伝導を十分確保できる。一方、全固体二次電池では、正極として用いる正極合材(正極活物質と固体電解質等の混合体)において、固体電解質と正極活物質の接触面が少なく、電子伝導、電子授受及びイオン伝導を十分確保することが困難であった。
In the secondary battery, it is necessary to ensure sufficient electron conduction, electron transfer and ion conduction at the electrolyte-positive electrode active material interface.
In the case of a secondary battery using an organic electrolyte, the organic electrolyte penetrates into the positive electrode, and the electron conduction of the positive electrode active material and the ionic conduction of the electrolyte occur sufficiently, and the electron conduction, electron transfer and ionic conduction are sufficient. It can be secured. On the other hand, in an all-solid-state secondary battery, a positive electrode mixture (a mixture of a positive electrode active material and a solid electrolyte) used as a positive electrode has few contact surfaces between the solid electrolyte and the positive electrode active material, and performs electron conduction, electron transfer and ion conduction. It was difficult to secure enough.

電子伝導、電子授受及びイオン伝導を十分確保するため、固体電解質と正極活物質の接触面積を増やすことが好ましい。
接触面積を増やす方法としては、正極合材からなる高密度成形体の作製が挙げられる。正極合材のような粉体の場合は、スラリーを用いた鋳込み成形や、スラリーを塗布した後、ロールプレス等で圧密化することにより高密度成形体を作製することができる。しかし、これらの方法で成形体を得るためには、スラリー中の溶媒を乾燥又は焼成により除去する必要があり(特許文献1)、スラリーに含まれる正極合材は溶媒除去温度における熱的安定性を必要とした。現行のリチウム二次電池に広く使われている正極活物質としては、LiCoOが挙げられるが、LiCoOは熱的安定性に乏しい化合物であった。
In order to ensure sufficient electron conduction, electron transfer and ion conduction, it is preferable to increase the contact area between the solid electrolyte and the positive electrode active material.
As a method for increasing the contact area, a high-density molded body made of a positive electrode mixture can be prepared. In the case of a powder such as a positive electrode mixture, a high-density molded body can be produced by casting using a slurry, or applying the slurry and then compacting with a roll press or the like. However, in order to obtain a molded body by these methods, it is necessary to remove the solvent in the slurry by drying or baking (Patent Document 1), and the positive electrode mixture contained in the slurry is thermally stable at the solvent removal temperature. Needed. A positive electrode active material widely used in current lithium secondary batteries includes LiCoO 2, but LiCoO 2 is a compound with poor thermal stability.

特許文献2では、室温でも高いリチウムイオン伝導性を示す硫化物系結晶化ガラスからなる固体電解質が開示されている。しかし、特許文献1に記載の電解質は、高価なリチウムを多量に必要とするため、工業的に不利である。また、特許文献2に記載の電解質は、その製造過程において500℃以上の加熱処理を行う。当該加熱処理は特殊な設備を必要とし、工業的に不利である。   Patent Document 2 discloses a solid electrolyte made of sulfide-based crystallized glass that exhibits high lithium ion conductivity even at room temperature. However, the electrolyte described in Patent Document 1 is industrially disadvantageous because it requires a large amount of expensive lithium. In addition, the electrolyte described in Patent Document 2 is subjected to heat treatment at 500 ° C. or higher in the manufacturing process. The heat treatment requires special equipment and is industrially disadvantageous.

非特許文献1では、良好なサイクル特性を示す全固体リチウム二次電池が開示されている。非特許文献1に記載の全固体リチウム二次電池は、固体電解質及び正極合材に非晶質構造を有する硫化物系ガラス電解質を用いている。硫化物系ガラス電解質は、正極合材として用いた場合に、熱的に不安定である。従って、非特許文献1が開示する全固体リチウム二次電池は耐熱性を必要する用途で使用することはできなかった。
特開2006−248876号公報 特開2002−109955号公報 マテリアルインテグレーション Vol.15 No.6 2002 25〜30頁
Non-Patent Document 1 discloses an all-solid lithium secondary battery that exhibits good cycle characteristics. The all-solid lithium secondary battery described in Non-Patent Document 1 uses a sulfide-based glass electrolyte having an amorphous structure in a solid electrolyte and a positive electrode mixture. Sulfide-based glass electrolytes are thermally unstable when used as positive electrode composites. Therefore, the all-solid lithium secondary battery disclosed in Non-Patent Document 1 cannot be used for applications that require heat resistance.
JP 2006-248876 A JP 2002-109955 A Material Integration Vol.15 No.6 2002 25-30

本発明の目的は、熱的及び経時的安定性を有する耐熱性正極合材を提供することである。   An object of the present invention is to provide a heat-resistant positive electrode mixture having thermal and temporal stability.

本発明によれば、以下の正極合材等が提供される。
1.下記式(1)で表される化合物及び結晶化度が50%以上である硫化物系固体電解質からなる耐熱性正極合材。
LiNi1−x (1)
(式中、xは0.1<x<0.9を満たす数であり、MはFe,Co,Mn及びAlからなる群から選ばれる元素である。)
2.下記式(2)で表される化合物及び結晶化度が50%以上である硫化物系固体電解質からなる耐熱性正極合材。
LiNi1−x−y (2)
(式中、xは0.1<x<0.9を満たす数であり、yは0.01<y<0.9を満たす数であって、x及びyは0<1−x−yを満たす数である。
M及びLは、それぞれFe,Co,Mn及びAlからなる群から選ばれる元素であって、互いに異なる元素である。)
3.前記硫化物系固体電解質が、少なくともリチウム(Li),リン(P)及び硫黄(S)を含む1又は2に記載の耐熱性正極合材。
4.前記硫化物系固体電解質がリチウム(Li)、リン(P)及び硫黄(S)を含む硫化物系ガラス固体電解質を、180℃以上210℃以下の温度で3〜240時間熱処理、又は210℃より高く330℃以下の温度で0.1〜240時間熱処理した硫化物系結晶化ガラス固体電解質である1〜3のいずれかに記載の耐熱性正極合材。
5.前記硫化物系固体電解質が、X線回折(CuKα:λ=1.5418Å)において、2θ=17.8±0.3deg,18.2±0.3deg,19.8±0.3deg,21.8±0.3deg,23.8±0.3deg,25.9±0.3deg,29.5±0.3deg,30.0±0.3degに回折ピークを有する1〜4のいずれかに記載の耐熱性正極合材。
6.1〜5のいずれかに記載の耐熱性正極合材及び溶媒からなる混合液。
7.1〜5のいずれかに記載の耐熱性正極合材から得られる正極。
8.7に記載の正極を含んでなる全固体リチウム電池。
9.8に記載の全固体リチウム電池をさらに加熱処理してなる全固体リチウム電池。
10.8又は9に記載の全固体リチウム電池を備えてなる装置。
11.前記式(1)又は(2)で表される化合物の平均一次粒子径が0.01〜30μmであり、前記硫化物系固体電解質の平均一次粒子径が0.01〜30μmである1〜5のいずれかに記載の耐熱性正極合材。
12.前記式(1)又は(2)で表される化合物の平均一次粒子径Xと前記硫化物系電解質の平均一次粒子径Yは式(3)を満たす1〜5のいずれかに記載の耐熱性正極合材。
X≧Y (3)
According to the present invention, the following positive electrode mixture and the like are provided.
1. A heat-resistant positive electrode mixture comprising a compound represented by the following formula (1) and a sulfide solid electrolyte having a crystallinity of 50% or more.
LiNi x M 1-x O 2 (1)
(In the formula, x is a number satisfying 0.1 <x <0.9, and M is an element selected from the group consisting of Fe, Co, Mn, and Al.)
2. A heat-resistant positive electrode mixture comprising a compound represented by the following formula (2) and a sulfide solid electrolyte having a crystallinity of 50% or more.
LiNi x M 1-x-y L y O 2 (2)
(Where x is a number satisfying 0.1 <x <0.9, y is a number satisfying 0.01 <y <0.9, and x and y are 0 <1-xy. It is a number that satisfies
M and L are elements selected from the group consisting of Fe, Co, Mn, and Al, and are different from each other. )
3. The heat-resistant positive electrode mixture according to 1 or 2, wherein the sulfide-based solid electrolyte contains at least lithium (Li), phosphorus (P), and sulfur (S).
4). The sulfide-based glass solid electrolyte in which the sulfide-based solid electrolyte contains lithium (Li), phosphorus (P) and sulfur (S) is heat-treated at a temperature of 180 ° C. to 210 ° C. for 3 to 240 hours, or from 210 ° C. 4. The heat-resistant positive electrode mixture according to any one of 1 to 3, which is a sulfide-based crystallized glass solid electrolyte that has been heat-treated at a temperature of 330 ° C. or lower for 0.1 to 240 hours.
5. In the X-ray diffraction (CuKα: λ = 1.54184), the sulfide-based solid electrolyte is 2θ = 17.8 ± 0.3 deg, 18.2 ± 0.3 deg, 19.8 ± 0.3 deg, 21. Any one of 1 to 4 having diffraction peaks at 8 ± 0.3 deg, 23.8 ± 0.3 deg, 25.9 ± 0.3 deg, 29.5 ± 0.3 deg, 30.0 ± 0.3 deg Heat-resistant positive electrode composite.
The liquid mixture which consists of a heat-resistant positive electrode compound material in any one of 6.1-5, and a solvent.
The positive electrode obtained from the heat-resistant positive electrode compound material in any one of 7.1-5.
An all solid lithium battery comprising the positive electrode according to 8.7.
An all solid lithium battery obtained by further heat-treating the all solid lithium battery according to 9.8.
A device comprising the all-solid-state lithium battery according to 10.8 or 9.
11. The compound represented by the formula (1) or (2) has an average primary particle diameter of 0.01 to 30 μm, and the sulfide solid electrolyte has an average primary particle diameter of 0.01 to 30 μm. The heat-resistant positive electrode composite material according to any one of the above.
12 The average primary particle diameter X of the compound represented by the formula (1) or (2) and the average primary particle diameter Y of the sulfide electrolyte are heat resistance according to any one of 1 to 5 satisfying the formula (3). Positive electrode composite.
X ≧ Y (3)

本発明によれば、熱的及び経時的安定性を有する耐熱性正極合材を提供することができる。   According to the present invention, it is possible to provide a heat-resistant positive electrode mixture having thermal and temporal stability.

本発明に係る全固体リチウム電池の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the all-solid-state lithium battery which concerns on this invention. 製造例で作製した硫化物系固体電解質のX線回折スペクトルチャートである。It is an X-ray diffraction spectrum chart of the sulfide type solid electrolyte produced in the manufacture example. 製造例で作製した結晶化ガラス電解質の粉末X線回折の測定結果を示す図である。It is a figure which shows the measurement result of the powder X-ray diffraction of the crystallized glass electrolyte produced in the manufacture example. 実施例1で作製したイオン伝導度測定用成形体のイオン伝導度の測定結果を示す図である。It is a figure which shows the measurement result of the ion conductivity of the molded object for ion conductivity measurement produced in Example 1. FIG. 比較例1で作製したイオン伝導度測定用成形体のイオン伝導度の測定結果を示す図である。It is a figure which shows the measurement result of the ion conductivity of the molded object for ion conductivity measurement produced in the comparative example 1. FIG.

本発明の第1の態様の正極合材は、下記式(1)で表される化合物及び硫化物系固体電解質からなる。下記式(1)で表される化合物としては、好ましくはLiNi0.8Co0.2である。
LiNi1−x (1)
(式中、xは0.1<x<0.9を満たす数であり、MはFe,Co,Mn及びAlからなる群から選ばれる元素である。)
The positive electrode mixture of the first aspect of the present invention comprises a compound represented by the following formula (1) and a sulfide-based solid electrolyte. The compound represented by the following formula (1) is preferably LiNi 0.8 Co 0.2 O 2 .
LiNi x M 1-x O 2 (1)
(In the formula, x is a number satisfying 0.1 <x <0.9, and M is an element selected from the group consisting of Fe, Co, Mn, and Al.)

本発明の第2の態様の正極合材は、下記式(2)で表される化合物及び硫化物系固体電解質からなる。下記(2)で表される化合物としては、好ましくはLiNi0.8Co0.15Al0.05及びLiNi1/3Co1/3Mn1/3である。
LiNi1−x−y (2)
(式中、xは0.1<x<0.9を満たす数であり、yは0.01<y<0.9を満たす数であって、x及びyは0<1−x−yを満たす数である。
M及びLは、それぞれFe,Co,Mn及びAlからなる群から選ばれる元素であって、互いに異なる元素である。)
The positive electrode mixture of the second aspect of the present invention comprises a compound represented by the following formula (2) and a sulfide-based solid electrolyte. The compounds represented by the following (2) are preferably LiNi 0.8 Co 0.15 Al 0.05 O 2 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 .
LiNi x M 1-x-y L y O 2 (2)
(Where x is a number satisfying 0.1 <x <0.9, y is a number satisfying 0.01 <y <0.9, and x and y are 0 <1-xy. It is a number that satisfies
M and L are elements selected from the group consisting of Fe, Co, Mn, and Al, and are different from each other. )

尚、式(1)又は(2)で表される化合物の代わりに、式(1)又は(2)の遷移金属の一部をAl、Ti、V、Cr、Mn、Fe、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換した化合物を用いてもよい。   In place of the compound represented by the formula (1) or (2), a part of the transition metal of the formula (1) or (2) may be replaced with Al, Ti, V, Cr, Mn, Fe, Cu, Zn, A compound substituted with another metal such as Mg, Ga, Zr, Nb, or Si may be used.

硫化物系固体電解質は、好ましくは、少なくともリチウム(Li),リン(P)及び硫黄(S)を含み、例えば硫化リチウムと五硫化二燐、又は硫化リチウムと単体燐及び単体硫黄、さらには硫化リチウム、五硫化二燐、単体燐及び/又は単体硫黄等の原料から製造できる。上記硫化物系固体電解質はさらに難燃処理を施したものでもよい。   The sulfide-based solid electrolyte preferably contains at least lithium (Li), phosphorus (P), and sulfur (S), such as lithium sulfide and diphosphorus pentasulfide, or lithium sulfide and simple phosphorus and simple sulfur, and further sulfide It can be produced from raw materials such as lithium, diphosphorus pentasulfide, simple phosphorus and / or simple sulfur. The sulfide-based solid electrolyte may be further subjected to a flame retardant treatment.

硫化物系固体電解質は好ましくは結晶化度が50%以上100%以下である。硫化物系固体電解質の結晶化度が50%未満の場合、正極合材とした場合の熱的安定性が悪く、また、リチウムイオン伝導度が低いために十分な電池性能を発揮することができないおそれがある。
尚、結晶化度は、NMRスペクトル装置を用いることにより測定できる。具体的には、硫化物系固体電解質の固体31P−NMRスペクトルを測定し、得られた固体31PNMRスペクトルについて、70〜120ppmに観測される共鳴線を、非線形最小二乗法を用いてガウス曲線に分離し、各曲線の面積比求めることにより結晶化度を測定できる。
The sulfide-based solid electrolyte preferably has a crystallinity of 50% or more and 100% or less. When the degree of crystallinity of the sulfide-based solid electrolyte is less than 50%, the thermal stability of the positive electrode mixture is poor, and sufficient battery performance cannot be exhibited due to low lithium ion conductivity. There is a fear.
The crystallinity can be measured by using an NMR spectrum apparatus. Specifically, the Gaussian curve using measured solid 31 PNMR spectrum of sulfide-based solid electrolyte, the obtained solid 31 PNMR spectrum, the resonance lines observed in 70~120Ppm, the nonlinear least square method And the degree of crystallinity can be measured by determining the area ratio of each curve.

好ましい硫化物系固体電解質は、硫化リチウムと、五硫化二燐及び/又は、単体燐及び単体硫黄から製造することができる。   A preferred sulfide-based solid electrolyte can be produced from lithium sulfide and diphosphorus pentasulfide and / or simple phosphorus and simple sulfur.

硫化リチウムは、特に制限なく工業的に入手可能なものが使用できるが、高純度のものが好ましい。
好ましくは、硫化リチウムは、硫黄酸化物のリチウム塩の総含有量が好ましくは0.15質量%以下、より好ましくは0.1質量%以下であり、かつN−メチルアミノ酪酸リチウムの含有量が0.15質量%以下、より好ましくは0.1質量%以下である。硫黄酸化物のリチウム塩の総含有量が0.15質量%以下であると、溶融急冷法やメカニカルミリング法で得られる固体電解質は、ガラス状電解質(完全非晶質)となる。即ち、硫黄酸化物のリチウム塩の総含有量が0.15質量%を越えると、得られる電解質は、最初から結晶化物の恐れがあり、この結晶化物のイオン伝導度は低い。さらに、この結晶化物について熱処理を施しても結晶化物には変化がなく、高イオン伝導度の硫化物系固体電解質を得ることができないおそれがある。
As lithium sulfide, those commercially available without particular limitation can be used, but those having high purity are preferred.
Preferably, the lithium sulfide has a total content of lithium salts of sulfur oxides of preferably 0.15% by mass or less, more preferably 0.1% by mass or less, and a content of lithium N-methylaminobutyrate. It is 0.15 mass% or less, More preferably, it is 0.1 mass% or less. When the total content of the lithium salt of sulfur oxide is 0.15% by mass or less, the solid electrolyte obtained by the melt quenching method or the mechanical milling method becomes a glassy electrolyte (fully amorphous). That is, when the total content of the lithium salt of sulfur oxide exceeds 0.15% by mass, the obtained electrolyte may be a crystallized product from the beginning, and the ionic conductivity of the crystallized product is low. Further, even if this crystallized product is subjected to a heat treatment, the crystallized product is not changed, and there is a possibility that a sulfide-based solid electrolyte having high ion conductivity cannot be obtained.

また、N−メチルアミノ酪酸リチウムの含有量が0.15質量%以下であると、N−メチルアミノ酪酸リチウムの劣化物がリチウム電池のサイクル性能を低下させることがない。
このように不純物が低減された硫化リチウムを用いると、高イオン伝導性電解質が得られる。
Further, when the content of lithium N-methylaminobutyrate is 0.15% by mass or less, a deteriorated product of lithium N-methylaminobutyrate does not deteriorate the cycle performance of the lithium battery.
When lithium sulfide with reduced impurities is used, a high ion conductive electrolyte can be obtained.

この固体物質で用いられる硫化リチウムの製造法としては、少なくとも上記不純物を低減できる方法であれば特に制限はない。
例えば、以下の方法で製造された硫化リチウムを精製することにより得ることもできる。
以下の製造法の中では、特にa又はbの方法が好ましい。
a.非プロトン性有機溶媒中で水酸化リチウムと硫化水素とを0〜150℃で反応させて水硫化リチウムを生成し、次いでこの反応液を150〜200℃で脱硫化水素化する方法(特開平7−330312号公報)。
b.非プロトン性有機溶媒中で水酸化リチウムと硫化水素とを150〜200℃で反応させ、直接硫化リチウムを生成する方法(特開平7−330312号公報)。
c.水酸化リチウムとガス状硫黄源を130〜445℃の温度で反応させる方法(特開平9−283156号公報)。
The method for producing lithium sulfide used in the solid substance is not particularly limited as long as it is a method that can reduce at least the impurities.
For example, it can also be obtained by purifying lithium sulfide produced by the following method.
Among the following production methods, the method a or b is particularly preferable.
a. A method in which lithium hydroxide and hydrogen sulfide are reacted at 0 to 150 ° C. in an aprotic organic solvent to produce lithium hydrosulfide, and this reaction solution is then desulfurized at 150 to 200 ° C. -330312).
b. A method of directly producing lithium sulfide by reacting lithium hydroxide and hydrogen sulfide at 150 to 200 ° C. in an aprotic organic solvent (Japanese Patent Laid-Open No. 7-330312).
c. A method of reacting lithium hydroxide and a gaseous sulfur source at a temperature of 130 to 445 ° C. (Japanese Patent Laid-Open No. 9-283156).

上記のようにして得られた硫化リチウムの精製方法としては、特に制限はない。好ましい精製法としては、例えば、国際公開WO2005/40039号等が挙げられる。
具体的には、上記のようにして得られた硫化リチウムを、有機溶媒を用い、100℃以上の温度で洗浄する。
洗浄に用いる有機溶媒は、非プロトン性極性溶媒であることが好ましく、さらに、硫化リチウム製造に使用する非プロトン性有機溶媒と洗浄に用いる非プロトン性極性有機溶媒とが同一であることがより好ましい。
洗浄に好ましく用いられる非プロトン性極性有機溶媒としては、例えば、アミド化合物、ラクタム化合物、尿素化合物、有機硫黄化合物、環式有機リン化合物等の非プロトン性の極性有機化合物が挙げられ、単独溶媒、又は混合溶媒として好適に使用することができる。特に、N−メチル−2−ピロリドン(NMP)は、良好な溶媒に選択される。
There is no restriction | limiting in particular as a purification method of the lithium sulfide obtained as mentioned above. Preferable purification methods include, for example, International Publication No. WO2005 / 40039.
Specifically, the lithium sulfide obtained as described above is washed at a temperature of 100 ° C. or higher using an organic solvent.
The organic solvent used for washing is preferably an aprotic polar solvent, and more preferably, the aprotic organic solvent used for lithium sulfide production and the aprotic polar organic solvent used for washing are the same. .
Examples of the aprotic polar organic solvent preferably used for washing include aprotic polar organic compounds such as amide compounds, lactam compounds, urea compounds, organic sulfur compounds, cyclic organophosphorus compounds, Or it can use suitably as a mixed solvent. In particular, N-methyl-2-pyrrolidone (NMP) is selected as a good solvent.

洗浄に使用する有機溶媒の量は特に限定されず、また、洗浄の回数も特に限定されないが、2回以上であることが好ましい。洗浄は、窒素、アルゴン等の不活性ガス下で行うことが好ましい。
洗浄された硫化リチウムを、洗浄に使用した有機溶媒の沸点以上の温度で、窒素等の不活性ガス気流下、常圧又は減圧下で、5分以上、好ましくは約2〜3時間以上乾燥することにより、本発明で用いられる硫化リチウムを得ることができる。
The amount of the organic solvent used for washing is not particularly limited, and the number of times of washing is not particularly limited, but is preferably 2 or more. Cleaning is preferably performed under an inert gas such as nitrogen or argon.
The washed lithium sulfide is dried at a temperature equal to or higher than the boiling point of the organic solvent used for washing for 5 minutes or more, preferably about 2 to 3 hours or more under an inert gas stream such as nitrogen under normal pressure or reduced pressure. Thus, lithium sulfide used in the present invention can be obtained.

は、工業的に製造され、販売されているものであれば、特に限定なく使用することができる。尚、Pに代えて、相当するモル比の単体リン(P)及び単体硫黄(S)を用いることもできる。単体リン(P)及び単体硫黄(S)は、工業的に生産され、販売されているものであれば、特に限定なく使用することができる。P 2 S 5 can be used without particular limitation as long as it is industrially manufactured and sold. In place of P 2 S 5 , elemental phosphorus (P) and elemental sulfur (S) in a corresponding molar ratio can also be used. Simple phosphorus (P) and simple sulfur (S) can be used without particular limitation as long as they are industrially produced and sold.

上記硫化リチウムと、五硫化二燐又は単体燐及び単体硫黄の混合モル比は、通常50:50〜80:20、好ましくは60:40〜75:25である。
特に好ましくは、LiS:P=68:32〜74:26(モル比)程度である。
The mixing molar ratio of the lithium sulfide to diphosphorus pentasulfide or simple phosphorus and simple sulfur is usually 50:50 to 80:20, preferably 60:40 to 75:25.
Particularly preferably, it is about Li 2 S: P 2 S 5 = 68: 32 to 74:26 (molar ratio).

硫化物系固体電解質は、全体の結晶化度が50%以上であれば硫化物系ガラス固体電解質と硫化物系結晶化ガラス固体電解質の混合物でもよい。
硫化物系ガラス固体電解質の製造方法としては、溶融急冷法やメカニカルミリング法(MM法)がある。
溶融急冷法による場合、PとLiSを所定量乳鉢にて混合しペレット状にしたものを、カーボンコートした石英管中に入れ真空封入する。所定の反応温度で反応させた後、氷中に投入し急冷することにより、硫化物系ガラス固体電解質が得られる。
この際の反応温度は、好ましくは400℃〜1000℃、より好ましくは、800℃〜900℃である。
また、反応時間は、好ましくは0.1時間〜12時間、より好ましくは、1〜12時間である。
上記反応物の急冷温度は、通常10℃以下、好ましくは0℃以下であり、その冷却速度は、通常1〜10000K/sec程度、好ましくは10〜10000K/secである。
The sulfide-based solid electrolyte may be a mixture of a sulfide-based glass solid electrolyte and a sulfide-based crystallized glass solid electrolyte as long as the overall crystallinity is 50% or more.
As a method for producing a sulfide-based glass solid electrolyte, there are a melt quenching method and a mechanical milling method (MM method).
In the case of the melt quenching method, P 2 S 5 and Li 2 S mixed in a predetermined amount in a mortar and pelletized are placed in a carbon-coated quartz tube and vacuum-sealed. After reacting at a predetermined reaction temperature, a sulfide-based glass solid electrolyte is obtained by putting it in ice and rapidly cooling it.
The reaction temperature at this time is preferably 400 ° C to 1000 ° C, more preferably 800 ° C to 900 ° C.
Moreover, reaction time becomes like this. Preferably it is 0.1 to 12 hours, More preferably, it is 1 to 12 hours.
The quenching temperature of the reactant is usually 10 ° C. or less, preferably 0 ° C. or less, and the cooling rate is usually about 1 to 10,000 K / sec, preferably 10 to 10,000 K / sec.

MM法による場合、PとLiSを所定量乳鉢にて混合し、メカニカルミリング法にて所定時間反応させることにより、硫化物系ガラス固体電解質が得られる。
上記原料を用いたメカニカルミリング法は、室温で反応を行うことができる。MM法によれば、室温でガラス固体電解質を製造できるため、原料の熱分解が起らず、仕込み組成のガラス固体電解質を得ることができるという利点がある。
また、MM法では、ガラス固体電解質の製造と同時に、ガラス固体電解質を微粉末化できるという利点もある。
MM法は回転ボールミル、転動ボールミル、振動ボールミル、遊星ボールミル等種々の形式を用いることができる。
In the case of the MM method, a sulfide-based glass solid electrolyte is obtained by mixing a predetermined amount of P 2 S 5 and Li 2 S in a mortar and reacting them for a predetermined time by a mechanical milling method.
The mechanical milling method using the above raw materials can be reacted at room temperature. According to the MM method, since a glass solid electrolyte can be produced at room temperature, there is an advantage that a glass solid electrolyte having a charged composition can be obtained without thermal decomposition of raw materials.
Further, the MM method has an advantage that the glass solid electrolyte can be made into fine powder simultaneously with the production of the glass solid electrolyte.
In the MM method, various types such as a rotating ball mill, a rolling ball mill, a vibrating ball mill, and a planetary ball mill can be used.

MM法の条件としては、例えば、遊星型ボールミル機を使用した場合、回転速度を数十〜数百回転/分とし、0.5時間〜100時間処理すればよい。
以上、溶融急冷法及びMM法による硫化物系ガラス固体電解質の具体例を説明したが、温度条件や処理時間等の製造条件は、使用設備等に合わせて適宜調整することができる。
As conditions for the MM method, for example, when a planetary ball mill is used, the rotational speed is set to several tens to several hundreds of revolutions / minute, and the treatment may be performed for 0.5 hours to 100 hours.
Although specific examples of the sulfide-based glass solid electrolyte by the melt quenching method and the MM method have been described above, manufacturing conditions such as temperature conditions and processing time can be appropriately adjusted according to the equipment used.

その後、得られた硫化物系ガラス固体電解質を所定の温度で熱処理し、硫化物系結晶化ガラス固体電解質を生成させる。
硫化物系結晶化ガラス固体電解質を生成させる熱処理温度は、好ましくは180℃〜330℃、より好ましくは、200℃〜320℃、特に好ましくは、210℃〜310℃である。
180℃より低いと結晶化度の高い結晶化ガラスが得られにくい場合があり、330℃より高いと結晶化度の低い結晶化ガラスが生じる恐れがある。
熱処理時間は、180℃以上210℃以下の温度の場合は、3〜240時間が好ましく、特に4〜230時間が好ましい。また、210℃より高く330℃以下の温度の場合は、0.1〜240時間が好ましく、特に0.2〜235時間が好ましく、さらに、0.3〜230時間が好ましい。
熱処理時間が0.1時間より短いと、結晶化度の高い結晶化ガラスが得られにくい場合があり、240時間より長いと、結晶化度の低い結晶化ガラスが生じる恐れがある。
Thereafter, the obtained sulfide-based glass solid electrolyte is heat-treated at a predetermined temperature to produce a sulfide-based crystallized glass solid electrolyte.
The heat treatment temperature for producing the sulfide-based crystallized glass solid electrolyte is preferably 180 ° C to 330 ° C, more preferably 200 ° C to 320 ° C, and particularly preferably 210 ° C to 310 ° C.
If it is lower than 180 ° C., it may be difficult to obtain a crystallized glass having a high degree of crystallinity, and if it is higher than 330 ° C., a crystallized glass having a low degree of crystallinity may be produced.
The heat treatment time is preferably from 3 to 240 hours, particularly preferably from 4 to 230 hours, when the temperature is from 180 ° C to 210 ° C. Moreover, in the case of temperature higher than 210 degreeC and 330 degrees C or less, 0.1 to 240 hours are preferable, 0.2 to 235 hours are especially preferable, Furthermore, 0.3 to 230 hours are preferable.
When the heat treatment time is shorter than 0.1 hour, it may be difficult to obtain a crystallized glass with a high degree of crystallinity, and when it is longer than 240 hours, a crystallized glass with a low degree of crystallinity may be produced.

この硫化物系結晶化ガラス固体電解質は、X線回折(CuKα:λ=1.5418Å)において、2θ=17.8±0.3deg,18.2±0.3deg,19.8±0.3deg,21.8±0.3deg,23.8±0.3deg,25.9±0.3deg,29.5±0.3deg,30.0±0.3degに回折ピークを有することが好ましい。
このような結晶構造を有する固体電解質が、極めて高いリチウムイオン伝導性を有する。
This sulfide-based crystallized glass solid electrolyte has 2θ = 17.8 ± 0.3 deg, 18.2 ± 0.3 deg, 19.8 ± 0.3 deg in X-ray diffraction (CuKα: λ = 1.54184). 21.8 ± 0.3 deg, 23.8 ± 0.3 deg, 25.9 ± 0.3 deg, 29.5 ± 0.3 deg, 30.0 ± 0.3 deg.
A solid electrolyte having such a crystal structure has extremely high lithium ion conductivity.

本発明の正極合材には、導電助剤として電子が極活物質内で円滑に移動するようにするために、電気的に導電性を有す物質を適宜添加してもよい。電気的に導電性を有する物質としては特に限定しないが、アセチレンブラック、カーボンブラック、カーボンナノチューブのような導電性物質又はポリアニリン、ポリアセチレン、ポリピロールのような導電性高分子を単独又は混合して用いることができる。   In the positive electrode mixture of the present invention, an electrically conductive substance may be appropriately added as a conductive additive so that electrons move smoothly in the active material. The electrically conductive substance is not particularly limited, but a conductive substance such as acetylene black, carbon black, or carbon nanotube or a conductive polymer such as polyaniline, polyacetylene, or polypyrrole is used alone or in combination. Can do.

本発明の正極合材は、上記式(1)又は式(2)で表される化合物及び硫化物系固体電解質を混合して製造できる。式(1)又は式(2)で表される化合物及び硫化物系固体電解質の混合比(式(1)又は式(2)で表される化合物:硫化物系固体電解質 重量比)は、好ましくは50〜90:50〜10である。   The positive electrode composite of the present invention can be produced by mixing the compound represented by the above formula (1) or formula (2) and a sulfide-based solid electrolyte. The mixing ratio of the compound represented by formula (1) or formula (2) and the sulfide-based solid electrolyte (compound represented by formula (1) or formula (2): sulfide-based solid electrolyte weight ratio) is preferably Is 50-90: 50-10.

式(1)又は(2)で表される化合物の平均一次粒子径は、0.01〜30μmであることが好ましく、特に0.1〜20μmであることが好ましい。同様に、硫化物系固体電解質の平均一次粒子径は0.01〜30μmであることが好ましく、特に、0.1〜20μmであることが好ましい。これにより、電池性能つまり充放電効率が良好となり、性能向上が望める。
また、式(1)又は(2)で表される化合物の平均一次粒子径Xと硫化物系電解質の平均一次粒子径Yは式(3)を満たすことが好ましい。
X≧Y (3)
これにより、正極材と電解質との接触面積が最大限に改善され電池性能、即ち、出力特性がよくなる。
尚、平均一次粒子径は、レーザー回折式粒度分布測定装置[SEISHIN LASER MICRON SIZER LMS-30(セイシン企業製)]で測定した値を意味する。
The average primary particle size of the compound represented by the formula (1) or (2) is preferably 0.01 to 30 μm, and particularly preferably 0.1 to 20 μm. Similarly, the average primary particle size of the sulfide-based solid electrolyte is preferably 0.01 to 30 μm, and particularly preferably 0.1 to 20 μm. Thereby, battery performance, that is, charge / discharge efficiency is improved, and improvement in performance can be expected.
Moreover, it is preferable that the average primary particle diameter X of the compound represented by the formula (1) or (2) and the average primary particle diameter Y of the sulfide-based electrolyte satisfy the formula (3).
X ≧ Y (3)
Thereby, the contact area between the positive electrode material and the electrolyte is maximally improved, and the battery performance, that is, the output characteristics is improved.
The average primary particle size means a value measured with a laser diffraction particle size distribution measuring device [SEISHIN LASER MICRON SIZER LMS-30 (manufactured by Seishin Enterprise)].

本発明の正極合材は熱的及び経時的安定性に優れる。従って、本発明の正極合材は、スラリーを用いた鋳込み成形等、成形体作製時に乾燥又は焼成する必要がある場合や、その製造にリフロー工程を含む電池、高温となるエンジン周辺に用いる自動車用電池等に好適に用いることができる。
本発明の正極合材は、その優れた熱的及び経時的安定性から、電池の製造条件及び設置場所の制限を大幅に緩和できる利点を有する。
The positive electrode composite of the present invention is excellent in thermal and temporal stability. Accordingly, the positive electrode composite of the present invention is used for automobiles used in the vicinity of a battery including a reflow process in manufacturing thereof, a battery including a reflow process, and a high-temperature engine, such as casting molding using slurry. It can be suitably used for a battery or the like.
The positive electrode composite of the present invention has the advantage that the restrictions on battery manufacturing conditions and installation locations can be greatly relaxed due to its excellent thermal and temporal stability.

本発明の正極合材及び溶媒からなる混合液を塗布することにより、全固体リチウム電池の正極を形成することができる。
上記混合液は、本発明の正極合材が溶媒に溶解しているのではない。本発明の正極合材の比重は、通常、溶媒の比重より大きいことから、上記混合液中で通常、沈殿しているが、正極を形成する際には攪拌等により正極合材を均一に分散させた混合液を用いると好ましい。
The positive electrode of an all-solid-state lithium battery can be formed by apply | coating the liquid mixture which consists of a positive electrode compound material and a solvent of this invention.
In the mixed solution, the positive electrode mixture of the present invention is not dissolved in a solvent. Since the specific gravity of the positive electrode mixture of the present invention is usually larger than the specific gravity of the solvent, it is usually precipitated in the above mixed solution, but when forming the positive electrode, the positive electrode mixture is uniformly dispersed by stirring or the like. It is preferable to use a mixed liquid.

混合液に用いる溶媒は、好ましくは正極合材との反応性が低い溶媒であるが、正極合材表面をコートする等して正極合材が溶媒と反応しないように処置することにより、正極合材との反応性が高い溶媒も用いることができる。   The solvent used in the mixed solution is preferably a solvent having low reactivity with the positive electrode mixture, but by treating the positive electrode mixture surface so that the positive electrode mixture does not react with the solvent, for example, by coating the surface of the positive electrode mixture, A solvent having high reactivity with the material can also be used.

上記溶媒は、好ましくは有機溶媒であり、より好ましくは炭化水素系有機溶媒であり、例えばヘキサン、ヘプタン、トルエン、キシレン、デカリン等である。
これら溶媒のうち、塗布後の乾燥工程を考慮すると、低沸点溶媒であるヘキサン、トルエン、キシレンが好ましいが、混合液の維持を考慮すると、蒸発速度の速い低沸点溶媒を用いることは困難であり、トルエン、キシレン等が好ましい。
The solvent is preferably an organic solvent, more preferably a hydrocarbon organic solvent, such as hexane, heptane, toluene, xylene, decalin, and the like.
Of these solvents, hexane, toluene, and xylene, which are low-boiling solvents, are preferable in consideration of the drying process after coating, but it is difficult to use a low-boiling solvent having a high evaporation rate in consideration of maintaining the mixed liquid. , Toluene, xylene and the like are preferable.

混合液に用いる溶媒は、好ましくは脱水処理して水分含有量を低くする。溶媒の水分含有量は、通常30ppm以下、好ましくは10ppm以下、さらに好ましくは1.0ppm以下である。   The solvent used in the mixed solution is preferably dehydrated to reduce the water content. The water content of the solvent is usually 30 ppm or less, preferably 10 ppm or less, more preferably 1.0 ppm or less.

正極合材及び溶媒からなる混合液にバインダーをさらに添加してもよい。
上記バインダーは、正極合材との反応性が低ければ特に限定されないが、好ましくは熱可塑性樹脂及び熱硬化性樹脂であり、より好ましくはポリシロキサン、ポリアルキレングリコール、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム(SBR)、スチレンブタジエンゴム/カルボキシメチルセルロース(SBR/CMC)、ポリエチレンオキシド(PEO)、分岐PEO、ポリフェニレンオキサイド(PPO)、PEO−PPO共重合体、分岐PEO−PPO共重合体、アルキルボラン含有ポリエーテルである。
尚、バインダーは、シート化容易性、界面抵抗の増加を防ぎ且つ充放電容量の低下を防ぐ観点から特に好ましくはSBR、ポリアルキレングリコールである。
You may further add a binder to the liquid mixture which consists of a positive electrode compound material and a solvent.
The binder is not particularly limited as long as the reactivity with the positive electrode mixture is low, preferably a thermoplastic resin and a thermosetting resin, more preferably polysiloxane, polyalkylene glycol, polytetrafluoroethylene (PTFE), Polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), styrene butadiene rubber / carboxymethyl cellulose (SBR / CMC), polyethylene oxide (PEO), branched PEO, polyphenylene oxide (PPO), PEO-PPO copolymer, branched PEO -PPO copolymer, alkylborane-containing polyether.
The binder is particularly preferably SBR or polyalkylene glycol from the viewpoint of ease of sheet formation, prevention of increase in interface resistance and prevention of reduction in charge / discharge capacity.

本発明の全固体リチウム電池は、本発明の正極合材からなる正極と、負極と、正極及び負極間に挟持された硫化物系固体電解質からなる固体電解質層で構成される。
固体電解質層に含まれる硫化物系固体電解質は、正極合材に含まれる硫化物系固体電解質と同一でも異なってもよく、好ましくは同一である。
The all solid lithium battery of the present invention includes a positive electrode made of the positive electrode mixture of the present invention, a negative electrode, and a solid electrolyte layer made of a sulfide-based solid electrolyte sandwiched between the positive electrode and the negative electrode.
The sulfide-based solid electrolyte contained in the solid electrolyte layer may be the same as or different from the sulfide-based solid electrolyte contained in the positive electrode mixture, and is preferably the same.

図1は本発明に係る全固体リチウム電池の一実施形態を示す概略断面図である。
全固体リチウム電池1は、本発明の正極合材からなる正極10及び負極30からなる一対の電極間に固体電解質層20が挟持されている。正極10及び負極30にはそれぞれ集電体40及び42が設けられている。
FIG. 1 is a schematic sectional view showing an embodiment of an all solid lithium battery according to the present invention.
In the all solid lithium battery 1, a solid electrolyte layer 20 is sandwiched between a pair of electrodes composed of a positive electrode 10 and a negative electrode 30 made of the positive electrode mixture of the present invention. Current collectors 40 and 42 are provided on the positive electrode 10 and the negative electrode 30, respectively.

正極10は、本発明の正極合材からなり、本発明の正極合材を固体電解質層20の少なくとも一部に膜状に形成することで作製できる。製膜方法としては、上述した本発明の正極合材及び溶媒からなる混合液を塗布して形成する方法のほか、例えば、ブラスト法、エアロゾルデポジション法、コールドスプレー法、スパッタリング法、気相成長法、加圧プレス法又は溶射法等も用いることができる。このような方法により製膜することで、極材層の空隙率をより小さくすることができ、電子伝導、電子授受及びイオン伝導を改善することができる。   The positive electrode 10 is made of the positive electrode mixture of the present invention, and can be produced by forming the positive electrode mixture of the present invention in a film shape on at least a part of the solid electrolyte layer 20. As the film forming method, in addition to the method of forming the mixture of the positive electrode mixture and the solvent of the present invention described above, for example, a blast method, an aerosol deposition method, a cold spray method, a sputtering method, a vapor phase growth, for example A method, a pressure press method, a thermal spraying method, or the like can also be used. By forming a film by such a method, the porosity of the electrode material layer can be further reduced, and electron conduction, electron transfer and ion conduction can be improved.

固体電解質層20は、硫化物系固体電解質を、例えば、ブラスト法やエアロゾルデポジション法にて製膜することで製造できる。また、コールドスプレー法、スパッタリング法、気相成長法(Chemical Vapor Deposition:CVD)又は溶射法等でも硫化物系固体電解質の製膜が可能である。
さらに、硫化物系固体電解質と溶媒やバインダー(結着材や高分子化合物等)を混合した溶液を塗布、塗工した後、溶媒を除去し成膜化する方法もある。また、固体電解質自体や固体電解質とバインダー(結着材や高分子化合物等)や支持体(固体電解質層の強度を補強させたり、固体電解質自体の短絡を防ぐための材料や化合物等)を混合・組合した電解質を加圧プレスすることで成膜することも可能である。
電池の用途によって好適な厚み及び広さが異なるうえ、正極材及び負極材との組み合わせを考慮する必要があるため、用途等に応じて最適な製膜法を適宜選ぶとよい。
The solid electrolyte layer 20 can be manufactured by forming a sulfide-based solid electrolyte into a film by, for example, a blast method or an aerosol deposition method. Also, a sulfide-based solid electrolyte can be formed by a cold spray method, a sputtering method, a vapor deposition method (chemical vapor deposition: CVD), a thermal spraying method, or the like.
Further, there is a method in which a solution in which a sulfide-based solid electrolyte is mixed with a solvent and a binder (binder, polymer compound, etc.) is applied and applied, and then the solvent is removed to form a film. Also, the solid electrolyte itself, solid electrolyte and binder (binder, polymer compound, etc.) and support (materials and compounds to reinforce the strength of the solid electrolyte layer and prevent short circuit of the solid electrolyte itself) are mixed -It is also possible to form a film by pressing the combined electrolyte under pressure.
A suitable thickness and width differ depending on the use of the battery, and it is necessary to consider a combination with the positive electrode material and the negative electrode material. Therefore, an optimal film forming method may be appropriately selected according to the use.

溶媒は、固体電解質の性能に悪影響を与えないものであれば特に限定されないが、例えば非水系溶媒が挙げられる。
非水系溶媒としては、例えば、乾燥ヘプタン、トルエン、ヘキサン、テトラヒドロフラン(THF)、Nメチルピロリドン、アセトニトリル、及びジメトキシエタン、ジメチルカーボネート等の電解液に用いられる溶媒が挙げられ、好ましくは水分含有量が100ppm以下、より好ましくは50ppm以下の溶媒である。
Although a solvent will not be specifically limited if it does not have a bad influence on the performance of solid electrolyte, For example, a non-aqueous solvent is mentioned.
Examples of the non-aqueous solvent include solvents used in electrolyte solutions such as dry heptane, toluene, hexane, tetrahydrofuran (THF), N methylpyrrolidone, acetonitrile, dimethoxyethane, and dimethyl carbonate, and preferably have a water content. The solvent is 100 ppm or less, more preferably 50 ppm or less.

バインダーとしては、熱可塑性樹脂又は熱硬化性樹脂が使用できる。例えば、ポリシロキサン、ポリアルキレングリコール、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体又は前記材料の(Na)イオン架橋体、エチレン−メタクリル酸共重合体又は前記材料の(Na)イオン架橋体、エチレン−アクリル酸メチル共重合体又は前記材料の(Na)イオン架橋体、エチレン−メタクリル酸メチル共重合体又は前記材料の(Na)イオン架橋体を挙げることができる。As the binder, a thermoplastic resin or a thermosetting resin can be used. For example, polysiloxane, polyalkylene glycol, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer ( FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer ( ETFE resin), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene -Chlorotrifluoroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer Combined or (Na + ) ion crosslinked body of the material, ethylene-methacrylic acid copolymer or (Na + ) ion crosslinked body of the material, ethylene-methyl acrylate copolymer or (Na + ) ion crosslinked of the material Body, ethylene-methyl methacrylate copolymer, or (Na + ) ion-crosslinked body of the material.

この中で好ましいのはポリシロキサン、ポリアルキレングリコール、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)である。   Among these, polysiloxane, polyalkylene glycol, polyvinylidene fluoride (PVDF), and polytetrafluoroethylene (PTFE) are preferable.

負極30は、正極10と同様に作製できる。負極30の作製に用いる負極材としては、電池分野において負極活物質として使用されているものが使用できる。例えば、炭素材料、具体的には、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール樹脂焼成炭素、ポリアセン、ピッチ系炭素繊維、気相成長炭素繊維、天然黒鉛及び難黒鉛化性炭素が挙げられる。又はその混合物でもよい。好ましくは、人造黒鉛である。また、金属リチウム、金属インジウム、金属アルミ又は金属ケイ素の金属自体、又はこれら金属と他の元素又は化合物と組合わせた合金を、負極材として用いることができる。
本発明において、固体電解質層20は硫化物系固体電解質からなるので、負極材に金属リチウム又はグラファイトを用いても、負極と固体電解質層が反応せず、良好な電池性能を示すことができる。
The negative electrode 30 can be produced in the same manner as the positive electrode 10. As a negative electrode material used for preparation of the negative electrode 30, what is used as a negative electrode active material in the battery field | area can be used. For example, carbon materials, specifically artificial graphite, graphite carbon fiber, resin-fired carbon, pyrolytic vapor-grown carbon, coke, mesocarbon microbeads (MCMB), furfuryl alcohol resin-fired carbon, polyacene, pitch-based carbon Examples include fibers, vapor grown carbon fibers, natural graphite, and non-graphitizable carbon. Or it may be a mixture thereof. Preferably, it is artificial graphite. Moreover, the metal itself of metal lithium, metal indium, metal aluminum, or metal silicon, or the alloy which combined these metals with another element or compound can be used as a negative electrode material.
In the present invention, since the solid electrolyte layer 20 is composed of a sulfide-based solid electrolyte, even when metallic lithium or graphite is used for the negative electrode material, the negative electrode and the solid electrolyte layer do not react, and good battery performance can be exhibited.

上記負極材は正極合材と同様に導電補助剤及び/又は硫化物系固体電解質を混合してもよい。負極材に用いる硫化物系固体電解質は、好ましくは固体電解質層に用いる硫化物系固体電解質と同一である。   The negative electrode material may be mixed with a conductive additive and / or a sulfide solid electrolyte in the same manner as the positive electrode mixture. The sulfide solid electrolyte used for the negative electrode material is preferably the same as the sulfide solid electrolyte used for the solid electrolyte layer.

集電体40,42としては、銅、マグネシウム、ステンレス鋼、チタン、鉄、コバルト、ニッケル、亜鉛、アルミニウム、ゲルマニウム、インジウム、リチウム、又は、これらの合金等からなる板状体や箔状体等が使用できる。
集電体40,42は、それぞれ、同一でも異なっていてもよい。例えば、集電体40には銅箔を使用し、集電体42にはアルミニウム箔を使用してもよい。
As the current collectors 40 and 42, a plate or foil made of copper, magnesium, stainless steel, titanium, iron, cobalt, nickel, zinc, aluminum, germanium, indium, lithium, or an alloy thereof, or the like Can be used.
The current collectors 40 and 42 may be the same as or different from each other. For example, a copper foil may be used for the current collector 40 and an aluminum foil may be used for the current collector 42.

全固体リチウム電池は、上述した電池用部材を貼り合せ、接合することで製造できる。接合する方法としては、各部材を積層し、加圧・圧着する方法や、2つのロール間を通して加圧する方法(roll to roll)等がある。
また、接合面にイオン伝導性を有する活物質や、イオン伝導性を阻害しない接着物質を介して接合してもよい。
接合においては、固体電解質の結晶構造が変化しない範囲で加熱融着してもよい。
An all-solid lithium battery can be manufactured by bonding and joining the battery members described above. As a method of joining, there are a method of laminating each member, pressurizing and pressure bonding, a method of pressing through two rolls (roll to roll), and the like.
Moreover, you may join to the joining surface through the active material which has ion conductivity, and the adhesive material which does not inhibit ion conductivity.
In joining, heat fusion may be performed as long as the crystal structure of the solid electrolyte does not change.

また、上記の方法で製造した全固体リチウム電池を、さらに加熱処理すると高出力の電池とすることができ好ましい。加熱処理の際の加熱温度は、好ましくは100℃以上である。また、加熱処理時間は通常、0.1〜10時間である。
尚、全固体リチウム電池の加熱処理は、負極、固体電解質成形体及び正極のみからなる電池素子部分だけを加熱処理する場合も含む。また、安全装置、ラッピング等の加熱処理は含まない。
Moreover, it is preferable that the all-solid lithium battery produced by the above-described method can be further heat-treated to obtain a high-power battery. The heating temperature during the heat treatment is preferably 100 ° C. or higher. Moreover, heat processing time is 0.1 to 10 hours normally.
The heat treatment of the all-solid lithium battery includes a case where only the battery element portion including only the negative electrode, the solid electrolyte formed body, and the positive electrode is heat-treated. Also, it does not include heat treatment such as safety devices and lapping.

本発明の全固体リチウム電池は、二次電池及び一次電池のいずれにもすることができ、時計、携帯電話機、パソコン、自動車、発電機等の装置に用いることができる。特に本発明の全固体リチウム電池は安全性が高いことから、本発明の全固体リチウム電池を用いることにより装置の設計自由度を高めることができる。   The all solid lithium battery of the present invention can be either a secondary battery or a primary battery, and can be used in devices such as watches, mobile phones, personal computers, automobiles, and generators. In particular, since the all solid lithium battery of the present invention is highly safe, the degree of design freedom of the apparatus can be increased by using the all solid lithium battery of the present invention.

上述の装置のうち、自動車には、駆動源が電動機である電気自動車、及び駆動源として電動機と内燃機関を組み合わせて用いるハイブリッド電気自動車が含まれ、これら自動車は大電流及び大電圧を必要する。
本発明の全固体リチウム電池は、直列及び/又は並列に繋いで電池セルとすることでより大きな電力を取り出すことができる。複数の電池セルをさらに直列及び/又は並列に接続して電池モジュール(電池パック、電池ユニット)とすることで、上記自動車が必要とする大電流・大電圧を満たす電池とすることができる。
[実施例]
Among the above-described devices, the automobile includes an electric automobile whose driving source is an electric motor, and a hybrid electric automobile using a combination of an electric motor and an internal combustion engine as a driving source, and these automobiles require a large current and a large voltage.
The all-solid-state lithium battery of the present invention can extract more power by connecting in series and / or in parallel to form a battery cell. By connecting a plurality of battery cells in series and / or parallel to form a battery module (battery pack, battery unit), a battery that satisfies the large current and large voltage required by the automobile can be obtained.
[Example]

製造例
(1)硫化リチウム(LiS)の製造
硫化リチウムは、特開平7−330312号公報の第1の態様(2工程法)の方法に従って製造した。具体的には、撹拌翼のついた10リットルオートクレーブにN−メチル−2−ピロリドン(NMP)3326.4g(33.6モル)及び水酸化リチウム287.4g(12モル)を仕込み、300rpm、130℃に昇温した。昇温後、液中に硫化水素を3リットル/分の供給速度で2時間吹き込んだ。続いてこの反応液を窒素気流下(200cc/分)昇温し、反応した硫化水素の一部を脱硫化水素化した。昇温するにつれ、上記硫化水素と水酸化リチウムの反応により副生した水が蒸発を始めたが、この水はコンデンサにより凝縮し系外に抜き出した。水を系外に留去すると共に反応液の温度は上昇するが、180℃に達した時点で昇温を停止し、一定温度に保持した。脱硫化水素反応が終了後(約80分)反応を終了し、硫化リチウムを得た。
Production Example (1) Production of Lithium Sulfide (Li 2 S) Lithium sulfide was produced according to the method of the first aspect (two-step method) of JP-A-7-330312. Specifically, N-methyl-2-pyrrolidone (NMP) 3326.4 g (33.6 mol) and lithium hydroxide 287.4 g (12 mol) were charged into a 10 liter autoclave equipped with a stirring blade, and 300 rpm, 130 The temperature was raised to ° C. After the temperature rise, hydrogen sulfide was blown into the liquid at a supply rate of 3 liters / minute for 2 hours. Subsequently, this reaction solution was heated in a nitrogen stream (200 cc / min) to dehydrosulfide a part of the reacted hydrogen sulfide. As the temperature increased, water produced as a by-product due to the reaction between hydrogen sulfide and lithium hydroxide started to evaporate, but this water was condensed by the condenser and extracted out of the system. While water was distilled out of the system, the temperature of the reaction solution rose, but when the temperature reached 180 ° C., the temperature increase was stopped and the temperature was kept constant. After the dehydrosulfurization reaction was completed (about 80 minutes), the reaction was completed to obtain lithium sulfide.

(2)硫化リチウムの精製
上記(1)で得られた500mLのスラリー反応溶液(NMP−硫化リチウムスラリー)中のNMPをデカンテーションした後、脱水したNMP100mLを加え、105℃で約1時間撹拌した。その温度のままNMPをデカンテーションした。さらにNMP100mLを加え、105℃で約1時間撹拌し、その温度のままNMPをデカンテーションし、同様の操作を合計4回繰り返した。デカンテーション終了後、窒素気流下230℃(NMPの沸点以上の温度)で硫化リチウムを常圧下で3時間乾燥した。得られた硫化リチウム中の不純物含有量を測定した。
(2) Purification of lithium sulfide After decanting NMP in the 500 mL slurry reaction solution (NMP-lithium sulfide slurry) obtained in (1) above, 100 mL of dehydrated NMP was added and stirred at 105 ° C. for about 1 hour. . NMP was decanted at that temperature. Further, 100 mL of NMP was added, stirred at 105 ° C. for about 1 hour, NMP was decanted at that temperature, and the same operation was repeated a total of 4 times. After completion of the decantation, lithium sulfide was dried at 230 ° C. (temperature higher than the boiling point of NMP) under a nitrogen stream for 3 hours under normal pressure. The impurity content in the obtained lithium sulfide was measured.

尚、亜硫酸リチウム(LiSO)、硫酸リチウム(LiSO)並びにチオ硫酸リチウム(Li)の各硫黄酸化物、及びN−メチルアミノ酪酸リチウム(NMAB)の含有量は、イオンクロマトグラフ法により定量した。その結果、硫黄酸化物の総含有量は0.13質量%であり、LMABは0.07質量%であった。Incidentally, lithium sulfite (Li 2 SO 3), the content of each sulfur oxide lithium sulfate (Li 2 SO 4) and lithium thiosulfate (Li 2 S 2 O 3) , and N- methylamino acid lithium (NMAB) Was quantified by ion chromatography. As a result, the total content of sulfur oxides was 0.13% by mass, and LMAB was 0.07% by mass.

(3)硫化物系固体電解質の製造
上記にて製造したLiSとP(アルドリッチ製)を出発原料に用いた。これらを70対30のモル比に調整した250gの混合物を、ジルコニア製ボールを充填したSUS製容器(容量6.7L)に入れ、露点−40℃以下のドライ雰囲気下及び室温下で、200時間振動ミルにより、1kJ/kg・sの機械的エネルギーを加えてメカニカルミリング処理することにより、白黄色粉末の硫化物系固体電解質粉体を得た。
得られた粉末について、粉末X線回折測定を行った(CuKα:λ=1.5418Å)。得られたチャートを図2に示す。このチャートにより、原料結晶のピークは完全に消失し、この硫化物系固体電解質粉体はガラス化していることが確認された。また、得られた硫化物系ガラス固体電解質(非晶質ガラス電解質)の結晶化度は0%であった。
(3) Production of sulfide-based solid electrolyte Li 2 S and P 2 S 5 (manufactured by Aldrich) produced above were used as starting materials. 250 g of the mixture adjusted to a molar ratio of 70:30 was placed in a SUS container (capacity: 6.7 L) filled with zirconia balls, and 200 hours under a dry atmosphere at a dew point of −40 ° C. or lower and at room temperature. A mechanical milling treatment was performed by applying mechanical energy of 1 kJ / kg · s by a vibration mill to obtain a sulfide-based solid electrolyte powder of white yellow powder.
Powder X-ray diffraction measurement was performed on the obtained powder (CuKα: λ = 1.5418Å). The obtained chart is shown in FIG. From this chart, it was confirmed that the peak of the raw material crystal completely disappeared and the sulfide-based solid electrolyte powder was vitrified. The obtained sulfide-based glass solid electrolyte (amorphous glass electrolyte) had a crystallinity of 0%.

得られた非晶質ガラス電解質粉体を、アルゴン雰囲気のSUS管に入れて密閉し、300℃2時間の焼成処理を施し、硫化物系結晶化ガラス固体電解質(結晶化ガラス電解質)を作製した。
得られた結晶化ガラス電解質の平均一次粒子径は3μmであった。尚、平均一次粒子径は、レーザー回折式粒度分布測定装置 SEISHIN LASER MICRON SIZER LMS-30(セイシン企業製)で測定した。後述する正極活物質(例えば、LiNi0.8Co0.2)の平均一次粒子径も同様に測定した。
The obtained amorphous glass electrolyte powder was sealed in a SUS tube in an argon atmosphere, and subjected to a firing treatment at 300 ° C. for 2 hours to produce a sulfide-based crystallized glass solid electrolyte (crystallized glass electrolyte). .
The average primary particle diameter of the obtained crystallized glass electrolyte was 3 μm. The average primary particle size was measured with a laser diffraction particle size distribution analyzer SEISHIN LASER MICRON SIZER LMS-30 (manufactured by Seishin Enterprise). The average primary particle diameter of a positive electrode active material (for example, LiNi 0.8 Co 0.2 O 2 ) described later was also measured in the same manner.

上記にて作製した結晶化ガラス電解質について、粉末X線回折測定を行った(CuKα:λ=1.5418Å)。得られた結晶化ガラス電解質は、2θ=17.8±0.3deg、18.2±0.3deg、19.8±0.3deg、21.8±0.3deg、23.8±0.3deg、25.9±0.3deg、29.5±0.3deg、30.0±0.3degに回折ピークを有することを確認した。得られた結果を図3に示す。   The crystallized glass electrolyte produced above was subjected to powder X-ray diffraction measurement (CuKα: λ = 1.5418Å). The obtained crystallized glass electrolyte has 2θ = 17.8 ± 0.3 deg, 18.2 ± 0.3 deg, 19.8 ± 0.3 deg, 21.8 ± 0.3 deg, 23.8 ± 0.3 deg. 25.9 ± 0.3 deg, 29.5 ± 0.3 deg, 30.0 ± 0.3 deg. The obtained results are shown in FIG.

また得られた結晶化ガラス電解質の結晶化度が50%以上であることを確認した。この結晶化度は、JNM−CMXP302NMR装置(日本電子株式会社製)を用いて、以下の条件で固体31P−NMRスペクトルを測定し、得られた固体31PNMRスペクトルについて、70〜120ppmに観測される共鳴線を、非線形最小二乗法を用いてガウス曲線に分離し、各曲線の面積比から算出した。Moreover, it confirmed that the crystallinity degree of the obtained crystallized glass electrolyte was 50% or more. The crystallinity, using JNM-CMXP302NMR apparatus (manufactured by JEOL Ltd.), to measure the solid 31 PNMR spectrum under the following conditions, the obtained solid 31 PNMR spectrum, is observed in 70~120ppm The resonance lines were separated into Gaussian curves using a non-linear least square method and calculated from the area ratio of each curve.

固体31P−NMRスペクトルの測定条件
観測核 :31
観測周波数:121.339MHz
測定温度 :室温
測定法 :MAS法
パルス系列:シングルパルス
90°パルス幅:4μs
マジック角回転の回転数:8600Hz
FID測定後、次のパルス印加までの待ち時間:100〜2000s
(最大のスピン−格子緩和時間の5倍以上になるよう設定)
積算回数 :64回
化学シフトは、外部基準として(NHHPO(化学シフト1.33ppm)を用い決定した。
試料充填時の空気中の水分による変質を防ぐため、不活性ガスを連続的に流しているドライボックス中で密閉性の試料管に試料を充填した。
Measurement conditions of solid 31 P-NMR spectrum Observation nucleus: 31 P
Observation frequency: 121.339 MHz
Measurement temperature: Room temperature Measurement method: MAS method Pulse sequence: Single pulse 90 ° Pulse width: 4 μs
Magic angle rotation speed: 8600Hz
Wait time until the next pulse application after FID measurement: 100-2000s
(Set to be more than 5 times the maximum spin-lattice relaxation time)
Number of integrations: 64 times Chemical shifts were determined using (NH 4 ) 2 HPO 4 (chemical shift 1.33 ppm) as an external reference.
In order to prevent alteration due to moisture in the air during sample filling, the sample was filled into a hermetic sample tube in a dry box in which an inert gas was continuously flowing.

実施例1
「Solid State Communications, Vol.90, No.7, p.439-442, 1994」に基づいてLiNi0.8Co0.2を調製した(平均一次粒子径:10μm)。このLiNi0.8Co0.2と製造例で調製した結晶化ガラス電解質を重量比1:1で混合し正極合材とした。この正極合材を乳鉢にて5分間粉砕し、錠剤成形機に約0.3gの正極合材を充填し、4〜6MPaの圧力を加えて正極合材成形体とした。さらに、電極としてカーボングラファイト(TIMCAL製、SFG−15)と製造例で調製した結晶化ガラス電解質を重量比1:1で混合をした合材約10mgを、それぞれ成形体の両面に乗せ、再度錠剤成形機にて圧力を加えることにより、電極、正極合材成形体及び電極の3層からなる交流インピーダンス測定用成形体(直径約10mm、厚み約2mm)を作製した。
Example 1
LiNi 0.8 Co 0.2 O 2 was prepared based on “Solid State Communications, Vol. 90, No. 7, p.439-442, 1994” (average primary particle size: 10 μm). This LiNi 0.8 Co 0.2 O 2 and the crystallized glass electrolyte prepared in the production example were mixed at a weight ratio of 1: 1 to obtain a positive electrode mixture. The positive electrode mixture was pulverized in a mortar for 5 minutes, filled with about 0.3 g of the positive electrode mixture in a tablet molding machine, and a pressure of 4 to 6 MPa was applied to obtain a positive electrode mixture molded body. Further, about 10 mg of a mixture obtained by mixing carbon graphite (manufactured by TIMCAL, SFG-15) as an electrode and the crystallized glass electrolyte prepared in the production example at a weight ratio of 1: 1 was placed on both sides of the molded body, and the tablet was again formed. By applying pressure with a molding machine, an AC impedance measurement molded body (diameter: about 10 mm, thickness: about 2 mm) composed of an electrode, a positive electrode mixture molded body, and an electrode was produced.

得られた交流インピーダンス測定用成形体について、交流インピーダンス測定を実施した。尚、交流インピーダンス法の測定は、室温(28.9℃)にて1度目の測定をし、190℃まで昇温した後、室温(26.6℃)まで降温して2度目の測定を行った。結果を図4に示す。
図4から明らかなように、昇温前の測定曲線及び昇温後の測定曲線は、190℃という高温下を経ても大きな抵抗成分の変化はなく、曲線の形状がほとんど一致していた。即ち、本発明の正極合材が熱的安定性に優れることが確認された。
AC impedance measurement was performed on the obtained AC impedance measurement molded body. In the AC impedance method, the first measurement is performed at room temperature (28.9 ° C), the temperature is increased to 190 ° C, the temperature is decreased to room temperature (26.6 ° C), and the second measurement is performed. It was. The results are shown in FIG.
As is clear from FIG. 4, the measurement curve before the temperature increase and the measurement curve after the temperature increase did not greatly change the resistance component even after the high temperature of 190 ° C., and the shapes of the curves almost coincided. That is, it was confirmed that the positive electrode mixture of the present invention was excellent in thermal stability.

比較例1
LiNi0.8Co0.2の代わりにLiCoOを用いたほかは実施例1と同様にして交流インピーダンス測定用成形体を作製し、実施例1と同様に評価した。結果を図5に示す。
図5から明らかなように、昇温前の測定曲線及び昇温後の測定曲線は、190℃という高温下を経ることによって大きな抵抗成分の変化がおこり、曲線の形状が大きく異なる。即ち、高温下を経ることにより、正極合材の性状に変化が起きたことが確認された。
Comparative Example 1
Except for using LiCoO 2 instead of LiNi 0.8 Co 0.2 O 2, a molded article for AC impedance measurement was prepared in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in FIG.
As is clear from FIG. 5, the measurement curve before the temperature rise and the measurement curve after the temperature rise undergo a large resistance component change through a high temperature of 190 ° C., and the shapes of the curves are greatly different. That is, it was confirmed that the properties of the positive electrode mixture changed due to the high temperature.

実施例2
製造例で調製した結晶化ガラス電解質及びLiNi0.8Co0.2を重量比2:8で混合し正極合材とした。この正極合材を乳鉢にて5分間粉砕し、粉砕した正極合材をチューブオーブンを用いて150℃30分加熱処理した。
Example 2
The crystallized glass electrolyte prepared in Production Example and LiNi 0.8 Co 0.2 O 2 were mixed at a weight ratio of 2: 8 to obtain a positive electrode mixture. The positive electrode mixture was pulverized in a mortar for 5 minutes, and the pulverized positive electrode mixture was heat-treated at 150 ° C. for 30 minutes using a tube oven.

熱処理した正極合材を用いて電池を作製した。正極合材を約0.1gからなる正極、製造例で調製した硫化物系結晶化ガラス電解質を約0.2gからなる電解質層、及びInシートからなる負極を用いて、正極、電解質及び負極の3層からなる厚さ約1mm、直径約16mmの電池を作製した。   A battery was produced using the heat-treated positive electrode mixture. Using a positive electrode composed of about 0.1 g of the positive electrode mixture, an electrolyte layer composed of about 0.2 g of the sulfide-based crystallized glass electrolyte prepared in the production example, and a negative electrode composed of an In sheet, the positive electrode, the electrolyte, and the negative electrode A battery consisting of three layers and having a thickness of about 1 mm and a diameter of about 16 mm was produced.

作製した電池の充放電特性を評価した。充放電特性評価は充放電自動測定装置(東方技研株式会社製)を用い、上限電圧を3.7V及び下限電圧を1.5Vとし、電流密度が100μA・cm-2で行った。その結果、得られた電池の初期充電量は約100mAh/gであった。The charge / discharge characteristics of the produced battery were evaluated. The charge / discharge characteristic evaluation was performed using a charge / discharge automatic measuring device (manufactured by Toho Giken Co., Ltd.), with an upper limit voltage of 3.7 V, a lower limit voltage of 1.5 V, and a current density of 100 μA · cm −2 . As a result, the initial charge amount of the obtained battery was about 100 mAh / g.

実施例3
乳鉢で粉砕した正極合材を加熱処理しなかったほかは実施例2と同様にして電池を作製し、実施例2と同様に評価した。その結果、得られた電池の初期充電量は約80mAh/gであった。
実施例2及び実施例3から、本発明の正極合材を用いた電池は、その製造過程に加熱処理を含む場合であっても、充放電特性に大きな変化が起こらないことが確認された。
Example 3
A battery was prepared in the same manner as in Example 2 except that the positive electrode mixture pulverized in a mortar was not heat-treated, and evaluated in the same manner as in Example 2. As a result, the initial charge amount of the obtained battery was about 80 mAh / g.
From Example 2 and Example 3, it was confirmed that the battery using the positive electrode mixture of the present invention does not cause a large change in charge / discharge characteristics even when the manufacturing process includes heat treatment.

比較例2
LiNi0.8Co0.2の代わりにLiCoOを用いたほかは実施例2と同様にして電池を作製し、実施例2と同様に評価した。その結果、得られた電池の初期充電量は約35mAh/gであった。
Comparative Example 2
A battery was fabricated in the same manner as in Example 2 except that LiCoO 2 was used instead of LiNi 0.8 Co 0.2 O 2 , and evaluation was performed in the same manner as in Example 2. As a result, the initial charge amount of the obtained battery was about 35 mAh / g.

比較例3
LiNi0.8Co0.2の代わりにLiCoOを用いたほかは実施例3と同様にして電池を作製し、実施例2と同様に評価した。その結果、得られた電池の初期充電量は約70mAh/gであった。
比較例2及び比較例3において、加熱処理を行うことにより初期充電量の大幅な低下が起こっており、正極合材にLiCoOを用いた電池は、正極合材にLiNi0.8Co0.2を用いた電池に比べて、熱的安定性に劣ることが確認された。
Comparative Example 3
A battery was prepared in the same manner as in Example 3 except that LiCoO 2 was used instead of LiNi 0.8 Co 0.2 O 2 , and evaluation was performed in the same manner as in Example 2. As a result, the initial charge amount of the obtained battery was about 70 mAh / g.
In Comparative Example 2 and Comparative Example 3, the initial charge amount is significantly reduced by performing the heat treatment. In the battery using LiCoO 2 as the positive electrode mixture, LiNi 0.8 Co 0. It was confirmed that the thermal stability was inferior to the battery using 2 O 2 .

比較例4
正極合材に用いる硫化物系固体電解質として、結晶化ガラス電解質の変わりに製造例で作製した非晶質ガラス電解質を用いたほかは実施例2と同様にして電池を作製し、実施例2と同様に評価した。その結果、得られた電池の初期充電量は約50mAh/gであった。
Comparative Example 4
A battery was produced in the same manner as in Example 2 except that the amorphous solid electrolyte produced in the production example was used in place of the crystallized glass electrolyte as the sulfide-based solid electrolyte used in the positive electrode mixture. Evaluation was performed in the same manner. As a result, the initial charge amount of the obtained battery was about 50 mAh / g.

比較例5
正極合材に用いる硫化物系固体電解質として、結晶化ガラス電解質の変わりに製造例で作製した非晶質ガラス電解質を用いたほかは実施例3と同様にして電池を作製し、実施例2と同様に評価した。その結果、得られた電池の初期充電量は約120mAh/gであった。
比較例4及び比較例5において、加熱処理を行うことにより初期充電量の大幅な低下が起こっており、正極合材に非晶質ガラス電解質を用いた電池は、正極合材に結晶化ガラス電解質を用いた電池に比べて、熱的安定性に劣ることが確認された。
Comparative Example 5
A battery was produced in the same manner as in Example 3 except that the amorphous solid electrolyte produced in the production example was used in place of the crystallized glass electrolyte as the sulfide-based solid electrolyte used in the positive electrode mixture. Evaluation was performed in the same manner. As a result, the initial charge amount of the obtained battery was about 120 mAh / g.
In Comparative Example 4 and Comparative Example 5, the initial charge amount significantly decreased by performing the heat treatment, and the battery using the amorphous glass electrolyte for the positive electrode mixture is a crystallized glass electrolyte for the positive electrode mixture. It was confirmed that the thermal stability was inferior compared to the battery using.

実施例4
製造例で調製した結晶化ガラス電解質及びLiNi0.8Co0.2を重量比1:1で混合した正極合材を作製し、1ヶ月間不活性雰囲気内で保存した。その後、正極合材のXRD測定を行った。その結果、正極合材の回折ピークはLiNi0.8Co0.2単体のXRDパターンと比較しても変化しておらず、本発明の正極合材が経時的安定性に優れていることが確認された。
尚、X線回折測定(XRD)の測定条件は以下の通りであった。
装置:(株)リガク製Ultima−III
X線:Cu−Kα線(波長1.5406Å、グラファイトモノクロメータにて単色化)
2θ−θ反射法、連続スキャン(1.0°/分)
サンプリング間隔:0.02°
スリット DS、SS:2/3°、RS:0.6mm
Example 4
A positive electrode mixture was prepared by mixing the crystallized glass electrolyte prepared in Production Example and LiNi 0.8 Co 0.2 O 2 at a weight ratio of 1: 1, and stored in an inert atmosphere for 1 month. Thereafter, XRD measurement of the positive electrode mixture was performed. As a result, the diffraction peak of the positive electrode mixture did not change even when compared with the XRD pattern of LiNi 0.8 Co 0.2 O 2 alone, and the positive electrode mixture of the present invention has excellent temporal stability. It was confirmed.
The measurement conditions for X-ray diffraction measurement (XRD) were as follows.
Device: Rigaku Ultima-III
X-ray: Cu-Kα ray (wavelength 1.5406mm, monochromatized with graphite monochromator)
2θ-θ reflection method, continuous scan (1.0 ° / min)
Sampling interval: 0.02 °
Slit DS, SS: 2/3 °, RS: 0.6 mm

比較例6
製造例で調製した結晶化ガラス電解質及びLiCoOを重量比1:1で混合した正極合材を作製し、1ヶ月間不活性雰囲気内で保存した。その後、正極合材のXRD測定を行った。その結果、正極合材の回折ピークはLiCoO単体のXRDパターンと比較して低角側にシフトしており、格子定数が変化していることが確認された。その結果、本発明の正極合材に比べ、結晶化ガラス電解質及びLiCoOからなる正極合材は経時的に不安定であると確認された。
Comparative Example 6
A positive electrode mixture was prepared by mixing the crystallized glass electrolyte prepared in Production Example and LiCoO 2 at a weight ratio of 1: 1, and stored in an inert atmosphere for 1 month. Thereafter, XRD measurement of the positive electrode mixture was performed. As a result, it was confirmed that the diffraction peak of the positive electrode mixture was shifted to a lower angle side compared to the XRD pattern of LiCoO 2 alone, and the lattice constant was changed. As a result, it was confirmed that the positive electrode mixture composed of the crystallized glass electrolyte and LiCoO 2 was unstable over time as compared with the positive electrode mixture of the present invention.

実施例5
特開平10−316431号公報に基づいてLiNi0.8Co0.15Al0.05を調製した(平均一次粒子径:5μm)。70mgのLiNi0.8Co0.15Al0.05と30mgの製造例で調製した結晶化ガラス電解質を乳鉢で混合し正極合材とした。
Example 5
LiNi 0.8 Co 0.15 Al 0.05 O 2 was prepared based on JP-A-10-316431 (average primary particle size: 5 μm). 70 mg of LiNi 0.8 Co 0.15 Al 0.05 O 2 and the crystallized glass electrolyte prepared in Production Example of 30 mg were mixed in a mortar to obtain a positive electrode mixture.

15.5mmφの金型に製造例で調製した結晶化ガラス電解質200mgを投入し、154MPaで3回プレスした。次いで、正極合材100mgを投入して530MPaで3回プレスし、金型から結晶化ガラス電解質からなる層及び正極合材からなる層の積層体のペレットを打ち抜いた。このペレットを2枚のチタン箔で挟み、電池セルに設置した。この電池セルを300℃で30分間加熱し、結晶化ガラス電解質をガラスセラミック化した。
積層体の正極合材の反対側から負極としてインジウム箔(15mmφ、0.1mm厚)を貼り、電池を作製した。
200 mg of the crystallized glass electrolyte prepared in the production example was placed in a 15.5 mmφ mold and pressed three times at 154 MPa. Next, 100 mg of the positive electrode mixture was added and pressed three times at 530 MPa, and pellets of a laminate of the layer made of the crystallized glass electrolyte and the layer made of the positive electrode mixture were punched from the mold. The pellet was sandwiched between two titanium foils and placed in a battery cell. This battery cell was heated at 300 ° C. for 30 minutes to convert the crystallized glass electrolyte into glass ceramic.
An indium foil (15 mmφ, 0.1 mm thickness) was attached as a negative electrode from the opposite side of the positive electrode mixture of the laminate to prepare a battery.

得られた電池について、充放電の電流密度を250μA/cm、カットオフ上限電圧を3.6V、下限電圧を1.5Vとして評価した。その結果、初期充電容量は165mAh/gであり、放電容量は115mAh/gであった。The obtained battery was evaluated with a charge / discharge current density of 250 μA / cm 2 , a cutoff upper limit voltage of 3.6 V, and a lower limit voltage of 1.5 V. As a result, the initial charge capacity was 165 mAh / g, and the discharge capacity was 115 mAh / g.

比較例7
LiNi0.8Co0.15Al0.05の代わりにLiCoOを用いたほかは実施例5と同様にして電池を作製した。得られた電池について、充放電の電流密度を250μA/cm、カットオフ上限電圧を3.9V、下限電圧を1.5Vとして評価した。その結果、得られた電池は二次電池としては機能しなかった。
Comparative Example 7
A battery was fabricated in the same manner as in Example 5 except that LiCoO 2 was used instead of LiNi 0.8 Co 0.15 Al 0.05 O 2 . The obtained battery was evaluated with a charge / discharge current density of 250 μA / cm 2 , a cutoff upper limit voltage of 3.9 V, and a lower limit voltage of 1.5 V. As a result, the obtained battery did not function as a secondary battery.

実施例6
LiNi0.8Co0.15Al0.05の代わりにLiNi1/3Co1/3Mn1/3(平均一次粒子径:10μm)を用いたほかは実施例5と同様にして電池を作製した。得られた電池について、充放電の電流密度を250μA/cm、カットオフ上限電圧を3.9V、下限電圧を1.5Vとして評価した。その結果、初期充電容量は135mAh/gであり、放電容量は95mAh/gであった。
Example 6
Example 5 was repeated except that LiNi 1/3 Co 1/3 Mn 1/3 O 2 (average primary particle size: 10 μm) was used instead of LiNi 0.8 Co 0.15 Al 0.05 O 2. A battery was produced. The obtained battery was evaluated with a charge / discharge current density of 250 μA / cm 2 , a cutoff upper limit voltage of 3.9 V, and a lower limit voltage of 1.5 V. As a result, the initial charge capacity was 135 mAh / g, and the discharge capacity was 95 mAh / g.

実施例7
LiNi0.8Co0.15Al0.05の代わりに実施例1と同じLiNi0.8Co0.2を用いたほかは実施例5と同様にして電池を作製した。得られた電池について、充放電の電流密度を250μA/cm、カットオフ上限電圧を3.6V、下限電圧を1.5Vとして評価した。その結果、初期充電容量は145mAh/gであり、放電容量は105mAh/gであった。
Example 7
A battery was fabricated in the same manner as in Example 5 except that the same LiNi 0.8 Co 0.2 O 2 as in Example 1 was used instead of LiNi 0.8 Co 0.15 Al 0.05 O 2 . The obtained battery was evaluated with a charge / discharge current density of 250 μA / cm 2 , a cutoff upper limit voltage of 3.6 V, and a lower limit voltage of 1.5 V. As a result, the initial charge capacity was 145 mAh / g, and the discharge capacity was 105 mAh / g.

本発明の正極合材は、全固体リチウム二次電池に使用できる。
本発明の全固体リチウム二次電池は、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、モーターを電力源とする自動二輪車、電気自動車、ハイブリッド電気自動車等の電池として用いることができる。
The positive electrode mixture of the present invention can be used for an all-solid lithium secondary battery.
The all-solid-state lithium secondary battery of the present invention can be used as a battery for a portable information terminal, a portable electronic device, a small electric power storage device for home use, a motorcycle using a motor as a power source, an electric vehicle, a hybrid electric vehicle, or the like.

Claims (12)

下記式(1)で表される化合物及び結晶化度が50%以上である硫化物系固体電解質からなる耐熱性正極合材。
LiNi1−x (1)
(式中、xは0.1<x<0.9を満たす数であり、MはFe,Co,Mn及びAlからなる群から選ばれる元素である。)
A heat-resistant positive electrode mixture comprising a compound represented by the following formula (1) and a sulfide solid electrolyte having a crystallinity of 50% or more.
LiNi x M 1-x O 2 (1)
(In the formula, x is a number satisfying 0.1 <x <0.9, and M is an element selected from the group consisting of Fe, Co, Mn, and Al.)
下記式(2)で表される化合物及び結晶化度が50%以上である硫化物系固体電解質からなる耐熱性正極合材。
LiNi1−x−y (2)
(式中、xは0.1<x<0.9を満たす数であり、yは0.01<y<0.9を満たす数であって、x及びyは0<1−x−yを満たす数である。
M及びLは、それぞれFe,Co,Mn及びAlからなる群から選ばれる元素であって、互いに異なる元素である。)
A heat-resistant positive electrode mixture comprising a compound represented by the following formula (2) and a sulfide solid electrolyte having a crystallinity of 50% or more.
LiNi x M 1-x-y L y O 2 (2)
(Where x is a number satisfying 0.1 <x <0.9, y is a number satisfying 0.01 <y <0.9, and x and y are 0 <1-xy. It is a number that satisfies
M and L are elements selected from the group consisting of Fe, Co, Mn, and Al, and are different from each other. )
前記硫化物系固体電解質が、少なくともリチウム(Li),リン(P)及び硫黄(S)を含む請求項1又は2に記載の耐熱性正極合材。   The heat-resistant positive electrode mixture according to claim 1 or 2, wherein the sulfide-based solid electrolyte contains at least lithium (Li), phosphorus (P), and sulfur (S). 前記硫化物系固体電解質がリチウム(Li)、リン(P)及び硫黄(S)を含む硫化物系ガラス固体電解質を、180℃以上210℃以下の温度で3〜240時間熱処理、又は210℃より高く330℃以下の温度で0.1〜240時間熱処理した硫化物系結晶化ガラス固体電解質である請求項1〜3のいずれかに記載の耐熱性正極合材。   The sulfide-based glass solid electrolyte in which the sulfide-based solid electrolyte contains lithium (Li), phosphorus (P) and sulfur (S) is heat-treated at a temperature of 180 ° C. to 210 ° C. for 3 to 240 hours, or from 210 ° C. The heat-resistant positive electrode composite material according to any one of claims 1 to 3, which is a sulfide-based crystallized glass solid electrolyte that has been heat-treated at a high temperature of 330 ° C or lower for 0.1 to 240 hours. 前記硫化物系固体電解質が、X線回折(CuKα:λ=1.5418Å)において、2θ=17.8±0.3deg,18.2±0.3deg,19.8±0.3deg,21.8±0.3deg,23.8±0.3deg,25.9±0.3deg,29.5±0.3deg,30.0±0.3degに回折ピークを有する請求項1〜4のいずれかに記載の耐熱性正極合材。   In the X-ray diffraction (CuKα: λ = 1.54184), the sulfide-based solid electrolyte is 2θ = 17.8 ± 0.3 deg, 18.2 ± 0.3 deg, 19.8 ± 0.3 deg, 21. Any one of claims 1 to 4 having a diffraction peak at 8 ± 0.3 deg, 23.8 ± 0.3 deg, 25.9 ± 0.3 deg, 29.5 ± 0.3 deg, 30.0 ± 0.3 deg. The heat-resistant positive electrode mixture described in 1. 請求項1〜5のいずれかに記載の耐熱性正極合材及び溶媒からなる混合液。   The liquid mixture which consists of a heat-resistant positive electrode compound material and solvent in any one of Claims 1-5. 請求項1〜5のいずれかに記載の耐熱性正極合材から得られる正極。   A positive electrode obtained from the heat-resistant positive electrode mixture according to claim 1. 請求項7に記載の正極を含んでなる全固体リチウム電池。   An all solid lithium battery comprising the positive electrode according to claim 7. 請求項8に記載の全固体リチウム電池をさらに加熱処理してなる全固体リチウム電池。   An all solid lithium battery obtained by further heat-treating the all solid lithium battery according to claim 8. 請求項8又は9に記載の全固体リチウム電池を備えてなる装置。   An apparatus comprising the all solid lithium battery according to claim 8. 前記式(1)又は(2)で表される化合物の平均一次粒子径が0.01〜30μmであり、前記硫化物系固体電解質の平均一次粒子径が0.01〜30μmである請求項1〜5のいずれかに記載の耐熱性正極合材。   The average primary particle size of the compound represented by the formula (1) or (2) is 0.01 to 30 µm, and the average primary particle size of the sulfide-based solid electrolyte is 0.01 to 30 µm. The heat-resistant positive electrode mixture according to any one of -5. 前記式(1)又は(2)で表される化合物の平均一次粒子径Xと前記硫化物系電解質の平均一次粒子径Yは式(3)を満たす請求項1〜5のいずれかに記載の耐熱性正極合材。
X≧Y (3)
The average primary particle diameter X of the compound represented by the formula (1) or (2) and the average primary particle diameter Y of the sulfide-based electrolyte satisfy the formula (3). Heat-resistant positive electrode composite.
X ≧ Y (3)
JP2009533129A 2007-09-21 2008-09-16 Heat-resistant positive electrode mixture and all-solid lithium secondary battery using the same Active JP5615551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009533129A JP5615551B2 (en) 2007-09-21 2008-09-16 Heat-resistant positive electrode mixture and all-solid lithium secondary battery using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007245304 2007-09-21
JP2007245304 2007-09-21
JP2008172329 2008-07-01
JP2008172329 2008-07-01
JP2009533129A JP5615551B2 (en) 2007-09-21 2008-09-16 Heat-resistant positive electrode mixture and all-solid lithium secondary battery using the same
PCT/JP2008/066636 WO2009038037A1 (en) 2007-09-21 2008-09-16 Heat-resistant positive electrode mixture and all-solid-state lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JPWO2009038037A1 true JPWO2009038037A1 (en) 2011-01-06
JP5615551B2 JP5615551B2 (en) 2014-10-29

Family

ID=40467851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009533129A Active JP5615551B2 (en) 2007-09-21 2008-09-16 Heat-resistant positive electrode mixture and all-solid lithium secondary battery using the same

Country Status (3)

Country Link
JP (1) JP5615551B2 (en)
TW (1) TW200924263A (en)
WO (1) WO2009038037A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5277859B2 (en) * 2007-12-03 2013-08-28 セイコーエプソン株式会社 Sulfide-based lithium ion conductive solid electrolyte glass and all-solid lithium secondary battery
JP5187502B2 (en) * 2008-03-06 2013-04-24 住友電気工業株式会社 Lithium battery
JP5670905B2 (en) * 2008-10-13 2015-02-18 ビーエーエスエフ コーポレーション Lithium / nickel / cobalt oxide and lithium / nickel / manganese / cobalt oxide cathodes
JP2011040281A (en) * 2009-08-11 2011-02-24 Samsung Electronics Co Ltd All-solid secondary battery
JP2011065982A (en) 2009-08-18 2011-03-31 Seiko Epson Corp Lithium battery electrode body and lithium battery
JP2011060649A (en) * 2009-09-11 2011-03-24 Toyota Motor Corp Electrode active material layer, all solid battery, manufacturing method for electrode active material layer, and manufacturing method for all solid battery
JP6071171B2 (en) * 2010-09-01 2017-02-01 出光興産株式会社 Electrode material and lithium ion battery using the same
JP2012160415A (en) * 2011-02-03 2012-08-23 Idemitsu Kosan Co Ltd Electrode material for secondary battery, electrode, and secondary battery
JP5445527B2 (en) * 2011-07-13 2014-03-19 トヨタ自動車株式会社 Method for producing sulfide solid electrolyte material
JP2015503837A (en) * 2012-01-10 2015-02-02 ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate Lithium all-solid battery
JP2013258079A (en) * 2012-06-13 2013-12-26 Nagase Chemtex Corp Positive electrode mixture including crystalline component
JP6288716B2 (en) 2014-06-25 2018-03-07 国立大学法人東京工業大学 Method for producing sulfide solid electrolyte material
JP6877084B2 (en) 2015-07-31 2021-05-26 国立大学法人東京工業大学 α-Lithium solid electrolyte
CN111656574A (en) * 2018-02-02 2020-09-11 本田技研工业株式会社 Positive electrode for solid-state battery, and method for manufacturing solid-state battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001273895A (en) * 2000-03-27 2001-10-05 Toshiba Corp Nonaqueous electrolyte secondary battery and its manufacturing method
JP2002260736A (en) * 2000-12-27 2002-09-13 Mitsubishi Chemicals Corp Lithium secondary battery
JP2006244734A (en) * 2005-02-28 2006-09-14 National Univ Corp Shizuoka Univ All-solid lithium secondary battery
JP2007005219A (en) * 2005-06-27 2007-01-11 Nippon Telegr & Teleph Corp <Ntt> Lithium secondary battery and its manufacturing method
WO2007004590A1 (en) * 2005-07-01 2007-01-11 National Institute For Materials Science All-solid lithium battery
JP2008270137A (en) * 2007-03-23 2008-11-06 Toyota Motor Corp Mixture layer and its manufacturing method as well as solid battery and its manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922732A (en) * 1995-07-06 1997-01-21 Toshiba Battery Co Ltd Polymer electrolyte secondary battery
JP2008027581A (en) * 2006-06-23 2008-02-07 Idemitsu Kosan Co Ltd Electrode material, electrode, and all-solid secondary battery
JP2008103146A (en) * 2006-10-18 2008-05-01 Idemitsu Kosan Co Ltd Solid electrolyte and secondary battery using it
JP5048993B2 (en) * 2006-10-19 2012-10-17 出光興産株式会社 Sulfide-based solid electrolyte for positive electrode mixture and method for producing the same
JP4989183B2 (en) * 2006-10-20 2012-08-01 出光興産株式会社 Electrode and solid secondary battery using the same
JP5001621B2 (en) * 2006-10-20 2012-08-15 出光興産株式会社 Solid electrolyte and solid secondary battery using the same
JP2008103280A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Positive electrode plied timber and all-solid secondary battery using it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001273895A (en) * 2000-03-27 2001-10-05 Toshiba Corp Nonaqueous electrolyte secondary battery and its manufacturing method
JP2002260736A (en) * 2000-12-27 2002-09-13 Mitsubishi Chemicals Corp Lithium secondary battery
JP2006244734A (en) * 2005-02-28 2006-09-14 National Univ Corp Shizuoka Univ All-solid lithium secondary battery
JP2007005219A (en) * 2005-06-27 2007-01-11 Nippon Telegr & Teleph Corp <Ntt> Lithium secondary battery and its manufacturing method
WO2007004590A1 (en) * 2005-07-01 2007-01-11 National Institute For Materials Science All-solid lithium battery
JP2008270137A (en) * 2007-03-23 2008-11-06 Toyota Motor Corp Mixture layer and its manufacturing method as well as solid battery and its manufacturing method

Also Published As

Publication number Publication date
JP5615551B2 (en) 2014-10-29
TW200924263A (en) 2009-06-01
WO2009038037A1 (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JP5615551B2 (en) Heat-resistant positive electrode mixture and all-solid lithium secondary battery using the same
JP5559989B2 (en) All-solid secondary battery and device comprising the same
JP5368711B2 (en) Solid electrolyte membrane, positive electrode membrane, or negative electrode membrane for all solid lithium secondary battery, method for producing the same, and all solid lithium secondary battery
JP5348853B2 (en) Sulfide-based electrolyte molded body and all-solid battery comprising the same
JP4989183B2 (en) Electrode and solid secondary battery using the same
US9287567B2 (en) Electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2008103280A (en) Positive electrode plied timber and all-solid secondary battery using it
JP5848801B2 (en) Lithium ion conductive solid electrolyte sheet and method for producing the same
US9263743B2 (en) Electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2008103204A (en) Cathode active material and secondary battery using it
JP2008103146A (en) Solid electrolyte and secondary battery using it
US9263744B2 (en) Active material, electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2008103203A (en) Solid electrolyte and all-solid secondary battery using it
JP2010067499A (en) Manufacturing method of cathode mixture and cathode mixture obtained using it
JP2010033876A (en) Polymer-coated solid electrolyte and all-solid secondary battery using the same
US9825296B2 (en) Secondary battery-use active material, secondary battery-use electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2008234843A (en) Electrode and member for all-solid secondary battery
CN110832678B (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic device
JP5001621B2 (en) Solid electrolyte and solid secondary battery using the same
JP2013222530A (en) All solid state battery and method for charging/discharging all solid state battery
JP2007311084A (en) Electrolyte, member for battery, electrode, and all-solid secondary battery
JP2010033877A (en) Electrode mixture and all-solid secondary battery using the same
JPWO2017013827A1 (en) Lithium ion secondary battery
JP2008021424A (en) Electrolyte, member for battery, electrode, and all-solid secondary battery
JP2008103287A (en) Method for forming inorganic solid electrolyte layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20130801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130830

RD15 Notification of revocation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7435

Effective date: 20131031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140811

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140910

R150 Certificate of patent or registration of utility model

Ref document number: 5615551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150